xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DerivedTypes.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "x86-selectiondag-info"
26 
27 static cl::opt<bool>
28     UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
29                      cl::desc("Use fast short rep mov in memcpy lowering"));
30 
31 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
32     SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
33   // We cannot use TRI->hasBasePointer() until *after* we select all basic
34   // blocks.  Legalization may introduce new stack temporaries with large
35   // alignment requirements.  Fall back to generic code if there are any
36   // dynamic stack adjustments (hopefully rare) and the base pointer would
37   // conflict if we had to use it.
38   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
39   if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
40     return false;
41 
42   const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
43       DAG.getSubtarget().getRegisterInfo());
44   return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
45 }
46 
47 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
48     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
49     SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
50     MachinePointerInfo DstPtrInfo) const {
51   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
52   const X86Subtarget &Subtarget =
53       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
54 
55 #ifndef NDEBUG
56   // If the base register might conflict with our physical registers, bail out.
57   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
58                                   X86::ECX, X86::EAX, X86::EDI};
59   assert(!isBaseRegConflictPossible(DAG, ClobberSet));
60 #endif
61 
62   // If to a segment-relative address space, use the default lowering.
63   if (DstPtrInfo.getAddrSpace() >= 256)
64     return SDValue();
65 
66   // If not DWORD aligned or size is more than the threshold, call the library.
67   // The libc version is likely to be faster for these cases. It can use the
68   // address value and run time information about the CPU.
69   if (Alignment < Align(4) || !ConstantSize ||
70       ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
71     return SDValue();
72 
73   uint64_t SizeVal = ConstantSize->getZExtValue();
74   SDValue InGlue;
75   EVT AVT;
76   SDValue Count;
77   unsigned BytesLeft = 0;
78   if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
79     unsigned ValReg;
80     uint64_t Val = ValC->getZExtValue() & 255;
81 
82     // If the value is a constant, then we can potentially use larger sets.
83     if (Alignment > Align(2)) {
84       // DWORD aligned
85       AVT = MVT::i32;
86       ValReg = X86::EAX;
87       Val = (Val << 8)  | Val;
88       Val = (Val << 16) | Val;
89       if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
90         AVT = MVT::i64;
91         ValReg = X86::RAX;
92         Val = (Val << 32) | Val;
93       }
94     } else if (Alignment == Align(2)) {
95       // WORD aligned
96       AVT = MVT::i16;
97       ValReg = X86::AX;
98       Val = (Val << 8) | Val;
99     } else {
100       // Byte aligned
101       AVT = MVT::i8;
102       ValReg = X86::AL;
103       Count = DAG.getIntPtrConstant(SizeVal, dl);
104     }
105 
106     if (AVT.bitsGT(MVT::i8)) {
107       unsigned UBytes = AVT.getSizeInBits() / 8;
108       Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
109       BytesLeft = SizeVal % UBytes;
110     }
111 
112     Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
113                              InGlue);
114     InGlue = Chain.getValue(1);
115   } else {
116     AVT = MVT::i8;
117     Count  = DAG.getIntPtrConstant(SizeVal, dl);
118     Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue);
119     InGlue = Chain.getValue(1);
120   }
121 
122   bool Use64BitRegs = Subtarget.isTarget64BitLP64();
123   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
124                            Count, InGlue);
125   InGlue = Chain.getValue(1);
126   Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
127                            Dst, InGlue);
128   InGlue = Chain.getValue(1);
129 
130   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
131   SDValue Ops[] = { Chain, DAG.getValueType(AVT), InGlue };
132   Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
133 
134   if (BytesLeft) {
135     // Handle the last 1 - 7 bytes.
136     unsigned Offset = SizeVal - BytesLeft;
137     EVT AddrVT = Dst.getValueType();
138     EVT SizeVT = Size.getValueType();
139 
140     Chain =
141         DAG.getMemset(Chain, dl,
142                       DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
143                                   DAG.getConstant(Offset, dl, AddrVT)),
144                       Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
145                       isVolatile, AlwaysInline,
146                       /* isTailCall */ false, DstPtrInfo.getWithOffset(Offset));
147   }
148 
149   // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
150   return Chain;
151 }
152 
153 /// Emit a single REP MOVS{B,W,D,Q} instruction.
