xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86MCInstLower.cpp (revision 9a7f7b2480a9f332f7f7f19ee00dc1606dfd2265)
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86EncodingOptimization.h"
17 #include "MCTargetDesc/X86InstComments.h"
18 #include "MCTargetDesc/X86ShuffleDecode.h"
19 #include "MCTargetDesc/X86TargetStreamer.h"
20 #include "X86AsmPrinter.h"
21 #include "X86MachineFunctionInfo.h"
22 #include "X86RegisterInfo.h"
23 #include "X86ShuffleDecodeConstantPool.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCCodeEmitter.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCExpr.h"
39 #include "llvm/MC/MCFixup.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstBuilder.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCSectionELF.h"
44 #include "llvm/MC/MCStreamer.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/MCSymbolELF.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
51 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
52 #include <string>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
59 class X86MCInstLower {
60   MCContext &Ctx;
61   const MachineFunction &MF;
62   const TargetMachine &TM;
63   const MCAsmInfo &MAI;
64   X86AsmPrinter &AsmPrinter;
65 
66 public:
67   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
68 
69   std::optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
70                                                const MachineOperand &MO) const;
71   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
72 
73   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
74   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
75 
76 private:
77   MachineModuleInfoMachO &getMachOMMI() const;
78 };
79 
80 } // end anonymous namespace
81 
82 /// A RAII helper which defines a region of instructions which can't have
83 /// padding added between them for correctness.
84 struct NoAutoPaddingScope {
85   MCStreamer &OS;
86   const bool OldAllowAutoPadding;
87   NoAutoPaddingScope(MCStreamer &OS)
88       : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
89     changeAndComment(false);
90   }
91   ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
92   void changeAndComment(bool b) {
93     if (b == OS.getAllowAutoPadding())
94       return;
95     OS.setAllowAutoPadding(b);
96     if (b)
97       OS.emitRawComment("autopadding");
98     else
99       OS.emitRawComment("noautopadding");
100   }
101 };
102 
103 // Emit a minimal sequence of nops spanning NumBytes bytes.
104 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
105                         const X86Subtarget *Subtarget);
106 
107 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
108                                                  const MCSubtargetInfo &STI,
109                                                  MCCodeEmitter *CodeEmitter) {
110   if (InShadow) {
111     SmallString<256> Code;
112     SmallVector<MCFixup, 4> Fixups;
113     CodeEmitter->encodeInstruction(Inst, Code, Fixups, STI);
114     CurrentShadowSize += Code.size();
115     if (CurrentShadowSize >= RequiredShadowSize)
116       InShadow = false; // The shadow is big enough. Stop counting.
117   }
118 }
119 
120 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
121     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
122   if (InShadow && CurrentShadowSize < RequiredShadowSize) {
123     InShadow = false;
124     emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
125                 &MF->getSubtarget<X86Subtarget>());
126   }
127 }
128 
129 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
130   OutStreamer->emitInstruction(Inst, getSubtargetInfo());
131   SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
132 }
133 
134 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
135                                X86AsmPrinter &asmprinter)
136     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
137       AsmPrinter(asmprinter) {}
138 
139 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
140   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
141 }
142 
143 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
144 /// operand to an MCSymbol.
145 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
146   const Triple &TT = TM.getTargetTriple();
147   if (MO.isGlobal() && TT.isOSBinFormatELF())
148     return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
149 
150   const DataLayout &DL = MF.getDataLayout();
151   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
152          "Isn't a symbol reference");
153 
154   MCSymbol *Sym = nullptr;
155   SmallString<128> Name;
156   StringRef Suffix;
157 
158   switch (MO.getTargetFlags()) {
159   case X86II::MO_DLLIMPORT:
160     // Handle dllimport linkage.
161     Name += "__imp_";
162     break;
163   case X86II::MO_COFFSTUB:
164     Name += ".refptr.";
165     break;
166   case X86II::MO_DARWIN_NONLAZY:
167   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
168     Suffix = "$non_lazy_ptr";
169     break;
170   }
171 
172   if (!Suffix.empty())
173     Name += DL.getPrivateGlobalPrefix();
174 
175   if (MO.isGlobal()) {
176     const GlobalValue *GV = MO.getGlobal();
177     AsmPrinter.getNameWithPrefix(Name, GV);
178   } else if (MO.isSymbol()) {
179     Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
180   } else if (MO.isMBB()) {
181     assert(Suffix.empty());
182     Sym = MO.getMBB()->getSymbol();
183   }
184 
185   Name += Suffix;
186   if (!Sym)
187     Sym = Ctx.getOrCreateSymbol(Name);
188 
189   // If the target flags on the operand changes the name of the symbol, do that
190   // before we return the symbol.
191   switch (MO.getTargetFlags()) {
192   default:
193     break;
194   case X86II::MO_COFFSTUB: {
195     MachineModuleInfoCOFF &MMICOFF =
196         MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
197     MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
198     if (!StubSym.getPointer()) {
199       assert(MO.isGlobal() && "Extern symbol not handled yet");
200       StubSym = MachineModuleInfoImpl::StubValueTy(
201           AsmPrinter.getSymbol(MO.getGlobal()), true);
202     }
203     break;
204   }
205   case X86II::MO_DARWIN_NONLAZY:
206   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
207     MachineModuleInfoImpl::StubValueTy &StubSym =
208         getMachOMMI().getGVStubEntry(Sym);
209     if (!StubSym.getPointer()) {
210       assert(MO.isGlobal() && "Extern symbol not handled yet");
211       StubSym = MachineModuleInfoImpl::StubValueTy(
212           AsmPrinter.getSymbol(MO.getGlobal()),
213           !MO.getGlobal()->hasInternalLinkage());
214     }
215     break;
216   }
217   }
218 
219   return Sym;
220 }
221 
222 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
223                                              MCSymbol *Sym) const {
224   // FIXME: We would like an efficient form for this, so we don't have to do a
225   // lot of extra uniquing.
226   const MCExpr *Expr = nullptr;
227   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
228 
229   switch (MO.getTargetFlags()) {
230   default:
231     llvm_unreachable("Unknown target flag on GV operand");
232   case X86II::MO_NO_FLAG: // No flag.
233   // These affect the name of the symbol, not any suffix.
234   case X86II::MO_DARWIN_NONLAZY:
235   case X86II::MO_DLLIMPORT:
236   case X86II::MO_COFFSTUB:
237     break;
238 
239   case X86II::MO_TLVP:
240     RefKind = MCSymbolRefExpr::VK_TLVP;
241     break;
242   case X86II::MO_TLVP_PIC_BASE:
243     Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
244     // Subtract the pic base.
