xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/MachineSSAUpdater.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/MC/MCSchedule.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define PASS_KEY "x86-slh"
65 #define DEBUG_TYPE PASS_KEY
66 
67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
69 STATISTIC(NumAddrRegsHardened,
70           "Number of address mode used registers hardaned");
71 STATISTIC(NumPostLoadRegsHardened,
72           "Number of post-load register values hardened");
73 STATISTIC(NumCallsOrJumpsHardened,
74           "Number of calls or jumps requiring extra hardening");
75 STATISTIC(NumInstsInserted, "Number of instructions inserted");
76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
77 
78 static cl::opt<bool> EnableSpeculativeLoadHardening(
79     "x86-speculative-load-hardening",
80     cl::desc("Force enable speculative load hardening"), cl::init(false),
81     cl::Hidden);
82 
83 static cl::opt<bool> HardenEdgesWithLFENCE(
84     PASS_KEY "-lfence",
85     cl::desc(
86         "Use LFENCE along each conditional edge to harden against speculative "
87         "loads rather than conditional movs and poisoned pointers."),
88     cl::init(false), cl::Hidden);
89 
90 static cl::opt<bool> EnablePostLoadHardening(
91     PASS_KEY "-post-load",
92     cl::desc("Harden the value loaded *after* it is loaded by "
93              "flushing the loaded bits to 1. This is hard to do "
94              "in general but can be done easily for GPRs."),
95     cl::init(true), cl::Hidden);
96 
97 static cl::opt<bool> FenceCallAndRet(
98     PASS_KEY "-fence-call-and-ret",
99     cl::desc("Use a full speculation fence to harden both call and ret edges "
100              "rather than a lighter weight mitigation."),
101     cl::init(false), cl::Hidden);
102 
103 static cl::opt<bool> HardenInterprocedurally(
104     PASS_KEY "-ip",
105     cl::desc("Harden interprocedurally by passing our state in and out of "
106              "functions in the high bits of the stack pointer."),
107     cl::init(true), cl::Hidden);
108 
109 static cl::opt<bool>
110     HardenLoads(PASS_KEY "-loads",
111                 cl::desc("Sanitize loads from memory. When disable, no "
112                          "significant security is provided."),
113                 cl::init(true), cl::Hidden);
114 
115 static cl::opt<bool> HardenIndirectCallsAndJumps(
116     PASS_KEY "-indirect",
117     cl::desc("Harden indirect calls and jumps against using speculatively "
118              "stored attacker controlled addresses. This is designed to "
119              "mitigate Spectre v1.2 style attacks."),
120     cl::init(true), cl::Hidden);
121 
122 namespace {
123 
124 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
125 public:
126   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
127 
128   StringRef getPassName() const override {
129     return "X86 speculative load hardening";
130   }
131   bool runOnMachineFunction(MachineFunction &MF) override;
132   void getAnalysisUsage(AnalysisUsage &AU) const override;
133 
134   /// Pass identification, replacement for typeid.
135   static char ID;
136 
137 private:
138   /// The information about a block's conditional terminators needed to trace
139   /// our predicate state through the exiting edges.
140   struct BlockCondInfo {
141     MachineBasicBlock *MBB;
142 
143     // We mostly have one conditional branch, and in extremely rare cases have
144     // two. Three and more are so rare as to be unimportant for compile time.
145     SmallVector<MachineInstr *, 2> CondBrs;
146 
147     MachineInstr *UncondBr;
148   };
149 
150   /// Manages the predicate state traced through the program.
151   struct PredState {
152     unsigned InitialReg = 0;
153     unsigned PoisonReg = 0;
154 
155     const TargetRegisterClass *RC;
156     MachineSSAUpdater SSA;
157 
158     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
159         : RC(RC), SSA(MF) {}
160   };
161 
162   const X86Subtarget *Subtarget = nullptr;
163   MachineRegisterInfo *MRI = nullptr;
164   const X86InstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166 
167   Optional<PredState> PS;
168 
169   void hardenEdgesWithLFENCE(MachineFunction &MF);
170 
171   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
172 
173   SmallVector<MachineInstr *, 16>
174   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
175 
176   void unfoldCallAndJumpLoads(MachineFunction &MF);
177 
178   SmallVector<MachineInstr *, 16>
179   tracePredStateThroughIndirectBranches(MachineFunction &MF);
180 
181   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
182 
183   unsigned saveEFLAGS(MachineBasicBlock &MBB,
184                       MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
185   void restoreEFLAGS(MachineBasicBlock &MBB,
186                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
187                      Register Reg);
188 
189   void mergePredStateIntoSP(MachineBasicBlock &MBB,
190                             MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
191                             unsigned PredStateReg);
192   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
193                                   MachineBasicBlock::iterator InsertPt,
194                                   DebugLoc Loc);
195 
196   void
197   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
198                  MachineOperand &IndexMO,
199                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
200   MachineInstr *
201   sinkPostLoadHardenedInst(MachineInstr &MI,
202                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
203   bool canHardenRegister(Register Reg);
204   unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB,
205                                  MachineBasicBlock::iterator InsertPt,
206                                  DebugLoc Loc);
207   unsigned hardenPostLoad(MachineInstr &MI);
208   void hardenReturnInstr(MachineInstr &MI);
209   void tracePredStateThroughCall(MachineInstr &MI);
210   void hardenIndirectCallOrJumpInstr(
211       MachineInstr &MI,
212       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
213 };
214 
215 } // end anonymous namespace
216 
217 char X86SpeculativeLoadHardeningPass::ID = 0;
218 
219 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
220     AnalysisUsage &AU) const {
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
225                                     MachineBasicBlock &Succ, int SuccCount,
226                                     MachineInstr *Br, MachineInstr *&UncondBr,
227                                     const X86InstrInfo &TII) {
228   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
229 
230   MachineFunction &MF = *MBB.getParent();
231 
232   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
233 
234   // We have to insert the new block immediately after the current one as we
235   // don't know what layout-successor relationships the successor has and we
236   // may not be able to (and generally don't want to) try to fix those up.
237   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
238 
239   // Update the branch instruction if necessary.
240   if (Br) {
241     assert(Br->getOperand(0).getMBB() == &Succ &&
242            "Didn't start with the right target!");
243     Br->getOperand(0).setMBB(&NewMBB);
244 
245     // If this successor was reached through a branch rather than fallthrough,
246     // we might have *broken* fallthrough and so need to inject a new
247     // unconditional branch.
248     if (!UncondBr) {
249       MachineBasicBlock &OldLayoutSucc =
250           *std::next(MachineFunction::iterator(&NewMBB));
251       assert(MBB.isSuccessor(&OldLayoutSucc) &&
252              "Without an unconditional branch, the old layout successor should "
253              "be an actual successor!");
254       auto BrBuilder =
255           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
256       // Update the unconditional branch now that we've added one.
257       UncondBr = &*BrBuilder;
258     }
259 
260     // Insert unconditional "jump Succ" instruction in the new block if
261     // necessary.
262     if (!NewMBB.isLayoutSuccessor(&Succ)) {
263       SmallVector<MachineOperand, 4> Cond;
264       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
265     }
266   } else {
267     assert(!UncondBr &&
268            "Cannot have a branchless successor and an unconditional branch!");
269     assert(NewMBB.isLayoutSuccessor(&Succ) &&
270            "A non-branch successor must have been a layout successor before "
271            "and now is a layout successor of the new block.");
272   }
273 
274   // If this is the only edge to the successor, we can just replace it in the
275   // CFG. Otherwise we need to add a new entry in the CFG for the new
276   // successor.
277   if (SuccCount == 1) {
278     MBB.replaceSuccessor(&Succ, &NewMBB);
279   } else {
280     MBB.splitSuccessor(&Succ, &NewMBB);
281   }
282 
283   // Hook up the edge from the new basic block to the old successor in the CFG.
284   NewMBB.addSuccessor(&Succ);
285 
286   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
287   for (MachineInstr &MI : Succ) {
288     if (!MI.isPHI())
289       break;
290     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
291          OpIdx += 2) {
292       MachineOperand &OpV = MI.getOperand(OpIdx);
293       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
294       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
295       if (OpMBB.getMBB() != &MBB)
296         continue;
297 
298       // If this is the last edge to the succesor, just replace MBB in the PHI
299       if (SuccCount == 1) {
300         OpMBB.setMBB(&NewMBB);
301         break;
302       }
303 
304       // Otherwise, append a new pair of operands for the new incoming edge.
305       MI.addOperand(MF, OpV);
306       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
307       break;
308     }
309   }
310 
311   // Inherit live-ins from the successor
312   for (auto &LI : Succ.liveins())
313     NewMBB.addLiveIn(LI);
314 
315   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
316                     << Succ.getName() << "'.\n");
317   return NewMBB;
318 }
319 
320 /// Removing duplicate PHI operands to leave the PHI in a canonical and
321 /// predictable form.
322 ///
323 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
324 /// isn't what you might expect. We may have multiple entries in PHI nodes for
325 /// a single predecessor. This makes CFG-updating extremely complex, so here we
326 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
327 /// one entry per predecessor, regardless of how many edges there are.
328 static void canonicalizePHIOperands(MachineFunction &MF) {
329   SmallPtrSet<MachineBasicBlock *, 4> Preds;
330   SmallVector<int, 4> DupIndices;
331   for (auto &MBB : MF)
332     for (auto &MI : MBB) {
333       if (!MI.isPHI())
334         break;
335 
336       // First we scan the operands of the PHI looking for duplicate entries
337       // a particular predecessor. We retain the operand index of each duplicate
338       // entry found.
339       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
340            OpIdx += 2)
341         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
342           DupIndices.push_back(OpIdx);
343 
344       // Now walk the duplicate indices, removing both the block and value. Note
345       // that these are stored as a vector making this element-wise removal
346       // :w
347       // potentially quadratic.
