xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/SparseBitVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/MachineSSAUpdater.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSchedule.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/MC/MCSchedule.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <iterator>
58 #include <optional>
59 #include <utility>
60 
61 using namespace llvm;
62 
63 #define PASS_KEY "x86-slh"
64 #define DEBUG_TYPE PASS_KEY
65 
66 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
67 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
68 STATISTIC(NumAddrRegsHardened,
69           "Number of address mode used registers hardaned");
70 STATISTIC(NumPostLoadRegsHardened,
71           "Number of post-load register values hardened");
72 STATISTIC(NumCallsOrJumpsHardened,
73           "Number of calls or jumps requiring extra hardening");
74 STATISTIC(NumInstsInserted, "Number of instructions inserted");
75 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
76 
77 static cl::opt<bool> EnableSpeculativeLoadHardening(
78     "x86-speculative-load-hardening",
79     cl::desc("Force enable speculative load hardening"), cl::init(false),
80     cl::Hidden);
81 
82 static cl::opt<bool> HardenEdgesWithLFENCE(
83     PASS_KEY "-lfence",
84     cl::desc(
85         "Use LFENCE along each conditional edge to harden against speculative "
86         "loads rather than conditional movs and poisoned pointers."),
87     cl::init(false), cl::Hidden);
88 
89 static cl::opt<bool> EnablePostLoadHardening(
90     PASS_KEY "-post-load",
91     cl::desc("Harden the value loaded *after* it is loaded by "
92              "flushing the loaded bits to 1. This is hard to do "
93              "in general but can be done easily for GPRs."),
94     cl::init(true), cl::Hidden);
95 
96 static cl::opt<bool> FenceCallAndRet(
97     PASS_KEY "-fence-call-and-ret",
98     cl::desc("Use a full speculation fence to harden both call and ret edges "
99              "rather than a lighter weight mitigation."),
100     cl::init(false), cl::Hidden);
101 
102 static cl::opt<bool> HardenInterprocedurally(
103     PASS_KEY "-ip",
104     cl::desc("Harden interprocedurally by passing our state in and out of "
105              "functions in the high bits of the stack pointer."),
106     cl::init(true), cl::Hidden);
107 
108 static cl::opt<bool>
109     HardenLoads(PASS_KEY "-loads",
110                 cl::desc("Sanitize loads from memory. When disable, no "
111                          "significant security is provided."),
112                 cl::init(true), cl::Hidden);
113 
114 static cl::opt<bool> HardenIndirectCallsAndJumps(
115     PASS_KEY "-indirect",
116     cl::desc("Harden indirect calls and jumps against using speculatively "
117              "stored attacker controlled addresses. This is designed to "
118              "mitigate Spectre v1.2 style attacks."),
119     cl::init(true), cl::Hidden);
120 
121 namespace {
122 
123 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
124 public:
125   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
126 
127   StringRef getPassName() const override {
128     return "X86 speculative load hardening";
129   }
130   bool runOnMachineFunction(MachineFunction &MF) override;
131   void getAnalysisUsage(AnalysisUsage &AU) const override;
132 
133   /// Pass identification, replacement for typeid.
134   static char ID;
135 
136 private:
137   /// The information about a block's conditional terminators needed to trace
138   /// our predicate state through the exiting edges.
139   struct BlockCondInfo {
140     MachineBasicBlock *MBB;
141 
142     // We mostly have one conditional branch, and in extremely rare cases have
143     // two. Three and more are so rare as to be unimportant for compile time.
144     SmallVector<MachineInstr *, 2> CondBrs;
145 
146     MachineInstr *UncondBr;
147   };
148 
149   /// Manages the predicate state traced through the program.
150   struct PredState {
151     unsigned InitialReg = 0;
152     unsigned PoisonReg = 0;
153 
154     const TargetRegisterClass *RC;
155     MachineSSAUpdater SSA;
156 
157     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
158         : RC(RC), SSA(MF) {}
159   };
160 
161   const X86Subtarget *Subtarget = nullptr;
162   MachineRegisterInfo *MRI = nullptr;
163   const X86InstrInfo *TII = nullptr;
164   const TargetRegisterInfo *TRI = nullptr;
165 
166   std::optional<PredState> PS;
167 
168   void hardenEdgesWithLFENCE(MachineFunction &MF);
169 
170   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
171 
172   SmallVector<MachineInstr *, 16>
173   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
174 
175   void unfoldCallAndJumpLoads(MachineFunction &MF);
176 
177   SmallVector<MachineInstr *, 16>
178   tracePredStateThroughIndirectBranches(MachineFunction &MF);
179 
180   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
181 
182   unsigned saveEFLAGS(MachineBasicBlock &MBB,
183                       MachineBasicBlock::iterator InsertPt,
184                       const DebugLoc &Loc);
185   void restoreEFLAGS(MachineBasicBlock &MBB,
186                      MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc,
187                      Register Reg);
188 
189   void mergePredStateIntoSP(MachineBasicBlock &MBB,
190                             MachineBasicBlock::iterator InsertPt,
191                             const DebugLoc &Loc, unsigned PredStateReg);
192   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
193                                   MachineBasicBlock::iterator InsertPt,
194                                   const DebugLoc &Loc);
195 
196   void
197   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
198                  MachineOperand &IndexMO,
199                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
200   MachineInstr *
201   sinkPostLoadHardenedInst(MachineInstr &MI,
202                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
203   bool canHardenRegister(Register Reg);
204   unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB,
205                                  MachineBasicBlock::iterator InsertPt,
206                                  const DebugLoc &Loc);
207   unsigned hardenPostLoad(MachineInstr &MI);
208   void hardenReturnInstr(MachineInstr &MI);
209   void tracePredStateThroughCall(MachineInstr &MI);
210   void hardenIndirectCallOrJumpInstr(
211       MachineInstr &MI,
212       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
213 };
214 
215 } // end anonymous namespace
216 
217 char X86SpeculativeLoadHardeningPass::ID = 0;
218 
219 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
220     AnalysisUsage &AU) const {
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
225                                     MachineBasicBlock &Succ, int SuccCount,
226                                     MachineInstr *Br, MachineInstr *&UncondBr,
227                                     const X86InstrInfo &TII) {
228   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
229 
230   MachineFunction &MF = *MBB.getParent();
231 
232   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
233 
234   // We have to insert the new block immediately after the current one as we
235   // don't know what layout-successor relationships the successor has and we
236   // may not be able to (and generally don't want to) try to fix those up.
237   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
238 
239   // Update the branch instruction if necessary.
240   if (Br) {
241     assert(Br->getOperand(0).getMBB() == &Succ &&
242            "Didn't start with the right target!");
243     Br->getOperand(0).setMBB(&NewMBB);
244 
245     // If this successor was reached through a branch rather than fallthrough,
246     // we might have *broken* fallthrough and so need to inject a new
247     // unconditional branch.
248     if (!UncondBr) {
249       MachineBasicBlock &OldLayoutSucc =
250           *std::next(MachineFunction::iterator(&NewMBB));
251       assert(MBB.isSuccessor(&OldLayoutSucc) &&
252              "Without an unconditional branch, the old layout successor should "
253              "be an actual successor!");
254       auto BrBuilder =
255           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
256       // Update the unconditional branch now that we've added one.
257       UncondBr = &*BrBuilder;
258     }
259 
260     // Insert unconditional "jump Succ" instruction in the new block if
261     // necessary.
262     if (!NewMBB.isLayoutSuccessor(&Succ)) {
263       SmallVector<MachineOperand, 4> Cond;
264       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
265     }
266   } else {
267     assert(!UncondBr &&
268            "Cannot have a branchless successor and an unconditional branch!");
269     assert(NewMBB.isLayoutSuccessor(&Succ) &&
270            "A non-branch successor must have been a layout successor before "
271            "and now is a layout successor of the new block.");
272   }
273 
274   // If this is the only edge to the successor, we can just replace it in the
275   // CFG. Otherwise we need to add a new entry in the CFG for the new
276   // successor.
277   if (SuccCount == 1) {
278     MBB.replaceSuccessor(&Succ, &NewMBB);
279   } else {
280     MBB.splitSuccessor(&Succ, &NewMBB);
281   }
282 
283   // Hook up the edge from the new basic block to the old successor in the CFG.
284   NewMBB.addSuccessor(&Succ);
285 
286   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
287   for (MachineInstr &MI : Succ) {
288     if (!MI.isPHI())
289       break;
290     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
291          OpIdx += 2) {
292       MachineOperand &OpV = MI.getOperand(OpIdx);
293       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
294       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
295       if (OpMBB.getMBB() != &MBB)
296         continue;
297 
298       // If this is the last edge to the succesor, just replace MBB in the PHI
299       if (SuccCount == 1) {
300         OpMBB.setMBB(&NewMBB);
301         break;
302       }
303 
304       // Otherwise, append a new pair of operands for the new incoming edge.
305       MI.addOperand(MF, OpV);
306       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
307       break;
308     }
309   }
310 
311   // Inherit live-ins from the successor
312   for (auto &LI : Succ.liveins())
313     NewMBB.addLiveIn(LI);
314 
315   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
316                     << Succ.getName() << "'.\n");
317   return NewMBB;
318 }
319 
320 /// Removing duplicate PHI operands to leave the PHI in a canonical and
321 /// predictable form.
322 ///
323 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
324 /// isn't what you might expect. We may have multiple entries in PHI nodes for
325 /// a single predecessor. This makes CFG-updating extremely complex, so here we
326 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
327 /// one entry per predecessor, regardless of how many edges there are.
328 static void canonicalizePHIOperands(MachineFunction &MF) {
329   SmallPtrSet<MachineBasicBlock *, 4> Preds;
330   SmallVector<int, 4> DupIndices;
331   for (auto &MBB : MF)
332     for (auto &MI : MBB) {
333       if (!MI.isPHI())
334         break;
335 
336       // First we scan the operands of the PHI looking for duplicate entries
337       // a particular predecessor. We retain the operand index of each duplicate
338       // entry found.
