xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/ScopeExit.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SparseBitVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/MachineSSAUpdater.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <optional>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define PASS_KEY "x86-slh"
65 #define DEBUG_TYPE PASS_KEY
66 
67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
69 STATISTIC(NumAddrRegsHardened,
70           "Number of address mode used registers hardaned");
71 STATISTIC(NumPostLoadRegsHardened,
72           "Number of post-load register values hardened");
73 STATISTIC(NumCallsOrJumpsHardened,
74           "Number of calls or jumps requiring extra hardening");
75 STATISTIC(NumInstsInserted, "Number of instructions inserted");
76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
77 
78 static cl::opt<bool> EnableSpeculativeLoadHardening(
79     "x86-speculative-load-hardening",
80     cl::desc("Force enable speculative load hardening"), cl::init(false),
81     cl::Hidden);
82 
83 static cl::opt<bool> HardenEdgesWithLFENCE(
84     PASS_KEY "-lfence",
85     cl::desc(
86         "Use LFENCE along each conditional edge to harden against speculative "
87         "loads rather than conditional movs and poisoned pointers."),
88     cl::init(false), cl::Hidden);
89 
90 static cl::opt<bool> EnablePostLoadHardening(
91     PASS_KEY "-post-load",
92     cl::desc("Harden the value loaded *after* it is loaded by "
93              "flushing the loaded bits to 1. This is hard to do "
94              "in general but can be done easily for GPRs."),
95     cl::init(true), cl::Hidden);
96 
97 static cl::opt<bool> FenceCallAndRet(
98     PASS_KEY "-fence-call-and-ret",
99     cl::desc("Use a full speculation fence to harden both call and ret edges "
100              "rather than a lighter weight mitigation."),
101     cl::init(false), cl::Hidden);
102 
103 static cl::opt<bool> HardenInterprocedurally(
104     PASS_KEY "-ip",
105     cl::desc("Harden interprocedurally by passing our state in and out of "
106              "functions in the high bits of the stack pointer."),
107     cl::init(true), cl::Hidden);
108 
109 static cl::opt<bool>
110     HardenLoads(PASS_KEY "-loads",
111                 cl::desc("Sanitize loads from memory. When disable, no "
112                          "significant security is provided."),
113                 cl::init(true), cl::Hidden);
114 
115 static cl::opt<bool> HardenIndirectCallsAndJumps(
116     PASS_KEY "-indirect",
117     cl::desc("Harden indirect calls and jumps against using speculatively "
118              "stored attacker controlled addresses. This is designed to "
119              "mitigate Spectre v1.2 style attacks."),
120     cl::init(true), cl::Hidden);
121 
122 namespace {
123 
124 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
125 public:
126   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
127 
128   StringRef getPassName() const override {
129     return "X86 speculative load hardening";
130   }
131   bool runOnMachineFunction(MachineFunction &MF) override;
132   void getAnalysisUsage(AnalysisUsage &AU) const override;
133 
134   /// Pass identification, replacement for typeid.
135   static char ID;
136 
137 private:
138   /// The information about a block's conditional terminators needed to trace
139   /// our predicate state through the exiting edges.
140   struct BlockCondInfo {
141     MachineBasicBlock *MBB;
142 
143     // We mostly have one conditional branch, and in extremely rare cases have
144     // two. Three and more are so rare as to be unimportant for compile time.
145     SmallVector<MachineInstr *, 2> CondBrs;
146 
147     MachineInstr *UncondBr;
148   };
149 
150   /// Manages the predicate state traced through the program.
151   struct PredState {
152     unsigned InitialReg = 0;
153     unsigned PoisonReg = 0;
154 
155     const TargetRegisterClass *RC;
156     MachineSSAUpdater SSA;
157 
158     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
159         : RC(RC), SSA(MF) {}
160   };
161 
162   const X86Subtarget *Subtarget = nullptr;
163   MachineRegisterInfo *MRI = nullptr;
164   const X86InstrInfo *TII = nullptr;
165   const TargetRegisterInfo *TRI = nullptr;
166 
167   std::optional<PredState> PS;
168 
169   void hardenEdgesWithLFENCE(MachineFunction &MF);
170 
171   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
172 
173   SmallVector<MachineInstr *, 16>
174   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
175 
176   void unfoldCallAndJumpLoads(MachineFunction &MF);
177 
178   SmallVector<MachineInstr *, 16>
179   tracePredStateThroughIndirectBranches(MachineFunction &MF);
180 
181   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
182 
183   unsigned saveEFLAGS(MachineBasicBlock &MBB,
184                       MachineBasicBlock::iterator InsertPt,
185                       const DebugLoc &Loc);
186   void restoreEFLAGS(MachineBasicBlock &MBB,
187                      MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc,
188                      Register Reg);
189 
190   void mergePredStateIntoSP(MachineBasicBlock &MBB,
191                             MachineBasicBlock::iterator InsertPt,
192                             const DebugLoc &Loc, unsigned PredStateReg);
193   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
194                                   MachineBasicBlock::iterator InsertPt,
195                                   const DebugLoc &Loc);
196 
197   void
198   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
199                  MachineOperand &IndexMO,
200                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
201   MachineInstr *
202   sinkPostLoadHardenedInst(MachineInstr &MI,
203                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
204   bool canHardenRegister(Register Reg);
205   unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB,
206                                  MachineBasicBlock::iterator InsertPt,
207                                  const DebugLoc &Loc);
208   unsigned hardenPostLoad(MachineInstr &MI);
209   void hardenReturnInstr(MachineInstr &MI);
210   void tracePredStateThroughCall(MachineInstr &MI);
211   void hardenIndirectCallOrJumpInstr(
212       MachineInstr &MI,
213       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
214 };
215 
216 } // end anonymous namespace
217 
218 char X86SpeculativeLoadHardeningPass::ID = 0;
219 
220 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
221     AnalysisUsage &AU) const {
222   MachineFunctionPass::getAnalysisUsage(AU);
223 }
224 
225 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
226                                     MachineBasicBlock &Succ, int SuccCount,
227                                     MachineInstr *Br, MachineInstr *&UncondBr,
228                                     const X86InstrInfo &TII) {
229   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
230 
231   MachineFunction &MF = *MBB.getParent();
232 
233   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
234 
235   // We have to insert the new block immediately after the current one as we
236   // don't know what layout-successor relationships the successor has and we
237   // may not be able to (and generally don't want to) try to fix those up.
238   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
239 
240   // Update the branch instruction if necessary.
241   if (Br) {
242     assert(Br->getOperand(0).getMBB() == &Succ &&
243            "Didn't start with the right target!");
244     Br->getOperand(0).setMBB(&NewMBB);
245 
246     // If this successor was reached through a branch rather than fallthrough,
247     // we might have *broken* fallthrough and so need to inject a new
248     // unconditional branch.
249     if (!UncondBr) {
250       MachineBasicBlock &OldLayoutSucc =
251           *std::next(MachineFunction::iterator(&NewMBB));
252       assert(MBB.isSuccessor(&OldLayoutSucc) &&
253              "Without an unconditional branch, the old layout successor should "
254              "be an actual successor!");
255       auto BrBuilder =
256           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
257       // Update the unconditional branch now that we've added one.
258       UncondBr = &*BrBuilder;
259     }
260 
261     // Insert unconditional "jump Succ" instruction in the new block if
262     // necessary.
263     if (!NewMBB.isLayoutSuccessor(&Succ)) {
264       SmallVector<MachineOperand, 4> Cond;
265       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
266     }
267   } else {
268     assert(!UncondBr &&
269            "Cannot have a branchless successor and an unconditional branch!");
270     assert(NewMBB.isLayoutSuccessor(&Succ) &&
271            "A non-branch successor must have been a layout successor before "
272            "and now is a layout successor of the new block.");
273   }
274 
275   // If this is the only edge to the successor, we can just replace it in the
276   // CFG. Otherwise we need to add a new entry in the CFG for the new
277   // successor.
278   if (SuccCount == 1) {
279     MBB.replaceSuccessor(&Succ, &NewMBB);
280   } else {
281     MBB.splitSuccessor(&Succ, &NewMBB);
282   }
283 
284   // Hook up the edge from the new basic block to the old successor in the CFG.
285   NewMBB.addSuccessor(&Succ);
286 
287   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
288   for (MachineInstr &MI : Succ) {
289     if (!MI.isPHI())
290       break;
291     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
292          OpIdx += 2) {
293       MachineOperand &OpV = MI.getOperand(OpIdx);
294       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
295       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
296       if (OpMBB.getMBB() != &MBB)
297         continue;
298 
299       // If this is the last edge to the succesor, just replace MBB in the PHI
300       if (SuccCount == 1) {
301         OpMBB.setMBB(&NewMBB);
302         break;
303       }
304 
305       // Otherwise, append a new pair of operands for the new incoming edge.
306       MI.addOperand(MF, OpV);
307       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
308       break;
309     }
310   }
311 
312   // Inherit live-ins from the successor
313   for (auto &LI : Succ.liveins())
314     NewMBB.addLiveIn(LI);
315 
316   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
317                     << Succ.getName() << "'.\n");
318   return NewMBB;
319 }
320 
321 /// Removing duplicate PHI operands to leave the PHI in a canonical and
322 /// predictable form.
323 ///
324 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
325 /// isn't what you might expect. We may have multiple entries in PHI nodes for
326 /// a single predecessor. This makes CFG-updating extremely complex, so here we
327 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
328 /// one entry per predecessor, regardless of how many edges there are.
329 static void canonicalizePHIOperands(MachineFunction &MF) {
330   SmallPtrSet<MachineBasicBlock *, 4> Preds;
331   SmallVector<int, 4> DupIndices;
332   for (auto &MBB : MF)
333     for (auto &MI : MBB) {
334       if (!MI.isPHI())
335         break;
336 
337       // First we scan the operands of the PHI looking for duplicate entries
338       // a particular predecessor. We retain the operand index of each duplicate
339       // entry found.