348       //
349       // FIXME: It is really frustrating that we have to use a quadratic
350       // removal algorithm here. There should be a better way, but the use-def
351       // updates required make that impossible using the public API.
352       //
353       // Note that we have to process these backwards so that we don't
354       // invalidate other indices with each removal.
355       while (!DupIndices.empty()) {
356         int OpIdx = DupIndices.pop_back_val();
357         // Remove both the block and value operand, again in reverse order to
358         // preserve indices.
359         MI.RemoveOperand(OpIdx + 1);
360         MI.RemoveOperand(OpIdx);
361       }
362 
363       Preds.clear();
364     }
365 }
366 
367 /// Helper to scan a function for loads vulnerable to misspeculation that we
368 /// want to harden.
369 ///
370 /// We use this to avoid making changes to functions where there is nothing we
371 /// need to do to harden against misspeculation.
372 static bool hasVulnerableLoad(MachineFunction &MF) {
373   for (MachineBasicBlock &MBB : MF) {
374     for (MachineInstr &MI : MBB) {
375       // Loads within this basic block after an LFENCE are not at risk of
376       // speculatively executing with invalid predicates from prior control
377       // flow. So break out of this block but continue scanning the function.
378       if (MI.getOpcode() == X86::LFENCE)
379         break;
380 
381       // Looking for loads only.
382       if (!MI.mayLoad())
383         continue;
384 
385       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
386       if (MI.getOpcode() == X86::MFENCE)
387         continue;
388 
389       // We found a load.
390       return true;
391     }
392   }
393 
394   // No loads found.
395   return false;
396 }
397 
398 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
399     MachineFunction &MF) {
400   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
401                     << " **********\n");
402 
403   // Only run if this pass is forced enabled or we detect the relevant function
404   // attribute requesting SLH.
405   if (!EnableSpeculativeLoadHardening &&
406       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
407     return false;
408 
409   Subtarget = &MF.getSubtarget<X86Subtarget>();
410   MRI = &MF.getRegInfo();
411   TII = Subtarget->getInstrInfo();
412   TRI = Subtarget->getRegisterInfo();
413 
414   // FIXME: Support for 32-bit.
415   PS.emplace(MF, &X86::GR64_NOSPRegClass);
416 
417   if (MF.begin() == MF.end())
418     // Nothing to do for a degenerate empty function...
419     return false;
420 
421   // We support an alternative hardening technique based on a debug flag.
422   if (HardenEdgesWithLFENCE) {
423     hardenEdgesWithLFENCE(MF);
424     return true;
425   }
426 
427   // Create a dummy debug loc to use for all the generated code here.
428   DebugLoc Loc;
429 
430   MachineBasicBlock &Entry = *MF.begin();
431   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
432 
433   // Do a quick scan to see if we have any checkable loads.
434   bool HasVulnerableLoad = hasVulnerableLoad(MF);
435 
436   // See if we have any conditional branching blocks that we will need to trace
437   // predicate state through.
438   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
439 
440   // If we have no interesting conditions or loads, nothing to do here.
441   if (!HasVulnerableLoad && Infos.empty())
442     return true;
443 
444   // The poison value is required to be an all-ones value for many aspects of
445   // this mitigation.
446   const int PoisonVal = -1;
447   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
448   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
449       .addImm(PoisonVal);
450   ++NumInstsInserted;
451 
452   // If we have loads being hardened and we've asked for call and ret edges to
453   // get a full fence-based mitigation, inject that fence.
454   if (HasVulnerableLoad && FenceCallAndRet) {
455     // We need to insert an LFENCE at the start of the function to suspend any
456     // incoming misspeculation from the caller. This helps two-fold: the caller
457     // may not have been protected as this code has been, and this code gets to
458     // not take any specific action to protect across calls.
459     // FIXME: We could skip this for functions which unconditionally return
460     // a constant.
461     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
462     ++NumInstsInserted;
463     ++NumLFENCEsInserted;
464   }
465 
466   // If we guarded the entry with an LFENCE and have no conditionals to protect
467   // in blocks, then we're done.
468   if (FenceCallAndRet && Infos.empty())
469     // We may have changed the function's code at this point to insert fences.
470     return true;
471 
472   // For every basic block in the function which can b
473   if (HardenInterprocedurally && !FenceCallAndRet) {
474     // Set up the predicate state by extracting it from the incoming stack
475     // pointer so we pick up any misspeculation in our caller.
476     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
477   } else {
478     // Otherwise, just build the predicate state itself by zeroing a register
479     // as we don't need any initial state.
480     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
481     Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
482     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
483                          PredStateSubReg);
484     ++NumInstsInserted;
485     MachineOperand *ZeroEFLAGSDefOp =
486         ZeroI->findRegisterDefOperand(X86::EFLAGS);
487     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
488            "Must have an implicit def of EFLAGS!");
489     ZeroEFLAGSDefOp->setIsDead(true);
490     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
491             PS->InitialReg)
492         .addImm(0)
493         .addReg(PredStateSubReg)
494         .addImm(X86::sub_32bit);
495   }
496 
497   // We're going to need to trace predicate state throughout the function's
498   // CFG. Prepare for this by setting up our initial state of PHIs with unique
499   // predecessor entries and all the initial predicate state.
500   canonicalizePHIOperands(MF);
501 
502   // Track the updated values in an SSA updater to rewrite into SSA form at the
503   // end.
504   PS->SSA.Initialize(PS->InitialReg);
505   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
506 
507   // Trace through the CFG.
508   auto CMovs = tracePredStateThroughCFG(MF, Infos);
509 
510   // We may also enter basic blocks in this function via exception handling
511   // control flow. Here, if we are hardening interprocedurally, we need to
512   // re-capture the predicate state from the throwing code. In the Itanium ABI,
513   // the throw will always look like a call to __cxa_throw and will have the
514   // predicate state in the stack pointer, so extract fresh predicate state from
515   // the stack pointer and make it available in SSA.
516   // FIXME: Handle non-itanium ABI EH models.
517   if (HardenInterprocedurally) {
518     for (MachineBasicBlock &MBB : MF) {
519       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
520       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
521       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
522       if (!MBB.isEHPad())
523         continue;
524       PS->SSA.AddAvailableValue(
525           &MBB,
526           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
527     }
528   }
529 
530   if (HardenIndirectCallsAndJumps) {
531     // If we are going to harden calls and jumps we need to unfold their memory
532     // operands.
533     unfoldCallAndJumpLoads(MF);
534 
535     // Then we trace predicate state through the indirect branches.
536     auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
537     CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
538   }
539 
540   // Now that we have the predicate state available at the start of each block
541   // in the CFG, trace it through each block, hardening vulnerable instructions
542   // as we go.
543   tracePredStateThroughBlocksAndHarden(MF);
544 
545   // Now rewrite all the uses of the pred state using the SSA updater to insert
546   // PHIs connecting the state between blocks along the CFG edges.
547   for (MachineInstr *CMovI : CMovs)
548     for (MachineOperand &Op : CMovI->operands()) {
549       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
550         continue;
551 
552       PS->SSA.RewriteUse(Op);
553     }
554 
555   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
556              dbgs() << "\n"; MF.verify(this));
557   return true;
558 }
559 
560 /// Implements the naive hardening approach of putting an LFENCE after every
561 /// potentially mis-predicted control flow construct.
562 ///
563 /// We include this as an alternative mostly for the purpose of comparison. The
564 /// performance impact of this is expected to be extremely severe and not
565 /// practical for any real-world users.
566 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
567     MachineFunction &MF) {
568   // First, we scan the function looking for blocks that are reached along edges
569   // that we might want to harden.
570   SmallSetVector<MachineBasicBlock *, 8> Blocks;
571   for (MachineBasicBlock &MBB : MF) {
572     // If there are no or only one successor, nothing to do here.
573     if (MBB.succ_size() <= 1)
574       continue;
575 
576     // Skip blocks unless their terminators start with a branch. Other
577     // terminators don't seem interesting for guarding against misspeculation.
578     auto TermIt = MBB.getFirstTerminator();
579     if (TermIt == MBB.end() || !TermIt->isBranch())
580       continue;
581 
582     // Add all the non-EH-pad succossors to the blocks we want to harden. We
583     // skip EH pads because there isn't really a condition of interest on
584     // entering.
585     for (MachineBasicBlock *SuccMBB : MBB.successors())
586       if (!SuccMBB->isEHPad())
587         Blocks.insert(SuccMBB);
588   }
589 
590   for (MachineBasicBlock *MBB : Blocks) {
591     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
592     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
593     ++NumInstsInserted;
594     ++NumLFENCEsInserted;
595   }
596 }
597 
598 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
599 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
600   SmallVector<BlockCondInfo, 16> Infos;
601 
602   // Walk the function and build up a summary for each block's conditions that
603   // we need to trace through.
604   for (MachineBasicBlock &MBB : MF) {
605     // If there are no or only one successor, nothing to do here.
606     if (MBB.succ_size() <= 1)
607       continue;
608 
609     // We want to reliably handle any conditional branch terminators in the
610     // MBB, so we manually analyze the branch. We can handle all of the
611     // permutations here, including ones that analyze branch cannot.
612     //
613     // The approach is to walk backwards across the terminators, resetting at
614     // any unconditional non-indirect branch, and track all conditional edges
615     // to basic blocks as well as the fallthrough or unconditional successor
616     // edge. For each conditional edge, we track the target and the opposite
617     // condition code in order to inject a "no-op" cmov into that successor
618     // that will harden the predicate. For the fallthrough/unconditional
619     // edge, we inject a separate cmov for each conditional branch with
620     // matching condition codes. This effectively implements an "and" of the
621     // condition flags, even if there isn't a single condition flag that would
622     // directly implement that. We don't bother trying to optimize either of
623     // these cases because if such an optimization is possible, LLVM should
624     // have optimized the conditional *branches* in that way already to reduce
625     // instruction count. This late, we simply assume the minimal number of
626     // branch instructions is being emitted and use that to guide our cmov
627     // insertion.
