1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// Provide a pass which mitigates speculative execution attacks which operate 11 /// by speculating incorrectly past some predicate (a type check, bounds check, 12 /// or other condition) to reach a load with invalid inputs and leak the data 13 /// accessed by that load using a side channel out of the speculative domain. 14 /// 15 /// For details on the attacks, see the first variant in both the Project Zero 16 /// writeup and the Spectre paper: 17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html 18 /// https://spectreattack.com/spectre.pdf 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "X86.h" 23 #include "X86InstrBuilder.h" 24 #include "X86InstrInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/SparseBitVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineConstantPool.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/MachineSSAUpdater.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/MC/MCSchedule.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <utility> 61 62 using namespace llvm; 63 64 #define PASS_KEY "x86-slh" 65 #define DEBUG_TYPE PASS_KEY 66 67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); 68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); 69 STATISTIC(NumAddrRegsHardened, 70 "Number of address mode used registers hardaned"); 71 STATISTIC(NumPostLoadRegsHardened, 72 "Number of post-load register values hardened"); 73 STATISTIC(NumCallsOrJumpsHardened, 74 "Number of calls or jumps requiring extra hardening"); 75 STATISTIC(NumInstsInserted, "Number of instructions inserted"); 76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); 77 78 static cl::opt<bool> EnableSpeculativeLoadHardening( 79 "x86-speculative-load-hardening", 80 cl::desc("Force enable speculative load hardening"), cl::init(false), 81 cl::Hidden); 82 83 static cl::opt<bool> HardenEdgesWithLFENCE( 84 PASS_KEY "-lfence", 85 cl::desc( 86 "Use LFENCE along each conditional edge to harden against speculative " 87 "loads rather than conditional movs and poisoned pointers."), 88 cl::init(false), cl::Hidden); 89 90 static cl::opt<bool> EnablePostLoadHardening( 91 PASS_KEY "-post-load", 92 cl::desc("Harden the value loaded *after* it is loaded by " 93 "flushing the loaded bits to 1. This is hard to do " 94 "in general but can be done easily for GPRs."), 95 cl::init(true), cl::Hidden); 96 97 static cl::opt<bool> FenceCallAndRet( 98 PASS_KEY "-fence-call-and-ret", 99 cl::desc("Use a full speculation fence to harden both call and ret edges " 100 "rather than a lighter weight mitigation."), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<bool> HardenInterprocedurally( 104 PASS_KEY "-ip", 105 cl::desc("Harden interprocedurally by passing our state in and out of " 106 "functions in the high bits of the stack pointer."), 107 cl::init(true), cl::Hidden); 108 109 static cl::opt<bool> 110 HardenLoads(PASS_KEY "-loads", 111 cl::desc("Sanitize loads from memory. When disable, no " 112 "significant security is provided."), 113 cl::init(true), cl::Hidden); 114 115 static cl::opt<bool> HardenIndirectCallsAndJumps( 116 PASS_KEY "-indirect", 117 cl::desc("Harden indirect calls and jumps against using speculatively " 118 "stored attacker controlled addresses. This is designed to " 119 "mitigate Spectre v1.2 style attacks."), 120 cl::init(true), cl::Hidden); 121 122 namespace { 123 124 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { 125 public: 126 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } 127 128 StringRef getPassName() const override { 129 return "X86 speculative load hardening"; 130 } 131 bool runOnMachineFunction(MachineFunction &MF) override; 132 void getAnalysisUsage(AnalysisUsage &AU) const override; 133 134 /// Pass identification, replacement for typeid. 135 static char ID; 136 137 private: 138 /// The information about a block's conditional terminators needed to trace 139 /// our predicate state through the exiting edges. 140 struct BlockCondInfo { 141 MachineBasicBlock *MBB; 142 143 // We mostly have one conditional branch, and in extremely rare cases have 144 // two. Three and more are so rare as to be unimportant for compile time. 145 SmallVector<MachineInstr *, 2> CondBrs; 146 147 MachineInstr *UncondBr; 148 }; 149 150 /// Manages the predicate state traced through the program. 151 struct PredState { 152 unsigned InitialReg = 0; 153 unsigned PoisonReg = 0; 154 155 const TargetRegisterClass *RC; 156 MachineSSAUpdater SSA; 157 158 PredState(MachineFunction &MF, const TargetRegisterClass *RC) 159 : RC(RC), SSA(MF) {} 160 }; 161 162 const X86Subtarget *Subtarget = nullptr; 163 MachineRegisterInfo *MRI = nullptr; 164 const X86InstrInfo *TII = nullptr; 165 const TargetRegisterInfo *TRI = nullptr; 166 167 Optional<PredState> PS; 168 169 void hardenEdgesWithLFENCE(MachineFunction &MF); 170 171 SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); 172 173 SmallVector<MachineInstr *, 16> 174 tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); 175 176 void unfoldCallAndJumpLoads(MachineFunction &MF); 177 178 SmallVector<MachineInstr *, 16> 179 tracePredStateThroughIndirectBranches(MachineFunction &MF); 180 181 void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); 182 183 unsigned saveEFLAGS(MachineBasicBlock &MBB, 184 MachineBasicBlock::iterator InsertPt, 185 const DebugLoc &Loc); 186 void restoreEFLAGS(MachineBasicBlock &MBB, 187 MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc, 188 Register Reg); 189 190 void mergePredStateIntoSP(MachineBasicBlock &MBB, 191 MachineBasicBlock::iterator InsertPt, 192 const DebugLoc &Loc, unsigned PredStateReg); 193 unsigned extractPredStateFromSP(MachineBasicBlock &MBB, 194 MachineBasicBlock::iterator InsertPt, 195 const DebugLoc &Loc); 196 197 void 198 hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, 199 MachineOperand &IndexMO, 200 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 201 MachineInstr * 202 sinkPostLoadHardenedInst(MachineInstr &MI, 203 SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); 204 bool canHardenRegister(Register Reg); 205 unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator InsertPt, 207 const DebugLoc &Loc); 208 unsigned hardenPostLoad(MachineInstr &MI); 209 void hardenReturnInstr(MachineInstr &MI); 210 void tracePredStateThroughCall(MachineInstr &MI); 211 void hardenIndirectCallOrJumpInstr( 212 MachineInstr &MI, 213 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 214 }; 215 216 } // end anonymous namespace 217 218 char X86SpeculativeLoadHardeningPass::ID = 0; 219 220 void X86SpeculativeLoadHardeningPass::getAnalysisUsage( 221 AnalysisUsage &AU) const { 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, 226 MachineBasicBlock &Succ, int SuccCount, 227 MachineInstr *Br, MachineInstr *&UncondBr, 228 const X86InstrInfo &TII) { 229 assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); 230 231 MachineFunction &MF = *MBB.getParent(); 232 233 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); 234 235 // We have to insert the new block immediately after the current one as we 236 // don't know what layout-successor relationships the successor has and we 237 // may not be able to (and generally don't want to) try to fix those up. 238 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); 239 240 // Update the branch instruction if necessary. 241 if (Br) { 242 assert(Br->getOperand(0).getMBB() == &Succ && 243 "Didn't start with the right target!"); 244 Br->getOperand(0).setMBB(&NewMBB); 245 246 // If this successor was reached through a branch rather than fallthrough, 247 // we might have *broken* fallthrough and so need to inject a new 248 // unconditional branch. 249 if (!UncondBr) { 250 MachineBasicBlock &OldLayoutSucc = 251 *std::next(MachineFunction::iterator(&NewMBB)); 252 assert(MBB.isSuccessor(&OldLayoutSucc) && 253 "Without an unconditional branch, the old layout successor should " 254 "be an actual successor!"); 255 auto BrBuilder = 256 BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); 257 // Update the unconditional branch now that we've added one. 258 UncondBr = &*BrBuilder; 259 } 260 261 // Insert unconditional "jump Succ" instruction in the new block if 262 // necessary. 263 if (!NewMBB.isLayoutSuccessor(&Succ)) { 264 SmallVector<MachineOperand, 4> Cond; 265 TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); 266 } 267 } else { 268 assert(!UncondBr && 269 "Cannot have a branchless successor and an unconditional branch!"); 270 assert(NewMBB.isLayoutSuccessor(&Succ) && 271 "A non-branch successor must have been a layout successor before " 272 "and now is a layout successor of the new block."); 273 } 274 275 // If this is the only edge to the successor, we can just replace it in the 276 // CFG. Otherwise we need to add a new entry in the CFG for the new 277 // successor. 278 if (SuccCount == 1) { 279 MBB.replaceSuccessor(&Succ, &NewMBB); 280 } else { 281 MBB.splitSuccessor(&Succ, &NewMBB); 282 } 283 284 // Hook up the edge from the new basic block to the old successor in the CFG. 285 NewMBB.addSuccessor(&Succ); 286 287 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. 288 for (MachineInstr &MI : Succ) { 289 if (!MI.isPHI()) 290 break; 291 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 292 OpIdx += 2) { 293 MachineOperand &OpV = MI.getOperand(OpIdx); 294 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); 295 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); 296 if (OpMBB.getMBB() != &MBB) 297 continue; 298 299 // If this is the last edge to the succesor, just replace MBB in the PHI 300 if (SuccCount == 1) { 301 OpMBB.setMBB(&NewMBB); 302 break; 303 } 304 305 // Otherwise, append a new pair of operands for the new incoming edge. 306 MI.addOperand(MF, OpV); 307 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); 308 break; 309 } 310 } 311 312 // Inherit live-ins from the successor 313 for (auto &LI : Succ.liveins()) 314 NewMBB.addLiveIn(LI); 315 316 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" 317 << Succ.getName() << "'.\n"); 318 return NewMBB; 319 } 320 321 /// Removing duplicate PHI operands to leave the PHI in a canonical and 322 /// predictable form. 323 /// 324 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR 325 /// isn't what you might expect. We may have multiple entries in PHI nodes for 326 /// a single predecessor. This makes CFG-updating extremely complex, so here we 327 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly 328 /// one entry per predecessor, regardless of how many edges there are. 329 static void canonicalizePHIOperands(MachineFunction &MF) { 330 SmallPtrSet<MachineBasicBlock *, 4> Preds; 331 SmallVector<int, 4> DupIndices; 332 for (auto &MBB : MF) 333 for (auto &MI : MBB) { 334 if (!MI.isPHI()) 335 break; 336 337 // First we scan the operands of the PHI looking for duplicate entries 338 // a particular predecessor. We retain the operand index of each duplicate 339 // entry found. 340 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 341 OpIdx += 2) 342 if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) 343 DupIndices.push_back(OpIdx); 344 345 // Now walk the duplicate indices, removing both the block and value. Note 346 // that these are stored as a vector making this element-wise removal 347 // :w 348 // potentially quadratic. 