xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86PartialReduction.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===-- X86PartialReduction.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for add instructions used by a horizontal reduction to see
10 // if we might be able to use pmaddwd or psadbw. Some cases of this require
11 // cross basic block knowledge and can't be done in SelectionDAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86TargetMachine.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/CodeGen/TargetPassConfig.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicsX86.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/KnownBits.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "x86-partial-reduction"
30 
31 namespace {
32 
33 class X86PartialReduction : public FunctionPass {
34   const DataLayout *DL;
35   const X86Subtarget *ST;
36 
37 public:
38   static char ID; // Pass identification, replacement for typeid.
39 
40   X86PartialReduction() : FunctionPass(ID) { }
41 
42   bool runOnFunction(Function &Fn) override;
43 
44   void getAnalysisUsage(AnalysisUsage &AU) const override {
45     AU.setPreservesCFG();
46   }
47 
48   StringRef getPassName() const override {
49     return "X86 Partial Reduction";
50   }
51 
52 private:
53   bool tryMAddReplacement(Instruction *Op, bool ReduceInOneBB);
54   bool trySADReplacement(Instruction *Op);
55 };
56 }
57 
58 FunctionPass *llvm::createX86PartialReductionPass() {
59   return new X86PartialReduction();
60 }
61 
62 char X86PartialReduction::ID = 0;
63 
64 INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,
65                 "X86 Partial Reduction", false, false)
66 
67 // This function should be aligned with detectExtMul() in X86ISelLowering.cpp.
68 static bool matchVPDPBUSDPattern(const X86Subtarget *ST, BinaryOperator *Mul,
69                                  const DataLayout *DL) {
70   if (!ST->hasVNNI() && !ST->hasAVXVNNI())
71     return false;
72 
73   Value *LHS = Mul->getOperand(0);
74   Value *RHS = Mul->getOperand(1);
75 
76   if (isa<SExtInst>(LHS))
77     std::swap(LHS, RHS);
78 
79   auto IsFreeTruncation = [&](Value *Op) {
80     if (auto *Cast = dyn_cast<CastInst>(Op)) {
81       if (Cast->getParent() == Mul->getParent() &&
82           (Cast->getOpcode() == Instruction::SExt ||
83            Cast->getOpcode() == Instruction::ZExt) &&
84           Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 8)
85         return true;
86     }
87 
88     return isa<Constant>(Op);
89   };
90 
91   // (dpbusd (zext a), (sext, b)). Since the first operand should be unsigned
92   // value, we need to check LHS is zero extended value. RHS should be signed
93   // value, so we just check the signed bits.
94   if ((IsFreeTruncation(LHS) &&
95        computeKnownBits(LHS, *DL).countMaxActiveBits() <= 8) &&
96       (IsFreeTruncation(RHS) && ComputeMaxSignificantBits(RHS, *DL) <= 8))
97     return true;
98 
99   return false;
100 }
101 
102 bool X86PartialReduction::tryMAddReplacement(Instruction *Op,
103                                              bool ReduceInOneBB) {
104   if (!ST->hasSSE2())
105     return false;
106 
107   // Need at least 8 elements.
108   if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
109     return false;
110 
111   // Element type should be i32.
112   if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
113     return false;
114 
115   auto *Mul = dyn_cast<BinaryOperator>(Op);
116   if (!Mul || Mul->getOpcode() != Instruction::Mul)
117     return false;
118 
119   Value *LHS = Mul->getOperand(0);
120   Value *RHS = Mul->getOperand(1);
121 
122   // If the target support VNNI, leave it to ISel to combine reduce operation
123   // to VNNI instruction.
124   // TODO: we can support transforming reduce to VNNI intrinsic for across block
125   // in this pass.
126   if (ReduceInOneBB && matchVPDPBUSDPattern(ST, Mul, DL))
127     return false;
128 
129   // LHS and RHS should be only used once or if they are the same then only
130   // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
131   // instructions, otherwise we use punpck to emulate zero extend in stages. The
132   // trunc/ we need to do likely won't introduce new instructions in that case.