245     Expr = MCBinaryExpr::createSub(
246         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
247     break;
248   case X86II::MO_SECREL:
249     RefKind = MCSymbolRefExpr::VK_SECREL;
250     break;
251   case X86II::MO_TLSGD:
252     RefKind = MCSymbolRefExpr::VK_TLSGD;
253     break;
254   case X86II::MO_TLSLD:
255     RefKind = MCSymbolRefExpr::VK_TLSLD;
256     break;
257   case X86II::MO_TLSLDM:
258     RefKind = MCSymbolRefExpr::VK_TLSLDM;
259     break;
260   case X86II::MO_GOTTPOFF:
261     RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
262     break;
263   case X86II::MO_INDNTPOFF:
264     RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
265     break;
266   case X86II::MO_TPOFF:
267     RefKind = MCSymbolRefExpr::VK_TPOFF;
268     break;
269   case X86II::MO_DTPOFF:
270     RefKind = MCSymbolRefExpr::VK_DTPOFF;
271     break;
272   case X86II::MO_NTPOFF:
273     RefKind = MCSymbolRefExpr::VK_NTPOFF;
274     break;
275   case X86II::MO_GOTNTPOFF:
276     RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
277     break;
278   case X86II::MO_GOTPCREL:
279     RefKind = MCSymbolRefExpr::VK_GOTPCREL;
280     break;
281   case X86II::MO_GOTPCREL_NORELAX:
282     RefKind = MCSymbolRefExpr::VK_GOTPCREL_NORELAX;
283     break;
284   case X86II::MO_GOT:
285     RefKind = MCSymbolRefExpr::VK_GOT;
286     break;
287   case X86II::MO_GOTOFF:
288     RefKind = MCSymbolRefExpr::VK_GOTOFF;
289     break;
290   case X86II::MO_PLT:
291     RefKind = MCSymbolRefExpr::VK_PLT;
292     break;
293   case X86II::MO_ABS8:
294     RefKind = MCSymbolRefExpr::VK_X86_ABS8;
295     break;
296   case X86II::MO_PIC_BASE_OFFSET:
297   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
298     Expr = MCSymbolRefExpr::create(Sym, Ctx);
299     // Subtract the pic base.
300     Expr = MCBinaryExpr::createSub(
301         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
302     if (MO.isJTI()) {
303       assert(MAI.doesSetDirectiveSuppressReloc());
304       // If .set directive is supported, use it to reduce the number of
305       // relocations the assembler will generate for differences between
306       // local labels. This is only safe when the symbols are in the same
307       // section so we are restricting it to jumptable references.
308       MCSymbol *Label = Ctx.createTempSymbol();
309       AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
310       Expr = MCSymbolRefExpr::create(Label, Ctx);
311     }
312     break;
313   }
314 
315   if (!Expr)
316     Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
317 
318   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
319     Expr = MCBinaryExpr::createAdd(
320         Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
321   return MCOperand::createExpr(Expr);
322 }
323 
324 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
325   return Subtarget.is64Bit() ? X86::RET64 : X86::RET32;
326 }
327 
328 std::optional<MCOperand>
329 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
330                                     const MachineOperand &MO) const {
331   switch (MO.getType()) {
332   default:
333     MI->print(errs());
334     llvm_unreachable("unknown operand type");
335   case MachineOperand::MO_Register:
336     // Ignore all implicit register operands.
337     if (MO.isImplicit())
338       return std::nullopt;
339     return MCOperand::createReg(MO.getReg());
340   case MachineOperand::MO_Immediate:
341     return MCOperand::createImm(MO.getImm());
342   case MachineOperand::MO_MachineBasicBlock:
343   case MachineOperand::MO_GlobalAddress:
344   case MachineOperand::MO_ExternalSymbol:
345     return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
346   case MachineOperand::MO_MCSymbol:
347     return LowerSymbolOperand(MO, MO.getMCSymbol());
348   case MachineOperand::MO_JumpTableIndex:
349     return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
350   case MachineOperand::MO_ConstantPoolIndex:
351     return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
352   case MachineOperand::MO_BlockAddress:
353     return LowerSymbolOperand(
354         MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
355   case MachineOperand::MO_RegisterMask:
356     // Ignore call clobbers.
357     return std::nullopt;
358   }
359 }
360 
361 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
362 // information.
363 static unsigned convertTailJumpOpcode(unsigned Opcode) {
364   switch (Opcode) {
365   case X86::TAILJMPr:
366     Opcode = X86::JMP32r;
367     break;
368   case X86::TAILJMPm:
369     Opcode = X86::JMP32m;
370     break;
371   case X86::TAILJMPr64:
372     Opcode = X86::JMP64r;
373     break;
374   case X86::TAILJMPm64:
375     Opcode = X86::JMP64m;
376     break;
377   case X86::TAILJMPr64_REX:
378     Opcode = X86::JMP64r_REX;
379     break;
380   case X86::TAILJMPm64_REX:
381     Opcode = X86::JMP64m_REX;
382     break;
383   case X86::TAILJMPd:
384   case X86::TAILJMPd64:
385     Opcode = X86::JMP_1;
386     break;
387   case X86::TAILJMPd_CC:
388   case X86::TAILJMPd64_CC:
389     Opcode = X86::JCC_1;
390     break;
391   }
392 
393   return Opcode;
394 }
395 
396 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
397   OutMI.setOpcode(MI->getOpcode());
398 
399   for (const MachineOperand &MO : MI->operands())
400     if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
401       OutMI.addOperand(*MaybeMCOp);
402 
403   bool In64BitMode = AsmPrinter.getSubtarget().is64Bit();
404   if (X86::optimizeInstFromVEX3ToVEX2(OutMI, MI->getDesc()) ||
405       X86::optimizeShiftRotateWithImmediateOne(OutMI) ||
406       X86::optimizeVPCMPWithImmediateOneOrSix(OutMI) ||
407       X86::optimizeMOVSX(OutMI) || X86::optimizeINCDEC(OutMI, In64BitMode) ||
408       X86::optimizeMOV(OutMI, In64BitMode) ||
409       X86::optimizeToFixedRegisterOrShortImmediateForm(OutMI))
410     return;
411 
412   // Handle a few special cases to eliminate operand modifiers.
413   switch (OutMI.getOpcode()) {
414   case X86::LEA64_32r:
415   case X86::LEA64r:
416   case X86::LEA16r:
417   case X86::LEA32r:
418     // LEA should have a segment register, but it must be empty.
419     assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
420            "Unexpected # of LEA operands");
421     assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
422            "LEA has segment specified!");
423     break;
424   case X86::MULX32Hrr:
425   case X86::MULX32Hrm:
426   case X86::MULX64Hrr:
427   case X86::MULX64Hrm: {
428     // Turn into regular MULX by duplicating the destination.
429     unsigned NewOpc;
430     switch (OutMI.getOpcode()) {
431     default: llvm_unreachable("Invalid opcode");
432     case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
433     case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
434     case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
435     case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
436     }
437     OutMI.setOpcode(NewOpc);
438     // Duplicate the destination.
439     unsigned DestReg = OutMI.getOperand(0).getReg();
440     OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
441     break;
442   }
443   // CALL64r, CALL64pcrel32 - These instructions used to have
444   // register inputs modeled as normal uses instead of implicit uses.  As such,
445   // they we used to truncate off all but the first operand (the callee). This
446   // issue seems to have been fixed at some point. This assert verifies that.
447   case X86::CALL64r:
448   case X86::CALL64pcrel32:
449     assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
450     break;
451   case X86::EH_RETURN:
452   case X86::EH_RETURN64: {
453     OutMI = MCInst();
454     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
455     break;
456   }
457   case X86::CLEANUPRET: {
458     // Replace CLEANUPRET with the appropriate RET.
459     OutMI = MCInst();
460     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
461     break;
462   }
463   case X86::CATCHRET: {
464     // Replace CATCHRET with the appropriate RET.
465     const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
466     unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX;
467     OutMI = MCInst();
468     OutMI.setOpcode(getRetOpcode(Subtarget));
469     OutMI.addOperand(MCOperand::createReg(ReturnReg));
470     break;
471   }
472   // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
473   // instruction.
