1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H 14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H 15 16 #include "X86FrameLowering.h" 17 #include "X86ISelLowering.h" 18 #include "X86InstrInfo.h" 19 #include "X86SelectionDAGInfo.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 24 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 25 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include <climits> 30 #include <memory> 31 32 #define GET_SUBTARGETINFO_HEADER 33 #include "X86GenSubtargetInfo.inc" 34 35 namespace llvm { 36 37 class GlobalValue; 38 39 /// The X86 backend supports a number of different styles of PIC. 40 /// 41 namespace PICStyles { 42 43 enum Style { 44 StubPIC, // Used on i386-darwin in pic mode. 45 GOT, // Used on 32 bit elf on when in pic mode. 46 RIPRel, // Used on X86-64 when in pic mode. 47 None // Set when not in pic mode. 48 }; 49 50 } // end namespace PICStyles 51 52 class X86Subtarget final : public X86GenSubtargetInfo { 53 public: 54 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags 55 // are not a good idea. We should be migrating away from these. 56 enum X86ProcFamilyEnum { 57 Others, 58 IntelAtom, 59 IntelSLM, 60 IntelGLM, 61 IntelGLP, 62 IntelTRM 63 }; 64 65 protected: 66 enum X86SSEEnum { 67 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F 68 }; 69 70 enum X863DNowEnum { 71 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA 72 }; 73 74 /// X86 processor family: Intel Atom, and others 75 X86ProcFamilyEnum X86ProcFamily = Others; 76 77 /// Which PIC style to use 78 PICStyles::Style PICStyle; 79 80 const TargetMachine &TM; 81 82 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported. 83 X86SSEEnum X86SSELevel = NoSSE; 84 85 /// MMX, 3DNow, 3DNow Athlon, or none supported. 86 X863DNowEnum X863DNowLevel = NoThreeDNow; 87 88 /// True if the processor supports X87 instructions. 89 bool HasX87 = false; 90 91 /// True if the processor supports CMPXCHG8B. 92 bool HasCmpxchg8b = false; 93 94 /// True if this processor has NOPL instruction 95 /// (generally pentium pro+). 96 bool HasNOPL = false; 97 98 /// True if this processor has conditional move instructions 99 /// (generally pentium pro+). 100 bool HasCMov = false; 101 102 /// True if the processor supports X86-64 instructions. 103 bool HasX86_64 = false; 104 105 /// True if the processor supports POPCNT. 106 bool HasPOPCNT = false; 107 108 /// True if the processor supports SSE4A instructions. 109 bool HasSSE4A = false; 110 111 /// Target has AES instructions 112 bool HasAES = false; 113 bool HasVAES = false; 114 115 /// Target has FXSAVE/FXRESTOR instructions 116 bool HasFXSR = false; 117 118 /// Target has XSAVE instructions 119 bool HasXSAVE = false; 120 121 /// Target has XSAVEOPT instructions 122 bool HasXSAVEOPT = false; 123 124 /// Target has XSAVEC instructions 125 bool HasXSAVEC = false; 126 127 /// Target has XSAVES instructions 128 bool HasXSAVES = false; 129 130 /// Target has carry-less multiplication 131 bool HasPCLMUL = false; 132 bool HasVPCLMULQDQ = false; 133 134 /// Target has Galois Field Arithmetic instructions 135 bool HasGFNI = false; 136 137 /// Target has 3-operand fused multiply-add 138 bool HasFMA = false; 139 140 /// Target has 4-operand fused multiply-add 141 bool HasFMA4 = false; 142 143 /// Target has XOP instructions 144 bool HasXOP = false; 145 146 /// Target has TBM instructions. 147 bool HasTBM = false; 148 149 /// Target has LWP instructions 150 bool HasLWP = false; 151 152 /// True if the processor has the MOVBE instruction. 153 bool HasMOVBE = false; 154 155 /// True if the processor has the RDRAND instruction. 156 bool HasRDRAND = false; 157 158 /// Processor has 16-bit floating point conversion instructions. 159 bool HasF16C = false; 160 161 /// Processor has FS/GS base insturctions. 162 bool HasFSGSBase = false; 163 164 /// Processor has LZCNT instruction. 165 bool HasLZCNT = false; 166 167 /// Processor has BMI1 instructions. 168 bool HasBMI = false; 169 170 /// Processor has BMI2 instructions. 171 bool HasBMI2 = false; 172 173 /// Processor has VBMI instructions. 174 bool HasVBMI = false; 175 176 /// Processor has VBMI2 instructions. 177 bool HasVBMI2 = false; 178 179 /// Processor has Integer Fused Multiply Add 180 bool HasIFMA = false; 181 182 /// Processor has RTM instructions. 