1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H 14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H 15 16 #include "X86FrameLowering.h" 17 #include "X86ISelLowering.h" 18 #include "X86InstrInfo.h" 19 #include "X86SelectionDAGInfo.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/CallingConv.h" 23 #include <climits> 24 #include <memory> 25 26 #define GET_SUBTARGETINFO_HEADER 27 #include "X86GenSubtargetInfo.inc" 28 29 namespace llvm { 30 31 class CallLowering; 32 class GlobalValue; 33 class InstructionSelector; 34 class LegalizerInfo; 35 class RegisterBankInfo; 36 class StringRef; 37 class TargetMachine; 38 39 /// The X86 backend supports a number of different styles of PIC. 40 /// 41 namespace PICStyles { 42 43 enum class Style { 44 StubPIC, // Used on i386-darwin in pic mode. 45 GOT, // Used on 32 bit elf on when in pic mode. 46 RIPRel, // Used on X86-64 when in pic mode. 47 None // Set when not in pic mode. 48 }; 49 50 } // end namespace PICStyles 51 52 class X86Subtarget final : public X86GenSubtargetInfo { 53 public: 54 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags 55 // are not a good idea. We should be migrating away from these. 56 enum X86ProcFamilyEnum { 57 Others, 58 IntelAtom, 59 IntelSLM 60 }; 61 62 protected: 63 enum X86SSEEnum { 64 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F 65 }; 66 67 enum X863DNowEnum { 68 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA 69 }; 70 71 /// X86 processor family: Intel Atom, and others 72 X86ProcFamilyEnum X86ProcFamily = Others; 73 74 /// Which PIC style to use 75 PICStyles::Style PICStyle; 76 77 const TargetMachine &TM; 78 79 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported. 80 X86SSEEnum X86SSELevel = NoSSE; 81 82 /// MMX, 3DNow, 3DNow Athlon, or none supported. 83 X863DNowEnum X863DNowLevel = NoThreeDNow; 84 85 /// True if the processor supports X87 instructions. 86 bool HasX87 = false; 87 88 /// True if the processor supports CMPXCHG8B. 89 bool HasCmpxchg8b = false; 90 91 /// True if this processor has NOPL instruction 92 /// (generally pentium pro+). 93 bool HasNOPL = false; 94 95 /// True if this processor has conditional move instructions 96 /// (generally pentium pro+). 97 bool HasCMov = false; 98 99 /// True if the processor supports X86-64 instructions. 100 bool HasX86_64 = false; 101 102 /// True if the processor supports POPCNT. 103 bool HasPOPCNT = false; 104 105 /// True if the processor supports SSE4A instructions. 106 bool HasSSE4A = false; 107 108 /// Target has AES instructions 109 bool HasAES = false; 110 bool HasVAES = false; 111 112 /// Target has FXSAVE/FXRESTOR instructions 113 bool HasFXSR = false; 114 115 /// Target has XSAVE instructions 116 bool HasXSAVE = false; 117 118 /// Target has XSAVEOPT instructions 119 bool HasXSAVEOPT = false; 120 121 /// Target has XSAVEC instructions 122 bool HasXSAVEC = false; 123 124 /// Target has XSAVES instructions 125 bool HasXSAVES = false; 126 127 /// Target has carry-less multiplication 128 bool HasPCLMUL = false; 129 bool HasVPCLMULQDQ = false; 130 131 /// Target has Galois Field Arithmetic instructions 132 bool HasGFNI = false; 133 134 /// Target has 3-operand fused multiply-add 135 bool HasFMA = false; 136 137 /// Target has 4-operand fused multiply-add 138 bool HasFMA4 = false; 139 140 /// Target has XOP instructions 141 bool HasXOP = false; 142 143 /// Target has TBM instructions. 144 bool HasTBM = false; 145 146 /// Target has LWP instructions 147 bool HasLWP = false; 148 149 /// True if the processor has the MOVBE instruction. 150 bool HasMOVBE = false; 151 152 /// True if the processor has the RDRAND instruction. 153 bool HasRDRAND = false; 154 155 /// Processor has 16-bit floating point conversion instructions. 156 bool HasF16C = false; 157 158 /// Processor has FS/GS base insturctions. 159 bool HasFSGSBase = false; 160 161 /// Processor has LZCNT instruction. 162 bool HasLZCNT = false; 163 164 /// Processor has BMI1 instructions. 165 bool HasBMI = false; 166 167 /// Processor has BMI2 instructions. 168 bool HasBMI2 = false; 169 170 /// Processor has VBMI instructions. 