1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86Subtarget.h" 14 #include "MCTargetDesc/X86BaseInfo.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86RegisterBankInfo.h" 20 #include "X86TargetMachine.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 25 #include "llvm/CodeGen/ScheduleDAGMutation.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CodeGen.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 38 #if defined(_MSC_VER) 39 #include <intrin.h> 40 #endif 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "subtarget" 45 46 #define GET_SUBTARGETINFO_TARGET_DESC 47 #define GET_SUBTARGETINFO_CTOR 48 #include "X86GenSubtargetInfo.inc" 49 50 // Temporary option to control early if-conversion for x86 while adding machine 51 // models. 52 static cl::opt<bool> 53 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, 54 cl::desc("Enable early if-conversion on X86")); 55 56 57 /// Classify a blockaddress reference for the current subtarget according to how 58 /// we should reference it in a non-pcrel context. 59 unsigned char X86Subtarget::classifyBlockAddressReference() const { 60 return classifyLocalReference(nullptr); 61 } 62 63 /// Classify a global variable reference for the current subtarget according to 64 /// how we should reference it in a non-pcrel context. 65 unsigned char 66 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const { 67 return classifyGlobalReference(GV, *GV->getParent()); 68 } 69 70 unsigned char 71 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const { 72 // Tagged globals have non-zero upper bits, which makes direct references 73 // require a 64-bit immediate. On the small code model this causes relocation 74 // errors, so we go through the GOT instead. 75 if (AllowTaggedGlobals && TM.getCodeModel() == CodeModel::Small && GV && 76 !isa<Function>(GV)) 77 return X86II::MO_GOTPCREL_NORELAX; 78 79 // If we're not PIC, it's not very interesting. 80 if (!isPositionIndependent()) 81 return X86II::MO_NO_FLAG; 82 83 if (is64Bit()) { 84 // 64-bit ELF PIC local references may use GOTOFF relocations. 85 if (isTargetELF()) { 86 switch (TM.getCodeModel()) { 87 // 64-bit small code model is simple: All rip-relative. 88 case CodeModel::Tiny: 89 llvm_unreachable("Tiny codesize model not supported on X86"); 90 case CodeModel::Small: 91 case CodeModel::Kernel: 92 return X86II::MO_NO_FLAG; 93 94 // The large PIC code model uses GOTOFF. 95 case CodeModel::Large: 96 return X86II::MO_GOTOFF; 97 98 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data. 99 case CodeModel::Medium: 100 // Constant pool and jump table handling pass a nullptr to this 101 // function so we need to use isa_and_nonnull. 102 if (isa_and_nonnull<Function>(GV)) 103 return X86II::MO_NO_FLAG; // All code is RIP-relative 104 return X86II::MO_GOTOFF; // Local symbols use GOTOFF. 105 } 106 llvm_unreachable("invalid code model"); 107 } 108 109 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq, 110 // both of which use MO_NO_FLAG. 111 return X86II::MO_NO_FLAG; 112 } 113 114 // The COFF dynamic linker just patches the executable sections. 115 if (isTargetCOFF()) 116 return X86II::MO_NO_FLAG; 117 118 if (isTargetDarwin()) { 119 // 32 bit macho has no relocation for a-b if a is undefined, even if 120 // b is in the section that is being relocated. 121 // This means we have to use o load even for GVs that are known to be 122 // local to the dso. 123 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) 124 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 125 126 return X86II::MO_PIC_BASE_OFFSET; 127 } 128 129 return X86II::MO_GOTOFF; 130 } 131 132 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV, 133 const Module &M) const { 134 // The static large model never uses stubs. 135 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent()) 136 return X86II::MO_NO_FLAG; 137 138 // Absolute symbols can be referenced directly. 139 if (GV) { 140 if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) { 141 // See if we can use the 8-bit immediate form. Note that some instructions 142 // will sign extend the immediate operand, so to be conservative we only 143 // accept the range [0,128). 