183 bool HasRTM = false; 184 185 /// Processor has ADX instructions. 186 bool HasADX = false; 187 188 /// Processor has SHA instructions. 189 bool HasSHA = false; 190 191 /// Processor has PRFCHW instructions. 192 bool HasPRFCHW = false; 193 194 /// Processor has RDSEED instructions. 195 bool HasRDSEED = false; 196 197 /// Processor has LAHF/SAHF instructions. 198 bool HasLAHFSAHF = false; 199 200 /// Processor has MONITORX/MWAITX instructions. 201 bool HasMWAITX = false; 202 203 /// Processor has Cache Line Zero instruction 204 bool HasCLZERO = false; 205 206 /// Processor has Cache Line Demote instruction 207 bool HasCLDEMOTE = false; 208 209 /// Processor has MOVDIRI instruction (direct store integer). 210 bool HasMOVDIRI = false; 211 212 /// Processor has MOVDIR64B instruction (direct store 64 bytes). 213 bool HasMOVDIR64B = false; 214 215 /// Processor has ptwrite instruction. 216 bool HasPTWRITE = false; 217 218 /// Processor has Prefetch with intent to Write instruction 219 bool HasPREFETCHWT1 = false; 220 221 /// True if SHLD instructions are slow. 222 bool IsSHLDSlow = false; 223 224 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and 225 // PMULUDQ. 226 bool IsPMULLDSlow = false; 227 228 /// True if the PMADDWD instruction is slow compared to PMULLD. 229 bool IsPMADDWDSlow = false; 230 231 /// True if unaligned memory accesses of 16-bytes are slow. 232 bool IsUAMem16Slow = false; 233 234 /// True if unaligned memory accesses of 32-bytes are slow. 235 bool IsUAMem32Slow = false; 236 237 /// True if SSE operations can have unaligned memory operands. 238 /// This may require setting a configuration bit in the processor. 239 bool HasSSEUnalignedMem = false; 240 241 /// True if this processor has the CMPXCHG16B instruction; 242 /// this is true for most x86-64 chips, but not the first AMD chips. 243 bool HasCmpxchg16b = false; 244 245 /// True if the LEA instruction should be used for adjusting 246 /// the stack pointer. This is an optimization for Intel Atom processors. 247 bool UseLeaForSP = false; 248 249 /// True if POPCNT instruction has a false dependency on the destination register. 250 bool HasPOPCNTFalseDeps = false; 251 252 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register. 253 bool HasLZCNTFalseDeps = false; 254 255 /// True if its preferable to combine to a single shuffle using a variable 256 /// mask over multiple fixed shuffles. 257 bool HasFastVariableShuffle = false; 258 259 /// True if there is no performance penalty to writing only the lower parts 260 /// of a YMM or ZMM register without clearing the upper part. 261 bool HasFastPartialYMMorZMMWrite = false; 262 263 /// True if there is no performance penalty for writing NOPs with up to 264 /// 11 bytes. 265 bool HasFast11ByteNOP = false; 266 267 /// True if there is no performance penalty for writing NOPs with up to 268 /// 15 bytes. 269 bool HasFast15ByteNOP = false; 270 271 /// True if gather is reasonably fast. This is true for Skylake client and 272 /// all AVX-512 CPUs. 273 bool HasFastGather = false; 274 275 /// True if hardware SQRTSS instruction is at least as fast (latency) as 276 /// RSQRTSS followed by a Newton-Raphson iteration. 277 bool HasFastScalarFSQRT = false; 278 279 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast 280 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration. 281 bool HasFastVectorFSQRT = false; 282 283 /// True if 8-bit divisions are significantly faster than 284 /// 32-bit divisions and should be used when possible. 285 bool HasSlowDivide32 = false; 286 287 /// True if 32-bit divides are significantly faster than 288 /// 64-bit divisions and should be used when possible. 289 bool HasSlowDivide64 = false; 290 291 /// True if LZCNT instruction is fast. 292 bool HasFastLZCNT = false; 293 294 /// True if SHLD based rotate is fast. 295 bool HasFastSHLDRotate = false; 296 297 /// True if the processor supports macrofusion. 298 bool HasMacroFusion = false; 299 300 /// True if the processor supports branch fusion. 301 bool HasBranchFusion = false; 302 303 /// True if the processor has enhanced REP MOVSB/STOSB. 304 bool HasERMSB = false; 305 306 /// True if the short functions should be padded to prevent 307 /// a stall when returning too early. 308 bool PadShortFunctions = false; 309 310 /// True if two memory operand instructions should use a temporary register 311 /// instead. 