133   if (ST->hasSSE41()) {
134     if (LHS == RHS) {
135       if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
136         return false;
137     } else {
138       if (!isa<Constant>(LHS) && !LHS->hasOneUse())
139         return false;
140       if (!isa<Constant>(RHS) && !RHS->hasOneUse())
141         return false;
142     }
143   }
144 
145   auto CanShrinkOp = [&](Value *Op) {
146     auto IsFreeTruncation = [&](Value *Op) {
147       if (auto *Cast = dyn_cast<CastInst>(Op)) {
148         if (Cast->getParent() == Mul->getParent() &&
149             (Cast->getOpcode() == Instruction::SExt ||
150              Cast->getOpcode() == Instruction::ZExt) &&
151             Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
152           return true;
153       }
154 
155       return isa<Constant>(Op);
156     };
157 
158     // If the operation can be freely truncated and has enough sign bits we
159     // can shrink.
160     if (IsFreeTruncation(Op) &&
161         ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
162       return true;
163 
164     // SelectionDAG has limited support for truncating through an add or sub if
165     // the inputs are freely truncatable.
166     if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
167       if (BO->getParent() == Mul->getParent() &&
168           IsFreeTruncation(BO->getOperand(0)) &&
169           IsFreeTruncation(BO->getOperand(1)) &&
170           ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
171         return true;
172     }
173 
174     return false;
175   };
176 
177   // Both Ops need to be shrinkable.
178   if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
179     return false;
180 
181   IRBuilder<> Builder(Mul);
182 
183   auto *MulTy = cast<FixedVectorType>(Op->getType());
184   unsigned NumElts = MulTy->getNumElements();
185 
186   // Extract even elements and odd elements and add them together. This will
187   // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
188   // half the original width.
189   SmallVector<int, 16> EvenMask(NumElts / 2);
190   SmallVector<int, 16> OddMask(NumElts / 2);
191   for (int i = 0, e = NumElts / 2; i != e; ++i) {
192     EvenMask[i] = i * 2;
193     OddMask[i] = i * 2 + 1;
194   }
195   // Creating a new mul so the replaceAllUsesWith below doesn't replace the
196   // uses in the shuffles we're creating.
197   Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
198   Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
199   Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
200   Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);
201 
202   // Concatenate zeroes to extend back to the original type.
203   SmallVector<int, 32> ConcatMask(NumElts);
204   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
205   Value *Zero = Constant::getNullValue(MAdd->getType());
206   Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);
207 
208   Mul->replaceAllUsesWith(Concat);
209   Mul->eraseFromParent();
210 
211   return true;
212 }
213 
214 bool X86PartialReduction::trySADReplacement(Instruction *Op) {
215   if (!ST->hasSSE2())
216     return false;
217 
218   // TODO: There's nothing special about i32, any integer type above i16 should
219   // work just as well.
220   if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
221     return false;
222 
223   // Operand should be a select.
224   auto *SI = dyn_cast<SelectInst>(Op);
225   if (!SI)
226     return false;
227 
228   // Select needs to implement absolute value.
229   Value *LHS, *RHS;
230   auto SPR = matchSelectPattern(SI, LHS, RHS);
231   if (SPR.Flavor != SPF_ABS)
232     return false;
233 
234   // Need a subtract of two values.
235   auto *Sub = dyn_cast<BinaryOperator>(LHS);
236   if (!Sub || Sub->getOpcode() != Instruction::Sub)
237     return false;
238 
239   // Look for zero extend from i8.
240   auto getZeroExtendedVal = [](Value *Op) -> Value * {
241     if (auto *ZExt = dyn_cast<ZExtInst>(Op))
242       if (cast<VectorType>(ZExt->getOperand(0)->getType())
243               ->getElementType()
244               ->isIntegerTy(8))
245         return ZExt->getOperand(0);
246 
247     return nullptr;
248   };
249 
250   // Both operands of the subtract should be extends from vXi8.
251   Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
252   Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
253   if (!Op0 || !Op1)
254     return false;
255 
256   IRBuilder<> Builder(SI);
257 
258   auto *OpTy = cast<FixedVectorType>(Op->getType());
259   unsigned NumElts = OpTy->getNumElements();
260 
261   unsigned IntrinsicNumElts;
262   Intrinsic::ID IID;
263   if (ST->hasBWI() && NumElts >= 64) {
264     IID = Intrinsic::x86_avx512_psad_bw_512;
265     IntrinsicNumElts = 64;
266   } else if (ST->hasAVX2() && NumElts >= 32) {
267     IID = Intrinsic::x86_avx2_psad_bw;
268     IntrinsicNumElts = 32;
269   } else {
270     IID = Intrinsic::x86_sse2_psad_bw;
271     IntrinsicNumElts = 16;
272   }
273 
274   Function *PSADBWFn = Intrinsic::getDeclaration(SI->getModule(), IID);
275 
276   if (NumElts < 16) {
277     // Pad input with zeroes.
