1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// Provide a pass which mitigates speculative execution attacks which operate 11 /// by speculating incorrectly past some predicate (a type check, bounds check, 12 /// or other condition) to reach a load with invalid inputs and leak the data 13 /// accessed by that load using a side channel out of the speculative domain. 14 /// 15 /// For details on the attacks, see the first variant in both the Project Zero 16 /// writeup and the Spectre paper: 17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html 18 /// https://spectreattack.com/spectre.pdf 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "X86.h" 23 #include "X86InstrBuilder.h" 24 #include "X86InstrInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/SparseBitVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineConstantPool.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/MachineSSAUpdater.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/MC/MCSchedule.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <iterator> 59 #include <utility> 60 61 using namespace llvm; 62 63 #define PASS_KEY "x86-slh" 64 #define DEBUG_TYPE PASS_KEY 65 66 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); 67 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); 68 STATISTIC(NumAddrRegsHardened, 69 "Number of address mode used registers hardaned"); 70 STATISTIC(NumPostLoadRegsHardened, 71 "Number of post-load register values hardened"); 72 STATISTIC(NumCallsOrJumpsHardened, 73 "Number of calls or jumps requiring extra hardening"); 74 STATISTIC(NumInstsInserted, "Number of instructions inserted"); 75 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); 76 77 static cl::opt<bool> EnableSpeculativeLoadHardening( 78 "x86-speculative-load-hardening", 79 cl::desc("Force enable speculative load hardening"), cl::init(false), 80 cl::Hidden); 81 82 static cl::opt<bool> HardenEdgesWithLFENCE( 83 PASS_KEY "-lfence", 84 cl::desc( 85 "Use LFENCE along each conditional edge to harden against speculative " 86 "loads rather than conditional movs and poisoned pointers."), 87 cl::init(false), cl::Hidden); 88 89 static cl::opt<bool> EnablePostLoadHardening( 90 PASS_KEY "-post-load", 91 cl::desc("Harden the value loaded *after* it is loaded by " 92 "flushing the loaded bits to 1. This is hard to do " 93 "in general but can be done easily for GPRs."), 94 cl::init(true), cl::Hidden); 95 96 static cl::opt<bool> FenceCallAndRet( 97 PASS_KEY "-fence-call-and-ret", 98 cl::desc("Use a full speculation fence to harden both call and ret edges " 99 "rather than a lighter weight mitigation."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<bool> HardenInterprocedurally( 103 PASS_KEY "-ip", 104 cl::desc("Harden interprocedurally by passing our state in and out of " 105 "functions in the high bits of the stack pointer."), 106 cl::init(true), cl::Hidden); 107 108 static cl::opt<bool> 109 HardenLoads(PASS_KEY "-loads", 110 cl::desc("Sanitize loads from memory. When disable, no " 111 "significant security is provided."), 112 cl::init(true), cl::Hidden); 113 114 static cl::opt<bool> HardenIndirectCallsAndJumps( 115 PASS_KEY "-indirect", 116 cl::desc("Harden indirect calls and jumps against using speculatively " 117 "stored attacker controlled addresses. This is designed to " 118 "mitigate Spectre v1.2 style attacks."), 119 cl::init(true), cl::Hidden); 120 121 namespace { 122 123 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { 124 public: 125 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } 126 127 StringRef getPassName() const override { 128 return "X86 speculative load hardening"; 129 } 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 void getAnalysisUsage(AnalysisUsage &AU) const override; 132 133 /// Pass identification, replacement for typeid. 134 static char ID; 135 136 private: 137 /// The information about a block's conditional terminators needed to trace 138 /// our predicate state through the exiting edges. 139 struct BlockCondInfo { 140 MachineBasicBlock *MBB; 141 142 // We mostly have one conditional branch, and in extremely rare cases have 143 // two. Three and more are so rare as to be unimportant for compile time. 144 SmallVector<MachineInstr *, 2> CondBrs; 145 146 MachineInstr *UncondBr; 147 }; 148 149 /// Manages the predicate state traced through the program. 150 struct PredState { 151 unsigned InitialReg = 0; 152 unsigned PoisonReg = 0; 153 154 const TargetRegisterClass *RC; 155 MachineSSAUpdater SSA; 156 157 PredState(MachineFunction &MF, const TargetRegisterClass *RC) 158 : RC(RC), SSA(MF) {} 159 }; 160 161 const X86Subtarget *Subtarget = nullptr; 162 MachineRegisterInfo *MRI = nullptr; 163 const X86InstrInfo *TII = nullptr; 164 const TargetRegisterInfo *TRI = nullptr; 165 166 Optional<PredState> PS; 167 168 void hardenEdgesWithLFENCE(MachineFunction &MF); 169 170 SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); 171 172 SmallVector<MachineInstr *, 16> 173 tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); 174 175 void unfoldCallAndJumpLoads(MachineFunction &MF); 176 177 SmallVector<MachineInstr *, 16> 178 tracePredStateThroughIndirectBranches(MachineFunction &MF); 179 180 void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); 181 182 unsigned saveEFLAGS(MachineBasicBlock &MBB, 183 MachineBasicBlock::iterator InsertPt, DebugLoc Loc); 184 void restoreEFLAGS(MachineBasicBlock &MBB, 185 MachineBasicBlock::iterator InsertPt, DebugLoc Loc, 186 unsigned OFReg); 187 188 void mergePredStateIntoSP(MachineBasicBlock &MBB, 189 MachineBasicBlock::iterator InsertPt, DebugLoc Loc, 190 unsigned PredStateReg); 191 unsigned extractPredStateFromSP(MachineBasicBlock &MBB, 192 MachineBasicBlock::iterator InsertPt, 193 DebugLoc Loc); 194 195 void 196 hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, 197 MachineOperand &IndexMO, 198 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 199 MachineInstr * 200 sinkPostLoadHardenedInst(MachineInstr &MI, 201 SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); 202 bool canHardenRegister(unsigned Reg); 203 unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB, 204 MachineBasicBlock::iterator InsertPt, 205 DebugLoc Loc); 206 unsigned hardenPostLoad(MachineInstr &MI); 207 void hardenReturnInstr(MachineInstr &MI); 208 void tracePredStateThroughCall(MachineInstr &MI); 209 void hardenIndirectCallOrJumpInstr( 210 MachineInstr &MI, 211 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 212 }; 213 214 } // end anonymous namespace 215 216 char X86SpeculativeLoadHardeningPass::ID = 0; 217 218 void X86SpeculativeLoadHardeningPass::getAnalysisUsage( 219 AnalysisUsage &AU) const { 220 MachineFunctionPass::getAnalysisUsage(AU); 221 } 222 223 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, 224 MachineBasicBlock &Succ, int SuccCount, 225 MachineInstr *Br, MachineInstr *&UncondBr, 226 const X86InstrInfo &TII) { 227 assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); 228 229 MachineFunction &MF = *MBB.getParent(); 230 231 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); 232 233 // We have to insert the new block immediately after the current one as we 234 // don't know what layout-successor relationships the successor has and we 235 // may not be able to (and generally don't want to) try to fix those up. 236 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); 237 238 // Update the branch instruction if necessary. 239 if (Br) { 240 assert(Br->getOperand(0).getMBB() == &Succ && 241 "Didn't start with the right target!"); 242 Br->getOperand(0).setMBB(&NewMBB); 243 244 // If this successor was reached through a branch rather than fallthrough, 245 // we might have *broken* fallthrough and so need to inject a new 246 // unconditional branch. 247 if (!UncondBr) { 248 MachineBasicBlock &OldLayoutSucc = 249 *std::next(MachineFunction::iterator(&NewMBB)); 250 assert(MBB.isSuccessor(&OldLayoutSucc) && 251 "Without an unconditional branch, the old layout successor should " 252 "be an actual successor!"); 253 auto BrBuilder = 254 BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); 255 // Update the unconditional branch now that we've added one. 256 UncondBr = &*BrBuilder; 257 } 258 259 // Insert unconditional "jump Succ" instruction in the new block if 260 // necessary. 261 if (!NewMBB.isLayoutSuccessor(&Succ)) { 262 SmallVector<MachineOperand, 4> Cond; 263 TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); 264 } 265 } else { 266 assert(!UncondBr && 267 "Cannot have a branchless successor and an unconditional branch!"); 268 assert(NewMBB.isLayoutSuccessor(&Succ) && 269 "A non-branch successor must have been a layout successor before " 270 "and now is a layout successor of the new block."); 271 } 272 273 // If this is the only edge to the successor, we can just replace it in the 274 // CFG. Otherwise we need to add a new entry in the CFG for the new 275 // successor. 276 if (SuccCount == 1) { 277 MBB.replaceSuccessor(&Succ, &NewMBB); 278 } else { 279 MBB.splitSuccessor(&Succ, &NewMBB); 280 } 281 282 // Hook up the edge from the new basic block to the old successor in the CFG. 283 NewMBB.addSuccessor(&Succ); 284 285 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. 286 for (MachineInstr &MI : Succ) { 287 if (!MI.isPHI()) 288 break; 289 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 290 OpIdx += 2) { 291 MachineOperand &OpV = MI.getOperand(OpIdx); 292 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); 293 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); 294 if (OpMBB.getMBB() != &MBB) 295 continue; 296 297 // If this is the last edge to the succesor, just replace MBB in the PHI 298 if (SuccCount == 1) { 299 OpMBB.setMBB(&NewMBB); 300 break; 301 } 302 303 // Otherwise, append a new pair of operands for the new incoming edge. 304 MI.addOperand(MF, OpV); 305 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); 306 break; 307 } 308 } 309 310 // Inherit live-ins from the successor 311 for (auto &LI : Succ.liveins()) 312 NewMBB.addLiveIn(LI); 313 314 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" 315 << Succ.getName() << "'.\n"); 316 return NewMBB; 317 } 318 319 /// Removing duplicate PHI operands to leave the PHI in a canonical and 320 /// predictable form. 321 /// 322 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR 323 /// isn't what you might expect. We may have multiple entries in PHI nodes for 324 /// a single predecessor. This makes CFG-updating extremely complex, so here we 325 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly 326 /// one entry per predecessor, regardless of how many edges there are. 327 static void canonicalizePHIOperands(MachineFunction &MF) { 328 SmallPtrSet<MachineBasicBlock *, 4> Preds; 329 SmallVector<int, 4> DupIndices; 330 for (auto &MBB : MF) 331 for (auto &MI : MBB) { 332 if (!MI.isPHI()) 333 break; 334 335 // First we scan the operands of the PHI looking for duplicate entries 336 // a particular predecessor. We retain the operand index of each duplicate 337 // entry found. 338 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 339 OpIdx += 2) 340 if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) 341 DupIndices.push_back(OpIdx); 342 343 // Now walk the duplicate indices, removing both the block and value. Note 344 // that these are stored as a vector making this element-wise removal 345 // :w 346 // potentially quadratic. 347 // 348 // FIXME: It is really frustrating that we have to use a quadratic 349 // removal algorithm here. There should be a better way, but the use-def 350 // updates required make that impossible using the public API. 351 // 352 // Note that we have to process these backwards so that we don't 353 // invalidate other indices with each removal. 354 while (!DupIndices.empty()) { 355 int OpIdx = DupIndices.pop_back_val(); 356 // Remove both the block and value operand, again in reverse order to 357 // preserve indices. 358 MI.RemoveOperand(OpIdx + 1); 359 MI.RemoveOperand(OpIdx); 360 } 361 362 Preds.clear(); 363 } 364 } 365 366 /// Helper to scan a function for loads vulnerable to misspeculation that we 367 /// want to harden. 368 /// 369 /// We use this to avoid making changes to functions where there is nothing we 370 /// need to do to harden against misspeculation. 371 static bool hasVulnerableLoad(MachineFunction &MF) { 372 for (MachineBasicBlock &MBB : MF) { 373 for (MachineInstr &MI : MBB) { 374 // Loads within this basic block after an LFENCE are not at risk of 375 // speculatively executing with invalid predicates from prior control 376 // flow. So break out of this block but continue scanning the function. 377 if (MI.getOpcode() == X86::LFENCE) 378 break; 379 380 // Looking for loads only. 381 if (!MI.mayLoad()) 382 continue; 383 384 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. 385 if (MI.getOpcode() == X86::MFENCE) 386 continue; 387 388 // We found a load. 389 return true; 390 } 391 } 392 393 // No loads found. 