171 bool HasVBMI = false; 172 173 /// Processor has VBMI2 instructions. 174 bool HasVBMI2 = false; 175 176 /// Processor has Integer Fused Multiply Add 177 bool HasIFMA = false; 178 179 /// Processor has RTM instructions. 180 bool HasRTM = false; 181 182 /// Processor has ADX instructions. 183 bool HasADX = false; 184 185 /// Processor has SHA instructions. 186 bool HasSHA = false; 187 188 /// Processor has PRFCHW instructions. 189 bool HasPRFCHW = false; 190 191 /// Processor has RDSEED instructions. 192 bool HasRDSEED = false; 193 194 /// Processor has LAHF/SAHF instructions. 195 bool HasLAHFSAHF = false; 196 197 /// Processor has MONITORX/MWAITX instructions. 198 bool HasMWAITX = false; 199 200 /// Processor has Cache Line Zero instruction 201 bool HasCLZERO = false; 202 203 /// Processor has Cache Line Demote instruction 204 bool HasCLDEMOTE = false; 205 206 /// Processor has MOVDIRI instruction (direct store integer). 207 bool HasMOVDIRI = false; 208 209 /// Processor has MOVDIR64B instruction (direct store 64 bytes). 210 bool HasMOVDIR64B = false; 211 212 /// Processor has ptwrite instruction. 213 bool HasPTWRITE = false; 214 215 /// Processor has Prefetch with intent to Write instruction 216 bool HasPREFETCHWT1 = false; 217 218 /// True if SHLD instructions are slow. 219 bool IsSHLDSlow = false; 220 221 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and 222 // PMULUDQ. 223 bool IsPMULLDSlow = false; 224 225 /// True if the PMADDWD instruction is slow compared to PMULLD. 226 bool IsPMADDWDSlow = false; 227 228 /// True if unaligned memory accesses of 16-bytes are slow. 229 bool IsUAMem16Slow = false; 230 231 /// True if unaligned memory accesses of 32-bytes are slow. 232 bool IsUAMem32Slow = false; 233 234 /// True if SSE operations can have unaligned memory operands. 235 /// This may require setting a configuration bit in the processor. 236 bool HasSSEUnalignedMem = false; 237 238 /// True if this processor has the CMPXCHG16B instruction; 239 /// this is true for most x86-64 chips, but not the first AMD chips. 240 bool HasCmpxchg16b = false; 241 242 /// True if the LEA instruction should be used for adjusting 243 /// the stack pointer. This is an optimization for Intel Atom processors. 244 bool UseLeaForSP = false; 245 246 /// True if POPCNT instruction has a false dependency on the destination register. 247 bool HasPOPCNTFalseDeps = false; 248 249 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register. 250 bool HasLZCNTFalseDeps = false; 251 252 /// True if its preferable to combine to a single shuffle using a variable 253 /// mask over multiple fixed shuffles. 254 bool HasFastVariableShuffle = false; 255 256 /// True if vzeroupper instructions should be inserted after code that uses 257 /// ymm or zmm registers. 258 bool InsertVZEROUPPER = false; 259 260 /// True if there is no performance penalty for writing NOPs with up to 261 /// 7 bytes. 262 bool HasFast7ByteNOP = false; 263 264 /// True if there is no performance penalty for writing NOPs with up to 265 /// 11 bytes. 266 bool HasFast11ByteNOP = false; 267 268 /// True if there is no performance penalty for writing NOPs with up to 269 /// 15 bytes. 270 bool HasFast15ByteNOP = false; 271 272 /// True if gather is reasonably fast. This is true for Skylake client and 273 /// all AVX-512 CPUs. 274 bool HasFastGather = false; 275 276 /// True if hardware SQRTSS instruction is at least as fast (latency) as 277 /// RSQRTSS followed by a Newton-Raphson iteration. 278 bool HasFastScalarFSQRT = false; 279 280 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast 281 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration. 282 bool HasFastVectorFSQRT = false; 283 284 /// True if 8-bit divisions are significantly faster than 285 /// 32-bit divisions and should be used when possible. 286 bool HasSlowDivide32 = false; 287 288 /// True if 32-bit divides are significantly faster than 289 /// 64-bit divisions and should be used when possible. 290 bool HasSlowDivide64 = false; 291 292 /// True if LZCNT instruction is fast. 293 bool HasFastLZCNT = false; 294 295 /// True if SHLD based rotate is fast. 296 bool HasFastSHLDRotate = false; 297 298 /// True if the processor supports macrofusion. 