312 bool SlowTwoMemOps = false; 313 314 /// True if the LEA instruction inputs have to be ready at address generation 315 /// (AG) time. 316 bool LEAUsesAG = false; 317 318 /// True if the LEA instruction with certain arguments is slow 319 bool SlowLEA = false; 320 321 /// True if the LEA instruction has all three source operands: base, index, 322 /// and offset or if the LEA instruction uses base and index registers where 323 /// the base is EBP, RBP,or R13 324 bool Slow3OpsLEA = false; 325 326 /// True if INC and DEC instructions are slow when writing to flags 327 bool SlowIncDec = false; 328 329 /// Processor has AVX-512 PreFetch Instructions 330 bool HasPFI = false; 331 332 /// Processor has AVX-512 Exponential and Reciprocal Instructions 333 bool HasERI = false; 334 335 /// Processor has AVX-512 Conflict Detection Instructions 336 bool HasCDI = false; 337 338 /// Processor has AVX-512 population count Instructions 339 bool HasVPOPCNTDQ = false; 340 341 /// Processor has AVX-512 Doubleword and Quadword instructions 342 bool HasDQI = false; 343 344 /// Processor has AVX-512 Byte and Word instructions 345 bool HasBWI = false; 346 347 /// Processor has AVX-512 Vector Length eXtenstions 348 bool HasVLX = false; 349 350 /// Processor has PKU extenstions 351 bool HasPKU = false; 352 353 /// Processor has AVX-512 Vector Neural Network Instructions 354 bool HasVNNI = false; 355 356 /// Processor has AVX-512 bfloat16 floating-point extensions 357 bool HasBF16 = false; 358 359 /// Processor supports ENQCMD instructions 360 bool HasENQCMD = false; 361 362 /// Processor has AVX-512 Bit Algorithms instructions 363 bool HasBITALG = false; 364 365 /// Processor has AVX-512 vp2intersect instructions 366 bool HasVP2INTERSECT = false; 367 368 /// Processor supports MPX - Memory Protection Extensions 369 bool HasMPX = false; 370 371 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology 372 /// using Shadow Stack 373 bool HasSHSTK = false; 374 375 /// Processor supports Invalidate Process-Context Identifier 376 bool HasINVPCID = false; 377 378 /// Processor has Software Guard Extensions 379 bool HasSGX = false; 380 381 /// Processor supports Flush Cache Line instruction 382 bool HasCLFLUSHOPT = false; 383 384 /// Processor supports Cache Line Write Back instruction 385 bool HasCLWB = false; 386 387 /// Processor supports Write Back No Invalidate instruction 388 bool HasWBNOINVD = false; 389 390 /// Processor support RDPID instruction 391 bool HasRDPID = false; 392 393 /// Processor supports WaitPKG instructions 394 bool HasWAITPKG = false; 395 396 /// Processor supports PCONFIG instruction 397 bool HasPCONFIG = false; 398 399 /// Processor has a single uop BEXTR implementation. 400 bool HasFastBEXTR = false; 401 402 /// Try harder to combine to horizontal vector ops if they are fast. 403 bool HasFastHorizontalOps = false; 404 405 /// Prefer a left/right scalar logical shifts pair over a shift+and pair. 406 bool HasFastScalarShiftMasks = false; 407 408 /// Prefer a left/right vector logical shifts pair over a shift+and pair. 409 bool HasFastVectorShiftMasks = false; 410 411 /// Use a retpoline thunk rather than indirect calls to block speculative 412 /// execution. 413 bool UseRetpolineIndirectCalls = false; 414 415 /// Use a retpoline thunk or remove any indirect branch to block speculative 416 /// execution. 417 bool UseRetpolineIndirectBranches = false; 418 419 /// Deprecated flag, query `UseRetpolineIndirectCalls` and 420 /// `UseRetpolineIndirectBranches` instead. 421 bool DeprecatedUseRetpoline = false; 422 423 /// When using a retpoline thunk, call an externally provided thunk rather 424 /// than emitting one inside the compiler. 425 bool UseRetpolineExternalThunk = false; 426 427 /// Use software floating point for code generation. 428 bool UseSoftFloat = false; 429 430 /// The minimum alignment known to hold of the stack frame on 431 /// entry to the function and which must be maintained by every function. 432 unsigned stackAlignment = 4; 433 434 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 435 /// 436 // FIXME: this is a known good value for Yonah. How about others? 437 unsigned MaxInlineSizeThreshold = 128; 438 439 /// Indicates target prefers 256 bit instructions. 440 bool Prefer256Bit = false; 441 442 /// Threeway branch is profitable in this subtarget. 