394 return false; 395 } 396 397 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( 398 MachineFunction &MF) { 399 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 400 << " **********\n"); 401 402 // Only run if this pass is forced enabled or we detect the relevant function 403 // attribute requesting SLH. 404 if (!EnableSpeculativeLoadHardening && 405 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 406 return false; 407 408 Subtarget = &MF.getSubtarget<X86Subtarget>(); 409 MRI = &MF.getRegInfo(); 410 TII = Subtarget->getInstrInfo(); 411 TRI = Subtarget->getRegisterInfo(); 412 413 // FIXME: Support for 32-bit. 414 PS.emplace(MF, &X86::GR64_NOSPRegClass); 415 416 if (MF.begin() == MF.end()) 417 // Nothing to do for a degenerate empty function... 418 return false; 419 420 // We support an alternative hardening technique based on a debug flag. 421 if (HardenEdgesWithLFENCE) { 422 hardenEdgesWithLFENCE(MF); 423 return true; 424 } 425 426 // Create a dummy debug loc to use for all the generated code here. 427 DebugLoc Loc; 428 429 MachineBasicBlock &Entry = *MF.begin(); 430 auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); 431 432 // Do a quick scan to see if we have any checkable loads. 433 bool HasVulnerableLoad = hasVulnerableLoad(MF); 434 435 // See if we have any conditional branching blocks that we will need to trace 436 // predicate state through. 437 SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); 438 439 // If we have no interesting conditions or loads, nothing to do here. 440 if (!HasVulnerableLoad && Infos.empty()) 441 return true; 442 443 // The poison value is required to be an all-ones value for many aspects of 444 // this mitigation. 445 const int PoisonVal = -1; 446 PS->PoisonReg = MRI->createVirtualRegister(PS->RC); 447 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) 448 .addImm(PoisonVal); 449 ++NumInstsInserted; 450 451 // If we have loads being hardened and we've asked for call and ret edges to 452 // get a full fence-based mitigation, inject that fence. 453 if (HasVulnerableLoad && FenceCallAndRet) { 454 // We need to insert an LFENCE at the start of the function to suspend any 455 // incoming misspeculation from the caller. This helps two-fold: the caller 456 // may not have been protected as this code has been, and this code gets to 457 // not take any specific action to protect across calls. 458 // FIXME: We could skip this for functions which unconditionally return 459 // a constant. 460 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); 461 ++NumInstsInserted; 462 ++NumLFENCEsInserted; 463 } 464 465 // If we guarded the entry with an LFENCE and have no conditionals to protect 466 // in blocks, then we're done. 467 if (FenceCallAndRet && Infos.empty()) 468 // We may have changed the function's code at this point to insert fences. 469 return true; 470 471 // For every basic block in the function which can b 472 if (HardenInterprocedurally && !FenceCallAndRet) { 473 // Set up the predicate state by extracting it from the incoming stack 474 // pointer so we pick up any misspeculation in our caller. 475 PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); 476 } else { 477 // Otherwise, just build the predicate state itself by zeroing a register 478 // as we don't need any initial state. 479 PS->InitialReg = MRI->createVirtualRegister(PS->RC); 480 Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); 481 auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), 482 PredStateSubReg); 483 ++NumInstsInserted; 484 MachineOperand *ZeroEFLAGSDefOp = 485 ZeroI->findRegisterDefOperand(X86::EFLAGS); 486 assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && 487 "Must have an implicit def of EFLAGS!"); 488 ZeroEFLAGSDefOp->setIsDead(true); 489 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), 490 PS->InitialReg) 491 .addImm(0) 492 .addReg(PredStateSubReg) 493 .addImm(X86::sub_32bit); 494 } 495 496 // We're going to need to trace predicate state throughout the function's 497 // CFG. Prepare for this by setting up our initial state of PHIs with unique 498 // predecessor entries and all the initial predicate state. 499 canonicalizePHIOperands(MF); 500 501 // Track the updated values in an SSA updater to rewrite into SSA form at the 502 // end. 503 PS->SSA.Initialize(PS->InitialReg); 504 PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); 505 506 // Trace through the CFG. 507 auto CMovs = tracePredStateThroughCFG(MF, Infos); 508 509 // We may also enter basic blocks in this function via exception handling 510 // control flow. Here, if we are hardening interprocedurally, we need to 511 // re-capture the predicate state from the throwing code. In the Itanium ABI, 512 // the throw will always look like a call to __cxa_throw and will have the 513 // predicate state in the stack pointer, so extract fresh predicate state from 514 // the stack pointer and make it available in SSA. 515 // FIXME: Handle non-itanium ABI EH models. 516 if (HardenInterprocedurally) { 517 for (MachineBasicBlock &MBB : MF) { 518 assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); 519 assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); 520 assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); 521 if (!MBB.isEHPad()) 522 continue; 523 PS->SSA.AddAvailableValue( 524 &MBB, 525 extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); 526 } 527 } 528 529 if (HardenIndirectCallsAndJumps) { 530 // If we are going to harden calls and jumps we need to unfold their memory 531 // operands. 532 unfoldCallAndJumpLoads(MF); 533 534 // Then we trace predicate state through the indirect branches. 535 auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); 536 CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); 537 } 538 539 // Now that we have the predicate state available at the start of each block 540 // in the CFG, trace it through each block, hardening vulnerable instructions 541 // as we go. 542 tracePredStateThroughBlocksAndHarden(MF); 543 544 // Now rewrite all the uses of the pred state using the SSA updater to insert 545 // PHIs connecting the state between blocks along the CFG edges. 546 for (MachineInstr *CMovI : CMovs) 547 for (MachineOperand &Op : CMovI->operands()) { 548 if (!Op.isReg() || Op.getReg() != PS->InitialReg) 549 continue; 550 551 PS->SSA.RewriteUse(Op); 552 } 553 554 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); 555 dbgs() << "\n"; MF.verify(this)); 556 return true; 557 } 558 559 /// Implements the naive hardening approach of putting an LFENCE after every 560 /// potentially mis-predicted control flow construct. 561 /// 562 /// We include this as an alternative mostly for the purpose of comparison. The 563 /// performance impact of this is expected to be extremely severe and not 564 /// practical for any real-world users. 565 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( 566 MachineFunction &MF) { 567 // First, we scan the function looking for blocks that are reached along edges 568 // that we might want to harden. 569 SmallSetVector<MachineBasicBlock *, 8> Blocks; 570 for (MachineBasicBlock &MBB : MF) { 571 // If there are no or only one successor, nothing to do here. 572 if (MBB.succ_size() <= 1) 573 continue; 574 575 // Skip blocks unless their terminators start with a branch. Other 576 // terminators don't seem interesting for guarding against misspeculation. 577 auto TermIt = MBB.getFirstTerminator(); 578 if (TermIt == MBB.end() || !TermIt->isBranch()) 579 continue; 580 581 // Add all the non-EH-pad succossors to the blocks we want to harden. We 582 // skip EH pads because there isn't really a condition of interest on 583 // entering. 584 for (MachineBasicBlock *SuccMBB : MBB.successors()) 585 if (!SuccMBB->isEHPad()) 586 Blocks.insert(SuccMBB); 587 } 588 589 for (MachineBasicBlock *MBB : Blocks) { 590 auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); 591 BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); 592 ++NumInstsInserted; 593 ++NumLFENCEsInserted; 594 } 595 } 596 597 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> 598 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { 599 SmallVector<BlockCondInfo, 16> Infos; 600 601 // Walk the function and build up a summary for each block's conditions that 602 // we need to trace through. 603 for (MachineBasicBlock &MBB : MF) { 604 // If there are no or only one successor, nothing to do here. 605 if (MBB.succ_size() <= 1) 606 continue; 607 608 // We want to reliably handle any conditional branch terminators in the 609 // MBB, so we manually analyze the branch. We can handle all of the 610 // permutations here, including ones that analyze branch cannot. 611 // 612 // The approach is to walk backwards across the terminators, resetting at 613 // any unconditional non-indirect branch, and track all conditional edges 614 // to basic blocks as well as the fallthrough or unconditional successor 615 // edge. For each conditional edge, we track the target and the opposite 616 // condition code in order to inject a "no-op" cmov into that successor 617 // that will harden the predicate. For the fallthrough/unconditional 618 // edge, we inject a separate cmov for each conditional branch with 619 // matching condition codes. This effectively implements an "and" of the 620 // condition flags, even if there isn't a single condition flag that would 621 // directly implement that. We don't bother trying to optimize either of 622 // these cases because if such an optimization is possible, LLVM should 623 // have optimized the conditional *branches* in that way already to reduce 624 // instruction count. This late, we simply assume the minimal number of 625 // branch instructions is being emitted and use that to guide our cmov 626 // insertion. 627 628 BlockCondInfo Info = {&MBB, {}, nullptr}; 629 630 // Now walk backwards through the terminators and build up successors they 631 // reach and the conditions. 632 for (MachineInstr &MI : llvm::reverse(MBB)) { 633 // Once we've handled all the terminators, we're done. 634 if (!MI.isTerminator()) 635 break; 636 637 // If we see a non-branch terminator, we can't handle anything so bail. 638 if (!MI.isBranch()) { 639 Info.CondBrs.clear(); 640 break; 641 } 642 643 // If we see an unconditional branch, reset our state, clear any 644 // fallthrough, and set this is the "else" successor. 645 if (MI.getOpcode() == X86::JMP_1) { 646 Info.CondBrs.clear(); 647 Info.UncondBr = &MI; 648 continue; 649 } 650 651 // If we get an invalid condition, we have an indirect branch or some 652 // other unanalyzable "fallthrough" case. We model this as a nullptr for 653 // the destination so we can still guard any conditional successors. 654 // Consider code sequences like: 655 // ``` 656 // jCC L1 657 // jmpq *%rax 658 // ``` 659 // We still want to harden the edge to `L1`. 660 if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { 661 Info.CondBrs.clear(); 662 Info.UncondBr = &MI; 663 continue; 664 } 665 666 // We have a vanilla conditional branch, add it to our list. 667 Info.CondBrs.push_back(&MI); 668 } 669 if (Info.CondBrs.empty()) { 670 ++NumBranchesUntraced; 671 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; 672 MBB.dump()); 673 continue; 674 } 675 676 Infos.push_back(Info); 677 } 678 679 return Infos; 680 } 681 682 /// Trace the predicate state through the CFG, instrumenting each conditional 683 /// branch such that misspeculation through an edge will poison the predicate 684 /// state. 685 /// 686 /// Returns the list of inserted CMov instructions so that they can have their 687 /// uses of the predicate state rewritten into proper SSA form once it is 688 /// complete. 689 SmallVector<MachineInstr *, 16> 690 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( 691 MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { 692 // Collect the inserted cmov instructions so we can rewrite their uses of the 693 // predicate state into SSA form. 694 SmallVector<MachineInstr *, 16> CMovs; 695 696 // Now walk all of the basic blocks looking for ones that end in conditional 697 // jumps where we need to update this register along each edge. 698 for (const BlockCondInfo &Info : Infos) { 699 MachineBasicBlock &MBB = *Info.MBB; 700 const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; 701 MachineInstr *UncondBr = Info.UncondBr; 702 703 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() 704 << "\n"); 705 ++NumCondBranchesTraced; 706 707 // Compute the non-conditional successor as either the target of any 708 // unconditional branch or the layout successor. 709 MachineBasicBlock *UncondSucc = 710 UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 711 ? UncondBr->getOperand(0).getMBB() 712 : nullptr) 713 : &*std::next(MachineFunction::iterator(&MBB)); 714 715 // Count how many edges there are to any given successor. 716 SmallDenseMap<MachineBasicBlock *, int> SuccCounts; 717 if (UncondSucc) 718 ++SuccCounts[UncondSucc]; 719 for (auto *CondBr : CondBrs) 720 ++SuccCounts[CondBr->getOperand(0).getMBB()]; 721 722 // A lambda to insert cmov instructions into a block checking all of the 723 // condition codes in a sequence. 