628 
629     BlockCondInfo Info = {&MBB, {}, nullptr};
630 
631     // Now walk backwards through the terminators and build up successors they
632     // reach and the conditions.
633     for (MachineInstr &MI : llvm::reverse(MBB)) {
634       // Once we've handled all the terminators, we're done.
635       if (!MI.isTerminator())
636         break;
637 
638       // If we see a non-branch terminator, we can't handle anything so bail.
639       if (!MI.isBranch()) {
640         Info.CondBrs.clear();
641         break;
642       }
643 
644       // If we see an unconditional branch, reset our state, clear any
645       // fallthrough, and set this is the "else" successor.
646       if (MI.getOpcode() == X86::JMP_1) {
647         Info.CondBrs.clear();
648         Info.UncondBr = &MI;
649         continue;
650       }
651 
652       // If we get an invalid condition, we have an indirect branch or some
653       // other unanalyzable "fallthrough" case. We model this as a nullptr for
654       // the destination so we can still guard any conditional successors.
655       // Consider code sequences like:
656       // ```
657       //   jCC L1
658       //   jmpq *%rax
659       // ```
660       // We still want to harden the edge to `L1`.
661       if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
662         Info.CondBrs.clear();
663         Info.UncondBr = &MI;
664         continue;
665       }
666 
667       // We have a vanilla conditional branch, add it to our list.
668       Info.CondBrs.push_back(&MI);
669     }
670     if (Info.CondBrs.empty()) {
671       ++NumBranchesUntraced;
672       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
673                  MBB.dump());
674       continue;
675     }
676 
677     Infos.push_back(Info);
678   }
679 
680   return Infos;
681 }
682 
683 /// Trace the predicate state through the CFG, instrumenting each conditional
684 /// branch such that misspeculation through an edge will poison the predicate
685 /// state.
686 ///
687 /// Returns the list of inserted CMov instructions so that they can have their
688 /// uses of the predicate state rewritten into proper SSA form once it is
689 /// complete.
690 SmallVector<MachineInstr *, 16>
691 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
692     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
693   // Collect the inserted cmov instructions so we can rewrite their uses of the
694   // predicate state into SSA form.
695   SmallVector<MachineInstr *, 16> CMovs;
696 
697   // Now walk all of the basic blocks looking for ones that end in conditional
698   // jumps where we need to update this register along each edge.
699   for (const BlockCondInfo &Info : Infos) {
700     MachineBasicBlock &MBB = *Info.MBB;
701     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
702     MachineInstr *UncondBr = Info.UncondBr;
703 
704     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
705                       << "\n");
706     ++NumCondBranchesTraced;
707 
708     // Compute the non-conditional successor as either the target of any
709     // unconditional branch or the layout successor.
710     MachineBasicBlock *UncondSucc =
711         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
712                         ? UncondBr->getOperand(0).getMBB()
713                         : nullptr)
714                  : &*std::next(MachineFunction::iterator(&MBB));
715 
716     // Count how many edges there are to any given successor.
717     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
718     if (UncondSucc)
719       ++SuccCounts[UncondSucc];
720     for (auto *CondBr : CondBrs)
721       ++SuccCounts[CondBr->getOperand(0).getMBB()];
722 
723     // A lambda to insert cmov instructions into a block checking all of the
724     // condition codes in a sequence.
725     auto BuildCheckingBlockForSuccAndConds =
726         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
727             MachineInstr *Br, MachineInstr *&UncondBr,
728             ArrayRef<X86::CondCode> Conds) {
729           // First, we split the edge to insert the checking block into a safe
730           // location.
731           auto &CheckingMBB =
732               (SuccCount == 1 && Succ.pred_size() == 1)
733                   ? Succ
734                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
735 
736           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
737           if (!LiveEFLAGS)
738             CheckingMBB.addLiveIn(X86::EFLAGS);
739 
740           // Now insert the cmovs to implement the checks.
741           auto InsertPt = CheckingMBB.begin();
742           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
743                  "Should never have a PHI in the initial checking block as it "
744                  "always has a single predecessor!");
745 
746           // We will wire each cmov to each other, but need to start with the
747           // incoming pred state.
748           unsigned CurStateReg = PS->InitialReg;
749 
750           for (X86::CondCode Cond : Conds) {
751             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
752             auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
753 
754             Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
755             // Note that we intentionally use an empty debug location so that
756             // this picks up the preceding location.
757             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
758                                  TII->get(CMovOp), UpdatedStateReg)
759                              .addReg(CurStateReg)
760                              .addReg(PS->PoisonReg)
761                              .addImm(Cond);
762             // If this is the last cmov and the EFLAGS weren't originally
763             // live-in, mark them as killed.
764             if (!LiveEFLAGS && Cond == Conds.back())
765               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
766 
767             ++NumInstsInserted;
768             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
769                        dbgs() << "\n");
770 
771             // The first one of the cmovs will be using the top level
772             // `PredStateReg` and need to get rewritten into SSA form.
773             if (CurStateReg == PS->InitialReg)
774               CMovs.push_back(&*CMovI);
775 
776             // The next cmov should start from this one's def.
777             CurStateReg = UpdatedStateReg;
778           }
779 
780           // And put the last one into the available values for SSA form of our
781           // predicate state.
782           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
783         };
784 
785     std::vector<X86::CondCode> UncondCodeSeq;
786     for (auto *CondBr : CondBrs) {
787       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
788       int &SuccCount = SuccCounts[&Succ];
789 
790       X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
791       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
792       UncondCodeSeq.push_back(Cond);
793 
794       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
795                                         {InvCond});
796 
797       // Decrement the successor count now that we've split one of the edges.
798       // We need to keep the count of edges to the successor accurate in order
799       // to know above when to *replace* the successor in the CFG vs. just
800       // adding the new successor.
801       --SuccCount;
802     }
803 
804     // Since we may have split edges and changed the number of successors,
805     // normalize the probabilities. This avoids doing it each time we split an
806     // edge.
807     MBB.normalizeSuccProbs();
808 
809     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
810     // need to intersect the other condition codes. We can do this by just
811     // doing a cmov for each one.
812     if (!UncondSucc)
813       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
814       // just skip this and continue.
815       continue;
816 
817     assert(SuccCounts[UncondSucc] == 1 &&
818            "We should never have more than one edge to the unconditional "
819            "successor at this point because every other edge must have been "
820            "split above!");
821 
822     // Sort and unique the codes to minimize them.
823     llvm::sort(UncondCodeSeq);
824     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
825                         UncondCodeSeq.end());
826 
827     // Build a checking version of the successor.
828     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
829                                       UncondBr, UncondBr, UncondCodeSeq);
830   }
831 
832   return CMovs;
833 }
834 
835 /// Compute the register class for the unfolded load.
836 ///
837 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
838 /// a way to unfold into a newly created vreg rather than requiring a register
839 /// input.
840 static const TargetRegisterClass *
841 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
842                            unsigned Opcode) {
843   unsigned Index;
844   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
845       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
846   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
847   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
848 }
849 
850 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
851     MachineFunction &MF) {
852   for (MachineBasicBlock &MBB : MF)
853     for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
854       // Grab a reference and increment the iterator so we can remove this
855       // instruction if needed without disturbing the iteration.
856       MachineInstr &MI = *MII++;
857 
858       // Must either be a call or a branch.
859       if (!MI.isCall() && !MI.isBranch())
860         continue;
861       // We only care about loading variants of these instructions.
862       if (!MI.mayLoad())
863         continue;
864 
865       switch (MI.getOpcode()) {
866       default: {
867         LLVM_DEBUG(
868             dbgs() << "ERROR: Found an unexpected loading branch or call "
869                       "instruction:\n";
870             MI.dump(); dbgs() << "\n");
871         report_fatal_error("Unexpected loading branch or call!");
872       }
873 
874       case X86::FARCALL16m:
875       case X86::FARCALL32m:
876       case X86::FARCALL64m:
877       case X86::FARJMP16m:
878       case X86::FARJMP32m:
879       case X86::FARJMP64m:
880         // We cannot mitigate far jumps or calls, but we also don't expect them
881         // to be vulnerable to Spectre v1.2 style attacks.
882         continue;
883 
884       case X86::CALL16m:
885       case X86::CALL16m_NT:
886       case X86::CALL32m:
887       case X86::CALL32m_NT:
888       case X86::CALL64m:
889       case X86::CALL64m_NT:
890       case X86::JMP16m:
891       case X86::JMP16m_NT:
892       case X86::JMP32m:
893       case X86::JMP32m_NT:
894       case X86::JMP64m:
895       case X86::JMP64m_NT:
896       case X86::TAILJMPm64:
897       case X86::TAILJMPm64_REX:
898       case X86::TAILJMPm:
899       case X86::TCRETURNmi64:
900       case X86::TCRETURNmi: {
901         // Use the generic unfold logic now that we know we're dealing with
902         // expected instructions.
903         // FIXME: We don't have test coverage for all of these!
904         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
905         if (!UnfoldedRC) {
906           LLVM_DEBUG(dbgs()
907                          << "ERROR: Unable to unfold load from instruction:\n";
908                      MI.dump(); dbgs() << "\n");
909           report_fatal_error("Unable to unfold load!");
910         }
911         Register Reg = MRI->createVirtualRegister(UnfoldedRC);
912         SmallVector<MachineInstr *, 2> NewMIs;
913         // If we were able to compute an unfolded reg class, any failure here
914         // is just a programming error so just assert.
915         bool Unfolded =
916             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
917                                      /*UnfoldStore*/ false, NewMIs);
918         (void)Unfolded;
919         assert(Unfolded &&
920                "Computed unfolded register class but failed to unfold");
921         // Now stitch the new instructions into place and erase the old one.
922         for (auto *NewMI : NewMIs)
923           MBB.insert(MI.getIterator(), NewMI);
924 
925         // Update the call site info.