278     SmallVector<int, 32> ConcatMask(16);
279     for (unsigned i = 0; i != NumElts; ++i)
280       ConcatMask[i] = i;
281     for (unsigned i = NumElts; i != 16; ++i)
282       ConcatMask[i] = (i % NumElts) + NumElts;
283 
284     Value *Zero = Constant::getNullValue(Op0->getType());
285     Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
286     Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
287     NumElts = 16;
288   }
289 
290   // Intrinsics produce vXi64 and need to be casted to vXi32.
291   auto *I32Ty =
292       FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);
293 
294   assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!");
295   unsigned NumSplits = NumElts / IntrinsicNumElts;
296 
297   // First collect the pieces we need.
298   SmallVector<Value *, 4> Ops(NumSplits);
299   for (unsigned i = 0; i != NumSplits; ++i) {
300     SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
301     std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
302     Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
303     Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
304     Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
305     Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
306   }
307 
308   assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits");
309   unsigned Stages = Log2_32(NumSplits);
310   for (unsigned s = Stages; s > 0; --s) {
311     unsigned NumConcatElts =
312         cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
313     for (unsigned i = 0; i != 1U << (s - 1); ++i) {
314       SmallVector<int, 64> ConcatMask(NumConcatElts);
315       std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
316       Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
317     }
318   }
319 
320   // At this point the final value should be in Ops[0]. Now we need to adjust
321   // it to the final original type.
322   NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
323   if (NumElts == 2) {
324     // Extract down to 2 elements.
325     Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
326   } else if (NumElts >= 8) {
327     SmallVector<int, 32> ConcatMask(NumElts);
328     unsigned SubElts =
329         cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
330     for (unsigned i = 0; i != SubElts; ++i)
331       ConcatMask[i] = i;
332     for (unsigned i = SubElts; i != NumElts; ++i)
333       ConcatMask[i] = (i % SubElts) + SubElts;
334 
335     Value *Zero = Constant::getNullValue(Ops[0]->getType());
336     Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
337   }
338 
339   SI->replaceAllUsesWith(Ops[0]);
340   SI->eraseFromParent();
341 
342   return true;
343 }
344 
345 // Walk backwards from the ExtractElementInst and determine if it is the end of
346 // a horizontal reduction. Return the input to the reduction if we find one.
347 static Value *matchAddReduction(const ExtractElementInst &EE,
348                                 bool &ReduceInOneBB) {
349   ReduceInOneBB = true;
350   // Make sure we're extracting index 0.
351   auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
352   if (!Index || !Index->isNullValue())
353     return nullptr;
354 
355   const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
356   if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
357     return nullptr;
358   if (EE.getParent() != BO->getParent())
359     ReduceInOneBB = false;
360 
361   unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
362   // Ensure the reduction size is a power of 2.
363   if (!isPowerOf2_32(NumElems))
364     return nullptr;
365 
366   const Value *Op = BO;
367   unsigned Stages = Log2_32(NumElems);
368   for (unsigned i = 0; i != Stages; ++i) {
369     const auto *BO = dyn_cast<BinaryOperator>(Op);
370     if (!BO || BO->getOpcode() != Instruction::Add)
371       return nullptr;
372     if (EE.getParent() != BO->getParent())
373       ReduceInOneBB = false;
374 
375     // If this isn't the first add, then it should only have 2 users, the
376     // shuffle and another add which we checked in the previous iteration.
377     if (i != 0 && !BO->hasNUses(2))
378       return nullptr;
379 
380     Value *LHS = BO->getOperand(0);
381     Value *RHS = BO->getOperand(1);
382 
383     auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
384     if (Shuffle) {
385       Op = RHS;
386     } else {
387       Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
388       Op = LHS;
389     }
390 
391     // The first operand of the shuffle should be the same as the other operand
392     // of the bin op.
393     if (!Shuffle || Shuffle->getOperand(0) != Op)
394       return nullptr;
395 
396     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
397     unsigned MaskEnd = 1 << i;
398     for (unsigned Index = 0; Index < MaskEnd; ++Index)
399       if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
400         return nullptr;
401   }
402 
403   return const_cast<Value *>(Op);
404 }
405 
406 // See if this BO is reachable from this Phi by walking forward through single
407 // use BinaryOperators with the same opcode. If we get back then we know we've
408 // found a loop and it is safe to step through this Add to find more leaves.
