1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H 14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H 15 16 #include "X86FrameLowering.h" 17 #include "X86ISelLowering.h" 18 #include "X86InstrInfo.h" 19 #include "X86SelectionDAGInfo.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/CallingConv.h" 23 #include <climits> 24 #include <memory> 25 26 #define GET_SUBTARGETINFO_HEADER 27 #include "X86GenSubtargetInfo.inc" 28 29 namespace llvm { 30 31 class CallLowering; 32 class GlobalValue; 33 class InstructionSelector; 34 class LegalizerInfo; 35 class RegisterBankInfo; 36 class StringRef; 37 class TargetMachine; 38 39 /// The X86 backend supports a number of different styles of PIC. 40 /// 41 namespace PICStyles { 42 43 enum class Style { 44 StubPIC, // Used on i386-darwin in pic mode. 45 GOT, // Used on 32 bit elf on when in pic mode. 46 RIPRel, // Used on X86-64 when in pic mode. 47 None // Set when not in pic mode. 48 }; 49 50 } // end namespace PICStyles 51 52 class X86Subtarget final : public X86GenSubtargetInfo { 53 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags 54 // are not a good idea. We should be migrating away from these. 55 enum X86ProcFamilyEnum { 56 Others, 57 IntelAtom, 58 IntelSLM 59 }; 60 61 enum X86SSEEnum { 62 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F 63 }; 64 65 enum X863DNowEnum { 66 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA 67 }; 68 69 /// X86 processor family: Intel Atom, and others 70 X86ProcFamilyEnum X86ProcFamily = Others; 71 72 /// Which PIC style to use 73 PICStyles::Style PICStyle; 74 75 const TargetMachine &TM; 76 77 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported. 78 X86SSEEnum X86SSELevel = NoSSE; 79 80 /// MMX, 3DNow, 3DNow Athlon, or none supported. 81 X863DNowEnum X863DNowLevel = NoThreeDNow; 82 83 /// True if the processor supports X87 instructions. 84 bool HasX87 = false; 85 86 /// True if the processor supports CMPXCHG8B. 87 bool HasCmpxchg8b = false; 88 89 /// True if this processor has NOPL instruction 90 /// (generally pentium pro+). 91 bool HasNOPL = false; 92 93 /// True if this processor has conditional move instructions 94 /// (generally pentium pro+). 95 bool HasCMov = false; 96 97 /// True if the processor supports X86-64 instructions. 98 bool HasX86_64 = false; 99 100 /// True if the processor supports POPCNT. 101 bool HasPOPCNT = false; 102 103 /// True if the processor supports SSE4A instructions. 104 bool HasSSE4A = false; 105 106 /// Target has AES instructions 107 bool HasAES = false; 108 bool HasVAES = false; 109 110 /// Target has FXSAVE/FXRESTOR instructions 111 bool HasFXSR = false; 112 113 /// Target has XSAVE instructions 114 bool HasXSAVE = false; 115 116 /// Target has XSAVEOPT instructions 117 bool HasXSAVEOPT = false; 118 119 /// Target has XSAVEC instructions 120 bool HasXSAVEC = false; 121 122 /// Target has XSAVES instructions 123 bool HasXSAVES = false; 124 125 /// Target has carry-less multiplication 126 bool HasPCLMUL = false; 127 bool HasVPCLMULQDQ = false; 128 129 /// Target has Galois Field Arithmetic instructions 130 bool HasGFNI = false; 131 132 /// Target has 3-operand fused multiply-add 133 bool HasFMA = false; 134 135 /// Target has 4-operand fused multiply-add 136 bool HasFMA4 = false; 137 138 /// Target has XOP instructions 139 bool HasXOP = false; 140 141 /// Target has TBM instructions. 142 bool HasTBM = false; 143 144 /// Target has LWP instructions 145 bool HasLWP = false; 146 147 /// True if the processor has the MOVBE instruction. 148 bool HasMOVBE = false; 149 150 /// True if the processor has the RDRAND instruction. 151 bool HasRDRAND = false; 152 153 /// Processor has 16-bit floating point conversion instructions. 154 bool HasF16C = false; 155 156 /// Processor has FS/GS base insturctions. 157 bool HasFSGSBase = false; 158 159 /// Processor has LZCNT instruction. 160 bool HasLZCNT = false; 161 162 /// Processor has BMI1 instructions. 163 bool HasBMI = false; 164 165 /// Processor has BMI2 instructions. 166 bool HasBMI2 = false; 167 168 /// Processor has VBMI instructions. 169 bool HasVBMI = false; 170 171 /// Processor has VBMI2 instructions. 