474   case X86::TAILJMPr:
475   case X86::TAILJMPr64:
476   case X86::TAILJMPr64_REX:
477   case X86::TAILJMPd:
478   case X86::TAILJMPd64:
479     assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
480     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
481     break;
482   case X86::TAILJMPd_CC:
483   case X86::TAILJMPd64_CC:
484     assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
485     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
486     break;
487   case X86::TAILJMPm:
488   case X86::TAILJMPm64:
489   case X86::TAILJMPm64_REX:
490     assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
491            "Unexpected number of operands!");
492     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
493     break;
494   case X86::MASKMOVDQU:
495   case X86::VMASKMOVDQU:
496     if (In64BitMode)
497       OutMI.setFlags(X86::IP_HAS_AD_SIZE);
498     break;
499   case X86::BSF16rm:
500   case X86::BSF16rr:
501   case X86::BSF32rm:
502   case X86::BSF32rr:
503   case X86::BSF64rm:
504   case X86::BSF64rr: {
505     // Add an REP prefix to BSF instructions so that new processors can
506     // recognize as TZCNT, which has better performance than BSF.
507     // BSF and TZCNT have different interpretations on ZF bit. So make sure
508     // it won't be used later.
509     const MachineOperand *FlagDef = MI->findRegisterDefOperand(X86::EFLAGS);
510     if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead())
511       OutMI.setFlags(X86::IP_HAS_REPEAT);
512     break;
513   }
514   default:
515     break;
516   }
517 }
518 
519 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
520                                  const MachineInstr &MI) {
521   NoAutoPaddingScope NoPadScope(*OutStreamer);
522   bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 &&
523                   MI.getOpcode() != X86::TLS_base_addr32;
524   bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 ||
525                       MI.getOpcode() == X86::TLS_base_addr64;
526   MCContext &Ctx = OutStreamer->getContext();
527 
528   MCSymbolRefExpr::VariantKind SRVK;
529   switch (MI.getOpcode()) {
530   case X86::TLS_addr32:
531   case X86::TLS_addr64:
532   case X86::TLS_addrX32:
533     SRVK = MCSymbolRefExpr::VK_TLSGD;
534     break;
535   case X86::TLS_base_addr32:
536     SRVK = MCSymbolRefExpr::VK_TLSLDM;
537     break;
538   case X86::TLS_base_addr64:
539   case X86::TLS_base_addrX32:
540     SRVK = MCSymbolRefExpr::VK_TLSLD;
541     break;
542   default:
543     llvm_unreachable("unexpected opcode");
544   }
545 
546   const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
547       MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
548 
549   // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
550   // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
551   // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
552   // only using GOT when GOTPCRELX is enabled.
553   // TODO Delete the workaround when GOTPCRELX becomes commonplace.
554   bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
555                 Ctx.getAsmInfo()->canRelaxRelocations();
556 
557   if (Is64Bits) {
558     bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
559     if (NeedsPadding && Is64BitsLP64)
560       EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
561     EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
562                                 .addReg(X86::RDI)
563                                 .addReg(X86::RIP)
564                                 .addImm(1)
565                                 .addReg(0)
566                                 .addExpr(Sym)
567                                 .addReg(0));
568     const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
569     if (NeedsPadding) {
570       if (!UseGot)
571         EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
572       EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
573       EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
574     }
575     if (UseGot) {
576       const MCExpr *Expr = MCSymbolRefExpr::create(
577           TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
578       EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
579                                   .addReg(X86::RIP)
580                                   .addImm(1)
581                                   .addReg(0)
582                                   .addExpr(Expr)
583                                   .addReg(0));
584     } else {
585       EmitAndCountInstruction(
586           MCInstBuilder(X86::CALL64pcrel32)
587               .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
588                                                MCSymbolRefExpr::VK_PLT, Ctx)));
589     }
590   } else {
591     if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
592       EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
593                                   .addReg(X86::EAX)
594                                   .addReg(0)
595                                   .addImm(1)
596                                   .addReg(X86::EBX)
597                                   .addExpr(Sym)
598                                   .addReg(0));
599     } else {
600       EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
601                                   .addReg(X86::EAX)
602                                   .addReg(X86::EBX)
603                                   .addImm(1)
604                                   .addReg(0)
605                                   .addExpr(Sym)
606                                   .addReg(0));
607     }
608 
609     const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
610     if (UseGot) {
611       const MCExpr *Expr =
612           MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
613       EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
614                                   .addReg(X86::EBX)
615                                   .addImm(1)
616                                   .addReg(0)
617                                   .addExpr(Expr)
618                                   .addReg(0));
619     } else {
620       EmitAndCountInstruction(
621           MCInstBuilder(X86::CALLpcrel32)
622               .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
623                                                MCSymbolRefExpr::VK_PLT, Ctx)));
624     }
625   }
626 }
627 
628 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
629 /// bytes.  Return the size of nop emitted.
630 static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
631                         const X86Subtarget *Subtarget) {
632   // Determine the longest nop which can be efficiently decoded for the given
633   // target cpu.  15-bytes is the longest single NOP instruction, but some
634   // platforms can't decode the longest forms efficiently.
635   unsigned MaxNopLength = 1;
636   if (Subtarget->is64Bit()) {
637     // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
638     // IndexReg/BaseReg below need to be updated.
639     if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
640       MaxNopLength = 7;
641     else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
642       MaxNopLength = 15;
643     else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
644       MaxNopLength = 11;
645     else
646       MaxNopLength = 10;
647   } if (Subtarget->is32Bit())
648     MaxNopLength = 2;
649 
650   // Cap a single nop emission at the profitable value for the target
651   NumBytes = std::min(NumBytes, MaxNopLength);
652 
653   unsigned NopSize;
654   unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
655   IndexReg = Displacement = SegmentReg = 0;
656   BaseReg = X86::RAX;
657   ScaleVal = 1;
658   switch (NumBytes) {
659   case 0:
660     llvm_unreachable("Zero nops?");
661     break;
662   case 1:
663     NopSize = 1;
664     Opc = X86::NOOP;
665     break;
666   case 2:
667     NopSize = 2;
668     Opc = X86::XCHG16ar;
669     break;
670   case 3:
671     NopSize = 3;
672     Opc = X86::NOOPL;
673     break;
674   case 4:
675     NopSize = 4;
676     Opc = X86::NOOPL;
677     Displacement = 8;
678     break;
679   case 5:
680     NopSize = 5;
681     Opc = X86::NOOPL;
682     Displacement = 8;
683     IndexReg = X86::RAX;
684     break;
685   case 6:
686     NopSize = 6;
687     Opc = X86::NOOPW;
688     Displacement = 8;
689     IndexReg = X86::RAX;
690     break;
691   case 7:
692     NopSize = 7;
693     Opc = X86::NOOPL;
694     Displacement = 512;
695     break;
696   case 8:
697     NopSize = 8;
698     Opc = X86::NOOPL;
699     Displacement = 512;
700     IndexReg = X86::RAX;
701     break;
702   case 9:
703     NopSize = 9;
704     Opc = X86::NOOPW;
705     Displacement = 512;
706     IndexReg = X86::RAX;
707     break;
708   default:
709     NopSize = 10;
710     Opc = X86::NOOPW;
711     Displacement = 512;
712     IndexReg = X86::RAX;
713     SegmentReg = X86::CS;
714     break;
715   }
716 
717   unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
718   NopSize += NumPrefixes;
719   for (unsigned i = 0; i != NumPrefixes; ++i)
720     OS.emitBytes("\x66");
721 
722   switch (Opc) {
723   default: llvm_unreachable("Unexpected opcode");
724   case X86::NOOP:
725     OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
726     break;
727   case X86::XCHG16ar:
728     OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
729                        *Subtarget);
730     break;
731   case X86::NOOPL:
732   case X86::NOOPW:
733     OS.emitInstruction(MCInstBuilder(Opc)
734                            .addReg(BaseReg)
735                            .addImm(ScaleVal)
736                            .addReg(IndexReg)
737                            .addImm(Displacement)
738                            .addReg(SegmentReg),
739                        *Subtarget);
740     break;
741   }
742   assert(NopSize <= NumBytes && "We overemitted?");
743   return NopSize;
744 }
745 
746 /// Emit the optimal amount of multi-byte nops on X86.
