1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86CallFrameOptimizationPass(PR); 77 initializeX86CmovConverterPassPass(PR); 78 initializeX86ExpandPseudoPass(PR); 79 initializeX86ExecutionDomainFixPass(PR); 80 initializeX86DomainReassignmentPass(PR); 81 initializeX86AvoidSFBPassPass(PR); 82 initializeX86SpeculativeLoadHardeningPassPass(PR); 83 initializeX86FlagsCopyLoweringPassPass(PR); 84 initializeX86CondBrFoldingPassPass(PR); 85 initializeX86OptimizeLEAPassPass(PR); 86 } 87 88 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 89 if (TT.isOSBinFormatMachO()) { 90 if (TT.getArch() == Triple::x86_64) 91 return std::make_unique<X86_64MachoTargetObjectFile>(); 92 return std::make_unique<TargetLoweringObjectFileMachO>(); 93 } 94 95 if (TT.isOSFreeBSD()) 96 return std::make_unique<X86FreeBSDTargetObjectFile>(); 97 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 98 return std::make_unique<X86LinuxNaClTargetObjectFile>(); 99 if (TT.isOSSolaris()) 100 return std::make_unique<X86SolarisTargetObjectFile>(); 101 if (TT.isOSFuchsia()) 102 return std::make_unique<X86FuchsiaTargetObjectFile>(); 103 if (TT.isOSBinFormatELF()) 104 return std::make_unique<X86ELFTargetObjectFile>(); 105 if (TT.isOSBinFormatCOFF()) 106 return std::make_unique<TargetLoweringObjectFileCOFF>(); 107 llvm_unreachable("unknown subtarget type"); 108 } 109 110 static std::string computeDataLayout(const Triple &TT) { 111 // X86 is little endian 112 std::string Ret = "e"; 113 114 Ret += DataLayout::getManglingComponent(TT); 115 // X86 and x32 have 32 bit pointers. 116 if ((TT.isArch64Bit() && 117 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 118 !TT.isArch64Bit()) 119 Ret += "-p:32:32"; 120 121 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 122 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 123 124 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 125 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 126 Ret += "-i64:64"; 127 else if (TT.isOSIAMCU()) 128 Ret += "-i64:32-f64:32"; 129 else 130 Ret += "-f64:32:64"; 131 132 // Some ABIs align long double to 128 bits, others to 32. 133 if (TT.isOSNaCl() || TT.isOSIAMCU()) 134 ; // No f80 135 else if (TT.isArch64Bit() || TT.isOSDarwin()) 136 Ret += "-f80:128"; 137 else 138 Ret += "-f80:32"; 139 140 if (TT.isOSIAMCU()) 141 Ret += "-f128:32"; 142 143 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 144 if (TT.isArch64Bit()) 145 Ret += "-n8:16:32:64"; 146 else 147 Ret += "-n8:16:32"; 148 149 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 150 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 151 Ret += "-a:0:32-S32"; 152 else 153 Ret += "-S128"; 154 155 return Ret; 156 } 157 158 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 159 bool JIT, 160 Optional<Reloc::Model> RM) { 161 bool is64Bit = TT.getArch() == Triple::x86_64; 162 if (!RM.hasValue()) { 163 // JIT codegen should use static relocations by default, since it's 164 // typically executed in process and not relocatable. 165 if (JIT) 166 return Reloc::Static; 167 168 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 169 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 170 // use static relocation model by default. 171 if (TT.isOSDarwin()) { 172 if (is64Bit) 173 return Reloc::PIC_; 174 return Reloc::DynamicNoPIC; 175 } 176 if (TT.isOSWindows() && is64Bit) 177 return Reloc::PIC_; 178 return Reloc::Static; 179 } 180 181 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 182 // is defined as a model for code which may be used in static or dynamic 183 // executables but not necessarily a shared library. On X86-32 we just 184 // compile in -static mode, in x86-64 we use PIC. 185 if (*RM == Reloc::DynamicNoPIC) { 186 if (is64Bit) 187 return Reloc::PIC_; 188 if (!TT.isOSDarwin()) 189 return Reloc::Static; 190 } 191 192 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 193 // the Mach-O file format doesn't support it. 194 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 195 return Reloc::PIC_; 196 197 return *RM; 198 } 199 200 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 201 bool JIT, bool Is64Bit) { 202 if (CM) { 203 if (*CM == CodeModel::Tiny) 204 report_fatal_error("Target does not support the tiny CodeModel", false); 205 return *CM; 206 } 207 if (JIT) 208 return Is64Bit ? CodeModel::Large : CodeModel::Small; 209 return CodeModel::Small; 210 } 211 212 /// Create an X86 target. 