1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H 14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H 15 16 #include "X86FrameLowering.h" 17 #include "X86ISelLowering.h" 18 #include "X86InstrInfo.h" 19 #include "X86SelectionDAGInfo.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 24 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 25 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include <climits> 30 #include <memory> 31 32 #define GET_SUBTARGETINFO_HEADER 33 #include "X86GenSubtargetInfo.inc" 34 35 namespace llvm { 36 37 class GlobalValue; 38 39 /// The X86 backend supports a number of different styles of PIC. 40 /// 41 namespace PICStyles { 42 43 enum class Style { 44 StubPIC, // Used on i386-darwin in pic mode. 45 GOT, // Used on 32 bit elf on when in pic mode. 46 RIPRel, // Used on X86-64 when in pic mode. 47 None // Set when not in pic mode. 48 }; 49 50 } // end namespace PICStyles 51 52 class X86Subtarget final : public X86GenSubtargetInfo { 53 public: 54 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags 55 // are not a good idea. We should be migrating away from these. 56 enum X86ProcFamilyEnum { 57 Others, 58 IntelAtom, 59 IntelSLM 60 }; 61 62 protected: 63 enum X86SSEEnum { 64 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F 65 }; 66 67 enum X863DNowEnum { 68 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA 69 }; 70 71 /// X86 processor family: Intel Atom, and others 72 X86ProcFamilyEnum X86ProcFamily = Others; 73 74 /// Which PIC style to use 75 PICStyles::Style PICStyle; 76 77 const TargetMachine &TM; 78 79 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported. 80 X86SSEEnum X86SSELevel = NoSSE; 81 82 /// MMX, 3DNow, 3DNow Athlon, or none supported. 83 X863DNowEnum X863DNowLevel = NoThreeDNow; 84 85 /// True if the processor supports X87 instructions. 86 bool HasX87 = false; 87 88 /// True if the processor supports CMPXCHG8B. 89 bool HasCmpxchg8b = false; 90 91 /// True if this processor has NOPL instruction 92 /// (generally pentium pro+). 93 bool HasNOPL = false; 94 95 /// True if this processor has conditional move instructions 96 /// (generally pentium pro+). 97 bool HasCMov = false; 98 99 /// True if the processor supports X86-64 instructions. 100 bool HasX86_64 = false; 101 102 /// True if the processor supports POPCNT. 103 bool HasPOPCNT = false; 104 105 /// True if the processor supports SSE4A instructions. 106 bool HasSSE4A = false; 107 108 /// Target has AES instructions 109 bool HasAES = false; 110 bool HasVAES = false; 111 112 /// Target has FXSAVE/FXRESTOR instructions 113 bool HasFXSR = false; 114 115 /// Target has XSAVE instructions 116 bool HasXSAVE = false; 117 118 /// Target has XSAVEOPT instructions 119 bool HasXSAVEOPT = false; 120 121 /// Target has XSAVEC instructions 122 bool HasXSAVEC = false; 123 124 /// Target has XSAVES instructions 125 bool HasXSAVES = false; 126 127 /// Target has carry-less multiplication 128 bool HasPCLMUL = false; 129 bool HasVPCLMULQDQ = false; 130 131 /// Target has Galois Field Arithmetic instructions 132 bool HasGFNI = false; 133 134 /// Target has 3-operand fused multiply-add 135 bool HasFMA = false; 136 137 /// Target has 4-operand fused multiply-add 138 bool HasFMA4 = false; 139 140 /// Target has XOP instructions 141 bool HasXOP = false; 142 143 /// Target has TBM instructions. 144 bool HasTBM = false; 145 146 /// Target has LWP instructions 147 bool HasLWP = false; 148 149 /// True if the processor has the MOVBE instruction. 150 bool HasMOVBE = false; 151 152 /// True if the processor has the RDRAND instruction. 153 bool HasRDRAND = false; 154 155 /// Processor has 16-bit floating point conversion instructions. 156 bool HasF16C = false; 157 158 /// Processor has FS/GS base insturctions. 159 bool HasFSGSBase = false; 160 161 /// Processor has LZCNT instruction. 162 bool HasLZCNT = false; 163 164 /// Processor has BMI1 instructions. 165 bool HasBMI = false; 166 167 /// Processor has BMI2 instructions. 168 bool HasBMI2 = false; 169 170 /// Processor has VBMI instructions. 171 bool HasVBMI = false; 172 173 /// Processor has VBMI2 instructions. 174 bool HasVBMI2 = false; 175 176 /// Processor has Integer Fused Multiply Add 177 bool HasIFMA = false; 178 179 /// Processor has RTM instructions. 180 bool HasRTM = false; 181 182 /// Processor has ADX instructions. 183 bool HasADX = false; 184 185 /// Processor has SHA instructions. 