926         if (MI.isCandidateForCallSiteEntry())
927           MF.eraseCallSiteInfo(&MI);
928 
929         MI.eraseFromParent();
930         LLVM_DEBUG({
931           dbgs() << "Unfolded load successfully into:\n";
932           for (auto *NewMI : NewMIs) {
933             NewMI->dump();
934             dbgs() << "\n";
935           }
936         });
937         continue;
938       }
939       }
940       llvm_unreachable("Escaped switch with default!");
941     }
942 }
943 
944 /// Trace the predicate state through indirect branches, instrumenting them to
945 /// poison the state if a target is reached that does not match the expected
946 /// target.
947 ///
948 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
949 /// branch is trained to predict a particular target and then mispredicts that
950 /// target in a way that can leak data. Despite using an indirect branch, this
951 /// is really a variant 1 style attack: it does not steer execution to an
952 /// arbitrary or attacker controlled address, and it does not require any
953 /// special code executing next to the victim. This attack can also be mitigated
954 /// through retpolines, but those require either replacing indirect branches
955 /// with conditional direct branches or lowering them through a device that
956 /// blocks speculation. This mitigation can replace these retpoline-style
957 /// mitigations for jump tables and other indirect branches within a function
958 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
959 /// calls, however, cannot be mitigated through this technique without changing
960 /// the ABI in a fundamental way.
961 SmallVector<MachineInstr *, 16>
962 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
963     MachineFunction &MF) {
964   // We use the SSAUpdater to insert PHI nodes for the target addresses of
965   // indirect branches. We don't actually need the full power of the SSA updater
966   // in this particular case as we always have immediately available values, but
967   // this avoids us having to re-implement the PHI construction logic.
968   MachineSSAUpdater TargetAddrSSA(MF);
969   TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
970 
971   // Track which blocks were terminated with an indirect branch.
972   SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
973 
974   // We need to know what blocks end up reached via indirect branches. We
975   // expect this to be a subset of those whose address is taken and so track it
976   // directly via the CFG.
977   SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
978 
979   // Walk all the blocks which end in an indirect branch and make the
980   // target address available.
981   for (MachineBasicBlock &MBB : MF) {
982     // Find the last terminator.
983     auto MII = MBB.instr_rbegin();
984     while (MII != MBB.instr_rend() && MII->isDebugInstr())
985       ++MII;
986     if (MII == MBB.instr_rend())
987       continue;
988     MachineInstr &TI = *MII;
989     if (!TI.isTerminator() || !TI.isBranch())
990       // No terminator or non-branch terminator.
991       continue;
992 
993     unsigned TargetReg;
994 
995     switch (TI.getOpcode()) {
996     default:
997       // Direct branch or conditional branch (leading to fallthrough).
998       continue;
999 
1000     case X86::FARJMP16m:
1001     case X86::FARJMP32m:
1002     case X86::FARJMP64m:
1003       // We cannot mitigate far jumps or calls, but we also don't expect them
1004       // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
1005       continue;
1006 
1007     case X86::JMP16m:
1008     case X86::JMP16m_NT:
1009     case X86::JMP32m:
1010     case X86::JMP32m_NT:
1011     case X86::JMP64m:
1012     case X86::JMP64m_NT:
1013       // Mostly as documentation.
1014       report_fatal_error("Memory operand jumps should have been unfolded!");
1015 
1016     case X86::JMP16r:
1017       report_fatal_error(
1018           "Support for 16-bit indirect branches is not implemented.");
1019     case X86::JMP32r:
1020       report_fatal_error(
1021           "Support for 32-bit indirect branches is not implemented.");
1022 
1023     case X86::JMP64r:
1024       TargetReg = TI.getOperand(0).getReg();
1025     }
1026 
1027     // We have definitely found an indirect  branch. Verify that there are no
1028     // preceding conditional branches as we don't yet support that.
1029     if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1030           return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1031         })) {
1032       LLVM_DEBUG({
1033         dbgs() << "ERROR: Found other terminators in a block with an indirect "
1034                   "branch! This is not yet supported! Terminator sequence:\n";
1035         for (MachineInstr &MI : MBB.terminators()) {
1036           MI.dump();
1037           dbgs() << '\n';
1038         }
1039       });
1040       report_fatal_error("Unimplemented terminator sequence!");
1041     }
1042 
1043     // Make the target register an available value for this block.
1044     TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1045     IndirectTerminatedMBBs.insert(&MBB);
1046 
1047     // Add all the successors to our target candidates.
1048     for (MachineBasicBlock *Succ : MBB.successors())
1049       IndirectTargetMBBs.insert(Succ);
1050   }
1051 
1052   // Keep track of the cmov instructions we insert so we can return them.
1053   SmallVector<MachineInstr *, 16> CMovs;
1054 
1055   // If we didn't find any indirect branches with targets, nothing to do here.
1056   if (IndirectTargetMBBs.empty())
1057     return CMovs;
1058 
1059   // We found indirect branches and targets that need to be instrumented to
1060   // harden loads within them. Walk the blocks of the function (to get a stable
1061   // ordering) and instrument each target of an indirect branch.
1062   for (MachineBasicBlock &MBB : MF) {
1063     // Skip the blocks that aren't candidate targets.
1064     if (!IndirectTargetMBBs.count(&MBB))
1065       continue;
1066 
1067     // We don't expect EH pads to ever be reached via an indirect branch. If
1068     // this is desired for some reason, we could simply skip them here rather
1069     // than asserting.
1070     assert(!MBB.isEHPad() &&
1071            "Unexpected EH pad as target of an indirect branch!");
1072 
1073     // We should never end up threading EFLAGS into a block to harden
1074     // conditional jumps as there would be an additional successor via the
1075     // indirect branch. As a consequence, all such edges would be split before
1076     // reaching here, and the inserted block will handle the EFLAGS-based
1077     // hardening.
1078     assert(!MBB.isLiveIn(X86::EFLAGS) &&
1079            "Cannot check within a block that already has live-in EFLAGS!");
1080 
1081     // We can't handle having non-indirect edges into this block unless this is
1082     // the only successor and we can synthesize the necessary target address.
1083     for (MachineBasicBlock *Pred : MBB.predecessors()) {
1084       // If we've already handled this by extracting the target directly,
1085       // nothing to do.
1086       if (IndirectTerminatedMBBs.count(Pred))
1087         continue;
1088 
1089       // Otherwise, we have to be the only successor. We generally expect this
1090       // to be true as conditional branches should have had a critical edge
1091       // split already. We don't however need to worry about EH pad successors
1092       // as they'll happily ignore the target and their hardening strategy is
1093       // resilient to all ways in which they could be reached speculatively.
1094       if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1095             return Succ->isEHPad() || Succ == &MBB;
1096           })) {
1097         LLVM_DEBUG({
1098           dbgs() << "ERROR: Found conditional entry to target of indirect "
1099                     "branch!\n";
1100           Pred->dump();
1101           MBB.dump();
1102         });
1103         report_fatal_error("Cannot harden a conditional entry to a target of "
1104                            "an indirect branch!");
1105       }
1106 
1107       // Now we need to compute the address of this block and install it as a
1108       // synthetic target in the predecessor. We do this at the bottom of the
1109       // predecessor.
1110       auto InsertPt = Pred->getFirstTerminator();
1111       Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1112       if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1113           !Subtarget->isPositionIndependent()) {
1114         // Directly materialize it into an immediate.
1115         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1116                              TII->get(X86::MOV64ri32), TargetReg)
1117                          .addMBB(&MBB);
1118         ++NumInstsInserted;
1119         (void)AddrI;
1120         LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
1121                    dbgs() << "\n");
1122       } else {
1123         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1124                              TargetReg)
1125                          .addReg(/*Base*/ X86::RIP)
1126                          .addImm(/*Scale*/ 1)
1127                          .addReg(/*Index*/ 0)
1128                          .addMBB(&MBB)
1129                          .addReg(/*Segment*/ 0);
1130         ++NumInstsInserted;
1131         (void)AddrI;
1132         LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
1133                    dbgs() << "\n");
1134       }
1135       // And make this available.
1136       TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1137     }
1138 
1139     // Materialize the needed SSA value of the target. Note that we need the
1140     // middle of the block as this block might at the bottom have an indirect
1141     // branch back to itself. We can do this here because at this point, every
1142     // predecessor of this block has an available value. This is basically just
1143     // automating the construction of a PHI node for this target.
1144     unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1145 
1146     // Insert a comparison of the incoming target register with this block's
1147     // address. This also requires us to mark the block as having its address
1148     // taken explicitly.
1149     MBB.setHasAddressTaken();
1150     auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1151     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1152         !Subtarget->isPositionIndependent()) {
1153       // Check directly against a relocated immediate when we can.
1154       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1155                         .addReg(TargetReg, RegState::Kill)
1156                         .addMBB(&MBB);
1157       ++NumInstsInserted;
1158       (void)CheckI;
1159       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1160     } else {
1161       // Otherwise compute the address into a register first.
1162       Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1163       auto AddrI =
1164           BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1165               .addReg(/*Base*/ X86::RIP)
1166               .addImm(/*Scale*/ 1)
1167               .addReg(/*Index*/ 0)
1168               .addMBB(&MBB)
1169               .addReg(/*Segment*/ 0);
1170       ++NumInstsInserted;
1171       (void)AddrI;
1172       LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1173       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1174                         .addReg(TargetReg, RegState::Kill)
1175                         .addReg(AddrReg, RegState::Kill);
1176       ++NumInstsInserted;
1177       (void)CheckI;
1178       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1179     }
1180 
1181     // Now cmov over the predicate if the comparison wasn't equal.