349 // 350 // FIXME: It is really frustrating that we have to use a quadratic 351 // removal algorithm here. There should be a better way, but the use-def 352 // updates required make that impossible using the public API. 353 // 354 // Note that we have to process these backwards so that we don't 355 // invalidate other indices with each removal. 356 while (!DupIndices.empty()) { 357 int OpIdx = DupIndices.pop_back_val(); 358 // Remove both the block and value operand, again in reverse order to 359 // preserve indices. 360 MI.removeOperand(OpIdx + 1); 361 MI.removeOperand(OpIdx); 362 } 363 364 Preds.clear(); 365 } 366 } 367 368 /// Helper to scan a function for loads vulnerable to misspeculation that we 369 /// want to harden. 370 /// 371 /// We use this to avoid making changes to functions where there is nothing we 372 /// need to do to harden against misspeculation. 373 static bool hasVulnerableLoad(MachineFunction &MF) { 374 for (MachineBasicBlock &MBB : MF) { 375 for (MachineInstr &MI : MBB) { 376 // Loads within this basic block after an LFENCE are not at risk of 377 // speculatively executing with invalid predicates from prior control 378 // flow. So break out of this block but continue scanning the function. 379 if (MI.getOpcode() == X86::LFENCE) 380 break; 381 382 // Looking for loads only. 383 if (!MI.mayLoad()) 384 continue; 385 386 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. 387 if (MI.getOpcode() == X86::MFENCE) 388 continue; 389 390 // We found a load. 391 return true; 392 } 393 } 394 395 // No loads found. 396 return false; 397 } 398 399 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( 400 MachineFunction &MF) { 401 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 402 << " **********\n"); 403 404 // Only run if this pass is forced enabled or we detect the relevant function 405 // attribute requesting SLH. 406 if (!EnableSpeculativeLoadHardening && 407 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 408 return false; 409 410 Subtarget = &MF.getSubtarget<X86Subtarget>(); 411 MRI = &MF.getRegInfo(); 412 TII = Subtarget->getInstrInfo(); 413 TRI = Subtarget->getRegisterInfo(); 414 415 // FIXME: Support for 32-bit. 416 PS.emplace(MF, &X86::GR64_NOSPRegClass); 417 418 if (MF.begin() == MF.end()) 419 // Nothing to do for a degenerate empty function... 420 return false; 421 422 // We support an alternative hardening technique based on a debug flag. 423 if (HardenEdgesWithLFENCE) { 424 hardenEdgesWithLFENCE(MF); 425 return true; 426 } 427 428 // Create a dummy debug loc to use for all the generated code here. 429 DebugLoc Loc; 430 431 MachineBasicBlock &Entry = *MF.begin(); 432 auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); 433 434 // Do a quick scan to see if we have any checkable loads. 435 bool HasVulnerableLoad = hasVulnerableLoad(MF); 436 437 // See if we have any conditional branching blocks that we will need to trace 438 // predicate state through. 439 SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); 440 441 // If we have no interesting conditions or loads, nothing to do here. 442 if (!HasVulnerableLoad && Infos.empty()) 443 return true; 444 445 // The poison value is required to be an all-ones value for many aspects of 446 // this mitigation. 447 const int PoisonVal = -1; 448 PS->PoisonReg = MRI->createVirtualRegister(PS->RC); 449 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) 450 .addImm(PoisonVal); 451 ++NumInstsInserted; 452 453 // If we have loads being hardened and we've asked for call and ret edges to 454 // get a full fence-based mitigation, inject that fence. 455 if (HasVulnerableLoad && FenceCallAndRet) { 456 // We need to insert an LFENCE at the start of the function to suspend any 457 // incoming misspeculation from the caller. This helps two-fold: the caller 458 // may not have been protected as this code has been, and this code gets to 459 // not take any specific action to protect across calls. 460 // FIXME: We could skip this for functions which unconditionally return 461 // a constant. 462 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); 463 ++NumInstsInserted; 464 ++NumLFENCEsInserted; 465 } 466 467 // If we guarded the entry with an LFENCE and have no conditionals to protect 468 // in blocks, then we're done. 469 if (FenceCallAndRet && Infos.empty()) 470 // We may have changed the function's code at this point to insert fences. 471 return true; 472 473 // For every basic block in the function which can b 474 if (HardenInterprocedurally && !FenceCallAndRet) { 475 // Set up the predicate state by extracting it from the incoming stack 476 // pointer so we pick up any misspeculation in our caller. 477 PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); 478 } else { 479 // Otherwise, just build the predicate state itself by zeroing a register 480 // as we don't need any initial state. 481 PS->InitialReg = MRI->createVirtualRegister(PS->RC); 482 Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); 483 auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), 484 PredStateSubReg); 485 ++NumInstsInserted; 486 MachineOperand *ZeroEFLAGSDefOp = 487 ZeroI->findRegisterDefOperand(X86::EFLAGS); 488 assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && 489 "Must have an implicit def of EFLAGS!"); 490 ZeroEFLAGSDefOp->setIsDead(true); 491 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), 492 PS->InitialReg) 493 .addImm(0) 494 .addReg(PredStateSubReg) 495 .addImm(X86::sub_32bit); 496 } 497 498 // We're going to need to trace predicate state throughout the function's 499 // CFG. Prepare for this by setting up our initial state of PHIs with unique 500 // predecessor entries and all the initial predicate state. 501 canonicalizePHIOperands(MF); 502 503 // Track the updated values in an SSA updater to rewrite into SSA form at the 504 // end. 505 PS->SSA.Initialize(PS->InitialReg); 506 PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); 507 508 // Trace through the CFG. 509 auto CMovs = tracePredStateThroughCFG(MF, Infos); 510 511 // We may also enter basic blocks in this function via exception handling 512 // control flow. Here, if we are hardening interprocedurally, we need to 513 // re-capture the predicate state from the throwing code. In the Itanium ABI, 514 // the throw will always look like a call to __cxa_throw and will have the 515 // predicate state in the stack pointer, so extract fresh predicate state from 516 // the stack pointer and make it available in SSA. 517 // FIXME: Handle non-itanium ABI EH models. 518 if (HardenInterprocedurally) { 519 for (MachineBasicBlock &MBB : MF) { 520 assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); 521 assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); 522 assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); 523 if (!MBB.isEHPad()) 524 continue; 525 PS->SSA.AddAvailableValue( 526 &MBB, 527 extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); 528 } 529 } 530 531 if (HardenIndirectCallsAndJumps) { 532 // If we are going to harden calls and jumps we need to unfold their memory 533 // operands. 534 unfoldCallAndJumpLoads(MF); 535 536 // Then we trace predicate state through the indirect branches. 537 auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); 538 CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); 539 } 540 541 // Now that we have the predicate state available at the start of each block 542 // in the CFG, trace it through each block, hardening vulnerable instructions 543 // as we go. 544 tracePredStateThroughBlocksAndHarden(MF); 545 546 // Now rewrite all the uses of the pred state using the SSA updater to insert 547 // PHIs connecting the state between blocks along the CFG edges. 548 for (MachineInstr *CMovI : CMovs) 549 for (MachineOperand &Op : CMovI->operands()) { 550 if (!Op.isReg() || Op.getReg() != PS->InitialReg) 551 continue; 552 553 PS->SSA.RewriteUse(Op); 554 } 555 556 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); 557 dbgs() << "\n"; MF.verify(this)); 558 return true; 559 } 560 561 /// Implements the naive hardening approach of putting an LFENCE after every 562 /// potentially mis-predicted control flow construct. 563 /// 564 /// We include this as an alternative mostly for the purpose of comparison. The 565 /// performance impact of this is expected to be extremely severe and not 566 /// practical for any real-world users. 567 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( 568 MachineFunction &MF) { 569 // First, we scan the function looking for blocks that are reached along edges 570 // that we might want to harden. 571 SmallSetVector<MachineBasicBlock *, 8> Blocks; 572 for (MachineBasicBlock &MBB : MF) { 573 // If there are no or only one successor, nothing to do here. 574 if (MBB.succ_size() <= 1) 575 continue; 576 577 // Skip blocks unless their terminators start with a branch. Other 578 // terminators don't seem interesting for guarding against misspeculation. 579 auto TermIt = MBB.getFirstTerminator(); 580 if (TermIt == MBB.end() || !TermIt->isBranch()) 581 continue; 582 583 // Add all the non-EH-pad succossors to the blocks we want to harden. We 584 // skip EH pads because there isn't really a condition of interest on 585 // entering. 586 for (MachineBasicBlock *SuccMBB : MBB.successors()) 587 if (!SuccMBB->isEHPad()) 588 Blocks.insert(SuccMBB); 589 } 590 591 for (MachineBasicBlock *MBB : Blocks) { 592 auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); 593 BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); 594 ++NumInstsInserted; 595 ++NumLFENCEsInserted; 596 } 597 } 598 599 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> 600 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { 601 SmallVector<BlockCondInfo, 16> Infos; 602 603 // Walk the function and build up a summary for each block's conditions that 604 // we need to trace through. 605 for (MachineBasicBlock &MBB : MF) { 606 // If there are no or only one successor, nothing to do here. 607 if (MBB.succ_size() <= 1) 608 continue; 609 610 // We want to reliably handle any conditional branch terminators in the 611 // MBB, so we manually analyze the branch. We can handle all of the 612 // permutations here, including ones that analyze branch cannot. 613 // 614 // The approach is to walk backwards across the terminators, resetting at 615 // any unconditional non-indirect branch, and track all conditional edges 616 // to basic blocks as well as the fallthrough or unconditional successor 617 // edge. For each conditional edge, we track the target and the opposite 618 // condition code in order to inject a "no-op" cmov into that successor 619 // that will harden the predicate. For the fallthrough/unconditional 620 // edge, we inject a separate cmov for each conditional branch with 621 // matching condition codes. This effectively implements an "and" of the 622 // condition flags, even if there isn't a single condition flag that would 623 // directly implement that. We don't bother trying to optimize either of 624 // these cases because if such an optimization is possible, LLVM should 625 // have optimized the conditional *branches* in that way already to reduce 626 // instruction count. This late, we simply assume the minimal number of 627 // branch instructions is being emitted and use that to guide our cmov 628 // insertion. 