172 bool HasVBMI2 = false; 173 174 /// Processor has Integer Fused Multiply Add 175 bool HasIFMA = false; 176 177 /// Processor has RTM instructions. 178 bool HasRTM = false; 179 180 /// Processor has ADX instructions. 181 bool HasADX = false; 182 183 /// Processor has SHA instructions. 184 bool HasSHA = false; 185 186 /// Processor has PRFCHW instructions. 187 bool HasPRFCHW = false; 188 189 /// Processor has RDSEED instructions. 190 bool HasRDSEED = false; 191 192 /// Processor has LAHF/SAHF instructions in 64-bit mode. 193 bool HasLAHFSAHF64 = false; 194 195 /// Processor has MONITORX/MWAITX instructions. 196 bool HasMWAITX = false; 197 198 /// Processor has Cache Line Zero instruction 199 bool HasCLZERO = false; 200 201 /// Processor has Cache Line Demote instruction 202 bool HasCLDEMOTE = false; 203 204 /// Processor has MOVDIRI instruction (direct store integer). 205 bool HasMOVDIRI = false; 206 207 /// Processor has MOVDIR64B instruction (direct store 64 bytes). 208 bool HasMOVDIR64B = false; 209 210 /// Processor has ptwrite instruction. 211 bool HasPTWRITE = false; 212 213 /// Processor has Prefetch with intent to Write instruction 214 bool HasPREFETCHWT1 = false; 215 216 /// True if SHLD instructions are slow. 217 bool IsSHLDSlow = false; 218 219 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and 220 // PMULUDQ. 221 bool IsPMULLDSlow = false; 222 223 /// True if the PMADDWD instruction is slow compared to PMULLD. 224 bool IsPMADDWDSlow = false; 225 226 /// True if unaligned memory accesses of 16-bytes are slow. 227 bool IsUAMem16Slow = false; 228 229 /// True if unaligned memory accesses of 32-bytes are slow. 230 bool IsUAMem32Slow = false; 231 232 /// True if SSE operations can have unaligned memory operands. 233 /// This may require setting a configuration bit in the processor. 234 bool HasSSEUnalignedMem = false; 235 236 /// True if this processor has the CMPXCHG16B instruction; 237 /// this is true for most x86-64 chips, but not the first AMD chips. 238 bool HasCmpxchg16b = false; 239 240 /// True if the LEA instruction should be used for adjusting 241 /// the stack pointer. This is an optimization for Intel Atom processors. 242 bool UseLeaForSP = false; 243 244 /// True if POPCNT instruction has a false dependency on the destination register. 245 bool HasPOPCNTFalseDeps = false; 246 247 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register. 248 bool HasLZCNTFalseDeps = false; 249 250 /// True if its preferable to combine to a single shuffle using a variable 251 /// mask over multiple fixed shuffles. 252 bool HasFastVariableShuffle = false; 253 254 /// True if vzeroupper instructions should be inserted after code that uses 255 /// ymm or zmm registers. 256 bool InsertVZEROUPPER = false; 257 258 /// True if there is no performance penalty for writing NOPs with up to 259 /// 7 bytes. 260 bool HasFast7ByteNOP = false; 261 262 /// True if there is no performance penalty for writing NOPs with up to 263 /// 11 bytes. 264 bool HasFast11ByteNOP = false; 265 266 /// True if there is no performance penalty for writing NOPs with up to 267 /// 15 bytes. 268 bool HasFast15ByteNOP = false; 269 270 /// True if gather is reasonably fast. This is true for Skylake client and 271 /// all AVX-512 CPUs. 272 bool HasFastGather = false; 273 274 /// True if hardware SQRTSS instruction is at least as fast (latency) as 275 /// RSQRTSS followed by a Newton-Raphson iteration. 276 bool HasFastScalarFSQRT = false; 277 278 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast 279 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration. 280 bool HasFastVectorFSQRT = false; 281 282 /// True if 8-bit divisions are significantly faster than 283 /// 32-bit divisions and should be used when possible. 284 bool HasSlowDivide32 = false; 285 286 /// True if 32-bit divides are significantly faster than 287 /// 64-bit divisions and should be used when possible. 288 bool HasSlowDivide64 = false; 289 290 /// True if LZCNT instruction is fast. 291 bool HasFastLZCNT = false; 292 293 /// True if SHLD based rotate is fast. 294 bool HasFastSHLDRotate = false; 295 296 /// True if the processor supports macrofusion. 297 bool HasMacroFusion = false; 298 299 /// True if the processor supports branch fusion. 