1182     int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1183     auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1184     Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1185     auto CMovI =
1186         BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1187             .addReg(PS->InitialReg)
1188             .addReg(PS->PoisonReg)
1189             .addImm(X86::COND_NE);
1190     CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1191     ++NumInstsInserted;
1192     LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1193     CMovs.push_back(&*CMovI);
1194 
1195     // And put the new value into the available values for SSA form of our
1196     // predicate state.
1197     PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1198   }
1199 
1200   // Return all the newly inserted cmov instructions of the predicate state.
1201   return CMovs;
1202 }
1203 
1204 // Returns true if the MI has EFLAGS as a register def operand and it's live,
1205 // otherwise it returns false
1206 static bool isEFLAGSDefLive(const MachineInstr &MI) {
1207   if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1208     return !DefOp->isDead();
1209   }
1210   return false;
1211 }
1212 
1213 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1214                          const TargetRegisterInfo &TRI) {
1215   // Check if EFLAGS are alive by seeing if there is a def of them or they
1216   // live-in, and then seeing if that def is in turn used.
1217   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1218     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1219       // If the def is dead, then EFLAGS is not live.
1220       if (DefOp->isDead())
1221         return false;
1222 
1223       // Otherwise we've def'ed it, and it is live.
1224       return true;
1225     }
1226     // While at this instruction, also check if we use and kill EFLAGS
1227     // which means it isn't live.
1228     if (MI.killsRegister(X86::EFLAGS, &TRI))
1229       return false;
1230   }
1231 
1232   // If we didn't find anything conclusive (neither definitely alive or
1233   // definitely dead) return whether it lives into the block.
1234   return MBB.isLiveIn(X86::EFLAGS);
1235 }
1236 
1237 /// Trace the predicate state through each of the blocks in the function,
1238 /// hardening everything necessary along the way.
1239 ///
1240 /// We call this routine once the initial predicate state has been established
1241 /// for each basic block in the function in the SSA updater. This routine traces
1242 /// it through the instructions within each basic block, and for non-returning
1243 /// blocks informs the SSA updater about the final state that lives out of the
1244 /// block. Along the way, it hardens any vulnerable instruction using the
1245 /// currently valid predicate state. We have to do these two things together
1246 /// because the SSA updater only works across blocks. Within a block, we track
1247 /// the current predicate state directly and update it as it changes.
1248 ///
1249 /// This operates in two passes over each block. First, we analyze the loads in
1250 /// the block to determine which strategy will be used to harden them: hardening
1251 /// the address or hardening the loaded value when loaded into a register
1252 /// amenable to hardening. We have to process these first because the two
1253 /// strategies may interact -- later hardening may change what strategy we wish
1254 /// to use. We also will analyze data dependencies between loads and avoid
1255 /// hardening those loads that are data dependent on a load with a hardened
1256 /// address. We also skip hardening loads already behind an LFENCE as that is
1257 /// sufficient to harden them against misspeculation.
1258 ///
1259 /// Second, we actively trace the predicate state through the block, applying
1260 /// the hardening steps we determined necessary in the first pass as we go.
1261 ///
1262 /// These two passes are applied to each basic block. We operate one block at a
1263 /// time to simplify reasoning about reachability and sequencing.
1264 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1265     MachineFunction &MF) {
1266   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1267   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1268 
1269   SmallSet<unsigned, 16> HardenedAddrRegs;
1270 
1271   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1272 
1273   // Track the set of load-dependent registers through the basic block. Because
1274   // the values of these registers have an existing data dependency on a loaded
1275   // value which we would have checked, we can omit any checks on them.
1276   SparseBitVector<> LoadDepRegs;
1277 
1278   for (MachineBasicBlock &MBB : MF) {
1279     // The first pass over the block: collect all the loads which can have their
1280     // loaded value hardened and all the loads that instead need their address
1281     // hardened. During this walk we propagate load dependence for address
1282     // hardened loads and also look for LFENCE to stop hardening wherever
1283     // possible. When deciding whether or not to harden the loaded value or not,
1284     // we check to see if any registers used in the address will have been
1285     // hardened at this point and if so, harden any remaining address registers
1286     // as that often successfully re-uses hardened addresses and minimizes
1287     // instructions.
1288     //
1289     // FIXME: We should consider an aggressive mode where we continue to keep as
1290     // many loads value hardened even when some address register hardening would
1291     // be free (due to reuse).
1292     //
1293     // Note that we only need this pass if we are actually hardening loads.
1294     if (HardenLoads)
1295       for (MachineInstr &MI : MBB) {
1296         // We naively assume that all def'ed registers of an instruction have
1297         // a data dependency on all of their operands.
1298         // FIXME: Do a more careful analysis of x86 to build a conservative
1299         // model here.
1300         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1301               return Op.isReg() && LoadDepRegs.test(Op.getReg());
1302             }))
1303           for (MachineOperand &Def : MI.defs())
1304             if (Def.isReg())
1305               LoadDepRegs.set(Def.getReg());
1306 
1307         // Both Intel and AMD are guiding that they will change the semantics of
1308         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1309         // no more need to guard things in this block.
1310         if (MI.getOpcode() == X86::LFENCE)
1311           break;
1312 
1313         // If this instruction cannot load, nothing to do.
1314         if (!MI.mayLoad())
1315           continue;
1316 
1317         // Some instructions which "load" are trivially safe or unimportant.
1318         if (MI.getOpcode() == X86::MFENCE)
1319           continue;
1320 
1321         // Extract the memory operand information about this instruction.
1322         // FIXME: This doesn't handle loading pseudo instructions which we often
1323         // could handle with similarly generic logic. We probably need to add an
1324         // MI-layer routine similar to the MC-layer one we use here which maps
1325         // pseudos much like this maps real instructions.
1326         const MCInstrDesc &Desc = MI.getDesc();
1327         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1328         if (MemRefBeginIdx < 0) {
1329           LLVM_DEBUG(dbgs()
1330                          << "WARNING: unable to harden loading instruction: ";
1331                      MI.dump());
1332           continue;
1333         }
1334 
1335         MemRefBeginIdx += X86II::getOperandBias(Desc);
1336 
1337         MachineOperand &BaseMO =
1338             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1339         MachineOperand &IndexMO =
1340             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1341 
1342         // If we have at least one (non-frame-index, non-RIP) register operand,
1343         // and neither operand is load-dependent, we need to check the load.
1344         unsigned BaseReg = 0, IndexReg = 0;
1345         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1346             BaseMO.getReg() != X86::NoRegister)
1347           BaseReg = BaseMO.getReg();
1348         if (IndexMO.getReg() != X86::NoRegister)
1349           IndexReg = IndexMO.getReg();
1350 
1351         if (!BaseReg && !IndexReg)
1352           // No register operands!
1353           continue;
1354 
1355         // If any register operand is dependent, this load is dependent and we
1356         // needn't check it.
1357         // FIXME: Is this true in the case where we are hardening loads after
1358         // they complete? Unclear, need to investigate.
1359         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1360             (IndexReg && LoadDepRegs.test(IndexReg)))
1361           continue;
1362 
1363         // If post-load hardening is enabled, this load is compatible with
1364         // post-load hardening, and we aren't already going to harden one of the
1365         // address registers, queue it up to be hardened post-load. Notably,
1366         // even once hardened this won't introduce a useful dependency that
1367         // could prune out subsequent loads.
1368         if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) &&
1369             !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 &&
1370             MI.getOperand(0).isReg() &&
1371             canHardenRegister(MI.getOperand(0).getReg()) &&
1372             !HardenedAddrRegs.count(BaseReg) &&
1373             !HardenedAddrRegs.count(IndexReg)) {
1374           HardenPostLoad.insert(&MI);
1375           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1376           continue;
1377         }
1378 
1379         // Record this instruction for address hardening and record its register
1380         // operands as being address-hardened.
1381         HardenLoadAddr.insert(&MI);
1382         if (BaseReg)
1383           HardenedAddrRegs.insert(BaseReg);
1384         if (IndexReg)
1385           HardenedAddrRegs.insert(IndexReg);
1386 
1387         for (MachineOperand &Def : MI.defs())
1388           if (Def.isReg())
1389             LoadDepRegs.set(Def.getReg());
1390       }
1391 
1392     // Now re-walk the instructions in the basic block, and apply whichever
1393     // hardening strategy we have elected. Note that we do this in a second
1394     // pass specifically so that we have the complete set of instructions for
1395     // which we will do post-load hardening and can defer it in certain
1396     // circumstances.
1397     for (MachineInstr &MI : MBB) {
1398       if (HardenLoads) {
1399         // We cannot both require hardening the def of a load and its address.
1400         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1401                "Requested to harden both the address and def of a load!");
1402 
1403         // Check if this is a load whose address needs to be hardened.
1404         if (HardenLoadAddr.erase(&MI)) {
1405           const MCInstrDesc &Desc = MI.getDesc();
1406           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1407           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1408 
1409           MemRefBeginIdx += X86II::getOperandBias(Desc);
1410 
1411           MachineOperand &BaseMO =
1412               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1413           MachineOperand &IndexMO =
1414               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1415           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1416           continue;
1417         }
1418 
1419         // Test if this instruction is one of our post load instructions (and
1420         // remove it from the set if so).
1421         if (HardenPostLoad.erase(&MI)) {
1422           assert(!MI.isCall() && "Must not try to post-load harden a call!");
1423 
1424           // If this is a data-invariant load and there is no EFLAGS
1425           // interference, we want to try and sink any hardening as far as
1426           // possible.
1427           if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) {
1428             // Sink the instruction we'll need to harden as far as we can down
1429             // the graph.
1430             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1431 
1432             // If we managed to sink this instruction, update everything so we
1433             // harden that instruction when we reach it in the instruction
1434             // sequence.
1435             if (SunkMI != &MI) {
1436               // If in sinking there was no instruction needing to be hardened,
1437               // we're done.
1438               if (!SunkMI)
1439                 continue;
1440 
1441               // Otherwise, add this to the set of defs we harden.
