1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86SelectionDAGInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86SelectionDAGInfo.h" 14 #include "X86ISelLowering.h" 15 #include "X86InstrInfo.h" 16 #include "X86RegisterInfo.h" 17 #include "X86Subtarget.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DerivedTypes.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "x86-selectiondag-info" 26 27 static cl::opt<bool> 28 UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), 29 cl::desc("Use fast short rep mov in memcpy lowering")); 30 31 bool X86SelectionDAGInfo::isBaseRegConflictPossible( 32 SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { 33 // We cannot use TRI->hasBasePointer() until *after* we select all basic 34 // blocks. Legalization may introduce new stack temporaries with large 35 // alignment requirements. Fall back to generic code if there are any 36 // dynamic stack adjustments (hopefully rare) and the base pointer would 37 // conflict if we had to use it. 38 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 39 if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 40 return false; 41 42 const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( 43 DAG.getSubtarget().getRegisterInfo()); 44 Register BaseReg = TRI->getBaseRegister(); 45 for (unsigned R : ClobberSet) 46 if (BaseReg == R) 47 return true; 48 return false; 49 } 50 51 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( 52 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, 53 SDValue Size, Align Alignment, bool isVolatile, 54 MachinePointerInfo DstPtrInfo) const { 55 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 56 const X86Subtarget &Subtarget = 57 DAG.getMachineFunction().getSubtarget<X86Subtarget>(); 58 59 #ifndef NDEBUG 60 // If the base register might conflict with our physical registers, bail out. 61 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, 62 X86::ECX, X86::EAX, X86::EDI}; 63 assert(!isBaseRegConflictPossible(DAG, ClobberSet)); 64 #endif 65 66 // If to a segment-relative address space, use the default lowering. 67 if (DstPtrInfo.getAddrSpace() >= 256) 68 return SDValue(); 69 70 // If not DWORD aligned or size is more than the threshold, call the library. 71 // The libc version is likely to be faster for these cases. It can use the 72 // address value and run time information about the CPU. 73 if (Alignment < Align(4) || !ConstantSize || 74 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { 75 // Check to see if there is a specialized entry-point for memory zeroing. 76 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); 77 78 if (const char *bzeroName = (ValC && ValC->isNullValue()) 79 ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO) 80 : nullptr) { 81 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 82 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 83 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 84 TargetLowering::ArgListTy Args; 85 TargetLowering::ArgListEntry Entry; 86 Entry.Node = Dst; 87 Entry.Ty = IntPtrTy; 88 Args.push_back(Entry); 89 Entry.Node = Size; 90 Args.push_back(Entry); 91 92 TargetLowering::CallLoweringInfo CLI(DAG); 93 CLI.setDebugLoc(dl) 94 .setChain(Chain) 95 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 96 DAG.getExternalSymbol(bzeroName, IntPtr), 97 std::move(Args)) 98 .setDiscardResult(); 99 100 std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); 101 return CallResult.second; 102 } 103 104 // Otherwise have the target-independent code call memset. 105 return SDValue(); 106 } 107 108 uint64_t SizeVal = ConstantSize->getZExtValue(); 109 SDValue InFlag; 110 EVT AVT; 111 SDValue Count; 112 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); 113 unsigned BytesLeft = 0; 114 if (ValC) { 115 unsigned ValReg; 116 uint64_t Val = ValC->getZExtValue() & 255; 117 118 // If the value is a constant, then we can potentially use larger sets. 119 if (Alignment > Align(2)) { 120 // DWORD aligned 121 AVT = MVT::i32; 122 ValReg = X86::EAX; 123 Val = (Val << 8) | Val; 124 Val = (Val << 16) | Val; 125 if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned 126 AVT = MVT::i64; 127 ValReg = X86::RAX; 128 Val = (Val << 32) | Val; 129 } 130 } else if (Alignment == Align(2)) { 131 // WORD aligned 132 AVT = MVT::i16; 133 ValReg = X86::AX; 134 Val = (Val << 8) | Val; 135 } else { 136 // Byte aligned 137 AVT = MVT::i8; 138 ValReg = X86::AL; 139 Count = DAG.getIntPtrConstant(SizeVal, dl); 140 } 141 142 if (AVT.bitsGT(MVT::i8)) { 143 unsigned UBytes = AVT.getSizeInBits() / 8; 144 Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); 145 BytesLeft = SizeVal % UBytes; 146 } 147 148 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), 149 InFlag); 150 InFlag = Chain.getValue(1); 151 } else { 152 AVT = MVT::i8; 153 Count = DAG.getIntPtrConstant(SizeVal, dl); 154 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag); 155 InFlag = Chain.getValue(1); 156 } 157 158 bool Use64BitRegs = Subtarget.isTarget64BitLP64(); 159 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, 160 Count, InFlag); 161 InFlag = Chain.getValue(1); 162 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, 163 Dst, InFlag); 164 InFlag = Chain.getValue(1); 165 166 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 167 SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; 168 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); 169 170 if (BytesLeft) { 171 // Handle the last 1 - 7 bytes. 172 unsigned Offset = SizeVal - BytesLeft; 173 EVT AddrVT = Dst.getValueType(); 174 EVT SizeVT = Size.getValueType(); 175 176 Chain = 177 DAG.getMemset(Chain, dl, 178 DAG.getNode(ISD::ADD, dl, AddrVT, Dst, 179 DAG.getConstant(Offset, dl, AddrVT)), 180 Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, 181 isVolatile, false, DstPtrInfo.getWithOffset(Offset)); 182 } 183 184 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. 