xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86Subtarget.cpp (revision 8c2f6c3be0125142d3c1782e4b0ee0634c584b9e)
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86Subtarget.h"
14 #include "GISel/X86CallLowering.h"
15 #include "GISel/X86LegalizerInfo.h"
16 #include "GISel/X86RegisterBankInfo.h"
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86.h"
19 #include "X86MacroFusion.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/ScheduleDAGMutation.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/TargetParser/Triple.h"
37 
38 #if defined(_MSC_VER)
39 #include <intrin.h>
40 #endif
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "subtarget"
45 
46 #define GET_SUBTARGETINFO_TARGET_DESC
47 #define GET_SUBTARGETINFO_CTOR
48 #include "X86GenSubtargetInfo.inc"
49 
50 // Temporary option to control early if-conversion for x86 while adding machine
51 // models.
52 static cl::opt<bool>
53 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
54                cl::desc("Enable early if-conversion on X86"));
55 
56 
57 /// Classify a blockaddress reference for the current subtarget according to how
58 /// we should reference it in a non-pcrel context.
59 unsigned char X86Subtarget::classifyBlockAddressReference() const {
60   return classifyLocalReference(nullptr);
61 }
62 
63 /// Classify a global variable reference for the current subtarget according to
64 /// how we should reference it in a non-pcrel context.
65 unsigned char
66 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
67   return classifyGlobalReference(GV, *GV->getParent());
68 }
69 
70 unsigned char
71 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
72   CodeModel::Model CM = TM.getCodeModel();
73   // Tagged globals have non-zero upper bits, which makes direct references
74   // require a 64-bit immediate. With the small/medium code models this causes
75   // relocation errors, so we go through the GOT instead.
76   if (AllowTaggedGlobals && CM != CodeModel::Large && GV && !isa<Function>(GV))
77     return X86II::MO_GOTPCREL_NORELAX;
78 
79   // If we're not PIC, it's not very interesting.
80   if (!isPositionIndependent())
81     return X86II::MO_NO_FLAG;
82 
83   if (is64Bit()) {
84     // 64-bit ELF PIC local references may use GOTOFF relocations.
85     if (isTargetELF()) {
86       assert(CM != CodeModel::Tiny &&
87              "Tiny codesize model not supported on X86");
88       // In the large code model, all text is far from any global data, so we
89       // use GOTOFF.
90       if (CM == CodeModel::Large)
91         return X86II::MO_GOTOFF;
92       // Large GlobalValues use GOTOFF, otherwise use RIP-rel access.
93       if (GV)
94         return TM.isLargeGlobalValue(GV) ? X86II::MO_GOTOFF : X86II::MO_NO_FLAG;
95       // GV == nullptr is for all other non-GlobalValue global data like the
96       // constant pool, jump tables, labels, etc. The small and medium code
97       // models treat these as accessible with a RIP-rel access.
98       return X86II::MO_NO_FLAG;
99     }
100 
101     // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
102     // both of which use MO_NO_FLAG.
103     return X86II::MO_NO_FLAG;
104   }
105 
106   // The COFF dynamic linker just patches the executable sections.
107   if (isTargetCOFF())
108     return X86II::MO_NO_FLAG;
109 
110   if (isTargetDarwin()) {
111     // 32 bit macho has no relocation for a-b if a is undefined, even if
112     // b is in the section that is being relocated.
113     // This means we have to use o load even for GVs that are known to be
114     // local to the dso.
115     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
116       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
117 
118     return X86II::MO_PIC_BASE_OFFSET;
119   }
120 
121   return X86II::MO_GOTOFF;
122 }
123 
124 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
125                                                     const Module &M) const {
126   // The static large model never uses stubs.
127   if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
128     return X86II::MO_NO_FLAG;
129 
130   // Absolute symbols can be referenced directly.
131   if (GV) {
132     if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
133       // See if we can use the 8-bit immediate form. Note that some instructions
134       // will sign extend the immediate operand, so to be conservative we only
135       // accept the range [0,128).
136       if (CR->getUnsignedMax().ult(128))
137         return X86II::MO_ABS8;
138       else
139         return X86II::MO_NO_FLAG;
140     }
141   }
142 
143   if (TM.shouldAssumeDSOLocal(M, GV))
144     return classifyLocalReference(GV);
145 
146   if (isTargetCOFF()) {
147     // ExternalSymbolSDNode like _tls_index.