340       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
341            OpIdx += 2)
342         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
343           DupIndices.push_back(OpIdx);
344 
345       // Now walk the duplicate indices, removing both the block and value. Note
346       // that these are stored as a vector making this element-wise removal
347       // :w
348       // potentially quadratic.
349       //
350       // FIXME: It is really frustrating that we have to use a quadratic
351       // removal algorithm here. There should be a better way, but the use-def
352       // updates required make that impossible using the public API.
353       //
354       // Note that we have to process these backwards so that we don't
355       // invalidate other indices with each removal.
356       while (!DupIndices.empty()) {
357         int OpIdx = DupIndices.pop_back_val();
358         // Remove both the block and value operand, again in reverse order to
359         // preserve indices.
360         MI.removeOperand(OpIdx + 1);
361         MI.removeOperand(OpIdx);
362       }
363 
364       Preds.clear();
365     }
366 }
367 
368 /// Helper to scan a function for loads vulnerable to misspeculation that we
369 /// want to harden.
370 ///
371 /// We use this to avoid making changes to functions where there is nothing we
372 /// need to do to harden against misspeculation.
373 static bool hasVulnerableLoad(MachineFunction &MF) {
374   for (MachineBasicBlock &MBB : MF) {
375     for (MachineInstr &MI : MBB) {
376       // Loads within this basic block after an LFENCE are not at risk of
377       // speculatively executing with invalid predicates from prior control
378       // flow. So break out of this block but continue scanning the function.
379       if (MI.getOpcode() == X86::LFENCE)
380         break;
381 
382       // Looking for loads only.
383       if (!MI.mayLoad())
384         continue;
385 
386       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
387       if (MI.getOpcode() == X86::MFENCE)
388         continue;
389 
390       // We found a load.
391       return true;
392     }
393   }
394 
395   // No loads found.
396   return false;
397 }
398 
399 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
400     MachineFunction &MF) {
401   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
402                     << " **********\n");
403 
404   // Only run if this pass is forced enabled or we detect the relevant function
405   // attribute requesting SLH.
406   if (!EnableSpeculativeLoadHardening &&
407       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
408     return false;
409 
410   Subtarget = &MF.getSubtarget<X86Subtarget>();
411   MRI = &MF.getRegInfo();
412   TII = Subtarget->getInstrInfo();
413   TRI = Subtarget->getRegisterInfo();
414 
415   // FIXME: Support for 32-bit.
416   PS.emplace(MF, &X86::GR64_NOSPRegClass);
417 
418   if (MF.begin() == MF.end())
419     // Nothing to do for a degenerate empty function...
420     return false;
421 
422   // We support an alternative hardening technique based on a debug flag.
423   if (HardenEdgesWithLFENCE) {
424     hardenEdgesWithLFENCE(MF);
425     return true;
426   }
427 
428   // Create a dummy debug loc to use for all the generated code here.
429   DebugLoc Loc;
430 
431   MachineBasicBlock &Entry = *MF.begin();
432   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
433 
434   // Do a quick scan to see if we have any checkable loads.
435   bool HasVulnerableLoad = hasVulnerableLoad(MF);
436 
437   // See if we have any conditional branching blocks that we will need to trace
438   // predicate state through.
439   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
440 
441   // If we have no interesting conditions or loads, nothing to do here.
442   if (!HasVulnerableLoad && Infos.empty())
443     return true;
444 
445   // The poison value is required to be an all-ones value for many aspects of
446   // this mitigation.
447   const int PoisonVal = -1;
448   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
449   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
450       .addImm(PoisonVal);
451   ++NumInstsInserted;
452 
453   // If we have loads being hardened and we've asked for call and ret edges to
454   // get a full fence-based mitigation, inject that fence.
455   if (HasVulnerableLoad && FenceCallAndRet) {
456     // We need to insert an LFENCE at the start of the function to suspend any
457     // incoming misspeculation from the caller. This helps two-fold: the caller
458     // may not have been protected as this code has been, and this code gets to
459     // not take any specific action to protect across calls.
460     // FIXME: We could skip this for functions which unconditionally return
461     // a constant.
462     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
463     ++NumInstsInserted;
464     ++NumLFENCEsInserted;
465   }
466 
467   // If we guarded the entry with an LFENCE and have no conditionals to protect
468   // in blocks, then we're done.
469   if (FenceCallAndRet && Infos.empty())
470     // We may have changed the function's code at this point to insert fences.
471     return true;
472 
473   // For every basic block in the function which can b
474   if (HardenInterprocedurally && !FenceCallAndRet) {
475     // Set up the predicate state by extracting it from the incoming stack
476     // pointer so we pick up any misspeculation in our caller.
477     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
478   } else {
479     // Otherwise, just build the predicate state itself by zeroing a register
480     // as we don't need any initial state.
481     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
482     Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
483     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
484                          PredStateSubReg);
485     ++NumInstsInserted;
486     MachineOperand *ZeroEFLAGSDefOp =
487         ZeroI->findRegisterDefOperand(X86::EFLAGS);
488     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
489            "Must have an implicit def of EFLAGS!");
490     ZeroEFLAGSDefOp->setIsDead(true);
491     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
492             PS->InitialReg)
493         .addImm(0)
494         .addReg(PredStateSubReg)
495         .addImm(X86::sub_32bit);
496   }
497 
498   // We're going to need to trace predicate state throughout the function's
499   // CFG. Prepare for this by setting up our initial state of PHIs with unique
500   // predecessor entries and all the initial predicate state.
501   canonicalizePHIOperands(MF);
502 
503   // Track the updated values in an SSA updater to rewrite into SSA form at the
504   // end.
505   PS->SSA.Initialize(PS->InitialReg);
506   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
507 
508   // Trace through the CFG.
509   auto CMovs = tracePredStateThroughCFG(MF, Infos);
510 
511   // We may also enter basic blocks in this function via exception handling
512   // control flow. Here, if we are hardening interprocedurally, we need to
513   // re-capture the predicate state from the throwing code. In the Itanium ABI,
514   // the throw will always look like a call to __cxa_throw and will have the
515   // predicate state in the stack pointer, so extract fresh predicate state from
516   // the stack pointer and make it available in SSA.
517   // FIXME: Handle non-itanium ABI EH models.
518   if (HardenInterprocedurally) {
519     for (MachineBasicBlock &MBB : MF) {
520       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
521       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
522       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
523       if (!MBB.isEHPad())
524         continue;
525       PS->SSA.AddAvailableValue(
526           &MBB,
527           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
528     }
529   }
530 
531   if (HardenIndirectCallsAndJumps) {
532     // If we are going to harden calls and jumps we need to unfold their memory
533     // operands.
534     unfoldCallAndJumpLoads(MF);
535 
536     // Then we trace predicate state through the indirect branches.
537     auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
538     CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
539   }
540 
541   // Now that we have the predicate state available at the start of each block
542   // in the CFG, trace it through each block, hardening vulnerable instructions
543   // as we go.
544   tracePredStateThroughBlocksAndHarden(MF);
545 
546   // Now rewrite all the uses of the pred state using the SSA updater to insert
547   // PHIs connecting the state between blocks along the CFG edges.
548   for (MachineInstr *CMovI : CMovs)
549     for (MachineOperand &Op : CMovI->operands()) {
550       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
551         continue;
552 
553       PS->SSA.RewriteUse(Op);
554     }
555 
556   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
557              dbgs() << "\n"; MF.verify(this));
558   return true;
559 }
560 
561 /// Implements the naive hardening approach of putting an LFENCE after every
562 /// potentially mis-predicted control flow construct.
563 ///
564 /// We include this as an alternative mostly for the purpose of comparison. The
565 /// performance impact of this is expected to be extremely severe and not
566 /// practical for any real-world users.
567 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
568     MachineFunction &MF) {
569   // First, we scan the function looking for blocks that are reached along edges
570   // that we might want to harden.
571   SmallSetVector<MachineBasicBlock *, 8> Blocks;
572   for (MachineBasicBlock &MBB : MF) {
573     // If there are no or only one successor, nothing to do here.
574     if (MBB.succ_size() <= 1)
575       continue;
576 
577     // Skip blocks unless their terminators start with a branch. Other
578     // terminators don't seem interesting for guarding against misspeculation.
579     auto TermIt = MBB.getFirstTerminator();
580     if (TermIt == MBB.end() || !TermIt->isBranch())
581       continue;
582 
583     // Add all the non-EH-pad succossors to the blocks we want to harden. We
584     // skip EH pads because there isn't really a condition of interest on
585     // entering.
586     for (MachineBasicBlock *SuccMBB : MBB.successors())
587       if (!SuccMBB->isEHPad())
588         Blocks.insert(SuccMBB);
589   }
590 
591   for (MachineBasicBlock *MBB : Blocks) {
592     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
593     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
594     ++NumInstsInserted;
595     ++NumLFENCEsInserted;
596   }
597 }
598 
599 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
600 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
601   SmallVector<BlockCondInfo, 16> Infos;
602 
603   // Walk the function and build up a summary for each block's conditions that
604   // we need to trace through.
605   for (MachineBasicBlock &MBB : MF) {
606     // If there are no or only one successor, nothing to do here.
607     if (MBB.succ_size() <= 1)
608       continue;
609 
610     // We want to reliably handle any conditional branch terminators in the
611     // MBB, so we manually analyze the branch. We can handle all of the
612     // permutations here, including ones that analyze branch cannot.
613     //
614     // The approach is to walk backwards across the terminators, resetting at
615     // any unconditional non-indirect branch, and track all conditional edges
616     // to basic blocks as well as the fallthrough or unconditional successor
617     // edge. For each conditional edge, we track the target and the opposite
618     // condition code in order to inject a "no-op" cmov into that successor
619     // that will harden the predicate. For the fallthrough/unconditional
620     // edge, we inject a separate cmov for each conditional branch with
621     // matching condition codes. This effectively implements an "and" of the
622     // condition flags, even if there isn't a single condition flag that would
623     // directly implement that. We don't bother trying to optimize either of
624     // these cases because if such an optimization is possible, LLVM should
625     // have optimized the conditional *branches* in that way already to reduce
626     // instruction count. This late, we simply assume the minimal number of
627     // branch instructions is being emitted and use that to guide our cmov
628     // insertion.
