1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86Subtarget.h" 14 #include "MCTargetDesc/X86BaseInfo.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86RegisterBankInfo.h" 20 #include "X86TargetMachine.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/CodeGen.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 36 #if defined(_MSC_VER) 37 #include <intrin.h> 38 #endif 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "subtarget" 43 44 #define GET_SUBTARGETINFO_TARGET_DESC 45 #define GET_SUBTARGETINFO_CTOR 46 #include "X86GenSubtargetInfo.inc" 47 48 // Temporary option to control early if-conversion for x86 while adding machine 49 // models. 50 static cl::opt<bool> 51 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, 52 cl::desc("Enable early if-conversion on X86")); 53 54 55 /// Classify a blockaddress reference for the current subtarget according to how 56 /// we should reference it in a non-pcrel context. 57 unsigned char X86Subtarget::classifyBlockAddressReference() const { 58 return classifyLocalReference(nullptr); 59 } 60 61 /// Classify a global variable reference for the current subtarget according to 62 /// how we should reference it in a non-pcrel context. 63 unsigned char 64 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const { 65 return classifyGlobalReference(GV, *GV->getParent()); 66 } 67 68 unsigned char 69 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const { 70 // Tagged globals have non-zero upper bits, which makes direct references 71 // require a 64-bit immediate. On the small code model this causes relocation 72 // errors, so we go through the GOT instead. 73 if (AllowTaggedGlobals && TM.getCodeModel() == CodeModel::Small && GV && 74 !isa<Function>(GV)) 75 return X86II::MO_GOTPCREL_NORELAX; 76 77 // If we're not PIC, it's not very interesting. 78 if (!isPositionIndependent()) 79 return X86II::MO_NO_FLAG; 80 81 if (is64Bit()) { 82 // 64-bit ELF PIC local references may use GOTOFF relocations. 83 if (isTargetELF()) { 84 switch (TM.getCodeModel()) { 85 // 64-bit small code model is simple: All rip-relative. 86 case CodeModel::Tiny: 87 llvm_unreachable("Tiny codesize model not supported on X86"); 88 case CodeModel::Small: 89 case CodeModel::Kernel: 90 return X86II::MO_NO_FLAG; 91 92 // The large PIC code model uses GOTOFF. 93 case CodeModel::Large: 94 return X86II::MO_GOTOFF; 95 96 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data. 97 case CodeModel::Medium: 98 // Constant pool and jump table handling pass a nullptr to this 99 // function so we need to use isa_and_nonnull. 100 if (isa_and_nonnull<Function>(GV)) 101 return X86II::MO_NO_FLAG; // All code is RIP-relative 102 return X86II::MO_GOTOFF; // Local symbols use GOTOFF. 103 } 104 llvm_unreachable("invalid code model"); 105 } 106 107 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq, 108 // both of which use MO_NO_FLAG. 109 return X86II::MO_NO_FLAG; 110 } 111 112 // The COFF dynamic linker just patches the executable sections. 113 if (isTargetCOFF()) 114 return X86II::MO_NO_FLAG; 115 116 if (isTargetDarwin()) { 117 // 32 bit macho has no relocation for a-b if a is undefined, even if 118 // b is in the section that is being relocated. 119 // This means we have to use o load even for GVs that are known to be 120 // local to the dso. 121 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) 122 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 123 124 return X86II::MO_PIC_BASE_OFFSET; 125 } 126 127 return X86II::MO_GOTOFF; 128 } 129 130 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV, 131 const Module &M) const { 132 // The static large model never uses stubs. 133 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent()) 134 return X86II::MO_NO_FLAG; 135 136 // Absolute symbols can be referenced directly. 137 if (GV) { 138 if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) { 139 // See if we can use the 8-bit immediate form. Note that some instructions 140 // will sign extend the immediate operand, so to be conservative we only 141 // accept the range [0,128). 