724 auto BuildCheckingBlockForSuccAndConds = 725 [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, 726 MachineInstr *Br, MachineInstr *&UncondBr, 727 ArrayRef<X86::CondCode> Conds) { 728 // First, we split the edge to insert the checking block into a safe 729 // location. 730 auto &CheckingMBB = 731 (SuccCount == 1 && Succ.pred_size() == 1) 732 ? Succ 733 : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); 734 735 bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); 736 if (!LiveEFLAGS) 737 CheckingMBB.addLiveIn(X86::EFLAGS); 738 739 // Now insert the cmovs to implement the checks. 740 auto InsertPt = CheckingMBB.begin(); 741 assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && 742 "Should never have a PHI in the initial checking block as it " 743 "always has a single predecessor!"); 744 745 // We will wire each cmov to each other, but need to start with the 746 // incoming pred state. 747 unsigned CurStateReg = PS->InitialReg; 748 749 for (X86::CondCode Cond : Conds) { 750 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 751 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 752 753 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 754 // Note that we intentionally use an empty debug location so that 755 // this picks up the preceding location. 756 auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), 757 TII->get(CMovOp), UpdatedStateReg) 758 .addReg(CurStateReg) 759 .addReg(PS->PoisonReg) 760 .addImm(Cond); 761 // If this is the last cmov and the EFLAGS weren't originally 762 // live-in, mark them as killed. 763 if (!LiveEFLAGS && Cond == Conds.back()) 764 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 765 766 ++NumInstsInserted; 767 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); 768 dbgs() << "\n"); 769 770 // The first one of the cmovs will be using the top level 771 // `PredStateReg` and need to get rewritten into SSA form. 772 if (CurStateReg == PS->InitialReg) 773 CMovs.push_back(&*CMovI); 774 775 // The next cmov should start from this one's def. 776 CurStateReg = UpdatedStateReg; 777 } 778 779 // And put the last one into the available values for SSA form of our 780 // predicate state. 781 PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); 782 }; 783 784 std::vector<X86::CondCode> UncondCodeSeq; 785 for (auto *CondBr : CondBrs) { 786 MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); 787 int &SuccCount = SuccCounts[&Succ]; 788 789 X86::CondCode Cond = X86::getCondFromBranch(*CondBr); 790 X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); 791 UncondCodeSeq.push_back(Cond); 792 793 BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, 794 {InvCond}); 795 796 // Decrement the successor count now that we've split one of the edges. 797 // We need to keep the count of edges to the successor accurate in order 798 // to know above when to *replace* the successor in the CFG vs. just 799 // adding the new successor. 800 --SuccCount; 801 } 802 803 // Since we may have split edges and changed the number of successors, 804 // normalize the probabilities. This avoids doing it each time we split an 805 // edge. 806 MBB.normalizeSuccProbs(); 807 808 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we 809 // need to intersect the other condition codes. We can do this by just 810 // doing a cmov for each one. 811 if (!UncondSucc) 812 // If we have no fallthrough to protect (perhaps it is an indirect jump?) 813 // just skip this and continue. 814 continue; 815 816 assert(SuccCounts[UncondSucc] == 1 && 817 "We should never have more than one edge to the unconditional " 818 "successor at this point because every other edge must have been " 819 "split above!"); 820 821 // Sort and unique the codes to minimize them. 822 llvm::sort(UncondCodeSeq); 823 UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), 824 UncondCodeSeq.end()); 825 826 // Build a checking version of the successor. 827 BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, 828 UncondBr, UncondBr, UncondCodeSeq); 829 } 830 831 return CMovs; 832 } 833 834 /// Compute the register class for the unfolded load. 835 /// 836 /// FIXME: This should probably live in X86InstrInfo, potentially by adding 837 /// a way to unfold into a newly created vreg rather than requiring a register 838 /// input. 839 static const TargetRegisterClass * 840 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, 841 unsigned Opcode) { 842 unsigned Index; 843 unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( 844 Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); 845 const MCInstrDesc &MCID = TII.get(UnfoldedOpc); 846 return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); 847 } 848 849 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( 850 MachineFunction &MF) { 851 for (MachineBasicBlock &MBB : MF) 852 for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) { 853 // Grab a reference and increment the iterator so we can remove this 854 // instruction if needed without disturbing the iteration. 855 MachineInstr &MI = *MII++; 856 857 // Must either be a call or a branch. 858 if (!MI.isCall() && !MI.isBranch()) 859 continue; 860 // We only care about loading variants of these instructions. 861 if (!MI.mayLoad()) 862 continue; 863 864 switch (MI.getOpcode()) { 865 default: { 866 LLVM_DEBUG( 867 dbgs() << "ERROR: Found an unexpected loading branch or call " 868 "instruction:\n"; 869 MI.dump(); dbgs() << "\n"); 870 report_fatal_error("Unexpected loading branch or call!"); 871 } 872 873 case X86::FARCALL16m: 874 case X86::FARCALL32m: 875 case X86::FARCALL64: 876 case X86::FARJMP16m: 877 case X86::FARJMP32m: 878 case X86::FARJMP64: 879 // We cannot mitigate far jumps or calls, but we also don't expect them 880 // to be vulnerable to Spectre v1.2 style attacks. 881 continue; 882 883 case X86::CALL16m: 884 case X86::CALL16m_NT: 885 case X86::CALL32m: 886 case X86::CALL32m_NT: 887 case X86::CALL64m: 888 case X86::CALL64m_NT: 889 case X86::JMP16m: 890 case X86::JMP16m_NT: 891 case X86::JMP32m: 892 case X86::JMP32m_NT: 893 case X86::JMP64m: 894 case X86::JMP64m_NT: 895 case X86::TAILJMPm64: 896 case X86::TAILJMPm64_REX: 897 case X86::TAILJMPm: 898 case X86::TCRETURNmi64: 899 case X86::TCRETURNmi: { 900 // Use the generic unfold logic now that we know we're dealing with 901 // expected instructions. 902 // FIXME: We don't have test coverage for all of these! 903 auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); 904 if (!UnfoldedRC) { 905 LLVM_DEBUG(dbgs() 906 << "ERROR: Unable to unfold load from instruction:\n"; 907 MI.dump(); dbgs() << "\n"); 908 report_fatal_error("Unable to unfold load!"); 909 } 910 Register Reg = MRI->createVirtualRegister(UnfoldedRC); 911 SmallVector<MachineInstr *, 2> NewMIs; 912 // If we were able to compute an unfolded reg class, any failure here 913 // is just a programming error so just assert. 914 bool Unfolded = 915 TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, 916 /*UnfoldStore*/ false, NewMIs); 917 (void)Unfolded; 918 assert(Unfolded && 919 "Computed unfolded register class but failed to unfold"); 920 // Now stitch the new instructions into place and erase the old one. 921 for (auto *NewMI : NewMIs) 922 MBB.insert(MI.getIterator(), NewMI); 923 MI.eraseFromParent(); 924 LLVM_DEBUG({ 925 dbgs() << "Unfolded load successfully into:\n"; 926 for (auto *NewMI : NewMIs) { 927 NewMI->dump(); 928 dbgs() << "\n"; 929 } 930 }); 931 continue; 932 } 933 } 934 llvm_unreachable("Escaped switch with default!"); 935 } 936 } 937 938 /// Trace the predicate state through indirect branches, instrumenting them to 939 /// poison the state if a target is reached that does not match the expected 940 /// target. 941 /// 942 /// This is designed to mitigate Spectre variant 1 attacks where an indirect 943 /// branch is trained to predict a particular target and then mispredicts that 944 /// target in a way that can leak data. Despite using an indirect branch, this 945 /// is really a variant 1 style attack: it does not steer execution to an 946 /// arbitrary or attacker controlled address, and it does not require any 947 /// special code executing next to the victim. This attack can also be mitigated 948 /// through retpolines, but those require either replacing indirect branches 949 /// with conditional direct branches or lowering them through a device that 950 /// blocks speculation. This mitigation can replace these retpoline-style 951 /// mitigations for jump tables and other indirect branches within a function 952 /// when variant 2 isn't a risk while allowing limited speculation. Indirect 953 /// calls, however, cannot be mitigated through this technique without changing 954 /// the ABI in a fundamental way. 955 SmallVector<MachineInstr *, 16> 956 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( 957 MachineFunction &MF) { 958 // We use the SSAUpdater to insert PHI nodes for the target addresses of 959 // indirect branches. We don't actually need the full power of the SSA updater 960 // in this particular case as we always have immediately available values, but 961 // this avoids us having to re-implement the PHI construction logic. 962 MachineSSAUpdater TargetAddrSSA(MF); 963 TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); 964 965 // Track which blocks were terminated with an indirect branch. 966 SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; 967 968 // We need to know what blocks end up reached via indirect branches. We 969 // expect this to be a subset of those whose address is taken and so track it 970 // directly via the CFG. 971 SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; 972 973 // Walk all the blocks which end in an indirect branch and make the 974 // target address available. 975 for (MachineBasicBlock &MBB : MF) { 976 // Find the last terminator. 977 auto MII = MBB.instr_rbegin(); 978 while (MII != MBB.instr_rend() && MII->isDebugInstr()) 979 ++MII; 980 if (MII == MBB.instr_rend()) 981 continue; 982 MachineInstr &TI = *MII; 983 if (!TI.isTerminator() || !TI.isBranch()) 984 // No terminator or non-branch terminator. 985 continue; 986 987 unsigned TargetReg; 988 989 switch (TI.getOpcode()) { 990 default: 991 // Direct branch or conditional branch (leading to fallthrough). 992 continue; 993 994 case X86::FARJMP16m: 995 case X86::FARJMP32m: 996 case X86::FARJMP64: 997 // We cannot mitigate far jumps or calls, but we also don't expect them 998 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. 999 continue; 1000 1001 case X86::JMP16m: 1002 case X86::JMP16m_NT: 1003 case X86::JMP32m: 1004 case X86::JMP32m_NT: 1005 case X86::JMP64m: 1006 case X86::JMP64m_NT: 1007 // Mostly as documentation. 1008 report_fatal_error("Memory operand jumps should have been unfolded!"); 1009 1010 case X86::JMP16r: 1011 report_fatal_error( 1012 "Support for 16-bit indirect branches is not implemented."); 1013 case X86::JMP32r: 1014 report_fatal_error( 1015 "Support for 32-bit indirect branches is not implemented."); 1016 1017 case X86::JMP64r: 1018 TargetReg = TI.getOperand(0).getReg(); 1019 } 1020 1021 // We have definitely found an indirect branch. Verify that there are no 1022 // preceding conditional branches as we don't yet support that. 1023 if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { 1024 return !OtherTI.isDebugInstr() && &OtherTI != &TI; 1025 })) { 1026 LLVM_DEBUG({ 1027 dbgs() << "ERROR: Found other terminators in a block with an indirect " 1028 "branch! This is not yet supported! Terminator sequence:\n"; 1029 for (MachineInstr &MI : MBB.terminators()) { 1030 MI.dump(); 1031 dbgs() << '\n'; 1032 } 1033 }); 1034 report_fatal_error("Unimplemented terminator sequence!"); 1035 } 1036 1037 // Make the target register an available value for this block. 1038 TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); 1039 IndirectTerminatedMBBs.insert(&MBB); 1040 1041 // Add all the successors to our target candidates. 1042 for (MachineBasicBlock *Succ : MBB.successors()) 1043 IndirectTargetMBBs.insert(Succ); 1044 } 1045 1046 // Keep track of the cmov instructions we insert so we can return them. 1047 SmallVector<MachineInstr *, 16> CMovs; 1048 1049 // If we didn't find any indirect branches with targets, nothing to do here. 1050 if (IndirectTargetMBBs.empty()) 1051 return CMovs; 1052 1053 // We found indirect branches and targets that need to be instrumented to 1054 // harden loads within them. Walk the blocks of the function (to get a stable 1055 // ordering) and instrument each target of an indirect branch. 1056 for (MachineBasicBlock &MBB : MF) { 1057 // Skip the blocks that aren't candidate targets. 1058 if (!IndirectTargetMBBs.count(&MBB)) 1059 continue; 1060 1061 // We don't expect EH pads to ever be reached via an indirect branch. If 1062 // this is desired for some reason, we could simply skip them here rather 1063 // than asserting. 1064 assert(!MBB.isEHPad() && 1065 "Unexpected EH pad as target of an indirect branch!"); 1066 1067 // We should never end up threading EFLAGS into a block to harden 1068 // conditional jumps as there would be an additional successor via the 1069 // indirect branch. As a consequence, all such edges would be split before 1070 // reaching here, and the inserted block will handle the EFLAGS-based 1071 // hardening. 