186 bool HasSHA = false; 187 188 /// Processor has PRFCHW instructions. 189 bool HasPRFCHW = false; 190 191 /// Processor has RDSEED instructions. 192 bool HasRDSEED = false; 193 194 /// Processor has LAHF/SAHF instructions. 195 bool HasLAHFSAHF = false; 196 197 /// Processor has MONITORX/MWAITX instructions. 198 bool HasMWAITX = false; 199 200 /// Processor has Cache Line Zero instruction 201 bool HasCLZERO = false; 202 203 /// Processor has Cache Line Demote instruction 204 bool HasCLDEMOTE = false; 205 206 /// Processor has MOVDIRI instruction (direct store integer). 207 bool HasMOVDIRI = false; 208 209 /// Processor has MOVDIR64B instruction (direct store 64 bytes). 210 bool HasMOVDIR64B = false; 211 212 /// Processor has ptwrite instruction. 213 bool HasPTWRITE = false; 214 215 /// Processor has Prefetch with intent to Write instruction 216 bool HasPREFETCHWT1 = false; 217 218 /// True if SHLD instructions are slow. 219 bool IsSHLDSlow = false; 220 221 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and 222 // PMULUDQ. 223 bool IsPMULLDSlow = false; 224 225 /// True if the PMADDWD instruction is slow compared to PMULLD. 226 bool IsPMADDWDSlow = false; 227 228 /// True if unaligned memory accesses of 16-bytes are slow. 229 bool IsUAMem16Slow = false; 230 231 /// True if unaligned memory accesses of 32-bytes are slow. 232 bool IsUAMem32Slow = false; 233 234 /// True if SSE operations can have unaligned memory operands. 235 /// This may require setting a configuration bit in the processor. 236 bool HasSSEUnalignedMem = false; 237 238 /// True if this processor has the CMPXCHG16B instruction; 239 /// this is true for most x86-64 chips, but not the first AMD chips. 240 bool HasCmpxchg16b = false; 241 242 /// True if the LEA instruction should be used for adjusting 243 /// the stack pointer. This is an optimization for Intel Atom processors. 244 bool UseLeaForSP = false; 245 246 /// True if POPCNT instruction has a false dependency on the destination register. 247 bool HasPOPCNTFalseDeps = false; 248 249 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register. 250 bool HasLZCNTFalseDeps = false; 251 252 /// True if its preferable to combine to a single shuffle using a variable 253 /// mask over multiple fixed shuffles. 254 bool HasFastVariableShuffle = false; 255 256 /// True if vzeroupper instructions should be inserted after code that uses 257 /// ymm or zmm registers. 258 bool InsertVZEROUPPER = false; 259 260 /// True if there is no performance penalty for writing NOPs with up to 261 /// 11 bytes. 262 bool HasFast11ByteNOP = false; 263 264 /// True if there is no performance penalty for writing NOPs with up to 265 /// 15 bytes. 266 bool HasFast15ByteNOP = false; 267 268 /// True if gather is reasonably fast. This is true for Skylake client and 269 /// all AVX-512 CPUs. 270 bool HasFastGather = false; 271 272 /// True if hardware SQRTSS instruction is at least as fast (latency) as 273 /// RSQRTSS followed by a Newton-Raphson iteration. 274 bool HasFastScalarFSQRT = false; 275 276 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast 277 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration. 278 bool HasFastVectorFSQRT = false; 279 280 /// True if 8-bit divisions are significantly faster than 281 /// 32-bit divisions and should be used when possible. 282 bool HasSlowDivide32 = false; 283 284 /// True if 32-bit divides are significantly faster than 285 /// 64-bit divisions and should be used when possible. 286 bool HasSlowDivide64 = false; 287 288 /// True if LZCNT instruction is fast. 289 bool HasFastLZCNT = false; 290 291 /// True if SHLD based rotate is fast. 292 bool HasFastSHLDRotate = false; 293 294 /// True if the processor supports macrofusion. 295 bool HasMacroFusion = false; 296 297 /// True if the processor supports branch fusion. 298 bool HasBranchFusion = false; 299 300 /// True if the processor has enhanced REP MOVSB/STOSB. 301 bool HasERMSB = false; 302 303 /// True if the short functions should be padded to prevent 304 /// a stall when returning too early. 305 bool PadShortFunctions = false; 306 307 /// True if two memory operand instructions should use a temporary register 308 /// instead. 