629 
630     BlockCondInfo Info = {&MBB, {}, nullptr};
631 
632     // Now walk backwards through the terminators and build up successors they
633     // reach and the conditions.
634     for (MachineInstr &MI : llvm::reverse(MBB)) {
635       // Once we've handled all the terminators, we're done.
636       if (!MI.isTerminator())
637         break;
638 
639       // If we see a non-branch terminator, we can't handle anything so bail.
640       if (!MI.isBranch()) {
641         Info.CondBrs.clear();
642         break;
643       }
644 
645       // If we see an unconditional branch, reset our state, clear any
646       // fallthrough, and set this is the "else" successor.
647       if (MI.getOpcode() == X86::JMP_1) {
648         Info.CondBrs.clear();
649         Info.UncondBr = &MI;
650         continue;
651       }
652 
653       // If we get an invalid condition, we have an indirect branch or some
654       // other unanalyzable "fallthrough" case. We model this as a nullptr for
655       // the destination so we can still guard any conditional successors.
656       // Consider code sequences like:
657       // ```
658       //   jCC L1
659       //   jmpq *%rax
660       // ```
661       // We still want to harden the edge to `L1`.
662       if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
663         Info.CondBrs.clear();
664         Info.UncondBr = &MI;
665         continue;
666       }
667 
668       // We have a vanilla conditional branch, add it to our list.
669       Info.CondBrs.push_back(&MI);
670     }
671     if (Info.CondBrs.empty()) {
672       ++NumBranchesUntraced;
673       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
674                  MBB.dump());
675       continue;
676     }
677 
678     Infos.push_back(Info);
679   }
680 
681   return Infos;
682 }
683 
684 /// Trace the predicate state through the CFG, instrumenting each conditional
685 /// branch such that misspeculation through an edge will poison the predicate
686 /// state.
687 ///
688 /// Returns the list of inserted CMov instructions so that they can have their
689 /// uses of the predicate state rewritten into proper SSA form once it is
690 /// complete.
691 SmallVector<MachineInstr *, 16>
692 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
693     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
694   // Collect the inserted cmov instructions so we can rewrite their uses of the
695   // predicate state into SSA form.
696   SmallVector<MachineInstr *, 16> CMovs;
697 
698   // Now walk all of the basic blocks looking for ones that end in conditional
699   // jumps where we need to update this register along each edge.
700   for (const BlockCondInfo &Info : Infos) {
701     MachineBasicBlock &MBB = *Info.MBB;
702     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
703     MachineInstr *UncondBr = Info.UncondBr;
704 
705     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
706                       << "\n");
707     ++NumCondBranchesTraced;
708 
709     // Compute the non-conditional successor as either the target of any
710     // unconditional branch or the layout successor.
711     MachineBasicBlock *UncondSucc =
712         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
713                         ? UncondBr->getOperand(0).getMBB()
714                         : nullptr)
715                  : &*std::next(MachineFunction::iterator(&MBB));
716 
717     // Count how many edges there are to any given successor.
718     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
719     if (UncondSucc)
720       ++SuccCounts[UncondSucc];
721     for (auto *CondBr : CondBrs)
722       ++SuccCounts[CondBr->getOperand(0).getMBB()];
723 
724     // A lambda to insert cmov instructions into a block checking all of the
725     // condition codes in a sequence.
726     auto BuildCheckingBlockForSuccAndConds =
727         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
728             MachineInstr *Br, MachineInstr *&UncondBr,
729             ArrayRef<X86::CondCode> Conds) {
730           // First, we split the edge to insert the checking block into a safe
731           // location.
732           auto &CheckingMBB =
733               (SuccCount == 1 && Succ.pred_size() == 1)
734                   ? Succ
735                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
736 
737           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
738           if (!LiveEFLAGS)
739             CheckingMBB.addLiveIn(X86::EFLAGS);
740 
741           // Now insert the cmovs to implement the checks.
742           auto InsertPt = CheckingMBB.begin();
743           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
744                  "Should never have a PHI in the initial checking block as it "
745                  "always has a single predecessor!");
746 
747           // We will wire each cmov to each other, but need to start with the
748           // incoming pred state.
749           unsigned CurStateReg = PS->InitialReg;
750 
751           for (X86::CondCode Cond : Conds) {
752             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
753             auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
754 
755             Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
756             // Note that we intentionally use an empty debug location so that
757             // this picks up the preceding location.
758             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
759                                  TII->get(CMovOp), UpdatedStateReg)
760                              .addReg(CurStateReg)
761                              .addReg(PS->PoisonReg)
762                              .addImm(Cond);
763             // If this is the last cmov and the EFLAGS weren't originally
764             // live-in, mark them as killed.
765             if (!LiveEFLAGS && Cond == Conds.back())
766               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
767 
768             ++NumInstsInserted;
769             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
770                        dbgs() << "\n");
771 
772             // The first one of the cmovs will be using the top level
773             // `PredStateReg` and need to get rewritten into SSA form.
774             if (CurStateReg == PS->InitialReg)
775               CMovs.push_back(&*CMovI);
776 
777             // The next cmov should start from this one's def.
778             CurStateReg = UpdatedStateReg;
779           }
780 
781           // And put the last one into the available values for SSA form of our
782           // predicate state.
783           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
784         };
785 
786     std::vector<X86::CondCode> UncondCodeSeq;
787     for (auto *CondBr : CondBrs) {
788       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
789       int &SuccCount = SuccCounts[&Succ];
790 
791       X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
792       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
793       UncondCodeSeq.push_back(Cond);
794 
795       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
796                                         {InvCond});
797 
798       // Decrement the successor count now that we've split one of the edges.
799       // We need to keep the count of edges to the successor accurate in order
800       // to know above when to *replace* the successor in the CFG vs. just
801       // adding the new successor.
802       --SuccCount;
803     }
804 
805     // Since we may have split edges and changed the number of successors,
806     // normalize the probabilities. This avoids doing it each time we split an
807     // edge.
808     MBB.normalizeSuccProbs();
809 
810     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
811     // need to intersect the other condition codes. We can do this by just
812     // doing a cmov for each one.
813     if (!UncondSucc)
814       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
815       // just skip this and continue.
816       continue;
817 
818     assert(SuccCounts[UncondSucc] == 1 &&
819            "We should never have more than one edge to the unconditional "
820            "successor at this point because every other edge must have been "
821            "split above!");
822 
823     // Sort and unique the codes to minimize them.
824     llvm::sort(UncondCodeSeq);
825     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
826                         UncondCodeSeq.end());
827 
828     // Build a checking version of the successor.
829     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
830                                       UncondBr, UncondBr, UncondCodeSeq);
831   }
832 
833   return CMovs;
834 }
835 
836 /// Compute the register class for the unfolded load.
837 ///
838 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
839 /// a way to unfold into a newly created vreg rather than requiring a register
840 /// input.
841 static const TargetRegisterClass *
842 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
843                            unsigned Opcode) {
844   unsigned Index;
845   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
846       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
847   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
848   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
849 }
850 
851 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
852     MachineFunction &MF) {
853   for (MachineBasicBlock &MBB : MF)
854     // We use make_early_inc_range here so we can remove instructions if needed
855     // without disturbing the iteration.
856     for (MachineInstr &MI : llvm::make_early_inc_range(MBB.instrs())) {
857       // Must either be a call or a branch.
858       if (!MI.isCall() && !MI.isBranch())
859         continue;
860       // We only care about loading variants of these instructions.
861       if (!MI.mayLoad())
862         continue;
863 
864       switch (MI.getOpcode()) {
865       default: {
866         LLVM_DEBUG(
867             dbgs() << "ERROR: Found an unexpected loading branch or call "
868                       "instruction:\n";
869             MI.dump(); dbgs() << "\n");
870         report_fatal_error("Unexpected loading branch or call!");
871       }
872 
873       case X86::FARCALL16m:
874       case X86::FARCALL32m:
875       case X86::FARCALL64m:
876       case X86::FARJMP16m:
877       case X86::FARJMP32m:
878       case X86::FARJMP64m:
879         // We cannot mitigate far jumps or calls, but we also don't expect them
880         // to be vulnerable to Spectre v1.2 style attacks.
881         continue;
882 
883       case X86::CALL16m:
884       case X86::CALL16m_NT:
885       case X86::CALL32m:
886       case X86::CALL32m_NT:
887       case X86::CALL64m:
888       case X86::CALL64m_NT:
889       case X86::JMP16m:
890       case X86::JMP16m_NT:
891       case X86::JMP32m:
892       case X86::JMP32m_NT:
893       case X86::JMP64m:
894       case X86::JMP64m_NT:
895       case X86::TAILJMPm64:
896       case X86::TAILJMPm64_REX:
897       case X86::TAILJMPm:
898       case X86::TCRETURNmi64:
899       case X86::TCRETURNmi: {
900         // Use the generic unfold logic now that we know we're dealing with
901         // expected instructions.
902         // FIXME: We don't have test coverage for all of these!
903         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
904         if (!UnfoldedRC) {
905           LLVM_DEBUG(dbgs()
906                          << "ERROR: Unable to unfold load from instruction:\n";
907                      MI.dump(); dbgs() << "\n");
908           report_fatal_error("Unable to unfold load!");
909         }
910         Register Reg = MRI->createVirtualRegister(UnfoldedRC);
911         SmallVector<MachineInstr *, 2> NewMIs;
912         // If we were able to compute an unfolded reg class, any failure here
913         // is just a programming error so just assert.
914         bool Unfolded =
915             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
916                                      /*UnfoldStore*/ false, NewMIs);
917         (void)Unfolded;
918         assert(Unfolded &&
919                "Computed unfolded register class but failed to unfold");
920         // Now stitch the new instructions into place and erase the old one.