1072 assert(!MBB.isLiveIn(X86::EFLAGS) && 1073 "Cannot check within a block that already has live-in EFLAGS!"); 1074 1075 // We can't handle having non-indirect edges into this block unless this is 1076 // the only successor and we can synthesize the necessary target address. 1077 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1078 // If we've already handled this by extracting the target directly, 1079 // nothing to do. 1080 if (IndirectTerminatedMBBs.count(Pred)) 1081 continue; 1082 1083 // Otherwise, we have to be the only successor. We generally expect this 1084 // to be true as conditional branches should have had a critical edge 1085 // split already. We don't however need to worry about EH pad successors 1086 // as they'll happily ignore the target and their hardening strategy is 1087 // resilient to all ways in which they could be reached speculatively. 1088 if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { 1089 return Succ->isEHPad() || Succ == &MBB; 1090 })) { 1091 LLVM_DEBUG({ 1092 dbgs() << "ERROR: Found conditional entry to target of indirect " 1093 "branch!\n"; 1094 Pred->dump(); 1095 MBB.dump(); 1096 }); 1097 report_fatal_error("Cannot harden a conditional entry to a target of " 1098 "an indirect branch!"); 1099 } 1100 1101 // Now we need to compute the address of this block and install it as a 1102 // synthetic target in the predecessor. We do this at the bottom of the 1103 // predecessor. 1104 auto InsertPt = Pred->getFirstTerminator(); 1105 Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1106 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1107 !Subtarget->isPositionIndependent()) { 1108 // Directly materialize it into an immediate. 1109 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), 1110 TII->get(X86::MOV64ri32), TargetReg) 1111 .addMBB(&MBB); 1112 ++NumInstsInserted; 1113 (void)AddrI; 1114 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump(); 1115 dbgs() << "\n"); 1116 } else { 1117 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), 1118 TargetReg) 1119 .addReg(/*Base*/ X86::RIP) 1120 .addImm(/*Scale*/ 1) 1121 .addReg(/*Index*/ 0) 1122 .addMBB(&MBB) 1123 .addReg(/*Segment*/ 0); 1124 ++NumInstsInserted; 1125 (void)AddrI; 1126 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); 1127 dbgs() << "\n"); 1128 } 1129 // And make this available. 1130 TargetAddrSSA.AddAvailableValue(Pred, TargetReg); 1131 } 1132 1133 // Materialize the needed SSA value of the target. Note that we need the 1134 // middle of the block as this block might at the bottom have an indirect 1135 // branch back to itself. We can do this here because at this point, every 1136 // predecessor of this block has an available value. This is basically just 1137 // automating the construction of a PHI node for this target. 1138 unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); 1139 1140 // Insert a comparison of the incoming target register with this block's 1141 // address. This also requires us to mark the block as having its address 1142 // taken explicitly. 1143 MBB.setHasAddressTaken(); 1144 auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); 1145 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1146 !Subtarget->isPositionIndependent()) { 1147 // Check directly against a relocated immediate when we can. 1148 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) 1149 .addReg(TargetReg, RegState::Kill) 1150 .addMBB(&MBB); 1151 ++NumInstsInserted; 1152 (void)CheckI; 1153 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1154 } else { 1155 // Otherwise compute the address into a register first. 1156 Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1157 auto AddrI = 1158 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) 1159 .addReg(/*Base*/ X86::RIP) 1160 .addImm(/*Scale*/ 1) 1161 .addReg(/*Index*/ 0) 1162 .addMBB(&MBB) 1163 .addReg(/*Segment*/ 0); 1164 ++NumInstsInserted; 1165 (void)AddrI; 1166 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); 1167 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) 1168 .addReg(TargetReg, RegState::Kill) 1169 .addReg(AddrReg, RegState::Kill); 1170 ++NumInstsInserted; 1171 (void)CheckI; 1172 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1173 } 1174 1175 // Now cmov over the predicate if the comparison wasn't equal. 1176 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 1177 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 1178 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 1179 auto CMovI = 1180 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) 1181 .addReg(PS->InitialReg) 1182 .addReg(PS->PoisonReg) 1183 .addImm(X86::COND_NE); 1184 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 1185 ++NumInstsInserted; 1186 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 1187 CMovs.push_back(&*CMovI); 1188 1189 // And put the new value into the available values for SSA form of our 1190 // predicate state. 1191 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 1192 } 1193 1194 // Return all the newly inserted cmov instructions of the predicate state. 1195 return CMovs; 1196 } 1197 1198 /// Returns true if the instruction has no behavior (specified or otherwise) 1199 /// that is based on the value of any of its register operands 1200 /// 1201 /// A classical example of something that is inherently not data invariant is an 1202 /// indirect jump -- the destination is loaded into icache based on the bits set 1203 /// in the jump destination register. 1204 /// 1205 /// FIXME: This should become part of our instruction tables. 1206 static bool isDataInvariant(MachineInstr &MI) { 1207 switch (MI.getOpcode()) { 1208 default: 1209 // By default, assume that the instruction is not data invariant. 1210 return false; 1211 1212 // Some target-independent operations that trivially lower to data-invariant 1213 // instructions. 1214 case TargetOpcode::COPY: 1215 case TargetOpcode::INSERT_SUBREG: 1216 case TargetOpcode::SUBREG_TO_REG: 1217 return true; 1218 1219 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 1220 // However, they set flags and are perhaps the most surprisingly constant 1221 // time operations so we call them out here separately. 1222 case X86::IMUL16rr: 1223 case X86::IMUL16rri8: 1224 case X86::IMUL16rri: 1225 case X86::IMUL32rr: 1226 case X86::IMUL32rri8: 1227 case X86::IMUL32rri: 1228 case X86::IMUL64rr: 1229 case X86::IMUL64rri32: 1230 case X86::IMUL64rri8: 1231 1232 // Bit scanning and counting instructions that are somewhat surprisingly 1233 // constant time as they scan across bits and do other fairly complex 1234 // operations like popcnt, but are believed to be constant time on x86. 1235 // However, these set flags. 1236 case X86::BSF16rr: 1237 case X86::BSF32rr: 1238 case X86::BSF64rr: 1239 case X86::BSR16rr: 1240 case X86::BSR32rr: 1241 case X86::BSR64rr: 1242 case X86::LZCNT16rr: 1243 case X86::LZCNT32rr: 1244 case X86::LZCNT64rr: 1245 case X86::POPCNT16rr: 1246 case X86::POPCNT32rr: 1247 case X86::POPCNT64rr: 1248 case X86::TZCNT16rr: 1249 case X86::TZCNT32rr: 1250 case X86::TZCNT64rr: 1251 1252 // Bit manipulation instructions are effectively combinations of basic 1253 // arithmetic ops, and should still execute in constant time. These also 1254 // set flags. 1255 case X86::BLCFILL32rr: 1256 case X86::BLCFILL64rr: 1257 case X86::BLCI32rr: 1258 case X86::BLCI64rr: 1259 case X86::BLCIC32rr: 1260 case X86::BLCIC64rr: 1261 case X86::BLCMSK32rr: 1262 case X86::BLCMSK64rr: 1263 case X86::BLCS32rr: 1264 case X86::BLCS64rr: 1265 case X86::BLSFILL32rr: 1266 case X86::BLSFILL64rr: 1267 case X86::BLSI32rr: 1268 case X86::BLSI64rr: 1269 case X86::BLSIC32rr: 1270 case X86::BLSIC64rr: 1271 case X86::BLSMSK32rr: 1272 case X86::BLSMSK64rr: 1273 case X86::BLSR32rr: 1274 case X86::BLSR64rr: 1275 case X86::TZMSK32rr: 1276 case X86::TZMSK64rr: 1277 1278 // Bit extracting and clearing instructions should execute in constant time, 1279 // and set flags. 1280 case X86::BEXTR32rr: 1281 case X86::BEXTR64rr: 1282 case X86::BEXTRI32ri: 1283 case X86::BEXTRI64ri: 1284 case X86::BZHI32rr: 1285 case X86::BZHI64rr: 1286 1287 // Shift and rotate. 1288 case X86::ROL8r1: case X86::ROL16r1: case X86::ROL32r1: case X86::ROL64r1: 1289 case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: 1290 case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri: 1291 case X86::ROR8r1: case X86::ROR16r1: case X86::ROR32r1: case X86::ROR64r1: 1292 case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: 1293 case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri: 1294 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1: case X86::SAR64r1: 1295 case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: 1296 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri: 1297 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1: case X86::SHL64r1: 1298 case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: 1299 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: 1300 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1: case X86::SHR64r1: 1301 case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: 1302 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri: 1303 case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: 1304 case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: 1305 case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: 1306 case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: 1307 1308 // Basic arithmetic is constant time on the input but does set flags. 1309 case X86::ADC8rr: case X86::ADC8ri: 1310 case X86::ADC16rr: case X86::ADC16ri: case X86::ADC16ri8: 1311 case X86::ADC32rr: case X86::ADC32ri: case X86::ADC32ri8: 1312 case X86::ADC64rr: case X86::ADC64ri8: case X86::ADC64ri32: 1313 case X86::ADD8rr: case X86::ADD8ri: 1314 case X86::ADD16rr: case X86::ADD16ri: case X86::ADD16ri8: 1315 case X86::ADD32rr: case X86::ADD32ri: case X86::ADD32ri8: 1316 case X86::ADD64rr: case X86::ADD64ri8: case X86::ADD64ri32: 1317 case X86::AND8rr: case X86::AND8ri: 1318 case X86::AND16rr: case X86::AND16ri: case X86::AND16ri8: 1319 case X86::AND32rr: case X86::AND32ri: case X86::AND32ri8: 1320 case X86::AND64rr: case X86::AND64ri8: case X86::AND64ri32: 1321 case X86::OR8rr: case X86::OR8ri: 1322 case X86::OR16rr: case X86::OR16ri: case X86::OR16ri8: 1323 case X86::OR32rr: case X86::OR32ri: case X86::OR32ri8: 1324 case X86::OR64rr: case X86::OR64ri8: case X86::OR64ri32: 1325 case X86::SBB8rr: case X86::SBB8ri: 1326 case X86::SBB16rr: case X86::SBB16ri: case X86::SBB16ri8: 1327 case X86::SBB32rr: case X86::SBB32ri: case X86::SBB32ri8: 1328 case X86::SBB64rr: case X86::SBB64ri8: case X86::SBB64ri32: 1329 case X86::SUB8rr: case X86::SUB8ri: 1330 case X86::SUB16rr: case X86::SUB16ri: case X86::SUB16ri8: 1331 case X86::SUB32rr: case X86::SUB32ri: case X86::SUB32ri8: 1332 case X86::SUB64rr: case X86::SUB64ri8: case X86::SUB64ri32: 1333 case X86::XOR8rr: case X86::XOR8ri: 1334 case X86::XOR16rr: case X86::XOR16ri: case X86::XOR16ri8: 1335 case X86::XOR32rr: case X86::XOR32ri: case X86::XOR32ri8: 1336 case X86::XOR64rr: case X86::XOR64ri8: case X86::XOR64ri32: 1337 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 1338 case X86::ADCX32rr: case X86::ADCX64rr: 1339 case X86::ADOX32rr: case X86::ADOX64rr: 1340 case X86::ANDN32rr: case X86::ANDN64rr: 1341 // Unary arithmetic operations. 1342 case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: 1343 case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: 1344 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 1345 // Check whether the EFLAGS implicit-def is dead. We assume that this will 1346 // always find the implicit-def because this code should only be reached 1347 // for instructions that do in fact implicitly def this. 1348 if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { 1349 // If we would clobber EFLAGS that are used, just bail for now. 1350 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; 1351 MI.dump(); dbgs() << "\n"); 1352 return false; 1353 } 1354 1355 // Otherwise, fallthrough to handle these the same as instructions that 1356 // don't set EFLAGS. 1357 LLVM_FALLTHROUGH; 1358 1359 // Unlike other arithmetic, NOT doesn't set EFLAGS. 1360 case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: 1361 1362 // Various move instructions used to zero or sign extend things. Note that we 1363 // intentionally don't support the _NOREX variants as we can't handle that 1364 // register constraint anyways. 1365 case X86::MOVSX16rr8: 1366 case X86::MOVSX32rr8: case X86::MOVSX32rr16: 1367 case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: 1368 case X86::MOVZX16rr8: 1369 case X86::MOVZX32rr8: case X86::MOVZX32rr16: 1370 case X86::MOVZX64rr8: case X86::MOVZX64rr16: 1371 case X86::MOV32rr: 1372 1373 // Arithmetic instructions that are both constant time and don't set flags. 