1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86SelectionDAGInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86SelectionDAGInfo.h" 14 #include "X86ISelLowering.h" 15 #include "X86InstrInfo.h" 16 #include "X86RegisterInfo.h" 17 #include "X86Subtarget.h" 18 #include "llvm/CodeGen/SelectionDAG.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/IR/DerivedTypes.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "x86-selectiondag-info" 25 26 bool X86SelectionDAGInfo::isBaseRegConflictPossible( 27 SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { 28 // We cannot use TRI->hasBasePointer() until *after* we select all basic 29 // blocks. Legalization may introduce new stack temporaries with large 30 // alignment requirements. Fall back to generic code if there are any 31 // dynamic stack adjustments (hopefully rare) and the base pointer would 32 // conflict if we had to use it. 33 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 34 if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 35 return false; 36 37 const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( 38 DAG.getSubtarget().getRegisterInfo()); 39 Register BaseReg = TRI->getBaseRegister(); 40 for (unsigned R : ClobberSet) 41 if (BaseReg == R) 42 return true; 43 return false; 44 } 45 46 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( 47 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, 48 SDValue Size, unsigned Align, bool isVolatile, 49 MachinePointerInfo DstPtrInfo) const { 50 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 51 const X86Subtarget &Subtarget = 52 DAG.getMachineFunction().getSubtarget<X86Subtarget>(); 53 54 #ifndef NDEBUG 55 // If the base register might conflict with our physical registers, bail out. 56 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, 57 X86::ECX, X86::EAX, X86::EDI}; 58 assert(!isBaseRegConflictPossible(DAG, ClobberSet)); 59 #endif 60 61 // If to a segment-relative address space, use the default lowering. 62 if (DstPtrInfo.getAddrSpace() >= 256) 63 return SDValue(); 64 65 // If not DWORD aligned or size is more than the threshold, call the library. 66 // The libc version is likely to be faster for these cases. It can use the 67 // address value and run time information about the CPU. 68 if ((Align & 3) != 0 || !ConstantSize || 69 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { 70 // Check to see if there is a specialized entry-point for memory zeroing. 71 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); 72 73 if (const char *bzeroName = (ValC && ValC->isNullValue()) 74 ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO) 75 : nullptr) { 76 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 77 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 78 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 79 TargetLowering::ArgListTy Args; 80 TargetLowering::ArgListEntry Entry; 81 Entry.Node = Dst; 82 Entry.Ty = IntPtrTy; 83 Args.push_back(Entry); 84 Entry.Node = Size; 85 Args.push_back(Entry); 86 87 TargetLowering::CallLoweringInfo CLI(DAG); 88 CLI.setDebugLoc(dl) 89 .setChain(Chain) 90 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 91 DAG.getExternalSymbol(bzeroName, IntPtr), 92 std::move(Args)) 93 .setDiscardResult(); 94 95 std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); 96 return CallResult.second; 97 } 98 99 // Otherwise have the target-independent code call memset. 100 return SDValue(); 101 } 102 103 uint64_t SizeVal = ConstantSize->getZExtValue(); 104 SDValue InFlag; 105 EVT AVT; 106 SDValue Count; 107 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val); 108 unsigned BytesLeft = 0; 109 if (ValC) { 110 unsigned ValReg; 111 uint64_t Val = ValC->getZExtValue() & 255; 112 113 // If the value is a constant, then we can potentially use larger sets. 114 switch (Align & 3) { 115 case 2: // WORD aligned 116 AVT = MVT::i16; 117 ValReg = X86::AX; 118 Val = (Val << 8) | Val; 119 break; 120 case 0: // DWORD aligned 121 AVT = MVT::i32; 122 ValReg = X86::EAX; 123 Val = (Val << 8) | Val; 124 Val = (Val << 16) | Val; 125 if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned 126 AVT = MVT::i64; 127 ValReg = X86::RAX; 128 Val = (Val << 32) | Val; 129 } 130 break; 131 default: // Byte aligned 132 AVT = MVT::i8; 133 ValReg = X86::AL; 134 Count = DAG.getIntPtrConstant(SizeVal, dl); 135 break; 136 } 137 138 if (AVT.bitsGT(MVT::i8)) { 139 unsigned UBytes = AVT.getSizeInBits() / 8; 140 Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); 141 BytesLeft = SizeVal % UBytes; 142 } 143 144 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), 145 InFlag); 146 InFlag = Chain.getValue(1); 147 } else { 148 AVT = MVT::i8; 149 Count = DAG.getIntPtrConstant(SizeVal, dl); 150 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag); 151 InFlag = Chain.getValue(1); 152 } 153 154 bool Use64BitRegs = Subtarget.isTarget64BitLP64(); 155 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, 156 Count, InFlag); 157 InFlag = Chain.getValue(1); 158 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, 159 Dst, InFlag); 160 InFlag = Chain.getValue(1); 161 162 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 163 SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; 164 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); 165 166 if (BytesLeft) { 167 // Handle the last 1 - 7 bytes. 168 unsigned Offset = SizeVal - BytesLeft; 169 EVT AddrVT = Dst.getValueType(); 170 EVT SizeVT = Size.getValueType(); 171 172 Chain = DAG.getMemset(Chain, dl, 173 DAG.getNode(ISD::ADD, dl, AddrVT, Dst, 174 DAG.getConstant(Offset, dl, AddrVT)), 175 Val, 176 DAG.getConstant(BytesLeft, dl, SizeVT), 177 Align, isVolatile, false, 178 DstPtrInfo.getWithOffset(Offset)); 179 } 180 181 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. 