921         for (auto *NewMI : NewMIs)
922           MBB.insert(MI.getIterator(), NewMI);
923 
924         // Update the call site info.
925         if (MI.isCandidateForCallSiteEntry())
926           MF.eraseCallSiteInfo(&MI);
927 
928         MI.eraseFromParent();
929         LLVM_DEBUG({
930           dbgs() << "Unfolded load successfully into:\n";
931           for (auto *NewMI : NewMIs) {
932             NewMI->dump();
933             dbgs() << "\n";
934           }
935         });
936         continue;
937       }
938       }
939       llvm_unreachable("Escaped switch with default!");
940     }
941 }
942 
943 /// Trace the predicate state through indirect branches, instrumenting them to
944 /// poison the state if a target is reached that does not match the expected
945 /// target.
946 ///
947 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
948 /// branch is trained to predict a particular target and then mispredicts that
949 /// target in a way that can leak data. Despite using an indirect branch, this
950 /// is really a variant 1 style attack: it does not steer execution to an
951 /// arbitrary or attacker controlled address, and it does not require any
952 /// special code executing next to the victim. This attack can also be mitigated
953 /// through retpolines, but those require either replacing indirect branches
954 /// with conditional direct branches or lowering them through a device that
955 /// blocks speculation. This mitigation can replace these retpoline-style
956 /// mitigations for jump tables and other indirect branches within a function
957 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
958 /// calls, however, cannot be mitigated through this technique without changing
959 /// the ABI in a fundamental way.
960 SmallVector<MachineInstr *, 16>
961 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
962     MachineFunction &MF) {
963   // We use the SSAUpdater to insert PHI nodes for the target addresses of
964   // indirect branches. We don't actually need the full power of the SSA updater
965   // in this particular case as we always have immediately available values, but
966   // this avoids us having to re-implement the PHI construction logic.
967   MachineSSAUpdater TargetAddrSSA(MF);
968   TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
969 
970   // Track which blocks were terminated with an indirect branch.
971   SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
972 
973   // We need to know what blocks end up reached via indirect branches. We
974   // expect this to be a subset of those whose address is taken and so track it
975   // directly via the CFG.
976   SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
977 
978   // Walk all the blocks which end in an indirect branch and make the
979   // target address available.
980   for (MachineBasicBlock &MBB : MF) {
981     // Find the last terminator.
982     auto MII = MBB.instr_rbegin();
983     while (MII != MBB.instr_rend() && MII->isDebugInstr())
984       ++MII;
985     if (MII == MBB.instr_rend())
986       continue;
987     MachineInstr &TI = *MII;
988     if (!TI.isTerminator() || !TI.isBranch())
989       // No terminator or non-branch terminator.
990       continue;
991 
992     unsigned TargetReg;
993 
994     switch (TI.getOpcode()) {
995     default:
996       // Direct branch or conditional branch (leading to fallthrough).
997       continue;
998 
999     case X86::FARJMP16m:
1000     case X86::FARJMP32m:
1001     case X86::FARJMP64m:
1002       // We cannot mitigate far jumps or calls, but we also don't expect them
1003       // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
1004       continue;
1005 
1006     case X86::JMP16m:
1007     case X86::JMP16m_NT:
1008     case X86::JMP32m:
1009     case X86::JMP32m_NT:
1010     case X86::JMP64m:
1011     case X86::JMP64m_NT:
1012       // Mostly as documentation.
1013       report_fatal_error("Memory operand jumps should have been unfolded!");
1014 
1015     case X86::JMP16r:
1016       report_fatal_error(
1017           "Support for 16-bit indirect branches is not implemented.");
1018     case X86::JMP32r:
1019       report_fatal_error(
1020           "Support for 32-bit indirect branches is not implemented.");
1021 
1022     case X86::JMP64r:
1023       TargetReg = TI.getOperand(0).getReg();
1024     }
1025 
1026     // We have definitely found an indirect  branch. Verify that there are no
1027     // preceding conditional branches as we don't yet support that.
1028     if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1029           return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1030         })) {
1031       LLVM_DEBUG({
1032         dbgs() << "ERROR: Found other terminators in a block with an indirect "
1033                   "branch! This is not yet supported! Terminator sequence:\n";
1034         for (MachineInstr &MI : MBB.terminators()) {
1035           MI.dump();
1036           dbgs() << '\n';
1037         }
1038       });
1039       report_fatal_error("Unimplemented terminator sequence!");
1040     }
1041 
1042     // Make the target register an available value for this block.
1043     TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1044     IndirectTerminatedMBBs.insert(&MBB);
1045 
1046     // Add all the successors to our target candidates.
1047     for (MachineBasicBlock *Succ : MBB.successors())
1048       IndirectTargetMBBs.insert(Succ);
1049   }
1050 
1051   // Keep track of the cmov instructions we insert so we can return them.
1052   SmallVector<MachineInstr *, 16> CMovs;
1053 
1054   // If we didn't find any indirect branches with targets, nothing to do here.
1055   if (IndirectTargetMBBs.empty())
1056     return CMovs;
1057 
1058   // We found indirect branches and targets that need to be instrumented to
1059   // harden loads within them. Walk the blocks of the function (to get a stable
1060   // ordering) and instrument each target of an indirect branch.
1061   for (MachineBasicBlock &MBB : MF) {
1062     // Skip the blocks that aren't candidate targets.
1063     if (!IndirectTargetMBBs.count(&MBB))
1064       continue;
1065 
1066     // We don't expect EH pads to ever be reached via an indirect branch. If
1067     // this is desired for some reason, we could simply skip them here rather
1068     // than asserting.
1069     assert(!MBB.isEHPad() &&
1070            "Unexpected EH pad as target of an indirect branch!");
1071 
1072     // We should never end up threading EFLAGS into a block to harden
1073     // conditional jumps as there would be an additional successor via the
1074     // indirect branch. As a consequence, all such edges would be split before
1075     // reaching here, and the inserted block will handle the EFLAGS-based
1076     // hardening.
1077     assert(!MBB.isLiveIn(X86::EFLAGS) &&
1078            "Cannot check within a block that already has live-in EFLAGS!");
1079 
1080     // We can't handle having non-indirect edges into this block unless this is
1081     // the only successor and we can synthesize the necessary target address.
1082     for (MachineBasicBlock *Pred : MBB.predecessors()) {
1083       // If we've already handled this by extracting the target directly,
1084       // nothing to do.
1085       if (IndirectTerminatedMBBs.count(Pred))
1086         continue;
1087 
1088       // Otherwise, we have to be the only successor. We generally expect this
1089       // to be true as conditional branches should have had a critical edge
1090       // split already. We don't however need to worry about EH pad successors
1091       // as they'll happily ignore the target and their hardening strategy is
1092       // resilient to all ways in which they could be reached speculatively.
1093       if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1094             return Succ->isEHPad() || Succ == &MBB;
1095           })) {
1096         LLVM_DEBUG({
1097           dbgs() << "ERROR: Found conditional entry to target of indirect "
1098                     "branch!\n";
1099           Pred->dump();
1100           MBB.dump();
1101         });
1102         report_fatal_error("Cannot harden a conditional entry to a target of "
1103                            "an indirect branch!");
1104       }
1105 
1106       // Now we need to compute the address of this block and install it as a
1107       // synthetic target in the predecessor. We do this at the bottom of the
1108       // predecessor.
1109       auto InsertPt = Pred->getFirstTerminator();
1110       Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1111       if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1112           !Subtarget->isPositionIndependent()) {
1113         // Directly materialize it into an immediate.
1114         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1115                              TII->get(X86::MOV64ri32), TargetReg)
1116                          .addMBB(&MBB);
1117         ++NumInstsInserted;
1118         (void)AddrI;
1119         LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
1120                    dbgs() << "\n");
1121       } else {
1122         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1123                              TargetReg)
1124                          .addReg(/*Base*/ X86::RIP)
1125                          .addImm(/*Scale*/ 1)
1126                          .addReg(/*Index*/ 0)
1127                          .addMBB(&MBB)
1128                          .addReg(/*Segment*/ 0);
1129         ++NumInstsInserted;
1130         (void)AddrI;
1131         LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
1132                    dbgs() << "\n");
1133       }
1134       // And make this available.
1135       TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1136     }
1137 
1138     // Materialize the needed SSA value of the target. Note that we need the
1139     // middle of the block as this block might at the bottom have an indirect
1140     // branch back to itself. We can do this here because at this point, every
1141     // predecessor of this block has an available value. This is basically just
1142     // automating the construction of a PHI node for this target.
1143     Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1144 
1145     // Insert a comparison of the incoming target register with this block's
1146     // address. This also requires us to mark the block as having its address
1147     // taken explicitly.
1148     MBB.setMachineBlockAddressTaken();
1149     auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1150     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1151         !Subtarget->isPositionIndependent()) {
1152       // Check directly against a relocated immediate when we can.
1153       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1154                         .addReg(TargetReg, RegState::Kill)
1155                         .addMBB(&MBB);
1156       ++NumInstsInserted;
1157       (void)CheckI;
1158       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1159     } else {
1160       // Otherwise compute the address into a register first.
1161       Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1162       auto AddrI =
1163           BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1164               .addReg(/*Base*/ X86::RIP)
1165               .addImm(/*Scale*/ 1)
1166               .addReg(/*Index*/ 0)
1167               .addMBB(&MBB)
1168               .addReg(/*Segment*/ 0);
1169       ++NumInstsInserted;
1170       (void)AddrI;
1171       LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1172       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1173                         .addReg(TargetReg, RegState::Kill)
1174                         .addReg(AddrReg, RegState::Kill);
1175       ++NumInstsInserted;
1176       (void)CheckI;
1177       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1178     }
1179 
1180     // Now cmov over the predicate if the comparison wasn't equal.