1442               HardenPostLoad.insert(SunkMI);
1443               continue;
1444             }
1445           }
1446 
1447           unsigned HardenedReg = hardenPostLoad(MI);
1448 
1449           // Mark the resulting hardened register as such so we don't re-harden.
1450           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1451 
1452           continue;
1453         }
1454 
1455         // Check for an indirect call or branch that may need its input hardened
1456         // even if we couldn't find the specific load used, or were able to
1457         // avoid hardening it for some reason. Note that here we cannot break
1458         // out afterward as we may still need to handle any call aspect of this
1459         // instruction.
1460         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1461           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1462       }
1463 
1464       // After we finish hardening loads we handle interprocedural hardening if
1465       // enabled and relevant for this instruction.
1466       if (!HardenInterprocedurally)
1467         continue;
1468       if (!MI.isCall() && !MI.isReturn())
1469         continue;
1470 
1471       // If this is a direct return (IE, not a tail call) just directly harden
1472       // it.
1473       if (MI.isReturn() && !MI.isCall()) {
1474         hardenReturnInstr(MI);
1475         continue;
1476       }
1477 
1478       // Otherwise we have a call. We need to handle transferring the predicate
1479       // state into a call and recovering it after the call returns (unless this
1480       // is a tail call).
1481       assert(MI.isCall() && "Should only reach here for calls!");
1482       tracePredStateThroughCall(MI);
1483     }
1484 
1485     HardenPostLoad.clear();
1486     HardenLoadAddr.clear();
1487     HardenedAddrRegs.clear();
1488     AddrRegToHardenedReg.clear();
1489 
1490     // Currently, we only track data-dependent loads within a basic block.
1491     // FIXME: We should see if this is necessary or if we could be more
1492     // aggressive here without opening up attack avenues.
1493     LoadDepRegs.clear();
1494   }
1495 }
1496 
1497 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1498 /// `restoreEFLAGS`.
1499 ///
1500 /// Note that LLVM can only lower very simple patterns of saved and restored
1501 /// EFLAGS registers. The restore should always be within the same basic block
1502 /// as the save so that no PHI nodes are inserted.
1503 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1504     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1505     DebugLoc Loc) {
1506   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1507   // what instruction selection does.
1508   Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1509   // We directly copy the FLAGS register and rely on later lowering to clean
1510   // this up into the appropriate setCC instructions.
1511   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1512   ++NumInstsInserted;
1513   return Reg;
1514 }
1515 
1516 /// Restore EFLAGS from the provided GPR. This should be produced by
1517 /// `saveEFLAGS`.
1518 ///
1519 /// This must be done within the same basic block as the save in order to
1520 /// reliably lower.
1521 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1522     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1523     Register Reg) {
1524   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1525   ++NumInstsInserted;
1526 }
1527 
1528 /// Takes the current predicate state (in a register) and merges it into the
1529 /// stack pointer. The state is essentially a single bit, but we merge this in
1530 /// a way that won't form non-canonical pointers and also will be preserved
1531 /// across normal stack adjustments.
1532 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1533     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
1534     unsigned PredStateReg) {
1535   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1536   // FIXME: This hard codes a shift distance based on the number of bits needed
1537   // to stay canonical on 64-bit. We should compute this somehow and support
1538   // 32-bit as part of that.
1539   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1540                     .addReg(PredStateReg, RegState::Kill)
1541                     .addImm(47);
1542   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1543   ++NumInstsInserted;
1544   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1545                  .addReg(X86::RSP)
1546                  .addReg(TmpReg, RegState::Kill);
1547   OrI->addRegisterDead(X86::EFLAGS, TRI);
1548   ++NumInstsInserted;
1549 }
1550 
1551 /// Extracts the predicate state stored in the high bits of the stack pointer.
1552 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1553     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1554     DebugLoc Loc) {
1555   Register PredStateReg = MRI->createVirtualRegister(PS->RC);
1556   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1557 
1558   // We know that the stack pointer will have any preserved predicate state in
1559   // its high bit. We just want to smear this across the other bits. Turns out,
1560   // this is exactly what an arithmetic right shift does.
1561   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1562       .addReg(X86::RSP);
1563   auto ShiftI =
1564       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1565           .addReg(TmpReg, RegState::Kill)
1566           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1567   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1568   ++NumInstsInserted;
1569 
1570   return PredStateReg;
1571 }
1572 
1573 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1574     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1575     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1576   MachineBasicBlock &MBB = *MI.getParent();
1577   const DebugLoc &Loc = MI.getDebugLoc();
1578 
1579   // Check if EFLAGS are alive by seeing if there is a def of them or they
1580   // live-in, and then seeing if that def is in turn used.
1581   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1582 
1583   SmallVector<MachineOperand *, 2> HardenOpRegs;
1584 
1585   if (BaseMO.isFI()) {
1586     // A frame index is never a dynamically controllable load, so only
1587     // harden it if we're covering fixed address loads as well.
1588     LLVM_DEBUG(
1589         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
1590         MI.dump(); dbgs() << "\n");
1591   } else if (BaseMO.getReg() == X86::RSP) {
1592     // Some idempotent atomic operations are lowered directly to a locked
1593     // OR with 0 to the top of stack(or slightly offset from top) which uses an
1594     // explicit RSP register as the base.
1595     assert(IndexMO.getReg() == X86::NoRegister &&
1596            "Explicit RSP access with dynamic index!");
1597     LLVM_DEBUG(
1598         dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
1599   } else if (BaseMO.getReg() == X86::RIP ||
1600              BaseMO.getReg() == X86::NoRegister) {
1601     // For both RIP-relative addressed loads or absolute loads, we cannot
1602     // meaningfully harden them because the address being loaded has no
1603     // dynamic component.
1604     //
1605     // FIXME: When using a segment base (like TLS does) we end up with the
1606     // dynamic address being the base plus -1 because we can't mutate the
1607     // segment register here. This allows the signed 32-bit offset to point at
1608     // valid segment-relative addresses and load them successfully.
1609     LLVM_DEBUG(
1610         dbgs() << "  Cannot harden base of "
1611                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1612                << " address in a load!");
1613   } else {
1614     assert(BaseMO.isReg() &&
1615            "Only allowed to have a frame index or register base.");
1616     HardenOpRegs.push_back(&BaseMO);
1617   }
1618 
1619   if (IndexMO.getReg() != X86::NoRegister &&
1620       (HardenOpRegs.empty() ||
1621        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1622     HardenOpRegs.push_back(&IndexMO);
1623 
1624   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1625          "Should have exactly one or two registers to harden!");
1626   assert((HardenOpRegs.size() == 1 ||
1627           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
1628          "Should not have two of the same registers!");
1629 
1630   // Remove any registers that have alreaded been checked.
1631   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
1632     // See if this operand's register has already been checked.
1633     auto It = AddrRegToHardenedReg.find(Op->getReg());
1634     if (It == AddrRegToHardenedReg.end())
1635       // Not checked, so retain this one.
1636       return false;
1637 
1638     // Otherwise, we can directly update this operand and remove it.
1639     Op->setReg(It->second);
1640     return true;
1641   });
1642   // If there are none left, we're done.
1643   if (HardenOpRegs.empty())
1644     return;
1645 
1646   // Compute the current predicate state.
1647   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1648 
1649   auto InsertPt = MI.getIterator();
1650 
1651   // If EFLAGS are live and we don't have access to instructions that avoid
1652   // clobbering EFLAGS we need to save and restore them. This in turn makes
1653   // the EFLAGS no longer live.
1654   unsigned FlagsReg = 0;
1655   if (EFLAGSLive && !Subtarget->hasBMI2()) {
1656     EFLAGSLive = false;
1657     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1658   }
1659 
1660   for (MachineOperand *Op : HardenOpRegs) {
1661     Register OpReg = Op->getReg();
1662     auto *OpRC = MRI->getRegClass(OpReg);
1663     Register TmpReg = MRI->createVirtualRegister(OpRC);
1664 
1665     // If this is a vector register, we'll need somewhat custom logic to handle
1666     // hardening it.
1667     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
1668                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
1669       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
1670       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
1671 
1672       // Move our state into a vector register.
1673       // FIXME: We could skip this at the cost of longer encodings with AVX-512
1674       // but that doesn't seem likely worth it.
1675       Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
1676       auto MovI =
1677           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
1678               .addReg(StateReg);
1679       (void)MovI;
1680       ++NumInstsInserted;
1681       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
1682 
1683       // Broadcast it across the vector register.
1684       Register VBStateReg = MRI->createVirtualRegister(OpRC);
1685       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
1686                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
1687                                                   : X86::VPBROADCASTQYrr),
1688                                 VBStateReg)
1689                             .addReg(VStateReg);
1690       (void)BroadcastI;
1691       ++NumInstsInserted;
1692       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1693                  dbgs() << "\n");
1694 
1695       // Merge our potential poison state into the value with a vector or.
1696       auto OrI =
1697           BuildMI(MBB, InsertPt, Loc,
1698                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
1699               .addReg(VBStateReg)
1700               .addReg(OpReg);
1701       (void)OrI;
1702       ++NumInstsInserted;
1703       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1704     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
1705                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
1706                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
1707       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
1708       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
1709       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
1710       if (Is128Bit || Is256Bit)
1711         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
1712 
1713       // Broadcast our state into a vector register.
1714       Register VStateReg = MRI->createVirtualRegister(OpRC);
1715       unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr
1716                                       : Is256Bit ? X86::VPBROADCASTQrZ256rr
1717                                                  : X86::VPBROADCASTQrZrr;
1718       auto BroadcastI =
1719           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
1720               .addReg(StateReg);
1721       (void)BroadcastI;
1722       ++NumInstsInserted;
1723       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1724                  dbgs() << "\n");
1725 
1726       // Merge our potential poison state into the value with a vector or.
1727       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
1728                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
1729       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
1730                      .addReg(VStateReg)
1731                      .addReg(OpReg);
1732       (void)OrI;
1733       ++NumInstsInserted;
1734       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1735     } else {
1736       // FIXME: Need to support GR32 here for 32-bit code.