1374 case X86::RORX32ri: 1375 case X86::RORX64ri: 1376 case X86::SARX32rr: 1377 case X86::SARX64rr: 1378 case X86::SHLX32rr: 1379 case X86::SHLX64rr: 1380 case X86::SHRX32rr: 1381 case X86::SHRX64rr: 1382 1383 // LEA doesn't actually access memory, and its arithmetic is constant time. 1384 case X86::LEA16r: 1385 case X86::LEA32r: 1386 case X86::LEA64_32r: 1387 case X86::LEA64r: 1388 return true; 1389 } 1390 } 1391 1392 /// Returns true if the instruction has no behavior (specified or otherwise) 1393 /// that is based on the value loaded from memory or the value of any 1394 /// non-address register operands. 1395 /// 1396 /// For example, if the latency of the instruction is dependent on the 1397 /// particular bits set in any of the registers *or* any of the bits loaded from 1398 /// memory. 1399 /// 1400 /// A classical example of something that is inherently not data invariant is an 1401 /// indirect jump -- the destination is loaded into icache based on the bits set 1402 /// in the jump destination register. 1403 /// 1404 /// FIXME: This should become part of our instruction tables. 1405 static bool isDataInvariantLoad(MachineInstr &MI) { 1406 switch (MI.getOpcode()) { 1407 default: 1408 // By default, assume that the load will immediately leak. 1409 return false; 1410 1411 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 1412 // However, they set flags and are perhaps the most surprisingly constant 1413 // time operations so we call them out here separately. 1414 case X86::IMUL16rm: 1415 case X86::IMUL16rmi8: 1416 case X86::IMUL16rmi: 1417 case X86::IMUL32rm: 1418 case X86::IMUL32rmi8: 1419 case X86::IMUL32rmi: 1420 case X86::IMUL64rm: 1421 case X86::IMUL64rmi32: 1422 case X86::IMUL64rmi8: 1423 1424 // Bit scanning and counting instructions that are somewhat surprisingly 1425 // constant time as they scan across bits and do other fairly complex 1426 // operations like popcnt, but are believed to be constant time on x86. 1427 // However, these set flags. 1428 case X86::BSF16rm: 1429 case X86::BSF32rm: 1430 case X86::BSF64rm: 1431 case X86::BSR16rm: 1432 case X86::BSR32rm: 1433 case X86::BSR64rm: 1434 case X86::LZCNT16rm: 1435 case X86::LZCNT32rm: 1436 case X86::LZCNT64rm: 1437 case X86::POPCNT16rm: 1438 case X86::POPCNT32rm: 1439 case X86::POPCNT64rm: 1440 case X86::TZCNT16rm: 1441 case X86::TZCNT32rm: 1442 case X86::TZCNT64rm: 1443 1444 // Bit manipulation instructions are effectively combinations of basic 1445 // arithmetic ops, and should still execute in constant time. These also 1446 // set flags. 1447 case X86::BLCFILL32rm: 1448 case X86::BLCFILL64rm: 1449 case X86::BLCI32rm: 1450 case X86::BLCI64rm: 1451 case X86::BLCIC32rm: 1452 case X86::BLCIC64rm: 1453 case X86::BLCMSK32rm: 1454 case X86::BLCMSK64rm: 1455 case X86::BLCS32rm: 1456 case X86::BLCS64rm: 1457 case X86::BLSFILL32rm: 1458 case X86::BLSFILL64rm: 1459 case X86::BLSI32rm: 1460 case X86::BLSI64rm: 1461 case X86::BLSIC32rm: 1462 case X86::BLSIC64rm: 1463 case X86::BLSMSK32rm: 1464 case X86::BLSMSK64rm: 1465 case X86::BLSR32rm: 1466 case X86::BLSR64rm: 1467 case X86::TZMSK32rm: 1468 case X86::TZMSK64rm: 1469 1470 // Bit extracting and clearing instructions should execute in constant time, 1471 // and set flags. 1472 case X86::BEXTR32rm: 1473 case X86::BEXTR64rm: 1474 case X86::BEXTRI32mi: 1475 case X86::BEXTRI64mi: 1476 case X86::BZHI32rm: 1477 case X86::BZHI64rm: 1478 1479 // Basic arithmetic is constant time on the input but does set flags. 1480 case X86::ADC8rm: 1481 case X86::ADC16rm: 1482 case X86::ADC32rm: 1483 case X86::ADC64rm: 1484 case X86::ADCX32rm: 1485 case X86::ADCX64rm: 1486 case X86::ADD8rm: 1487 case X86::ADD16rm: 1488 case X86::ADD32rm: 1489 case X86::ADD64rm: 1490 case X86::ADOX32rm: 1491 case X86::ADOX64rm: 1492 case X86::AND8rm: 1493 case X86::AND16rm: 1494 case X86::AND32rm: 1495 case X86::AND64rm: 1496 case X86::ANDN32rm: 1497 case X86::ANDN64rm: 1498 case X86::OR8rm: 1499 case X86::OR16rm: 1500 case X86::OR32rm: 1501 case X86::OR64rm: 1502 case X86::SBB8rm: 1503 case X86::SBB16rm: 1504 case X86::SBB32rm: 1505 case X86::SBB64rm: 1506 case X86::SUB8rm: 1507 case X86::SUB16rm: 1508 case X86::SUB32rm: 1509 case X86::SUB64rm: 1510 case X86::XOR8rm: 1511 case X86::XOR16rm: 1512 case X86::XOR32rm: 1513 case X86::XOR64rm: 1514 // Check whether the EFLAGS implicit-def is dead. We assume that this will 1515 // always find the implicit-def because this code should only be reached 1516 // for instructions that do in fact implicitly def this. 1517 if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { 1518 // If we would clobber EFLAGS that are used, just bail for now. 1519 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; 1520 MI.dump(); dbgs() << "\n"); 1521 return false; 1522 } 1523 1524 // Otherwise, fallthrough to handle these the same as instructions that 1525 // don't set EFLAGS. 1526 LLVM_FALLTHROUGH; 1527 1528 // Integer multiply w/o affecting flags is still believed to be constant 1529 // time on x86. Called out separately as this is among the most surprising 1530 // instructions to exhibit that behavior. 1531 case X86::MULX32rm: 1532 case X86::MULX64rm: 1533 1534 // Arithmetic instructions that are both constant time and don't set flags. 1535 case X86::RORX32mi: 1536 case X86::RORX64mi: 1537 case X86::SARX32rm: 1538 case X86::SARX64rm: 1539 case X86::SHLX32rm: 1540 case X86::SHLX64rm: 1541 case X86::SHRX32rm: 1542 case X86::SHRX64rm: 1543 1544 // Conversions are believed to be constant time and don't set flags. 1545 case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: 1546 case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: 1547 case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: 1548 case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: 1549 case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: 1550 case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: 1551 case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: 1552 case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: 1553 case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: 1554 case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: 1555 // AVX512 added unsigned integer conversions. 1556 case X86::VCVTTSD2USI64Zrm: 1557 case X86::VCVTTSD2USIZrm: 1558 case X86::VCVTTSS2USI64Zrm: 1559 case X86::VCVTTSS2USIZrm: 1560 case X86::VCVTUSI2SDZrm: 1561 case X86::VCVTUSI642SDZrm: 1562 case X86::VCVTUSI2SSZrm: 1563 case X86::VCVTUSI642SSZrm: 1564 1565 // Loads to register don't set flags. 1566 case X86::MOV8rm: 1567 case X86::MOV8rm_NOREX: 1568 case X86::MOV16rm: 1569 case X86::MOV32rm: 1570 case X86::MOV64rm: 1571 case X86::MOVSX16rm8: 1572 case X86::MOVSX32rm16: 1573 case X86::MOVSX32rm8: 1574 case X86::MOVSX32rm8_NOREX: 1575 case X86::MOVSX64rm16: 1576 case X86::MOVSX64rm32: 1577 case X86::MOVSX64rm8: 1578 case X86::MOVZX16rm8: 1579 case X86::MOVZX32rm16: 1580 case X86::MOVZX32rm8: 1581 case X86::MOVZX32rm8_NOREX: 1582 case X86::MOVZX64rm16: 1583 case X86::MOVZX64rm8: 1584 return true; 1585 } 1586 } 1587 1588 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1589 const TargetRegisterInfo &TRI) { 1590 // Check if EFLAGS are alive by seeing if there is a def of them or they 1591 // live-in, and then seeing if that def is in turn used. 1592 for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { 1593 if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { 1594 // If the def is dead, then EFLAGS is not live. 1595 if (DefOp->isDead()) 1596 return false; 1597 1598 // Otherwise we've def'ed it, and it is live. 1599 return true; 1600 } 1601 // While at this instruction, also check if we use and kill EFLAGS 1602 // which means it isn't live. 1603 if (MI.killsRegister(X86::EFLAGS, &TRI)) 1604 return false; 1605 } 1606 1607 // If we didn't find anything conclusive (neither definitely alive or 1608 // definitely dead) return whether it lives into the block. 1609 return MBB.isLiveIn(X86::EFLAGS); 1610 } 1611 1612 /// Trace the predicate state through each of the blocks in the function, 1613 /// hardening everything necessary along the way. 1614 /// 1615 /// We call this routine once the initial predicate state has been established 1616 /// for each basic block in the function in the SSA updater. This routine traces 1617 /// it through the instructions within each basic block, and for non-returning 1618 /// blocks informs the SSA updater about the final state that lives out of the 1619 /// block. Along the way, it hardens any vulnerable instruction using the 1620 /// currently valid predicate state. We have to do these two things together 1621 /// because the SSA updater only works across blocks. Within a block, we track 1622 /// the current predicate state directly and update it as it changes. 1623 /// 1624 /// This operates in two passes over each block. First, we analyze the loads in 1625 /// the block to determine which strategy will be used to harden them: hardening 1626 /// the address or hardening the loaded value when loaded into a register 1627 /// amenable to hardening. We have to process these first because the two 1628 /// strategies may interact -- later hardening may change what strategy we wish 1629 /// to use. We also will analyze data dependencies between loads and avoid 1630 /// hardening those loads that are data dependent on a load with a hardened 1631 /// address. We also skip hardening loads already behind an LFENCE as that is 1632 /// sufficient to harden them against misspeculation. 1633 /// 1634 /// Second, we actively trace the predicate state through the block, applying 1635 /// the hardening steps we determined necessary in the first pass as we go. 1636 /// 1637 /// These two passes are applied to each basic block. We operate one block at a 1638 /// time to simplify reasoning about reachability and sequencing. 1639 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( 1640 MachineFunction &MF) { 1641 SmallPtrSet<MachineInstr *, 16> HardenPostLoad; 1642 SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; 1643 1644 SmallSet<unsigned, 16> HardenedAddrRegs; 1645 1646 SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; 1647 1648 // Track the set of load-dependent registers through the basic block. Because 1649 // the values of these registers have an existing data dependency on a loaded 1650 // value which we would have checked, we can omit any checks on them. 1651 SparseBitVector<> LoadDepRegs; 1652 1653 for (MachineBasicBlock &MBB : MF) { 1654 // The first pass over the block: collect all the loads which can have their 1655 // loaded value hardened and all the loads that instead need their address 1656 // hardened. During this walk we propagate load dependence for address 1657 // hardened loads and also look for LFENCE to stop hardening wherever 1658 // possible. When deciding whether or not to harden the loaded value or not, 1659 // we check to see if any registers used in the address will have been 1660 // hardened at this point and if so, harden any remaining address registers 1661 // as that often successfully re-uses hardened addresses and minimizes 1662 // instructions. 1663 // 1664 // FIXME: We should consider an aggressive mode where we continue to keep as 1665 // many loads value hardened even when some address register hardening would 1666 // be free (due to reuse). 1667 // 1668 // Note that we only need this pass if we are actually hardening loads. 1669 if (HardenLoads) 1670 for (MachineInstr &MI : MBB) { 1671 // We naively assume that all def'ed registers of an instruction have 1672 // a data dependency on all of their operands. 1673 // FIXME: Do a more careful analysis of x86 to build a conservative 1674 // model here. 1675 if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { 1676 return Op.isReg() && LoadDepRegs.test(Op.getReg()); 1677 })) 1678 for (MachineOperand &Def : MI.defs()) 1679 if (Def.isReg()) 1680 LoadDepRegs.set(Def.getReg()); 1681 1682 // Both Intel and AMD are guiding that they will change the semantics of 1683 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is 1684 // no more need to guard things in this block. 1685 if (MI.getOpcode() == X86::LFENCE) 1686 break; 1687 1688 // If this instruction cannot load, nothing to do. 1689 if (!MI.mayLoad()) 1690 continue; 1691 1692 // Some instructions which "load" are trivially safe or unimportant. 1693 if (MI.getOpcode() == X86::MFENCE) 1694 continue; 1695 1696 // Extract the memory operand information about this instruction. 1697 // FIXME: This doesn't handle loading pseudo instructions which we often 1698 // could handle with similarly generic logic. We probably need to add an 1699 // MI-layer routine similar to the MC-layer one we use here which maps 1700 // pseudos much like this maps real instructions. 1701 const MCInstrDesc &Desc = MI.getDesc(); 1702 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 1703 if (MemRefBeginIdx < 0) { 1704 LLVM_DEBUG(dbgs() 1705 << "WARNING: unable to harden loading instruction: "; 1706 MI.dump()); 1707 continue; 1708 } 1709 1710 MemRefBeginIdx += X86II::getOperandBias(Desc); 1711 1712 MachineOperand &BaseMO = 1713 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1714 MachineOperand &IndexMO = 1715 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1716 1717 // If we have at least one (non-frame-index, non-RIP) register operand, 1718 // and neither operand is load-dependent, we need to check the load. 1719 unsigned BaseReg = 0, IndexReg = 0; 1720 if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && 1721 BaseMO.getReg() != X86::NoRegister) 1722 BaseReg = BaseMO.getReg(); 1723 if (IndexMO.getReg() != X86::NoRegister) 1724 IndexReg = IndexMO.getReg(); 1725 1726 if (!BaseReg && !IndexReg) 1727 // No register operands! 