xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/IR/DerivedTypes.h"
21 
22 using namespace llvm;
23 
24 #define DEBUG_TYPE "x86-selectiondag-info"
25 
26 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
27     SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
28   // We cannot use TRI->hasBasePointer() until *after* we select all basic
29   // blocks.  Legalization may introduce new stack temporaries with large
30   // alignment requirements.  Fall back to generic code if there are any
31   // dynamic stack adjustments (hopefully rare) and the base pointer would
32   // conflict if we had to use it.
33   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
34   if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
35     return false;
36 
37   const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
38       DAG.getSubtarget().getRegisterInfo());
39   Register BaseReg = TRI->getBaseRegister();
40   for (unsigned R : ClobberSet)
41     if (BaseReg == R)
42       return true;
43   return false;
44 }
45 
46 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
47     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
48     SDValue Size, unsigned Align, bool isVolatile,
49     MachinePointerInfo DstPtrInfo) const {
50   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
51   const X86Subtarget &Subtarget =
52       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
53 
54 #ifndef NDEBUG
55   // If the base register might conflict with our physical registers, bail out.
56   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
57                                   X86::ECX, X86::EAX, X86::EDI};
58   assert(!isBaseRegConflictPossible(DAG, ClobberSet));
59 #endif
60 
61   // If to a segment-relative address space, use the default lowering.
62   if (DstPtrInfo.getAddrSpace() >= 256)
63     return SDValue();
64 
65   // If not DWORD aligned or size is more than the threshold, call the library.
66   // The libc version is likely to be faster for these cases. It can use the
67   // address value and run time information about the CPU.
68   if ((Align & 3) != 0 || !ConstantSize ||
69       ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
70     // Check to see if there is a specialized entry-point for memory zeroing.
71     ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
72 
73     if (const char *bzeroName = (ValC && ValC->isNullValue())
74         ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
75         : nullptr) {
76       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
77       EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
78       Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
79       TargetLowering::ArgListTy Args;
80       TargetLowering::ArgListEntry Entry;
81       Entry.Node = Dst;
82       Entry.Ty = IntPtrTy;
83       Args.push_back(Entry);
84       Entry.Node = Size;
85       Args.push_back(Entry);
86 
87       TargetLowering::CallLoweringInfo CLI(DAG);
88       CLI.setDebugLoc(dl)
89           .setChain(Chain)
90           .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
91                         DAG.getExternalSymbol(bzeroName, IntPtr),
92                         std::move(Args))
93           .setDiscardResult();
94 
95       std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
96       return CallResult.second;
97     }
98 
99     // Otherwise have the target-independent code call memset.
100     return SDValue();
101   }
102 
103   uint64_t SizeVal = ConstantSize->getZExtValue();
104   SDValue InFlag;
105   EVT AVT;
106   SDValue Count;
107   ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
108   unsigned BytesLeft = 0;
109   if (ValC) {
110     unsigned ValReg;
111     uint64_t Val = ValC->getZExtValue() & 255;
112 
113     // If the value is a constant, then we can potentially use larger sets.
114     switch (Align & 3) {
115     case 2:   // WORD aligned
116       AVT = MVT::i16;
117       ValReg = X86::AX;
118       Val = (Val << 8) | Val;
119       break;
120     case 0:  // DWORD aligned
121       AVT = MVT::i32;
122       ValReg = X86::EAX;
123       Val = (Val << 8)  | Val;
124       Val = (Val << 16) | Val;
125       if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
126         AVT = MVT::i64;
127         ValReg = X86::RAX;
128         Val = (Val << 32) | Val;
129       }
130       break;
131     default:  // Byte aligned
132       AVT = MVT::i8;
133       ValReg = X86::AL;
134       Count = DAG.getIntPtrConstant(SizeVal, dl);
135       break;
136     }
137 
138     if (AVT.bitsGT(MVT::i8)) {
139       unsigned UBytes = AVT.getSizeInBits() / 8;
140       Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
141       BytesLeft = SizeVal % UBytes;
142     }
143 
144     Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
145                              InFlag);
146     InFlag = Chain.getValue(1);
147   } else {
148     AVT = MVT::i8;
149     Count  = DAG.getIntPtrConstant(SizeVal, dl);
150     Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
151     InFlag = Chain.getValue(1);
152   }
153 
154   bool Use64BitRegs = Subtarget.isTarget64BitLP64();
155   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
156                            Count, InFlag);
157   InFlag = Chain.getValue(1);
158   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
159                            Dst, InFlag);
160   InFlag = Chain.getValue(1);
161 
162   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
163   SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
164   Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
165 
166   if (BytesLeft) {
167     // Handle the last 1 - 7 bytes.