339       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
340            OpIdx += 2)
341         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
342           DupIndices.push_back(OpIdx);
343 
344       // Now walk the duplicate indices, removing both the block and value. Note
345       // that these are stored as a vector making this element-wise removal
346       // :w
347       // potentially quadratic.
348       //
349       // FIXME: It is really frustrating that we have to use a quadratic
350       // removal algorithm here. There should be a better way, but the use-def
351       // updates required make that impossible using the public API.
352       //
353       // Note that we have to process these backwards so that we don't
354       // invalidate other indices with each removal.
355       while (!DupIndices.empty()) {
356         int OpIdx = DupIndices.pop_back_val();
357         // Remove both the block and value operand, again in reverse order to
358         // preserve indices.
359         MI.removeOperand(OpIdx + 1);
360         MI.removeOperand(OpIdx);
361       }
362 
363       Preds.clear();
364     }
365 }
366 
367 /// Helper to scan a function for loads vulnerable to misspeculation that we
368 /// want to harden.
369 ///
370 /// We use this to avoid making changes to functions where there is nothing we
371 /// need to do to harden against misspeculation.
372 static bool hasVulnerableLoad(MachineFunction &MF) {
373   for (MachineBasicBlock &MBB : MF) {
374     for (MachineInstr &MI : MBB) {
375       // Loads within this basic block after an LFENCE are not at risk of
376       // speculatively executing with invalid predicates from prior control
377       // flow. So break out of this block but continue scanning the function.
378       if (MI.getOpcode() == X86::LFENCE)
379         break;
380 
381       // Looking for loads only.
382       if (!MI.mayLoad())
383         continue;
384 
385       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
386       if (MI.getOpcode() == X86::MFENCE)
387         continue;
388 
389       // We found a load.
390       return true;
391     }
392   }
393 
394   // No loads found.
395   return false;
396 }
397 
398 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
399     MachineFunction &MF) {
400   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
401                     << " **********\n");
402 
403   // Only run if this pass is forced enabled or we detect the relevant function
404   // attribute requesting SLH.
405   if (!EnableSpeculativeLoadHardening &&
406       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
407     return false;
408 
409   Subtarget = &MF.getSubtarget<X86Subtarget>();
410   MRI = &MF.getRegInfo();
411   TII = Subtarget->getInstrInfo();
412   TRI = Subtarget->getRegisterInfo();
413 
414   // FIXME: Support for 32-bit.
415   PS.emplace(MF, &X86::GR64_NOSPRegClass);
416 
417   if (MF.begin() == MF.end())
418     // Nothing to do for a degenerate empty function...
419     return false;
420 
421   // We support an alternative hardening technique based on a debug flag.
422   if (HardenEdgesWithLFENCE) {
423     hardenEdgesWithLFENCE(MF);
424     return true;
425   }
426 
427   // Create a dummy debug loc to use for all the generated code here.
428   DebugLoc Loc;
429 
430   MachineBasicBlock &Entry = *MF.begin();
431   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
432 
433   // Do a quick scan to see if we have any checkable loads.
434   bool HasVulnerableLoad = hasVulnerableLoad(MF);
435 
436   // See if we have any conditional branching blocks that we will need to trace
437   // predicate state through.
438   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
439 
440   // If we have no interesting conditions or loads, nothing to do here.
441   if (!HasVulnerableLoad && Infos.empty())
442     return true;
443 
444   // The poison value is required to be an all-ones value for many aspects of
445   // this mitigation.
446   const int PoisonVal = -1;
447   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
448   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
449       .addImm(PoisonVal);
450   ++NumInstsInserted;
451 
452   // If we have loads being hardened and we've asked for call and ret edges to
453   // get a full fence-based mitigation, inject that fence.
454   if (HasVulnerableLoad && FenceCallAndRet) {
455     // We need to insert an LFENCE at the start of the function to suspend any
456     // incoming misspeculation from the caller. This helps two-fold: the caller
457     // may not have been protected as this code has been, and this code gets to
458     // not take any specific action to protect across calls.
459     // FIXME: We could skip this for functions which unconditionally return
460     // a constant.
461     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
462     ++NumInstsInserted;
463     ++NumLFENCEsInserted;
464   }
465 
466   // If we guarded the entry with an LFENCE and have no conditionals to protect
467   // in blocks, then we're done.
468   if (FenceCallAndRet && Infos.empty())
469     // We may have changed the function's code at this point to insert fences.
470     return true;
471 
472   // For every basic block in the function which can b
473   if (HardenInterprocedurally && !FenceCallAndRet) {
474     // Set up the predicate state by extracting it from the incoming stack
475     // pointer so we pick up any misspeculation in our caller.
476     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
477   } else {
478     // Otherwise, just build the predicate state itself by zeroing a register
479     // as we don't need any initial state.
480     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
481     Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
482     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
483                          PredStateSubReg);
484     ++NumInstsInserted;
485     MachineOperand *ZeroEFLAGSDefOp =
486         ZeroI->findRegisterDefOperand(X86::EFLAGS);
487     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
488            "Must have an implicit def of EFLAGS!");
489     ZeroEFLAGSDefOp->setIsDead(true);
490     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
491             PS->InitialReg)
492         .addImm(0)
493         .addReg(PredStateSubReg)
494         .addImm(X86::sub_32bit);
495   }
496 
497   // We're going to need to trace predicate state throughout the function's
498   // CFG. Prepare for this by setting up our initial state of PHIs with unique
499   // predecessor entries and all the initial predicate state.
500   canonicalizePHIOperands(MF);
501 
502   // Track the updated values in an SSA updater to rewrite into SSA form at the
503   // end.
504   PS->SSA.Initialize(PS->InitialReg);
505   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
506 
507   // Trace through the CFG.
508   auto CMovs = tracePredStateThroughCFG(MF, Infos);
509 
510   // We may also enter basic blocks in this function via exception handling
511   // control flow. Here, if we are hardening interprocedurally, we need to
512   // re-capture the predicate state from the throwing code. In the Itanium ABI,
513   // the throw will always look like a call to __cxa_throw and will have the
514   // predicate state in the stack pointer, so extract fresh predicate state from
515   // the stack pointer and make it available in SSA.
516   // FIXME: Handle non-itanium ABI EH models.
517   if (HardenInterprocedurally) {
518     for (MachineBasicBlock &MBB : MF) {
519       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
520       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
521       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
522       if (!MBB.isEHPad())
523         continue;
524       PS->SSA.AddAvailableValue(
525           &MBB,
526           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
527     }
528   }
529 
530   if (HardenIndirectCallsAndJumps) {
531     // If we are going to harden calls and jumps we need to unfold their memory
532     // operands.
533     unfoldCallAndJumpLoads(MF);
534 
535     // Then we trace predicate state through the indirect branches.
536     auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
537     CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
538   }
539 
540   // Now that we have the predicate state available at the start of each block
541   // in the CFG, trace it through each block, hardening vulnerable instructions
542   // as we go.
543   tracePredStateThroughBlocksAndHarden(MF);
544 
545   // Now rewrite all the uses of the pred state using the SSA updater to insert
546   // PHIs connecting the state between blocks along the CFG edges.
547   for (MachineInstr *CMovI : CMovs)
548     for (MachineOperand &Op : CMovI->operands()) {
549       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
550         continue;
551 
552       PS->SSA.RewriteUse(Op);
553     }
554 
555   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
556              dbgs() << "\n"; MF.verify(this));
557   return true;
558 }
559 
560 /// Implements the naive hardening approach of putting an LFENCE after every
561 /// potentially mis-predicted control flow construct.
562 ///
563 /// We include this as an alternative mostly for the purpose of comparison. The
564 /// performance impact of this is expected to be extremely severe and not
565 /// practical for any real-world users.
566 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
567     MachineFunction &MF) {
568   // First, we scan the function looking for blocks that are reached along edges
569   // that we might want to harden.
570   SmallSetVector<MachineBasicBlock *, 8> Blocks;
571   for (MachineBasicBlock &MBB : MF) {
572     // If there are no or only one successor, nothing to do here.
573     if (MBB.succ_size() <= 1)
574       continue;
575 
576     // Skip blocks unless their terminators start with a branch. Other
577     // terminators don't seem interesting for guarding against misspeculation.
578     auto TermIt = MBB.getFirstTerminator();
579     if (TermIt == MBB.end() || !TermIt->isBranch())
580       continue;
581 
582     // Add all the non-EH-pad succossors to the blocks we want to harden. We
583     // skip EH pads because there isn't really a condition of interest on
584     // entering.
585     for (MachineBasicBlock *SuccMBB : MBB.successors())
586       if (!SuccMBB->isEHPad())
587         Blocks.insert(SuccMBB);
588   }
589 
590   for (MachineBasicBlock *MBB : Blocks) {
591     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
592     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
593     ++NumInstsInserted;
594     ++NumLFENCEsInserted;
595   }
596 }
597 
598 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
599 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
600   SmallVector<BlockCondInfo, 16> Infos;
601 
602   // Walk the function and build up a summary for each block's conditions that
603   // we need to trace through.
604   for (MachineBasicBlock &MBB : MF) {
605     // If there are no or only one successor, nothing to do here.
606     if (MBB.succ_size() <= 1)
607       continue;
608 
609     // We want to reliably handle any conditional branch terminators in the
610     // MBB, so we manually analyze the branch. We can handle all of the
611     // permutations here, including ones that analyze branch cannot.