1728 continue; 1729 1730 // If any register operand is dependent, this load is dependent and we 1731 // needn't check it. 1732 // FIXME: Is this true in the case where we are hardening loads after 1733 // they complete? Unclear, need to investigate. 1734 if ((BaseReg && LoadDepRegs.test(BaseReg)) || 1735 (IndexReg && LoadDepRegs.test(IndexReg))) 1736 continue; 1737 1738 // If post-load hardening is enabled, this load is compatible with 1739 // post-load hardening, and we aren't already going to harden one of the 1740 // address registers, queue it up to be hardened post-load. Notably, 1741 // even once hardened this won't introduce a useful dependency that 1742 // could prune out subsequent loads. 1743 if (EnablePostLoadHardening && isDataInvariantLoad(MI) && 1744 MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && 1745 canHardenRegister(MI.getOperand(0).getReg()) && 1746 !HardenedAddrRegs.count(BaseReg) && 1747 !HardenedAddrRegs.count(IndexReg)) { 1748 HardenPostLoad.insert(&MI); 1749 HardenedAddrRegs.insert(MI.getOperand(0).getReg()); 1750 continue; 1751 } 1752 1753 // Record this instruction for address hardening and record its register 1754 // operands as being address-hardened. 1755 HardenLoadAddr.insert(&MI); 1756 if (BaseReg) 1757 HardenedAddrRegs.insert(BaseReg); 1758 if (IndexReg) 1759 HardenedAddrRegs.insert(IndexReg); 1760 1761 for (MachineOperand &Def : MI.defs()) 1762 if (Def.isReg()) 1763 LoadDepRegs.set(Def.getReg()); 1764 } 1765 1766 // Now re-walk the instructions in the basic block, and apply whichever 1767 // hardening strategy we have elected. Note that we do this in a second 1768 // pass specifically so that we have the complete set of instructions for 1769 // which we will do post-load hardening and can defer it in certain 1770 // circumstances. 1771 for (MachineInstr &MI : MBB) { 1772 if (HardenLoads) { 1773 // We cannot both require hardening the def of a load and its address. 1774 assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && 1775 "Requested to harden both the address and def of a load!"); 1776 1777 // Check if this is a load whose address needs to be hardened. 1778 if (HardenLoadAddr.erase(&MI)) { 1779 const MCInstrDesc &Desc = MI.getDesc(); 1780 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 1781 assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); 1782 1783 MemRefBeginIdx += X86II::getOperandBias(Desc); 1784 1785 MachineOperand &BaseMO = 1786 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1787 MachineOperand &IndexMO = 1788 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1789 hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); 1790 continue; 1791 } 1792 1793 // Test if this instruction is one of our post load instructions (and 1794 // remove it from the set if so). 1795 if (HardenPostLoad.erase(&MI)) { 1796 assert(!MI.isCall() && "Must not try to post-load harden a call!"); 1797 1798 // If this is a data-invariant load, we want to try and sink any 1799 // hardening as far as possible. 1800 if (isDataInvariantLoad(MI)) { 1801 // Sink the instruction we'll need to harden as far as we can down 1802 // the graph. 1803 MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); 1804 1805 // If we managed to sink this instruction, update everything so we 1806 // harden that instruction when we reach it in the instruction 1807 // sequence. 1808 if (SunkMI != &MI) { 1809 // If in sinking there was no instruction needing to be hardened, 1810 // we're done. 1811 if (!SunkMI) 1812 continue; 1813 1814 // Otherwise, add this to the set of defs we harden. 1815 HardenPostLoad.insert(SunkMI); 1816 continue; 1817 } 1818 } 1819 1820 unsigned HardenedReg = hardenPostLoad(MI); 1821 1822 // Mark the resulting hardened register as such so we don't re-harden. 1823 AddrRegToHardenedReg[HardenedReg] = HardenedReg; 1824 1825 continue; 1826 } 1827 1828 // Check for an indirect call or branch that may need its input hardened 1829 // even if we couldn't find the specific load used, or were able to 1830 // avoid hardening it for some reason. Note that here we cannot break 1831 // out afterward as we may still need to handle any call aspect of this 1832 // instruction. 1833 if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) 1834 hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); 1835 } 1836 1837 // After we finish hardening loads we handle interprocedural hardening if 1838 // enabled and relevant for this instruction. 1839 if (!HardenInterprocedurally) 1840 continue; 1841 if (!MI.isCall() && !MI.isReturn()) 1842 continue; 1843 1844 // If this is a direct return (IE, not a tail call) just directly harden 1845 // it. 1846 if (MI.isReturn() && !MI.isCall()) { 1847 hardenReturnInstr(MI); 1848 continue; 1849 } 1850 1851 // Otherwise we have a call. We need to handle transferring the predicate 1852 // state into a call and recovering it after the call returns (unless this 1853 // is a tail call). 1854 assert(MI.isCall() && "Should only reach here for calls!"); 1855 tracePredStateThroughCall(MI); 1856 } 1857 1858 HardenPostLoad.clear(); 1859 HardenLoadAddr.clear(); 1860 HardenedAddrRegs.clear(); 1861 AddrRegToHardenedReg.clear(); 1862 1863 // Currently, we only track data-dependent loads within a basic block. 1864 // FIXME: We should see if this is necessary or if we could be more 1865 // aggressive here without opening up attack avenues. 1866 LoadDepRegs.clear(); 1867 } 1868 } 1869 1870 /// Save EFLAGS into the returned GPR. This can in turn be restored with 1871 /// `restoreEFLAGS`. 1872 /// 1873 /// Note that LLVM can only lower very simple patterns of saved and restored 1874 /// EFLAGS registers. The restore should always be within the same basic block 1875 /// as the save so that no PHI nodes are inserted. 1876 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( 1877 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1878 DebugLoc Loc) { 1879 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches 1880 // what instruction selection does. 1881 Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); 1882 // We directly copy the FLAGS register and rely on later lowering to clean 1883 // this up into the appropriate setCC instructions. 1884 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); 1885 ++NumInstsInserted; 1886 return Reg; 1887 } 1888 1889 /// Restore EFLAGS from the provided GPR. This should be produced by 1890 /// `saveEFLAGS`. 1891 /// 1892 /// This must be done within the same basic block as the save in order to 1893 /// reliably lower. 1894 void X86SpeculativeLoadHardeningPass::restoreEFLAGS( 1895 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, 1896 unsigned Reg) { 1897 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); 1898 ++NumInstsInserted; 1899 } 1900 1901 /// Takes the current predicate state (in a register) and merges it into the 1902 /// stack pointer. The state is essentially a single bit, but we merge this in 1903 /// a way that won't form non-canonical pointers and also will be preserved 1904 /// across normal stack adjustments. 1905 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( 1906 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, 1907 unsigned PredStateReg) { 1908 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1909 // FIXME: This hard codes a shift distance based on the number of bits needed 1910 // to stay canonical on 64-bit. We should compute this somehow and support 1911 // 32-bit as part of that. 1912 auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) 1913 .addReg(PredStateReg, RegState::Kill) 1914 .addImm(47); 1915 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1916 ++NumInstsInserted; 1917 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) 1918 .addReg(X86::RSP) 1919 .addReg(TmpReg, RegState::Kill); 1920 OrI->addRegisterDead(X86::EFLAGS, TRI); 1921 ++NumInstsInserted; 1922 } 1923 1924 /// Extracts the predicate state stored in the high bits of the stack pointer. 1925 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( 1926 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1927 DebugLoc Loc) { 1928 Register PredStateReg = MRI->createVirtualRegister(PS->RC); 1929 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1930 1931 // We know that the stack pointer will have any preserved predicate state in 1932 // its high bit. We just want to smear this across the other bits. Turns out, 1933 // this is exactly what an arithmetic right shift does. 1934 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) 1935 .addReg(X86::RSP); 1936 auto ShiftI = 1937 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) 1938 .addReg(TmpReg, RegState::Kill) 1939 .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); 1940 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1941 ++NumInstsInserted; 1942 1943 return PredStateReg; 1944 } 1945 1946 void X86SpeculativeLoadHardeningPass::hardenLoadAddr( 1947 MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, 1948 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 1949 MachineBasicBlock &MBB = *MI.getParent(); 1950 DebugLoc Loc = MI.getDebugLoc(); 1951 1952 // Check if EFLAGS are alive by seeing if there is a def of them or they 1953 // live-in, and then seeing if that def is in turn used. 1954 bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); 1955 1956 SmallVector<MachineOperand *, 2> HardenOpRegs; 1957 1958 if (BaseMO.isFI()) { 1959 // A frame index is never a dynamically controllable load, so only 1960 // harden it if we're covering fixed address loads as well. 1961 LLVM_DEBUG( 1962 dbgs() << " Skipping hardening base of explicit stack frame load: "; 1963 MI.dump(); dbgs() << "\n"); 1964 } else if (BaseMO.getReg() == X86::RSP) { 1965 // Some idempotent atomic operations are lowered directly to a locked 1966 // OR with 0 to the top of stack(or slightly offset from top) which uses an 1967 // explicit RSP register as the base. 1968 assert(IndexMO.getReg() == X86::NoRegister && 1969 "Explicit RSP access with dynamic index!"); 1970 LLVM_DEBUG( 1971 dbgs() << " Cannot harden base of explicit RSP offset in a load!"); 1972 } else if (BaseMO.getReg() == X86::RIP || 1973 BaseMO.getReg() == X86::NoRegister) { 1974 // For both RIP-relative addressed loads or absolute loads, we cannot 1975 // meaningfully harden them because the address being loaded has no 1976 // dynamic component. 1977 // 1978 // FIXME: When using a segment base (like TLS does) we end up with the 1979 // dynamic address being the base plus -1 because we can't mutate the 1980 // segment register here. This allows the signed 32-bit offset to point at 1981 // valid segment-relative addresses and load them successfully. 1982 LLVM_DEBUG( 1983 dbgs() << " Cannot harden base of " 1984 << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") 1985 << " address in a load!"); 1986 } else { 1987 assert(BaseMO.isReg() && 1988 "Only allowed to have a frame index or register base."); 1989 HardenOpRegs.push_back(&BaseMO); 1990 } 1991 1992 if (IndexMO.getReg() != X86::NoRegister && 1993 (HardenOpRegs.empty() || 1994 HardenOpRegs.front()->getReg() != IndexMO.getReg())) 1995 HardenOpRegs.push_back(&IndexMO); 1996 1997 assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && 1998 "Should have exactly one or two registers to harden!"); 1999 assert((HardenOpRegs.size() == 1 || 2000 HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && 2001 "Should not have two of the same registers!"); 2002 2003 // Remove any registers that have alreaded been checked. 2004 llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { 2005 // See if this operand's register has already been checked. 2006 auto It = AddrRegToHardenedReg.find(Op->getReg()); 2007 if (It == AddrRegToHardenedReg.end()) 2008 // Not checked, so retain this one. 2009 return false; 2010 2011 // Otherwise, we can directly update this operand and remove it. 2012 Op->setReg(It->second); 2013 return true; 2014 }); 2015 // If there are none left, we're done. 2016 if (HardenOpRegs.empty()) 2017 return; 2018 2019 // Compute the current predicate state. 2020 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 2021 2022 auto InsertPt = MI.getIterator(); 2023 2024 // If EFLAGS are live and we don't have access to instructions that avoid 2025 // clobbering EFLAGS we need to save and restore them. This in turn makes 2026 // the EFLAGS no longer live. 2027 unsigned FlagsReg = 0; 2028 if (EFLAGSLive && !Subtarget->hasBMI2()) { 2029 EFLAGSLive = false; 2030 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 2031 } 2032 2033 for (MachineOperand *Op : HardenOpRegs) { 2034 Register OpReg = Op->getReg(); 2035 auto *OpRC = MRI->getRegClass(OpReg); 2036 Register TmpReg = MRI->createVirtualRegister(OpRC); 2037 2038 // If this is a vector register, we'll need somewhat custom logic to handle 2039 // hardening it. 2040 if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || 2041 OpRC->hasSuperClassEq(&X86::VR256RegClass))) { 2042 assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); 2043 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); 2044 2045 // Move our state into a vector register. 