1181     int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1182     auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1183     Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1184     auto CMovI =
1185         BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1186             .addReg(PS->InitialReg)
1187             .addReg(PS->PoisonReg)
1188             .addImm(X86::COND_NE);
1189     CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1190     ++NumInstsInserted;
1191     LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1192     CMovs.push_back(&*CMovI);
1193 
1194     // And put the new value into the available values for SSA form of our
1195     // predicate state.
1196     PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1197   }
1198 
1199   // Return all the newly inserted cmov instructions of the predicate state.
1200   return CMovs;
1201 }
1202 
1203 // Returns true if the MI has EFLAGS as a register def operand and it's live,
1204 // otherwise it returns false
1205 static bool isEFLAGSDefLive(const MachineInstr &MI) {
1206   if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1207     return !DefOp->isDead();
1208   }
1209   return false;
1210 }
1211 
1212 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1213                          const TargetRegisterInfo &TRI) {
1214   // Check if EFLAGS are alive by seeing if there is a def of them or they
1215   // live-in, and then seeing if that def is in turn used.
1216   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1217     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1218       // If the def is dead, then EFLAGS is not live.
1219       if (DefOp->isDead())
1220         return false;
1221 
1222       // Otherwise we've def'ed it, and it is live.
1223       return true;
1224     }
1225     // While at this instruction, also check if we use and kill EFLAGS
1226     // which means it isn't live.
1227     if (MI.killsRegister(X86::EFLAGS, &TRI))
1228       return false;
1229   }
1230 
1231   // If we didn't find anything conclusive (neither definitely alive or
1232   // definitely dead) return whether it lives into the block.
1233   return MBB.isLiveIn(X86::EFLAGS);
1234 }
1235 
1236 /// Trace the predicate state through each of the blocks in the function,
1237 /// hardening everything necessary along the way.
1238 ///
1239 /// We call this routine once the initial predicate state has been established
1240 /// for each basic block in the function in the SSA updater. This routine traces
1241 /// it through the instructions within each basic block, and for non-returning
1242 /// blocks informs the SSA updater about the final state that lives out of the
1243 /// block. Along the way, it hardens any vulnerable instruction using the
1244 /// currently valid predicate state. We have to do these two things together
1245 /// because the SSA updater only works across blocks. Within a block, we track
1246 /// the current predicate state directly and update it as it changes.
1247 ///
1248 /// This operates in two passes over each block. First, we analyze the loads in
1249 /// the block to determine which strategy will be used to harden them: hardening
1250 /// the address or hardening the loaded value when loaded into a register
1251 /// amenable to hardening. We have to process these first because the two
1252 /// strategies may interact -- later hardening may change what strategy we wish
1253 /// to use. We also will analyze data dependencies between loads and avoid
1254 /// hardening those loads that are data dependent on a load with a hardened
1255 /// address. We also skip hardening loads already behind an LFENCE as that is
1256 /// sufficient to harden them against misspeculation.
1257 ///
1258 /// Second, we actively trace the predicate state through the block, applying
1259 /// the hardening steps we determined necessary in the first pass as we go.
1260 ///
1261 /// These two passes are applied to each basic block. We operate one block at a
1262 /// time to simplify reasoning about reachability and sequencing.
1263 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1264     MachineFunction &MF) {
1265   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1266   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1267 
1268   SmallSet<unsigned, 16> HardenedAddrRegs;
1269 
1270   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1271 
1272   // Track the set of load-dependent registers through the basic block. Because
1273   // the values of these registers have an existing data dependency on a loaded
1274   // value which we would have checked, we can omit any checks on them.
1275   SparseBitVector<> LoadDepRegs;
1276 
1277   for (MachineBasicBlock &MBB : MF) {
1278     // The first pass over the block: collect all the loads which can have their
1279     // loaded value hardened and all the loads that instead need their address
1280     // hardened. During this walk we propagate load dependence for address
1281     // hardened loads and also look for LFENCE to stop hardening wherever
1282     // possible. When deciding whether or not to harden the loaded value or not,
1283     // we check to see if any registers used in the address will have been
1284     // hardened at this point and if so, harden any remaining address registers
1285     // as that often successfully re-uses hardened addresses and minimizes
1286     // instructions.
1287     //
1288     // FIXME: We should consider an aggressive mode where we continue to keep as
1289     // many loads value hardened even when some address register hardening would
1290     // be free (due to reuse).
1291     //
1292     // Note that we only need this pass if we are actually hardening loads.
1293     if (HardenLoads)
1294       for (MachineInstr &MI : MBB) {
1295         // We naively assume that all def'ed registers of an instruction have
1296         // a data dependency on all of their operands.
1297         // FIXME: Do a more careful analysis of x86 to build a conservative
1298         // model here.
1299         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1300               return Op.isReg() && LoadDepRegs.test(Op.getReg());
1301             }))
1302           for (MachineOperand &Def : MI.defs())
1303             if (Def.isReg())
1304               LoadDepRegs.set(Def.getReg());
1305 
1306         // Both Intel and AMD are guiding that they will change the semantics of
1307         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1308         // no more need to guard things in this block.
1309         if (MI.getOpcode() == X86::LFENCE)
1310           break;
1311 
1312         // If this instruction cannot load, nothing to do.
1313         if (!MI.mayLoad())
1314           continue;
1315 
1316         // Some instructions which "load" are trivially safe or unimportant.
1317         if (MI.getOpcode() == X86::MFENCE)
1318           continue;
1319 
1320         // Extract the memory operand information about this instruction.
1321         // FIXME: This doesn't handle loading pseudo instructions which we often
1322         // could handle with similarly generic logic. We probably need to add an
1323         // MI-layer routine similar to the MC-layer one we use here which maps
1324         // pseudos much like this maps real instructions.
1325         const MCInstrDesc &Desc = MI.getDesc();
1326         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1327         if (MemRefBeginIdx < 0) {
1328           LLVM_DEBUG(dbgs()
1329                          << "WARNING: unable to harden loading instruction: ";
1330                      MI.dump());
1331           continue;
1332         }
1333 
1334         MemRefBeginIdx += X86II::getOperandBias(Desc);
1335 
1336         MachineOperand &BaseMO =
1337             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1338         MachineOperand &IndexMO =
1339             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1340 
1341         // If we have at least one (non-frame-index, non-RIP) register operand,
1342         // and neither operand is load-dependent, we need to check the load.
1343         unsigned BaseReg = 0, IndexReg = 0;
1344         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1345             BaseMO.getReg() != X86::NoRegister)
1346           BaseReg = BaseMO.getReg();
1347         if (IndexMO.getReg() != X86::NoRegister)
1348           IndexReg = IndexMO.getReg();
1349 
1350         if (!BaseReg && !IndexReg)
1351           // No register operands!
1352           continue;
1353 
1354         // If any register operand is dependent, this load is dependent and we
1355         // needn't check it.
1356         // FIXME: Is this true in the case where we are hardening loads after
1357         // they complete? Unclear, need to investigate.
1358         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1359             (IndexReg && LoadDepRegs.test(IndexReg)))
1360           continue;
1361 
1362         // If post-load hardening is enabled, this load is compatible with
1363         // post-load hardening, and we aren't already going to harden one of the
1364         // address registers, queue it up to be hardened post-load. Notably,
1365         // even once hardened this won't introduce a useful dependency that
1366         // could prune out subsequent loads.
1367         if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) &&
1368             !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 &&
1369             MI.getOperand(0).isReg() &&
1370             canHardenRegister(MI.getOperand(0).getReg()) &&
1371             !HardenedAddrRegs.count(BaseReg) &&
1372             !HardenedAddrRegs.count(IndexReg)) {
1373           HardenPostLoad.insert(&MI);
1374           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1375           continue;
1376         }
1377 
1378         // Record this instruction for address hardening and record its register
1379         // operands as being address-hardened.
1380         HardenLoadAddr.insert(&MI);
1381         if (BaseReg)
1382           HardenedAddrRegs.insert(BaseReg);
1383         if (IndexReg)
1384           HardenedAddrRegs.insert(IndexReg);
1385 
1386         for (MachineOperand &Def : MI.defs())
1387           if (Def.isReg())
1388             LoadDepRegs.set(Def.getReg());
1389       }
1390 
1391     // Now re-walk the instructions in the basic block, and apply whichever
1392     // hardening strategy we have elected. Note that we do this in a second
1393     // pass specifically so that we have the complete set of instructions for
1394     // which we will do post-load hardening and can defer it in certain
1395     // circumstances.
1396     for (MachineInstr &MI : MBB) {
1397       if (HardenLoads) {
1398         // We cannot both require hardening the def of a load and its address.
1399         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1400                "Requested to harden both the address and def of a load!");
1401 
1402         // Check if this is a load whose address needs to be hardened.
1403         if (HardenLoadAddr.erase(&MI)) {
1404           const MCInstrDesc &Desc = MI.getDesc();
1405           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1406           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1407 
1408           MemRefBeginIdx += X86II::getOperandBias(Desc);
1409 
1410           MachineOperand &BaseMO =
1411               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1412           MachineOperand &IndexMO =
1413               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1414           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1415           continue;
1416         }
1417 
1418         // Test if this instruction is one of our post load instructions (and
1419         // remove it from the set if so).
1420         if (HardenPostLoad.erase(&MI)) {
1421           assert(!MI.isCall() && "Must not try to post-load harden a call!");
1422 
1423           // If this is a data-invariant load and there is no EFLAGS
1424           // interference, we want to try and sink any hardening as far as
1425           // possible.
1426           if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) {
1427             // Sink the instruction we'll need to harden as far as we can down
1428             // the graph.
1429             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1430 
1431             // If we managed to sink this instruction, update everything so we
1432             // harden that instruction when we reach it in the instruction
1433             // sequence.
1434             if (SunkMI != &MI) {
1435               // If in sinking there was no instruction needing to be hardened,
1436               // we're done.
1437               if (!SunkMI)
1438                 continue;
1439 
1440               // Otherwise, add this to the set of defs we harden.