1737       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
1738              "Not a supported register class for address hardening!");
1739 
1740       if (!EFLAGSLive) {
1741         // Merge our potential poison state into the value with an or.
1742         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
1743                        .addReg(StateReg)
1744                        .addReg(OpReg);
1745         OrI->addRegisterDead(X86::EFLAGS, TRI);
1746         ++NumInstsInserted;
1747         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1748       } else {
1749         // We need to avoid touching EFLAGS so shift out all but the least
1750         // significant bit using the instruction that doesn't update flags.
1751         auto ShiftI =
1752             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
1753                 .addReg(OpReg)
1754                 .addReg(StateReg);
1755         (void)ShiftI;
1756         ++NumInstsInserted;
1757         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
1758                    dbgs() << "\n");
1759       }
1760     }
1761 
1762     // Record this register as checked and update the operand.
1763     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
1764            "Should not have checked this register yet!");
1765     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
1766     Op->setReg(TmpReg);
1767     ++NumAddrRegsHardened;
1768   }
1769 
1770   // And restore the flags if needed.
1771   if (FlagsReg)
1772     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1773 }
1774 
1775 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
1776     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
1777   assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&
1778          "Cannot get here with a non-invariant load!");
1779   assert(!isEFLAGSDefLive(InitialMI) &&
1780          "Cannot get here with a data invariant load "
1781          "that interferes with EFLAGS!");
1782 
1783   // See if we can sink hardening the loaded value.
1784   auto SinkCheckToSingleUse =
1785       [&](MachineInstr &MI) -> Optional<MachineInstr *> {
1786     Register DefReg = MI.getOperand(0).getReg();
1787 
1788     // We need to find a single use which we can sink the check. We can
1789     // primarily do this because many uses may already end up checked on their
1790     // own.
1791     MachineInstr *SingleUseMI = nullptr;
1792     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
1793       // If we're already going to harden this use, it is data invariant, it
1794       // does not interfere with EFLAGS, and within our block.
1795       if (HardenedInstrs.count(&UseMI)) {
1796         if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) {
1797           // If we've already decided to harden a non-load, we must have sunk
1798           // some other post-load hardened instruction to it and it must itself
1799           // be data-invariant.
1800           assert(X86InstrInfo::isDataInvariant(UseMI) &&
1801                  "Data variant instruction being hardened!");
1802           continue;
1803         }
1804 
1805         // Otherwise, this is a load and the load component can't be data
1806         // invariant so check how this register is being used.
1807         const MCInstrDesc &Desc = UseMI.getDesc();
1808         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1809         assert(MemRefBeginIdx >= 0 &&
1810                "Should always have mem references here!");
1811         MemRefBeginIdx += X86II::getOperandBias(Desc);
1812 
1813         MachineOperand &BaseMO =
1814             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1815         MachineOperand &IndexMO =
1816             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1817         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
1818             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
1819           // The load uses the register as part of its address making it not
1820           // invariant.
1821           return {};
1822 
1823         continue;
1824       }
1825 
1826       if (SingleUseMI)
1827         // We already have a single use, this would make two. Bail.
1828         return {};
1829 
1830       // If this single use isn't data invariant, isn't in this block, or has
1831       // interfering EFLAGS, we can't sink the hardening to it.
1832       if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() ||
1833           isEFLAGSDefLive(UseMI))
1834         return {};
1835 
1836       // If this instruction defines multiple registers bail as we won't harden
1837       // all of them.
1838       if (UseMI.getDesc().getNumDefs() > 1)
1839         return {};
1840 
1841       // If this register isn't a virtual register we can't walk uses of sanely,
1842       // just bail. Also check that its register class is one of the ones we
1843       // can harden.
1844       Register UseDefReg = UseMI.getOperand(0).getReg();
1845       if (!UseDefReg.isVirtual() || !canHardenRegister(UseDefReg))
1846         return {};
1847 
1848       SingleUseMI = &UseMI;
1849     }
1850 
1851     // If SingleUseMI is still null, there is no use that needs its own
1852     // checking. Otherwise, it is the single use that needs checking.
1853     return {SingleUseMI};
1854   };
1855 
1856   MachineInstr *MI = &InitialMI;
1857   while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
1858     // Update which MI we're checking now.
1859     MI = *SingleUse;
1860     if (!MI)
1861       break;
1862   }
1863 
1864   return MI;
1865 }
1866 
1867 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) {
1868   auto *RC = MRI->getRegClass(Reg);
1869   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
1870   if (RegBytes > 8)
1871     // We don't support post-load hardening of vectors.
1872     return false;
1873 
1874   unsigned RegIdx = Log2_32(RegBytes);
1875   assert(RegIdx < 4 && "Unsupported register size");
1876 
1877   // If this register class is explicitly constrained to a class that doesn't
1878   // require REX prefix, we may not be able to satisfy that constraint when
1879   // emitting the hardening instructions, so bail out here.
1880   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
1881   // end up both with a NOREX and REX-only register as operands to the hardening
1882   // instructions. It would be better to fix that code to handle this situation
1883   // rather than hack around it in this way.
1884   const TargetRegisterClass *NOREXRegClasses[] = {
1885       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
1886       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
1887   if (RC == NOREXRegClasses[RegIdx])
1888     return false;
1889 
1890   const TargetRegisterClass *GPRRegClasses[] = {
1891       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
1892       &X86::GR64RegClass};
1893   return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
1894 }
1895 
1896 /// Harden a value in a register.
1897 ///
1898 /// This is the low-level logic to fully harden a value sitting in a register
1899 /// against leaking during speculative execution.
1900 ///
1901 /// Unlike hardening an address that is used by a load, this routine is required
1902 /// to hide *all* incoming bits in the register.
1903 ///
1904 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
1905 /// larger than the predicate state register. FIXME: We should support vector
1906 /// registers here by broadcasting the predicate state.
1907 ///
1908 /// The new, hardened virtual register is returned. It will have the same
1909 /// register class as `Reg`.
1910 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
1911     Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1912     DebugLoc Loc) {
1913   assert(canHardenRegister(Reg) && "Cannot harden this register!");
1914   assert(Reg.isVirtual() && "Cannot harden a physical register!");
1915 
1916   auto *RC = MRI->getRegClass(Reg);
1917   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
1918   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1919   assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) &&
1920          "Unknown register size");
1921 
1922   // FIXME: Need to teach this about 32-bit mode.
1923   if (Bytes != 8) {
1924     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
1925     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
1926     Register NarrowStateReg = MRI->createVirtualRegister(RC);
1927     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
1928         .addReg(StateReg, 0, SubRegImm);
1929     StateReg = NarrowStateReg;
1930   }
1931 
1932   unsigned FlagsReg = 0;
1933   if (isEFLAGSLive(MBB, InsertPt, *TRI))
1934     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1935 
1936   Register NewReg = MRI->createVirtualRegister(RC);
1937   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
1938   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
1939   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
1940                  .addReg(StateReg)
1941                  .addReg(Reg);
1942   OrI->addRegisterDead(X86::EFLAGS, TRI);
1943   ++NumInstsInserted;
1944   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1945 
1946   if (FlagsReg)
1947     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1948 
1949   return NewReg;
1950 }
1951 
1952 /// Harden a load by hardening the loaded value in the defined register.
1953 ///
1954 /// We can harden a non-leaking load into a register without touching the
1955 /// address by just hiding all of the loaded bits during misspeculation. We use
1956 /// an `or` instruction to do this because we set up our poison value as all
1957 /// ones. And the goal is just for the loaded bits to not be exposed to
1958 /// execution and coercing them to one is sufficient.
1959 ///
1960 /// Returns the newly hardened register.
1961 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
1962   MachineBasicBlock &MBB = *MI.getParent();
1963   const DebugLoc &Loc = MI.getDebugLoc();
1964 
1965   auto &DefOp = MI.getOperand(0);
1966   Register OldDefReg = DefOp.getReg();
1967   auto *DefRC = MRI->getRegClass(OldDefReg);
1968 
1969   // Because we want to completely replace the uses of this def'ed value with
1970   // the hardened value, create a dedicated new register that will only be used
1971   // to communicate the unhardened value to the hardening.
1972   Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
1973   DefOp.setReg(UnhardenedReg);
1974 
1975   // Now harden this register's value, getting a hardened reg that is safe to
1976   // use. Note that we insert the instructions to compute this *after* the
1977   // defining instruction, not before it.
1978   unsigned HardenedReg = hardenValueInRegister(
1979       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
1980 
1981   // Finally, replace the old register (which now only has the uses of the
1982   // original def) with the hardened register.
1983   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
1984 
1985   ++NumPostLoadRegsHardened;
1986   return HardenedReg;
1987 }
1988 
1989 /// Harden a return instruction.
1990 ///
1991 /// Returns implicitly perform a load which we need to harden. Without hardening
1992 /// this load, an attacker my speculatively write over the return address to
1993 /// steer speculation of the return to an attacker controlled address. This is
1994 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
1995 /// this paper:
1996 /// https://people.csail.mit.edu/vlk/spectre11.pdf
1997 ///
1998 /// We can harden this by introducing an LFENCE that will delay any load of the
1999 /// return address until prior instructions have retired (and thus are not being
2000 /// speculated), or we can harden the address used by the implicit load: the
2001 /// stack pointer.
2002 ///
2003 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2004 /// benefit: it allows us to pass the predicate state accumulated in this
2005 /// function back to the caller. In the absence of a BCBS attack on the return,
2006 /// the caller will typically be resumed and speculatively executed due to the
2007 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2008 /// priority. It is possible that some code from the caller will be executed
2009 /// speculatively even during a BCBS-attacked return until the steering takes
2010 /// effect. Whenever this happens, the caller can recover the (poisoned)
2011 /// predicate state from the stack pointer and continue to harden loads.