612     //
613     // The approach is to walk backwards across the terminators, resetting at
614     // any unconditional non-indirect branch, and track all conditional edges
615     // to basic blocks as well as the fallthrough or unconditional successor
616     // edge. For each conditional edge, we track the target and the opposite
617     // condition code in order to inject a "no-op" cmov into that successor
618     // that will harden the predicate. For the fallthrough/unconditional
619     // edge, we inject a separate cmov for each conditional branch with
620     // matching condition codes. This effectively implements an "and" of the
621     // condition flags, even if there isn't a single condition flag that would
622     // directly implement that. We don't bother trying to optimize either of
623     // these cases because if such an optimization is possible, LLVM should
624     // have optimized the conditional *branches* in that way already to reduce
625     // instruction count. This late, we simply assume the minimal number of
626     // branch instructions is being emitted and use that to guide our cmov
627     // insertion.
628 
629     BlockCondInfo Info = {&MBB, {}, nullptr};
630 
631     // Now walk backwards through the terminators and build up successors they
632     // reach and the conditions.
633     for (MachineInstr &MI : llvm::reverse(MBB)) {
634       // Once we've handled all the terminators, we're done.
635       if (!MI.isTerminator())
636         break;
637 
638       // If we see a non-branch terminator, we can't handle anything so bail.
639       if (!MI.isBranch()) {
640         Info.CondBrs.clear();
641         break;
642       }
643 
644       // If we see an unconditional branch, reset our state, clear any
645       // fallthrough, and set this is the "else" successor.
646       if (MI.getOpcode() == X86::JMP_1) {
647         Info.CondBrs.clear();
648         Info.UncondBr = &MI;
649         continue;
650       }
651 
652       // If we get an invalid condition, we have an indirect branch or some
653       // other unanalyzable "fallthrough" case. We model this as a nullptr for
654       // the destination so we can still guard any conditional successors.
655       // Consider code sequences like:
656       // ```
657       //   jCC L1
658       //   jmpq *%rax
659       // ```
660       // We still want to harden the edge to `L1`.
661       if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
662         Info.CondBrs.clear();
663         Info.UncondBr = &MI;
664         continue;
665       }
666 
667       // We have a vanilla conditional branch, add it to our list.
668       Info.CondBrs.push_back(&MI);
669     }
670     if (Info.CondBrs.empty()) {
671       ++NumBranchesUntraced;
672       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
673                  MBB.dump());
674       continue;
675     }
676 
677     Infos.push_back(Info);
678   }
679 
680   return Infos;
681 }
682 
683 /// Trace the predicate state through the CFG, instrumenting each conditional
684 /// branch such that misspeculation through an edge will poison the predicate
685 /// state.
686 ///
687 /// Returns the list of inserted CMov instructions so that they can have their
688 /// uses of the predicate state rewritten into proper SSA form once it is
689 /// complete.
690 SmallVector<MachineInstr *, 16>
691 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
692     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
693   // Collect the inserted cmov instructions so we can rewrite their uses of the
694   // predicate state into SSA form.
695   SmallVector<MachineInstr *, 16> CMovs;
696 
697   // Now walk all of the basic blocks looking for ones that end in conditional
698   // jumps where we need to update this register along each edge.
699   for (const BlockCondInfo &Info : Infos) {
700     MachineBasicBlock &MBB = *Info.MBB;
701     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
702     MachineInstr *UncondBr = Info.UncondBr;
703 
704     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
705                       << "\n");
706     ++NumCondBranchesTraced;
707 
708     // Compute the non-conditional successor as either the target of any
709     // unconditional branch or the layout successor.
710     MachineBasicBlock *UncondSucc =
711         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
712                         ? UncondBr->getOperand(0).getMBB()
713                         : nullptr)
714                  : &*std::next(MachineFunction::iterator(&MBB));
715 
716     // Count how many edges there are to any given successor.
717     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
718     if (UncondSucc)
719       ++SuccCounts[UncondSucc];
720     for (auto *CondBr : CondBrs)
721       ++SuccCounts[CondBr->getOperand(0).getMBB()];
722 
723     // A lambda to insert cmov instructions into a block checking all of the
724     // condition codes in a sequence.
725     auto BuildCheckingBlockForSuccAndConds =
726         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
727             MachineInstr *Br, MachineInstr *&UncondBr,
728             ArrayRef<X86::CondCode> Conds) {
729           // First, we split the edge to insert the checking block into a safe
730           // location.
731           auto &CheckingMBB =
732               (SuccCount == 1 && Succ.pred_size() == 1)
733                   ? Succ
734                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
735 
736           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
737           if (!LiveEFLAGS)
738             CheckingMBB.addLiveIn(X86::EFLAGS);
739 
740           // Now insert the cmovs to implement the checks.
741           auto InsertPt = CheckingMBB.begin();
742           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
743                  "Should never have a PHI in the initial checking block as it "
744                  "always has a single predecessor!");
745 
746           // We will wire each cmov to each other, but need to start with the
747           // incoming pred state.
748           unsigned CurStateReg = PS->InitialReg;
749 
750           for (X86::CondCode Cond : Conds) {
751             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
752             auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
753 
754             Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
755             // Note that we intentionally use an empty debug location so that
756             // this picks up the preceding location.
757             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
758                                  TII->get(CMovOp), UpdatedStateReg)
759                              .addReg(CurStateReg)
760                              .addReg(PS->PoisonReg)
761                              .addImm(Cond);
762             // If this is the last cmov and the EFLAGS weren't originally
763             // live-in, mark them as killed.
764             if (!LiveEFLAGS && Cond == Conds.back())
765               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
766 
767             ++NumInstsInserted;
768             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
769                        dbgs() << "\n");
770 
771             // The first one of the cmovs will be using the top level
772             // `PredStateReg` and need to get rewritten into SSA form.
773             if (CurStateReg == PS->InitialReg)
774               CMovs.push_back(&*CMovI);
775 
776             // The next cmov should start from this one's def.
777             CurStateReg = UpdatedStateReg;
778           }
779 
780           // And put the last one into the available values for SSA form of our
781           // predicate state.
782           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
783         };
784 
785     std::vector<X86::CondCode> UncondCodeSeq;
786     for (auto *CondBr : CondBrs) {
787       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
788       int &SuccCount = SuccCounts[&Succ];
789 
790       X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
791       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
792       UncondCodeSeq.push_back(Cond);
793 
794       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
795                                         {InvCond});
796 
797       // Decrement the successor count now that we've split one of the edges.
798       // We need to keep the count of edges to the successor accurate in order
799       // to know above when to *replace* the successor in the CFG vs. just
800       // adding the new successor.
801       --SuccCount;
802     }
803 
804     // Since we may have split edges and changed the number of successors,
805     // normalize the probabilities. This avoids doing it each time we split an
806     // edge.
807     MBB.normalizeSuccProbs();
808 
809     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
810     // need to intersect the other condition codes. We can do this by just
811     // doing a cmov for each one.
812     if (!UncondSucc)
813       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
814       // just skip this and continue.
815       continue;
816 
817     assert(SuccCounts[UncondSucc] == 1 &&
818            "We should never have more than one edge to the unconditional "
819            "successor at this point because every other edge must have been "
820            "split above!");
821 
822     // Sort and unique the codes to minimize them.
823     llvm::sort(UncondCodeSeq);
824     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
825                         UncondCodeSeq.end());
826 
827     // Build a checking version of the successor.
828     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
829                                       UncondBr, UncondBr, UncondCodeSeq);
830   }
831 
832   return CMovs;
833 }
834 
835 /// Compute the register class for the unfolded load.
836 ///
837 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
838 /// a way to unfold into a newly created vreg rather than requiring a register
839 /// input.
840 static const TargetRegisterClass *
841 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
842                            unsigned Opcode) {
843   unsigned Index;
844   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
845       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
846   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
847   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
848 }
849 
850 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
851     MachineFunction &MF) {
852   for (MachineBasicBlock &MBB : MF)
853     // We use make_early_inc_range here so we can remove instructions if needed
854     // without disturbing the iteration.
855     for (MachineInstr &MI : llvm::make_early_inc_range(MBB.instrs())) {
856       // Must either be a call or a branch.
857       if (!MI.isCall() && !MI.isBranch())
858         continue;
859       // We only care about loading variants of these instructions.
860       if (!MI.mayLoad())
861         continue;
862 
863       switch (MI.getOpcode()) {
864       default: {
865         LLVM_DEBUG(
866             dbgs() << "ERROR: Found an unexpected loading branch or call "
867                       "instruction:\n";
868             MI.dump(); dbgs() << "\n");
869         report_fatal_error("Unexpected loading branch or call!");
870       }
871 
872       case X86::FARCALL16m:
873       case X86::FARCALL32m:
874       case X86::FARCALL64m:
875       case X86::FARJMP16m:
876       case X86::FARJMP32m:
877       case X86::FARJMP64m:
878         // We cannot mitigate far jumps or calls, but we also don't expect them
879         // to be vulnerable to Spectre v1.2 style attacks.
880         continue;
881 
882       case X86::CALL16m:
883       case X86::CALL16m_NT:
884       case X86::CALL32m:
885       case X86::CALL32m_NT:
886       case X86::CALL64m:
887       case X86::CALL64m_NT:
888       case X86::JMP16m:
889       case X86::JMP16m_NT:
890       case X86::JMP32m:
891       case X86::JMP32m_NT:
892       case X86::JMP64m:
893       case X86::JMP64m_NT:
894       case X86::TAILJMPm64:
895       case X86::TAILJMPm64_REX:
896       case X86::TAILJMPm:
897       case X86::TCRETURNmi64:
898       case X86::TCRETURNmi: {
899         // Use the generic unfold logic now that we know we're dealing with
900         // expected instructions.
901         // FIXME: We don't have test coverage for all of these!
902         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
903         if (!UnfoldedRC) {
904           LLVM_DEBUG(dbgs()
905                          << "ERROR: Unable to unfold load from instruction:\n";
906                      MI.dump(); dbgs() << "\n");
907           report_fatal_error("Unable to unfold load!");
908         }
909         Register Reg = MRI->createVirtualRegister(UnfoldedRC);
910         SmallVector<MachineInstr *, 2> NewMIs;
911         // If we were able to compute an unfolded reg class, any failure here
912         // is just a programming error so just assert.