300 bool HasBranchFusion = false; 301 302 /// True if the processor has enhanced REP MOVSB/STOSB. 303 bool HasERMSB = false; 304 305 /// True if the processor has fast short REP MOV. 306 bool HasFSRM = false; 307 308 /// True if the short functions should be padded to prevent 309 /// a stall when returning too early. 310 bool PadShortFunctions = false; 311 312 /// True if two memory operand instructions should use a temporary register 313 /// instead. 314 bool SlowTwoMemOps = false; 315 316 /// True if the LEA instruction inputs have to be ready at address generation 317 /// (AG) time. 318 bool LEAUsesAG = false; 319 320 /// True if the LEA instruction with certain arguments is slow 321 bool SlowLEA = false; 322 323 /// True if the LEA instruction has all three source operands: base, index, 324 /// and offset or if the LEA instruction uses base and index registers where 325 /// the base is EBP, RBP,or R13 326 bool Slow3OpsLEA = false; 327 328 /// True if INC and DEC instructions are slow when writing to flags 329 bool SlowIncDec = false; 330 331 /// Processor has AVX-512 PreFetch Instructions 332 bool HasPFI = false; 333 334 /// Processor has AVX-512 Exponential and Reciprocal Instructions 335 bool HasERI = false; 336 337 /// Processor has AVX-512 Conflict Detection Instructions 338 bool HasCDI = false; 339 340 /// Processor has AVX-512 population count Instructions 341 bool HasVPOPCNTDQ = false; 342 343 /// Processor has AVX-512 Doubleword and Quadword instructions 344 bool HasDQI = false; 345 346 /// Processor has AVX-512 Byte and Word instructions 347 bool HasBWI = false; 348 349 /// Processor has AVX-512 Vector Length eXtenstions 350 bool HasVLX = false; 351 352 /// Processor has PKU extenstions 353 bool HasPKU = false; 354 355 /// Processor has AVX-512 Vector Neural Network Instructions 356 bool HasVNNI = false; 357 358 /// Processor has AVX Vector Neural Network Instructions 359 bool HasAVXVNNI = false; 360 361 /// Processor has AVX-512 bfloat16 floating-point extensions 362 bool HasBF16 = false; 363 364 /// Processor supports ENQCMD instructions 365 bool HasENQCMD = false; 366 367 /// Processor has AVX-512 Bit Algorithms instructions 368 bool HasBITALG = false; 369 370 /// Processor has AVX-512 vp2intersect instructions 371 bool HasVP2INTERSECT = false; 372 373 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology 374 /// using Shadow Stack 375 bool HasSHSTK = false; 376 377 /// Processor supports Invalidate Process-Context Identifier 378 bool HasINVPCID = false; 379 380 /// Processor has Software Guard Extensions 381 bool HasSGX = false; 382 383 /// Processor supports Flush Cache Line instruction 384 bool HasCLFLUSHOPT = false; 385 386 /// Processor supports Cache Line Write Back instruction 387 bool HasCLWB = false; 388 389 /// Processor supports Write Back No Invalidate instruction 390 bool HasWBNOINVD = false; 391 392 /// Processor support RDPID instruction 393 bool HasRDPID = false; 394 395 /// Processor supports WaitPKG instructions 396 bool HasWAITPKG = false; 397 398 /// Processor supports PCONFIG instruction 399 bool HasPCONFIG = false; 400 401 /// Processor support key locker instructions 402 bool HasKL = false; 403 404 /// Processor support key locker wide instructions 405 bool HasWIDEKL = false; 406 407 /// Processor supports HRESET instruction 408 bool HasHRESET = false; 409 410 /// Processor supports SERIALIZE instruction 411 bool HasSERIALIZE = false; 412 413 /// Processor supports TSXLDTRK instruction 414 bool HasTSXLDTRK = false; 415 416 /// Processor has AMX support 417 bool HasAMXTILE = false; 418 bool HasAMXBF16 = false; 419 bool HasAMXINT8 = false; 420 421 /// Processor supports User Level Interrupt instructions 422 bool HasUINTR = false; 423 424 /// Processor has a single uop BEXTR implementation. 425 bool HasFastBEXTR = false; 426 427 /// Try harder to combine to horizontal vector ops if they are fast. 428 bool HasFastHorizontalOps = false; 429 430 /// Prefer a left/right scalar logical shifts pair over a shift+and pair. 431 bool HasFastScalarShiftMasks = false; 432 433 /// Prefer a left/right vector logical shifts pair over a shift+and pair. 434 bool HasFastVectorShiftMasks = false; 435 436 /// Use a retpoline thunk rather than indirect calls to block speculative 437 /// execution. 