144 if (CR->getUnsignedMax().ult(128)) 145 return X86II::MO_ABS8; 146 else 147 return X86II::MO_NO_FLAG; 148 } 149 } 150 151 if (TM.shouldAssumeDSOLocal(M, GV)) 152 return classifyLocalReference(GV); 153 154 if (isTargetCOFF()) { 155 // ExternalSymbolSDNode like _tls_index. 156 if (!GV) 157 return X86II::MO_NO_FLAG; 158 if (GV->hasDLLImportStorageClass()) 159 return X86II::MO_DLLIMPORT; 160 return X86II::MO_COFFSTUB; 161 } 162 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables. 163 if (isOSWindows()) 164 return X86II::MO_NO_FLAG; 165 166 if (is64Bit()) { 167 // ELF supports a large, truly PIC code model with non-PC relative GOT 168 // references. Other object file formats do not. Use the no-flag, 64-bit 169 // reference for them. 170 if (TM.getCodeModel() == CodeModel::Large) 171 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG; 172 // Tagged globals have non-zero upper bits, which makes direct references 173 // require a 64-bit immediate. So we can't let the linker relax the 174 // relocation to a 32-bit RIP-relative direct reference. 175 if (AllowTaggedGlobals && GV && !isa<Function>(GV)) 176 return X86II::MO_GOTPCREL_NORELAX; 177 return X86II::MO_GOTPCREL; 178 } 179 180 if (isTargetDarwin()) { 181 if (!isPositionIndependent()) 182 return X86II::MO_DARWIN_NONLAZY; 183 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 184 } 185 186 // 32-bit ELF references GlobalAddress directly in static relocation model. 187 // We cannot use MO_GOT because EBX may not be set up. 188 if (TM.getRelocationModel() == Reloc::Static) 189 return X86II::MO_NO_FLAG; 190 return X86II::MO_GOT; 191 } 192 193 unsigned char 194 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const { 195 return classifyGlobalFunctionReference(GV, *GV->getParent()); 196 } 197 198 unsigned char 199 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV, 200 const Module &M) const { 201 if (TM.shouldAssumeDSOLocal(M, GV)) 202 return X86II::MO_NO_FLAG; 203 204 // Functions on COFF can be non-DSO local for three reasons: 205 // - They are intrinsic functions (!GV) 206 // - They are marked dllimport 207 // - They are extern_weak, and a stub is needed 208 if (isTargetCOFF()) { 209 if (!GV) 210 return X86II::MO_NO_FLAG; 211 if (GV->hasDLLImportStorageClass()) 212 return X86II::MO_DLLIMPORT; 213 return X86II::MO_COFFSTUB; 214 } 215 216 const Function *F = dyn_cast_or_null<Function>(GV); 217 218 if (isTargetELF()) { 219 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv())) 220 // According to psABI, PLT stub clobbers XMM8-XMM15. 221 // In Regcall calling convention those registers are used for passing 222 // parameters. Thus we need to prevent lazy binding in Regcall. 223 return X86II::MO_GOTPCREL; 224 // If PLT must be avoided then the call should be via GOTPCREL. 225 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) || 226 (!F && M.getRtLibUseGOT())) && 227 is64Bit()) 228 return X86II::MO_GOTPCREL; 229 // Reference ExternalSymbol directly in static relocation model. 230 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static) 231 return X86II::MO_NO_FLAG; 232 return X86II::MO_PLT; 233 } 234 235 if (is64Bit()) { 236 if (F && F->hasFnAttribute(Attribute::NonLazyBind)) 237 // If the function is marked as non-lazy, generate an indirect call 238 // which loads from the GOT directly. This avoids runtime overhead 239 // at the cost of eager binding (and one extra byte of encoding). 240 return X86II::MO_GOTPCREL; 241 return X86II::MO_NO_FLAG; 242 } 243 244 return X86II::MO_NO_FLAG; 245 } 246 247 /// Return true if the subtarget allows calls to immediate address. 248 bool X86Subtarget::isLegalToCallImmediateAddr() const { 249 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32 250 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does, 251 // the following check for Win32 should be removed. 