309 bool SlowTwoMemOps = false; 310 311 /// True if the LEA instruction inputs have to be ready at address generation 312 /// (AG) time. 313 bool LEAUsesAG = false; 314 315 /// True if the LEA instruction with certain arguments is slow 316 bool SlowLEA = false; 317 318 /// True if the LEA instruction has all three source operands: base, index, 319 /// and offset or if the LEA instruction uses base and index registers where 320 /// the base is EBP, RBP,or R13 321 bool Slow3OpsLEA = false; 322 323 /// True if INC and DEC instructions are slow when writing to flags 324 bool SlowIncDec = false; 325 326 /// Processor has AVX-512 PreFetch Instructions 327 bool HasPFI = false; 328 329 /// Processor has AVX-512 Exponential and Reciprocal Instructions 330 bool HasERI = false; 331 332 /// Processor has AVX-512 Conflict Detection Instructions 333 bool HasCDI = false; 334 335 /// Processor has AVX-512 population count Instructions 336 bool HasVPOPCNTDQ = false; 337 338 /// Processor has AVX-512 Doubleword and Quadword instructions 339 bool HasDQI = false; 340 341 /// Processor has AVX-512 Byte and Word instructions 342 bool HasBWI = false; 343 344 /// Processor has AVX-512 Vector Length eXtenstions 345 bool HasVLX = false; 346 347 /// Processor has PKU extenstions 348 bool HasPKU = false; 349 350 /// Processor has AVX-512 Vector Neural Network Instructions 351 bool HasVNNI = false; 352 353 /// Processor has AVX-512 bfloat16 floating-point extensions 354 bool HasBF16 = false; 355 356 /// Processor supports ENQCMD instructions 357 bool HasENQCMD = false; 358 359 /// Processor has AVX-512 Bit Algorithms instructions 360 bool HasBITALG = false; 361 362 /// Processor has AVX-512 vp2intersect instructions 363 bool HasVP2INTERSECT = false; 364 365 /// Deprecated flag for MPX instructions. 366 bool DeprecatedHasMPX = false; 367 368 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology 369 /// using Shadow Stack 370 bool HasSHSTK = false; 371 372 /// Processor supports Invalidate Process-Context Identifier 373 bool HasINVPCID = false; 374 375 /// Processor has Software Guard Extensions 376 bool HasSGX = false; 377 378 /// Processor supports Flush Cache Line instruction 379 bool HasCLFLUSHOPT = false; 380 381 /// Processor supports Cache Line Write Back instruction 382 bool HasCLWB = false; 383 384 /// Processor supports Write Back No Invalidate instruction 385 bool HasWBNOINVD = false; 386 387 /// Processor support RDPID instruction 388 bool HasRDPID = false; 389 390 /// Processor supports WaitPKG instructions 391 bool HasWAITPKG = false; 392 393 /// Processor supports PCONFIG instruction 394 bool HasPCONFIG = false; 395 396 /// Processor has a single uop BEXTR implementation. 397 bool HasFastBEXTR = false; 398 399 /// Try harder to combine to horizontal vector ops if they are fast. 400 bool HasFastHorizontalOps = false; 401 402 /// Prefer a left/right scalar logical shifts pair over a shift+and pair. 403 bool HasFastScalarShiftMasks = false; 404 405 /// Prefer a left/right vector logical shifts pair over a shift+and pair. 406 bool HasFastVectorShiftMasks = false; 407 408 /// Use a retpoline thunk rather than indirect calls to block speculative 409 /// execution. 410 bool UseRetpolineIndirectCalls = false; 411 412 /// Use a retpoline thunk or remove any indirect branch to block speculative 413 /// execution. 414 bool UseRetpolineIndirectBranches = false; 415 416 /// Deprecated flag, query `UseRetpolineIndirectCalls` and 417 /// `UseRetpolineIndirectBranches` instead. 418 bool DeprecatedUseRetpoline = false; 419 420 /// When using a retpoline thunk, call an externally provided thunk rather 421 /// than emitting one inside the compiler. 422 bool UseRetpolineExternalThunk = false; 423 424 /// Use software floating point for code generation. 425 bool UseSoftFloat = false; 426 427 /// Use alias analysis during code generation. 428 bool UseAA = false; 429 430 /// The minimum alignment known to hold of the stack frame on 431 /// entry to the function and which must be maintained by every function. 432 Align stackAlignment = Align(4); 433 434 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 435 /// 436 // FIXME: this is a known good value for Yonah. How about others? 437 unsigned MaxInlineSizeThreshold = 128; 438 439 /// Indicates target prefers 128 bit instructions. 440 bool Prefer128Bit = false; 441 442 /// Indicates target prefers 256 bit instructions. 443 bool Prefer256Bit = false; 444 445 /// Indicates target prefers AVX512 mask registers. 446 bool PreferMaskRegisters = false; 447 448 /// Threeway branch is profitable in this subtarget. 