443 bool ThreewayBranchProfitable = false; 444 445 /// What processor and OS we're targeting. 446 Triple TargetTriple; 447 448 /// GlobalISel related APIs. 449 std::unique_ptr<CallLowering> CallLoweringInfo; 450 std::unique_ptr<LegalizerInfo> Legalizer; 451 std::unique_ptr<RegisterBankInfo> RegBankInfo; 452 std::unique_ptr<InstructionSelector> InstSelector; 453 454 private: 455 /// Override the stack alignment. 456 unsigned StackAlignOverride; 457 458 /// Preferred vector width from function attribute. 459 unsigned PreferVectorWidthOverride; 460 461 /// Resolved preferred vector width from function attribute and subtarget 462 /// features. 463 unsigned PreferVectorWidth = UINT32_MAX; 464 465 /// Required vector width from function attribute. 466 unsigned RequiredVectorWidth; 467 468 /// True if compiling for 64-bit, false for 16-bit or 32-bit. 469 bool In64BitMode; 470 471 /// True if compiling for 32-bit, false for 16-bit or 64-bit. 472 bool In32BitMode; 473 474 /// True if compiling for 16-bit, false for 32-bit or 64-bit. 475 bool In16BitMode; 476 477 /// Contains the Overhead of gather\scatter instructions 478 int GatherOverhead = 1024; 479 int ScatterOverhead = 1024; 480 481 X86SelectionDAGInfo TSInfo; 482 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which 483 // X86TargetLowering needs. 484 X86InstrInfo InstrInfo; 485 X86TargetLowering TLInfo; 486 X86FrameLowering FrameLowering; 487 488 public: 489 /// This constructor initializes the data members to match that 490 /// of the specified triple. 491 /// 492 X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS, 493 const X86TargetMachine &TM, unsigned StackAlignOverride, 494 unsigned PreferVectorWidthOverride, 495 unsigned RequiredVectorWidth); 496 497 const X86TargetLowering *getTargetLowering() const override { 498 return &TLInfo; 499 } 500 501 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; } 502 503 const X86FrameLowering *getFrameLowering() const override { 504 return &FrameLowering; 505 } 506 507 const X86SelectionDAGInfo *getSelectionDAGInfo() const override { 508 return &TSInfo; 509 } 510 511 const X86RegisterInfo *getRegisterInfo() const override { 512 return &getInstrInfo()->getRegisterInfo(); 513 } 514 515 /// Returns the minimum alignment known to hold of the 516 /// stack frame on entry to the function and which must be maintained by every 517 /// function for this subtarget. 518 unsigned getStackAlignment() const { return stackAlignment; } 519 520 /// Returns the maximum memset / memcpy size 521 /// that still makes it profitable to inline the call. 522 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 523 524 /// ParseSubtargetFeatures - Parses features string setting specified 525 /// subtarget options. Definition of function is auto generated by tblgen. 526 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 527 528 /// Methods used by Global ISel 529 const CallLowering *getCallLowering() const override; 530 const InstructionSelector *getInstructionSelector() const override; 531 const LegalizerInfo *getLegalizerInfo() const override; 532 const RegisterBankInfo *getRegBankInfo() const override; 533 534 private: 535 /// Initialize the full set of dependencies so we can use an initializer 536 /// list for X86Subtarget. 537 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); 538 void initSubtargetFeatures(StringRef CPU, StringRef FS); 539 540 public: 541 /// Is this x86_64? (disregarding specific ABI / programming model) 542 bool is64Bit() const { 543 return In64BitMode; 544 } 545 546 bool is32Bit() const { 547 return In32BitMode; 548 } 549 550 bool is16Bit() const { 551 return In16BitMode; 552 } 553 554 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? 555 bool isTarget64BitILP32() const { 556 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || 557 TargetTriple.isOSNaCl()); 558 } 559 560 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? 