299 bool HasMacroFusion = false; 300 301 /// True if the processor supports branch fusion. 302 bool HasBranchFusion = false; 303 304 /// True if the processor has enhanced REP MOVSB/STOSB. 305 bool HasERMSB = false; 306 307 /// True if the short functions should be padded to prevent 308 /// a stall when returning too early. 309 bool PadShortFunctions = false; 310 311 /// True if two memory operand instructions should use a temporary register 312 /// instead. 313 bool SlowTwoMemOps = false; 314 315 /// True if the LEA instruction inputs have to be ready at address generation 316 /// (AG) time. 317 bool LEAUsesAG = false; 318 319 /// True if the LEA instruction with certain arguments is slow 320 bool SlowLEA = false; 321 322 /// True if the LEA instruction has all three source operands: base, index, 323 /// and offset or if the LEA instruction uses base and index registers where 324 /// the base is EBP, RBP,or R13 325 bool Slow3OpsLEA = false; 326 327 /// True if INC and DEC instructions are slow when writing to flags 328 bool SlowIncDec = false; 329 330 /// Processor has AVX-512 PreFetch Instructions 331 bool HasPFI = false; 332 333 /// Processor has AVX-512 Exponential and Reciprocal Instructions 334 bool HasERI = false; 335 336 /// Processor has AVX-512 Conflict Detection Instructions 337 bool HasCDI = false; 338 339 /// Processor has AVX-512 population count Instructions 340 bool HasVPOPCNTDQ = false; 341 342 /// Processor has AVX-512 Doubleword and Quadword instructions 343 bool HasDQI = false; 344 345 /// Processor has AVX-512 Byte and Word instructions 346 bool HasBWI = false; 347 348 /// Processor has AVX-512 Vector Length eXtenstions 349 bool HasVLX = false; 350 351 /// Processor has PKU extenstions 352 bool HasPKU = false; 353 354 /// Processor has AVX-512 Vector Neural Network Instructions 355 bool HasVNNI = false; 356 357 /// Processor has AVX-512 bfloat16 floating-point extensions 358 bool HasBF16 = false; 359 360 /// Processor supports ENQCMD instructions 361 bool HasENQCMD = false; 362 363 /// Processor has AVX-512 Bit Algorithms instructions 364 bool HasBITALG = false; 365 366 /// Processor has AVX-512 vp2intersect instructions 367 bool HasVP2INTERSECT = false; 368 369 /// Deprecated flag for MPX instructions. 370 bool DeprecatedHasMPX = false; 371 372 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology 373 /// using Shadow Stack 374 bool HasSHSTK = false; 375 376 /// Processor supports Invalidate Process-Context Identifier 377 bool HasINVPCID = false; 378 379 /// Processor has Software Guard Extensions 380 bool HasSGX = false; 381 382 /// Processor supports Flush Cache Line instruction 383 bool HasCLFLUSHOPT = false; 384 385 /// Processor supports Cache Line Write Back instruction 386 bool HasCLWB = false; 387 388 /// Processor supports Write Back No Invalidate instruction 389 bool HasWBNOINVD = false; 390 391 /// Processor support RDPID instruction 392 bool HasRDPID = false; 393 394 /// Processor supports WaitPKG instructions 395 bool HasWAITPKG = false; 396 397 /// Processor supports PCONFIG instruction 398 bool HasPCONFIG = false; 399 400 /// Processor supports SERIALIZE instruction 401 bool HasSERIALIZE = false; 402 403 /// Processor supports TSXLDTRK instruction 404 bool HasTSXLDTRK = false; 405 406 /// Processor has AMX support 407 bool HasAMXTILE = false; 408 bool HasAMXBF16 = false; 409 bool HasAMXINT8 = false; 410 411 /// Processor has a single uop BEXTR implementation. 412 bool HasFastBEXTR = false; 413 414 /// Try harder to combine to horizontal vector ops if they are fast. 415 bool HasFastHorizontalOps = false; 416 417 /// Prefer a left/right scalar logical shifts pair over a shift+and pair. 418 bool HasFastScalarShiftMasks = false; 419 420 /// Prefer a left/right vector logical shifts pair over a shift+and pair. 421 bool HasFastVectorShiftMasks = false; 422 423 /// Use a retpoline thunk rather than indirect calls to block speculative 424 /// execution. 425 bool UseRetpolineIndirectCalls = false; 426 427 /// Use a retpoline thunk or remove any indirect branch to block speculative 428 /// execution. 