747 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
748                         const X86Subtarget *Subtarget) {
749   unsigned NopsToEmit = NumBytes;
750   (void)NopsToEmit;
751   while (NumBytes) {
752     NumBytes -= emitNop(OS, NumBytes, Subtarget);
753     assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
754   }
755 }
756 
757 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
758                                     X86MCInstLower &MCIL) {
759   assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
760 
761   NoAutoPaddingScope NoPadScope(*OutStreamer);
762 
763   StatepointOpers SOpers(&MI);
764   if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
765     emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
766   } else {
767     // Lower call target and choose correct opcode
768     const MachineOperand &CallTarget = SOpers.getCallTarget();
769     MCOperand CallTargetMCOp;
770     unsigned CallOpcode;
771     switch (CallTarget.getType()) {
772     case MachineOperand::MO_GlobalAddress:
773     case MachineOperand::MO_ExternalSymbol:
774       CallTargetMCOp = MCIL.LowerSymbolOperand(
775           CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
776       CallOpcode = X86::CALL64pcrel32;
777       // Currently, we only support relative addressing with statepoints.
778       // Otherwise, we'll need a scratch register to hold the target
779       // address.  You'll fail asserts during load & relocation if this
780       // symbol is to far away. (TODO: support non-relative addressing)
781       break;
782     case MachineOperand::MO_Immediate:
783       CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
784       CallOpcode = X86::CALL64pcrel32;
785       // Currently, we only support relative addressing with statepoints.
786       // Otherwise, we'll need a scratch register to hold the target
787       // immediate.  You'll fail asserts during load & relocation if this
788       // address is to far away. (TODO: support non-relative addressing)
789       break;
790     case MachineOperand::MO_Register:
791       // FIXME: Add retpoline support and remove this.
792       if (Subtarget->useIndirectThunkCalls())
793         report_fatal_error("Lowering register statepoints with thunks not "
794                            "yet implemented.");
795       CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
796       CallOpcode = X86::CALL64r;
797       break;
798     default:
799       llvm_unreachable("Unsupported operand type in statepoint call target");
800       break;
801     }
802 
803     // Emit call
804     MCInst CallInst;
805     CallInst.setOpcode(CallOpcode);
806     CallInst.addOperand(CallTargetMCOp);
807     OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
808   }
809 
810   // Record our statepoint node in the same section used by STACKMAP
811   // and PATCHPOINT
812   auto &Ctx = OutStreamer->getContext();
813   MCSymbol *MILabel = Ctx.createTempSymbol();
814   OutStreamer->emitLabel(MILabel);
815   SM.recordStatepoint(*MILabel, MI);
816 }
817 
818 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
819                                      X86MCInstLower &MCIL) {
820   // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
821   //                  <opcode>, <operands>
822 
823   NoAutoPaddingScope NoPadScope(*OutStreamer);
824 
825   Register DefRegister = FaultingMI.getOperand(0).getReg();
826   FaultMaps::FaultKind FK =
827       static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
828   MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
829   unsigned Opcode = FaultingMI.getOperand(3).getImm();
830   unsigned OperandsBeginIdx = 4;
831 
832   auto &Ctx = OutStreamer->getContext();
833   MCSymbol *FaultingLabel = Ctx.createTempSymbol();
834   OutStreamer->emitLabel(FaultingLabel);
835 
836   assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
837   FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
838 
839   MCInst MI;
840   MI.setOpcode(Opcode);
841 
842   if (DefRegister != X86::NoRegister)
843     MI.addOperand(MCOperand::createReg(DefRegister));
844 
845   for (const MachineOperand &MO :
846        llvm::drop_begin(FaultingMI.operands(), OperandsBeginIdx))
847     if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, MO))
848       MI.addOperand(*MaybeOperand);
849 
850   OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
851   OutStreamer->emitInstruction(MI, getSubtargetInfo());
852 }
853 
854 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
855                                      X86MCInstLower &MCIL) {
856   bool Is64Bits = Subtarget->is64Bit();
857   MCContext &Ctx = OutStreamer->getContext();
858   MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
859   const MCSymbolRefExpr *Op =
860       MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
861 
862   EmitAndCountInstruction(
863       MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
864           .addExpr(Op));
865 }
866 
867 void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) {
868   assert(std::next(MI.getIterator())->isCall() &&
869          "KCFI_CHECK not followed by a call instruction");
870 
871   // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop()
872   // returns a 1-byte X86::NOOP, which means the offset is the same in
873   // bytes.  This assumes that patchable-function-prefix is the same for all
874   // functions.
875   const MachineFunction &MF = *MI.getMF();
876   int64_t PrefixNops = 0;
877   (void)MF.getFunction()
878       .getFnAttribute("patchable-function-prefix")
879       .getValueAsString()
880       .getAsInteger(10, PrefixNops);
881 
882   // KCFI allows indirect calls to any location that's preceded by a valid
883   // type identifier. To avoid encoding the full constant into an instruction,
884   // and thus emitting potential call target gadgets at each indirect call
885   // site, load a negated constant to a register and compare that to the
886   // expected value at the call target.
887   const Register AddrReg = MI.getOperand(0).getReg();
888   const uint32_t Type = MI.getOperand(1).getImm();
889   // The check is immediately before the call. If the call target is in R10,
890   // we can clobber R11 for the check instead.
891   unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D;
892   EmitAndCountInstruction(
893       MCInstBuilder(X86::MOV32ri).addReg(TempReg).addImm(-MaskKCFIType(Type)));
894   EmitAndCountInstruction(MCInstBuilder(X86::ADD32rm)
895                               .addReg(X86::NoRegister)
896                               .addReg(TempReg)
897                               .addReg(AddrReg)
898                               .addImm(1)
899                               .addReg(X86::NoRegister)
900                               .addImm(-(PrefixNops + 4))
901                               .addReg(X86::NoRegister));
902 
903   MCSymbol *Pass = OutContext.createTempSymbol();
904   EmitAndCountInstruction(
905       MCInstBuilder(X86::JCC_1)
906           .addExpr(MCSymbolRefExpr::create(Pass, OutContext))
907           .addImm(X86::COND_E));
908 
909   MCSymbol *Trap = OutContext.createTempSymbol();
910   OutStreamer->emitLabel(Trap);
911   EmitAndCountInstruction(MCInstBuilder(X86::TRAP));
912   emitKCFITrapEntry(MF, Trap);
913   OutStreamer->emitLabel(Pass);
914 }
915 
916 void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
917   // FIXME: Make this work on non-ELF.