1441               HardenPostLoad.insert(SunkMI);
1442               continue;
1443             }
1444           }
1445 
1446           unsigned HardenedReg = hardenPostLoad(MI);
1447 
1448           // Mark the resulting hardened register as such so we don't re-harden.
1449           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1450 
1451           continue;
1452         }
1453 
1454         // Check for an indirect call or branch that may need its input hardened
1455         // even if we couldn't find the specific load used, or were able to
1456         // avoid hardening it for some reason. Note that here we cannot break
1457         // out afterward as we may still need to handle any call aspect of this
1458         // instruction.
1459         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1460           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1461       }
1462 
1463       // After we finish hardening loads we handle interprocedural hardening if
1464       // enabled and relevant for this instruction.
1465       if (!HardenInterprocedurally)
1466         continue;
1467       if (!MI.isCall() && !MI.isReturn())
1468         continue;
1469 
1470       // If this is a direct return (IE, not a tail call) just directly harden
1471       // it.
1472       if (MI.isReturn() && !MI.isCall()) {
1473         hardenReturnInstr(MI);
1474         continue;
1475       }
1476 
1477       // Otherwise we have a call. We need to handle transferring the predicate
1478       // state into a call and recovering it after the call returns (unless this
1479       // is a tail call).
1480       assert(MI.isCall() && "Should only reach here for calls!");
1481       tracePredStateThroughCall(MI);
1482     }
1483 
1484     HardenPostLoad.clear();
1485     HardenLoadAddr.clear();
1486     HardenedAddrRegs.clear();
1487     AddrRegToHardenedReg.clear();
1488 
1489     // Currently, we only track data-dependent loads within a basic block.
1490     // FIXME: We should see if this is necessary or if we could be more
1491     // aggressive here without opening up attack avenues.
1492     LoadDepRegs.clear();
1493   }
1494 }
1495 
1496 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1497 /// `restoreEFLAGS`.
1498 ///
1499 /// Note that LLVM can only lower very simple patterns of saved and restored
1500 /// EFLAGS registers. The restore should always be within the same basic block
1501 /// as the save so that no PHI nodes are inserted.
1502 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1503     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1504     const DebugLoc &Loc) {
1505   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1506   // what instruction selection does.
1507   Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1508   // We directly copy the FLAGS register and rely on later lowering to clean
1509   // this up into the appropriate setCC instructions.
1510   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1511   ++NumInstsInserted;
1512   return Reg;
1513 }
1514 
1515 /// Restore EFLAGS from the provided GPR. This should be produced by
1516 /// `saveEFLAGS`.
1517 ///
1518 /// This must be done within the same basic block as the save in order to
1519 /// reliably lower.
1520 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1521     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1522     const DebugLoc &Loc, Register Reg) {
1523   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1524   ++NumInstsInserted;
1525 }
1526 
1527 /// Takes the current predicate state (in a register) and merges it into the
1528 /// stack pointer. The state is essentially a single bit, but we merge this in
1529 /// a way that won't form non-canonical pointers and also will be preserved
1530 /// across normal stack adjustments.
1531 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1532     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1533     const DebugLoc &Loc, unsigned PredStateReg) {
1534   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1535   // FIXME: This hard codes a shift distance based on the number of bits needed
1536   // to stay canonical on 64-bit. We should compute this somehow and support
1537   // 32-bit as part of that.
1538   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1539                     .addReg(PredStateReg, RegState::Kill)
1540                     .addImm(47);
1541   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1542   ++NumInstsInserted;
1543   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1544                  .addReg(X86::RSP)
1545                  .addReg(TmpReg, RegState::Kill);
1546   OrI->addRegisterDead(X86::EFLAGS, TRI);
1547   ++NumInstsInserted;
1548 }
1549 
1550 /// Extracts the predicate state stored in the high bits of the stack pointer.
1551 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1552     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1553     const DebugLoc &Loc) {
1554   Register PredStateReg = MRI->createVirtualRegister(PS->RC);
1555   Register TmpReg = MRI->createVirtualRegister(PS->RC);
1556 
1557   // We know that the stack pointer will have any preserved predicate state in
1558   // its high bit. We just want to smear this across the other bits. Turns out,
1559   // this is exactly what an arithmetic right shift does.
1560   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1561       .addReg(X86::RSP);
1562   auto ShiftI =
1563       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1564           .addReg(TmpReg, RegState::Kill)
1565           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1566   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1567   ++NumInstsInserted;
1568 
1569   return PredStateReg;
1570 }
1571 
1572 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1573     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1574     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1575   MachineBasicBlock &MBB = *MI.getParent();
1576   const DebugLoc &Loc = MI.getDebugLoc();
1577 
1578   // Check if EFLAGS are alive by seeing if there is a def of them or they
1579   // live-in, and then seeing if that def is in turn used.
1580   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1581 
1582   SmallVector<MachineOperand *, 2> HardenOpRegs;
1583 
1584   if (BaseMO.isFI()) {
1585     // A frame index is never a dynamically controllable load, so only
1586     // harden it if we're covering fixed address loads as well.
1587     LLVM_DEBUG(
1588         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
1589         MI.dump(); dbgs() << "\n");
1590   } else if (BaseMO.getReg() == X86::RSP) {
1591     // Some idempotent atomic operations are lowered directly to a locked
1592     // OR with 0 to the top of stack(or slightly offset from top) which uses an
1593     // explicit RSP register as the base.
1594     assert(IndexMO.getReg() == X86::NoRegister &&
1595            "Explicit RSP access with dynamic index!");
1596     LLVM_DEBUG(
1597         dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
1598   } else if (BaseMO.getReg() == X86::RIP ||
1599              BaseMO.getReg() == X86::NoRegister) {
1600     // For both RIP-relative addressed loads or absolute loads, we cannot
1601     // meaningfully harden them because the address being loaded has no
1602     // dynamic component.
1603     //
1604     // FIXME: When using a segment base (like TLS does) we end up with the
1605     // dynamic address being the base plus -1 because we can't mutate the
1606     // segment register here. This allows the signed 32-bit offset to point at
1607     // valid segment-relative addresses and load them successfully.
1608     LLVM_DEBUG(
1609         dbgs() << "  Cannot harden base of "
1610                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1611                << " address in a load!");
1612   } else {
1613     assert(BaseMO.isReg() &&
1614            "Only allowed to have a frame index or register base.");
1615     HardenOpRegs.push_back(&BaseMO);
1616   }
1617 
1618   if (IndexMO.getReg() != X86::NoRegister &&
1619       (HardenOpRegs.empty() ||
1620        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1621     HardenOpRegs.push_back(&IndexMO);
1622 
1623   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1624          "Should have exactly one or two registers to harden!");
1625   assert((HardenOpRegs.size() == 1 ||
1626           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
1627          "Should not have two of the same registers!");
1628 
1629   // Remove any registers that have alreaded been checked.
1630   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
1631     // See if this operand's register has already been checked.
1632     auto It = AddrRegToHardenedReg.find(Op->getReg());
1633     if (It == AddrRegToHardenedReg.end())
1634       // Not checked, so retain this one.
1635       return false;
1636 
1637     // Otherwise, we can directly update this operand and remove it.
1638     Op->setReg(It->second);
1639     return true;
1640   });
1641   // If there are none left, we're done.
1642   if (HardenOpRegs.empty())
1643     return;
1644 
1645   // Compute the current predicate state.
1646   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1647 
1648   auto InsertPt = MI.getIterator();
1649 
1650   // If EFLAGS are live and we don't have access to instructions that avoid
1651   // clobbering EFLAGS we need to save and restore them. This in turn makes
1652   // the EFLAGS no longer live.
1653   unsigned FlagsReg = 0;
1654   if (EFLAGSLive && !Subtarget->hasBMI2()) {
1655     EFLAGSLive = false;
1656     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1657   }
1658 
1659   for (MachineOperand *Op : HardenOpRegs) {
1660     Register OpReg = Op->getReg();
1661     auto *OpRC = MRI->getRegClass(OpReg);
1662     Register TmpReg = MRI->createVirtualRegister(OpRC);
1663 
1664     // If this is a vector register, we'll need somewhat custom logic to handle
1665     // hardening it.
1666     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
1667                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
1668       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
1669       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
1670 
1671       // Move our state into a vector register.
1672       // FIXME: We could skip this at the cost of longer encodings with AVX-512
1673       // but that doesn't seem likely worth it.
1674       Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
1675       auto MovI =
1676           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
1677               .addReg(StateReg);
1678       (void)MovI;
1679       ++NumInstsInserted;
1680       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
1681 
1682       // Broadcast it across the vector register.
1683       Register VBStateReg = MRI->createVirtualRegister(OpRC);
1684       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
1685                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
1686                                                   : X86::VPBROADCASTQYrr),
1687                                 VBStateReg)
1688                             .addReg(VStateReg);
1689       (void)BroadcastI;
1690       ++NumInstsInserted;
1691       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1692                  dbgs() << "\n");
1693 
1694       // Merge our potential poison state into the value with a vector or.
1695       auto OrI =
1696           BuildMI(MBB, InsertPt, Loc,
1697                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
1698               .addReg(VBStateReg)
1699               .addReg(OpReg);
1700       (void)OrI;
1701       ++NumInstsInserted;
1702       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1703     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
1704                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
1705                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
1706       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
1707       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
1708       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
1709       if (Is128Bit || Is256Bit)
1710         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
1711 
1712       // Broadcast our state into a vector register.
1713       Register VStateReg = MRI->createVirtualRegister(OpRC);
1714       unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr
1715                                       : Is256Bit ? X86::VPBROADCASTQrZ256rr
1716                                                  : X86::VPBROADCASTQrZrr;
1717       auto BroadcastI =
1718           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
1719               .addReg(StateReg);
1720       (void)BroadcastI;
1721       ++NumInstsInserted;
1722       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
1723                  dbgs() << "\n");
1724 
1725       // Merge our potential poison state into the value with a vector or.