913         bool Unfolded =
914             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
915                                      /*UnfoldStore*/ false, NewMIs);
916         (void)Unfolded;
917         assert(Unfolded &&
918                "Computed unfolded register class but failed to unfold");
919         // Now stitch the new instructions into place and erase the old one.
920         for (auto *NewMI : NewMIs)
921           MBB.insert(MI.getIterator(), NewMI);
922 
923         // Update the call site info.
924         if (MI.isCandidateForCallSiteEntry())
925           MF.eraseCallSiteInfo(&MI);
926 
927         MI.eraseFromParent();
928         LLVM_DEBUG({
929           dbgs() << "Unfolded load successfully into:\n";
930           for (auto *NewMI : NewMIs) {
931             NewMI->dump();
932             dbgs() << "\n";
933           }
934         });
935         continue;
936       }
937       }
938       llvm_unreachable("Escaped switch with default!");
939     }
940 }
941 
942 /// Trace the predicate state through indirect branches, instrumenting them to
943 /// poison the state if a target is reached that does not match the expected
944 /// target.
945 ///
946 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
947 /// branch is trained to predict a particular target and then mispredicts that
948 /// target in a way that can leak data. Despite using an indirect branch, this
949 /// is really a variant 1 style attack: it does not steer execution to an
950 /// arbitrary or attacker controlled address, and it does not require any
951 /// special code executing next to the victim. This attack can also be mitigated
952 /// through retpolines, but those require either replacing indirect branches
953 /// with conditional direct branches or lowering them through a device that
954 /// blocks speculation. This mitigation can replace these retpoline-style
955 /// mitigations for jump tables and other indirect branches within a function
956 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
957 /// calls, however, cannot be mitigated through this technique without changing
958 /// the ABI in a fundamental way.
959 SmallVector<MachineInstr *, 16>
960 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
961     MachineFunction &MF) {
962   // We use the SSAUpdater to insert PHI nodes for the target addresses of
963   // indirect branches. We don't actually need the full power of the SSA updater
964   // in this particular case as we always have immediately available values, but
965   // this avoids us having to re-implement the PHI construction logic.
966   MachineSSAUpdater TargetAddrSSA(MF);
967   TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
968 
969   // Track which blocks were terminated with an indirect branch.
970   SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
971 
972   // We need to know what blocks end up reached via indirect branches. We
973   // expect this to be a subset of those whose address is taken and so track it
974   // directly via the CFG.
975   SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
976 
977   // Walk all the blocks which end in an indirect branch and make the
978   // target address available.
979   for (MachineBasicBlock &MBB : MF) {
980     // Find the last terminator.
981     auto MII = MBB.instr_rbegin();
982     while (MII != MBB.instr_rend() && MII->isDebugInstr())
983       ++MII;
984     if (MII == MBB.instr_rend())
985       continue;
986     MachineInstr &TI = *MII;
987     if (!TI.isTerminator() || !TI.isBranch())
988       // No terminator or non-branch terminator.
989       continue;
990 
991     unsigned TargetReg;
992 
993     switch (TI.getOpcode()) {
994     default:
995       // Direct branch or conditional branch (leading to fallthrough).
996       continue;
997 
998     case X86::FARJMP16m:
999     case X86::FARJMP32m:
1000     case X86::FARJMP64m:
1001       // We cannot mitigate far jumps or calls, but we also don't expect them
1002       // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
1003       continue;
1004 
1005     case X86::JMP16m:
1006     case X86::JMP16m_NT:
1007     case X86::JMP32m:
1008     case X86::JMP32m_NT:
1009     case X86::JMP64m:
1010     case X86::JMP64m_NT:
1011       // Mostly as documentation.
1012       report_fatal_error("Memory operand jumps should have been unfolded!");
1013 
1014     case X86::JMP16r:
1015       report_fatal_error(
1016           "Support for 16-bit indirect branches is not implemented.");
1017     case X86::JMP32r:
1018       report_fatal_error(
1019           "Support for 32-bit indirect branches is not implemented.");
1020 
1021     case X86::JMP64r:
1022       TargetReg = TI.getOperand(0).getReg();
1023     }
1024 
1025     // We have definitely found an indirect  branch. Verify that there are no
1026     // preceding conditional branches as we don't yet support that.
1027     if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1028           return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1029         })) {
1030       LLVM_DEBUG({
1031         dbgs() << "ERROR: Found other terminators in a block with an indirect "
1032                   "branch! This is not yet supported! Terminator sequence:\n";
1033         for (MachineInstr &MI : MBB.terminators()) {
1034           MI.dump();
1035           dbgs() << '\n';
1036         }
1037       });
1038       report_fatal_error("Unimplemented terminator sequence!");
1039     }
1040 
1041     // Make the target register an available value for this block.
1042     TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1043     IndirectTerminatedMBBs.insert(&MBB);
1044 
1045     // Add all the successors to our target candidates.
1046     for (MachineBasicBlock *Succ : MBB.successors())
1047       IndirectTargetMBBs.insert(Succ);
1048   }
1049 
1050   // Keep track of the cmov instructions we insert so we can return them.
1051   SmallVector<MachineInstr *, 16> CMovs;
1052 
1053   // If we didn't find any indirect branches with targets, nothing to do here.
1054   if (IndirectTargetMBBs.empty())
1055     return CMovs;
1056 
1057   // We found indirect branches and targets that need to be instrumented to
1058   // harden loads within them. Walk the blocks of the function (to get a stable
1059   // ordering) and instrument each target of an indirect branch.
1060   for (MachineBasicBlock &MBB : MF) {
1061     // Skip the blocks that aren't candidate targets.
1062     if (!IndirectTargetMBBs.count(&MBB))
1063       continue;
1064 
1065     // We don't expect EH pads to ever be reached via an indirect branch. If
1066     // this is desired for some reason, we could simply skip them here rather
1067     // than asserting.
1068     assert(!MBB.isEHPad() &&
1069            "Unexpected EH pad as target of an indirect branch!");
1070 
1071     // We should never end up threading EFLAGS into a block to harden
1072     // conditional jumps as there would be an additional successor via the
1073     // indirect branch. As a consequence, all such edges would be split before
1074     // reaching here, and the inserted block will handle the EFLAGS-based
1075     // hardening.
1076     assert(!MBB.isLiveIn(X86::EFLAGS) &&
1077            "Cannot check within a block that already has live-in EFLAGS!");
1078 
1079     // We can't handle having non-indirect edges into this block unless this is
1080     // the only successor and we can synthesize the necessary target address.
1081     for (MachineBasicBlock *Pred : MBB.predecessors()) {
1082       // If we've already handled this by extracting the target directly,
1083       // nothing to do.
1084       if (IndirectTerminatedMBBs.count(Pred))
1085         continue;
1086 
1087       // Otherwise, we have to be the only successor. We generally expect this
1088       // to be true as conditional branches should have had a critical edge
1089       // split already. We don't however need to worry about EH pad successors
1090       // as they'll happily ignore the target and their hardening strategy is
1091       // resilient to all ways in which they could be reached speculatively.
1092       if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1093             return Succ->isEHPad() || Succ == &MBB;
1094           })) {
1095         LLVM_DEBUG({
1096           dbgs() << "ERROR: Found conditional entry to target of indirect "
1097                     "branch!\n";
1098           Pred->dump();
1099           MBB.dump();
1100         });
1101         report_fatal_error("Cannot harden a conditional entry to a target of "
1102                            "an indirect branch!");
1103       }
1104 
1105       // Now we need to compute the address of this block and install it as a
1106       // synthetic target in the predecessor. We do this at the bottom of the
1107       // predecessor.
1108       auto InsertPt = Pred->getFirstTerminator();
1109       Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1110       if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1111           !Subtarget->isPositionIndependent()) {
1112         // Directly materialize it into an immediate.
1113         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1114                              TII->get(X86::MOV64ri32), TargetReg)
1115                          .addMBB(&MBB);
1116         ++NumInstsInserted;
1117         (void)AddrI;
1118         LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
1119                    dbgs() << "\n");
1120       } else {
1121         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1122                              TargetReg)
1123                          .addReg(/*Base*/ X86::RIP)
1124                          .addImm(/*Scale*/ 1)
1125                          .addReg(/*Index*/ 0)
1126                          .addMBB(&MBB)
1127                          .addReg(/*Segment*/ 0);
1128         ++NumInstsInserted;
1129         (void)AddrI;
1130         LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
1131                    dbgs() << "\n");
1132       }
1133       // And make this available.
1134       TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1135     }
1136 
1137     // Materialize the needed SSA value of the target. Note that we need the
1138     // middle of the block as this block might at the bottom have an indirect
1139     // branch back to itself. We can do this here because at this point, every
1140     // predecessor of this block has an available value. This is basically just
1141     // automating the construction of a PHI node for this target.
1142     Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1143 
1144     // Insert a comparison of the incoming target register with this block's
1145     // address. This also requires us to mark the block as having its address
1146     // taken explicitly.
1147     MBB.setMachineBlockAddressTaken();
1148     auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1149     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1150         !Subtarget->isPositionIndependent()) {
1151       // Check directly against a relocated immediate when we can.
1152       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1153                         .addReg(TargetReg, RegState::Kill)
1154                         .addMBB(&MBB);
1155       ++NumInstsInserted;
1156       (void)CheckI;
1157       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1158     } else {
1159       // Otherwise compute the address into a register first.
1160       Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1161       auto AddrI =
1162           BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1163               .addReg(/*Base*/ X86::RIP)
1164               .addImm(/*Scale*/ 1)
1165               .addReg(/*Index*/ 0)
1166               .addMBB(&MBB)
1167               .addReg(/*Segment*/ 0);
1168       ++NumInstsInserted;
1169       (void)AddrI;
1170       LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1171       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1172                         .addReg(TargetReg, RegState::Kill)
1173                         .addReg(AddrReg, RegState::Kill);
1174       ++NumInstsInserted;
1175       (void)CheckI;
1176       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1177     }
1178 
1179     // Now cmov over the predicate if the comparison wasn't equal.