629 630 BlockCondInfo Info = {&MBB, {}, nullptr}; 631 632 // Now walk backwards through the terminators and build up successors they 633 // reach and the conditions. 634 for (MachineInstr &MI : llvm::reverse(MBB)) { 635 // Once we've handled all the terminators, we're done. 636 if (!MI.isTerminator()) 637 break; 638 639 // If we see a non-branch terminator, we can't handle anything so bail. 640 if (!MI.isBranch()) { 641 Info.CondBrs.clear(); 642 break; 643 } 644 645 // If we see an unconditional branch, reset our state, clear any 646 // fallthrough, and set this is the "else" successor. 647 if (MI.getOpcode() == X86::JMP_1) { 648 Info.CondBrs.clear(); 649 Info.UncondBr = &MI; 650 continue; 651 } 652 653 // If we get an invalid condition, we have an indirect branch or some 654 // other unanalyzable "fallthrough" case. We model this as a nullptr for 655 // the destination so we can still guard any conditional successors. 656 // Consider code sequences like: 657 // ``` 658 // jCC L1 659 // jmpq *%rax 660 // ``` 661 // We still want to harden the edge to `L1`. 662 if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { 663 Info.CondBrs.clear(); 664 Info.UncondBr = &MI; 665 continue; 666 } 667 668 // We have a vanilla conditional branch, add it to our list. 669 Info.CondBrs.push_back(&MI); 670 } 671 if (Info.CondBrs.empty()) { 672 ++NumBranchesUntraced; 673 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; 674 MBB.dump()); 675 continue; 676 } 677 678 Infos.push_back(Info); 679 } 680 681 return Infos; 682 } 683 684 /// Trace the predicate state through the CFG, instrumenting each conditional 685 /// branch such that misspeculation through an edge will poison the predicate 686 /// state. 687 /// 688 /// Returns the list of inserted CMov instructions so that they can have their 689 /// uses of the predicate state rewritten into proper SSA form once it is 690 /// complete. 691 SmallVector<MachineInstr *, 16> 692 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( 693 MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { 694 // Collect the inserted cmov instructions so we can rewrite their uses of the 695 // predicate state into SSA form. 696 SmallVector<MachineInstr *, 16> CMovs; 697 698 // Now walk all of the basic blocks looking for ones that end in conditional 699 // jumps where we need to update this register along each edge. 700 for (const BlockCondInfo &Info : Infos) { 701 MachineBasicBlock &MBB = *Info.MBB; 702 const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; 703 MachineInstr *UncondBr = Info.UncondBr; 704 705 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() 706 << "\n"); 707 ++NumCondBranchesTraced; 708 709 // Compute the non-conditional successor as either the target of any 710 // unconditional branch or the layout successor. 711 MachineBasicBlock *UncondSucc = 712 UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 713 ? UncondBr->getOperand(0).getMBB() 714 : nullptr) 715 : &*std::next(MachineFunction::iterator(&MBB)); 716 717 // Count how many edges there are to any given successor. 718 SmallDenseMap<MachineBasicBlock *, int> SuccCounts; 719 if (UncondSucc) 720 ++SuccCounts[UncondSucc]; 721 for (auto *CondBr : CondBrs) 722 ++SuccCounts[CondBr->getOperand(0).getMBB()]; 723 724 // A lambda to insert cmov instructions into a block checking all of the 725 // condition codes in a sequence. 726 auto BuildCheckingBlockForSuccAndConds = 727 [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, 728 MachineInstr *Br, MachineInstr *&UncondBr, 729 ArrayRef<X86::CondCode> Conds) { 730 // First, we split the edge to insert the checking block into a safe 731 // location. 732 auto &CheckingMBB = 733 (SuccCount == 1 && Succ.pred_size() == 1) 734 ? Succ 735 : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); 736 737 bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); 738 if (!LiveEFLAGS) 739 CheckingMBB.addLiveIn(X86::EFLAGS); 740 741 // Now insert the cmovs to implement the checks. 742 auto InsertPt = CheckingMBB.begin(); 743 assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && 744 "Should never have a PHI in the initial checking block as it " 745 "always has a single predecessor!"); 746 747 // We will wire each cmov to each other, but need to start with the 748 // incoming pred state. 749 unsigned CurStateReg = PS->InitialReg; 750 751 for (X86::CondCode Cond : Conds) { 752 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 753 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 754 755 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 756 // Note that we intentionally use an empty debug location so that 757 // this picks up the preceding location. 758 auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), 759 TII->get(CMovOp), UpdatedStateReg) 760 .addReg(CurStateReg) 761 .addReg(PS->PoisonReg) 762 .addImm(Cond); 763 // If this is the last cmov and the EFLAGS weren't originally 764 // live-in, mark them as killed. 765 if (!LiveEFLAGS && Cond == Conds.back()) 766 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 767 768 ++NumInstsInserted; 769 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); 770 dbgs() << "\n"); 771 772 // The first one of the cmovs will be using the top level 773 // `PredStateReg` and need to get rewritten into SSA form. 774 if (CurStateReg == PS->InitialReg) 775 CMovs.push_back(&*CMovI); 776 777 // The next cmov should start from this one's def. 778 CurStateReg = UpdatedStateReg; 779 } 780 781 // And put the last one into the available values for SSA form of our 782 // predicate state. 783 PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); 784 }; 785 786 std::vector<X86::CondCode> UncondCodeSeq; 787 for (auto *CondBr : CondBrs) { 788 MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); 789 int &SuccCount = SuccCounts[&Succ]; 790 791 X86::CondCode Cond = X86::getCondFromBranch(*CondBr); 792 X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); 793 UncondCodeSeq.push_back(Cond); 794 795 BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, 796 {InvCond}); 797 798 // Decrement the successor count now that we've split one of the edges. 799 // We need to keep the count of edges to the successor accurate in order 800 // to know above when to *replace* the successor in the CFG vs. just 801 // adding the new successor. 802 --SuccCount; 803 } 804 805 // Since we may have split edges and changed the number of successors, 806 // normalize the probabilities. This avoids doing it each time we split an 807 // edge. 808 MBB.normalizeSuccProbs(); 809 810 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we 811 // need to intersect the other condition codes. We can do this by just 812 // doing a cmov for each one. 813 if (!UncondSucc) 814 // If we have no fallthrough to protect (perhaps it is an indirect jump?) 815 // just skip this and continue. 816 continue; 817 818 assert(SuccCounts[UncondSucc] == 1 && 819 "We should never have more than one edge to the unconditional " 820 "successor at this point because every other edge must have been " 821 "split above!"); 822 823 // Sort and unique the codes to minimize them. 824 llvm::sort(UncondCodeSeq); 825 UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), 826 UncondCodeSeq.end()); 827 828 // Build a checking version of the successor. 829 BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, 830 UncondBr, UncondBr, UncondCodeSeq); 831 } 832 833 return CMovs; 834 } 835 836 /// Compute the register class for the unfolded load. 837 /// 838 /// FIXME: This should probably live in X86InstrInfo, potentially by adding 839 /// a way to unfold into a newly created vreg rather than requiring a register 840 /// input. 841 static const TargetRegisterClass * 842 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, 843 unsigned Opcode) { 844 unsigned Index; 845 unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( 846 Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); 847 const MCInstrDesc &MCID = TII.get(UnfoldedOpc); 848 return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); 849 } 850 851 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( 852 MachineFunction &MF) { 853 for (MachineBasicBlock &MBB : MF) 854 // We use make_early_inc_range here so we can remove instructions if needed 855 // without disturbing the iteration. 856 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.instrs())) { 857 // Must either be a call or a branch. 858 if (!MI.isCall() && !MI.isBranch()) 859 continue; 860 // We only care about loading variants of these instructions. 861 if (!MI.mayLoad()) 862 continue; 863 864 switch (MI.getOpcode()) { 865 default: { 866 LLVM_DEBUG( 867 dbgs() << "ERROR: Found an unexpected loading branch or call " 868 "instruction:\n"; 869 MI.dump(); dbgs() << "\n"); 870 report_fatal_error("Unexpected loading branch or call!"); 871 } 872 873 case X86::FARCALL16m: 874 case X86::FARCALL32m: 875 case X86::FARCALL64m: 876 case X86::FARJMP16m: 877 case X86::FARJMP32m: 878 case X86::FARJMP64m: 879 // We cannot mitigate far jumps or calls, but we also don't expect them 880 // to be vulnerable to Spectre v1.2 style attacks. 881 continue; 882 883 case X86::CALL16m: 884 case X86::CALL16m_NT: 885 case X86::CALL32m: 886 case X86::CALL32m_NT: 887 case X86::CALL64m: 888 case X86::CALL64m_NT: 889 case X86::JMP16m: 890 case X86::JMP16m_NT: 891 case X86::JMP32m: 892 case X86::JMP32m_NT: 893 case X86::JMP64m: 894 case X86::JMP64m_NT: 895 case X86::TAILJMPm64: 896 case X86::TAILJMPm64_REX: 897 case X86::TAILJMPm: 898 case X86::TCRETURNmi64: 899 case X86::TCRETURNmi: { 900 // Use the generic unfold logic now that we know we're dealing with 901 // expected instructions. 902 // FIXME: We don't have test coverage for all of these! 903 auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); 904 if (!UnfoldedRC) { 905 LLVM_DEBUG(dbgs() 906 << "ERROR: Unable to unfold load from instruction:\n"; 907 MI.dump(); dbgs() << "\n"); 908 report_fatal_error("Unable to unfold load!"); 909 } 910 Register Reg = MRI->createVirtualRegister(UnfoldedRC); 911 SmallVector<MachineInstr *, 2> NewMIs; 912 // If we were able to compute an unfolded reg class, any failure here 913 // is just a programming error so just assert. 914 bool Unfolded = 915 TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, 916 /*UnfoldStore*/ false, NewMIs); 917 (void)Unfolded; 918 assert(Unfolded && 919 "Computed unfolded register class but failed to unfold"); 920 // Now stitch the new instructions into place and erase the old one. 921 for (auto *NewMI : NewMIs) 922 MBB.insert(MI.getIterator(), NewMI); 923 924 // Update the call site info. 925 if (MI.isCandidateForCallSiteEntry()) 926 MF.eraseCallSiteInfo(&MI); 927 928 MI.eraseFromParent(); 929 LLVM_DEBUG({ 930 dbgs() << "Unfolded load successfully into:\n"; 931 for (auto *NewMI : NewMIs) { 932 NewMI->dump(); 933 dbgs() << "\n"; 934 } 935 }); 936 continue; 937 } 938 } 939 llvm_unreachable("Escaped switch with default!"); 940 } 941 } 942 943 /// Trace the predicate state through indirect branches, instrumenting them to 944 /// poison the state if a target is reached that does not match the expected 945 /// target. 