449 bool ThreewayBranchProfitable = false; 450 451 /// Use Goldmont specific floating point div/sqrt costs. 452 bool UseGLMDivSqrtCosts = false; 453 454 /// What processor and OS we're targeting. 455 Triple TargetTriple; 456 457 /// GlobalISel related APIs. 458 std::unique_ptr<CallLowering> CallLoweringInfo; 459 std::unique_ptr<LegalizerInfo> Legalizer; 460 std::unique_ptr<RegisterBankInfo> RegBankInfo; 461 std::unique_ptr<InstructionSelector> InstSelector; 462 463 private: 464 /// Override the stack alignment. 465 MaybeAlign StackAlignOverride; 466 467 /// Preferred vector width from function attribute. 468 unsigned PreferVectorWidthOverride; 469 470 /// Resolved preferred vector width from function attribute and subtarget 471 /// features. 472 unsigned PreferVectorWidth = UINT32_MAX; 473 474 /// Required vector width from function attribute. 475 unsigned RequiredVectorWidth; 476 477 /// True if compiling for 64-bit, false for 16-bit or 32-bit. 478 bool In64BitMode; 479 480 /// True if compiling for 32-bit, false for 16-bit or 64-bit. 481 bool In32BitMode; 482 483 /// True if compiling for 16-bit, false for 32-bit or 64-bit. 484 bool In16BitMode; 485 486 /// Contains the Overhead of gather\scatter instructions 487 int GatherOverhead = 1024; 488 int ScatterOverhead = 1024; 489 490 X86SelectionDAGInfo TSInfo; 491 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which 492 // X86TargetLowering needs. 493 X86InstrInfo InstrInfo; 494 X86TargetLowering TLInfo; 495 X86FrameLowering FrameLowering; 496 497 public: 498 /// This constructor initializes the data members to match that 499 /// of the specified triple. 500 /// 501 X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS, 502 const X86TargetMachine &TM, MaybeAlign StackAlignOverride, 503 unsigned PreferVectorWidthOverride, 504 unsigned RequiredVectorWidth); 505 506 const X86TargetLowering *getTargetLowering() const override { 507 return &TLInfo; 508 } 509 510 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; } 511 512 const X86FrameLowering *getFrameLowering() const override { 513 return &FrameLowering; 514 } 515 516 const X86SelectionDAGInfo *getSelectionDAGInfo() const override { 517 return &TSInfo; 518 } 519 520 const X86RegisterInfo *getRegisterInfo() const override { 521 return &getInstrInfo()->getRegisterInfo(); 522 } 523 524 /// Returns the minimum alignment known to hold of the 525 /// stack frame on entry to the function and which must be maintained by every 526 /// function for this subtarget. 527 Align getStackAlignment() const { return stackAlignment; } 528 529 /// Returns the maximum memset / memcpy size 530 /// that still makes it profitable to inline the call. 531 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 532 533 /// ParseSubtargetFeatures - Parses features string setting specified 534 /// subtarget options. Definition of function is auto generated by tblgen. 535 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 536 537 /// Methods used by Global ISel 538 const CallLowering *getCallLowering() const override; 539 InstructionSelector *getInstructionSelector() const override; 540 const LegalizerInfo *getLegalizerInfo() const override; 541 const RegisterBankInfo *getRegBankInfo() const override; 542 543 private: 544 /// Initialize the full set of dependencies so we can use an initializer 545 /// list for X86Subtarget. 546 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); 547 void initSubtargetFeatures(StringRef CPU, StringRef FS); 548 549 public: 550 /// Is this x86_64? (disregarding specific ABI / programming model) 551 bool is64Bit() const { 552 return In64BitMode; 553 } 554 555 bool is32Bit() const { 556 return In32BitMode; 557 } 558 559 bool is16Bit() const { 560 return In16BitMode; 561 } 562 563 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? 564 bool isTarget64BitILP32() const { 565 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || 566 TargetTriple.isOSNaCl()); 567 } 568 569 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? 