1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86 specific subclass of TargetSubtargetInfo. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86Subtarget.h" 14 #include "GISel/X86CallLowering.h" 15 #include "GISel/X86LegalizerInfo.h" 16 #include "GISel/X86RegisterBankInfo.h" 17 #include "MCTargetDesc/X86BaseInfo.h" 18 #include "X86.h" 19 #include "X86MacroFusion.h" 20 #include "X86TargetMachine.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 24 #include "llvm/CodeGen/ScheduleDAGMutation.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CodeGen.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/TargetParser/Triple.h" 38 39 #if defined(_MSC_VER) 40 #include <intrin.h> 41 #endif 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "subtarget" 46 47 #define GET_SUBTARGETINFO_TARGET_DESC 48 #define GET_SUBTARGETINFO_CTOR 49 #include "X86GenSubtargetInfo.inc" 50 51 // Temporary option to control early if-conversion for x86 while adding machine 52 // models. 53 static cl::opt<bool> 54 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, 55 cl::desc("Enable early if-conversion on X86")); 56 57 58 /// Classify a blockaddress reference for the current subtarget according to how 59 /// we should reference it in a non-pcrel context. 60 unsigned char X86Subtarget::classifyBlockAddressReference() const { 61 return classifyLocalReference(nullptr); 62 } 63 64 /// Classify a global variable reference for the current subtarget according to 65 /// how we should reference it in a non-pcrel context. 66 unsigned char 67 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const { 68 return classifyGlobalReference(GV, *GV->getParent()); 69 } 70 71 unsigned char 72 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const { 73 CodeModel::Model CM = TM.getCodeModel(); 74 // Tagged globals have non-zero upper bits, which makes direct references 75 // require a 64-bit immediate. With the small/medium code models this causes 76 // relocation errors, so we go through the GOT instead. 77 if (AllowTaggedGlobals && CM != CodeModel::Large && GV && !isa<Function>(GV)) 78 return X86II::MO_GOTPCREL_NORELAX; 79 80 // If we're not PIC, it's not very interesting. 81 if (!isPositionIndependent()) 82 return X86II::MO_NO_FLAG; 83 84 if (is64Bit()) { 85 // 64-bit ELF PIC local references may use GOTOFF relocations. 86 if (isTargetELF()) { 87 assert(CM != CodeModel::Tiny && 88 "Tiny codesize model not supported on X86"); 89 // In the large code model, all text is far from any global data, so we 90 // use GOTOFF. 91 if (CM == CodeModel::Large) 92 return X86II::MO_GOTOFF; 93 // Large GlobalValues use GOTOFF, otherwise use RIP-rel access. 94 if (GV) 95 return TM.isLargeGlobalValue(GV) ? X86II::MO_GOTOFF : X86II::MO_NO_FLAG; 96 // GV == nullptr is for all other non-GlobalValue global data like the 97 // constant pool, jump tables, labels, etc. The small and medium code 98 // models treat these as accessible with a RIP-rel access. 99 return X86II::MO_NO_FLAG; 100 } 101 102 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq, 103 // both of which use MO_NO_FLAG. 104 return X86II::MO_NO_FLAG; 105 } 106 107 // The COFF dynamic linker just patches the executable sections. 108 if (isTargetCOFF()) 109 return X86II::MO_NO_FLAG; 110 111 if (isTargetDarwin()) { 112 // 32 bit macho has no relocation for a-b if a is undefined, even if 113 // b is in the section that is being relocated. 114 // This means we have to use o load even for GVs that are known to be 115 // local to the dso. 116 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) 117 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 118 119 return X86II::MO_PIC_BASE_OFFSET; 120 } 121 122 return X86II::MO_GOTOFF; 123 } 124 125 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV, 126 const Module &M) const { 127 // The static large model never uses stubs. 128 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent()) 129 return X86II::MO_NO_FLAG; 130 131 // Absolute symbols can be referenced directly. 132 if (GV) { 133 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) { 134 // See if we can use the 8-bit immediate form. Note that some instructions 135 // will sign extend the immediate operand, so to be conservative we only 136 // accept the range [0,128). 