429 bool UseRetpolineIndirectBranches = false; 430 431 /// Deprecated flag, query `UseRetpolineIndirectCalls` and 432 /// `UseRetpolineIndirectBranches` instead. 433 bool DeprecatedUseRetpoline = false; 434 435 /// When using a retpoline thunk, call an externally provided thunk rather 436 /// than emitting one inside the compiler. 437 bool UseRetpolineExternalThunk = false; 438 439 /// Prevent generation of indirect call/branch instructions from memory, 440 /// and force all indirect call/branch instructions from a register to be 441 /// preceded by an LFENCE. Also decompose RET instructions into a 442 /// POP+LFENCE+JMP sequence. 443 bool UseLVIControlFlowIntegrity = false; 444 445 /// Enable Speculative Execution Side Effect Suppression 446 bool UseSpeculativeExecutionSideEffectSuppression = false; 447 448 /// Insert LFENCE instructions to prevent data speculatively injected into 449 /// loads from being used maliciously. 450 bool UseLVILoadHardening = false; 451 452 /// Use software floating point for code generation. 453 bool UseSoftFloat = false; 454 455 /// Use alias analysis during code generation. 456 bool UseAA = false; 457 458 /// The minimum alignment known to hold of the stack frame on 459 /// entry to the function and which must be maintained by every function. 460 Align stackAlignment = Align(4); 461 462 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 463 /// 464 // FIXME: this is a known good value for Yonah. How about others? 465 unsigned MaxInlineSizeThreshold = 128; 466 467 /// Indicates target prefers 128 bit instructions. 468 bool Prefer128Bit = false; 469 470 /// Indicates target prefers 256 bit instructions. 471 bool Prefer256Bit = false; 472 473 /// Indicates target prefers AVX512 mask registers. 474 bool PreferMaskRegisters = false; 475 476 /// Threeway branch is profitable in this subtarget. 477 bool ThreewayBranchProfitable = false; 478 479 /// Use Goldmont specific floating point div/sqrt costs. 480 bool UseGLMDivSqrtCosts = false; 481 482 /// What processor and OS we're targeting. 483 Triple TargetTriple; 484 485 /// GlobalISel related APIs. 486 std::unique_ptr<CallLowering> CallLoweringInfo; 487 std::unique_ptr<LegalizerInfo> Legalizer; 488 std::unique_ptr<RegisterBankInfo> RegBankInfo; 489 std::unique_ptr<InstructionSelector> InstSelector; 490 491 private: 492 /// Override the stack alignment. 493 MaybeAlign StackAlignOverride; 494 495 /// Preferred vector width from function attribute. 496 unsigned PreferVectorWidthOverride; 497 498 /// Resolved preferred vector width from function attribute and subtarget 499 /// features. 500 unsigned PreferVectorWidth = UINT32_MAX; 501 502 /// Required vector width from function attribute. 503 unsigned RequiredVectorWidth; 504 505 /// True if compiling for 64-bit, false for 16-bit or 32-bit. 506 bool In64BitMode; 507 508 /// True if compiling for 32-bit, false for 16-bit or 64-bit. 509 bool In32BitMode; 510 511 /// True if compiling for 16-bit, false for 32-bit or 64-bit. 512 bool In16BitMode; 513 514 /// Contains the Overhead of gather\scatter instructions 515 int GatherOverhead = 1024; 516 int ScatterOverhead = 1024; 517 518 X86SelectionDAGInfo TSInfo; 519 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which 520 // X86TargetLowering needs. 521 X86InstrInfo InstrInfo; 522 X86TargetLowering TLInfo; 523 X86FrameLowering FrameLowering; 524 525 public: 526 /// This constructor initializes the data members to match that 527 /// of the specified triple. 528 /// 529 X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS, 530 const X86TargetMachine &TM, MaybeAlign StackAlignOverride, 531 unsigned PreferVectorWidthOverride, 532 unsigned RequiredVectorWidth); 533 534 const X86TargetLowering *getTargetLowering() const override { 535 return &TLInfo; 536 } 537 538 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; } 539 540 const X86FrameLowering *getFrameLowering() const override { 541 return &FrameLowering; 542 } 543 544 const X86SelectionDAGInfo *getSelectionDAGInfo() const override { 545 return &TSInfo; 546 } 547 548 const X86RegisterInfo *getRegisterInfo() const override { 549 return &getInstrInfo()->getRegisterInfo(); 550 } 551 552 /// Returns the minimum alignment known to hold of the 553 /// stack frame on entry to the function and which must be maintained by every 554 /// function for this subtarget. 