168     unsigned Offset = SizeVal - BytesLeft;
169     EVT AddrVT = Dst.getValueType();
170     EVT SizeVT = Size.getValueType();
171 
172     Chain = DAG.getMemset(Chain, dl,
173                           DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
174                                       DAG.getConstant(Offset, dl, AddrVT)),
175                           Val,
176                           DAG.getConstant(BytesLeft, dl, SizeVT),
177                           Align, isVolatile, false,
178                           DstPtrInfo.getWithOffset(Offset));
179   }
180 
181   // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
182   return Chain;
183 }
184 
185 /// Emit a single REP MOVS{B,W,D,Q} instruction.
186 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
187                            const SDLoc &dl, SDValue Chain, SDValue Dst,
188                            SDValue Src, SDValue Size, MVT AVT) {
189   const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
190   const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
191   const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
192   const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
193 
194   SDValue InFlag;
195   Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
196   InFlag = Chain.getValue(1);
197   Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
198   InFlag = Chain.getValue(1);
199   Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
200   InFlag = Chain.getValue(1);
201 
202   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
203   SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
204   return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
205 }
206 
207 /// Emit a single REP MOVSB instruction for a particular constant size.
208 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
209                             const SDLoc &dl, SDValue Chain, SDValue Dst,
210                             SDValue Src, uint64_t Size) {
211   return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
212                      DAG.getIntPtrConstant(Size, dl), MVT::i8);
213 }
214 
215 /// Returns the best type to use with repmovs depending on alignment.
216 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
217                                  uint64_t Align) {
218   assert((Align != 0) && "Align is normalized");
219   assert(isPowerOf2_64(Align) && "Align is a power of 2");
220   switch (Align) {
221   case 1:
222     return MVT::i8;
223   case 2:
224     return MVT::i16;
225   case 4:
226     return MVT::i32;
227   default:
228     return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
229   }
230 }
231 
232 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
233 /// a constant size memory copy. In some cases where we know REP MOVS is
234 /// inefficient we return an empty SDValue so the calling code can either
235 /// generate a load/store sequence or call the runtime memcpy function.
236 static SDValue emitConstantSizeRepmov(
237     SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
238     SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
239     unsigned Align, bool isVolatile, bool AlwaysInline,
240     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
241 
242   /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
243   /// efficient.
244   if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
245     return SDValue();
246 
247   /// If we have enhanced repmovs we use it.
248   if (Subtarget.hasERMSB())
249     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
250 
251   assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
252   /// We assume runtime memcpy will do a better job for unaligned copies when
253   /// ERMS is not present.
254   if (!AlwaysInline && (Align & 3) != 0)
255     return SDValue();
256 
257   const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
258   const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
259   const uint64_t BlockCount = Size / BlockBytes;
260   const uint64_t BytesLeft = Size % BlockBytes;
261   SDValue RepMovs =
262       emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
263                   DAG.getIntPtrConstant(BlockCount, dl), BlockType);
264 
265   /// RepMov can process the whole length.
266   if (BytesLeft == 0)
267     return RepMovs;
268 
269   assert(BytesLeft && "We have leftover at this point");
270 
271   /// In case we optimize for size we use repmovsb even if it's less efficient
272   /// so we can save the loads/stores of the leftover.
273   if (DAG.getMachineFunction().getFunction().hasMinSize())
274     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
275 
276   // Handle the last 1 - 7 bytes.
277   SmallVector<SDValue, 4> Results;
278   Results.push_back(RepMovs);
279   unsigned Offset = Size - BytesLeft;
280   EVT DstVT = Dst.getValueType();
281   EVT SrcVT = Src.getValueType();
282   Results.push_back(DAG.getMemcpy(
283       Chain, dl,
284       DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
285       DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
286       DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile,
287       /*AlwaysInline*/ true, /*isTailCall*/ false,
288       DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
289   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
290 }
291 
292 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
293     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
294     SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
295     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
296   // If to a segment-relative address space, use the default lowering.
297   if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
298     return SDValue();
299 
300   // If the base registers conflict with our physical registers, use the default
301   // lowering.
302   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
303                                   X86::ECX, X86::ESI, X86::EDI};
304   if (isBaseRegConflictPossible(DAG, ClobberSet))
305     return SDValue();
306 
307   const X86Subtarget &Subtarget =
308       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
309 
310   /// Handle constant sizes,
311   if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
312     return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
313                                   ConstantSize->getZExtValue(),
314                                   Size.getValueType(), Align, isVolatile,
315                                   AlwaysInline, DstPtrInfo, SrcPtrInfo);
316 
317   return SDValue();
318 }
319