2046 // FIXME: We could skip this at the cost of longer encodings with AVX-512 2047 // but that doesn't seem likely worth it. 2048 Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); 2049 auto MovI = 2050 BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) 2051 .addReg(StateReg); 2052 (void)MovI; 2053 ++NumInstsInserted; 2054 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); 2055 2056 // Broadcast it across the vector register. 2057 Register VBStateReg = MRI->createVirtualRegister(OpRC); 2058 auto BroadcastI = BuildMI(MBB, InsertPt, Loc, 2059 TII->get(Is128Bit ? X86::VPBROADCASTQrr 2060 : X86::VPBROADCASTQYrr), 2061 VBStateReg) 2062 .addReg(VStateReg); 2063 (void)BroadcastI; 2064 ++NumInstsInserted; 2065 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 2066 dbgs() << "\n"); 2067 2068 // Merge our potential poison state into the value with a vector or. 2069 auto OrI = 2070 BuildMI(MBB, InsertPt, Loc, 2071 TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) 2072 .addReg(VBStateReg) 2073 .addReg(OpReg); 2074 (void)OrI; 2075 ++NumInstsInserted; 2076 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 2077 } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || 2078 OpRC->hasSuperClassEq(&X86::VR256XRegClass) || 2079 OpRC->hasSuperClassEq(&X86::VR512RegClass)) { 2080 assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); 2081 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); 2082 bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); 2083 if (Is128Bit || Is256Bit) 2084 assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); 2085 2086 // Broadcast our state into a vector register. 2087 Register VStateReg = MRI->createVirtualRegister(OpRC); 2088 unsigned BroadcastOp = 2089 Is128Bit ? X86::VPBROADCASTQrZ128r 2090 : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; 2091 auto BroadcastI = 2092 BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) 2093 .addReg(StateReg); 2094 (void)BroadcastI; 2095 ++NumInstsInserted; 2096 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 2097 dbgs() << "\n"); 2098 2099 // Merge our potential poison state into the value with a vector or. 2100 unsigned OrOp = Is128Bit ? X86::VPORQZ128rr 2101 : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; 2102 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) 2103 .addReg(VStateReg) 2104 .addReg(OpReg); 2105 (void)OrI; 2106 ++NumInstsInserted; 2107 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 2108 } else { 2109 // FIXME: Need to support GR32 here for 32-bit code. 2110 assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && 2111 "Not a supported register class for address hardening!"); 2112 2113 if (!EFLAGSLive) { 2114 // Merge our potential poison state into the value with an or. 2115 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) 2116 .addReg(StateReg) 2117 .addReg(OpReg); 2118 OrI->addRegisterDead(X86::EFLAGS, TRI); 2119 ++NumInstsInserted; 2120 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 2121 } else { 2122 // We need to avoid touching EFLAGS so shift out all but the least 2123 // significant bit using the instruction that doesn't update flags. 2124 auto ShiftI = 2125 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) 2126 .addReg(OpReg) 2127 .addReg(StateReg); 2128 (void)ShiftI; 2129 ++NumInstsInserted; 2130 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); 2131 dbgs() << "\n"); 2132 } 2133 } 2134 2135 // Record this register as checked and update the operand. 2136 assert(!AddrRegToHardenedReg.count(Op->getReg()) && 2137 "Should not have checked this register yet!"); 2138 AddrRegToHardenedReg[Op->getReg()] = TmpReg; 2139 Op->setReg(TmpReg); 2140 ++NumAddrRegsHardened; 2141 } 2142 2143 // And restore the flags if needed. 2144 if (FlagsReg) 2145 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 2146 } 2147 2148 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( 2149 MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { 2150 assert(isDataInvariantLoad(InitialMI) && 2151 "Cannot get here with a non-invariant load!"); 2152 2153 // See if we can sink hardening the loaded value. 2154 auto SinkCheckToSingleUse = 2155 [&](MachineInstr &MI) -> Optional<MachineInstr *> { 2156 Register DefReg = MI.getOperand(0).getReg(); 2157 2158 // We need to find a single use which we can sink the check. We can 2159 // primarily do this because many uses may already end up checked on their 2160 // own. 2161 MachineInstr *SingleUseMI = nullptr; 2162 for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { 2163 // If we're already going to harden this use, it is data invariant and 2164 // within our block. 2165 if (HardenedInstrs.count(&UseMI)) { 2166 if (!isDataInvariantLoad(UseMI)) { 2167 // If we've already decided to harden a non-load, we must have sunk 2168 // some other post-load hardened instruction to it and it must itself 2169 // be data-invariant. 2170 assert(isDataInvariant(UseMI) && 2171 "Data variant instruction being hardened!"); 2172 continue; 2173 } 2174 2175 // Otherwise, this is a load and the load component can't be data 2176 // invariant so check how this register is being used. 2177 const MCInstrDesc &Desc = UseMI.getDesc(); 2178 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 2179 assert(MemRefBeginIdx >= 0 && 2180 "Should always have mem references here!"); 2181 MemRefBeginIdx += X86II::getOperandBias(Desc); 2182 2183 MachineOperand &BaseMO = 2184 UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 2185 MachineOperand &IndexMO = 2186 UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 2187 if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || 2188 (IndexMO.isReg() && IndexMO.getReg() == DefReg)) 2189 // The load uses the register as part of its address making it not 2190 // invariant. 2191 return {}; 2192 2193 continue; 2194 } 2195 2196 if (SingleUseMI) 2197 // We already have a single use, this would make two. Bail. 2198 return {}; 2199 2200 // If this single use isn't data invariant, isn't in this block, or has 2201 // interfering EFLAGS, we can't sink the hardening to it. 2202 if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) 2203 return {}; 2204 2205 // If this instruction defines multiple registers bail as we won't harden 2206 // all of them. 2207 if (UseMI.getDesc().getNumDefs() > 1) 2208 return {}; 2209 2210 // If this register isn't a virtual register we can't walk uses of sanely, 2211 // just bail. Also check that its register class is one of the ones we 2212 // can harden. 2213 Register UseDefReg = UseMI.getOperand(0).getReg(); 2214 if (!Register::isVirtualRegister(UseDefReg) || 2215 !canHardenRegister(UseDefReg)) 2216 return {}; 2217 2218 SingleUseMI = &UseMI; 2219 } 2220 2221 // If SingleUseMI is still null, there is no use that needs its own 2222 // checking. Otherwise, it is the single use that needs checking. 2223 return {SingleUseMI}; 2224 }; 2225 2226 MachineInstr *MI = &InitialMI; 2227 while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { 2228 // Update which MI we're checking now. 2229 MI = *SingleUse; 2230 if (!MI) 2231 break; 2232 } 2233 2234 return MI; 2235 } 2236 2237 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { 2238 auto *RC = MRI->getRegClass(Reg); 2239 int RegBytes = TRI->getRegSizeInBits(*RC) / 8; 2240 if (RegBytes > 8) 2241 // We don't support post-load hardening of vectors. 2242 return false; 2243 2244 unsigned RegIdx = Log2_32(RegBytes); 2245 assert(RegIdx < 4 && "Unsupported register size"); 2246 2247 // If this register class is explicitly constrained to a class that doesn't 2248 // require REX prefix, we may not be able to satisfy that constraint when 2249 // emitting the hardening instructions, so bail out here. 2250 // FIXME: This seems like a pretty lame hack. The way this comes up is when we 2251 // end up both with a NOREX and REX-only register as operands to the hardening 2252 // instructions. It would be better to fix that code to handle this situation 2253 // rather than hack around it in this way. 2254 const TargetRegisterClass *NOREXRegClasses[] = { 2255 &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, 2256 &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; 2257 if (RC == NOREXRegClasses[RegIdx]) 2258 return false; 2259 2260 const TargetRegisterClass *GPRRegClasses[] = { 2261 &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, 2262 &X86::GR64RegClass}; 2263 return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); 2264 } 2265 2266 /// Harden a value in a register. 2267 /// 2268 /// This is the low-level logic to fully harden a value sitting in a register 2269 /// against leaking during speculative execution. 2270 /// 2271 /// Unlike hardening an address that is used by a load, this routine is required 2272 /// to hide *all* incoming bits in the register. 2273 /// 2274 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no 2275 /// larger than the predicate state register. FIXME: We should support vector 2276 /// registers here by broadcasting the predicate state. 2277 /// 2278 /// The new, hardened virtual register is returned. It will have the same 2279 /// register class as `Reg`. 2280 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( 2281 unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 2282 DebugLoc Loc) { 2283 assert(canHardenRegister(Reg) && "Cannot harden this register!"); 2284 assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!"); 2285 2286 auto *RC = MRI->getRegClass(Reg); 2287 int Bytes = TRI->getRegSizeInBits(*RC) / 8; 2288 2289 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 2290 2291 // FIXME: Need to teach this about 32-bit mode. 2292 if (Bytes != 8) { 2293 unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; 2294 unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; 2295 Register NarrowStateReg = MRI->createVirtualRegister(RC); 2296 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) 2297 .addReg(StateReg, 0, SubRegImm); 2298 StateReg = NarrowStateReg; 2299 } 2300 2301 unsigned FlagsReg = 0; 2302 if (isEFLAGSLive(MBB, InsertPt, *TRI)) 2303 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 2304 2305 Register NewReg = MRI->createVirtualRegister(RC); 2306 unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; 2307 unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; 2308 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) 2309 .addReg(StateReg) 2310 .addReg(Reg); 2311 OrI->addRegisterDead(X86::EFLAGS, TRI); 2312 ++NumInstsInserted; 2313 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 2314 2315 if (FlagsReg) 2316 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 2317 2318 return NewReg; 2319 } 2320 2321 /// Harden a load by hardening the loaded value in the defined register. 2322 /// 2323 /// We can harden a non-leaking load into a register without touching the 2324 /// address by just hiding all of the loaded bits during misspeculation. We use 2325 /// an `or` instruction to do this because we set up our poison value as all 2326 /// ones. And the goal is just for the loaded bits to not be exposed to 2327 /// execution and coercing them to one is sufficient. 2328 /// 2329 /// Returns the newly hardened register. 2330 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { 2331 MachineBasicBlock &MBB = *MI.getParent(); 2332 DebugLoc Loc = MI.getDebugLoc(); 2333 2334 auto &DefOp = MI.getOperand(0); 2335 Register OldDefReg = DefOp.getReg(); 2336 auto *DefRC = MRI->getRegClass(OldDefReg); 2337 2338 // Because we want to completely replace the uses of this def'ed value with 2339 // the hardened value, create a dedicated new register that will only be used 2340 // to communicate the unhardened value to the hardening. 2341 Register UnhardenedReg = MRI->createVirtualRegister(DefRC); 2342 DefOp.setReg(UnhardenedReg); 2343 2344 // Now harden this register's value, getting a hardened reg that is safe to 2345 // use. Note that we insert the instructions to compute this *after* the 2346 // defining instruction, not before it. 2347 unsigned HardenedReg = hardenValueInRegister( 2348 UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); 2349 2350 // Finally, replace the old register (which now only has the uses of the 2351 // original def) with the hardened register. 2352 MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); 2353 2354 ++NumPostLoadRegsHardened; 2355 return HardenedReg; 2356 } 2357 2358 /// Harden a return instruction. 