xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86Subtarget.cpp (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86Subtarget.h"
14 #include "MCTargetDesc/X86BaseInfo.h"
15 #include "X86.h"
16 #include "X86CallLowering.h"
17 #include "X86LegalizerInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86RegisterBankInfo.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 
36 #if defined(_MSC_VER)
37 #include <intrin.h>
38 #endif
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "subtarget"
43 
44 #define GET_SUBTARGETINFO_TARGET_DESC
45 #define GET_SUBTARGETINFO_CTOR
46 #include "X86GenSubtargetInfo.inc"
47 
48 // Temporary option to control early if-conversion for x86 while adding machine
49 // models.
50 static cl::opt<bool>
51 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
52                cl::desc("Enable early if-conversion on X86"));
53 
54 
55 /// Classify a blockaddress reference for the current subtarget according to how
56 /// we should reference it in a non-pcrel context.
57 unsigned char X86Subtarget::classifyBlockAddressReference() const {
58   return classifyLocalReference(nullptr);
59 }
60 
61 /// Classify a global variable reference for the current subtarget according to
62 /// how we should reference it in a non-pcrel context.
63 unsigned char
64 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
65   return classifyGlobalReference(GV, *GV->getParent());
66 }
67 
68 unsigned char
69 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
70   // If we're not PIC, it's not very interesting.
71   if (!isPositionIndependent())
72     return X86II::MO_NO_FLAG;
73 
74   if (is64Bit()) {
75     // 64-bit ELF PIC local references may use GOTOFF relocations.
76     if (isTargetELF()) {
77       switch (TM.getCodeModel()) {
78       // 64-bit small code model is simple: All rip-relative.
79       case CodeModel::Tiny:
80         llvm_unreachable("Tiny codesize model not supported on X86");
81       case CodeModel::Small:
82       case CodeModel::Kernel:
83         return X86II::MO_NO_FLAG;
84 
85       // The large PIC code model uses GOTOFF.
86       case CodeModel::Large:
87         return X86II::MO_GOTOFF;
88 
89       // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
90       case CodeModel::Medium:
91         // Constant pool and jump table handling pass a nullptr to this
92         // function so we need to use isa_and_nonnull.
93         if (isa_and_nonnull<Function>(GV))
94           return X86II::MO_NO_FLAG; // All code is RIP-relative
95         return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
96       }
97       llvm_unreachable("invalid code model");
98     }
99 
100     // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
101     // both of which use MO_NO_FLAG.
102     return X86II::MO_NO_FLAG;
103   }
104 
105   // The COFF dynamic linker just patches the executable sections.
106   if (isTargetCOFF())
107     return X86II::MO_NO_FLAG;
108 
109   if (isTargetDarwin()) {
110     // 32 bit macho has no relocation for a-b if a is undefined, even if
111     // b is in the section that is being relocated.
112     // This means we have to use o load even for GVs that are known to be
113     // local to the dso.
114     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
115       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
116 
117     return X86II::MO_PIC_BASE_OFFSET;
118   }
119 
120   return X86II::MO_GOTOFF;
121 }
122 
123 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
124                                                     const Module &M) const {
125   // The static large model never uses stubs.
126   if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
127     return X86II::MO_NO_FLAG;
128 
129   // Absolute symbols can be referenced directly.
130   if (GV) {
131     if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
132       // See if we can use the 8-bit immediate form. Note that some instructions
133       // will sign extend the immediate operand, so to be conservative we only
134       // accept the range [0,128).
135       if (CR->getUnsignedMax().ult(128))
136         return X86II::MO_ABS8;
137       else
138         return X86II::MO_NO_FLAG;
139     }
140   }
141 
142   if (TM.shouldAssumeDSOLocal(M, GV))
143     return classifyLocalReference(GV);
144 
145   if (isTargetCOFF()) {
146     if (GV->hasDLLImportStorageClass())
147       return X86II::MO_DLLIMPORT;
148     return X86II::MO_COFFSTUB;
149   }
150   // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
151   if (isOSWindows())
152     return X86II::MO_NO_FLAG;
153 
154   if (is64Bit()) {
155     // ELF supports a large, truly PIC code model with non-PC relative GOT
156     // references. Other object file formats do not. Use the no-flag, 64-bit
157     // reference for them.