438 bool UseRetpolineIndirectCalls = false; 439 440 /// Use a retpoline thunk or remove any indirect branch to block speculative 441 /// execution. 442 bool UseRetpolineIndirectBranches = false; 443 444 /// Deprecated flag, query `UseRetpolineIndirectCalls` and 445 /// `UseRetpolineIndirectBranches` instead. 446 bool DeprecatedUseRetpoline = false; 447 448 /// When using a retpoline thunk, call an externally provided thunk rather 449 /// than emitting one inside the compiler. 450 bool UseRetpolineExternalThunk = false; 451 452 /// Prevent generation of indirect call/branch instructions from memory, 453 /// and force all indirect call/branch instructions from a register to be 454 /// preceded by an LFENCE. Also decompose RET instructions into a 455 /// POP+LFENCE+JMP sequence. 456 bool UseLVIControlFlowIntegrity = false; 457 458 /// Enable Speculative Execution Side Effect Suppression 459 bool UseSpeculativeExecutionSideEffectSuppression = false; 460 461 /// Insert LFENCE instructions to prevent data speculatively injected into 462 /// loads from being used maliciously. 463 bool UseLVILoadHardening = false; 464 465 /// Use software floating point for code generation. 466 bool UseSoftFloat = false; 467 468 /// Use alias analysis during code generation. 469 bool UseAA = false; 470 471 /// The minimum alignment known to hold of the stack frame on 472 /// entry to the function and which must be maintained by every function. 473 Align stackAlignment = Align(4); 474 475 Align TileConfigAlignment = Align(4); 476 477 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 478 /// 479 // FIXME: this is a known good value for Yonah. How about others? 480 unsigned MaxInlineSizeThreshold = 128; 481 482 /// Indicates target prefers 128 bit instructions. 483 bool Prefer128Bit = false; 484 485 /// Indicates target prefers 256 bit instructions. 486 bool Prefer256Bit = false; 487 488 /// Indicates target prefers AVX512 mask registers. 489 bool PreferMaskRegisters = false; 490 491 /// Use Goldmont specific floating point div/sqrt costs. 492 bool UseGLMDivSqrtCosts = false; 493 494 /// What processor and OS we're targeting. 495 Triple TargetTriple; 496 497 /// GlobalISel related APIs. 498 std::unique_ptr<CallLowering> CallLoweringInfo; 499 std::unique_ptr<LegalizerInfo> Legalizer; 500 std::unique_ptr<RegisterBankInfo> RegBankInfo; 501 std::unique_ptr<InstructionSelector> InstSelector; 502 503 private: 504 /// Override the stack alignment. 505 MaybeAlign StackAlignOverride; 506 507 /// Preferred vector width from function attribute. 508 unsigned PreferVectorWidthOverride; 509 510 /// Resolved preferred vector width from function attribute and subtarget 511 /// features. 512 unsigned PreferVectorWidth = UINT32_MAX; 513 514 /// Required vector width from function attribute. 515 unsigned RequiredVectorWidth; 516 517 /// True if compiling for 64-bit, false for 16-bit or 32-bit. 518 bool In64BitMode = false; 519 520 /// True if compiling for 32-bit, false for 16-bit or 64-bit. 521 bool In32BitMode = false; 522 523 /// True if compiling for 16-bit, false for 32-bit or 64-bit. 524 bool In16BitMode = false; 525 526 X86SelectionDAGInfo TSInfo; 527 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which 528 // X86TargetLowering needs. 529 X86InstrInfo InstrInfo; 530 X86TargetLowering TLInfo; 531 X86FrameLowering FrameLowering; 532 533 public: 534 /// This constructor initializes the data members to match that 535 /// of the specified triple. 536 /// 537 X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS, 538 const X86TargetMachine &TM, MaybeAlign StackAlignOverride, 539 unsigned PreferVectorWidthOverride, 540 unsigned RequiredVectorWidth); 541 542 const X86TargetLowering *getTargetLowering() const override { 543 return &TLInfo; 544 } 545 546 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; } 547 548 const X86FrameLowering *getFrameLowering() const override { 549 return &FrameLowering; 550 } 551 552 const X86SelectionDAGInfo *getSelectionDAGInfo() const override { 553 return &TSInfo; 554 } 555 556 const X86RegisterInfo *getRegisterInfo() const override { 557 return &getInstrInfo()->getRegisterInfo(); 558 } 559 560 unsigned getTileConfigSize() const { return 64; } 561 Align getTileConfigAlignment() const { return TileConfigAlignment; } 562 563 /// Returns the minimum alignment known to hold of the 564 /// stack frame on entry to the function and which must be maintained by every 565 /// function for this subtarget. 