2359 /// 2360 /// Returns implicitly perform a load which we need to harden. Without hardening 2361 /// this load, an attacker my speculatively write over the return address to 2362 /// steer speculation of the return to an attacker controlled address. This is 2363 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in 2364 /// this paper: 2365 /// https://people.csail.mit.edu/vlk/spectre11.pdf 2366 /// 2367 /// We can harden this by introducing an LFENCE that will delay any load of the 2368 /// return address until prior instructions have retired (and thus are not being 2369 /// speculated), or we can harden the address used by the implicit load: the 2370 /// stack pointer. 2371 /// 2372 /// If we are not using an LFENCE, hardening the stack pointer has an additional 2373 /// benefit: it allows us to pass the predicate state accumulated in this 2374 /// function back to the caller. In the absence of a BCBS attack on the return, 2375 /// the caller will typically be resumed and speculatively executed due to the 2376 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high 2377 /// priority. It is possible that some code from the caller will be executed 2378 /// speculatively even during a BCBS-attacked return until the steering takes 2379 /// effect. Whenever this happens, the caller can recover the (poisoned) 2380 /// predicate state from the stack pointer and continue to harden loads. 2381 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { 2382 MachineBasicBlock &MBB = *MI.getParent(); 2383 DebugLoc Loc = MI.getDebugLoc(); 2384 auto InsertPt = MI.getIterator(); 2385 2386 if (FenceCallAndRet) 2387 // No need to fence here as we'll fence at the return site itself. That 2388 // handles more cases than we can handle here. 2389 return; 2390 2391 // Take our predicate state, shift it to the high 17 bits (so that we keep 2392 // pointers canonical) and merge it into RSP. This will allow the caller to 2393 // extract it when we return (speculatively). 2394 mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); 2395 } 2396 2397 /// Trace the predicate state through a call. 2398 /// 2399 /// There are several layers of this needed to handle the full complexity of 2400 /// calls. 2401 /// 2402 /// First, we need to send the predicate state into the called function. We do 2403 /// this by merging it into the high bits of the stack pointer. 2404 /// 2405 /// For tail calls, this is all we need to do. 2406 /// 2407 /// For calls where we might return and resume the control flow, we need to 2408 /// extract the predicate state from the high bits of the stack pointer after 2409 /// control returns from the called function. 2410 /// 2411 /// We also need to verify that we intended to return to this location in the 2412 /// code. An attacker might arrange for the processor to mispredict the return 2413 /// to this valid but incorrect return address in the program rather than the 2414 /// correct one. See the paper on this attack, called "ret2spec" by the 2415 /// researchers, here: 2416 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf 2417 /// 2418 /// The way we verify that we returned to the correct location is by preserving 2419 /// the expected return address across the call. One technique involves taking 2420 /// advantage of the red-zone to load the return address from `8(%rsp)` where it 2421 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can 2422 /// directly save the address into a register that will be preserved across the 2423 /// call. We compare this intended return address against the address 2424 /// immediately following the call (the observed return address). If these 2425 /// mismatch, we have detected misspeculation and can poison our predicate 2426 /// state. 2427 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( 2428 MachineInstr &MI) { 2429 MachineBasicBlock &MBB = *MI.getParent(); 2430 MachineFunction &MF = *MBB.getParent(); 2431 auto InsertPt = MI.getIterator(); 2432 DebugLoc Loc = MI.getDebugLoc(); 2433 2434 if (FenceCallAndRet) { 2435 if (MI.isReturn()) 2436 // Tail call, we don't return to this function. 2437 // FIXME: We should also handle noreturn calls. 2438 return; 2439 2440 // We don't need to fence before the call because the function should fence 2441 // in its entry. However, we do need to fence after the call returns. 2442 // Fencing before the return doesn't correctly handle cases where the return 2443 // itself is mispredicted. 2444 BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); 2445 ++NumInstsInserted; 2446 ++NumLFENCEsInserted; 2447 return; 2448 } 2449 2450 // First, we transfer the predicate state into the called function by merging 2451 // it into the stack pointer. This will kill the current def of the state. 2452 unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 2453 mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); 2454 2455 // If this call is also a return, it is a tail call and we don't need anything 2456 // else to handle it so just return. Also, if there are no further 2457 // instructions and no successors, this call does not return so we can also 2458 // bail. 2459 if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) 2460 return; 2461 2462 // Create a symbol to track the return address and attach it to the call 2463 // machine instruction. We will lower extra symbols attached to call 2464 // instructions as label immediately following the call. 2465 MCSymbol *RetSymbol = 2466 MF.getContext().createTempSymbol("slh_ret_addr", 2467 /*AlwaysAddSuffix*/ true); 2468 MI.setPostInstrSymbol(MF, RetSymbol); 2469 2470 const TargetRegisterClass *AddrRC = &X86::GR64RegClass; 2471 unsigned ExpectedRetAddrReg = 0; 2472 2473 // If we have no red zones or if the function returns twice (possibly without 2474 // using the `ret` instruction) like setjmp, we need to save the expected 2475 // return address prior to the call. 2476 if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || 2477 MF.exposesReturnsTwice()) { 2478 // If we don't have red zones, we need to compute the expected return 2479 // address prior to the call and store it in a register that lives across 2480 // the call. 2481 // 2482 // In some ways, this is doubly satisfying as a mitigation because it will 2483 // also successfully detect stack smashing bugs in some cases (typically, 2484 // when a callee-saved register is used and the callee doesn't push it onto 2485 // the stack). But that isn't our primary goal, so we only use it as 2486 // a fallback. 2487 // 2488 // FIXME: It isn't clear that this is reliable in the face of 2489 // rematerialization in the register allocator. We somehow need to force 2490 // that to not occur for this particular instruction, and instead to spill 2491 // or otherwise preserve the value computed *prior* to the call. 2492 // 2493 // FIXME: It is even less clear why MachineCSE can't just fold this when we 2494 // end up having to use identical instructions both before and after the 2495 // call to feed the comparison. 2496 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2497 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2498 !Subtarget->isPositionIndependent()) { 2499 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) 2500 .addSym(RetSymbol); 2501 } else { 2502 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) 2503 .addReg(/*Base*/ X86::RIP) 2504 .addImm(/*Scale*/ 1) 2505 .addReg(/*Index*/ 0) 2506 .addSym(RetSymbol) 2507 .addReg(/*Segment*/ 0); 2508 } 2509 } 2510 2511 // Step past the call to handle when it returns. 2512 ++InsertPt; 2513 2514 // If we didn't pre-compute the expected return address into a register, then 2515 // red zones are enabled and the return address is still available on the 2516 // stack immediately after the call. As the very first instruction, we load it 2517 // into a register. 2518 if (!ExpectedRetAddrReg) { 2519 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2520 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) 2521 .addReg(/*Base*/ X86::RSP) 2522 .addImm(/*Scale*/ 1) 2523 .addReg(/*Index*/ 0) 2524 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so 2525 // the return address is 8-bytes past it. 2526 .addReg(/*Segment*/ 0); 2527 } 2528 2529 // Now we extract the callee's predicate state from the stack pointer. 2530 unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); 2531 2532 // Test the expected return address against our actual address. If we can 2533 // form this basic block's address as an immediate, this is easy. Otherwise 2534 // we compute it. 2535 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2536 !Subtarget->isPositionIndependent()) { 2537 // FIXME: Could we fold this with the load? It would require careful EFLAGS 2538 // management. 2539 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) 2540 .addReg(ExpectedRetAddrReg, RegState::Kill) 2541 .addSym(RetSymbol); 2542 } else { 2543 Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); 2544 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) 2545 .addReg(/*Base*/ X86::RIP) 2546 .addImm(/*Scale*/ 1) 2547 .addReg(/*Index*/ 0) 2548 .addSym(RetSymbol) 2549 .addReg(/*Segment*/ 0); 2550 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) 2551 .addReg(ExpectedRetAddrReg, RegState::Kill) 2552 .addReg(ActualRetAddrReg, RegState::Kill); 2553 } 2554 2555 // Now conditionally update the predicate state we just extracted if we ended 2556 // up at a different return address than expected. 2557 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 2558 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 2559 2560 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 2561 auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) 2562 .addReg(NewStateReg, RegState::Kill) 2563 .addReg(PS->PoisonReg) 2564 .addImm(X86::COND_NE); 2565 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 2566 ++NumInstsInserted; 2567 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 2568 2569 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 2570 } 2571 2572 /// An attacker may speculatively store over a value that is then speculatively 2573 /// loaded and used as the target of an indirect call or jump instruction. This 2574 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described 2575 /// in this paper: 2576 /// https://people.csail.mit.edu/vlk/spectre11.pdf 2577 /// 2578 /// When this happens, the speculative execution of the call or jump will end up 2579 /// being steered to this attacker controlled address. While most such loads 2580 /// will be adequately hardened already, we want to ensure that they are 2581 /// definitively treated as needing post-load hardening. While address hardening 2582 /// is sufficient to prevent secret data from leaking to the attacker, it may 2583 /// not be sufficient to prevent an attacker from steering speculative 2584 /// execution. We forcibly unfolded all relevant loads above and so will always 2585 /// have an opportunity to post-load harden here, we just need to scan for cases 2586 /// not already flagged and add them. 2587 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( 2588 MachineInstr &MI, 2589 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 2590 switch (MI.getOpcode()) { 2591 case X86::FARCALL16m: 2592 case X86::FARCALL32m: 2593 case X86::FARCALL64: 2594 case X86::FARJMP16m: 2595 case X86::FARJMP32m: 2596 case X86::FARJMP64: 2597 // We don't need to harden either far calls or far jumps as they are 2598 // safe from Spectre. 2599 return; 2600 2601 default: 2602 break; 2603 } 2604 2605 // We should never see a loading instruction at this point, as those should 2606 // have been unfolded. 2607 assert(!MI.mayLoad() && "Found a lingering loading instruction!"); 2608 2609 // If the first operand isn't a register, this is a branch or call 2610 // instruction with an immediate operand which doesn't need to be hardened. 2611 if (!MI.getOperand(0).isReg()) 2612 return; 2613 2614 // For all of these, the target register is the first operand of the 2615 // instruction. 2616 auto &TargetOp = MI.getOperand(0); 2617 Register OldTargetReg = TargetOp.getReg(); 2618 2619 // Try to lookup a hardened version of this register. We retain a reference 2620 // here as we want to update the map to track any newly computed hardened 2621 // register. 2622 unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; 2623 2624 // If we don't have a hardened register yet, compute one. Otherwise, just use 2625 // the already hardened register. 2626 // 2627 // FIXME: It is a little suspect that we use partially hardened registers that 2628 // only feed addresses. The complexity of partial hardening with SHRX 2629 // continues to pile up. Should definitively measure its value and consider 2630 // eliminating it. 2631 if (!HardenedTargetReg) 2632 HardenedTargetReg = hardenValueInRegister( 2633 OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); 2634 2635 // Set the target operand to the hardened register. 2636 TargetOp.setReg(HardenedTargetReg); 2637 2638 ++NumCallsOrJumpsHardened; 2639 } 2640 2641 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, 2642 "X86 speculative load hardener", false, false) 2643 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, 2644 "X86 speculative load hardener", false, false) 2645 2646 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { 2647 return new X86SpeculativeLoadHardeningPass(); 2648 } 2649