137 if (CR->getUnsignedMax().ult(128)) 138 return X86II::MO_ABS8; 139 else 140 return X86II::MO_NO_FLAG; 141 } 142 } 143 144 if (TM.shouldAssumeDSOLocal(GV)) 145 return classifyLocalReference(GV); 146 147 if (isTargetCOFF()) { 148 // ExternalSymbolSDNode like _tls_index. 149 if (!GV) 150 return X86II::MO_NO_FLAG; 151 if (GV->hasDLLImportStorageClass()) 152 return X86II::MO_DLLIMPORT; 153 return X86II::MO_COFFSTUB; 154 } 155 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables. 156 if (isOSWindows()) 157 return X86II::MO_NO_FLAG; 158 159 if (is64Bit()) { 160 // ELF supports a large, truly PIC code model with non-PC relative GOT 161 // references. Other object file formats do not. Use the no-flag, 64-bit 162 // reference for them. 163 if (TM.getCodeModel() == CodeModel::Large) 164 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG; 165 // Tagged globals have non-zero upper bits, which makes direct references 166 // require a 64-bit immediate. So we can't let the linker relax the 167 // relocation to a 32-bit RIP-relative direct reference. 168 if (AllowTaggedGlobals && GV && !isa<Function>(GV)) 169 return X86II::MO_GOTPCREL_NORELAX; 170 return X86II::MO_GOTPCREL; 171 } 172 173 if (isTargetDarwin()) { 174 if (!isPositionIndependent()) 175 return X86II::MO_DARWIN_NONLAZY; 176 return X86II::MO_DARWIN_NONLAZY_PIC_BASE; 177 } 178 179 // 32-bit ELF references GlobalAddress directly in static relocation model. 180 // We cannot use MO_GOT because EBX may not be set up. 181 if (TM.getRelocationModel() == Reloc::Static) 182 return X86II::MO_NO_FLAG; 183 return X86II::MO_GOT; 184 } 185 186 unsigned char 187 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const { 188 return classifyGlobalFunctionReference(GV, *GV->getParent()); 189 } 190 191 unsigned char 192 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV, 193 const Module &M) const { 194 if (TM.shouldAssumeDSOLocal(GV)) 195 return X86II::MO_NO_FLAG; 196 197 // Functions on COFF can be non-DSO local for three reasons: 198 // - They are intrinsic functions (!GV) 199 // - They are marked dllimport 200 // - They are extern_weak, and a stub is needed 201 if (isTargetCOFF()) { 202 if (!GV) 203 return X86II::MO_NO_FLAG; 204 if (GV->hasDLLImportStorageClass()) 205 return X86II::MO_DLLIMPORT; 206 return X86II::MO_COFFSTUB; 207 } 208 209 const Function *F = dyn_cast_or_null<Function>(GV); 210 211 if (isTargetELF()) { 212 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv())) 213 // According to psABI, PLT stub clobbers XMM8-XMM15. 214 // In Regcall calling convention those registers are used for passing 215 // parameters. Thus we need to prevent lazy binding in Regcall. 216 return X86II::MO_GOTPCREL; 217 // If PLT must be avoided then the call should be via GOTPCREL. 218 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) || 219 (!F && M.getRtLibUseGOT())) && 220 is64Bit()) 221 return X86II::MO_GOTPCREL; 222 // Reference ExternalSymbol directly in static relocation model. 223 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static) 224 return X86II::MO_NO_FLAG; 225 return X86II::MO_PLT; 226 } 227 228 if (is64Bit()) { 229 if (F && F->hasFnAttribute(Attribute::NonLazyBind)) 230 // If the function is marked as non-lazy, generate an indirect call 231 // which loads from the GOT directly. This avoids runtime overhead 232 // at the cost of eager binding (and one extra byte of encoding). 233 return X86II::MO_GOTPCREL; 234 return X86II::MO_NO_FLAG; 235 } 236 237 return X86II::MO_NO_FLAG; 238 } 239 240 /// Return true if the subtarget allows calls to immediate address. 241 bool X86Subtarget::isLegalToCallImmediateAddr() const { 242 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32 243 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does, 244 // the following check for Win32 should be removed. 245 if (Is64Bit || isTargetWin32()) 246 return false; 247 return isTargetELF() || TM.getRelocationModel() == Reloc::Static; 248 } 249 250 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, 251 StringRef FS) { 252 if (CPU.empty()) 253 CPU = "generic"; 254 255 if (TuneCPU.empty()) 256 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect. 257 258 std::string FullFS = X86_MC::ParseX86Triple(TargetTriple); 259 assert(!FullFS.empty() && "Failed to parse X86 triple"); 260 261 if (!FS.empty()) 262 FullFS = (Twine(FullFS) + "," + FS).str(); 263 264 // Attach EVEX512 feature when we have AVX512 features with a default CPU. 265 // "pentium4" is default CPU for 32-bit targets. 266 // "x86-64" is default CPU for 64-bit targets. 