142 if (CR->getUnsignedMax().ult(128)) 143 return X86II::MO_ABS8; 144 else 145 return X86II::MO_NO_FLAG; 146 } 147 } 148 149 if (TM.shouldAssumeDSOLocal(M, GV)) 150 return classifyLocalReference(GV); 151 152 if (isTargetCOFF()) { 153 // ExternalSymbolSDNode like _tls_index. 154 if (!GV) 155 return X86II::MO_NO_FLAG; 156 if (GV->hasDLLImportStorageClass()) 157 return X86II::MO_DLLIMPORT; 158 return X86II::MO_COFFSTUB; 159 } 160 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables. 161 if (isOSWindows()) 162 return X86II::MO_NO_FLAG; 163 164 if (is64Bit()) { 165 // ELF supports a large, truly PIC code model with non-PC relative GOT 166 // references. Other object file formats do not. Use the no-flag, 64-bit 167 // reference for them. 168 if (TM.getCodeModel() == CodeModel::Large) 169 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG; 170 // Tagged globals have non-zero upper bits, which makes direct references 171 // require a 64-bit immediate. So we can't let the linker relax the 172 // relocation to a 32-bit RIP-relative direct reference. 173 if (AllowTaggedGlobals && GV && !isa<Function>(GV)) 174 return X86II::MO_GOTPCREL_NORELAX; 175 return X86II::MO_GOTPCREL; 176 } 177 178 if (isTargetDarwin()) { 179 if (!isPositionIndependent()) 180 return X86II::MO_DARWIN_NONLAZY; 181 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 182 } 183 184 // 32-bit ELF references GlobalAddress directly in static relocation model. 185 // We cannot use MO_GOT because EBX may not be set up. 186 if (TM.getRelocationModel() == Reloc::Static) 187 return X86II::MO_NO_FLAG; 188 return X86II::MO_GOT; 189 } 190 191 unsigned char 192 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const { 193 return classifyGlobalFunctionReference(GV, *GV->getParent()); 194 } 195 196 unsigned char 197 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV, 198 const Module &M) const { 199 if (TM.shouldAssumeDSOLocal(M, GV)) 200 return X86II::MO_NO_FLAG; 201 202 // Functions on COFF can be non-DSO local for three reasons: 203 // - They are intrinsic functions (!GV) 204 // - They are marked dllimport 205 // - They are extern_weak, and a stub is needed 206 if (isTargetCOFF()) { 207 if (!GV) 208 return X86II::MO_NO_FLAG; 209 if (GV->hasDLLImportStorageClass()) 210 return X86II::MO_DLLIMPORT; 211 return X86II::MO_COFFSTUB; 212 } 213 214 const Function *F = dyn_cast_or_null<Function>(GV); 215 216 if (isTargetELF()) { 217 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv())) 218 // According to psABI, PLT stub clobbers XMM8-XMM15. 219 // In Regcall calling convention those registers are used for passing 220 // parameters. Thus we need to prevent lazy binding in Regcall. 221 return X86II::MO_GOTPCREL; 222 // If PLT must be avoided then the call should be via GOTPCREL. 223 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) || 224 (!F && M.getRtLibUseGOT())) && 225 is64Bit()) 226 return X86II::MO_GOTPCREL; 227 // Reference ExternalSymbol directly in static relocation model. 228 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static) 229 return X86II::MO_NO_FLAG; 230 return X86II::MO_PLT; 231 } 232 233 if (is64Bit()) { 234 if (F && F->hasFnAttribute(Attribute::NonLazyBind)) 235 // If the function is marked as non-lazy, generate an indirect call 236 // which loads from the GOT directly. This avoids runtime overhead 237 // at the cost of eager binding (and one extra byte of encoding). 238 return X86II::MO_GOTPCREL; 239 return X86II::MO_NO_FLAG; 240 } 241 242 return X86II::MO_NO_FLAG; 243 } 244 245 /// Return true if the subtarget allows calls to immediate address. 246 bool X86Subtarget::isLegalToCallImmediateAddr() const { 247 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32 248 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does, 249 // the following check for Win32 should be removed. 