566 Align getStackAlignment() const { return stackAlignment; } 567 568 /// Returns the maximum memset / memcpy size 569 /// that still makes it profitable to inline the call. 570 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 571 572 /// ParseSubtargetFeatures - Parses features string setting specified 573 /// subtarget options. Definition of function is auto generated by tblgen. 574 void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS); 575 576 /// Methods used by Global ISel 577 const CallLowering *getCallLowering() const override; 578 InstructionSelector *getInstructionSelector() const override; 579 const LegalizerInfo *getLegalizerInfo() const override; 580 const RegisterBankInfo *getRegBankInfo() const override; 581 582 private: 583 /// Initialize the full set of dependencies so we can use an initializer 584 /// list for X86Subtarget. 585 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, 586 StringRef TuneCPU, 587 StringRef FS); 588 void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS); 589 590 public: 591 /// Is this x86_64? (disregarding specific ABI / programming model) 592 bool is64Bit() const { 593 return In64BitMode; 594 } 595 596 bool is32Bit() const { 597 return In32BitMode; 598 } 599 600 bool is16Bit() const { 601 return In16BitMode; 602 } 603 604 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? 605 bool isTarget64BitILP32() const { 606 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || 607 TargetTriple.isOSNaCl()); 608 } 609 610 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? 611 bool isTarget64BitLP64() const { 612 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 && 613 !TargetTriple.isOSNaCl()); 614 } 615 616 PICStyles::Style getPICStyle() const { return PICStyle; } 617 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 618 619 bool hasX87() const { return HasX87; } 620 bool hasCmpxchg8b() const { return HasCmpxchg8b; } 621 bool hasNOPL() const { return HasNOPL; } 622 // SSE codegen depends on cmovs, and all SSE1+ processors support them. 623 // All 64-bit processors support cmov. 624 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); } 625 bool hasSSE1() const { return X86SSELevel >= SSE1; } 626 bool hasSSE2() const { return X86SSELevel >= SSE2; } 627 bool hasSSE3() const { return X86SSELevel >= SSE3; } 628 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } 629 bool hasSSE41() const { return X86SSELevel >= SSE41; } 630 bool hasSSE42() const { return X86SSELevel >= SSE42; } 631 bool hasAVX() const { return X86SSELevel >= AVX; } 632 bool hasAVX2() const { return X86SSELevel >= AVX2; } 633 bool hasAVX512() const { return X86SSELevel >= AVX512F; } 634 bool hasInt256() const { return hasAVX2(); } 635 bool hasSSE4A() const { return HasSSE4A; } 636 bool hasMMX() const { return X863DNowLevel >= MMX; } 637 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } 638 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } 639 bool hasPOPCNT() const { return HasPOPCNT; } 640 bool hasAES() const { return HasAES; } 641 bool hasVAES() const { return HasVAES; } 642 bool hasFXSR() const { return HasFXSR; } 643 bool hasXSAVE() const { return HasXSAVE; } 644 bool hasXSAVEOPT() const { return HasXSAVEOPT; } 645 bool hasXSAVEC() const { return HasXSAVEC; } 646 bool hasXSAVES() const { return HasXSAVES; } 647 bool hasPCLMUL() const { return HasPCLMUL; } 648 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; } 649 bool hasGFNI() const { return HasGFNI; } 650 // Prefer FMA4 to FMA - its better for commutation/memory folding and 651 // has equal or better performance on all supported targets. 