252 if (Is64Bit || isTargetWin32()) 253 return false; 254 return isTargetELF() || TM.getRelocationModel() == Reloc::Static; 255 } 256 257 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, 258 StringRef FS) { 259 if (CPU.empty()) 260 CPU = "generic"; 261 262 if (TuneCPU.empty()) 263 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect. 264 265 std::string FullFS = X86_MC::ParseX86Triple(TargetTriple); 266 assert(!FullFS.empty() && "Failed to parse X86 triple"); 267 268 if (!FS.empty()) 269 FullFS = (Twine(FullFS) + "," + FS).str(); 270 271 // Parse features string and set the CPU. 272 ParseSubtargetFeatures(CPU, TuneCPU, FullFS); 273 274 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of 275 // 16-bytes and under that are reasonably fast. These features were 276 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h 277 // micro-architectures respectively. 278 if (hasSSE42() || hasSSE4A()) 279 IsUnalignedMem16Slow = false; 280 281 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel 282 << ", 3DNowLevel " << X863DNowLevel << ", 64bit " 283 << HasX86_64 << "\n"); 284 if (Is64Bit && !HasX86_64) 285 report_fatal_error("64-bit code requested on a subtarget that doesn't " 286 "support it!"); 287 288 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all 289 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes 290 // following the i386 psABI, while on Illumos it is always 16 bytes. 291 if (StackAlignOverride) 292 stackAlignment = *StackAlignOverride; 293 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() || 294 isTargetNaCl() || Is64Bit) 295 stackAlignment = Align(16); 296 297 // Consume the vector width attribute or apply any target specific limit. 298 if (PreferVectorWidthOverride) 299 PreferVectorWidth = PreferVectorWidthOverride; 300 else if (Prefer128Bit) 301 PreferVectorWidth = 128; 302 else if (Prefer256Bit) 303 PreferVectorWidth = 256; 304 } 305 306 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU, 307 StringRef TuneCPU, 308 StringRef FS) { 309 initSubtargetFeatures(CPU, TuneCPU, FS); 310 return *this; 311 } 312 313 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, 314 StringRef FS, const X86TargetMachine &TM, 315 MaybeAlign StackAlignOverride, 316 unsigned PreferVectorWidthOverride, 317 unsigned RequiredVectorWidth) 318 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS), 319 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT), 320 StackAlignOverride(StackAlignOverride), 321 PreferVectorWidthOverride(PreferVectorWidthOverride), 322 RequiredVectorWidth(RequiredVectorWidth), 323 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)), 324 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) { 325 // Determine the PICStyle based on the target selected. 326 if (!isPositionIndependent()) 327 setPICStyle(PICStyles::Style::None); 328 else if (is64Bit()) 329 setPICStyle(PICStyles::Style::RIPRel); 330 else if (isTargetCOFF()) 331 setPICStyle(PICStyles::Style::None); 332 else if (isTargetDarwin()) 333 setPICStyle(PICStyles::Style::StubPIC); 334 else if (isTargetELF()) 335 setPICStyle(PICStyles::Style::GOT); 336 337 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering())); 338 Legalizer.reset(new X86LegalizerInfo(*this, TM)); 339 340 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo()); 341 RegBankInfo.reset(RBI); 342 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI)); 343 } 344 345 const CallLowering *X86Subtarget::getCallLowering() const { 346 return CallLoweringInfo.get(); 347 } 348 349 InstructionSelector *X86Subtarget::getInstructionSelector() const { 350 return InstSelector.get(); 351 } 352 353 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const { 354 return Legalizer.get(); 355 } 356 357 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const { 358 return RegBankInfo.get(); 359 } 360 361 bool X86Subtarget::enableEarlyIfConversion() const { 362 return canUseCMOV() && X86EarlyIfConv; 363 } 364 365 void X86Subtarget::getPostRAMutations( 366 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 367 Mutations.push_back(createX86MacroFusionDAGMutation()); 368 } 369 370 bool X86Subtarget::isPositionIndependent() const { 371 return TM.isPositionIndependent(); 372 } 373