946 /// 947 /// This is designed to mitigate Spectre variant 1 attacks where an indirect 948 /// branch is trained to predict a particular target and then mispredicts that 949 /// target in a way that can leak data. Despite using an indirect branch, this 950 /// is really a variant 1 style attack: it does not steer execution to an 951 /// arbitrary or attacker controlled address, and it does not require any 952 /// special code executing next to the victim. This attack can also be mitigated 953 /// through retpolines, but those require either replacing indirect branches 954 /// with conditional direct branches or lowering them through a device that 955 /// blocks speculation. This mitigation can replace these retpoline-style 956 /// mitigations for jump tables and other indirect branches within a function 957 /// when variant 2 isn't a risk while allowing limited speculation. Indirect 958 /// calls, however, cannot be mitigated through this technique without changing 959 /// the ABI in a fundamental way. 960 SmallVector<MachineInstr *, 16> 961 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( 962 MachineFunction &MF) { 963 // We use the SSAUpdater to insert PHI nodes for the target addresses of 964 // indirect branches. We don't actually need the full power of the SSA updater 965 // in this particular case as we always have immediately available values, but 966 // this avoids us having to re-implement the PHI construction logic. 967 MachineSSAUpdater TargetAddrSSA(MF); 968 TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); 969 970 // Track which blocks were terminated with an indirect branch. 971 SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; 972 973 // We need to know what blocks end up reached via indirect branches. We 974 // expect this to be a subset of those whose address is taken and so track it 975 // directly via the CFG. 976 SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; 977 978 // Walk all the blocks which end in an indirect branch and make the 979 // target address available. 980 for (MachineBasicBlock &MBB : MF) { 981 // Find the last terminator. 982 auto MII = MBB.instr_rbegin(); 983 while (MII != MBB.instr_rend() && MII->isDebugInstr()) 984 ++MII; 985 if (MII == MBB.instr_rend()) 986 continue; 987 MachineInstr &TI = *MII; 988 if (!TI.isTerminator() || !TI.isBranch()) 989 // No terminator or non-branch terminator. 990 continue; 991 992 unsigned TargetReg; 993 994 switch (TI.getOpcode()) { 995 default: 996 // Direct branch or conditional branch (leading to fallthrough). 997 continue; 998 999 case X86::FARJMP16m: 1000 case X86::FARJMP32m: 1001 case X86::FARJMP64m: 1002 // We cannot mitigate far jumps or calls, but we also don't expect them 1003 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. 1004 continue; 1005 1006 case X86::JMP16m: 1007 case X86::JMP16m_NT: 1008 case X86::JMP32m: 1009 case X86::JMP32m_NT: 1010 case X86::JMP64m: 1011 case X86::JMP64m_NT: 1012 // Mostly as documentation. 1013 report_fatal_error("Memory operand jumps should have been unfolded!"); 1014 1015 case X86::JMP16r: 1016 report_fatal_error( 1017 "Support for 16-bit indirect branches is not implemented."); 1018 case X86::JMP32r: 1019 report_fatal_error( 1020 "Support for 32-bit indirect branches is not implemented."); 1021 1022 case X86::JMP64r: 1023 TargetReg = TI.getOperand(0).getReg(); 1024 } 1025 1026 // We have definitely found an indirect branch. Verify that there are no 1027 // preceding conditional branches as we don't yet support that. 1028 if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { 1029 return !OtherTI.isDebugInstr() && &OtherTI != &TI; 1030 })) { 1031 LLVM_DEBUG({ 1032 dbgs() << "ERROR: Found other terminators in a block with an indirect " 1033 "branch! This is not yet supported! Terminator sequence:\n"; 1034 for (MachineInstr &MI : MBB.terminators()) { 1035 MI.dump(); 1036 dbgs() << '\n'; 1037 } 1038 }); 1039 report_fatal_error("Unimplemented terminator sequence!"); 1040 } 1041 1042 // Make the target register an available value for this block. 1043 TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); 1044 IndirectTerminatedMBBs.insert(&MBB); 1045 1046 // Add all the successors to our target candidates. 1047 for (MachineBasicBlock *Succ : MBB.successors()) 1048 IndirectTargetMBBs.insert(Succ); 1049 } 1050 1051 // Keep track of the cmov instructions we insert so we can return them. 1052 SmallVector<MachineInstr *, 16> CMovs; 1053 1054 // If we didn't find any indirect branches with targets, nothing to do here. 1055 if (IndirectTargetMBBs.empty()) 1056 return CMovs; 1057 1058 // We found indirect branches and targets that need to be instrumented to 1059 // harden loads within them. Walk the blocks of the function (to get a stable 1060 // ordering) and instrument each target of an indirect branch. 1061 for (MachineBasicBlock &MBB : MF) { 1062 // Skip the blocks that aren't candidate targets. 1063 if (!IndirectTargetMBBs.count(&MBB)) 1064 continue; 1065 1066 // We don't expect EH pads to ever be reached via an indirect branch. If 1067 // this is desired for some reason, we could simply skip them here rather 1068 // than asserting. 1069 assert(!MBB.isEHPad() && 1070 "Unexpected EH pad as target of an indirect branch!"); 1071 1072 // We should never end up threading EFLAGS into a block to harden 1073 // conditional jumps as there would be an additional successor via the 1074 // indirect branch. As a consequence, all such edges would be split before 1075 // reaching here, and the inserted block will handle the EFLAGS-based 1076 // hardening. 1077 assert(!MBB.isLiveIn(X86::EFLAGS) && 1078 "Cannot check within a block that already has live-in EFLAGS!"); 1079 1080 // We can't handle having non-indirect edges into this block unless this is 1081 // the only successor and we can synthesize the necessary target address. 1082 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1083 // If we've already handled this by extracting the target directly, 1084 // nothing to do. 1085 if (IndirectTerminatedMBBs.count(Pred)) 1086 continue; 1087 1088 // Otherwise, we have to be the only successor. We generally expect this 1089 // to be true as conditional branches should have had a critical edge 1090 // split already. We don't however need to worry about EH pad successors 1091 // as they'll happily ignore the target and their hardening strategy is 1092 // resilient to all ways in which they could be reached speculatively. 1093 if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { 1094 return Succ->isEHPad() || Succ == &MBB; 1095 })) { 1096 LLVM_DEBUG({ 1097 dbgs() << "ERROR: Found conditional entry to target of indirect " 1098 "branch!\n"; 1099 Pred->dump(); 1100 MBB.dump(); 1101 }); 1102 report_fatal_error("Cannot harden a conditional entry to a target of " 1103 "an indirect branch!"); 1104 } 1105 1106 // Now we need to compute the address of this block and install it as a 1107 // synthetic target in the predecessor. We do this at the bottom of the 1108 // predecessor. 1109 auto InsertPt = Pred->getFirstTerminator(); 1110 Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1111 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1112 !Subtarget->isPositionIndependent()) { 1113 // Directly materialize it into an immediate. 1114 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), 1115 TII->get(X86::MOV64ri32), TargetReg) 1116 .addMBB(&MBB); 1117 ++NumInstsInserted; 1118 (void)AddrI; 1119 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump(); 1120 dbgs() << "\n"); 1121 } else { 1122 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), 1123 TargetReg) 1124 .addReg(/*Base*/ X86::RIP) 1125 .addImm(/*Scale*/ 1) 1126 .addReg(/*Index*/ 0) 1127 .addMBB(&MBB) 1128 .addReg(/*Segment*/ 0); 1129 ++NumInstsInserted; 1130 (void)AddrI; 1131 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); 1132 dbgs() << "\n"); 1133 } 1134 // And make this available. 1135 TargetAddrSSA.AddAvailableValue(Pred, TargetReg); 1136 } 1137 1138 // Materialize the needed SSA value of the target. Note that we need the 1139 // middle of the block as this block might at the bottom have an indirect 1140 // branch back to itself. We can do this here because at this point, every 1141 // predecessor of this block has an available value. This is basically just 1142 // automating the construction of a PHI node for this target. 1143 Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); 1144 1145 // Insert a comparison of the incoming target register with this block's 1146 // address. This also requires us to mark the block as having its address 1147 // taken explicitly. 1148 MBB.setHasAddressTaken(); 1149 auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); 1150 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1151 !Subtarget->isPositionIndependent()) { 1152 // Check directly against a relocated immediate when we can. 1153 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) 1154 .addReg(TargetReg, RegState::Kill) 1155 .addMBB(&MBB); 1156 ++NumInstsInserted; 1157 (void)CheckI; 1158 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1159 } else { 1160 // Otherwise compute the address into a register first. 1161 Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1162 auto AddrI = 1163 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) 1164 .addReg(/*Base*/ X86::RIP) 1165 .addImm(/*Scale*/ 1) 1166 .addReg(/*Index*/ 0) 1167 .addMBB(&MBB) 1168 .addReg(/*Segment*/ 0); 1169 ++NumInstsInserted; 1170 (void)AddrI; 1171 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); 1172 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) 1173 .addReg(TargetReg, RegState::Kill) 1174 .addReg(AddrReg, RegState::Kill); 1175 ++NumInstsInserted; 1176 (void)CheckI; 1177 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1178 } 1179 1180 // Now cmov over the predicate if the comparison wasn't equal. 1181 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 1182 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 1183 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 1184 auto CMovI = 1185 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) 1186 .addReg(PS->InitialReg) 1187 .addReg(PS->PoisonReg) 1188 .addImm(X86::COND_NE); 1189 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 1190 ++NumInstsInserted; 1191 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 1192 CMovs.push_back(&*CMovI); 1193 1194 // And put the new value into the available values for SSA form of our 1195 // predicate state. 1196 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 1197 } 1198 1199 // Return all the newly inserted cmov instructions of the predicate state. 1200 return CMovs; 1201 } 1202 1203 // Returns true if the MI has EFLAGS as a register def operand and it's live, 1204 // otherwise it returns false 1205 static bool isEFLAGSDefLive(const MachineInstr &MI) { 1206 if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { 1207 return !DefOp->isDead(); 1208 } 1209 return false; 1210 } 1211 1212 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1213 const TargetRegisterInfo &TRI) { 1214 // Check if EFLAGS are alive by seeing if there is a def of them or they 1215 // live-in, and then seeing if that def is in turn used. 1216 for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { 1217 if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { 1218 // If the def is dead, then EFLAGS is not live. 1219 if (DefOp->isDead()) 1220 return false; 1221 1222 // Otherwise we've def'ed it, and it is live. 1223 return true; 1224 } 1225 // While at this instruction, also check if we use and kill EFLAGS 1226 // which means it isn't live. 1227 if (MI.killsRegister(X86::EFLAGS, &TRI)) 1228 return false; 1229 } 1230 1231 // If we didn't find anything conclusive (neither definitely alive or 1232 // definitely dead) return whether it lives into the block. 