148     if (!GV)
149       return X86II::MO_NO_FLAG;
150     if (GV->hasDLLImportStorageClass())
151       return X86II::MO_DLLIMPORT;
152     return X86II::MO_COFFSTUB;
153   }
154   // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
155   if (isOSWindows())
156     return X86II::MO_NO_FLAG;
157 
158   if (is64Bit()) {
159     // ELF supports a large, truly PIC code model with non-PC relative GOT
160     // references. Other object file formats do not. Use the no-flag, 64-bit
161     // reference for them.
162     if (TM.getCodeModel() == CodeModel::Large)
163       return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
164     // Tagged globals have non-zero upper bits, which makes direct references
165     // require a 64-bit immediate. So we can't let the linker relax the
166     // relocation to a 32-bit RIP-relative direct reference.
167     if (AllowTaggedGlobals && GV && !isa<Function>(GV))
168       return X86II::MO_GOTPCREL_NORELAX;
169     return X86II::MO_GOTPCREL;
170   }
171 
172   if (isTargetDarwin()) {
173     if (!isPositionIndependent())
174       return X86II::MO_DARWIN_NONLAZY;
175     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
176   }
177 
178   // 32-bit ELF references GlobalAddress directly in static relocation model.
179   // We cannot use MO_GOT because EBX may not be set up.
180   if (TM.getRelocationModel() == Reloc::Static)
181     return X86II::MO_NO_FLAG;
182   return X86II::MO_GOT;
183 }
184 
185 unsigned char
186 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
187   return classifyGlobalFunctionReference(GV, *GV->getParent());
188 }
189 
190 unsigned char
191 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
192                                               const Module &M) const {
193   if (TM.shouldAssumeDSOLocal(M, GV))
194     return X86II::MO_NO_FLAG;
195 
196   // Functions on COFF can be non-DSO local for three reasons:
197   // - They are intrinsic functions (!GV)
198   // - They are marked dllimport
199   // - They are extern_weak, and a stub is needed
200   if (isTargetCOFF()) {
201     if (!GV)
202       return X86II::MO_NO_FLAG;
203     if (GV->hasDLLImportStorageClass())
204       return X86II::MO_DLLIMPORT;
205     return X86II::MO_COFFSTUB;
206   }
207 
208   const Function *F = dyn_cast_or_null<Function>(GV);
209 
210   if (isTargetELF()) {
211     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
212       // According to psABI, PLT stub clobbers XMM8-XMM15.
213       // In Regcall calling convention those registers are used for passing
214       // parameters. Thus we need to prevent lazy binding in Regcall.
215       return X86II::MO_GOTPCREL;
216     // If PLT must be avoided then the call should be via GOTPCREL.
217     if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
218          (!F && M.getRtLibUseGOT())) &&
219         is64Bit())
220        return X86II::MO_GOTPCREL;
221     // Reference ExternalSymbol directly in static relocation model.
222     if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
223       return X86II::MO_NO_FLAG;
224     return X86II::MO_PLT;
225   }
226 
227   if (is64Bit()) {
228     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
229       // If the function is marked as non-lazy, generate an indirect call
230       // which loads from the GOT directly. This avoids runtime overhead
231       // at the cost of eager binding (and one extra byte of encoding).
232       return X86II::MO_GOTPCREL;
233     return X86II::MO_NO_FLAG;
234   }
235 
236   return X86II::MO_NO_FLAG;
237 }
238 
239 /// Return true if the subtarget allows calls to immediate address.
240 bool X86Subtarget::isLegalToCallImmediateAddr() const {
241   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
242   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
243   // the following check for Win32 should be removed.
244   if (Is64Bit || isTargetWin32())
245     return false;
246   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
247 }
248 
249 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
250                                          StringRef FS) {
251   if (CPU.empty())
252     CPU = "generic";
253 
254   if (TuneCPU.empty())
255     TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
256 
257   std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
258   assert(!FullFS.empty() && "Failed to parse X86 triple");
259 
260   if (!FS.empty())
261     FullFS = (Twine(FullFS) + "," + FS).str();
262 
263   // Attach EVEX512 feature when we have AVX512 features with a default CPU.