185 return Chain; 186 } 187 188 /// Emit a single REP MOVS{B,W,D,Q} instruction. 189 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, 190 const SDLoc &dl, SDValue Chain, SDValue Dst, 191 SDValue Src, SDValue Size, MVT AVT) { 192 const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); 193 const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; 194 const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; 195 const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; 196 197 SDValue InFlag; 198 Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag); 199 InFlag = Chain.getValue(1); 200 Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag); 201 InFlag = Chain.getValue(1); 202 Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag); 203 InFlag = Chain.getValue(1); 204 205 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 206 SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag}; 207 return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); 208 } 209 210 /// Emit a single REP MOVSB instruction for a particular constant size. 211 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, 212 const SDLoc &dl, SDValue Chain, SDValue Dst, 213 SDValue Src, uint64_t Size) { 214 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, 215 DAG.getIntPtrConstant(Size, dl), MVT::i8); 216 } 217 218 /// Returns the best type to use with repmovs depending on alignment. 219 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, 220 uint64_t Align) { 221 assert((Align != 0) && "Align is normalized"); 222 assert(isPowerOf2_64(Align) && "Align is a power of 2"); 223 switch (Align) { 224 case 1: 225 return MVT::i8; 226 case 2: 227 return MVT::i16; 228 case 4: 229 return MVT::i32; 230 default: 231 return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; 232 } 233 } 234 235 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement 236 /// a constant size memory copy. In some cases where we know REP MOVS is 237 /// inefficient we return an empty SDValue so the calling code can either 238 /// generate a load/store sequence or call the runtime memcpy function. 239 static SDValue emitConstantSizeRepmov( 240 SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, 241 SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, 242 unsigned Align, bool isVolatile, bool AlwaysInline, 243 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { 244 245 /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very 246 /// efficient. 247 if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) 248 return SDValue(); 249 250 /// If we have enhanced repmovs we use it. 251 if (Subtarget.hasERMSB()) 252 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); 253 254 assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); 255 /// We assume runtime memcpy will do a better job for unaligned copies when 256 /// ERMS is not present. 257 if (!AlwaysInline && (Align & 3) != 0) 258 return SDValue(); 259 260 const MVT BlockType = getOptimalRepmovsType(Subtarget, Align); 261 const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; 262 const uint64_t BlockCount = Size / BlockBytes; 263 const uint64_t BytesLeft = Size % BlockBytes; 264 SDValue RepMovs = 265 emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, 266 DAG.getIntPtrConstant(BlockCount, dl), BlockType); 267 268 /// RepMov can process the whole length. 269 if (BytesLeft == 0) 270 return RepMovs; 271 272 assert(BytesLeft && "We have leftover at this point"); 273 274 /// In case we optimize for size we use repmovsb even if it's less efficient 275 /// so we can save the loads/stores of the leftover. 276 if (DAG.getMachineFunction().getFunction().hasMinSize()) 277 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); 278 279 // Handle the last 1 - 7 bytes. 280 SmallVector<SDValue, 4> Results; 281 Results.push_back(RepMovs); 282 unsigned Offset = Size - BytesLeft; 283 EVT DstVT = Dst.getValueType(); 284 EVT SrcVT = Src.getValueType(); 285 Results.push_back(DAG.getMemcpy( 286 Chain, dl, 287 DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), 288 DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), 289 DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile, 290 /*AlwaysInline*/ true, /*isTailCall*/ false, 291 DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); 292 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); 293 } 294 295 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( 296 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 297 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, 298 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 299 // If to a segment-relative address space, use the default lowering. 300 if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) 301 return SDValue(); 302 303 // If the base registers conflict with our physical registers, use the default 304 // lowering. 305 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, 306 X86::ECX, X86::ESI, X86::EDI}; 307 if (isBaseRegConflictPossible(DAG, ClobberSet)) 308 return SDValue(); 309 310 const X86Subtarget &Subtarget = 311 DAG.getMachineFunction().getSubtarget<X86Subtarget>(); 312 313 // If enabled and available, use fast short rep mov. 314 if (UseFSRMForMemcpy && Subtarget.hasFSRM()) 315 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); 316 317 /// Handle constant sizes, 318 if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size)) 319 return emitConstantSizeRepmov( 320 DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 321 Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline, 322 DstPtrInfo, SrcPtrInfo); 323 324 return SDValue(); 325 } 326