158     if (TM.getCodeModel() == CodeModel::Large)
159       return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
160     return X86II::MO_GOTPCREL;
161   }
162 
163   if (isTargetDarwin()) {
164     if (!isPositionIndependent())
165       return X86II::MO_DARWIN_NONLAZY;
166     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
167   }
168 
169   return X86II::MO_GOT;
170 }
171 
172 unsigned char
173 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
174   return classifyGlobalFunctionReference(GV, *GV->getParent());
175 }
176 
177 unsigned char
178 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
179                                               const Module &M) const {
180   if (TM.shouldAssumeDSOLocal(M, GV))
181     return X86II::MO_NO_FLAG;
182 
183   // Functions on COFF can be non-DSO local for two reasons:
184   // - They are marked dllimport
185   // - They are extern_weak, and a stub is needed
186   if (isTargetCOFF()) {
187     if (GV->hasDLLImportStorageClass())
188       return X86II::MO_DLLIMPORT;
189     return X86II::MO_COFFSTUB;
190   }
191 
192   const Function *F = dyn_cast_or_null<Function>(GV);
193 
194   if (isTargetELF()) {
195     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
196       // According to psABI, PLT stub clobbers XMM8-XMM15.
197       // In Regcall calling convention those registers are used for passing
198       // parameters. Thus we need to prevent lazy binding in Regcall.
199       return X86II::MO_GOTPCREL;
200     // If PLT must be avoided then the call should be via GOTPCREL.
201     if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
202          (!F && M.getRtLibUseGOT())) &&
203         is64Bit())
204        return X86II::MO_GOTPCREL;
205     return X86II::MO_PLT;
206   }
207 
208   if (is64Bit()) {
209     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
210       // If the function is marked as non-lazy, generate an indirect call
211       // which loads from the GOT directly. This avoids runtime overhead
212       // at the cost of eager binding (and one extra byte of encoding).
213       return X86II::MO_GOTPCREL;
214     return X86II::MO_NO_FLAG;
215   }
216 
217   return X86II::MO_NO_FLAG;
218 }
219 
220 /// Return true if the subtarget allows calls to immediate address.
221 bool X86Subtarget::isLegalToCallImmediateAddr() const {
222   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
223   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
224   // the following check for Win32 should be removed.
225   if (In64BitMode || isTargetWin32())
226     return false;
227   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
228 }
229 
230 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
231   std::string CPUName = std::string(CPU);
232   if (CPUName.empty())
233     CPUName = "generic";
234 
235   std::string FullFS = std::string(FS);
236   if (In64BitMode) {
237     // SSE2 should default to enabled in 64-bit mode, but can be turned off
238     // explicitly.
239     if (!FullFS.empty())
240       FullFS = "+sse2," + FullFS;
241     else
242       FullFS = "+sse2";
243 
244     // If no CPU was specified, enable 64bit feature to satisy later check.
245     if (CPUName == "generic") {
246       if (!FullFS.empty())
247         FullFS = "+64bit," + FullFS;
248       else
249         FullFS = "+64bit";
250     }
251   }
252 
253   // LAHF/SAHF are always supported in non-64-bit mode.
254   if (!In64BitMode) {
255     if (!FullFS.empty())
256       FullFS = "+sahf," + FullFS;
257     else
258       FullFS = "+sahf";
259   }
260 
261   // Parse features string and set the CPU.
262   ParseSubtargetFeatures(CPUName, FullFS);
263 
264   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
265   // 16-bytes and under that are reasonably fast. These features were
266   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
267   // micro-architectures respectively.
268   if (hasSSE42() || hasSSE4A())
269     IsUAMem16Slow = false;
270 
271   // It's important to keep the MCSubtargetInfo feature bits in sync with
272   // target data structure which is shared with MC code emitter, etc.
