xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86Subtarget.cpp (revision b4e38a41f584ad4391c04b8cfec81f46176b18b0)
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86.h"
14 
15 #include "X86CallLowering.h"
16 #include "X86LegalizerInfo.h"
17 #include "X86MacroFusion.h"
18 #include "X86RegisterBankInfo.h"
19 #include "X86Subtarget.h"
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "subtarget"
44 
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "X86GenSubtargetInfo.inc"
48 
49 // Temporary option to control early if-conversion for x86 while adding machine
50 // models.
51 static cl::opt<bool>
52 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
53                cl::desc("Enable early if-conversion on X86"));
54 
55 
56 /// Classify a blockaddress reference for the current subtarget according to how
57 /// we should reference it in a non-pcrel context.
58 unsigned char X86Subtarget::classifyBlockAddressReference() const {
59   return classifyLocalReference(nullptr);
60 }
61 
62 /// Classify a global variable reference for the current subtarget according to
63 /// how we should reference it in a non-pcrel context.
64 unsigned char
65 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
66   return classifyGlobalReference(GV, *GV->getParent());
67 }
68 
69 unsigned char
70 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
71   // If we're not PIC, it's not very interesting.
72   if (!isPositionIndependent())
73     return X86II::MO_NO_FLAG;
74 
75   if (is64Bit()) {
76     // 64-bit ELF PIC local references may use GOTOFF relocations.
77     if (isTargetELF()) {
78       switch (TM.getCodeModel()) {
79       // 64-bit small code model is simple: All rip-relative.
80       case CodeModel::Tiny:
81         llvm_unreachable("Tiny codesize model not supported on X86");
82       case CodeModel::Small:
83       case CodeModel::Kernel:
84         return X86II::MO_NO_FLAG;
85 
86       // The large PIC code model uses GOTOFF.
87       case CodeModel::Large:
88         return X86II::MO_GOTOFF;
89 
90       // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
91       case CodeModel::Medium:
92         if (isa<Function>(GV))
93           return X86II::MO_NO_FLAG; // All code is RIP-relative
94         return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
95       }
96       llvm_unreachable("invalid code model");
97     }
98 
99     // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
100     // both of which use MO_NO_FLAG.
101     return X86II::MO_NO_FLAG;
102   }
103 
104   // The COFF dynamic linker just patches the executable sections.
105   if (isTargetCOFF())
106     return X86II::MO_NO_FLAG;
107 
108   if (isTargetDarwin()) {
109     // 32 bit macho has no relocation for a-b if a is undefined, even if
110     // b is in the section that is being relocated.
111     // This means we have to use o load even for GVs that are known to be
112     // local to the dso.
113     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
114       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
115 
116     return X86II::MO_PIC_BASE_OFFSET;
117   }
118 
119   return X86II::MO_GOTOFF;
120 }
121 
122 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
123                                                     const Module &M) const {
124   // The static large model never uses stubs.
125   if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
126     return X86II::MO_NO_FLAG;
127 
128   // Absolute symbols can be referenced directly.
129   if (GV) {
130     if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
131       // See if we can use the 8-bit immediate form. Note that some instructions
132       // will sign extend the immediate operand, so to be conservative we only
133       // accept the range [0,128).
134       if (CR->getUnsignedMax().ult(128))
135         return X86II::MO_ABS8;
136       else
137         return X86II::MO_NO_FLAG;
138     }
139   }
140 
141   if (TM.shouldAssumeDSOLocal(M, GV))
142     return classifyLocalReference(GV);
143 
144   if (isTargetCOFF()) {
145     if (GV->hasDLLImportStorageClass())
146       return X86II::MO_DLLIMPORT;
147     return X86II::MO_COFFSTUB;
148   }
149   // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
150   if (isOSWindows())
151     return X86II::MO_NO_FLAG;
152 
153   if (is64Bit()) {
154     // ELF supports a large, truly PIC code model with non-PC relative GOT
155     // references. Other object file formats do not. Use the no-flag, 64-bit
156     // reference for them.