561 bool isTarget64BitLP64() const { 562 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 && 563 !TargetTriple.isOSNaCl()); 564 } 565 566 PICStyles::Style getPICStyle() const { return PICStyle; } 567 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 568 569 bool hasX87() const { return HasX87; } 570 bool hasCmpxchg8b() const { return HasCmpxchg8b; } 571 bool hasNOPL() const { return HasNOPL; } 572 // SSE codegen depends on cmovs, and all SSE1+ processors support them. 573 // All 64-bit processors support cmov. 574 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); } 575 bool hasSSE1() const { return X86SSELevel >= SSE1; } 576 bool hasSSE2() const { return X86SSELevel >= SSE2; } 577 bool hasSSE3() const { return X86SSELevel >= SSE3; } 578 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } 579 bool hasSSE41() const { return X86SSELevel >= SSE41; } 580 bool hasSSE42() const { return X86SSELevel >= SSE42; } 581 bool hasAVX() const { return X86SSELevel >= AVX; } 582 bool hasAVX2() const { return X86SSELevel >= AVX2; } 583 bool hasAVX512() const { return X86SSELevel >= AVX512F; } 584 bool hasInt256() const { return hasAVX2(); } 585 bool hasSSE4A() const { return HasSSE4A; } 586 bool hasMMX() const { return X863DNowLevel >= MMX; } 587 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } 588 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } 589 bool hasPOPCNT() const { return HasPOPCNT; } 590 bool hasAES() const { return HasAES; } 591 bool hasVAES() const { return HasVAES; } 592 bool hasFXSR() const { return HasFXSR; } 593 bool hasXSAVE() const { return HasXSAVE; } 594 bool hasXSAVEOPT() const { return HasXSAVEOPT; } 595 bool hasXSAVEC() const { return HasXSAVEC; } 596 bool hasXSAVES() const { return HasXSAVES; } 597 bool hasPCLMUL() const { return HasPCLMUL; } 598 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; } 599 bool hasGFNI() const { return HasGFNI; } 600 // Prefer FMA4 to FMA - its better for commutation/memory folding and 601 // has equal or better performance on all supported targets. 602 bool hasFMA() const { return HasFMA; } 603 bool hasFMA4() const { return HasFMA4; } 604 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } 605 bool hasXOP() const { return HasXOP; } 606 bool hasTBM() const { return HasTBM; } 607 bool hasLWP() const { return HasLWP; } 608 bool hasMOVBE() const { return HasMOVBE; } 609 bool hasRDRAND() const { return HasRDRAND; } 610 bool hasF16C() const { return HasF16C; } 611 bool hasFSGSBase() const { return HasFSGSBase; } 612 bool hasLZCNT() const { return HasLZCNT; } 613 bool hasBMI() const { return HasBMI; } 614 bool hasBMI2() const { return HasBMI2; } 615 bool hasVBMI() const { return HasVBMI; } 616 bool hasVBMI2() const { return HasVBMI2; } 617 bool hasIFMA() const { return HasIFMA; } 618 bool hasRTM() const { return HasRTM; } 619 bool hasADX() const { return HasADX; } 620 bool hasSHA() const { return HasSHA; } 621 bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; } 622 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; } 623 bool hasSSEPrefetch() const { 624 // We implicitly enable these when we have a write prefix supporting cache 625 // level OR if we have prfchw, but don't already have a read prefetch from 626 // 3dnow. 627 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1(); 628 } 629 bool hasRDSEED() const { return HasRDSEED; } 630 bool hasLAHFSAHF() const { return HasLAHFSAHF; } 631 bool hasMWAITX() const { return HasMWAITX; } 632 bool hasCLZERO() const { return HasCLZERO; } 633 bool hasCLDEMOTE() const { return HasCLDEMOTE; } 634 bool hasMOVDIRI() const { return HasMOVDIRI; } 635 bool hasMOVDIR64B() const { return HasMOVDIR64B; } 636 bool hasPTWRITE() const { return HasPTWRITE; } 637 bool isSHLDSlow() const { return IsSHLDSlow; } 638 bool isPMULLDSlow() const { return IsPMULLDSlow; } 639 bool isPMADDWDSlow() const { return IsPMADDWDSlow; } 640 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; } 641 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; } 642 int getGatherOverhead() const { return GatherOverhead; } 643 int getScatterOverhead() const { return ScatterOverhead; } 644 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; } 645 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); } 646 bool useLeaForSP() const { return UseLeaForSP; } 647 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; } 648 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; } 649 bool hasFastVariableShuffle() const { 650 return HasFastVariableShuffle; 651 } 652 bool hasFastPartialYMMorZMMWrite() const { 653 return HasFastPartialYMMorZMMWrite; 654 } 655 bool hasFastGather() const { return HasFastGather; } 656 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; } 657 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; } 658 bool