267 if (CPU == "generic" || CPU == "pentium4" || CPU == "x86-64") { 268 size_t posNoEVEX512 = FS.rfind("-evex512"); 269 // Make sure we won't be cheated by "-avx512fp16". 270 size_t posNoAVX512F = 271 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,"); 272 size_t posEVEX512 = FS.rfind("+evex512"); 273 // Any AVX512XXX will enable AVX512F. 274 size_t posAVX512F = FS.rfind("+avx512"); 275 276 if (posAVX512F != StringRef::npos && 277 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F)) 278 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos) 279 FullFS += ",+evex512"; 280 } 281 282 // Parse features string and set the CPU. 283 ParseSubtargetFeatures(CPU, TuneCPU, FullFS); 284 285 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of 286 // 16-bytes and under that are reasonably fast. These features were 287 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h 288 // micro-architectures respectively. 289 if (hasSSE42() || hasSSE4A()) 290 IsUnalignedMem16Slow = false; 291 292 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel 293 << ", MMX " << HasMMX << ", 64bit " << HasX86_64 << "\n"); 294 if (Is64Bit && !HasX86_64) 295 report_fatal_error("64-bit code requested on a subtarget that doesn't " 296 "support it!"); 297 298 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all 299 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes 300 // following the i386 psABI, while on Illumos it is always 16 bytes. 301 if (StackAlignOverride) 302 stackAlignment = *StackAlignOverride; 303 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() || 304 isTargetNaCl() || Is64Bit) 305 stackAlignment = Align(16); 306 307 // Consume the vector width attribute or apply any target specific limit. 308 if (PreferVectorWidthOverride) 309 PreferVectorWidth = PreferVectorWidthOverride; 310 else if (Prefer128Bit) 311 PreferVectorWidth = 128; 312 else if (Prefer256Bit) 313 PreferVectorWidth = 256; 314 } 315 316 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU, 317 StringRef TuneCPU, 318 StringRef FS) { 319 initSubtargetFeatures(CPU, TuneCPU, FS); 320 return *this; 321 } 322 323 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, 324 StringRef FS, const X86TargetMachine &TM, 325 MaybeAlign StackAlignOverride, 326 unsigned PreferVectorWidthOverride, 327 unsigned RequiredVectorWidth) 328 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS), 329 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT), 330 StackAlignOverride(StackAlignOverride), 331 PreferVectorWidthOverride(PreferVectorWidthOverride), 332 RequiredVectorWidth(RequiredVectorWidth), 333 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)), 334 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) { 335 // Determine the PICStyle based on the target selected. 336 if (!isPositionIndependent() || TM.getCodeModel() == CodeModel::Large) 337 // With the large code model, None forces all memory accesses to be indirect 338 // rather than RIP-relative. 339 setPICStyle(PICStyles::Style::None); 340 else if (is64Bit()) 341 setPICStyle(PICStyles::Style::RIPRel); 342 else if (isTargetCOFF()) 343 setPICStyle(PICStyles::Style::None); 344 else if (isTargetDarwin()) 345 setPICStyle(PICStyles::Style::StubPIC); 346 else if (isTargetELF()) 347 setPICStyle(PICStyles::Style::GOT); 348 349 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering())); 350 Legalizer.reset(new X86LegalizerInfo(*this, TM)); 351 352 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo()); 353 RegBankInfo.reset(RBI); 354 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI)); 355 } 356 357 const CallLowering *X86Subtarget::getCallLowering() const { 358 return CallLoweringInfo.get(); 359 } 360 361 InstructionSelector *X86Subtarget::getInstructionSelector() const { 362 return InstSelector.get(); 363 } 364 365 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const { 366 return Legalizer.get(); 367 } 368 369 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const { 370 return RegBankInfo.get(); 371 } 372 373 bool X86Subtarget::enableEarlyIfConversion() const { 374 return canUseCMOV() && X86EarlyIfConv; 375 } 376 377 void X86Subtarget::getPostRAMutations( 378 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 379 Mutations.push_back(createX86MacroFusionDAGMutation()); 380 } 381 382 bool X86Subtarget::isPositionIndependent() const { 383 return TM.isPositionIndependent(); 384 } 385