918   if (!TM.getTargetTriple().isOSBinFormatELF()) {
919     report_fatal_error("llvm.asan.check.memaccess only supported on ELF");
920     return;
921   }
922 
923   const auto &Reg = MI.getOperand(0).getReg();
924   ASanAccessInfo AccessInfo(MI.getOperand(1).getImm());
925 
926   uint64_t ShadowBase;
927   int MappingScale;
928   bool OrShadowOffset;
929   getAddressSanitizerParams(Triple(TM.getTargetTriple()), 64,
930                             AccessInfo.CompileKernel, &ShadowBase,
931                             &MappingScale, &OrShadowOffset);
932 
933   StringRef Name = AccessInfo.IsWrite ? "store" : "load";
934   StringRef Op = OrShadowOffset ? "or" : "add";
935   std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" +
936                          Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" +
937                          TM.getMCRegisterInfo()->getName(Reg.asMCReg()))
938                             .str();
939   if (OrShadowOffset)
940     report_fatal_error(
941         "OrShadowOffset is not supported with optimized callbacks");
942 
943   EmitAndCountInstruction(
944       MCInstBuilder(X86::CALL64pcrel32)
945           .addExpr(MCSymbolRefExpr::create(
946               OutContext.getOrCreateSymbol(SymName), OutContext)));
947 }
948 
949 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
950                                       X86MCInstLower &MCIL) {
951   // PATCHABLE_OP minsize
952 
953   NoAutoPaddingScope NoPadScope(*OutStreamer);
954 
955   auto NextMI = std::find_if(std::next(MI.getIterator()),
956                              MI.getParent()->end().getInstrIterator(),
957                              [](auto &II) { return !II.isMetaInstruction(); });
958 
959   SmallString<256> Code;
960   unsigned MinSize = MI.getOperand(0).getImm();
961 
962   if (NextMI != MI.getParent()->end()) {
963     // Lower the next MachineInstr to find its byte size.
964     MCInst MCI;
965     MCIL.Lower(&*NextMI, MCI);
966 
967     SmallVector<MCFixup, 4> Fixups;
968     CodeEmitter->encodeInstruction(MCI, Code, Fixups, getSubtargetInfo());
969   }
970 
971   if (Code.size() < MinSize) {
972     if (MinSize == 2 && Subtarget->is32Bit() &&
973         Subtarget->isTargetWindowsMSVC() &&
974         (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
975       // For compatibility reasons, when targetting MSVC, it is important to
976       // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
977       // rely specifically on this pattern to be able to patch a function.
978       // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
979       OutStreamer->emitInstruction(
980           MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
981           *Subtarget);
982     } else {
983       unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
984       assert(NopSize == MinSize && "Could not implement MinSize!");
985       (void)NopSize;
986     }
987   }
988 }
989 
990 // Lower a stackmap of the form:
991 // <id>, <shadowBytes>, ...
992 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
993   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
994 
995   auto &Ctx = OutStreamer->getContext();
996   MCSymbol *MILabel = Ctx.createTempSymbol();
997   OutStreamer->emitLabel(MILabel);
998 
999   SM.recordStackMap(*MILabel, MI);
1000   unsigned NumShadowBytes = MI.getOperand(1).getImm();
1001   SMShadowTracker.reset(NumShadowBytes);
1002 }
1003 
1004 // Lower a patchpoint of the form:
1005 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1006 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1007                                     X86MCInstLower &MCIL) {
1008   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1009 
1010   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1011 
1012   NoAutoPaddingScope NoPadScope(*OutStreamer);
1013 
1014   auto &Ctx = OutStreamer->getContext();
1015   MCSymbol *MILabel = Ctx.createTempSymbol();
1016   OutStreamer->emitLabel(MILabel);
1017   SM.recordPatchPoint(*MILabel, MI);
1018 
1019   PatchPointOpers opers(&MI);
1020   unsigned ScratchIdx = opers.getNextScratchIdx();
1021   unsigned EncodedBytes = 0;
1022   const MachineOperand &CalleeMO = opers.getCallTarget();
1023 
1024   // Check for null target. If target is non-null (i.e. is non-zero or is
1025   // symbolic) then emit a call.
1026   if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1027     MCOperand CalleeMCOp;
1028     switch (CalleeMO.getType()) {
1029     default:
1030       /// FIXME: Add a verifier check for bad callee types.
1031       llvm_unreachable("Unrecognized callee operand type.");
1032     case MachineOperand::MO_Immediate:
1033       if (CalleeMO.getImm())
1034         CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1035       break;
1036     case MachineOperand::MO_ExternalSymbol:
1037     case MachineOperand::MO_GlobalAddress:
1038       CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1039                                            MCIL.GetSymbolFromOperand(CalleeMO));
1040       break;
1041     }
1042 
1043     // Emit MOV to materialize the target address and the CALL to target.
1044     // This is encoded with 12-13 bytes, depending on which register is used.
1045     Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1046     if (X86II::isX86_64ExtendedReg(ScratchReg))
1047       EncodedBytes = 13;
1048     else
1049       EncodedBytes = 12;
1050 
1051     EmitAndCountInstruction(
1052         MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1053     // FIXME: Add retpoline support and remove this.
1054     if (Subtarget->useIndirectThunkCalls())
1055       report_fatal_error(
1056           "Lowering patchpoint with thunks not yet implemented.");
1057     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1058   }
1059 
1060   // Emit padding.
1061   unsigned NumBytes = opers.getNumPatchBytes();
1062   assert(NumBytes >= EncodedBytes &&
1063          "Patchpoint can't request size less than the length of a call.");
1064 
1065   emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
1066 }
1067 
1068 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1069                                               X86MCInstLower &MCIL) {
1070   assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1071 
1072   NoAutoPaddingScope NoPadScope(*OutStreamer);
1073 
1074   // We want to emit the following pattern, which follows the x86 calling
1075   // convention to prepare for the trampoline call to be patched in.
1076   //
1077   //   .p2align 1, ...
1078   // .Lxray_event_sled_N:
1079   //   jmp +N                        // jump across the instrumentation sled
1080   //   ...                           // set up arguments in register
1081   //   callq __xray_CustomEvent@plt  // force dependency to symbol
1082   //   ...
1083   //   <jump here>
1084   //
1085   // After patching, it would look something like:
1086   //
1087   //   nopw (2-byte nop)
1088   //   ...
1089   //   callq __xrayCustomEvent  // already lowered
1090   //   ...
1091   //
1092   // ---
1093   // First we emit the label and the jump.
1094   auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1095   OutStreamer->AddComment("# XRay Custom Event Log");
1096   OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1097   OutStreamer->emitLabel(CurSled);
1098 
1099   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1100   // an operand (computed as an offset from the jmp instruction).
1101   // FIXME: Find another less hacky way do force the relative jump.
1102   OutStreamer->emitBinaryData("\xeb\x0f");
1103 
1104   // The default C calling convention will place two arguments into %rcx and
1105   // %rdx -- so we only work with those.
1106   const Register DestRegs[] = {X86::RDI, X86::RSI};
1107   bool UsedMask[] = {false, false};
1108   // Filled out in loop.