555 Align getStackAlignment() const { return stackAlignment; } 556 557 /// Returns the maximum memset / memcpy size 558 /// that still makes it profitable to inline the call. 559 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 560 561 /// ParseSubtargetFeatures - Parses features string setting specified 562 /// subtarget options. Definition of function is auto generated by tblgen. 563 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 564 565 /// Methods used by Global ISel 566 const CallLowering *getCallLowering() const override; 567 InstructionSelector *getInstructionSelector() const override; 568 const LegalizerInfo *getLegalizerInfo() const override; 569 const RegisterBankInfo *getRegBankInfo() const override; 570 571 private: 572 /// Initialize the full set of dependencies so we can use an initializer 573 /// list for X86Subtarget. 574 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); 575 void initSubtargetFeatures(StringRef CPU, StringRef FS); 576 577 public: 578 /// Is this x86_64? (disregarding specific ABI / programming model) 579 bool is64Bit() const { 580 return In64BitMode; 581 } 582 583 bool is32Bit() const { 584 return In32BitMode; 585 } 586 587 bool is16Bit() const { 588 return In16BitMode; 589 } 590 591 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? 592 bool isTarget64BitILP32() const { 593 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || 594 TargetTriple.isOSNaCl()); 595 } 596 597 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? 598 bool isTarget64BitLP64() const { 599 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 && 600 !TargetTriple.isOSNaCl()); 601 } 602 603 PICStyles::Style getPICStyle() const { return PICStyle; } 604 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 605 606 bool hasX87() const { return HasX87; } 607 bool hasCmpxchg8b() const { return HasCmpxchg8b; } 608 bool hasNOPL() const { return HasNOPL; } 609 // SSE codegen depends on cmovs, and all SSE1+ processors support them. 610 // All 64-bit processors support cmov. 611 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); } 612 bool hasSSE1() const { return X86SSELevel >= SSE1; } 613 bool hasSSE2() const { return X86SSELevel >= SSE2; } 614 bool hasSSE3() const { return X86SSELevel >= SSE3; } 615 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } 616 bool hasSSE41() const { return X86SSELevel >= SSE41; } 617 bool hasSSE42() const { return X86SSELevel >= SSE42; } 618 bool hasAVX() const { return X86SSELevel >= AVX; } 619 bool hasAVX2() const { return X86SSELevel >= AVX2; } 620 bool hasAVX512() const { return X86SSELevel >= AVX512F; } 621 bool hasInt256() const { return hasAVX2(); } 622 bool hasSSE4A() const { return HasSSE4A; } 623 bool hasMMX() const { return X863DNowLevel >= MMX; } 624 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } 625 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } 626 bool hasPOPCNT() const { return HasPOPCNT; } 627 bool hasAES() const { return HasAES; } 628 bool hasVAES() const { return HasVAES; } 629 bool hasFXSR() const { return HasFXSR; } 630 bool hasXSAVE() const { return HasXSAVE; } 631 bool hasXSAVEOPT() const { return HasXSAVEOPT; } 632 bool hasXSAVEC() const { return HasXSAVEC; } 633 bool hasXSAVES() const { return HasXSAVES; } 634 bool hasPCLMUL() const { return HasPCLMUL; } 635 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; } 636 bool hasGFNI() const { return HasGFNI; } 637 // Prefer FMA4 to FMA - its better for commutation/memory folding and 638 // has equal or better performance on all supported targets. 