264   // "pentium4" is default CPU for 32-bit targets.
265   // "x86-64" is default CPU for 64-bit targets.
266   if (CPU == "generic" || CPU == "pentium4" || CPU == "x86-64") {
267     size_t posNoEVEX512 = FS.rfind("-evex512");
268     // Make sure we won't be cheated by "-avx512fp16".
269     size_t posNoAVX512F =
270         FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
271     size_t posEVEX512 = FS.rfind("+evex512");
272     // Any AVX512XXX will enable AVX512F.
273     size_t posAVX512F = FS.rfind("+avx512");
274 
275     if (posAVX512F != StringRef::npos &&
276         (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
277       if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
278         FullFS += ",+evex512";
279   }
280 
281   // Parse features string and set the CPU.
282   ParseSubtargetFeatures(CPU, TuneCPU, FullFS);
283 
284   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
285   // 16-bytes and under that are reasonably fast. These features were
286   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
287   // micro-architectures respectively.
288   if (hasSSE42() || hasSSE4A())
289     IsUnalignedMem16Slow = false;
290 
291   LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
292                     << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
293                     << HasX86_64 << "\n");
294   if (Is64Bit && !HasX86_64)
295     report_fatal_error("64-bit code requested on a subtarget that doesn't "
296                        "support it!");
297 
298   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
299   // 64-bit targets.  On Solaris (32-bit), stack alignment is 4 bytes
300   // following the i386 psABI, while on Illumos it is always 16 bytes.
301   if (StackAlignOverride)
302     stackAlignment = *StackAlignOverride;
303   else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
304            isTargetNaCl() || Is64Bit)
305     stackAlignment = Align(16);
306 
307   // Consume the vector width attribute or apply any target specific limit.
308   if (PreferVectorWidthOverride)
309     PreferVectorWidth = PreferVectorWidthOverride;
310   else if (Prefer128Bit)
311     PreferVectorWidth = 128;
312   else if (Prefer256Bit)
313     PreferVectorWidth = 256;
314 }
315 
316 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
317                                                             StringRef TuneCPU,
318                                                             StringRef FS) {
319   initSubtargetFeatures(CPU, TuneCPU, FS);
320   return *this;
321 }
322 
323 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
324                            StringRef FS, const X86TargetMachine &TM,
325                            MaybeAlign StackAlignOverride,
326                            unsigned PreferVectorWidthOverride,
327                            unsigned RequiredVectorWidth)
328     : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
329       PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
330       StackAlignOverride(StackAlignOverride),
331       PreferVectorWidthOverride(PreferVectorWidthOverride),
332       RequiredVectorWidth(RequiredVectorWidth),
333       InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
334       TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
335   // Determine the PICStyle based on the target selected.
336   if (!isPositionIndependent() || TM.getCodeModel() == CodeModel::Large)
337     // With the large code model, None forces all memory accesses to be indirect
338     // rather than RIP-relative.
339     setPICStyle(PICStyles::Style::None);
340   else if (is64Bit())
341     setPICStyle(PICStyles::Style::RIPRel);
342   else if (isTargetCOFF())
343     setPICStyle(PICStyles::Style::None);
344   else if (isTargetDarwin())
345     setPICStyle(PICStyles::Style::StubPIC);
346   else if (isTargetELF())
347     setPICStyle(PICStyles::Style::GOT);
348 
349   CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
350   Legalizer.reset(new X86LegalizerInfo(*this, TM));
351 
352   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
353   RegBankInfo.reset(RBI);
354   InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
355 }
356 
357 const CallLowering *X86Subtarget::getCallLowering() const {
358   return CallLoweringInfo.get();
359 }
360 
361 InstructionSelector *X86Subtarget::getInstructionSelector() const {
362   return InstSelector.get();
363 }
364 
365 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
366   return Legalizer.get();
367 }
368 
369 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
370   return RegBankInfo.get();
371 }
372 
373 bool X86Subtarget::enableEarlyIfConversion() const {
374   return canUseCMOV() && X86EarlyIfConv;
375 }
376 
377 void X86Subtarget::getPostRAMutations(
378     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
379   Mutations.push_back(createX86MacroFusionDAGMutation());
380 }
381 
382 bool X86Subtarget::isPositionIndependent() const {
383   return TM.isPositionIndependent();
384 }
385