1109   Register SrcRegs[] = {0, 0};
1110 
1111   // Then we put the operands in the %rdi and %rsi registers. We spill the
1112   // values in the register before we clobber them, and mark them as used in
1113   // UsedMask. In case the arguments are already in the correct register, we use
1114   // emit nops appropriately sized to keep the sled the same size in every
1115   // situation.
1116   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1117     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1118       assert(Op->isReg() && "Only support arguments in registers");
1119       SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1120       assert(SrcRegs[I].isValid() && "Invalid operand");
1121       if (SrcRegs[I] != DestRegs[I]) {
1122         UsedMask[I] = true;
1123         EmitAndCountInstruction(
1124             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1125       } else {
1126         emitX86Nops(*OutStreamer, 4, Subtarget);
1127       }
1128     }
1129 
1130   // Now that the register values are stashed, mov arguments into place.
1131   // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1132   // earlier DestReg. We will have already overwritten over the register before
1133   // we can copy from it.
1134   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1135     if (SrcRegs[I] != DestRegs[I])
1136       EmitAndCountInstruction(
1137           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1138 
1139   // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1140   // name of the trampoline to be implemented by the XRay runtime.
1141   auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1142   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1143   if (isPositionIndependent())
1144     TOp.setTargetFlags(X86II::MO_PLT);
1145 
1146   // Emit the call instruction.
1147   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1148                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1149 
1150   // Restore caller-saved and used registers.
1151   for (unsigned I = sizeof UsedMask; I-- > 0;)
1152     if (UsedMask[I])
1153       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1154     else
1155       emitX86Nops(*OutStreamer, 1, Subtarget);
1156 
1157   OutStreamer->AddComment("xray custom event end.");
1158 
1159   // Record the sled version. Version 0 of this sled was spelled differently, so
1160   // we let the runtime handle the different offsets we're using. Version 2
1161   // changed the absolute address to a PC-relative address.
1162   recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
1163 }
1164 
1165 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1166                                                     X86MCInstLower &MCIL) {
1167   assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1168 
1169   NoAutoPaddingScope NoPadScope(*OutStreamer);
1170 
1171   // We want to emit the following pattern, which follows the x86 calling
1172   // convention to prepare for the trampoline call to be patched in.
1173   //
1174   //   .p2align 1, ...
1175   // .Lxray_event_sled_N:
1176   //   jmp +N                        // jump across the instrumentation sled
1177   //   ...                           // set up arguments in register
1178   //   callq __xray_TypedEvent@plt  // force dependency to symbol
1179   //   ...
1180   //   <jump here>
1181   //
1182   // After patching, it would look something like:
1183   //
1184   //   nopw (2-byte nop)
1185   //   ...
1186   //   callq __xrayTypedEvent  // already lowered
1187   //   ...
1188   //
1189   // ---
1190   // First we emit the label and the jump.
1191   auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1192   OutStreamer->AddComment("# XRay Typed Event Log");
1193   OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1194   OutStreamer->emitLabel(CurSled);
1195 
1196   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1197   // an operand (computed as an offset from the jmp instruction).
1198   // FIXME: Find another less hacky way do force the relative jump.
1199   OutStreamer->emitBinaryData("\xeb\x14");
1200 
1201   // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1202   // so we'll work with those. Or we may be called via SystemV, in which case
1203   // we don't have to do any translation.
1204   const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1205   bool UsedMask[] = {false, false, false};
1206 
1207   // Will fill out src regs in the loop.
1208   Register SrcRegs[] = {0, 0, 0};
1209 
1210   // Then we put the operands in the SystemV registers. We spill the values in
1211   // the registers before we clobber them, and mark them as used in UsedMask.
1212   // In case the arguments are already in the correct register, we emit nops
1213   // appropriately sized to keep the sled the same size in every situation.
1214   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1215     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1216       // TODO: Is register only support adequate?
1217       assert(Op->isReg() && "Only supports arguments in registers");
1218       SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1219       assert(SrcRegs[I].isValid() && "Invalid operand");
1220       if (SrcRegs[I] != DestRegs[I]) {
1221         UsedMask[I] = true;
1222         EmitAndCountInstruction(
1223             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1224       } else {
1225         emitX86Nops(*OutStreamer, 4, Subtarget);
1226       }
1227     }
1228 
1229   // In the above loop we only stash all of the destination registers or emit
1230   // nops if the arguments are already in the right place. Doing the actually
1231   // moving is postponed until after all the registers are stashed so nothing
1232   // is clobbers. We've already added nops to account for the size of mov and
1233   // push if the register is in the right place, so we only have to worry about
1234   // emitting movs.
1235   // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1236   // earlier DestReg. We will have already overwritten over the register before
1237   // we can copy from it.
1238   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1239     if (UsedMask[I])
1240       EmitAndCountInstruction(
1241           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1242 
1243   // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1244   // name of the trampoline to be implemented by the XRay runtime.
1245   auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1246   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1247   if (isPositionIndependent())
1248     TOp.setTargetFlags(X86II::MO_PLT);
1249 
1250   // Emit the call instruction.
1251   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1252                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1253 
1254   // Restore caller-saved and used registers.
1255   for (unsigned I = sizeof UsedMask; I-- > 0;)
1256     if (UsedMask[I])
1257       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1258     else
1259       emitX86Nops(*OutStreamer, 1, Subtarget);
1260 
1261   OutStreamer->AddComment("xray typed event end.");
1262 
1263   // Record the sled version.
1264   recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
1265 }
1266 
1267 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1268                                                   X86MCInstLower &MCIL) {
1269 
1270   NoAutoPaddingScope NoPadScope(*OutStreamer);
1271 
1272   const Function &F = MF->getFunction();
1273   if (F.hasFnAttribute("patchable-function-entry")) {
1274     unsigned Num;
1275     if (F.getFnAttribute("patchable-function-entry")
1276             .getValueAsString()
1277             .getAsInteger(10, Num))
1278       return;
1279     emitX86Nops(*OutStreamer, Num, Subtarget);
1280     return;
1281   }
1282   // We want to emit the following pattern:
1283   //
1284   //   .p2align 1, ...
1285   // .Lxray_sled_N:
1286   //   jmp .tmpN
1287   //   # 9 bytes worth of noops
1288   //
1289   // We need the 9 bytes because at runtime, we'd be patching over the full 11
1290   // bytes with the following pattern:
1291   //
1292   //   mov %r10, <function id, 32-bit>   // 6 bytes
1293   //   call <relative offset, 32-bits>   // 5 bytes
1294   //
1295   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1296   OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1297   OutStreamer->emitLabel(CurSled);
1298 
1299   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1300   // an operand (computed as an offset from the jmp instruction).
1301   // FIXME: Find another less hacky way do force the relative jump.
1302   OutStreamer->emitBytes("\xeb\x09");
1303   emitX86Nops(*OutStreamer, 9, Subtarget);
1304   recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2);
1305 }
1306 
1307 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1308                                        X86MCInstLower &MCIL) {
1309   NoAutoPaddingScope NoPadScope(*OutStreamer);
1310 
1311   // Since PATCHABLE_RET takes the opcode of the return statement as an
1312   // argument, we use that to emit the correct form of the RET that we want.
1313   // i.e. when we see this:
1314   //
1315   //   PATCHABLE_RET X86::RET ...