1233 return MBB.isLiveIn(X86::EFLAGS); 1234 } 1235 1236 /// Trace the predicate state through each of the blocks in the function, 1237 /// hardening everything necessary along the way. 1238 /// 1239 /// We call this routine once the initial predicate state has been established 1240 /// for each basic block in the function in the SSA updater. This routine traces 1241 /// it through the instructions within each basic block, and for non-returning 1242 /// blocks informs the SSA updater about the final state that lives out of the 1243 /// block. Along the way, it hardens any vulnerable instruction using the 1244 /// currently valid predicate state. We have to do these two things together 1245 /// because the SSA updater only works across blocks. Within a block, we track 1246 /// the current predicate state directly and update it as it changes. 1247 /// 1248 /// This operates in two passes over each block. First, we analyze the loads in 1249 /// the block to determine which strategy will be used to harden them: hardening 1250 /// the address or hardening the loaded value when loaded into a register 1251 /// amenable to hardening. We have to process these first because the two 1252 /// strategies may interact -- later hardening may change what strategy we wish 1253 /// to use. We also will analyze data dependencies between loads and avoid 1254 /// hardening those loads that are data dependent on a load with a hardened 1255 /// address. We also skip hardening loads already behind an LFENCE as that is 1256 /// sufficient to harden them against misspeculation. 1257 /// 1258 /// Second, we actively trace the predicate state through the block, applying 1259 /// the hardening steps we determined necessary in the first pass as we go. 1260 /// 1261 /// These two passes are applied to each basic block. We operate one block at a 1262 /// time to simplify reasoning about reachability and sequencing. 1263 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( 1264 MachineFunction &MF) { 1265 SmallPtrSet<MachineInstr *, 16> HardenPostLoad; 1266 SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; 1267 1268 SmallSet<unsigned, 16> HardenedAddrRegs; 1269 1270 SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; 1271 1272 // Track the set of load-dependent registers through the basic block. Because 1273 // the values of these registers have an existing data dependency on a loaded 1274 // value which we would have checked, we can omit any checks on them. 1275 SparseBitVector<> LoadDepRegs; 1276 1277 for (MachineBasicBlock &MBB : MF) { 1278 // The first pass over the block: collect all the loads which can have their 1279 // loaded value hardened and all the loads that instead need their address 1280 // hardened. During this walk we propagate load dependence for address 1281 // hardened loads and also look for LFENCE to stop hardening wherever 1282 // possible. When deciding whether or not to harden the loaded value or not, 1283 // we check to see if any registers used in the address will have been 1284 // hardened at this point and if so, harden any remaining address registers 1285 // as that often successfully re-uses hardened addresses and minimizes 1286 // instructions. 1287 // 1288 // FIXME: We should consider an aggressive mode where we continue to keep as 1289 // many loads value hardened even when some address register hardening would 1290 // be free (due to reuse). 1291 // 1292 // Note that we only need this pass if we are actually hardening loads. 1293 if (HardenLoads) 1294 for (MachineInstr &MI : MBB) { 1295 // We naively assume that all def'ed registers of an instruction have 1296 // a data dependency on all of their operands. 1297 // FIXME: Do a more careful analysis of x86 to build a conservative 1298 // model here. 1299 if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { 1300 return Op.isReg() && LoadDepRegs.test(Op.getReg()); 1301 })) 1302 for (MachineOperand &Def : MI.defs()) 1303 if (Def.isReg()) 1304 LoadDepRegs.set(Def.getReg()); 1305 1306 // Both Intel and AMD are guiding that they will change the semantics of 1307 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is 1308 // no more need to guard things in this block. 1309 if (MI.getOpcode() == X86::LFENCE) 1310 break; 1311 1312 // If this instruction cannot load, nothing to do. 1313 if (!MI.mayLoad()) 1314 continue; 1315 1316 // Some instructions which "load" are trivially safe or unimportant. 1317 if (MI.getOpcode() == X86::MFENCE) 1318 continue; 1319 1320 // Extract the memory operand information about this instruction. 1321 // FIXME: This doesn't handle loading pseudo instructions which we often 1322 // could handle with similarly generic logic. We probably need to add an 1323 // MI-layer routine similar to the MC-layer one we use here which maps 1324 // pseudos much like this maps real instructions. 1325 const MCInstrDesc &Desc = MI.getDesc(); 1326 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 1327 if (MemRefBeginIdx < 0) { 1328 LLVM_DEBUG(dbgs() 1329 << "WARNING: unable to harden loading instruction: "; 1330 MI.dump()); 1331 continue; 1332 } 1333 1334 MemRefBeginIdx += X86II::getOperandBias(Desc); 1335 1336 MachineOperand &BaseMO = 1337 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1338 MachineOperand &IndexMO = 1339 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1340 1341 // If we have at least one (non-frame-index, non-RIP) register operand, 1342 // and neither operand is load-dependent, we need to check the load. 1343 unsigned BaseReg = 0, IndexReg = 0; 1344 if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && 1345 BaseMO.getReg() != X86::NoRegister) 1346 BaseReg = BaseMO.getReg(); 1347 if (IndexMO.getReg() != X86::NoRegister) 1348 IndexReg = IndexMO.getReg(); 1349 1350 if (!BaseReg && !IndexReg) 1351 // No register operands! 1352 continue; 1353 1354 // If any register operand is dependent, this load is dependent and we 1355 // needn't check it. 1356 // FIXME: Is this true in the case where we are hardening loads after 1357 // they complete? Unclear, need to investigate. 1358 if ((BaseReg && LoadDepRegs.test(BaseReg)) || 1359 (IndexReg && LoadDepRegs.test(IndexReg))) 1360 continue; 1361 1362 // If post-load hardening is enabled, this load is compatible with 1363 // post-load hardening, and we aren't already going to harden one of the 1364 // address registers, queue it up to be hardened post-load. Notably, 1365 // even once hardened this won't introduce a useful dependency that 1366 // could prune out subsequent loads. 1367 if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) && 1368 !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 && 1369 MI.getOperand(0).isReg() && 1370 canHardenRegister(MI.getOperand(0).getReg()) && 1371 !HardenedAddrRegs.count(BaseReg) && 1372 !HardenedAddrRegs.count(IndexReg)) { 1373 HardenPostLoad.insert(&MI); 1374 HardenedAddrRegs.insert(MI.getOperand(0).getReg()); 1375 continue; 1376 } 1377 1378 // Record this instruction for address hardening and record its register 1379 // operands as being address-hardened. 1380 HardenLoadAddr.insert(&MI); 1381 if (BaseReg) 1382 HardenedAddrRegs.insert(BaseReg); 1383 if (IndexReg) 1384 HardenedAddrRegs.insert(IndexReg); 1385 1386 for (MachineOperand &Def : MI.defs()) 1387 if (Def.isReg()) 1388 LoadDepRegs.set(Def.getReg()); 1389 } 1390 1391 // Now re-walk the instructions in the basic block, and apply whichever 1392 // hardening strategy we have elected. Note that we do this in a second 1393 // pass specifically so that we have the complete set of instructions for 1394 // which we will do post-load hardening and can defer it in certain 1395 // circumstances. 1396 for (MachineInstr &MI : MBB) { 1397 if (HardenLoads) { 1398 // We cannot both require hardening the def of a load and its address. 1399 assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && 1400 "Requested to harden both the address and def of a load!"); 1401 1402 // Check if this is a load whose address needs to be hardened. 1403 if (HardenLoadAddr.erase(&MI)) { 1404 const MCInstrDesc &Desc = MI.getDesc(); 1405 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 1406 assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); 1407 1408 MemRefBeginIdx += X86II::getOperandBias(Desc); 1409 1410 MachineOperand &BaseMO = 1411 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1412 MachineOperand &IndexMO = 1413 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1414 hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); 1415 continue; 1416 } 1417 1418 // Test if this instruction is one of our post load instructions (and 1419 // remove it from the set if so). 1420 if (HardenPostLoad.erase(&MI)) { 1421 assert(!MI.isCall() && "Must not try to post-load harden a call!"); 1422 1423 // If this is a data-invariant load and there is no EFLAGS 1424 // interference, we want to try and sink any hardening as far as 1425 // possible. 1426 if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) { 1427 // Sink the instruction we'll need to harden as far as we can down 1428 // the graph. 1429 MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); 1430 1431 // If we managed to sink this instruction, update everything so we 1432 // harden that instruction when we reach it in the instruction 1433 // sequence. 1434 if (SunkMI != &MI) { 1435 // If in sinking there was no instruction needing to be hardened, 1436 // we're done. 1437 if (!SunkMI) 1438 continue; 1439 1440 // Otherwise, add this to the set of defs we harden. 1441 HardenPostLoad.insert(SunkMI); 1442 continue; 1443 } 1444 } 1445 1446 unsigned HardenedReg = hardenPostLoad(MI); 1447 1448 // Mark the resulting hardened register as such so we don't re-harden. 1449 AddrRegToHardenedReg[HardenedReg] = HardenedReg; 1450 1451 continue; 1452 } 1453 1454 // Check for an indirect call or branch that may need its input hardened 1455 // even if we couldn't find the specific load used, or were able to 1456 // avoid hardening it for some reason. Note that here we cannot break 1457 // out afterward as we may still need to handle any call aspect of this 1458 // instruction. 1459 if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) 1460 hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); 1461 } 1462 1463 // After we finish hardening loads we handle interprocedural hardening if 1464 // enabled and relevant for this instruction. 1465 if (!HardenInterprocedurally) 1466 continue; 1467 if (!MI.isCall() && !MI.isReturn()) 1468 continue; 1469 1470 // If this is a direct return (IE, not a tail call) just directly harden 1471 // it. 1472 if (MI.isReturn() && !MI.isCall()) { 1473 hardenReturnInstr(MI); 1474 continue; 1475 } 1476 1477 // Otherwise we have a call. We need to handle transferring the predicate 1478 // state into a call and recovering it after the call returns (unless this 1479 // is a tail call). 1480 assert(MI.isCall() && "Should only reach here for calls!"); 1481 tracePredStateThroughCall(MI); 1482 } 1483 1484 HardenPostLoad.clear(); 1485 HardenLoadAddr.clear(); 1486 HardenedAddrRegs.clear(); 1487 AddrRegToHardenedReg.clear(); 1488 1489 // Currently, we only track data-dependent loads within a basic block. 