2012 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2013   MachineBasicBlock &MBB = *MI.getParent();
2014   const DebugLoc &Loc = MI.getDebugLoc();
2015   auto InsertPt = MI.getIterator();
2016 
2017   if (FenceCallAndRet)
2018     // No need to fence here as we'll fence at the return site itself. That
2019     // handles more cases than we can handle here.
2020     return;
2021 
2022   // Take our predicate state, shift it to the high 17 bits (so that we keep
2023   // pointers canonical) and merge it into RSP. This will allow the caller to
2024   // extract it when we return (speculatively).
2025   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2026 }
2027 
2028 /// Trace the predicate state through a call.
2029 ///
2030 /// There are several layers of this needed to handle the full complexity of
2031 /// calls.
2032 ///
2033 /// First, we need to send the predicate state into the called function. We do
2034 /// this by merging it into the high bits of the stack pointer.
2035 ///
2036 /// For tail calls, this is all we need to do.
2037 ///
2038 /// For calls where we might return and resume the control flow, we need to
2039 /// extract the predicate state from the high bits of the stack pointer after
2040 /// control returns from the called function.
2041 ///
2042 /// We also need to verify that we intended to return to this location in the
2043 /// code. An attacker might arrange for the processor to mispredict the return
2044 /// to this valid but incorrect return address in the program rather than the
2045 /// correct one. See the paper on this attack, called "ret2spec" by the
2046 /// researchers, here:
2047 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2048 ///
2049 /// The way we verify that we returned to the correct location is by preserving
2050 /// the expected return address across the call. One technique involves taking
2051 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2052 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2053 /// directly save the address into a register that will be preserved across the
2054 /// call. We compare this intended return address against the address
2055 /// immediately following the call (the observed return address). If these
2056 /// mismatch, we have detected misspeculation and can poison our predicate
2057 /// state.
2058 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2059     MachineInstr &MI) {
2060   MachineBasicBlock &MBB = *MI.getParent();
2061   MachineFunction &MF = *MBB.getParent();
2062   auto InsertPt = MI.getIterator();
2063   const DebugLoc &Loc = MI.getDebugLoc();
2064 
2065   if (FenceCallAndRet) {
2066     if (MI.isReturn())
2067       // Tail call, we don't return to this function.
2068       // FIXME: We should also handle noreturn calls.
2069       return;
2070 
2071     // We don't need to fence before the call because the function should fence
2072     // in its entry. However, we do need to fence after the call returns.
2073     // Fencing before the return doesn't correctly handle cases where the return
2074     // itself is mispredicted.
2075     BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2076     ++NumInstsInserted;
2077     ++NumLFENCEsInserted;
2078     return;
2079   }
2080 
2081   // First, we transfer the predicate state into the called function by merging
2082   // it into the stack pointer. This will kill the current def of the state.
2083   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2084   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2085 
2086   // If this call is also a return, it is a tail call and we don't need anything
2087   // else to handle it so just return. Also, if there are no further
2088   // instructions and no successors, this call does not return so we can also
2089   // bail.
2090   if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2091     return;
2092 
2093   // Create a symbol to track the return address and attach it to the call
2094   // machine instruction. We will lower extra symbols attached to call
2095   // instructions as label immediately following the call.
2096   MCSymbol *RetSymbol =
2097       MF.getContext().createTempSymbol("slh_ret_addr",
2098                                        /*AlwaysAddSuffix*/ true);
2099   MI.setPostInstrSymbol(MF, RetSymbol);
2100 
2101   const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2102   unsigned ExpectedRetAddrReg = 0;
2103 
2104   // If we have no red zones or if the function returns twice (possibly without
2105   // using the `ret` instruction) like setjmp, we need to save the expected
2106   // return address prior to the call.
2107   if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2108       MF.exposesReturnsTwice()) {
2109     // If we don't have red zones, we need to compute the expected return
2110     // address prior to the call and store it in a register that lives across
2111     // the call.
2112     //
2113     // In some ways, this is doubly satisfying as a mitigation because it will
2114     // also successfully detect stack smashing bugs in some cases (typically,
2115     // when a callee-saved register is used and the callee doesn't push it onto
2116     // the stack). But that isn't our primary goal, so we only use it as
2117     // a fallback.
2118     //
2119     // FIXME: It isn't clear that this is reliable in the face of
2120     // rematerialization in the register allocator. We somehow need to force
2121     // that to not occur for this particular instruction, and instead to spill
2122     // or otherwise preserve the value computed *prior* to the call.
2123     //
2124     // FIXME: It is even less clear why MachineCSE can't just fold this when we
2125     // end up having to use identical instructions both before and after the
2126     // call to feed the comparison.
2127     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2128     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2129         !Subtarget->isPositionIndependent()) {
2130       BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2131           .addSym(RetSymbol);
2132     } else {
2133       BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2134           .addReg(/*Base*/ X86::RIP)
2135           .addImm(/*Scale*/ 1)
2136           .addReg(/*Index*/ 0)
2137           .addSym(RetSymbol)
2138           .addReg(/*Segment*/ 0);
2139     }
2140   }
2141 
2142   // Step past the call to handle when it returns.
2143   ++InsertPt;
2144 
2145   // If we didn't pre-compute the expected return address into a register, then
2146   // red zones are enabled and the return address is still available on the
2147   // stack immediately after the call. As the very first instruction, we load it
2148   // into a register.
2149   if (!ExpectedRetAddrReg) {
2150     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2151     BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2152         .addReg(/*Base*/ X86::RSP)
2153         .addImm(/*Scale*/ 1)
2154         .addReg(/*Index*/ 0)
2155         .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2156                                      // the return address is 8-bytes past it.
2157         .addReg(/*Segment*/ 0);
2158   }
2159 
2160   // Now we extract the callee's predicate state from the stack pointer.
2161   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2162 
2163   // Test the expected return address against our actual address. If we can
2164   // form this basic block's address as an immediate, this is easy. Otherwise
2165   // we compute it.
2166   if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2167       !Subtarget->isPositionIndependent()) {
2168     // FIXME: Could we fold this with the load? It would require careful EFLAGS
2169     // management.
2170     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2171         .addReg(ExpectedRetAddrReg, RegState::Kill)
2172         .addSym(RetSymbol);
2173   } else {
2174     Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2175     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2176         .addReg(/*Base*/ X86::RIP)
2177         .addImm(/*Scale*/ 1)
2178         .addReg(/*Index*/ 0)
2179         .addSym(RetSymbol)
2180         .addReg(/*Segment*/ 0);
2181     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2182         .addReg(ExpectedRetAddrReg, RegState::Kill)
2183         .addReg(ActualRetAddrReg, RegState::Kill);
2184   }
2185 
2186   // Now conditionally update the predicate state we just extracted if we ended
2187   // up at a different return address than expected.
2188   int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2189   auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2190 
2191   Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2192   auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2193                    .addReg(NewStateReg, RegState::Kill)
2194                    .addReg(PS->PoisonReg)
2195                    .addImm(X86::COND_NE);
2196   CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2197   ++NumInstsInserted;
2198   LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2199 
2200   PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2201 }
2202 
2203 /// An attacker may speculatively store over a value that is then speculatively
2204 /// loaded and used as the target of an indirect call or jump instruction. This
2205 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2206 /// in this paper:
2207 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2208 ///
2209 /// When this happens, the speculative execution of the call or jump will end up
2210 /// being steered to this attacker controlled address. While most such loads
2211 /// will be adequately hardened already, we want to ensure that they are
2212 /// definitively treated as needing post-load hardening. While address hardening
2213 /// is sufficient to prevent secret data from leaking to the attacker, it may
2214 /// not be sufficient to prevent an attacker from steering speculative
2215 /// execution. We forcibly unfolded all relevant loads above and so will always
2216 /// have an opportunity to post-load harden here, we just need to scan for cases
2217 /// not already flagged and add them.
2218 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2219     MachineInstr &MI,
2220     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2221   switch (MI.getOpcode()) {
2222   case X86::FARCALL16m:
2223   case X86::FARCALL32m:
2224   case X86::FARCALL64m:
2225   case X86::FARJMP16m:
2226   case X86::FARJMP32m:
2227   case X86::FARJMP64m:
2228     // We don't need to harden either far calls or far jumps as they are
2229     // safe from Spectre.
2230     return;
2231 
2232   default:
2233     break;
2234   }
2235 
2236   // We should never see a loading instruction at this point, as those should
2237   // have been unfolded.
2238   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2239 
2240   // If the first operand isn't a register, this is a branch or call
2241   // instruction with an immediate operand which doesn't need to be hardened.
2242   if (!MI.getOperand(0).isReg())
2243     return;
2244 
2245   // For all of these, the target register is the first operand of the
2246   // instruction.
2247   auto &TargetOp = MI.getOperand(0);
2248   Register OldTargetReg = TargetOp.getReg();
2249 
2250   // Try to lookup a hardened version of this register. We retain a reference
2251   // here as we want to update the map to track any newly computed hardened
2252   // register.
2253   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2254 
2255   // If we don't have a hardened register yet, compute one. Otherwise, just use
2256   // the already hardened register.
2257   //
2258   // FIXME: It is a little suspect that we use partially hardened registers that
2259   // only feed addresses. The complexity of partial hardening with SHRX
2260   // continues to pile up. Should definitively measure its value and consider
2261   // eliminating it.
2262   if (!HardenedTargetReg)
2263     HardenedTargetReg = hardenValueInRegister(
2264         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2265 
2266   // Set the target operand to the hardened register.
2267   TargetOp.setReg(HardenedTargetReg);
2268 
2269   ++NumCallsOrJumpsHardened;
2270 }
2271 
2272 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2273                       "X86 speculative load hardener", false, false)
2274 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2275                     "X86 speculative load hardener", false, false)
2276 
2277 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2278   return new X86SpeculativeLoadHardeningPass();
2279 }
2280