639 bool hasFMA() const { return HasFMA; } 640 bool hasFMA4() const { return HasFMA4; } 641 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } 642 bool hasXOP() const { return HasXOP; } 643 bool hasTBM() const { return HasTBM; } 644 bool hasLWP() const { return HasLWP; } 645 bool hasMOVBE() const { return HasMOVBE; } 646 bool hasRDRAND() const { return HasRDRAND; } 647 bool hasF16C() const { return HasF16C; } 648 bool hasFSGSBase() const { return HasFSGSBase; } 649 bool hasLZCNT() const { return HasLZCNT; } 650 bool hasBMI() const { return HasBMI; } 651 bool hasBMI2() const { return HasBMI2; } 652 bool hasVBMI() const { return HasVBMI; } 653 bool hasVBMI2() const { return HasVBMI2; } 654 bool hasIFMA() const { return HasIFMA; } 655 bool hasRTM() const { return HasRTM; } 656 bool hasADX() const { return HasADX; } 657 bool hasSHA() const { return HasSHA; } 658 bool hasPRFCHW() const { return HasPRFCHW; } 659 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; } 660 bool hasPrefetchW() const { 661 // The PREFETCHW instruction was added with 3DNow but later CPUs gave it 662 // its own CPUID bit as part of deprecating 3DNow. Intel eventually added 663 // it and KNL has another that prefetches to L2 cache. We assume the 664 // L1 version exists if the L2 version does. 665 return has3DNow() || hasPRFCHW() || hasPREFETCHWT1(); 666 } 667 bool hasSSEPrefetch() const { 668 // We implicitly enable these when we have a write prefix supporting cache 669 // level OR if we have prfchw, but don't already have a read prefetch from 670 // 3dnow. 671 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1(); 672 } 673 bool hasRDSEED() const { return HasRDSEED; } 674 bool hasLAHFSAHF() const { return HasLAHFSAHF; } 675 bool hasMWAITX() const { return HasMWAITX; } 676 bool hasCLZERO() const { return HasCLZERO; } 677 bool hasCLDEMOTE() const { return HasCLDEMOTE; } 678 bool hasMOVDIRI() const { return HasMOVDIRI; } 679 bool hasMOVDIR64B() const { return HasMOVDIR64B; } 680 bool hasPTWRITE() const { return HasPTWRITE; } 681 bool isSHLDSlow() const { return IsSHLDSlow; } 682 bool isPMULLDSlow() const { return IsPMULLDSlow; } 683 bool isPMADDWDSlow() const { return IsPMADDWDSlow; } 684 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; } 685 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; } 686 int getGatherOverhead() const { return GatherOverhead; } 687 int getScatterOverhead() const { return ScatterOverhead; } 688 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; } 689 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); } 690 bool useLeaForSP() const { return UseLeaForSP; } 691 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; } 692 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; } 693 bool hasFastVariableShuffle() const { 694 return HasFastVariableShuffle; 695 } 696 bool insertVZEROUPPER() const { return InsertVZEROUPPER; } 697 bool hasFastGather() const { return HasFastGather; } 698 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; } 699 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; } 700 bool hasFastLZCNT() const { return HasFastLZCNT; } 701 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; } 702 bool hasFastBEXTR() const { return HasFastBEXTR; } 703 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; } 704 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; } 705 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; } 706 bool hasMacroFusion() const { return HasMacroFusion; } 707 bool hasBranchFusion() const { return HasBranchFusion; } 708 bool hasERMSB() const { return HasERMSB; } 709 bool hasSlowDivide32() const { return HasSlowDivide32; } 710 bool hasSlowDivide64() const { return HasSlowDivide64; } 711 bool padShortFunctions() const { return PadShortFunctions; } 712 bool slowTwoMemOps() const { return SlowTwoMemOps; } 713 bool LEAusesAG() const { return LEAUsesAG; } 714 bool slowLEA() const { return SlowLEA; } 715 bool slow3OpsLEA() const { return Slow3OpsLEA; } 716 bool slowIncDec() const { return SlowIncDec; } 717 bool hasCDI() const { return HasCDI; } 718 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; } 719 bool hasPFI() const { return HasPFI; } 720 bool hasERI() const { return HasERI; } 721 bool hasDQI() const { return HasDQI; } 722 bool hasBWI() const { return HasBWI; } 723 bool hasVLX() const { return HasVLX; } 724 bool hasPKU() const { return HasPKU; } 725 bool hasVNNI() const { return HasVNNI; } 726 bool hasBF16() const { return HasBF16; } 727 