1490 // FIXME: We should see if this is necessary or if we could be more 1491 // aggressive here without opening up attack avenues. 1492 LoadDepRegs.clear(); 1493 } 1494 } 1495 1496 /// Save EFLAGS into the returned GPR. This can in turn be restored with 1497 /// `restoreEFLAGS`. 1498 /// 1499 /// Note that LLVM can only lower very simple patterns of saved and restored 1500 /// EFLAGS registers. The restore should always be within the same basic block 1501 /// as the save so that no PHI nodes are inserted. 1502 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( 1503 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1504 const DebugLoc &Loc) { 1505 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches 1506 // what instruction selection does. 1507 Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); 1508 // We directly copy the FLAGS register and rely on later lowering to clean 1509 // this up into the appropriate setCC instructions. 1510 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); 1511 ++NumInstsInserted; 1512 return Reg; 1513 } 1514 1515 /// Restore EFLAGS from the provided GPR. This should be produced by 1516 /// `saveEFLAGS`. 1517 /// 1518 /// This must be done within the same basic block as the save in order to 1519 /// reliably lower. 1520 void X86SpeculativeLoadHardeningPass::restoreEFLAGS( 1521 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1522 const DebugLoc &Loc, Register Reg) { 1523 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); 1524 ++NumInstsInserted; 1525 } 1526 1527 /// Takes the current predicate state (in a register) and merges it into the 1528 /// stack pointer. The state is essentially a single bit, but we merge this in 1529 /// a way that won't form non-canonical pointers and also will be preserved 1530 /// across normal stack adjustments. 1531 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( 1532 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1533 const DebugLoc &Loc, unsigned PredStateReg) { 1534 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1535 // FIXME: This hard codes a shift distance based on the number of bits needed 1536 // to stay canonical on 64-bit. We should compute this somehow and support 1537 // 32-bit as part of that. 1538 auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) 1539 .addReg(PredStateReg, RegState::Kill) 1540 .addImm(47); 1541 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1542 ++NumInstsInserted; 1543 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) 1544 .addReg(X86::RSP) 1545 .addReg(TmpReg, RegState::Kill); 1546 OrI->addRegisterDead(X86::EFLAGS, TRI); 1547 ++NumInstsInserted; 1548 } 1549 1550 /// Extracts the predicate state stored in the high bits of the stack pointer. 1551 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( 1552 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1553 const DebugLoc &Loc) { 1554 Register PredStateReg = MRI->createVirtualRegister(PS->RC); 1555 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1556 1557 // We know that the stack pointer will have any preserved predicate state in 1558 // its high bit. We just want to smear this across the other bits. Turns out, 1559 // this is exactly what an arithmetic right shift does. 1560 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) 1561 .addReg(X86::RSP); 1562 auto ShiftI = 1563 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) 1564 .addReg(TmpReg, RegState::Kill) 1565 .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); 1566 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1567 ++NumInstsInserted; 1568 1569 return PredStateReg; 1570 } 1571 1572 void X86SpeculativeLoadHardeningPass::hardenLoadAddr( 1573 MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, 1574 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 1575 MachineBasicBlock &MBB = *MI.getParent(); 1576 const DebugLoc &Loc = MI.getDebugLoc(); 1577 1578 // Check if EFLAGS are alive by seeing if there is a def of them or they 1579 // live-in, and then seeing if that def is in turn used. 1580 bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); 1581 1582 SmallVector<MachineOperand *, 2> HardenOpRegs; 1583 1584 if (BaseMO.isFI()) { 1585 // A frame index is never a dynamically controllable load, so only 1586 // harden it if we're covering fixed address loads as well. 1587 LLVM_DEBUG( 1588 dbgs() << " Skipping hardening base of explicit stack frame load: "; 1589 MI.dump(); dbgs() << "\n"); 1590 } else if (BaseMO.getReg() == X86::RSP) { 1591 // Some idempotent atomic operations are lowered directly to a locked 1592 // OR with 0 to the top of stack(or slightly offset from top) which uses an 1593 // explicit RSP register as the base. 1594 assert(IndexMO.getReg() == X86::NoRegister && 1595 "Explicit RSP access with dynamic index!"); 1596 LLVM_DEBUG( 1597 dbgs() << " Cannot harden base of explicit RSP offset in a load!"); 1598 } else if (BaseMO.getReg() == X86::RIP || 1599 BaseMO.getReg() == X86::NoRegister) { 1600 // For both RIP-relative addressed loads or absolute loads, we cannot 1601 // meaningfully harden them because the address being loaded has no 1602 // dynamic component. 1603 // 1604 // FIXME: When using a segment base (like TLS does) we end up with the 1605 // dynamic address being the base plus -1 because we can't mutate the 1606 // segment register here. This allows the signed 32-bit offset to point at 1607 // valid segment-relative addresses and load them successfully. 1608 LLVM_DEBUG( 1609 dbgs() << " Cannot harden base of " 1610 << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") 1611 << " address in a load!"); 1612 } else { 1613 assert(BaseMO.isReg() && 1614 "Only allowed to have a frame index or register base."); 1615 HardenOpRegs.push_back(&BaseMO); 1616 } 1617 1618 if (IndexMO.getReg() != X86::NoRegister && 1619 (HardenOpRegs.empty() || 1620 HardenOpRegs.front()->getReg() != IndexMO.getReg())) 1621 HardenOpRegs.push_back(&IndexMO); 1622 1623 assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && 1624 "Should have exactly one or two registers to harden!"); 1625 assert((HardenOpRegs.size() == 1 || 1626 HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && 1627 "Should not have two of the same registers!"); 1628 1629 // Remove any registers that have alreaded been checked. 1630 llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { 1631 // See if this operand's register has already been checked. 1632 auto It = AddrRegToHardenedReg.find(Op->getReg()); 1633 if (It == AddrRegToHardenedReg.end()) 1634 // Not checked, so retain this one. 1635 return false; 1636 1637 // Otherwise, we can directly update this operand and remove it. 1638 Op->setReg(It->second); 1639 return true; 1640 }); 1641 // If there are none left, we're done. 1642 if (HardenOpRegs.empty()) 1643 return; 1644 1645 // Compute the current predicate state. 1646 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 1647 1648 auto InsertPt = MI.getIterator(); 1649 1650 // If EFLAGS are live and we don't have access to instructions that avoid 1651 // clobbering EFLAGS we need to save and restore them. This in turn makes 1652 // the EFLAGS no longer live. 1653 unsigned FlagsReg = 0; 1654 if (EFLAGSLive && !Subtarget->hasBMI2()) { 1655 EFLAGSLive = false; 1656 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 1657 } 1658 1659 for (MachineOperand *Op : HardenOpRegs) { 1660 Register OpReg = Op->getReg(); 1661 auto *OpRC = MRI->getRegClass(OpReg); 1662 Register TmpReg = MRI->createVirtualRegister(OpRC); 1663 1664 // If this is a vector register, we'll need somewhat custom logic to handle 1665 // hardening it. 1666 if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || 1667 OpRC->hasSuperClassEq(&X86::VR256RegClass))) { 1668 assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); 1669 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); 1670 1671 // Move our state into a vector register. 1672 // FIXME: We could skip this at the cost of longer encodings with AVX-512 1673 // but that doesn't seem likely worth it. 1674 Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); 1675 auto MovI = 1676 BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) 1677 .addReg(StateReg); 1678 (void)MovI; 1679 ++NumInstsInserted; 1680 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); 1681 1682 // Broadcast it across the vector register. 1683 Register VBStateReg = MRI->createVirtualRegister(OpRC); 1684 auto BroadcastI = BuildMI(MBB, InsertPt, Loc, 1685 TII->get(Is128Bit ? X86::VPBROADCASTQrr 1686 : X86::VPBROADCASTQYrr), 1687 VBStateReg) 1688 .addReg(VStateReg); 1689 (void)BroadcastI; 1690 ++NumInstsInserted; 1691 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 1692 dbgs() << "\n"); 1693 1694 // Merge our potential poison state into the value with a vector or. 1695 auto OrI = 1696 BuildMI(MBB, InsertPt, Loc, 1697 TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) 1698 .addReg(VBStateReg) 1699 .addReg(OpReg); 1700 (void)OrI; 1701 ++NumInstsInserted; 1702 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1703 } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || 1704 OpRC->hasSuperClassEq(&X86::VR256XRegClass) || 1705 OpRC->hasSuperClassEq(&X86::VR512RegClass)) { 1706 assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); 1707 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); 1708 bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); 1709 if (Is128Bit || Is256Bit) 1710 assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); 1711 1712 // Broadcast our state into a vector register. 1713 Register VStateReg = MRI->createVirtualRegister(OpRC); 1714 unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr 1715 : Is256Bit ? X86::VPBROADCASTQrZ256rr 1716 : X86::VPBROADCASTQrZrr; 1717 auto BroadcastI = 1718 BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) 1719 .addReg(StateReg); 1720 (void)BroadcastI; 1721 ++NumInstsInserted; 1722 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 1723 dbgs() << "\n"); 1724 1725 // Merge our potential poison state into the value with a vector or. 1726 unsigned OrOp = Is128Bit ? X86::VPORQZ128rr 1727 : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; 1728 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) 1729 .addReg(VStateReg) 1730 .addReg(OpReg); 1731 (void)OrI; 1732 ++NumInstsInserted; 1733 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1734 } else { 1735 // FIXME: Need to support GR32 here for 32-bit code. 1736 assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && 1737 "Not a supported register class for address hardening!"); 1738 1739 if (!EFLAGSLive) { 1740 // Merge our potential poison state into the value with an or. 1741 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) 1742 .addReg(StateReg) 1743 .addReg(OpReg); 1744 OrI->addRegisterDead(X86::EFLAGS, TRI); 1745 ++NumInstsInserted; 1746 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1747 } else { 1748 // We need to avoid touching EFLAGS so shift out all but the least 1749 // significant bit using the instruction that doesn't update flags. 1750 auto ShiftI = 1751 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) 1752 .addReg(OpReg) 1753 .addReg(StateReg); 1754 (void)ShiftI; 1755 ++NumInstsInserted; 1756 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); 1757 dbgs() << "\n"); 1758 } 1759 } 1760 1761 // Record this register as checked and update the operand. 