182 return Chain; 183 } 184 185 /// Emit a single REP MOVS{B,W,D,Q} instruction. 186 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, 187 const SDLoc &dl, SDValue Chain, SDValue Dst, 188 SDValue Src, SDValue Size, MVT AVT) { 189 const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); 190 const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; 191 const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; 192 const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; 193 194 SDValue InFlag; 195 Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag); 196 InFlag = Chain.getValue(1); 197 Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag); 198 InFlag = Chain.getValue(1); 199 Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag); 200 InFlag = Chain.getValue(1); 201 202 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 203 SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag}; 204 return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); 205 } 206 207 /// Emit a single REP MOVSB instruction for a particular constant size. 208 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, 209 const SDLoc &dl, SDValue Chain, SDValue Dst, 210 SDValue Src, uint64_t Size) { 211 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, 212 DAG.getIntPtrConstant(Size, dl), MVT::i8); 213 } 214 215 /// Returns the best type to use with repmovs depending on alignment. 216 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, 217 uint64_t Align) { 218 assert((Align != 0) && "Align is normalized"); 219 assert(isPowerOf2_64(Align) && "Align is a power of 2"); 220 switch (Align) { 221 case 1: 222 return MVT::i8; 223 case 2: 224 return MVT::i16; 225 case 4: 226 return MVT::i32; 227 default: 228 return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; 229 } 230 } 231 232 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement 233 /// a constant size memory copy. In some cases where we know REP MOVS is 234 /// inefficient we return an empty SDValue so the calling code can either 235 /// generate a load/store sequence or call the runtime memcpy function. 236 static SDValue emitConstantSizeRepmov( 237 SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, 238 SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, 239 unsigned Align, bool isVolatile, bool AlwaysInline, 240 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { 241 242 /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very 243 /// efficient. 244 if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) 245 return SDValue(); 246 247 /// If we have enhanced repmovs we use it. 248 if (Subtarget.hasERMSB()) 249 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); 250 251 assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); 252 /// We assume runtime memcpy will do a better job for unaligned copies when 253 /// ERMS is not present. 254 if (!AlwaysInline && (Align & 3) != 0) 255 return SDValue(); 256 257 const MVT BlockType = getOptimalRepmovsType(Subtarget, Align); 258 const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; 259 const uint64_t BlockCount = Size / BlockBytes; 260 const uint64_t BytesLeft = Size % BlockBytes; 261 SDValue RepMovs = 262 emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, 263 DAG.getIntPtrConstant(BlockCount, dl), BlockType); 264 265 /// RepMov can process the whole length. 266 if (BytesLeft == 0) 267 return RepMovs; 268 269 assert(BytesLeft && "We have leftover at this point"); 270 271 /// In case we optimize for size we use repmovsb even if it's less efficient 272 /// so we can save the loads/stores of the leftover. 273 if (DAG.getMachineFunction().getFunction().hasMinSize()) 274 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); 275 276 // Handle the last 1 - 7 bytes. 277 SmallVector<SDValue, 4> Results; 278 Results.push_back(RepMovs); 279 unsigned Offset = Size - BytesLeft; 280 EVT DstVT = Dst.getValueType(); 281 EVT SrcVT = Src.getValueType(); 282 Results.push_back(DAG.getMemcpy( 283 Chain, dl, 284 DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), 285 DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), 286 DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile, 287 /*AlwaysInline*/ true, /*isTailCall*/ false, 288 DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); 289 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); 290 } 291 292 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( 293 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, 294 SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline, 295 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 296 // If to a segment-relative address space, use the default lowering. 297 if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) 298 return SDValue(); 299 300 // If the base registers conflict with our physical registers, use the default 301 // lowering. 302 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, 303 X86::ECX, X86::ESI, X86::EDI}; 304 if (isBaseRegConflictPossible(DAG, ClobberSet)) 305 return SDValue(); 306 307 const X86Subtarget &Subtarget = 308 DAG.getMachineFunction().getSubtarget<X86Subtarget>(); 309 310 /// Handle constant sizes, 311 if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size)) 312 return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, 313 ConstantSize->getZExtValue(), 314 Size.getValueType(), Align, isVolatile, 315 AlwaysInline, DstPtrInfo, SrcPtrInfo); 316 317 return SDValue(); 318 } 319