213 /// 214 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 215 StringRef CPU, StringRef FS, 216 const TargetOptions &Options, 217 Optional<Reloc::Model> RM, 218 Optional<CodeModel::Model> CM, 219 CodeGenOpt::Level OL, bool JIT) 220 : LLVMTargetMachine( 221 T, computeDataLayout(TT), TT, CPU, FS, Options, 222 getEffectiveRelocModel(TT, JIT, RM), 223 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 224 OL), 225 TLOF(createTLOF(getTargetTriple())) { 226 // On PS4, the "return address" of a 'noreturn' call must still be within 227 // the calling function, and TrapUnreachable is an easy way to get that. 228 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 229 this->Options.TrapUnreachable = true; 230 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 231 } 232 233 setMachineOutliner(true); 234 235 initAsmInfo(); 236 } 237 238 X86TargetMachine::~X86TargetMachine() = default; 239 240 const X86Subtarget * 241 X86TargetMachine::getSubtargetImpl(const Function &F) const { 242 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 243 Attribute FSAttr = F.getFnAttribute("target-features"); 244 245 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 246 ? CPUAttr.getValueAsString() 247 : (StringRef)TargetCPU; 248 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 249 ? FSAttr.getValueAsString() 250 : (StringRef)TargetFS; 251 252 SmallString<512> Key; 253 Key.reserve(CPU.size() + FS.size()); 254 Key += CPU; 255 Key += FS; 256 257 // FIXME: This is related to the code below to reset the target options, 258 // we need to know whether or not the soft float flag is set on the 259 // function before we can generate a subtarget. We also need to use 260 // it as a key for the subtarget since that can be the only difference 261 // between two functions. 262 bool SoftFloat = 263 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 264 // If the soft float attribute is set on the function turn on the soft float 265 // subtarget feature. 266 if (SoftFloat) 267 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 268 269 // Keep track of the key width after all features are added so we can extract 270 // the feature string out later. 271 unsigned CPUFSWidth = Key.size(); 272 273 // Extract prefer-vector-width attribute. 274 unsigned PreferVectorWidthOverride = 0; 275 if (F.hasFnAttribute("prefer-vector-width")) { 276 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 277 unsigned Width; 278 if (!Val.getAsInteger(0, Width)) { 279 Key += ",prefer-vector-width="; 280 Key += Val; 281 PreferVectorWidthOverride = Width; 282 } 283 } 284 285 // Extract min-legal-vector-width attribute. 286 unsigned RequiredVectorWidth = UINT32_MAX; 287 if (F.hasFnAttribute("min-legal-vector-width")) { 288 StringRef Val = 289 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 290 unsigned Width; 291 if (!Val.getAsInteger(0, Width)) { 292 Key += ",min-legal-vector-width="; 293 Key += Val; 294 RequiredVectorWidth = Width; 295 } 296 } 297 298 // Extracted here so that we make sure there is backing for the StringRef. If 299 // we assigned earlier, its possible the SmallString reallocated leaving a 300 // dangling StringRef. 301 FS = Key.slice(CPU.size(), CPUFSWidth); 302 303 auto &I = SubtargetMap[Key]; 304 if (!I) { 305 // This needs to be done before we create a new subtarget since any 306 // creation will depend on the TM and the code generation flags on the 307 // function that reside in TargetOptions. 