1180     int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1181     auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1182     Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1183     auto CMovI =
1184         BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1185             .addReg(PS->InitialReg)
1186             .addReg(PS->PoisonReg)
1187             .addImm(X86::COND_NE);
1188     CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1189     ++NumInstsInserted;
1190     LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1191     CMovs.push_back(&*CMovI);
1192 
1193     // And put the new value into the available values for SSA form of our
1194     // predicate state.
1195     PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1196   }
1197 
1198   // Return all the newly inserted cmov instructions of the predicate state.
1199   return CMovs;
1200 }
1201 
1202 // Returns true if the MI has EFLAGS as a register def operand and it's live,
1203 // otherwise it returns false
1204 static bool isEFLAGSDefLive(const MachineInstr &MI) {
1205   if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1206     return !DefOp->isDead();
1207   }
1208   return false;
1209 }
1210 
1211 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1212                          const TargetRegisterInfo &TRI) {
1213   // Check if EFLAGS are alive by seeing if there is a def of them or they
1214   // live-in, and then seeing if that def is in turn used.
1215   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1216     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1217       // If the def is dead, then EFLAGS is not live.
1218       if (DefOp->isDead())
1219         return false;
1220 
1221       // Otherwise we've def'ed it, and it is live.
1222       return true;
1223     }
1224     // While at this instruction, also check if we use and kill EFLAGS
1225     // which means it isn't live.
1226     if (MI.killsRegister(X86::EFLAGS, &TRI))
1227       return false;
1228   }
1229 
1230   // If we didn't find anything conclusive (neither definitely alive or
1231   // definitely dead) return whether it lives into the block.
1232   return MBB.isLiveIn(X86::EFLAGS);
1233 }
1234 
1235 /// Trace the predicate state through each of the blocks in the function,
1236 /// hardening everything necessary along the way.
1237 ///
1238 /// We call this routine once the initial predicate state has been established
1239 /// for each basic block in the function in the SSA updater. This routine traces
1240 /// it through the instructions within each basic block, and for non-returning
1241 /// blocks informs the SSA updater about the final state that lives out of the
1242 /// block. Along the way, it hardens any vulnerable instruction using the
1243 /// currently valid predicate state. We have to do these two things together
1244 /// because the SSA updater only works across blocks. Within a block, we track
1245 /// the current predicate state directly and update it as it changes.
1246 ///
1247 /// This operates in two passes over each block. First, we analyze the loads in
1248 /// the block to determine which strategy will be used to harden them: hardening
1249 /// the address or hardening the loaded value when loaded into a register
1250 /// amenable to hardening. We have to process these first because the two
1251 /// strategies may interact -- later hardening may change what strategy we wish
1252 /// to use. We also will analyze data dependencies between loads and avoid
1253 /// hardening those loads that are data dependent on a load with a hardened
1254 /// address. We also skip hardening loads already behind an LFENCE as that is
1255 /// sufficient to harden them against misspeculation.
1256 ///
1257 /// Second, we actively trace the predicate state through the block, applying
1258 /// the hardening steps we determined necessary in the first pass as we go.
1259 ///
1260 /// These two passes are applied to each basic block. We operate one block at a
1261 /// time to simplify reasoning about reachability and sequencing.
1262 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1263     MachineFunction &MF) {
1264   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1265   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1266 
1267   SmallSet<unsigned, 16> HardenedAddrRegs;
1268 
1269   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1270 
1271   // Track the set of load-dependent registers through the basic block. Because
1272   // the values of these registers have an existing data dependency on a loaded
1273   // value which we would have checked, we can omit any checks on them.
1274   SparseBitVector<> LoadDepRegs;
1275 
1276   for (MachineBasicBlock &MBB : MF) {
1277     // The first pass over the block: collect all the loads which can have their
1278     // loaded value hardened and all the loads that instead need their address
1279     // hardened. During this walk we propagate load dependence for address
1280     // hardened loads and also look for LFENCE to stop hardening wherever
1281     // possible. When deciding whether or not to harden the loaded value or not,
1282     // we check to see if any registers used in the address will have been
1283     // hardened at this point and if so, harden any remaining address registers
1284     // as that often successfully re-uses hardened addresses and minimizes
1285     // instructions.
1286     //
1287     // FIXME: We should consider an aggressive mode where we continue to keep as
1288     // many loads value hardened even when some address register hardening would
1289     // be free (due to reuse).
1290     //
1291     // Note that we only need this pass if we are actually hardening loads.
1292     if (HardenLoads)
1293       for (MachineInstr &MI : MBB) {
1294         // We naively assume that all def'ed registers of an instruction have
1295         // a data dependency on all of their operands.
1296         // FIXME: Do a more careful analysis of x86 to build a conservative
1297         // model here.
1298         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1299               return Op.isReg() && LoadDepRegs.test(Op.getReg());
1300             }))
1301           for (MachineOperand &Def : MI.defs())
1302             if (Def.isReg())
1303               LoadDepRegs.set(Def.getReg());
1304 
1305         // Both Intel and AMD are guiding that they will change the semantics of
1306         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1307         // no more need to guard things in this block.
1308         if (MI.getOpcode() == X86::LFENCE)
1309           break;
1310 
1311         // If this instruction cannot load, nothing to do.
1312         if (!MI.mayLoad())
1313           continue;
1314 
1315         // Some instructions which "load" are trivially safe or unimportant.
1316         if (MI.getOpcode() == X86::MFENCE)
1317           continue;
1318 
1319         // Extract the memory operand information about this instruction.
1320         const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI);
1321         if (MemRefBeginIdx < 0) {
1322           LLVM_DEBUG(dbgs()
1323                          << "WARNING: unable to harden loading instruction: ";
1324                      MI.dump());
1325           continue;
1326         }
1327 
1328         MachineOperand &BaseMO =
1329             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1330         MachineOperand &IndexMO =
1331             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1332 
1333         // If we have at least one (non-frame-index, non-RIP) register operand,
1334         // and neither operand is load-dependent, we need to check the load.
1335         unsigned BaseReg = 0, IndexReg = 0;
1336         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1337             BaseMO.getReg() != X86::NoRegister)
1338           BaseReg = BaseMO.getReg();
1339         if (IndexMO.getReg() != X86::NoRegister)
1340           IndexReg = IndexMO.getReg();
1341 
1342         if (!BaseReg && !IndexReg)
1343           // No register operands!
1344           continue;
1345 
1346         // If any register operand is dependent, this load is dependent and we
1347         // needn't check it.
1348         // FIXME: Is this true in the case where we are hardening loads after
1349         // they complete? Unclear, need to investigate.
1350         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1351             (IndexReg && LoadDepRegs.test(IndexReg)))
1352           continue;
1353 
1354         // If post-load hardening is enabled, this load is compatible with
1355         // post-load hardening, and we aren't already going to harden one of the
1356         // address registers, queue it up to be hardened post-load. Notably,
1357         // even once hardened this won't introduce a useful dependency that
1358         // could prune out subsequent loads.
1359         if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) &&
1360             !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 &&
1361             MI.getOperand(0).isReg() &&
1362             canHardenRegister(MI.getOperand(0).getReg()) &&
1363             !HardenedAddrRegs.count(BaseReg) &&
1364             !HardenedAddrRegs.count(IndexReg)) {
1365           HardenPostLoad.insert(&MI);
1366           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1367           continue;
1368         }
1369 
1370         // Record this instruction for address hardening and record its register
1371         // operands as being address-hardened.
1372         HardenLoadAddr.insert(&MI);
1373         if (BaseReg)
1374           HardenedAddrRegs.insert(BaseReg);
1375         if (IndexReg)
1376           HardenedAddrRegs.insert(IndexReg);
1377 
1378         for (MachineOperand &Def : MI.defs())
1379           if (Def.isReg())
1380             LoadDepRegs.set(Def.getReg());
1381       }
1382 
1383     // Now re-walk the instructions in the basic block, and apply whichever
1384     // hardening strategy we have elected. Note that we do this in a second
1385     // pass specifically so that we have the complete set of instructions for
1386     // which we will do post-load hardening and can defer it in certain
1387     // circumstances.
1388     for (MachineInstr &MI : MBB) {
1389       if (HardenLoads) {
1390         // We cannot both require hardening the def of a load and its address.
1391         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1392                "Requested to harden both the address and def of a load!");
1393 
1394         // Check if this is a load whose address needs to be hardened.
1395         if (HardenLoadAddr.erase(&MI)) {
1396           const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI);
1397           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1398 
1399           MachineOperand &BaseMO =
1400               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1401           MachineOperand &IndexMO =
1402               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1403           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1404           continue;
1405         }
1406 
1407         // Test if this instruction is one of our post load instructions (and
1408         // remove it from the set if so).
1409         if (HardenPostLoad.erase(&MI)) {
1410           assert(!MI.isCall() && "Must not try to post-load harden a call!");
1411 
1412           // If this is a data-invariant load and there is no EFLAGS
1413           // interference, we want to try and sink any hardening as far as
1414           // possible.
1415           if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) {
1416             // Sink the instruction we'll need to harden as far as we can down
1417             // the graph.
1418             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1419 
1420             // If we managed to sink this instruction, update everything so we
1421             // harden that instruction when we reach it in the instruction
1422             // sequence.
1423             if (SunkMI != &MI) {
1424               // If in sinking there was no instruction needing to be hardened,
1425               // we're done.
1426               if (!SunkMI)
1427                 continue;
1428 
1429               // Otherwise, add this to the set of defs we harden.
1430               HardenPostLoad.insert(SunkMI);
1431               continue;
1432             }
1433           }
1434 
1435           unsigned HardenedReg = hardenPostLoad(MI);
1436 
1437           // Mark the resulting hardened register as such so we don't re-harden.