1762 assert(!AddrRegToHardenedReg.count(Op->getReg()) && 1763 "Should not have checked this register yet!"); 1764 AddrRegToHardenedReg[Op->getReg()] = TmpReg; 1765 Op->setReg(TmpReg); 1766 ++NumAddrRegsHardened; 1767 } 1768 1769 // And restore the flags if needed. 1770 if (FlagsReg) 1771 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 1772 } 1773 1774 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( 1775 MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { 1776 assert(X86InstrInfo::isDataInvariantLoad(InitialMI) && 1777 "Cannot get here with a non-invariant load!"); 1778 assert(!isEFLAGSDefLive(InitialMI) && 1779 "Cannot get here with a data invariant load " 1780 "that interferes with EFLAGS!"); 1781 1782 // See if we can sink hardening the loaded value. 1783 auto SinkCheckToSingleUse = 1784 [&](MachineInstr &MI) -> Optional<MachineInstr *> { 1785 Register DefReg = MI.getOperand(0).getReg(); 1786 1787 // We need to find a single use which we can sink the check. We can 1788 // primarily do this because many uses may already end up checked on their 1789 // own. 1790 MachineInstr *SingleUseMI = nullptr; 1791 for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { 1792 // If we're already going to harden this use, it is data invariant, it 1793 // does not interfere with EFLAGS, and within our block. 1794 if (HardenedInstrs.count(&UseMI)) { 1795 if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) { 1796 // If we've already decided to harden a non-load, we must have sunk 1797 // some other post-load hardened instruction to it and it must itself 1798 // be data-invariant. 1799 assert(X86InstrInfo::isDataInvariant(UseMI) && 1800 "Data variant instruction being hardened!"); 1801 continue; 1802 } 1803 1804 // Otherwise, this is a load and the load component can't be data 1805 // invariant so check how this register is being used. 1806 const MCInstrDesc &Desc = UseMI.getDesc(); 1807 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 1808 assert(MemRefBeginIdx >= 0 && 1809 "Should always have mem references here!"); 1810 MemRefBeginIdx += X86II::getOperandBias(Desc); 1811 1812 MachineOperand &BaseMO = 1813 UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1814 MachineOperand &IndexMO = 1815 UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1816 if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || 1817 (IndexMO.isReg() && IndexMO.getReg() == DefReg)) 1818 // The load uses the register as part of its address making it not 1819 // invariant. 1820 return {}; 1821 1822 continue; 1823 } 1824 1825 if (SingleUseMI) 1826 // We already have a single use, this would make two. Bail. 1827 return {}; 1828 1829 // If this single use isn't data invariant, isn't in this block, or has 1830 // interfering EFLAGS, we can't sink the hardening to it. 1831 if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() || 1832 isEFLAGSDefLive(UseMI)) 1833 return {}; 1834 1835 // If this instruction defines multiple registers bail as we won't harden 1836 // all of them. 1837 if (UseMI.getDesc().getNumDefs() > 1) 1838 return {}; 1839 1840 // If this register isn't a virtual register we can't walk uses of sanely, 1841 // just bail. Also check that its register class is one of the ones we 1842 // can harden. 1843 Register UseDefReg = UseMI.getOperand(0).getReg(); 1844 if (!UseDefReg.isVirtual() || !canHardenRegister(UseDefReg)) 1845 return {}; 1846 1847 SingleUseMI = &UseMI; 1848 } 1849 1850 // If SingleUseMI is still null, there is no use that needs its own 1851 // checking. Otherwise, it is the single use that needs checking. 1852 return {SingleUseMI}; 1853 }; 1854 1855 MachineInstr *MI = &InitialMI; 1856 while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { 1857 // Update which MI we're checking now. 1858 MI = *SingleUse; 1859 if (!MI) 1860 break; 1861 } 1862 1863 return MI; 1864 } 1865 1866 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) { 1867 auto *RC = MRI->getRegClass(Reg); 1868 int RegBytes = TRI->getRegSizeInBits(*RC) / 8; 1869 if (RegBytes > 8) 1870 // We don't support post-load hardening of vectors. 1871 return false; 1872 1873 unsigned RegIdx = Log2_32(RegBytes); 1874 assert(RegIdx < 4 && "Unsupported register size"); 1875 1876 // If this register class is explicitly constrained to a class that doesn't 1877 // require REX prefix, we may not be able to satisfy that constraint when 1878 // emitting the hardening instructions, so bail out here. 1879 // FIXME: This seems like a pretty lame hack. The way this comes up is when we 1880 // end up both with a NOREX and REX-only register as operands to the hardening 1881 // instructions. It would be better to fix that code to handle this situation 1882 // rather than hack around it in this way. 1883 const TargetRegisterClass *NOREXRegClasses[] = { 1884 &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, 1885 &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; 1886 if (RC == NOREXRegClasses[RegIdx]) 1887 return false; 1888 1889 const TargetRegisterClass *GPRRegClasses[] = { 1890 &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, 1891 &X86::GR64RegClass}; 1892 return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); 1893 } 1894 1895 /// Harden a value in a register. 1896 /// 1897 /// This is the low-level logic to fully harden a value sitting in a register 1898 /// against leaking during speculative execution. 1899 /// 1900 /// Unlike hardening an address that is used by a load, this routine is required 1901 /// to hide *all* incoming bits in the register. 1902 /// 1903 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no 1904 /// larger than the predicate state register. FIXME: We should support vector 1905 /// registers here by broadcasting the predicate state. 1906 /// 1907 /// The new, hardened virtual register is returned. It will have the same 1908 /// register class as `Reg`. 1909 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( 1910 Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1911 const DebugLoc &Loc) { 1912 assert(canHardenRegister(Reg) && "Cannot harden this register!"); 1913 assert(Reg.isVirtual() && "Cannot harden a physical register!"); 1914 1915 auto *RC = MRI->getRegClass(Reg); 1916 int Bytes = TRI->getRegSizeInBits(*RC) / 8; 1917 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 1918 assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) && 1919 "Unknown register size"); 1920 1921 // FIXME: Need to teach this about 32-bit mode. 1922 if (Bytes != 8) { 1923 unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; 1924 unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; 1925 Register NarrowStateReg = MRI->createVirtualRegister(RC); 1926 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) 1927 .addReg(StateReg, 0, SubRegImm); 1928 StateReg = NarrowStateReg; 1929 } 1930 1931 unsigned FlagsReg = 0; 1932 if (isEFLAGSLive(MBB, InsertPt, *TRI)) 1933 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 1934 1935 Register NewReg = MRI->createVirtualRegister(RC); 1936 unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; 1937 unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; 1938 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) 1939 .addReg(StateReg) 1940 .addReg(Reg); 1941 OrI->addRegisterDead(X86::EFLAGS, TRI); 1942 ++NumInstsInserted; 1943 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1944 1945 if (FlagsReg) 1946 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 1947 1948 return NewReg; 1949 } 1950 1951 /// Harden a load by hardening the loaded value in the defined register. 1952 /// 1953 /// We can harden a non-leaking load into a register without touching the 1954 /// address by just hiding all of the loaded bits during misspeculation. We use 1955 /// an `or` instruction to do this because we set up our poison value as all 1956 /// ones. And the goal is just for the loaded bits to not be exposed to 1957 /// execution and coercing them to one is sufficient. 1958 /// 1959 /// Returns the newly hardened register. 1960 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { 1961 MachineBasicBlock &MBB = *MI.getParent(); 1962 const DebugLoc &Loc = MI.getDebugLoc(); 1963 1964 auto &DefOp = MI.getOperand(0); 1965 Register OldDefReg = DefOp.getReg(); 1966 auto *DefRC = MRI->getRegClass(OldDefReg); 1967 1968 // Because we want to completely replace the uses of this def'ed value with 1969 // the hardened value, create a dedicated new register that will only be used 1970 // to communicate the unhardened value to the hardening. 1971 Register UnhardenedReg = MRI->createVirtualRegister(DefRC); 1972 DefOp.setReg(UnhardenedReg); 1973 1974 // Now harden this register's value, getting a hardened reg that is safe to 1975 // use. Note that we insert the instructions to compute this *after* the 1976 // defining instruction, not before it. 1977 unsigned HardenedReg = hardenValueInRegister( 1978 UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); 1979 1980 // Finally, replace the old register (which now only has the uses of the 1981 // original def) with the hardened register. 1982 MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); 1983 1984 ++NumPostLoadRegsHardened; 1985 return HardenedReg; 1986 } 1987 1988 /// Harden a return instruction. 1989 /// 1990 /// Returns implicitly perform a load which we need to harden. Without hardening 1991 /// this load, an attacker my speculatively write over the return address to 1992 /// steer speculation of the return to an attacker controlled address. This is 1993 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in 1994 /// this paper: 1995 /// https://people.csail.mit.edu/vlk/spectre11.pdf 1996 /// 1997 /// We can harden this by introducing an LFENCE that will delay any load of the 1998 /// return address until prior instructions have retired (and thus are not being 1999 /// speculated), or we can harden the address used by the implicit load: the 2000 /// stack pointer. 2001 /// 2002 /// If we are not using an LFENCE, hardening the stack pointer has an additional 2003 /// benefit: it allows us to pass the predicate state accumulated in this 2004 /// function back to the caller. In the absence of a BCBS attack on the return, 2005 /// the caller will typically be resumed and speculatively executed due to the 2006 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high 2007 /// priority. It is possible that some code from the caller will be executed 2008 /// speculatively even during a BCBS-attacked return until the steering takes 2009 /// effect. Whenever this happens, the caller can recover the (poisoned) 2010 /// predicate state from the stack pointer and continue to harden loads. 2011 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { 2012 MachineBasicBlock &MBB = *MI.getParent(); 2013 const DebugLoc &Loc = MI.getDebugLoc(); 2014 auto InsertPt = MI.getIterator(); 2015 2016 if (FenceCallAndRet) 2017 // No need to fence here as we'll fence at the return site itself. That 2018 // handles more cases than we can handle here. 2019 return; 2020 2021 // Take our predicate state, shift it to the high 17 bits (so that we keep 2022 // pointers canonical) and merge it into RSP. This will allow the caller to 2023 // extract it when we return (speculatively). 