570 bool isTarget64BitLP64() const { 571 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 && 572 !TargetTriple.isOSNaCl()); 573 } 574 575 PICStyles::Style getPICStyle() const { return PICStyle; } 576 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 577 578 bool hasX87() const { return HasX87; } 579 bool hasCmpxchg8b() const { return HasCmpxchg8b; } 580 bool hasNOPL() const { return HasNOPL; } 581 // SSE codegen depends on cmovs, and all SSE1+ processors support them. 582 // All 64-bit processors support cmov. 583 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); } 584 bool hasSSE1() const { return X86SSELevel >= SSE1; } 585 bool hasSSE2() const { return X86SSELevel >= SSE2; } 586 bool hasSSE3() const { return X86SSELevel >= SSE3; } 587 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } 588 bool hasSSE41() const { return X86SSELevel >= SSE41; } 589 bool hasSSE42() const { return X86SSELevel >= SSE42; } 590 bool hasAVX() const { return X86SSELevel >= AVX; } 591 bool hasAVX2() const { return X86SSELevel >= AVX2; } 592 bool hasAVX512() const { return X86SSELevel >= AVX512F; } 593 bool hasInt256() const { return hasAVX2(); } 594 bool hasSSE4A() const { return HasSSE4A; } 595 bool hasMMX() const { return X863DNowLevel >= MMX; } 596 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } 597 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } 598 bool hasPOPCNT() const { return HasPOPCNT; } 599 bool hasAES() const { return HasAES; } 600 bool hasVAES() const { return HasVAES; } 601 bool hasFXSR() const { return HasFXSR; } 602 bool hasXSAVE() const { return HasXSAVE; } 603 bool hasXSAVEOPT() const { return HasXSAVEOPT; } 604 bool hasXSAVEC() const { return HasXSAVEC; } 605 bool hasXSAVES() const { return HasXSAVES; } 606 bool hasPCLMUL() const { return HasPCLMUL; } 607 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; } 608 bool hasGFNI() const { return HasGFNI; } 609 // Prefer FMA4 to FMA - its better for commutation/memory folding and 610 // has equal or better performance on all supported targets. 611 bool hasFMA() const { return HasFMA; } 612 bool hasFMA4() const { return HasFMA4; } 613 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } 614 bool hasXOP() const { return HasXOP; } 615 bool hasTBM() const { return HasTBM; } 616 bool hasLWP() const { return HasLWP; } 617 bool hasMOVBE() const { return HasMOVBE; } 618 bool hasRDRAND() const { return HasRDRAND; } 619 bool hasF16C() const { return HasF16C; } 620 bool hasFSGSBase() const { return HasFSGSBase; } 621 bool hasLZCNT() const { return HasLZCNT; } 622 bool hasBMI() const { return HasBMI; } 623 bool hasBMI2() const { return HasBMI2; } 624 bool hasVBMI() const { return HasVBMI; } 625 bool hasVBMI2() const { return HasVBMI2; } 626 bool hasIFMA() const { return HasIFMA; } 627 bool hasRTM() const { return HasRTM; } 628 bool hasADX() const { return HasADX; } 629 bool hasSHA() const { return HasSHA; } 630 bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; } 631 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; } 632 bool hasSSEPrefetch() const { 633 // We implicitly enable these when we have a write prefix supporting cache 634 // level OR if we have prfchw, but don't already have a read prefetch from 635 // 3dnow. 636 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1(); 637 } 638 bool hasRDSEED() const { return HasRDSEED; } 639 bool hasLAHFSAHF() const { return HasLAHFSAHF; } 640 bool hasMWAITX() const { return HasMWAITX; } 641 bool hasCLZERO() const { return HasCLZERO; } 642 bool hasCLDEMOTE() const { return HasCLDEMOTE; } 643 bool hasMOVDIRI() const { return HasMOVDIRI; } 644 bool hasMOVDIR64B() const { return HasMOVDIR64B; } 645 bool hasPTWRITE() const { return HasPTWRITE; } 646 bool isSHLDSlow() const { return IsSHLDSlow; } 647 bool isPMULLDSlow() const { return IsPMULLDSlow; } 648 bool isPMADDWDSlow() const { return IsPMADDWDSlow; } 649 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; } 650 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; } 651 int getGatherOverhead() const { return GatherOverhead; } 652 int getScatterOverhead() const { return ScatterOverhead; } 653 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; } 654 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); } 655 bool useLeaForSP() const { return UseLeaForSP; } 656 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; } 657 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; } 658 bool hasFastVariableShuffle() const { 659 return HasFastVariableShuffle; 660 } 661 bool insertVZEROUPPER() const { return InsertVZEROUPPER; } 662 bool hasFastGather() const { return HasFastGather; } 663 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; } 664 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; } 