308 resetTargetOptions(F); 309 I = std::make_unique<X86Subtarget>( 310 TargetTriple, CPU, FS, *this, 311 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 312 RequiredVectorWidth); 313 } 314 return I.get(); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Command line options for x86 319 //===----------------------------------------------------------------------===// 320 static cl::opt<bool> 321 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 322 cl::desc("Minimize AVX to SSE transition penalty"), 323 cl::init(true)); 324 325 //===----------------------------------------------------------------------===// 326 // X86 TTI query. 327 //===----------------------------------------------------------------------===// 328 329 TargetTransformInfo 330 X86TargetMachine::getTargetTransformInfo(const Function &F) { 331 return TargetTransformInfo(X86TTIImpl(this, F)); 332 } 333 334 //===----------------------------------------------------------------------===// 335 // Pass Pipeline Configuration 336 //===----------------------------------------------------------------------===// 337 338 namespace { 339 340 /// X86 Code Generator Pass Configuration Options. 341 class X86PassConfig : public TargetPassConfig { 342 public: 343 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 344 : TargetPassConfig(TM, PM) {} 345 346 X86TargetMachine &getX86TargetMachine() const { 347 return getTM<X86TargetMachine>(); 348 } 349 350 ScheduleDAGInstrs * 351 createMachineScheduler(MachineSchedContext *C) const override { 352 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 353 DAG->addMutation(createX86MacroFusionDAGMutation()); 354 return DAG; 355 } 356 357 ScheduleDAGInstrs * 358 createPostMachineScheduler(MachineSchedContext *C) const override { 359 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 360 DAG->addMutation(createX86MacroFusionDAGMutation()); 361 return DAG; 362 } 363 364 void addIRPasses() override; 365 bool addInstSelector() override; 366 bool addIRTranslator() override; 367 bool addLegalizeMachineIR() override; 368 bool addRegBankSelect() override; 369 bool addGlobalInstructionSelect() override; 370 bool addILPOpts() override; 371 bool addPreISel() override; 372 void addMachineSSAOptimization() override; 373 void addPreRegAlloc() override; 374 void addPostRegAlloc() override; 375 void addPreEmitPass() override; 376 void addPreEmitPass2() override; 377 void addPreSched2() override; 378 379 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 380 }; 381 382 class X86ExecutionDomainFix : public ExecutionDomainFix { 383 public: 384 static char ID; 385 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 386 StringRef getPassName() const override { 387 return "X86 Execution Dependency Fix"; 388 } 389 }; 390 char X86ExecutionDomainFix::ID; 391 392 } // end anonymous namespace 393 394 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 395 "X86 Execution Domain Fix", false, false) 396 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 397 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 398 "X86 Execution Domain Fix", false, false) 399 400 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 401 return new X86PassConfig(*this, PM); 402 } 403 404 void X86PassConfig::addIRPasses() { 405 addPass(createAtomicExpandPass()); 406 407 TargetPassConfig::addIRPasses(); 408 409 if (TM->getOptLevel() != CodeGenOpt::None) 410 addPass(createInterleavedAccessPass()); 411 412 // Add passes that handle indirect branch removal and insertion of a retpoline 413 // thunk. These will be a no-op unless a function subtarget has the retpoline 414 // feature enabled. 415 addPass(createIndirectBrExpandPass()); 416 417 // Add Control Flow Guard checks. 