652 bool hasFMA() const { return HasFMA; } 653 bool hasFMA4() const { return HasFMA4; } 654 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } 655 bool hasXOP() const { return HasXOP; } 656 bool hasTBM() const { return HasTBM; } 657 bool hasLWP() const { return HasLWP; } 658 bool hasMOVBE() const { return HasMOVBE; } 659 bool hasRDRAND() const { return HasRDRAND; } 660 bool hasF16C() const { return HasF16C; } 661 bool hasFSGSBase() const { return HasFSGSBase; } 662 bool hasLZCNT() const { return HasLZCNT; } 663 bool hasBMI() const { return HasBMI; } 664 bool hasBMI2() const { return HasBMI2; } 665 bool hasVBMI() const { return HasVBMI; } 666 bool hasVBMI2() const { return HasVBMI2; } 667 bool hasIFMA() const { return HasIFMA; } 668 bool hasRTM() const { return HasRTM; } 669 bool hasADX() const { return HasADX; } 670 bool hasSHA() const { return HasSHA; } 671 bool hasPRFCHW() const { return HasPRFCHW; } 672 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; } 673 bool hasPrefetchW() const { 674 // The PREFETCHW instruction was added with 3DNow but later CPUs gave it 675 // its own CPUID bit as part of deprecating 3DNow. Intel eventually added 676 // it and KNL has another that prefetches to L2 cache. We assume the 677 // L1 version exists if the L2 version does. 678 return has3DNow() || hasPRFCHW() || hasPREFETCHWT1(); 679 } 680 bool hasSSEPrefetch() const { 681 // We implicitly enable these when we have a write prefix supporting cache 682 // level OR if we have prfchw, but don't already have a read prefetch from 683 // 3dnow. 684 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1(); 685 } 686 bool hasRDSEED() const { return HasRDSEED; } 687 bool hasLAHFSAHF() const { return HasLAHFSAHF64 || !is64Bit(); } 688 bool hasMWAITX() const { return HasMWAITX; } 689 bool hasCLZERO() const { return HasCLZERO; } 690 bool hasCLDEMOTE() const { return HasCLDEMOTE; } 691 bool hasMOVDIRI() const { return HasMOVDIRI; } 692 bool hasMOVDIR64B() const { return HasMOVDIR64B; } 693 bool hasPTWRITE() const { return HasPTWRITE; } 694 bool isSHLDSlow() const { return IsSHLDSlow; } 695 bool isPMULLDSlow() const { return IsPMULLDSlow; } 696 bool isPMADDWDSlow() const { return IsPMADDWDSlow; } 697 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; } 698 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; } 699 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; } 700 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); } 701 bool useLeaForSP() const { return UseLeaForSP; } 702 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; } 703 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; } 704 bool hasFastVariableShuffle() const { 705 return HasFastVariableShuffle; 706 } 707 bool insertVZEROUPPER() const { return InsertVZEROUPPER; } 708 bool hasFastGather() const { return HasFastGather; } 709 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; } 710 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; } 711 bool hasFastLZCNT() const { return HasFastLZCNT; } 712 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; } 713 bool hasFastBEXTR() const { return HasFastBEXTR; } 714 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; } 715 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; } 716 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; } 717 bool hasMacroFusion() const { return HasMacroFusion; } 718 bool hasBranchFusion() const { return HasBranchFusion; } 719 bool hasERMSB() const { return HasERMSB; } 720 bool hasFSRM() const { return HasFSRM; } 721 bool hasSlowDivide32() const { return HasSlowDivide32; } 722 bool hasSlowDivide64() const { return HasSlowDivide64; } 723 bool padShortFunctions() const { return PadShortFunctions; } 724 bool slowTwoMemOps() const { return SlowTwoMemOps; } 725 bool LEAusesAG() const { return LEAUsesAG; } 726 bool slowLEA() const { return SlowLEA; } 727 bool slow3OpsLEA() const { return Slow3OpsLEA; } 728 bool slowIncDec() const { return SlowIncDec; } 729 bool hasCDI() const { return HasCDI; } 730 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; } 731 bool hasPFI() const { return HasPFI; } 732 bool hasERI() const { return HasERI; } 733 bool hasDQI() const { return HasDQI; } 734 bool hasBWI() const { return HasBWI; } 735 bool hasVLX() const { return HasVLX; } 736 bool hasPKU() const { return HasPKU; } 737 bool hasVNNI() const { return HasVNNI; } 738 bool hasBF16() const { return