665 bool hasFastLZCNT() const { return HasFastLZCNT; } 666 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; } 667 bool hasFastBEXTR() const { return HasFastBEXTR; } 668 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; } 669 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; } 670 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; } 671 bool hasMacroFusion() const { return HasMacroFusion; } 672 bool hasBranchFusion() const { return HasBranchFusion; } 673 bool hasERMSB() const { return HasERMSB; } 674 bool hasSlowDivide32() const { return HasSlowDivide32; } 675 bool hasSlowDivide64() const { return HasSlowDivide64; } 676 bool padShortFunctions() const { return PadShortFunctions; } 677 bool slowTwoMemOps() const { return SlowTwoMemOps; } 678 bool LEAusesAG() const { return LEAUsesAG; } 679 bool slowLEA() const { return SlowLEA; } 680 bool slow3OpsLEA() const { return Slow3OpsLEA; } 681 bool slowIncDec() const { return SlowIncDec; } 682 bool hasCDI() const { return HasCDI; } 683 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; } 684 bool hasPFI() const { return HasPFI; } 685 bool hasERI() const { return HasERI; } 686 bool hasDQI() const { return HasDQI; } 687 bool hasBWI() const { return HasBWI; } 688 bool hasVLX() const { return HasVLX; } 689 bool hasPKU() const { return HasPKU; } 690 bool hasVNNI() const { return HasVNNI; } 691 bool hasBF16() const { return HasBF16; } 692 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; } 693 bool hasBITALG() const { return HasBITALG; } 694 bool hasSHSTK() const { return HasSHSTK; } 695 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; } 696 bool hasCLWB() const { return HasCLWB; } 697 bool hasWBNOINVD() const { return HasWBNOINVD; } 698 bool hasRDPID() const { return HasRDPID; } 699 bool hasWAITPKG() const { return HasWAITPKG; } 700 bool hasPCONFIG() const { return HasPCONFIG; } 701 bool hasSGX() const { return HasSGX; } 702 bool threewayBranchProfitable() const { return ThreewayBranchProfitable; } 703 bool hasINVPCID() const { return HasINVPCID; } 704 bool hasENQCMD() const { return HasENQCMD; } 705 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; } 706 bool useRetpolineIndirectBranches() const { 707 return UseRetpolineIndirectBranches; 708 } 709 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; } 710 bool preferMaskRegisters() const { return PreferMaskRegisters; } 711 bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; } 712 713 unsigned getPreferVectorWidth() const { return PreferVectorWidth; } 714 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } 715 716 // Helper functions to determine when we should allow widening to 512-bit 717 // during codegen. 718 // TODO: Currently we're always allowing widening on CPUs without VLX, 719 // because for many cases we don't have a better option. 720 bool canExtendTo512DQ() const { 721 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512); 722 } 723 bool canExtendTo512BW() const { 724 return hasBWI() && canExtendTo512DQ(); 725 } 726 727 // If there are no 512-bit vectors and we prefer not to use 512-bit registers, 728 // disable them in the legalizer. 729 bool useAVX512Regs() const { 730 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256); 731 } 732 733 bool useBWIRegs() const { 734 return hasBWI() && useAVX512Regs(); 735 } 736 737 bool isXRaySupported() const override { return is64Bit(); } 738 739 X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; } 740 741 /// TODO: to be removed later and replaced with suitable properties 742 bool isAtom() const { return X86ProcFamily == IntelAtom; } 743 bool isSLM() const { return X86ProcFamily == IntelSLM; } 744 bool useSoftFloat() const { return UseSoftFloat; } 745 bool useAA() const override { return UseAA; } 746 747 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for 748 /// no-sse2). There isn't any reason to disable it if the target processor 749 /// supports it. 750 bool hasMFence() const { return hasSSE2() || is64Bit(); } 751 752 const Triple &getTargetTriple() const { return TargetTriple; } 753 754 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 755 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); } 756 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); } 757 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); } 758 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); } 