409 static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) {
410   // The PHI itself should only have one use.
411   if (!Phi->hasOneUse())
412     return false;
413 
414   Instruction *U = cast<Instruction>(*Phi->user_begin());
415   if (U == BO)
416     return true;
417 
418   while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
419     U = cast<Instruction>(*U->user_begin());
420 
421   return U == BO;
422 }
423 
424 // Collect all the leaves of the tree of adds that feeds into the horizontal
425 // reduction. Root is the Value that is used by the horizontal reduction.
426 // We look through single use phis, single use adds, or adds that are used by
427 // a phi that forms a loop with the add.
428 static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) {
429   SmallPtrSet<Value *, 8> Visited;
430   SmallVector<Value *, 8> Worklist;
431   Worklist.push_back(Root);
432 
433   while (!Worklist.empty()) {
434     Value *V = Worklist.pop_back_val();
435      if (!Visited.insert(V).second)
436        continue;
437 
438     if (auto *PN = dyn_cast<PHINode>(V)) {
439       // PHI node should have single use unless it is the root node, then it
440       // has 2 uses.
441       if (!PN->hasNUses(PN == Root ? 2 : 1))
442         break;
443 
444       // Push incoming values to the worklist.
445       append_range(Worklist, PN->incoming_values());
446 
447       continue;
448     }
449 
450     if (auto *BO = dyn_cast<BinaryOperator>(V)) {
451       if (BO->getOpcode() == Instruction::Add) {
452         // Simple case. Single use, just push its operands to the worklist.
453         if (BO->hasNUses(BO == Root ? 2 : 1)) {
454           append_range(Worklist, BO->operands());
455           continue;
456         }
457 
458         // If there is additional use, make sure it is an unvisited phi that
459         // gets us back to this node.
460         if (BO->hasNUses(BO == Root ? 3 : 2)) {
461           PHINode *PN = nullptr;
462           for (auto *U : Root->users())
463             if (auto *P = dyn_cast<PHINode>(U))
464               if (!Visited.count(P))
465                 PN = P;
466 
467           // If we didn't find a 2-input PHI then this isn't a case we can
468           // handle.
469           if (!PN || PN->getNumIncomingValues() != 2)
470             continue;
471 
472           // Walk forward from this phi to see if it reaches back to this add.
473           if (!isReachableFromPHI(PN, BO))
474             continue;
475 
476           // The phi forms a loop with this Add, push its operands.
477           append_range(Worklist, BO->operands());
478         }
479       }
480     }
481 
482     // Not an add or phi, make it a leaf.
483     if (auto *I = dyn_cast<Instruction>(V)) {
484       if (!V->hasNUses(I == Root ? 2 : 1))
485         continue;
486 
487       // Add this as a leaf.
488       Leaves.push_back(I);
489     }
490   }
491 }
492 
493 bool X86PartialReduction::runOnFunction(Function &F) {
494   if (skipFunction(F))
495     return false;
496 
497   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
498   if (!TPC)
499     return false;
500 
501   auto &TM = TPC->getTM<X86TargetMachine>();
502   ST = TM.getSubtargetImpl(F);
503 
504   DL = &F.getParent()->getDataLayout();
505 
506   bool MadeChange = false;
507   for (auto &BB : F) {
508     for (auto &I : BB) {
509       auto *EE = dyn_cast<ExtractElementInst>(&I);
510       if (!EE)
511         continue;
512 
513       bool ReduceInOneBB;
514       // First find a reduction tree.
515       // FIXME: Do we need to handle other opcodes than Add?
516       Value *Root = matchAddReduction(*EE, ReduceInOneBB);
517       if (!Root)
518         continue;
519 
520       SmallVector<Instruction *, 8> Leaves;
521       collectLeaves(Root, Leaves);
522 
523       for (Instruction *I : Leaves) {
524         if (tryMAddReplacement(I, ReduceInOneBB)) {
525           MadeChange = true;
526           continue;
527         }
528 
529         // Don't do SAD matching on the root node. SelectionDAG already
530         // has support for that and currently generates better code.
531         if (I != Root && trySADReplacement(I))
532           MadeChange = true;
533       }
534     }
535   }
536 
537   return MadeChange;
538 }
539