1316   //
1317   // We should emit the RET followed by sleds.
1318   //
1319   //   .p2align 1, ...
1320   // .Lxray_sled_N:
1321   //   ret  # or equivalent instruction
1322   //   # 10 bytes worth of noops
1323   //
1324   // This just makes sure that the alignment for the next instruction is 2.
1325   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1326   OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1327   OutStreamer->emitLabel(CurSled);
1328   unsigned OpCode = MI.getOperand(0).getImm();
1329   MCInst Ret;
1330   Ret.setOpcode(OpCode);
1331   for (auto &MO : drop_begin(MI.operands()))
1332     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1333       Ret.addOperand(*MaybeOperand);
1334   OutStreamer->emitInstruction(Ret, getSubtargetInfo());
1335   emitX86Nops(*OutStreamer, 10, Subtarget);
1336   recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2);
1337 }
1338 
1339 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1340                                              X86MCInstLower &MCIL) {
1341   NoAutoPaddingScope NoPadScope(*OutStreamer);
1342 
1343   // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1344   // instruction so we lower that particular instruction and its operands.
1345   // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1346   // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1347   // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1348   // tail call much like how we have it in PATCHABLE_RET.
1349   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1350   OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1351   OutStreamer->emitLabel(CurSled);
1352   auto Target = OutContext.createTempSymbol();
1353 
1354   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1355   // an operand (computed as an offset from the jmp instruction).
1356   // FIXME: Find another less hacky way do force the relative jump.
1357   OutStreamer->emitBytes("\xeb\x09");
1358   emitX86Nops(*OutStreamer, 9, Subtarget);
1359   OutStreamer->emitLabel(Target);
1360   recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
1361 
1362   unsigned OpCode = MI.getOperand(0).getImm();
1363   OpCode = convertTailJumpOpcode(OpCode);
1364   MCInst TC;
1365   TC.setOpcode(OpCode);
1366 
1367   // Before emitting the instruction, add a comment to indicate that this is
1368   // indeed a tail call.
1369   OutStreamer->AddComment("TAILCALL");
1370   for (auto &MO : drop_begin(MI.operands()))
1371     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1372       TC.addOperand(*MaybeOperand);
1373   OutStreamer->emitInstruction(TC, getSubtargetInfo());
1374 }
1375 
1376 // Returns instruction preceding MBBI in MachineFunction.
1377 // If MBBI is the first instruction of the first basic block, returns null.
1378 static MachineBasicBlock::const_iterator
1379 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1380   const MachineBasicBlock *MBB = MBBI->getParent();
1381   while (MBBI == MBB->begin()) {
1382     if (MBB == &MBB->getParent()->front())
1383       return MachineBasicBlock::const_iterator();
1384     MBB = MBB->getPrevNode();
1385     MBBI = MBB->end();
1386   }
1387   --MBBI;
1388   return MBBI;
1389 }
1390 
1391 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1392                                      unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1393   std::string Comment;
1394 
1395   // Compute the name for a register. This is really goofy because we have
1396   // multiple instruction printers that could (in theory) use different
1397   // names. Fortunately most people use the ATT style (outside of Windows)
1398   // and they actually agree on register naming here. Ultimately, this is
1399   // a comment, and so its OK if it isn't perfect.
1400   auto GetRegisterName = [](MCRegister Reg) -> StringRef {
1401     return X86ATTInstPrinter::getRegisterName(Reg);
1402   };
1403 
1404   const MachineOperand &DstOp = MI->getOperand(0);
1405   const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1406   const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1407 
1408   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1409   StringRef Src1Name =
1410       SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1411   StringRef Src2Name =
1412       SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1413 
1414   // One source operand, fix the mask to print all elements in one span.
1415   SmallVector<int, 8> ShuffleMask(Mask);
1416   if (Src1Name == Src2Name)
1417     for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1418       if (ShuffleMask[i] >= e)
1419         ShuffleMask[i] -= e;
1420 
1421   raw_string_ostream CS(Comment);
1422   CS << DstName;
1423 
1424   // Handle AVX512 MASK/MASXZ write mask comments.
1425   // MASK: zmmX {%kY}
1426   // MASKZ: zmmX {%kY} {z}
1427   if (SrcOp1Idx > 1) {
1428     assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1429 
1430     const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1431     if (WriteMaskOp.isReg()) {
1432       CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1433 
1434       if (SrcOp1Idx == 2) {
1435         CS << " {z}";
1436       }
1437     }
1438   }
1439 
1440   CS << " = ";
1441 
1442   for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1443     if (i != 0)
1444       CS << ",";
1445     if (ShuffleMask[i] == SM_SentinelZero) {
1446       CS << "zero";
1447       continue;
1448     }
1449 
1450     // Otherwise, it must come from src1 or src2.  Print the span of elements
1451     // that comes from this src.
1452     bool isSrc1 = ShuffleMask[i] < (int)e;
1453     CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1454 
1455     bool IsFirst = true;
1456     while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1457            (ShuffleMask[i] < (int)e) == isSrc1) {
1458       if (!IsFirst)
1459         CS << ',';
1460       else
1461         IsFirst = false;
1462       if (ShuffleMask[i] == SM_SentinelUndef)
1463         CS << "u";
1464       else
1465         CS << ShuffleMask[i] % (int)e;
1466       ++i;
1467     }
1468     CS << ']';
1469     --i; // For loop increments element #.
1470   }
1471   CS.flush();
1472 
1473   return Comment;
1474 }
1475 
1476 static void printConstant(const APInt &Val, raw_ostream &CS,
1477                           bool PrintZero = false) {
1478   if (Val.getBitWidth() <= 64) {
1479     CS << (PrintZero ? 0ULL : Val.getZExtValue());
1480   } else {
1481     // print multi-word constant as (w0,w1)
1482     CS << "(";
1483     for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1484       if (i > 0)
1485         CS << ",";
1486       CS << (PrintZero ? 0ULL : Val.getRawData()[i]);
1487     }
1488     CS << ")";
1489   }
1490 }
1491 
1492 static void printConstant(const APFloat &Flt, raw_ostream &CS,
1493                           bool PrintZero = false) {
1494   SmallString<32> Str;
1495   // Force scientific notation to distinguish from integers.