157     if (TM.getCodeModel() == CodeModel::Large)
158       return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
159     return X86II::MO_GOTPCREL;
160   }
161 
162   if (isTargetDarwin()) {
163     if (!isPositionIndependent())
164       return X86II::MO_DARWIN_NONLAZY;
165     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
166   }
167 
168   return X86II::MO_GOT;
169 }
170 
171 unsigned char
172 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
173   return classifyGlobalFunctionReference(GV, *GV->getParent());
174 }
175 
176 unsigned char
177 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
178                                               const Module &M) const {
179   if (TM.shouldAssumeDSOLocal(M, GV))
180     return X86II::MO_NO_FLAG;
181 
182   // Functions on COFF can be non-DSO local for two reasons:
183   // - They are marked dllimport
184   // - They are extern_weak, and a stub is needed
185   if (isTargetCOFF()) {
186     if (GV->hasDLLImportStorageClass())
187       return X86II::MO_DLLIMPORT;
188     return X86II::MO_COFFSTUB;
189   }
190 
191   const Function *F = dyn_cast_or_null<Function>(GV);
192 
193   if (isTargetELF()) {
194     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
195       // According to psABI, PLT stub clobbers XMM8-XMM15.
196       // In Regcall calling convention those registers are used for passing
197       // parameters. Thus we need to prevent lazy binding in Regcall.
198       return X86II::MO_GOTPCREL;
199     // If PLT must be avoided then the call should be via GOTPCREL.
200     if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
201          (!F && M.getRtLibUseGOT())) &&
202         is64Bit())
203        return X86II::MO_GOTPCREL;
204     return X86II::MO_PLT;
205   }
206 
207   if (is64Bit()) {
208     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
209       // If the function is marked as non-lazy, generate an indirect call
210       // which loads from the GOT directly. This avoids runtime overhead
211       // at the cost of eager binding (and one extra byte of encoding).
212       return X86II::MO_GOTPCREL;
213     return X86II::MO_NO_FLAG;
214   }
215 
216   return X86II::MO_NO_FLAG;
217 }
218 
219 /// Return true if the subtarget allows calls to immediate address.
220 bool X86Subtarget::isLegalToCallImmediateAddr() const {
221   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
222   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
223   // the following check for Win32 should be removed.
224   if (In64BitMode || isTargetWin32())
225     return false;
226   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
227 }
228 
229 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
230   std::string CPUName = CPU;
231   if (CPUName.empty())
232     CPUName = "generic";
233 
234   std::string FullFS = FS;
235   if (In64BitMode) {
236     // SSE2 should default to enabled in 64-bit mode, but can be turned off
237     // explicitly.
238     if (!FullFS.empty())
239       FullFS = "+sse2," + FullFS;
240     else
241       FullFS = "+sse2";
242 
243     // If no CPU was specified, enable 64bit feature to satisy later check.
244     if (CPUName == "generic") {
245       if (!FullFS.empty())
246         FullFS = "+64bit," + FullFS;
247       else
248         FullFS = "+64bit";
249     }
250   }
251 
252   // LAHF/SAHF are always supported in non-64-bit mode.
253   if (!In64BitMode) {
254     if (!FullFS.empty())
255       FullFS = "+sahf," + FullFS;
256     else
257       FullFS = "+sahf";
258   }
259 
260   // Parse features string and set the CPU.
261   ParseSubtargetFeatures(CPUName, FullFS);
262 
263   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
264   // 16-bytes and under that are reasonably fast. These features were
265   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
266   // micro-architectures respectively.
267   if (hasSSE42() || hasSSE4A())
268     IsUAMem16Slow = false;
269 
270   // It's important to keep the MCSubtargetInfo feature bits in sync with
271   // target data structure which is shared with MC code emitter, etc.