1726       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
1727                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
1728       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
1729                      .addReg(VStateReg)
1730                      .addReg(OpReg);
1731       (void)OrI;
1732       ++NumInstsInserted;
1733       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1734     } else {
1735       // FIXME: Need to support GR32 here for 32-bit code.
1736       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
1737              "Not a supported register class for address hardening!");
1738 
1739       if (!EFLAGSLive) {
1740         // Merge our potential poison state into the value with an or.
1741         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
1742                        .addReg(StateReg)
1743                        .addReg(OpReg);
1744         OrI->addRegisterDead(X86::EFLAGS, TRI);
1745         ++NumInstsInserted;
1746         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1747       } else {
1748         // We need to avoid touching EFLAGS so shift out all but the least
1749         // significant bit using the instruction that doesn't update flags.
1750         auto ShiftI =
1751             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
1752                 .addReg(OpReg)
1753                 .addReg(StateReg);
1754         (void)ShiftI;
1755         ++NumInstsInserted;
1756         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
1757                    dbgs() << "\n");
1758       }
1759     }
1760 
1761     // Record this register as checked and update the operand.
1762     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
1763            "Should not have checked this register yet!");
1764     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
1765     Op->setReg(TmpReg);
1766     ++NumAddrRegsHardened;
1767   }
1768 
1769   // And restore the flags if needed.
1770   if (FlagsReg)
1771     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1772 }
1773 
1774 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
1775     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
1776   assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&
1777          "Cannot get here with a non-invariant load!");
1778   assert(!isEFLAGSDefLive(InitialMI) &&
1779          "Cannot get here with a data invariant load "
1780          "that interferes with EFLAGS!");
1781 
1782   // See if we can sink hardening the loaded value.
1783   auto SinkCheckToSingleUse =
1784       [&](MachineInstr &MI) -> std::optional<MachineInstr *> {
1785     Register DefReg = MI.getOperand(0).getReg();
1786 
1787     // We need to find a single use which we can sink the check. We can
1788     // primarily do this because many uses may already end up checked on their
1789     // own.
1790     MachineInstr *SingleUseMI = nullptr;
1791     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
1792       // If we're already going to harden this use, it is data invariant, it
1793       // does not interfere with EFLAGS, and within our block.
1794       if (HardenedInstrs.count(&UseMI)) {
1795         if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) {
1796           // If we've already decided to harden a non-load, we must have sunk
1797           // some other post-load hardened instruction to it and it must itself
1798           // be data-invariant.
1799           assert(X86InstrInfo::isDataInvariant(UseMI) &&
1800                  "Data variant instruction being hardened!");
1801           continue;
1802         }
1803 
1804         // Otherwise, this is a load and the load component can't be data
1805         // invariant so check how this register is being used.
1806         const MCInstrDesc &Desc = UseMI.getDesc();
1807         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1808         assert(MemRefBeginIdx >= 0 &&
1809                "Should always have mem references here!");
1810         MemRefBeginIdx += X86II::getOperandBias(Desc);
1811 
1812         MachineOperand &BaseMO =
1813             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1814         MachineOperand &IndexMO =
1815             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1816         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
1817             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
1818           // The load uses the register as part of its address making it not
1819           // invariant.
1820           return {};
1821 
1822         continue;
1823       }
1824 
1825       if (SingleUseMI)
1826         // We already have a single use, this would make two. Bail.
1827         return {};
1828 
1829       // If this single use isn't data invariant, isn't in this block, or has
1830       // interfering EFLAGS, we can't sink the hardening to it.
1831       if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() ||
1832           isEFLAGSDefLive(UseMI))
1833         return {};
1834 
1835       // If this instruction defines multiple registers bail as we won't harden
1836       // all of them.
1837       if (UseMI.getDesc().getNumDefs() > 1)
1838         return {};
1839 
1840       // If this register isn't a virtual register we can't walk uses of sanely,
1841       // just bail. Also check that its register class is one of the ones we
1842       // can harden.
1843       Register UseDefReg = UseMI.getOperand(0).getReg();
1844       if (!UseDefReg.isVirtual() || !canHardenRegister(UseDefReg))
1845         return {};
1846 
1847       SingleUseMI = &UseMI;
1848     }
1849 
1850     // If SingleUseMI is still null, there is no use that needs its own
1851     // checking. Otherwise, it is the single use that needs checking.
1852     return {SingleUseMI};
1853   };
1854 
1855   MachineInstr *MI = &InitialMI;
1856   while (std::optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
1857     // Update which MI we're checking now.
1858     MI = *SingleUse;
1859     if (!MI)
1860       break;
1861   }
1862 
1863   return MI;
1864 }
1865 
1866 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) {
1867   auto *RC = MRI->getRegClass(Reg);
1868   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
1869   if (RegBytes > 8)
1870     // We don't support post-load hardening of vectors.
1871     return false;
1872 
1873   unsigned RegIdx = Log2_32(RegBytes);
1874   assert(RegIdx < 4 && "Unsupported register size");
1875 
1876   // If this register class is explicitly constrained to a class that doesn't
1877   // require REX prefix, we may not be able to satisfy that constraint when
1878   // emitting the hardening instructions, so bail out here.
1879   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
1880   // end up both with a NOREX and REX-only register as operands to the hardening
1881   // instructions. It would be better to fix that code to handle this situation
1882   // rather than hack around it in this way.
1883   const TargetRegisterClass *NOREXRegClasses[] = {
1884       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
1885       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
1886   if (RC == NOREXRegClasses[RegIdx])
1887     return false;
1888 
1889   const TargetRegisterClass *GPRRegClasses[] = {
1890       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
1891       &X86::GR64RegClass};
1892   return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
1893 }
1894 
1895 /// Harden a value in a register.
1896 ///
1897 /// This is the low-level logic to fully harden a value sitting in a register
1898 /// against leaking during speculative execution.
1899 ///
1900 /// Unlike hardening an address that is used by a load, this routine is required
1901 /// to hide *all* incoming bits in the register.
1902 ///
1903 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
1904 /// larger than the predicate state register. FIXME: We should support vector
1905 /// registers here by broadcasting the predicate state.
1906 ///
1907 /// The new, hardened virtual register is returned. It will have the same
1908 /// register class as `Reg`.
1909 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
1910     Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1911     const DebugLoc &Loc) {
1912   assert(canHardenRegister(Reg) && "Cannot harden this register!");
1913   assert(Reg.isVirtual() && "Cannot harden a physical register!");
1914 
1915   auto *RC = MRI->getRegClass(Reg);
1916   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
1917   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1918   assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) &&
1919          "Unknown register size");
1920 
1921   // FIXME: Need to teach this about 32-bit mode.
1922   if (Bytes != 8) {
1923     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
1924     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
1925     Register NarrowStateReg = MRI->createVirtualRegister(RC);
1926     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
1927         .addReg(StateReg, 0, SubRegImm);
1928     StateReg = NarrowStateReg;
1929   }
1930 
1931   unsigned FlagsReg = 0;
1932   if (isEFLAGSLive(MBB, InsertPt, *TRI))
1933     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1934 
1935   Register NewReg = MRI->createVirtualRegister(RC);
1936   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
1937   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
1938   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
1939                  .addReg(StateReg)
1940                  .addReg(Reg);
1941   OrI->addRegisterDead(X86::EFLAGS, TRI);
1942   ++NumInstsInserted;
1943   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
1944 
1945   if (FlagsReg)
1946     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1947 
1948   return NewReg;
1949 }
1950 
1951 /// Harden a load by hardening the loaded value in the defined register.
1952 ///
1953 /// We can harden a non-leaking load into a register without touching the
1954 /// address by just hiding all of the loaded bits during misspeculation. We use
1955 /// an `or` instruction to do this because we set up our poison value as all
1956 /// ones. And the goal is just for the loaded bits to not be exposed to
1957 /// execution and coercing them to one is sufficient.
1958 ///
1959 /// Returns the newly hardened register.
1960 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
1961   MachineBasicBlock &MBB = *MI.getParent();
1962   const DebugLoc &Loc = MI.getDebugLoc();
1963 
1964   auto &DefOp = MI.getOperand(0);
1965   Register OldDefReg = DefOp.getReg();
1966   auto *DefRC = MRI->getRegClass(OldDefReg);
1967 
1968   // Because we want to completely replace the uses of this def'ed value with
1969   // the hardened value, create a dedicated new register that will only be used
1970   // to communicate the unhardened value to the hardening.
1971   Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
1972   DefOp.setReg(UnhardenedReg);
1973 
1974   // Now harden this register's value, getting a hardened reg that is safe to
1975   // use. Note that we insert the instructions to compute this *after* the
1976   // defining instruction, not before it.
1977   unsigned HardenedReg = hardenValueInRegister(
1978       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
1979 
1980   // Finally, replace the old register (which now only has the uses of the
1981   // original def) with the hardened register.
1982   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
1983 
1984   ++NumPostLoadRegsHardened;
1985   return HardenedReg;
1986 }
1987 
1988 /// Harden a return instruction.
1989 ///
1990 /// Returns implicitly perform a load which we need to harden. Without hardening
1991 /// this load, an attacker my speculatively write over the return address to
1992 /// steer speculation of the return to an attacker controlled address. This is
1993 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
1994 /// this paper:
1995 /// https://people.csail.mit.edu/vlk/spectre11.pdf
1996 ///
1997 /// We can harden this by introducing an LFENCE that will delay any load of the
1998 /// return address until prior instructions have retired (and thus are not being
1999 /// speculated), or we can harden the address used by the implicit load: the
2000 /// stack pointer.
2001 ///
2002 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2003 /// benefit: it allows us to pass the predicate state accumulated in this
2004 /// function back to the caller. In the absence of a BCBS attack on the return,
2005 /// the caller will typically be resumed and speculatively executed due to the
2006 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2007 /// priority. It is possible that some code from the caller will be executed
2008 /// speculatively even during a BCBS-attacked return until the steering takes
2009 /// effect. Whenever this happens, the caller can recover the (poisoned)
2010 /// predicate state from the stack pointer and continue to harden loads.