759 760 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } 761 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } 762 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } 763 764 bool isTargetLinux() const { return TargetTriple.isOSLinux(); } 765 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); } 766 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); } 767 bool isTargetAndroid() const { return TargetTriple.isAndroid(); } 768 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } 769 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } 770 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 771 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); } 772 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); } 773 774 bool isTargetWindowsMSVC() const { 775 return TargetTriple.isWindowsMSVCEnvironment(); 776 } 777 778 bool isTargetWindowsCoreCLR() const { 779 return TargetTriple.isWindowsCoreCLREnvironment(); 780 } 781 782 bool isTargetWindowsCygwin() const { 783 return TargetTriple.isWindowsCygwinEnvironment(); 784 } 785 786 bool isTargetWindowsGNU() const { 787 return TargetTriple.isWindowsGNUEnvironment(); 788 } 789 790 bool isTargetWindowsItanium() const { 791 return TargetTriple.isWindowsItaniumEnvironment(); 792 } 793 794 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 795 796 bool isOSWindows() const { return TargetTriple.isOSWindows(); } 797 798 bool isTargetWin64() const { return In64BitMode && isOSWindows(); } 799 800 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); } 801 802 bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; } 803 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; } 804 805 bool isPICStyleStubPIC() const { 806 return PICStyle == PICStyles::Style::StubPIC; 807 } 808 809 bool isPositionIndependent() const { return TM.isPositionIndependent(); } 810 811 bool isCallingConvWin64(CallingConv::ID CC) const { 812 switch (CC) { 813 // On Win64, all these conventions just use the default convention. 814 case CallingConv::C: 815 case CallingConv::Fast: 816 case CallingConv::Tail: 817 case CallingConv::Swift: 818 case CallingConv::X86_FastCall: 819 case CallingConv::X86_StdCall: 820 case CallingConv::X86_ThisCall: 821 case CallingConv::X86_VectorCall: 822 case CallingConv::Intel_OCL_BI: 823 return isTargetWin64(); 824 // This convention allows using the Win64 convention on other targets. 825 case CallingConv::Win64: 826 return true; 827 // This convention allows using the SysV convention on Windows targets. 828 case CallingConv::X86_64_SysV: 829 return false; 830 // Otherwise, who knows what this is. 831 default: 832 return false; 833 } 834 } 835 836 /// Classify a global variable reference for the current subtarget according 837 /// to how we should reference it in a non-pcrel context. 838 unsigned char classifyLocalReference(const GlobalValue *GV) const; 839 840 unsigned char classifyGlobalReference(const GlobalValue *GV, 841 const Module &M) const; 842 unsigned char classifyGlobalReference(const GlobalValue *GV) const; 843 844 /// Classify a global function reference for the current subtarget. 845 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, 846 const Module &M) const; 847 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const; 848 849 /// Classify a blockaddress reference for the current subtarget according to 850 /// how we should reference it in a non-pcrel context. 851 unsigned char classifyBlockAddressReference() const; 852 853 /// Return true if the subtarget allows calls to immediate address. 854 bool isLegalToCallImmediateAddr() const; 855 856 /// If we are using retpolines, we need to expand indirectbr to avoid it 857 /// lowering to an actual indirect jump. 858 bool enableIndirectBrExpand() const override { 859 return useRetpolineIndirectBranches(); 860 } 861 862 /// Enable the MachineScheduler pass for all X86 subtargets. 863 bool enableMachineScheduler() const override { return true; } 864 865 bool enableEarlyIfConversion() const override; 866 867 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> 868 &Mutations) const override; 869 870 AntiDepBreakMode getAntiDepBreakMode() const override { 871 return TargetSubtargetInfo::ANTIDEP_CRITICAL; 872 } 873 874 bool enableAdvancedRASplitCost() const override { return true; } 875 }; 876 877 } // end namespace llvm 878 879 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H 880