1438           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1439 
1440           continue;
1441         }
1442 
1443         // Check for an indirect call or branch that may need its input hardened
1444         // even if we couldn't find the specific load used, or were able to
1445         // avoid hardening it for some reason. Note that here we cannot break
1446         // out afterward as we may still need to handle any call aspect of this
1447         // instruction.
1448         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1449           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1450       }
1451 
1452       // After we finish hardening loads we handle interprocedural hardening if
1453       // enabled and relevant for this instruction.
1454       if (!HardenInterprocedurally)
1455         continue;
1456       if (!MI.isCall() && !MI.isReturn())
1457         continue;
1458 
1459       // If this is a direct return (IE, not a tail call) just directly harden
1460       // it.
1461       if (MI.isReturn() && !MI.isCall()) {
1462         hardenReturnInstr(MI);
1463         continue;
1464       }
1465 
1466       // Otherwise we have a call. We need to handle transferring the predicate
1467       // state into a call and recovering it after the call returns (unless this
1468       // is a tail call).
1469       assert(MI.isCall() && "Should only reach here for calls!");
1470       tracePredStateThroughCall(MI);
1471     }
1472 
1473     HardenPostLoad.clear();
1474     HardenLoadAddr.clear();
1475     HardenedAddrRegs.clear();
1476     AddrRegToHardenedReg.clear();
1477 
1478     // Currently, we only track data-dependent loads within a basic block.
1479     // FIXME: We should see if this is necessary or if we could be more
1480     // aggressive here without opening up attack avenues.
1481     LoadDepRegs.clear();
1482   }
1483 }
1484 
1485 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1486 /// `restoreEFLAGS`.
1487 ///
1488 /// Note that LLVM can only lower very simple patterns of saved and restored
1489 /// EFLAGS registers. The restore should always be within the same basic block
1490 /// as the save so that no PHI nodes are inserted.
1491 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1492     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1493     const DebugLoc &Loc) {
1494   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1495   // what instruction selection does.
1496   Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1497   // We directly copy the FLAGS register and rely on later lowering to clean
1498   // this up into the appropriate setCC instructions.
1499   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1500   ++NumInstsInserted;
1501   return Reg;
1502 }
1503 
1504 /// Restore EFLAGS from the provided GPR. This should be produced by
1505 /// `saveEFLAGS`.
1506 ///
1507 /// This must be done within the same basic block as the save in order to
1508 /// reliably lower.
1509 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1510     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1511     const DebugLoc &Loc, Register Reg) {
1512   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1513   ++NumInstsInserted;
1514 }
1515 
1516 /// Takes the current predicate state (in a register) and merges it into the
1517 /// stack pointer. The state is essentially a single bit, but we merge this in
1518 /// a way that won't form non-canonical pointers and also will be preserved
1519 /// across normal stack adjustments.
1520 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1521     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1522     const DebugLoc &Loc, unsigned PredStateReg) {
1523   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1524   // FIXME: This hard codes a shift distance based on the number of bits needed
1525   // to stay canonical on 64-bit. We should compute this somehow and support
1526   // 32-bit as part of that.
1527   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1528                     .addReg(PredStateReg, RegState::Kill)
1529                     .addImm(47);
1530   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1531   ++NumInstsInserted;
1532   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1533                  .addReg(X86::RSP)
1534                  .addReg(TmpReg, RegState::Kill);
1535   OrI->addRegisterDead(X86::EFLAGS, TRI);
1536   ++NumInstsInserted;
1537 }
1538 
1539 /// Extracts the predicate state stored in the high bits of the stack pointer.
1540 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1541     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1542     const DebugLoc &Loc) {
1543   Register PredStateReg = MRI->createVirtualRegister(PS->RC);
1544   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1545 
1546   // We know that the stack pointer will have any preserved predicate state in
1547   // its high bit. We just want to smear this across the other bits. Turns out,
1548   // this is exactly what an arithmetic right shift does.
1549   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1550       .addReg(X86::RSP);
1551   auto ShiftI =
1552       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1553           .addReg(TmpReg, RegState::Kill)
1554           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1555   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1556   ++NumInstsInserted;
1557 
1558   return PredStateReg;
1559 }
1560 
1561 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1562     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1563     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1564   MachineBasicBlock &MBB = *MI.getParent();
1565   const DebugLoc &Loc = MI.getDebugLoc();
1566 
1567   // Check if EFLAGS are alive by seeing if there is a def of them or they
1568   // live-in, and then seeing if that def is in turn used.
1569   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1570 
1571   SmallVector<MachineOperand *, 2> HardenOpRegs;
1572 
1573   if (BaseMO.isFI()) {
1574     // A frame index is never a dynamically controllable load, so only
1575     // harden it if we're covering fixed address loads as well.
1576     LLVM_DEBUG(
1577         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
1578         MI.dump(); dbgs() << "\n");
1579   } else if (BaseMO.getReg() == X86::RSP) {
1580     // Some idempotent atomic operations are lowered directly to a locked
1581     // OR with 0 to the top of stack(or slightly offset from top) which uses an
1582     // explicit RSP register as the base.
1583     assert(IndexMO.getReg() == X86::NoRegister &&
1584            "Explicit RSP access with dynamic index!");
1585     LLVM_DEBUG(
1586         dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
1587   } else if (BaseMO.getReg() == X86::RIP ||
1588              BaseMO.getReg() == X86::NoRegister) {
1589     // For both RIP-relative addressed loads or absolute loads, we cannot
1590     // meaningfully harden them because the address being loaded has no
1591     // dynamic component.
1592     //
1593     // FIXME: When using a segment base (like TLS does) we end up with the
1594     // dynamic address being the base plus -1 because we can't mutate the
1595     // segment register here. This allows the signed 32-bit offset to point at
1596     // valid segment-relative addresses and load them successfully.
1597     LLVM_DEBUG(
1598         dbgs() << "  Cannot harden base of "
1599                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1600                << " address in a load!");
1601   } else {
1602     assert(BaseMO.isReg() &&
1603            "Only allowed to have a frame index or register base.");
1604     HardenOpRegs.push_back(&BaseMO);
1605   }
1606 
1607   if (IndexMO.getReg() != X86::NoRegister &&
1608       (HardenOpRegs.empty() ||
1609        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1610     HardenOpRegs.push_back(&IndexMO);
1611 
1612   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1613          "Should have exactly one or two registers to harden!");
1614   assert((HardenOpRegs.size() == 1 ||
1615           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
1616          "Should not have two of the same registers!");
1617 
1618   // Remove any registers that have alreaded been checked.
1619   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
1620     // See if this operand's register has already been checked.
1621     auto It = AddrRegToHardenedReg.find(Op->getReg());
1622     if (It == AddrRegToHardenedReg.end())
1623       // Not checked, so retain this one.
1624       return false;
1625 
1626     // Otherwise, we can directly update this operand and remove it.
1627     Op->setReg(It->second);
1628     return true;
1629   });
1630   // If there are none left, we're done.
1631   if (HardenOpRegs.empty())
1632     return;
1633 
1634   // Compute the current predicate state.
1635   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1636 
1637   auto InsertPt = MI.getIterator();
1638 
1639   // If EFLAGS are live and we don't have access to instructions that avoid
1640   // clobbering EFLAGS we need to save and restore them. This in turn makes
1641   // the EFLAGS no longer live.
1642   unsigned FlagsReg = 0;
1643   if (EFLAGSLive && !Subtarget->hasBMI2()) {
1644     EFLAGSLive = false;
1645     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1646   }
1647 
1648   for (MachineOperand *Op : HardenOpRegs) {
1649     Register OpReg = Op->getReg();
1650     auto *OpRC = MRI->getRegClass(OpReg);
1651     Register TmpReg = MRI->createVirtualRegister(OpRC);
1652 
1653     // If this is a vector register, we'll need somewhat custom logic to handle
1654     // hardening it.
1655     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
1656                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
1657       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
1658       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
1659 
1660       // Move our state into a vector register.
1661       // FIXME: We could skip this at the cost of longer encodings with AVX-512
1662       // but that doesn't seem likely worth it.
1663       Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
1664       auto MovI =
1665           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
1666               .addReg(StateReg);
1667       (void)MovI;
1668       ++NumInstsInserted;
1669       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
1670 
1671       // Broadcast it across the vector register.
1672       Register VBStateReg = MRI->createVirtualRegister(OpRC);
1673       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
1674                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
1675                                                   : X86::VPBROADCASTQYrr),
1676                                 VBStateReg)
1677                             .addReg(VStateReg);
1678       (void)BroadcastI;
1679       ++NumInstsInserted;
1680       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1681                  dbgs() << "\n");
1682 
1683       // Merge our potential poison state into the value with a vector or.
1684       auto OrI =
1685           BuildMI(MBB, InsertPt, Loc,
1686                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
1687               .addReg(VBStateReg)
1688               .addReg(OpReg);
1689       (void)OrI;
1690       ++NumInstsInserted;
1691       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1692     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
1693                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
1694                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
1695       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
1696       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
1697       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
1698       if (Is128Bit || Is256Bit)
1699         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
1700 
1701       // Broadcast our state into a vector register.
1702       Register VStateReg = MRI->createVirtualRegister(OpRC);
1703       unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr
1704                                       : Is256Bit ? X86::VPBROADCASTQrZ256rr
1705                                                  : X86::VPBROADCASTQrZrr;
1706       auto BroadcastI =
1707           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
1708               .addReg(StateReg);
1709       (void)BroadcastI;
1710       ++NumInstsInserted;
1711       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1712                  dbgs() << "\n");
1713 
1714       // Merge our potential poison state into the value with a vector or.