272   if (In64BitMode)
273     ToggleFeature(X86::Mode64Bit);
274   else if (In32BitMode)
275     ToggleFeature(X86::Mode32Bit);
276   else if (In16BitMode)
277     ToggleFeature(X86::Mode16Bit);
278   else
279     llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
280 
281   LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
282                     << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
283                     << HasX86_64 << "\n");
284   if (In64BitMode && !HasX86_64)
285     report_fatal_error("64-bit code requested on a subtarget that doesn't "
286                        "support it!");
287 
288   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
289   // 32 and 64 bit) and for all 64-bit targets.
290   if (StackAlignOverride)
291     stackAlignment = *StackAlignOverride;
292   else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
293            isTargetKFreeBSD() || In64BitMode)
294     stackAlignment = Align(16);
295 
296   // Some CPUs have more overhead for gather. The specified overhead is relative
297   // to the Load operation. "2" is the number provided by Intel architects. This
298   // parameter is used for cost estimation of Gather Op and comparison with
299   // other alternatives.
300   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
301   // enable gather with a -march.
302   if (hasAVX512() || (hasAVX2() && hasFastGather()))
303     GatherOverhead = 2;
304   if (hasAVX512())
305     ScatterOverhead = 2;
306 
307   // Consume the vector width attribute or apply any target specific limit.
308   if (PreferVectorWidthOverride)
309     PreferVectorWidth = PreferVectorWidthOverride;
310   else if (Prefer128Bit)
311     PreferVectorWidth = 128;
312   else if (Prefer256Bit)
313     PreferVectorWidth = 256;
314 }
315 
316 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
317                                                             StringRef FS) {
318   initSubtargetFeatures(CPU, FS);
319   return *this;
320 }
321 
322 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
323                            const X86TargetMachine &TM,
324                            MaybeAlign StackAlignOverride,
325                            unsigned PreferVectorWidthOverride,
326                            unsigned RequiredVectorWidth)
327     : X86GenSubtargetInfo(TT, CPU, FS), PICStyle(PICStyles::Style::None),
328       TM(TM), TargetTriple(TT), StackAlignOverride(StackAlignOverride),
329       PreferVectorWidthOverride(PreferVectorWidthOverride),
330       RequiredVectorWidth(RequiredVectorWidth),
331       In64BitMode(TargetTriple.getArch() == Triple::x86_64),
332       In32BitMode(TargetTriple.getArch() == Triple::x86 &&
333                   TargetTriple.getEnvironment() != Triple::CODE16),
334       In16BitMode(TargetTriple.getArch() == Triple::x86 &&
335                   TargetTriple.getEnvironment() == Triple::CODE16),
336       InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
337       FrameLowering(*this, getStackAlignment()) {
338   // Determine the PICStyle based on the target selected.
339   if (!isPositionIndependent())
340     setPICStyle(PICStyles::Style::None);
341   else if (is64Bit())
342     setPICStyle(PICStyles::Style::RIPRel);
343   else if (isTargetCOFF())
344     setPICStyle(PICStyles::Style::None);
345   else if (isTargetDarwin())
346     setPICStyle(PICStyles::Style::StubPIC);
347   else if (isTargetELF())
348     setPICStyle(PICStyles::Style::GOT);
349 
350   CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
351   Legalizer.reset(new X86LegalizerInfo(*this, TM));
352 
353   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
354   RegBankInfo.reset(RBI);
355   InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
356 }
357 
358 const CallLowering *X86Subtarget::getCallLowering() const {
359   return CallLoweringInfo.get();
360 }
361 
362 InstructionSelector *X86Subtarget::getInstructionSelector() const {
363   return InstSelector.get();
364 }
365 
366 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
367   return Legalizer.get();
368 }
369 
370 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
371   return RegBankInfo.get();
372 }
373 
374 bool X86Subtarget::enableEarlyIfConversion() const {
375   return hasCMov() && X86EarlyIfConv;
376 }
377 
378 void X86Subtarget::getPostRAMutations(
379     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
380   Mutations.push_back(createX86MacroFusionDAGMutation());
381 }
382