273   if (In64BitMode)
274     ToggleFeature(X86::Mode64Bit);
275   else if (In32BitMode)
276     ToggleFeature(X86::Mode32Bit);
277   else if (In16BitMode)
278     ToggleFeature(X86::Mode16Bit);
279   else
280     llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
281 
282   LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
283                     << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
284                     << HasX86_64 << "\n");
285   if (In64BitMode && !HasX86_64)
286     report_fatal_error("64-bit code requested on a subtarget that doesn't "
287                        "support it!");
288 
289   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
290   // 32 and 64 bit) and for all 64-bit targets.
291   if (StackAlignOverride)
292     stackAlignment = *StackAlignOverride;
293   else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
294            isTargetKFreeBSD() || In64BitMode)
295     stackAlignment = Align(16);
296 
297   // Some CPUs have more overhead for gather. The specified overhead is relative
298   // to the Load operation. "2" is the number provided by Intel architects. This
299   // parameter is used for cost estimation of Gather Op and comparison with
300   // other alternatives.
301   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
302   // enable gather with a -march.
303   if (hasAVX512() || (hasAVX2() && hasFastGather()))
304     GatherOverhead = 2;
305   if (hasAVX512())
306     ScatterOverhead = 2;
307 
308   // Consume the vector width attribute or apply any target specific limit.
309   if (PreferVectorWidthOverride)
310     PreferVectorWidth = PreferVectorWidthOverride;
311   else if (Prefer128Bit)
312     PreferVectorWidth = 128;
313   else if (Prefer256Bit)
314     PreferVectorWidth = 256;
315 }
316 
317 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
318                                                             StringRef FS) {
319   initSubtargetFeatures(CPU, FS);
320   return *this;
321 }
322 
323 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
324                            const X86TargetMachine &TM,
325                            MaybeAlign StackAlignOverride,
326                            unsigned PreferVectorWidthOverride,
327                            unsigned RequiredVectorWidth)
328     : X86GenSubtargetInfo(TT, CPU, FS), PICStyle(PICStyles::Style::None),
329       TM(TM), TargetTriple(TT), StackAlignOverride(StackAlignOverride),
330       PreferVectorWidthOverride(PreferVectorWidthOverride),
331       RequiredVectorWidth(RequiredVectorWidth),
332       In64BitMode(TargetTriple.getArch() == Triple::x86_64),
333       In32BitMode(TargetTriple.getArch() == Triple::x86 &&
334                   TargetTriple.getEnvironment() != Triple::CODE16),
335       In16BitMode(TargetTriple.getArch() == Triple::x86 &&
336                   TargetTriple.getEnvironment() == Triple::CODE16),
337       InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
338       FrameLowering(*this, getStackAlignment()) {
339   // Determine the PICStyle based on the target selected.
340   if (!isPositionIndependent())
341     setPICStyle(PICStyles::Style::None);
342   else if (is64Bit())
343     setPICStyle(PICStyles::Style::RIPRel);
344   else if (isTargetCOFF())
345     setPICStyle(PICStyles::Style::None);
346   else if (isTargetDarwin())
347     setPICStyle(PICStyles::Style::StubPIC);
348   else if (isTargetELF())
349     setPICStyle(PICStyles::Style::GOT);
350 
351   CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
352   Legalizer.reset(new X86LegalizerInfo(*this, TM));
353 
354   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
355   RegBankInfo.reset(RBI);
356   InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
357 }
358 
359 const CallLowering *X86Subtarget::getCallLowering() const {
360   return CallLoweringInfo.get();
361 }
362 
363 InstructionSelector *X86Subtarget::getInstructionSelector() const {
364   return InstSelector.get();
365 }
366 
367 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
368   return Legalizer.get();
369 }
370 
371 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
372   return RegBankInfo.get();
373 }
374 
375 bool X86Subtarget::enableEarlyIfConversion() const {
376   return hasCMov() && X86EarlyIfConv;
377 }
378 
379 void X86Subtarget::getPostRAMutations(
380     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
381   Mutations.push_back(createX86MacroFusionDAGMutation());
382 }
383 
384 bool X86Subtarget::isPositionIndependent() const {
385   return TM.isPositionIndependent();
386 }
387