1715       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
1716                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
1717       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
1718                      .addReg(VStateReg)
1719                      .addReg(OpReg);
1720       (void)OrI;
1721       ++NumInstsInserted;
1722       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1723     } else {
1724       // FIXME: Need to support GR32 here for 32-bit code.
1725       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
1726              "Not a supported register class for address hardening!");
1727 
1728       if (!EFLAGSLive) {
1729         // Merge our potential poison state into the value with an or.
1730         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
1731                        .addReg(StateReg)
1732                        .addReg(OpReg);
1733         OrI->addRegisterDead(X86::EFLAGS, TRI);
1734         ++NumInstsInserted;
1735         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1736       } else {
1737         // We need to avoid touching EFLAGS so shift out all but the least
1738         // significant bit using the instruction that doesn't update flags.
1739         auto ShiftI =
1740             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
1741                 .addReg(OpReg)
1742                 .addReg(StateReg);
1743         (void)ShiftI;
1744         ++NumInstsInserted;
1745         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
1746                    dbgs() << "\n");
1747       }
1748     }
1749 
1750     // Record this register as checked and update the operand.
1751     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
1752            "Should not have checked this register yet!");
1753     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
1754     Op->setReg(TmpReg);
1755     ++NumAddrRegsHardened;
1756   }
1757 
1758   // And restore the flags if needed.
1759   if (FlagsReg)
1760     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1761 }
1762 
1763 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
1764     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
1765   assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&
1766          "Cannot get here with a non-invariant load!");
1767   assert(!isEFLAGSDefLive(InitialMI) &&
1768          "Cannot get here with a data invariant load "
1769          "that interferes with EFLAGS!");
1770 
1771   // See if we can sink hardening the loaded value.
1772   auto SinkCheckToSingleUse =
1773       [&](MachineInstr &MI) -> std::optional<MachineInstr *> {
1774     Register DefReg = MI.getOperand(0).getReg();
1775 
1776     // We need to find a single use which we can sink the check. We can
1777     // primarily do this because many uses may already end up checked on their
1778     // own.
1779     MachineInstr *SingleUseMI = nullptr;
1780     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
1781       // If we're already going to harden this use, it is data invariant, it
1782       // does not interfere with EFLAGS, and within our block.
1783       if (HardenedInstrs.count(&UseMI)) {
1784         if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) {
1785           // If we've already decided to harden a non-load, we must have sunk
1786           // some other post-load hardened instruction to it and it must itself
1787           // be data-invariant.
1788           assert(X86InstrInfo::isDataInvariant(UseMI) &&
1789                  "Data variant instruction being hardened!");
1790           continue;
1791         }
1792 
1793         // Otherwise, this is a load and the load component can't be data
1794         // invariant so check how this register is being used.
1795         const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(UseMI);
1796         assert(MemRefBeginIdx >= 0 &&
1797                "Should always have mem references here!");
1798 
1799         MachineOperand &BaseMO =
1800             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1801         MachineOperand &IndexMO =
1802             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1803         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
1804             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
1805           // The load uses the register as part of its address making it not
1806           // invariant.
1807           return {};
1808 
1809         continue;
1810       }
1811 
1812       if (SingleUseMI)
1813         // We already have a single use, this would make two. Bail.
1814         return {};
1815 
1816       // If this single use isn't data invariant, isn't in this block, or has
1817       // interfering EFLAGS, we can't sink the hardening to it.
1818       if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() ||
1819           isEFLAGSDefLive(UseMI))
1820         return {};
1821 
1822       // If this instruction defines multiple registers bail as we won't harden
1823       // all of them.
1824       if (UseMI.getDesc().getNumDefs() > 1)
1825         return {};
1826 
1827       // If this register isn't a virtual register we can't walk uses of sanely,
1828       // just bail. Also check that its register class is one of the ones we
1829       // can harden.
1830       Register UseDefReg = UseMI.getOperand(0).getReg();
1831       if (!canHardenRegister(UseDefReg))
1832         return {};
1833 
1834       SingleUseMI = &UseMI;
1835     }
1836 
1837     // If SingleUseMI is still null, there is no use that needs its own
1838     // checking. Otherwise, it is the single use that needs checking.
1839     return {SingleUseMI};
1840   };
1841 
1842   MachineInstr *MI = &InitialMI;
1843   while (std::optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
1844     // Update which MI we're checking now.
1845     MI = *SingleUse;
1846     if (!MI)
1847       break;
1848   }
1849 
1850   return MI;
1851 }
1852 
1853 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) {
1854   // We only support hardening virtual registers.
1855   if (!Reg.isVirtual())
1856     return false;
1857 
1858   auto *RC = MRI->getRegClass(Reg);
1859   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
1860   if (RegBytes > 8)
1861     // We don't support post-load hardening of vectors.
1862     return false;
1863 
1864   unsigned RegIdx = Log2_32(RegBytes);
1865   assert(RegIdx < 4 && "Unsupported register size");
1866 
1867   // If this register class is explicitly constrained to a class that doesn't
1868   // require REX prefix, we may not be able to satisfy that constraint when
1869   // emitting the hardening instructions, so bail out here.
1870   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
1871   // end up both with a NOREX and REX-only register as operands to the hardening
1872   // instructions. It would be better to fix that code to handle this situation
1873   // rather than hack around it in this way.
1874   const TargetRegisterClass *NOREXRegClasses[] = {
1875       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
1876       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
1877   if (RC == NOREXRegClasses[RegIdx])
1878     return false;
1879 
1880   const TargetRegisterClass *GPRRegClasses[] = {
1881       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
1882       &X86::GR64RegClass};
1883   return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
1884 }
1885 
1886 /// Harden a value in a register.
1887 ///
1888 /// This is the low-level logic to fully harden a value sitting in a register
1889 /// against leaking during speculative execution.
1890 ///
1891 /// Unlike hardening an address that is used by a load, this routine is required
1892 /// to hide *all* incoming bits in the register.
1893 ///
1894 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
1895 /// larger than the predicate state register. FIXME: We should support vector
1896 /// registers here by broadcasting the predicate state.
1897 ///
1898 /// The new, hardened virtual register is returned. It will have the same
1899 /// register class as `Reg`.
1900 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
1901     Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1902     const DebugLoc &Loc) {
1903   assert(canHardenRegister(Reg) && "Cannot harden this register!");
1904 
1905   auto *RC = MRI->getRegClass(Reg);
1906   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
1907   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1908   assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) &&
1909          "Unknown register size");
1910 
1911   // FIXME: Need to teach this about 32-bit mode.
1912   if (Bytes != 8) {
1913     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
1914     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
1915     Register NarrowStateReg = MRI->createVirtualRegister(RC);
1916     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
1917         .addReg(StateReg, 0, SubRegImm);
1918     StateReg = NarrowStateReg;
1919   }
1920 
1921   unsigned FlagsReg = 0;
1922   if (isEFLAGSLive(MBB, InsertPt, *TRI))
1923     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1924 
1925   Register NewReg = MRI->createVirtualRegister(RC);
1926   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
1927   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
1928   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
1929                  .addReg(StateReg)
1930                  .addReg(Reg);
1931   OrI->addRegisterDead(X86::EFLAGS, TRI);
1932   ++NumInstsInserted;
1933   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1934 
1935   if (FlagsReg)
1936     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1937 
1938   return NewReg;
1939 }
1940 
1941 /// Harden a load by hardening the loaded value in the defined register.
1942 ///
1943 /// We can harden a non-leaking load into a register without touching the
1944 /// address by just hiding all of the loaded bits during misspeculation. We use
1945 /// an `or` instruction to do this because we set up our poison value as all
1946 /// ones. And the goal is just for the loaded bits to not be exposed to
1947 /// execution and coercing them to one is sufficient.
1948 ///
1949 /// Returns the newly hardened register.
1950 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
1951   MachineBasicBlock &MBB = *MI.getParent();
1952   const DebugLoc &Loc = MI.getDebugLoc();
1953 
1954   auto &DefOp = MI.getOperand(0);
1955   Register OldDefReg = DefOp.getReg();
1956   auto *DefRC = MRI->getRegClass(OldDefReg);
1957 
1958   // Because we want to completely replace the uses of this def'ed value with
1959   // the hardened value, create a dedicated new register that will only be used
1960   // to communicate the unhardened value to the hardening.
1961   Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
1962   DefOp.setReg(UnhardenedReg);
1963 
1964   // Now harden this register's value, getting a hardened reg that is safe to
1965   // use. Note that we insert the instructions to compute this *after* the
1966   // defining instruction, not before it.
1967   unsigned HardenedReg = hardenValueInRegister(
1968       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
1969 
1970   // Finally, replace the old register (which now only has the uses of the
1971   // original def) with the hardened register.
1972   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
1973 
1974   ++NumPostLoadRegsHardened;
1975   return HardenedReg;
1976 }
1977 
1978 /// Harden a return instruction.
1979 ///
1980 /// Returns implicitly perform a load which we need to harden. Without hardening
1981 /// this load, an attacker my speculatively write over the return address to
1982 /// steer speculation of the return to an attacker controlled address. This is
1983 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
1984 /// this paper:
1985 /// https://people.csail.mit.edu/vlk/spectre11.pdf
1986 ///
1987 /// We can harden this by introducing an LFENCE that will delay any load of the
1988 /// return address until prior instructions have retired (and thus are not being
1989 /// speculated), or we can harden the address used by the implicit load: the
1990 /// stack pointer.
1991 ///
1992 /// If we are not using an LFENCE, hardening the stack pointer has an additional
1993 /// benefit: it allows us to pass the predicate state accumulated in this
1994 /// function back to the caller. In the absence of a BCBS attack on the return,
1995 /// the caller will typically be resumed and speculatively executed due to the
1996 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
1997 /// priority. It is possible that some code from the caller will be executed
1998 /// speculatively even during a BCBS-attacked return until the steering takes
1999 /// effect. Whenever this happens, the caller can recover the (poisoned)
2000 /// predicate state from the stack pointer and continue to harden loads.