154 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
155                            const SDLoc &dl, SDValue Chain, SDValue Dst,
156                            SDValue Src, SDValue Size, MVT AVT) {
157   const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
158   const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
159   const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
160   const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
161 
162   SDValue InGlue;
163   Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
164   InGlue = Chain.getValue(1);
165   Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
166   InGlue = Chain.getValue(1);
167   Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue);
168   InGlue = Chain.getValue(1);
169 
170   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
171   SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
172   return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
173 }
174 
175 /// Emit a single REP MOVSB instruction for a particular constant size.
176 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
177                             const SDLoc &dl, SDValue Chain, SDValue Dst,
178                             SDValue Src, uint64_t Size) {
179   return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
180                      DAG.getIntPtrConstant(Size, dl), MVT::i8);
181 }
182 
183 /// Returns the best type to use with repmovs depending on alignment.
184 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
185                                  Align Alignment) {
186   uint64_t Align = Alignment.value();
187   assert((Align != 0) && "Align is normalized");
188   assert(isPowerOf2_64(Align) && "Align is a power of 2");
189   switch (Align) {
190   case 1:
191     return MVT::i8;
192   case 2:
193     return MVT::i16;
194   case 4:
195     return MVT::i32;
196   default:
197     return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
198   }
199 }
200 
201 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
202 /// a constant size memory copy. In some cases where we know REP MOVS is
203 /// inefficient we return an empty SDValue so the calling code can either
204 /// generate a load/store sequence or call the runtime memcpy function.
205 static SDValue emitConstantSizeRepmov(
206     SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
207     SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
208     Align Alignment, bool isVolatile, bool AlwaysInline,
209     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
210 
211   /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
212   /// efficient.
213   if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
214     return SDValue();
215 
216   /// If we have enhanced repmovs we use it.
217   if (Subtarget.hasERMSB())
218     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
219 
220   assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
221   /// We assume runtime memcpy will do a better job for unaligned copies when
222   /// ERMS is not present.
223   if (!AlwaysInline && (Alignment.value() & 3) != 0)
224     return SDValue();
225 
226   const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment);
227   const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
228   const uint64_t BlockCount = Size / BlockBytes;
229   const uint64_t BytesLeft = Size % BlockBytes;
230   SDValue RepMovs =
231       emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
232                   DAG.getIntPtrConstant(BlockCount, dl), BlockType);
233 
234   /// RepMov can process the whole length.
235   if (BytesLeft == 0)
236     return RepMovs;
237 
238   assert(BytesLeft && "We have leftover at this point");
239 
240   /// In case we optimize for size we use repmovsb even if it's less efficient
241   /// so we can save the loads/stores of the leftover.
242   if (DAG.getMachineFunction().getFunction().hasMinSize())
243     return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
244 
245   // Handle the last 1 - 7 bytes.
246   SmallVector<SDValue, 4> Results;
247   Results.push_back(RepMovs);
248   unsigned Offset = Size - BytesLeft;
249   EVT DstVT = Dst.getValueType();
250   EVT SrcVT = Src.getValueType();
251   Results.push_back(DAG.getMemcpy(
252       Chain, dl,
253       DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
254       DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
255       DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile,
256       /*AlwaysInline*/ true, /*isTailCall*/ false,
257       DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
258   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
259 }
260 
261 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
262     SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
263     SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
264     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
265   // If to a segment-relative address space, use the default lowering.
266   if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
267     return SDValue();
268 
269   // If the base registers conflict with our physical registers, use the default
270   // lowering.
271   const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
272                                   X86::ECX, X86::ESI, X86::EDI};
273   if (isBaseRegConflictPossible(DAG, ClobberSet))
274     return SDValue();
275 
276   const X86Subtarget &Subtarget =
277       DAG.getMachineFunction().getSubtarget<X86Subtarget>();
278 
279   // If enabled and available, use fast short rep mov.
280   if (UseFSRMForMemcpy && Subtarget.hasFSRM())
281     return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
282 
283   /// Handle constant sizes,
284   if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
285     return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
286                                   ConstantSize->getZExtValue(),
287                                   Size.getValueType(), Alignment, isVolatile,
288                                   AlwaysInline, DstPtrInfo, SrcPtrInfo);
289 
290   return SDValue();
291 }
292