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; } 728 bool hasBITALG() const { return HasBITALG; } 729 bool hasSHSTK() const { return HasSHSTK; } 730 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; } 731 bool hasCLWB() const { return HasCLWB; } 732 bool hasWBNOINVD() const { return HasWBNOINVD; } 733 bool hasRDPID() const { return HasRDPID; } 734 bool hasWAITPKG() const { return HasWAITPKG; } 735 bool hasPCONFIG() const { return HasPCONFIG; } 736 bool hasSGX() const { return HasSGX; } 737 bool threewayBranchProfitable() const { return ThreewayBranchProfitable; } 738 bool hasINVPCID() const { return HasINVPCID; } 739 bool hasENQCMD() const { return HasENQCMD; } 740 bool hasSERIALIZE() const { return HasSERIALIZE; } 741 bool hasTSXLDTRK() const { return HasTSXLDTRK; } 742 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; } 743 bool useRetpolineIndirectBranches() const { 744 return UseRetpolineIndirectBranches; 745 } 746 bool hasAMXTILE() const { return HasAMXTILE; } 747 bool hasAMXBF16() const { return HasAMXBF16; } 748 bool hasAMXINT8() const { return HasAMXINT8; } 749 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; } 750 751 // These are generic getters that OR together all of the thunk types 752 // supported by the subtarget. Therefore useIndirectThunk*() will return true 753 // if any respective thunk feature is enabled. 754 bool useIndirectThunkCalls() const { 755 return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity(); 756 } 757 bool useIndirectThunkBranches() const { 758 return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity(); 759 } 760 761 bool preferMaskRegisters() const { return PreferMaskRegisters; } 762 bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; } 763 bool useLVIControlFlowIntegrity() const { return UseLVIControlFlowIntegrity; } 764 bool useLVILoadHardening() const { return UseLVILoadHardening; } 765 bool useSpeculativeExecutionSideEffectSuppression() const { 766 return UseSpeculativeExecutionSideEffectSuppression; 767 } 768 769 unsigned getPreferVectorWidth() const { return PreferVectorWidth; } 770 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } 771 772 // Helper functions to determine when we should allow widening to 512-bit 773 // during codegen. 774 // TODO: Currently we're always allowing widening on CPUs without VLX, 775 // because for many cases we don't have a better option. 776 bool canExtendTo512DQ() const { 777 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512); 778 } 779 bool canExtendTo512BW() const { 780 return hasBWI() && canExtendTo512DQ(); 781 } 782 783 // If there are no 512-bit vectors and we prefer not to use 512-bit registers, 784 // disable them in the legalizer. 785 bool useAVX512Regs() const { 786 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256); 787 } 788 789 bool useBWIRegs() const { 790 return hasBWI() && useAVX512Regs(); 791 } 792 793 bool isXRaySupported() const override { return is64Bit(); } 794 795 X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; } 796 797 /// TODO: to be removed later and replaced with suitable properties 798 bool isAtom() const { return X86ProcFamily == IntelAtom; } 799 bool isSLM() const { return X86ProcFamily == IntelSLM; } 800 bool useSoftFloat() const { return UseSoftFloat; } 801 bool useAA() const override { return UseAA; } 802 803 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for 804 /// no-sse2). There isn't any reason to disable it if the target processor 805 /// supports it. 806 bool hasMFence() const { return hasSSE2() || is64Bit(); } 807 808 const Triple &getTargetTriple() const { return TargetTriple; } 809 810 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 811 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); } 812 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); } 813 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); } 814 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); } 815 816 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } 817 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } 818 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } 819 820 bool isTargetLinux() const { return TargetTriple.isOSLinux(); } 821 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); } 822 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); } 823 bool isTargetAndroid() const { return TargetTriple.isAndroid(); } 824 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } 825 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } 826 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 827 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); } 828 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); } 829 830 bool isTargetWindowsMSVC() const { 831 return TargetTriple.isWindowsMSVCEnvironment(); 832 } 833 834 bool isTargetWindowsCoreCLR() const { 835 return TargetTriple.isWindowsCoreCLREnvironment(); 836 } 837 838 bool isTargetWindowsCygwin() const { 839 return TargetTriple.isWindowsCygwinEnvironment(); 840 } 841 842 bool isTargetWindowsGNU() const { 843 return TargetTriple.isWindowsGNUEnvironment(); 844 } 845 846 bool isTargetWindowsItanium() const { 847 return TargetTriple.isWindowsItaniumEnvironment(); 848 } 849 850 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 851 852 bool isOSWindows() const { return TargetTriple.isOSWindows(); } 853 854 bool isTargetWin64() const { return In64BitMode && isOSWindows(); } 855 856 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); } 857 858 bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; } 859 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; } 860 861 bool isPICStyleStubPIC() const { 862 return PICStyle == PICStyles::Style::StubPIC; 863 } 864 865 bool isPositionIndependent() const; 866 867 bool isCallingConvWin64(CallingConv::ID CC) const { 868 switch (CC) { 869 // On Win64, all these conventions just use the default convention. 870 case CallingConv::C: 871 case CallingConv::Fast: 872 case CallingConv::Tail: 873 case CallingConv::Swift: 874 case CallingConv::X86_FastCall: 875 case CallingConv::X86_StdCall: 876 case CallingConv::X86_ThisCall: 877 case CallingConv::X86_VectorCall: 878 case CallingConv::Intel_OCL_BI: 879 return isTargetWin64(); 880 // This convention allows using the Win64 convention on other targets. 881 case CallingConv::Win64: 882 return true; 883 // This convention allows using the SysV convention on Windows targets. 884 case CallingConv::X86_64_SysV: 885 return false; 886 // Otherwise, who knows what this is. 887 default: 888 return false; 889 } 890 } 891 892 /// Classify a global variable reference for the current subtarget according 893 /// to how we should reference it in a non-pcrel context. 894 unsigned char classifyLocalReference(const GlobalValue *GV) const; 895 896 unsigned char classifyGlobalReference(const GlobalValue *GV, 897 const Module &M) const; 898 unsigned char classifyGlobalReference(const GlobalValue *GV) const; 899 900 /// Classify a global function reference for the current subtarget. 901 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, 902 const Module &M) const; 903 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const; 904 905 /// Classify a blockaddress reference for the current subtarget according to 906 /// how we should reference it in a non-pcrel context. 907 unsigned char classifyBlockAddressReference() const; 908 909 /// Return true if the subtarget allows calls to immediate address. 910 bool isLegalToCallImmediateAddr() const; 911 912 /// If we are using indirect thunks, we need to expand indirectbr to avoid it 913 /// lowering to an actual indirect jump. 914 bool enableIndirectBrExpand() const override { 915 return useIndirectThunkBranches(); 916 } 917 918 /// Enable the MachineScheduler pass for all X86 subtargets. 919 bool enableMachineScheduler() const override { return true; } 920 921 bool enableEarlyIfConversion() const override; 922 923 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> 924 &Mutations) const override; 925 926 AntiDepBreakMode getAntiDepBreakMode() const override { 927 return TargetSubtargetInfo::ANTIDEP_CRITICAL; 928 } 929 930 bool enableAdvancedRASplitCost() const override { return true; } 931 }; 932 933 } // end namespace llvm 934 935 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H 936