HasBF16; } 739 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; } 740 bool hasBITALG() const { return HasBITALG; } 741 bool hasSHSTK() const { return HasSHSTK; } 742 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; } 743 bool hasCLWB() const { return HasCLWB; } 744 bool hasWBNOINVD() const { return HasWBNOINVD; } 745 bool hasRDPID() const { return HasRDPID; } 746 bool hasWAITPKG() const { return HasWAITPKG; } 747 bool hasPCONFIG() const { return HasPCONFIG; } 748 bool hasSGX() const { return HasSGX; } 749 bool hasINVPCID() const { return HasINVPCID; } 750 bool hasENQCMD() const { return HasENQCMD; } 751 bool hasKL() const { return HasKL; } 752 bool hasWIDEKL() const { return HasWIDEKL; } 753 bool hasHRESET() const { return HasHRESET; } 754 bool hasSERIALIZE() const { return HasSERIALIZE; } 755 bool hasTSXLDTRK() const { return HasTSXLDTRK; } 756 bool hasUINTR() const { return HasUINTR; } 757 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; } 758 bool useRetpolineIndirectBranches() const { 759 return UseRetpolineIndirectBranches; 760 } 761 bool hasAVXVNNI() const { return HasAVXVNNI; } 762 bool hasAMXTILE() const { return HasAMXTILE; } 763 bool hasAMXBF16() const { return HasAMXBF16; } 764 bool hasAMXINT8() const { return HasAMXINT8; } 765 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; } 766 767 // These are generic getters that OR together all of the thunk types 768 // supported by the subtarget. Therefore useIndirectThunk*() will return true 769 // if any respective thunk feature is enabled. 770 bool useIndirectThunkCalls() const { 771 return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity(); 772 } 773 bool useIndirectThunkBranches() const { 774 return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity(); 775 } 776 777 bool preferMaskRegisters() const { return PreferMaskRegisters; } 778 bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; } 779 bool useLVIControlFlowIntegrity() const { return UseLVIControlFlowIntegrity; } 780 bool useLVILoadHardening() const { return UseLVILoadHardening; } 781 bool useSpeculativeExecutionSideEffectSuppression() const { 782 return UseSpeculativeExecutionSideEffectSuppression; 783 } 784 785 unsigned getPreferVectorWidth() const { return PreferVectorWidth; } 786 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } 787 788 // Helper functions to determine when we should allow widening to 512-bit 789 // during codegen. 790 // TODO: Currently we're always allowing widening on CPUs without VLX, 791 // because for many cases we don't have a better option. 792 bool canExtendTo512DQ() const { 793 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512); 794 } 795 bool canExtendTo512BW() const { 796 return hasBWI() && canExtendTo512DQ(); 797 } 798 799 // If there are no 512-bit vectors and we prefer not to use 512-bit registers, 800 // disable them in the legalizer. 801 bool useAVX512Regs() const { 802 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256); 803 } 804 805 bool useBWIRegs() const { 806 return hasBWI() && useAVX512Regs(); 807 } 808 809 bool isXRaySupported() const override { return is64Bit(); } 810 811 /// TODO: to be removed later and replaced with suitable properties 812 bool isAtom() const { return X86ProcFamily == IntelAtom; } 813 bool isSLM() const { return X86ProcFamily == IntelSLM; } 814 bool useSoftFloat() const { return UseSoftFloat; } 815 bool useAA() const override { return UseAA; } 816 817 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for 818 /// no-sse2). There isn't any reason to disable it if the target processor 819 /// supports it. 820 bool hasMFence() const { return hasSSE2() || is64Bit(); } 821 822 const Triple &getTargetTriple() const { return TargetTriple; } 823 824 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 825 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); } 826 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); } 827 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); } 828 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); } 829 830 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } 831 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } 832 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } 833 834 bool isTargetLinux() const { return TargetTriple.isOSLinux(); } 835 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); } 836 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); } 837 bool isTargetAndroid() const { return TargetTriple.isAndroid(); } 838 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } 839 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } 840 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 841 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); } 842 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); } 843 844 bool isTargetWindowsMSVC() const { 845 return TargetTriple.isWindowsMSVCEnvironment(); 846 } 847 848 bool isTargetWindowsCoreCLR() const { 849 return TargetTriple.isWindowsCoreCLREnvironment(); 850 } 851 852 bool isTargetWindowsCygwin() const { 853 return TargetTriple.isWindowsCygwinEnvironment(); 854 } 855 856 bool isTargetWindowsGNU() const { 857 return TargetTriple.isWindowsGNUEnvironment(); 858 } 859 860 bool isTargetWindowsItanium() const { 861 return TargetTriple.isWindowsItaniumEnvironment(); 862 } 863 864 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 865 866 bool isOSWindows() const { return TargetTriple.isOSWindows(); } 867 868 bool isTargetWin64() const { return In64BitMode && isOSWindows(); } 869 870 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); } 871 872 bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; } 873 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; } 874 875 bool isPICStyleStubPIC() const { 876 return PICStyle == PICStyles::Style::StubPIC; 877 } 878 879 bool isPositionIndependent() const; 880 881 bool isCallingConvWin64(CallingConv::ID CC) const { 882 switch (CC) { 883 // On Win64, all these conventions just use the default convention. 884 case CallingConv::C: 885 case CallingConv::Fast: 886 case CallingConv::Tail: 887 case CallingConv::Swift: 888 case CallingConv::X86_FastCall: 889 case CallingConv::X86_StdCall: 890 case CallingConv::X86_ThisCall: 891 case CallingConv::X86_VectorCall: 892 case CallingConv::Intel_OCL_BI: 893 return isTargetWin64(); 894 // This convention allows using the Win64 convention on other targets. 895 case CallingConv::Win64: 896 return true; 897 // This convention allows using the SysV convention on Windows targets. 898 case CallingConv::X86_64_SysV: 899 return false; 900 // Otherwise, who knows what this is. 901 default: 902 return false; 903 } 904 } 905 906 /// Classify a global variable reference for the current subtarget according 907 /// to how we should reference it in a non-pcrel context. 908 unsigned char classifyLocalReference(const GlobalValue *GV) const; 909 910 unsigned char classifyGlobalReference(const GlobalValue *GV, 911 const Module &M) const; 912 unsigned char classifyGlobalReference(const GlobalValue *GV) const; 913 914 /// Classify a global function reference for the current subtarget. 915 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, 916 const Module &M) const; 917 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const; 918 919 /// Classify a blockaddress reference for the current subtarget according to 920 /// how we should reference it in a non-pcrel context. 921 unsigned char classifyBlockAddressReference() const; 922 923 /// Return true if the subtarget allows calls to immediate address. 924 bool isLegalToCallImmediateAddr() const; 925 926 /// If we are using indirect thunks, we need to expand indirectbr to avoid it 927 /// lowering to an actual indirect jump. 928 bool enableIndirectBrExpand() const override { 929 return useIndirectThunkBranches(); 930 } 931 932 /// Enable the MachineScheduler pass for all X86 subtargets. 933 bool enableMachineScheduler() const override { return true; } 934 935 bool enableEarlyIfConversion() const override; 936 937 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> 938 &Mutations) const override; 939 940 AntiDepBreakMode getAntiDepBreakMode() const override { 941 return TargetSubtargetInfo::ANTIDEP_CRITICAL; 942 } 943 944 bool enableAdvancedRASplitCost() const override { return true; } 945 }; 946 947 } // end namespace llvm 948 949 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H 950