hasFastLZCNT() const { return HasFastLZCNT; } 659 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; } 660 bool hasFastBEXTR() const { return HasFastBEXTR; } 661 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; } 662 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; } 663 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; } 664 bool hasMacroFusion() const { return HasMacroFusion; } 665 bool hasBranchFusion() const { return HasBranchFusion; } 666 bool hasERMSB() const { return HasERMSB; } 667 bool hasSlowDivide32() const { return HasSlowDivide32; } 668 bool hasSlowDivide64() const { return HasSlowDivide64; } 669 bool padShortFunctions() const { return PadShortFunctions; } 670 bool slowTwoMemOps() const { return SlowTwoMemOps; } 671 bool LEAusesAG() const { return LEAUsesAG; } 672 bool slowLEA() const { return SlowLEA; } 673 bool slow3OpsLEA() const { return Slow3OpsLEA; } 674 bool slowIncDec() const { return SlowIncDec; } 675 bool hasCDI() const { return HasCDI; } 676 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; } 677 bool hasPFI() const { return HasPFI; } 678 bool hasERI() const { return HasERI; } 679 bool hasDQI() const { return HasDQI; } 680 bool hasBWI() const { return HasBWI; } 681 bool hasVLX() const { return HasVLX; } 682 bool hasPKU() const { return HasPKU; } 683 bool hasVNNI() const { return HasVNNI; } 684 bool hasBF16() const { return HasBF16; } 685 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; } 686 bool hasBITALG() const { return HasBITALG; } 687 bool hasMPX() const { return HasMPX; } 688 bool hasSHSTK() const { return HasSHSTK; } 689 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; } 690 bool hasCLWB() const { return HasCLWB; } 691 bool hasWBNOINVD() const { return HasWBNOINVD; } 692 bool hasRDPID() const { return HasRDPID; } 693 bool hasWAITPKG() const { return HasWAITPKG; } 694 bool hasPCONFIG() const { return HasPCONFIG; } 695 bool hasSGX() const { return HasSGX; } 696 bool threewayBranchProfitable() const { return ThreewayBranchProfitable; } 697 bool hasINVPCID() const { return HasINVPCID; } 698 bool hasENQCMD() const { return HasENQCMD; } 699 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; } 700 bool useRetpolineIndirectBranches() const { 701 return UseRetpolineIndirectBranches; 702 } 703 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; } 704 705 unsigned getPreferVectorWidth() const { return PreferVectorWidth; } 706 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } 707 708 // Helper functions to determine when we should allow widening to 512-bit 709 // during codegen. 710 // TODO: Currently we're always allowing widening on CPUs without VLX, 711 // because for many cases we don't have a better option. 712 bool canExtendTo512DQ() const { 713 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512); 714 } 715 bool canExtendTo512BW() const { 716 return hasBWI() && canExtendTo512DQ(); 717 } 718 719 // If there are no 512-bit vectors and we prefer not to use 512-bit registers, 720 // disable them in the legalizer. 721 bool useAVX512Regs() const { 722 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256); 723 } 724 725 bool useBWIRegs() const { 726 return hasBWI() && useAVX512Regs(); 727 } 728 729 bool isXRaySupported() const override { return is64Bit(); } 730 731 X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; } 732 733 /// TODO: to be removed later and replaced with suitable properties 734 bool isAtom() const { return X86ProcFamily == IntelAtom; } 735 bool isSLM() const { return X86ProcFamily == IntelSLM; } 736 bool isGLM() const { 737 return X86ProcFamily == IntelGLM || 738 X86ProcFamily == IntelGLP || 739 X86ProcFamily == IntelTRM; 740 } 741 bool useSoftFloat() const { return UseSoftFloat; } 742 743 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for 744 /// no-sse2). There isn't any reason to disable it if the target processor 745 /// supports it. 746 bool hasMFence() const { return hasSSE2() || is64Bit(); } 747 748 const Triple &getTargetTriple() const { return TargetTriple; } 749 750 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 751 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); } 752 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); } 753 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); } 754 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); } 755 