418 const Triple &TT = TM->getTargetTriple(); 419 if (TT.isOSWindows()) { 420 if (TT.getArch() == Triple::x86_64) { 421 addPass(createCFGuardDispatchPass()); 422 } else { 423 addPass(createCFGuardCheckPass()); 424 } 425 } 426 } 427 428 bool X86PassConfig::addInstSelector() { 429 // Install an instruction selector. 430 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 431 432 // For ELF, cleanup any local-dynamic TLS accesses. 433 if (TM->getTargetTriple().isOSBinFormatELF() && 434 getOptLevel() != CodeGenOpt::None) 435 addPass(createCleanupLocalDynamicTLSPass()); 436 437 addPass(createX86GlobalBaseRegPass()); 438 return false; 439 } 440 441 bool X86PassConfig::addIRTranslator() { 442 addPass(new IRTranslator()); 443 return false; 444 } 445 446 bool X86PassConfig::addLegalizeMachineIR() { 447 addPass(new Legalizer()); 448 return false; 449 } 450 451 bool X86PassConfig::addRegBankSelect() { 452 addPass(new RegBankSelect()); 453 return false; 454 } 455 456 bool X86PassConfig::addGlobalInstructionSelect() { 457 addPass(new InstructionSelect()); 458 return false; 459 } 460 461 bool X86PassConfig::addILPOpts() { 462 if (EnableCondBrFoldingPass) 463 addPass(createX86CondBrFolding()); 464 addPass(&EarlyIfConverterID); 465 if (EnableMachineCombinerPass) 466 addPass(&MachineCombinerID); 467 addPass(createX86CmovConverterPass()); 468 return true; 469 } 470 471 bool X86PassConfig::addPreISel() { 472 // Only add this pass for 32-bit x86 Windows. 473 const Triple &TT = TM->getTargetTriple(); 474 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 475 addPass(createX86WinEHStatePass()); 476 return true; 477 } 478 479 void X86PassConfig::addPreRegAlloc() { 480 if (getOptLevel() != CodeGenOpt::None) { 481 addPass(&LiveRangeShrinkID); 482 addPass(createX86FixupSetCC()); 483 addPass(createX86OptimizeLEAs()); 484 addPass(createX86CallFrameOptimization()); 485 addPass(createX86AvoidStoreForwardingBlocks()); 486 } 487 488 addPass(createX86SpeculativeLoadHardeningPass()); 489 addPass(createX86FlagsCopyLoweringPass()); 490 addPass(createX86WinAllocaExpander()); 491 } 492 void X86PassConfig::addMachineSSAOptimization() { 493 addPass(createX86DomainReassignmentPass()); 494 TargetPassConfig::addMachineSSAOptimization(); 495 } 496 497 void X86PassConfig::addPostRegAlloc() { 498 addPass(createX86FloatingPointStackifierPass()); 499 } 500 501 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 502 503 void X86PassConfig::addPreEmitPass() { 504 if (getOptLevel() != CodeGenOpt::None) { 505 addPass(new X86ExecutionDomainFix()); 506 addPass(createBreakFalseDeps()); 507 } 508 509 addPass(createX86IndirectBranchTrackingPass()); 510 511 if (UseVZeroUpper) 512 addPass(createX86IssueVZeroUpperPass()); 513 514 if (getOptLevel() != CodeGenOpt::None) { 515 addPass(createX86FixupBWInsts()); 516 addPass(createX86PadShortFunctions()); 517 addPass(createX86FixupLEAs()); 518 addPass(createX86EvexToVexInsts()); 519 } 520 addPass(createX86DiscriminateMemOpsPass()); 521 addPass(createX86InsertPrefetchPass()); 522 } 523 524 void X86PassConfig::addPreEmitPass2() { 525 const Triple &TT = TM->getTargetTriple(); 526 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 527 528 addPass(createX86RetpolineThunksPass()); 529 530 // Insert extra int3 instructions after trailing call instructions to avoid 531 // issues in the unwinder. 532 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 533 addPass(createX86AvoidTrailingCallPass()); 534 535 // Verify basic block incoming and outgoing cfa offset and register values and 536 // correct CFA calculation rule where needed by inserting appropriate CFI 537 // instructions. 538 if (!TT.isOSDarwin() && 539 (!TT.isOSWindows() || 540 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 541 addPass(createCFIInstrInserter()); 542 // Identify valid longjmp targets for Windows Control Flow Guard. 543 if (TT.isOSWindows()) 544 addPass(createCFGuardLongjmpPass()); 545 } 546 547 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 548 return getStandardCSEConfigForOpt(TM->getOptLevel()); 549 } 550