2011 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2012   MachineBasicBlock &MBB = *MI.getParent();
2013   const DebugLoc &Loc = MI.getDebugLoc();
2014   auto InsertPt = MI.getIterator();
2015 
2016   if (FenceCallAndRet)
2017     // No need to fence here as we'll fence at the return site itself. That
2018     // handles more cases than we can handle here.
2019     return;
2020 
2021   // Take our predicate state, shift it to the high 17 bits (so that we keep
2022   // pointers canonical) and merge it into RSP. This will allow the caller to
2023   // extract it when we return (speculatively).
2024   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2025 }
2026 
2027 /// Trace the predicate state through a call.
2028 ///
2029 /// There are several layers of this needed to handle the full complexity of
2030 /// calls.
2031 ///
2032 /// First, we need to send the predicate state into the called function. We do
2033 /// this by merging it into the high bits of the stack pointer.
2034 ///
2035 /// For tail calls, this is all we need to do.
2036 ///
2037 /// For calls where we might return and resume the control flow, we need to
2038 /// extract the predicate state from the high bits of the stack pointer after
2039 /// control returns from the called function.
2040 ///
2041 /// We also need to verify that we intended to return to this location in the
2042 /// code. An attacker might arrange for the processor to mispredict the return
2043 /// to this valid but incorrect return address in the program rather than the
2044 /// correct one. See the paper on this attack, called "ret2spec" by the
2045 /// researchers, here:
2046 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2047 ///
2048 /// The way we verify that we returned to the correct location is by preserving
2049 /// the expected return address across the call. One technique involves taking
2050 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2051 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2052 /// directly save the address into a register that will be preserved across the
2053 /// call. We compare this intended return address against the address
2054 /// immediately following the call (the observed return address). If these
2055 /// mismatch, we have detected misspeculation and can poison our predicate
2056 /// state.
2057 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2058     MachineInstr &MI) {
2059   MachineBasicBlock &MBB = *MI.getParent();
2060   MachineFunction &MF = *MBB.getParent();
2061   auto InsertPt = MI.getIterator();
2062   const DebugLoc &Loc = MI.getDebugLoc();
2063 
2064   if (FenceCallAndRet) {
2065     if (MI.isReturn())
2066       // Tail call, we don't return to this function.
2067       // FIXME: We should also handle noreturn calls.
2068       return;
2069 
2070     // We don't need to fence before the call because the function should fence
2071     // in its entry. However, we do need to fence after the call returns.
2072     // Fencing before the return doesn't correctly handle cases where the return
2073     // itself is mispredicted.
2074     BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2075     ++NumInstsInserted;
2076     ++NumLFENCEsInserted;
2077     return;
2078   }
2079 
2080   // First, we transfer the predicate state into the called function by merging
2081   // it into the stack pointer. This will kill the current def of the state.
2082   Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2083   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2084 
2085   // If this call is also a return, it is a tail call and we don't need anything
2086   // else to handle it so just return. Also, if there are no further
2087   // instructions and no successors, this call does not return so we can also
2088   // bail.
2089   if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2090     return;
2091 
2092   // Create a symbol to track the return address and attach it to the call
2093   // machine instruction. We will lower extra symbols attached to call
2094   // instructions as label immediately following the call.
2095   MCSymbol *RetSymbol =
2096       MF.getContext().createTempSymbol("slh_ret_addr",
2097                                        /*AlwaysAddSuffix*/ true);
2098   MI.setPostInstrSymbol(MF, RetSymbol);
2099 
2100   const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2101   unsigned ExpectedRetAddrReg = 0;
2102 
2103   // If we have no red zones or if the function returns twice (possibly without
2104   // using the `ret` instruction) like setjmp, we need to save the expected
2105   // return address prior to the call.
2106   if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2107       MF.exposesReturnsTwice()) {
2108     // If we don't have red zones, we need to compute the expected return
2109     // address prior to the call and store it in a register that lives across
2110     // the call.
2111     //
2112     // In some ways, this is doubly satisfying as a mitigation because it will
2113     // also successfully detect stack smashing bugs in some cases (typically,
2114     // when a callee-saved register is used and the callee doesn't push it onto
2115     // the stack). But that isn't our primary goal, so we only use it as
2116     // a fallback.
2117     //
2118     // FIXME: It isn't clear that this is reliable in the face of
2119     // rematerialization in the register allocator. We somehow need to force
2120     // that to not occur for this particular instruction, and instead to spill
2121     // or otherwise preserve the value computed *prior* to the call.
2122     //
2123     // FIXME: It is even less clear why MachineCSE can't just fold this when we
2124     // end up having to use identical instructions both before and after the
2125     // call to feed the comparison.
2126     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2127     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2128         !Subtarget->isPositionIndependent()) {
2129       BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2130           .addSym(RetSymbol);
2131     } else {
2132       BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2133           .addReg(/*Base*/ X86::RIP)
2134           .addImm(/*Scale*/ 1)
2135           .addReg(/*Index*/ 0)
2136           .addSym(RetSymbol)
2137           .addReg(/*Segment*/ 0);
2138     }
2139   }
2140 
2141   // Step past the call to handle when it returns.
2142   ++InsertPt;
2143 
2144   // If we didn't pre-compute the expected return address into a register, then
2145   // red zones are enabled and the return address is still available on the
2146   // stack immediately after the call. As the very first instruction, we load it
2147   // into a register.
2148   if (!ExpectedRetAddrReg) {
2149     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2150     BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2151         .addReg(/*Base*/ X86::RSP)
2152         .addImm(/*Scale*/ 1)
2153         .addReg(/*Index*/ 0)
2154         .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2155                                      // the return address is 8-bytes past it.
2156         .addReg(/*Segment*/ 0);
2157   }
2158 
2159   // Now we extract the callee's predicate state from the stack pointer.
2160   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2161 
2162   // Test the expected return address against our actual address. If we can
2163   // form this basic block's address as an immediate, this is easy. Otherwise
2164   // we compute it.
2165   if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2166       !Subtarget->isPositionIndependent()) {
2167     // FIXME: Could we fold this with the load? It would require careful EFLAGS
2168     // management.
2169     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2170         .addReg(ExpectedRetAddrReg, RegState::Kill)
2171         .addSym(RetSymbol);
2172   } else {
2173     Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2174     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2175         .addReg(/*Base*/ X86::RIP)
2176         .addImm(/*Scale*/ 1)
2177         .addReg(/*Index*/ 0)
2178         .addSym(RetSymbol)
2179         .addReg(/*Segment*/ 0);
2180     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2181         .addReg(ExpectedRetAddrReg, RegState::Kill)
2182         .addReg(ActualRetAddrReg, RegState::Kill);
2183   }
2184 
2185   // Now conditionally update the predicate state we just extracted if we ended
2186   // up at a different return address than expected.
2187   int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2188   auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2189 
2190   Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2191   auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2192                    .addReg(NewStateReg, RegState::Kill)
2193                    .addReg(PS->PoisonReg)
2194                    .addImm(X86::COND_NE);
2195   CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2196   ++NumInstsInserted;
2197   LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2198 
2199   PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2200 }
2201 
2202 /// An attacker may speculatively store over a value that is then speculatively
2203 /// loaded and used as the target of an indirect call or jump instruction. This
2204 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2205 /// in this paper:
2206 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2207 ///
2208 /// When this happens, the speculative execution of the call or jump will end up
2209 /// being steered to this attacker controlled address. While most such loads
2210 /// will be adequately hardened already, we want to ensure that they are
2211 /// definitively treated as needing post-load hardening. While address hardening
2212 /// is sufficient to prevent secret data from leaking to the attacker, it may
2213 /// not be sufficient to prevent an attacker from steering speculative
2214 /// execution. We forcibly unfolded all relevant loads above and so will always
2215 /// have an opportunity to post-load harden here, we just need to scan for cases
2216 /// not already flagged and add them.
2217 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2218     MachineInstr &MI,
2219     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2220   switch (MI.getOpcode()) {
2221   case X86::FARCALL16m:
2222   case X86::FARCALL32m:
2223   case X86::FARCALL64m:
2224   case X86::FARJMP16m:
2225   case X86::FARJMP32m:
2226   case X86::FARJMP64m:
2227     // We don't need to harden either far calls or far jumps as they are
2228     // safe from Spectre.
2229     return;
2230 
2231   default:
2232     break;
2233   }
2234 
2235   // We should never see a loading instruction at this point, as those should
2236   // have been unfolded.
2237   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2238 
2239   // If the first operand isn't a register, this is a branch or call
2240   // instruction with an immediate operand which doesn't need to be hardened.
2241   if (!MI.getOperand(0).isReg())
2242     return;
2243 
2244   // For all of these, the target register is the first operand of the
2245   // instruction.
2246   auto &TargetOp = MI.getOperand(0);
2247   Register OldTargetReg = TargetOp.getReg();
2248 
2249   // Try to lookup a hardened version of this register. We retain a reference
2250   // here as we want to update the map to track any newly computed hardened
2251   // register.
2252   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2253 
2254   // If we don't have a hardened register yet, compute one. Otherwise, just use
2255   // the already hardened register.
2256   //
2257   // FIXME: It is a little suspect that we use partially hardened registers that
2258   // only feed addresses. The complexity of partial hardening with SHRX
2259   // continues to pile up. Should definitively measure its value and consider
2260   // eliminating it.
2261   if (!HardenedTargetReg)
2262     HardenedTargetReg = hardenValueInRegister(
2263         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2264 
2265   // Set the target operand to the hardened register.
2266   TargetOp.setReg(HardenedTargetReg);
2267 
2268   ++NumCallsOrJumpsHardened;
2269 }
2270 
2271 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2272                       "X86 speculative load hardener", false, false)
2273 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2274                     "X86 speculative load hardener", false, false)
2275 
2276 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2277   return new X86SpeculativeLoadHardeningPass();
2278 }
2279