756 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } 757 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } 758 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } 759 760 bool isTargetLinux() const { return TargetTriple.isOSLinux(); } 761 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); } 762 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); } 763 bool isTargetAndroid() const { return TargetTriple.isAndroid(); } 764 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } 765 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } 766 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 767 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); } 768 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); } 769 770 bool isTargetWindowsMSVC() const { 771 return TargetTriple.isWindowsMSVCEnvironment(); 772 } 773 774 bool isTargetWindowsCoreCLR() const { 775 return TargetTriple.isWindowsCoreCLREnvironment(); 776 } 777 778 bool isTargetWindowsCygwin() const { 779 return TargetTriple.isWindowsCygwinEnvironment(); 780 } 781 782 bool isTargetWindowsGNU() const { 783 return TargetTriple.isWindowsGNUEnvironment(); 784 } 785 786 bool isTargetWindowsItanium() const { 787 return TargetTriple.isWindowsItaniumEnvironment(); 788 } 789 790 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 791 792 bool isOSWindows() const { return TargetTriple.isOSWindows(); } 793 794 bool isTargetWin64() const { return In64BitMode && isOSWindows(); } 795 796 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); } 797 798 bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; } 799 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; } 800 801 bool isPICStyleStubPIC() const { 802 return PICStyle == PICStyles::StubPIC; 803 } 804 805 bool isPositionIndependent() const { return TM.isPositionIndependent(); } 806 807 bool isCallingConvWin64(CallingConv::ID CC) const { 808 switch (CC) { 809 // On Win64, all these conventions just use the default convention. 810 case CallingConv::C: 811 case CallingConv::Fast: 812 case CallingConv::Swift: 813 case CallingConv::X86_FastCall: 814 case CallingConv::X86_StdCall: 815 case CallingConv::X86_ThisCall: 816 case CallingConv::X86_VectorCall: 817 case CallingConv::Intel_OCL_BI: 818 return isTargetWin64(); 819 // This convention allows using the Win64 convention on other targets. 820 case CallingConv::Win64: 821 return true; 822 // This convention allows using the SysV convention on Windows targets. 823 case CallingConv::X86_64_SysV: 824 return false; 825 // Otherwise, who knows what this is. 826 default: 827 return false; 828 } 829 } 830 831 /// Classify a global variable reference for the current subtarget according 832 /// to how we should reference it in a non-pcrel context. 833 unsigned char classifyLocalReference(const GlobalValue *GV) const; 834 835 unsigned char classifyGlobalReference(const GlobalValue *GV, 836 const Module &M) const; 837 unsigned char classifyGlobalReference(const GlobalValue *GV) const; 838 839 /// Classify a global function reference for the current subtarget. 840 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, 841 const Module &M) const; 842 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const; 843 844 /// Classify a blockaddress reference for the current subtarget according to 845 /// how we should reference it in a non-pcrel context. 846 unsigned char classifyBlockAddressReference() const; 847 848 /// Return true if the subtarget allows calls to immediate address. 849 bool isLegalToCallImmediateAddr() const; 850 851 /// If we are using retpolines, we need to expand indirectbr to avoid it 852 /// lowering to an actual indirect jump. 853 bool enableIndirectBrExpand() const override { 854 return useRetpolineIndirectBranches(); 855 } 856 857 /// Enable the MachineScheduler pass for all X86 subtargets. 858 bool enableMachineScheduler() const override { return true; } 859 860 bool enableEarlyIfConversion() const override; 861 862 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> 863 &Mutations) const override; 864 865 AntiDepBreakMode getAntiDepBreakMode() const override { 866 return TargetSubtargetInfo::ANTIDEP_CRITICAL; 867 } 868 869 bool enableAdvancedRASplitCost() const override { return true; } 870 }; 871 872 } // end namespace llvm 873 874 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H 875