2001 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2002   MachineBasicBlock &MBB = *MI.getParent();
2003   const DebugLoc &Loc = MI.getDebugLoc();
2004   auto InsertPt = MI.getIterator();
2005 
2006   if (FenceCallAndRet)
2007     // No need to fence here as we'll fence at the return site itself. That
2008     // handles more cases than we can handle here.
2009     return;
2010 
2011   // Take our predicate state, shift it to the high 17 bits (so that we keep
2012   // pointers canonical) and merge it into RSP. This will allow the caller to
2013   // extract it when we return (speculatively).
2014   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2015 }
2016 
2017 /// Trace the predicate state through a call.
2018 ///
2019 /// There are several layers of this needed to handle the full complexity of
2020 /// calls.
2021 ///
2022 /// First, we need to send the predicate state into the called function. We do
2023 /// this by merging it into the high bits of the stack pointer.
2024 ///
2025 /// For tail calls, this is all we need to do.
2026 ///
2027 /// For calls where we might return and resume the control flow, we need to
2028 /// extract the predicate state from the high bits of the stack pointer after
2029 /// control returns from the called function.
2030 ///
2031 /// We also need to verify that we intended to return to this location in the
2032 /// code. An attacker might arrange for the processor to mispredict the return
2033 /// to this valid but incorrect return address in the program rather than the
2034 /// correct one. See the paper on this attack, called "ret2spec" by the
2035 /// researchers, here:
2036 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2037 ///
2038 /// The way we verify that we returned to the correct location is by preserving
2039 /// the expected return address across the call. One technique involves taking
2040 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2041 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2042 /// directly save the address into a register that will be preserved across the
2043 /// call. We compare this intended return address against the address
2044 /// immediately following the call (the observed return address). If these
2045 /// mismatch, we have detected misspeculation and can poison our predicate
2046 /// state.
2047 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2048     MachineInstr &MI) {
2049   MachineBasicBlock &MBB = *MI.getParent();
2050   MachineFunction &MF = *MBB.getParent();
2051   auto InsertPt = MI.getIterator();
2052   const DebugLoc &Loc = MI.getDebugLoc();
2053 
2054   if (FenceCallAndRet) {
2055     if (MI.isReturn())
2056       // Tail call, we don't return to this function.
2057       // FIXME: We should also handle noreturn calls.
2058       return;
2059 
2060     // We don't need to fence before the call because the function should fence
2061     // in its entry. However, we do need to fence after the call returns.
2062     // Fencing before the return doesn't correctly handle cases where the return
2063     // itself is mispredicted.
2064     BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2065     ++NumInstsInserted;
2066     ++NumLFENCEsInserted;
2067     return;
2068   }
2069 
2070   // First, we transfer the predicate state into the called function by merging
2071   // it into the stack pointer. This will kill the current def of the state.
2072   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2073   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2074 
2075   // If this call is also a return, it is a tail call and we don't need anything
2076   // else to handle it so just return. Also, if there are no further
2077   // instructions and no successors, this call does not return so we can also
2078   // bail.
2079   if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2080     return;
2081 
2082   // Create a symbol to track the return address and attach it to the call
2083   // machine instruction. We will lower extra symbols attached to call
2084   // instructions as label immediately following the call.
2085   MCSymbol *RetSymbol =
2086       MF.getContext().createTempSymbol("slh_ret_addr",
2087                                        /*AlwaysAddSuffix*/ true);
2088   MI.setPostInstrSymbol(MF, RetSymbol);
2089 
2090   const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2091   unsigned ExpectedRetAddrReg = 0;
2092 
2093   // If we have no red zones or if the function returns twice (possibly without
2094   // using the `ret` instruction) like setjmp, we need to save the expected
2095   // return address prior to the call.
2096   if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2097       MF.exposesReturnsTwice()) {
2098     // If we don't have red zones, we need to compute the expected return
2099     // address prior to the call and store it in a register that lives across
2100     // the call.
2101     //
2102     // In some ways, this is doubly satisfying as a mitigation because it will
2103     // also successfully detect stack smashing bugs in some cases (typically,
2104     // when a callee-saved register is used and the callee doesn't push it onto
2105     // the stack). But that isn't our primary goal, so we only use it as
2106     // a fallback.
2107     //
2108     // FIXME: It isn't clear that this is reliable in the face of
2109     // rematerialization in the register allocator. We somehow need to force
2110     // that to not occur for this particular instruction, and instead to spill
2111     // or otherwise preserve the value computed *prior* to the call.
2112     //
2113     // FIXME: It is even less clear why MachineCSE can't just fold this when we
2114     // end up having to use identical instructions both before and after the
2115     // call to feed the comparison.
2116     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2117     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2118         !Subtarget->isPositionIndependent()) {
2119       BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2120           .addSym(RetSymbol);
2121     } else {
2122       BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2123           .addReg(/*Base*/ X86::RIP)
2124           .addImm(/*Scale*/ 1)
2125           .addReg(/*Index*/ 0)
2126           .addSym(RetSymbol)
2127           .addReg(/*Segment*/ 0);
2128     }
2129   }
2130 
2131   // Step past the call to handle when it returns.
2132   ++InsertPt;
2133 
2134   // If we didn't pre-compute the expected return address into a register, then
2135   // red zones are enabled and the return address is still available on the
2136   // stack immediately after the call. As the very first instruction, we load it
2137   // into a register.
2138   if (!ExpectedRetAddrReg) {
2139     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2140     BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2141         .addReg(/*Base*/ X86::RSP)
2142         .addImm(/*Scale*/ 1)
2143         .addReg(/*Index*/ 0)
2144         .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2145                                      // the return address is 8-bytes past it.
2146         .addReg(/*Segment*/ 0);
2147   }
2148 
2149   // Now we extract the callee's predicate state from the stack pointer.
2150   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2151 
2152   // Test the expected return address against our actual address. If we can
2153   // form this basic block's address as an immediate, this is easy. Otherwise
2154   // we compute it.
2155   if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2156       !Subtarget->isPositionIndependent()) {
2157     // FIXME: Could we fold this with the load? It would require careful EFLAGS
2158     // management.
2159     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2160         .addReg(ExpectedRetAddrReg, RegState::Kill)
2161         .addSym(RetSymbol);
2162   } else {
2163     Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2164     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2165         .addReg(/*Base*/ X86::RIP)
2166         .addImm(/*Scale*/ 1)
2167         .addReg(/*Index*/ 0)
2168         .addSym(RetSymbol)
2169         .addReg(/*Segment*/ 0);
2170     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2171         .addReg(ExpectedRetAddrReg, RegState::Kill)
2172         .addReg(ActualRetAddrReg, RegState::Kill);
2173   }
2174 
2175   // Now conditionally update the predicate state we just extracted if we ended
2176   // up at a different return address than expected.
2177   int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2178   auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2179 
2180   Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2181   auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2182                    .addReg(NewStateReg, RegState::Kill)
2183                    .addReg(PS->PoisonReg)
2184                    .addImm(X86::COND_NE);
2185   CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2186   ++NumInstsInserted;
2187   LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2188 
2189   PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2190 }
2191 
2192 /// An attacker may speculatively store over a value that is then speculatively
2193 /// loaded and used as the target of an indirect call or jump instruction. This
2194 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2195 /// in this paper:
2196 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2197 ///
2198 /// When this happens, the speculative execution of the call or jump will end up
2199 /// being steered to this attacker controlled address. While most such loads
2200 /// will be adequately hardened already, we want to ensure that they are
2201 /// definitively treated as needing post-load hardening. While address hardening
2202 /// is sufficient to prevent secret data from leaking to the attacker, it may
2203 /// not be sufficient to prevent an attacker from steering speculative
2204 /// execution. We forcibly unfolded all relevant loads above and so will always
2205 /// have an opportunity to post-load harden here, we just need to scan for cases
2206 /// not already flagged and add them.
2207 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2208     MachineInstr &MI,
2209     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2210   switch (MI.getOpcode()) {
2211   case X86::FARCALL16m:
2212   case X86::FARCALL32m:
2213   case X86::FARCALL64m:
2214   case X86::FARJMP16m:
2215   case X86::FARJMP32m:
2216   case X86::FARJMP64m:
2217     // We don't need to harden either far calls or far jumps as they are
2218     // safe from Spectre.
2219     return;
2220 
2221   default:
2222     break;
2223   }
2224 
2225   // We should never see a loading instruction at this point, as those should
2226   // have been unfolded.
2227   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2228 
2229   // If the first operand isn't a register, this is a branch or call
2230   // instruction with an immediate operand which doesn't need to be hardened.
2231   if (!MI.getOperand(0).isReg())
2232     return;
2233 
2234   // For all of these, the target register is the first operand of the
2235   // instruction.
2236   auto &TargetOp = MI.getOperand(0);
2237   Register OldTargetReg = TargetOp.getReg();
2238 
2239   // Try to lookup a hardened version of this register. We retain a reference
2240   // here as we want to update the map to track any newly computed hardened
2241   // register.
2242   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2243 
2244   // If we don't have a hardened register yet, compute one. Otherwise, just use
2245   // the already hardened register.
2246   //
2247   // FIXME: It is a little suspect that we use partially hardened registers that
2248   // only feed addresses. The complexity of partial hardening with SHRX
2249   // continues to pile up. Should definitively measure its value and consider
2250   // eliminating it.
2251   if (!HardenedTargetReg)
2252     HardenedTargetReg = hardenValueInRegister(
2253         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2254 
2255   // Set the target operand to the hardened register.
2256   TargetOp.setReg(HardenedTargetReg);
2257 
2258   ++NumCallsOrJumpsHardened;
2259 }
2260 
2261 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2262                       "X86 speculative load hardener", false, false)
2263 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2264                     "X86 speculative load hardener", false, false)
2265 
2266 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2267   return new X86SpeculativeLoadHardeningPass();
2268 }
2269