250 if (In64BitMode || isTargetWin32()) 251 return false; 252 return isTargetELF() || TM.getRelocationModel() == Reloc::Static; 253 } 254 255 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, 256 StringRef FS) { 257 if (CPU.empty()) 258 CPU = "generic"; 259 260 if (TuneCPU.empty()) 261 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect. 262 263 std::string FullFS = X86_MC::ParseX86Triple(TargetTriple); 264 assert(!FullFS.empty() && "Failed to parse X86 triple"); 265 266 if (!FS.empty()) 267 FullFS = (Twine(FullFS) + "," + FS).str(); 268 269 // Parse features string and set the CPU. 270 ParseSubtargetFeatures(CPU, TuneCPU, FullFS); 271 272 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of 273 // 16-bytes and under that are reasonably fast. These features were 274 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h 275 // micro-architectures respectively. 276 if (hasSSE42() || hasSSE4A()) 277 IsUAMem16Slow = false; 278 279 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel 280 << ", 3DNowLevel " << X863DNowLevel << ", 64bit " 281 << HasX86_64 << "\n"); 282 if (In64BitMode && !HasX86_64) 283 report_fatal_error("64-bit code requested on a subtarget that doesn't " 284 "support it!"); 285 286 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all 287 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes 288 // following the i386 psABI, while on Illumos it is always 16 bytes. 289 if (StackAlignOverride) 290 stackAlignment = *StackAlignOverride; 291 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() || 292 isTargetNaCl() || In64BitMode) 293 stackAlignment = Align(16); 294 295 // Consume the vector width attribute or apply any target specific limit. 296 if (PreferVectorWidthOverride) 297 PreferVectorWidth = PreferVectorWidthOverride; 298 else if (Prefer128Bit) 299 PreferVectorWidth = 128; 300 else if (Prefer256Bit) 301 PreferVectorWidth = 256; 302 } 303 304 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU, 305 StringRef TuneCPU, 306 StringRef FS) { 307 initSubtargetFeatures(CPU, TuneCPU, FS); 308 return *this; 309 } 310 311 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, 312 StringRef FS, const X86TargetMachine &TM, 313 MaybeAlign StackAlignOverride, 314 unsigned PreferVectorWidthOverride, 315 unsigned RequiredVectorWidth) 316 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS), 317 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT), 318 StackAlignOverride(StackAlignOverride), 319 PreferVectorWidthOverride(PreferVectorWidthOverride), 320 RequiredVectorWidth(RequiredVectorWidth), 321 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)), 322 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) { 323 // Determine the PICStyle based on the target selected. 324 if (!isPositionIndependent()) 325 setPICStyle(PICStyles::Style::None); 326 else if (is64Bit()) 327 setPICStyle(PICStyles::Style::RIPRel); 328 else if (isTargetCOFF()) 329 setPICStyle(PICStyles::Style::None); 330 else if (isTargetDarwin()) 331 setPICStyle(PICStyles::Style::StubPIC); 332 else if (isTargetELF()) 333 setPICStyle(PICStyles::Style::GOT); 334 335 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering())); 336 Legalizer.reset(new X86LegalizerInfo(*this, TM)); 337 338 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo()); 339 RegBankInfo.reset(RBI); 340 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI)); 341 } 342 343 const CallLowering *X86Subtarget::getCallLowering() const { 344 return CallLoweringInfo.get(); 345 } 346 347 InstructionSelector *X86Subtarget::getInstructionSelector() const { 348 return InstSelector.get(); 349 } 350 351 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const { 352 return Legalizer.get(); 353 } 354 355 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const { 356 return RegBankInfo.get(); 357 } 358 359 bool X86Subtarget::enableEarlyIfConversion() const { 360 return hasCMov() && X86EarlyIfConv; 361 } 362 363 void X86Subtarget::getPostRAMutations( 364 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 365 Mutations.push_back(createX86MacroFusionDAGMutation()); 366 } 367 368 bool X86Subtarget::isPositionIndependent() const { 369 return TM.isPositionIndependent(); 370 } 371