2024 mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); 2025 } 2026 2027 /// Trace the predicate state through a call. 2028 /// 2029 /// There are several layers of this needed to handle the full complexity of 2030 /// calls. 2031 /// 2032 /// First, we need to send the predicate state into the called function. We do 2033 /// this by merging it into the high bits of the stack pointer. 2034 /// 2035 /// For tail calls, this is all we need to do. 2036 /// 2037 /// For calls where we might return and resume the control flow, we need to 2038 /// extract the predicate state from the high bits of the stack pointer after 2039 /// control returns from the called function. 2040 /// 2041 /// We also need to verify that we intended to return to this location in the 2042 /// code. An attacker might arrange for the processor to mispredict the return 2043 /// to this valid but incorrect return address in the program rather than the 2044 /// correct one. See the paper on this attack, called "ret2spec" by the 2045 /// researchers, here: 2046 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf 2047 /// 2048 /// The way we verify that we returned to the correct location is by preserving 2049 /// the expected return address across the call. One technique involves taking 2050 /// advantage of the red-zone to load the return address from `8(%rsp)` where it 2051 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can 2052 /// directly save the address into a register that will be preserved across the 2053 /// call. We compare this intended return address against the address 2054 /// immediately following the call (the observed return address). If these 2055 /// mismatch, we have detected misspeculation and can poison our predicate 2056 /// state. 2057 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( 2058 MachineInstr &MI) { 2059 MachineBasicBlock &MBB = *MI.getParent(); 2060 MachineFunction &MF = *MBB.getParent(); 2061 auto InsertPt = MI.getIterator(); 2062 const DebugLoc &Loc = MI.getDebugLoc(); 2063 2064 if (FenceCallAndRet) { 2065 if (MI.isReturn()) 2066 // Tail call, we don't return to this function. 2067 // FIXME: We should also handle noreturn calls. 2068 return; 2069 2070 // We don't need to fence before the call because the function should fence 2071 // in its entry. However, we do need to fence after the call returns. 2072 // Fencing before the return doesn't correctly handle cases where the return 2073 // itself is mispredicted. 2074 BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); 2075 ++NumInstsInserted; 2076 ++NumLFENCEsInserted; 2077 return; 2078 } 2079 2080 // First, we transfer the predicate state into the called function by merging 2081 // it into the stack pointer. This will kill the current def of the state. 2082 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 2083 mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); 2084 2085 // If this call is also a return, it is a tail call and we don't need anything 2086 // else to handle it so just return. Also, if there are no further 2087 // instructions and no successors, this call does not return so we can also 2088 // bail. 2089 if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) 2090 return; 2091 2092 // Create a symbol to track the return address and attach it to the call 2093 // machine instruction. We will lower extra symbols attached to call 2094 // instructions as label immediately following the call. 2095 MCSymbol *RetSymbol = 2096 MF.getContext().createTempSymbol("slh_ret_addr", 2097 /*AlwaysAddSuffix*/ true); 2098 MI.setPostInstrSymbol(MF, RetSymbol); 2099 2100 const TargetRegisterClass *AddrRC = &X86::GR64RegClass; 2101 unsigned ExpectedRetAddrReg = 0; 2102 2103 // If we have no red zones or if the function returns twice (possibly without 2104 // using the `ret` instruction) like setjmp, we need to save the expected 2105 // return address prior to the call. 2106 if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || 2107 MF.exposesReturnsTwice()) { 2108 // If we don't have red zones, we need to compute the expected return 2109 // address prior to the call and store it in a register that lives across 2110 // the call. 2111 // 2112 // In some ways, this is doubly satisfying as a mitigation because it will 2113 // also successfully detect stack smashing bugs in some cases (typically, 2114 // when a callee-saved register is used and the callee doesn't push it onto 2115 // the stack). But that isn't our primary goal, so we only use it as 2116 // a fallback. 2117 // 2118 // FIXME: It isn't clear that this is reliable in the face of 2119 // rematerialization in the register allocator. We somehow need to force 2120 // that to not occur for this particular instruction, and instead to spill 2121 // or otherwise preserve the value computed *prior* to the call. 2122 // 2123 // FIXME: It is even less clear why MachineCSE can't just fold this when we 2124 // end up having to use identical instructions both before and after the 2125 // call to feed the comparison. 2126 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2127 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2128 !Subtarget->isPositionIndependent()) { 2129 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) 2130 .addSym(RetSymbol); 2131 } else { 2132 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) 2133 .addReg(/*Base*/ X86::RIP) 2134 .addImm(/*Scale*/ 1) 2135 .addReg(/*Index*/ 0) 2136 .addSym(RetSymbol) 2137 .addReg(/*Segment*/ 0); 2138 } 2139 } 2140 2141 // Step past the call to handle when it returns. 2142 ++InsertPt; 2143 2144 // If we didn't pre-compute the expected return address into a register, then 2145 // red zones are enabled and the return address is still available on the 2146 // stack immediately after the call. As the very first instruction, we load it 2147 // into a register. 2148 if (!ExpectedRetAddrReg) { 2149 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2150 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) 2151 .addReg(/*Base*/ X86::RSP) 2152 .addImm(/*Scale*/ 1) 2153 .addReg(/*Index*/ 0) 2154 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so 2155 // the return address is 8-bytes past it. 2156 .addReg(/*Segment*/ 0); 2157 } 2158 2159 // Now we extract the callee's predicate state from the stack pointer. 2160 unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); 2161 2162 // Test the expected return address against our actual address. If we can 2163 // form this basic block's address as an immediate, this is easy. Otherwise 2164 // we compute it. 2165 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2166 !Subtarget->isPositionIndependent()) { 2167 // FIXME: Could we fold this with the load? It would require careful EFLAGS 2168 // management. 2169 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) 2170 .addReg(ExpectedRetAddrReg, RegState::Kill) 2171 .addSym(RetSymbol); 2172 } else { 2173 Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); 2174 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) 2175 .addReg(/*Base*/ X86::RIP) 2176 .addImm(/*Scale*/ 1) 2177 .addReg(/*Index*/ 0) 2178 .addSym(RetSymbol) 2179 .addReg(/*Segment*/ 0); 2180 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) 2181 .addReg(ExpectedRetAddrReg, RegState::Kill) 2182 .addReg(ActualRetAddrReg, RegState::Kill); 2183 } 2184 2185 // Now conditionally update the predicate state we just extracted if we ended 2186 // up at a different return address than expected. 2187 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 2188 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 2189 2190 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 2191 auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) 2192 .addReg(NewStateReg, RegState::Kill) 2193 .addReg(PS->PoisonReg) 2194 .addImm(X86::COND_NE); 2195 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 2196 ++NumInstsInserted; 2197 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 2198 2199 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 2200 } 2201 2202 /// An attacker may speculatively store over a value that is then speculatively 2203 /// loaded and used as the target of an indirect call or jump instruction. This 2204 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described 2205 /// in this paper: 2206 /// https://people.csail.mit.edu/vlk/spectre11.pdf 2207 /// 2208 /// When this happens, the speculative execution of the call or jump will end up 2209 /// being steered to this attacker controlled address. While most such loads 2210 /// will be adequately hardened already, we want to ensure that they are 2211 /// definitively treated as needing post-load hardening. While address hardening 2212 /// is sufficient to prevent secret data from leaking to the attacker, it may 2213 /// not be sufficient to prevent an attacker from steering speculative 2214 /// execution. We forcibly unfolded all relevant loads above and so will always 2215 /// have an opportunity to post-load harden here, we just need to scan for cases 2216 /// not already flagged and add them. 2217 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( 2218 MachineInstr &MI, 2219 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 2220 switch (MI.getOpcode()) { 2221 case X86::FARCALL16m: 2222 case X86::FARCALL32m: 2223 case X86::FARCALL64m: 2224 case X86::FARJMP16m: 2225 case X86::FARJMP32m: 2226 case X86::FARJMP64m: 2227 // We don't need to harden either far calls or far jumps as they are 2228 // safe from Spectre. 2229 return; 2230 2231 default: 2232 break; 2233 } 2234 2235 // We should never see a loading instruction at this point, as those should 2236 // have been unfolded. 2237 assert(!MI.mayLoad() && "Found a lingering loading instruction!"); 2238 2239 // If the first operand isn't a register, this is a branch or call 2240 // instruction with an immediate operand which doesn't need to be hardened. 2241 if (!MI.getOperand(0).isReg()) 2242 return; 2243 2244 // For all of these, the target register is the first operand of the 2245 // instruction. 2246 auto &TargetOp = MI.getOperand(0); 2247 Register OldTargetReg = TargetOp.getReg(); 2248 2249 // Try to lookup a hardened version of this register. We retain a reference 2250 // here as we want to update the map to track any newly computed hardened 2251 // register. 2252 unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; 2253 2254 // If we don't have a hardened register yet, compute one. Otherwise, just use 2255 // the already hardened register. 2256 // 2257 // FIXME: It is a little suspect that we use partially hardened registers that 2258 // only feed addresses. The complexity of partial hardening with SHRX 2259 // continues to pile up. Should definitively measure its value and consider 2260 // eliminating it. 2261 if (!HardenedTargetReg) 2262 HardenedTargetReg = hardenValueInRegister( 2263 OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); 2264 2265 // Set the target operand to the hardened register. 2266 TargetOp.setReg(HardenedTargetReg); 2267 2268 ++NumCallsOrJumpsHardened; 2269 } 2270 2271 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, 2272 "X86 speculative load hardener", false, false) 2273 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, 2274 "X86 speculative load hardener", false, false) 2275 2276 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { 2277 return new X86SpeculativeLoadHardeningPass(); 2278 } 2279