1496   if (PrintZero)
1497     APFloat::getZero(Flt.getSemantics()).toString(Str, 0, 0);
1498   else
1499     Flt.toString(Str, 0, 0);
1500   CS << Str;
1501 }
1502 
1503 static void printConstant(const Constant *COp, unsigned BitWidth,
1504                           raw_ostream &CS, bool PrintZero = false) {
1505   if (isa<UndefValue>(COp)) {
1506     CS << "u";
1507   } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1508     printConstant(CI->getValue(), CS, PrintZero);
1509   } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1510     printConstant(CF->getValueAPF(), CS, PrintZero);
1511   } else if (auto *CDS = dyn_cast<ConstantDataSequential>(COp)) {
1512     Type *EltTy = CDS->getElementType();
1513     bool IsInteger = EltTy->isIntegerTy();
1514     bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy();
1515     unsigned EltBits = EltTy->getPrimitiveSizeInBits();
1516     unsigned E = std::min(BitWidth / EltBits, CDS->getNumElements());
1517     assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1518     for (unsigned I = 0; I != E; ++I) {
1519       if (I != 0)
1520         CS << ",";
1521       if (IsInteger)
1522         printConstant(CDS->getElementAsAPInt(I), CS, PrintZero);
1523       else if (IsFP)
1524         printConstant(CDS->getElementAsAPFloat(I), CS, PrintZero);
1525       else
1526         CS << "?";
1527     }
1528   } else if (auto *CV = dyn_cast<ConstantVector>(COp)) {
1529     unsigned EltBits = CV->getType()->getScalarSizeInBits();
1530     unsigned E = std::min(BitWidth / EltBits, CV->getNumOperands());
1531     assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1532     for (unsigned I = 0; I != E; ++I) {
1533       if (I != 0)
1534         CS << ",";
1535       printConstant(CV->getOperand(I), EltBits, CS, PrintZero);
1536     }
1537   } else {
1538     CS << "?";
1539   }
1540 }
1541 
1542 static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer,
1543                                int SclWidth, int VecWidth,
1544                                const char *ShuffleComment) {
1545   std::string Comment;
1546   raw_string_ostream CS(Comment);
1547   const MachineOperand &DstOp = MI->getOperand(0);
1548   CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1549 
1550   if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1551     CS << "[";
1552     printConstant(C, SclWidth, CS);
1553     for (int I = 1, E = VecWidth / SclWidth; I < E; ++I) {
1554       CS << ",";
1555       printConstant(C, SclWidth, CS, true);
1556     }
1557     CS << "]";
1558     OutStreamer.AddComment(CS.str());
1559     return; // early-out
1560   }
1561 
1562   // We didn't find a constant load, fallback to a shuffle mask decode.
1563   CS << ShuffleComment;
1564   OutStreamer.AddComment(CS.str());
1565 }
1566 
1567 static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer,
1568                            int Repeats, int BitWidth) {
1569   if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1570     std::string Comment;
1571     raw_string_ostream CS(Comment);
1572     const MachineOperand &DstOp = MI->getOperand(0);
1573     CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1574     CS << "[";
1575     for (int l = 0; l != Repeats; ++l) {
1576       if (l != 0)
1577         CS << ",";
1578       printConstant(C, BitWidth, CS);
1579     }
1580     CS << "]";
1581     OutStreamer.AddComment(CS.str());
1582   }
1583 }
1584 
1585 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1586   assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1587   assert((getSubtarget().isOSWindows() || TM.getTargetTriple().isUEFI()) &&
1588          "SEH_ instruction Windows and UEFI only");
1589 
1590   // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1591   if (EmitFPOData) {
1592     X86TargetStreamer *XTS =
1593         static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1594     switch (MI->getOpcode()) {
1595     case X86::SEH_PushReg:
1596       XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1597       break;
1598     case X86::SEH_StackAlloc:
1599       XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1600       break;
1601     case X86::SEH_StackAlign:
1602       XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1603       break;
1604     case X86::SEH_SetFrame:
1605       assert(MI->getOperand(1).getImm() == 0 &&
1606              ".cv_fpo_setframe takes no offset");
1607       XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1608       break;
1609     case X86::SEH_EndPrologue:
1610       XTS->emitFPOEndPrologue();
1611       break;
1612     case X86::SEH_SaveReg:
1613     case X86::SEH_SaveXMM:
1614     case X86::SEH_PushFrame:
1615       llvm_unreachable("SEH_ directive incompatible with FPO");
1616       break;
1617     default:
1618       llvm_unreachable("expected SEH_ instruction");
1619     }
1620     return;
1621   }
1622 
1623   // Otherwise, use the .seh_ directives for all other Windows platforms.
1624   switch (MI->getOpcode()) {
1625   case X86::SEH_PushReg:
1626     OutStreamer->emitWinCFIPushReg(MI->getOperand(0).getImm());
1627     break;
1628 
1629   case X86::SEH_SaveReg:
1630     OutStreamer->emitWinCFISaveReg(MI->getOperand(0).getImm(),
1631                                    MI->getOperand(1).getImm());
1632     break;
1633 
1634   case X86::SEH_SaveXMM:
1635     OutStreamer->emitWinCFISaveXMM(MI->getOperand(0).getImm(),
1636                                    MI->getOperand(1).getImm());
1637     break;
1638 
1639   case X86::SEH_StackAlloc:
1640     OutStreamer->emitWinCFIAllocStack(MI->getOperand(0).getImm());
1641     break;
1642 
1643   case X86::SEH_SetFrame:
1644     OutStreamer->emitWinCFISetFrame(MI->getOperand(0).getImm(),
1645                                     MI->getOperand(1).getImm());
1646     break;
1647 
1648   case X86::SEH_PushFrame:
1649     OutStreamer->emitWinCFIPushFrame(MI->getOperand(0).getImm());
1650     break;
1651 
1652   case X86::SEH_EndPrologue:
1653     OutStreamer->emitWinCFIEndProlog();
1654     break;
1655 
1656   default:
1657     llvm_unreachable("expected SEH_ instruction");
1658   }
1659 }
1660 
1661 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1662   if (Info.RegClass == X86::VR128RegClassID ||
1663       Info.RegClass == X86::VR128XRegClassID)
1664     return 128;
1665   if (Info.RegClass == X86::VR256RegClassID ||
1666       Info.RegClass == X86::VR256XRegClassID)
1667     return 256;
1668   if (Info.RegClass == X86::VR512RegClassID)
1669     return 512;
1670   llvm_unreachable("Unknown register class!");
1671 }
1672 
1673 static void addConstantComments(const MachineInstr *MI,
1674                                 MCStreamer &OutStreamer) {
1675   switch (MI->getOpcode()) {
1676   // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1677   // a constant shuffle mask. We won't be able to do this at the MC layer
1678   // because the mask isn't an immediate.
1679   case X86::PSHUFBrm:
1680   case X86::VPSHUFBrm:
1681   case X86::VPSHUFBYrm:
1682   case X86::VPSHUFBZ128rm:
1683   case X86::VPSHUFBZ128rmk:
1684   case X86::VPSHUFBZ128rmkz:
1685   case X86::VPSHUFBZ256rm:
1686   case X86::VPSHUFBZ256rmk:
1687   case X86::VPSHUFBZ256rmkz:
1688   case X86::VPSHUFBZrm:
1689   case X86::VPSHUFBZrmk:
1690   case X86::VPSHUFBZrmkz: {
1691     unsigned SrcIdx = 1;
1692     if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1693       // Skip mask operand.
1694       ++SrcIdx;
1695       if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1696         // Skip passthru operand.
1697         ++SrcIdx;
1698       }
1699     }
1700 
1701     if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1702       unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1703       SmallVector<int, 64> Mask;
1704       DecodePSHUFBMask(C, Width, Mask);
1705       if (!Mask.empty())
1706         OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1707     }
1708     break;
1709   }
1710 
1711   case X86::VPERMILPSrm:
1712   case X86::VPERMILPSYrm:
1713   case X86::VPERMILPSZ128rm:
1714   case X86::VPERMILPSZ128rmk:
1715   case X86::VPERMILPSZ128rmkz:
1716   case X86::VPERMILPSZ256rm:
1717   case X86::VPERMILPSZ256rmk:
1718   case X86::VPERMILPSZ256rmkz:
1719   case X86::VPERMILPSZrm:
1720   case X86::VPERMILPSZrmk:
1721   case X86::VPERMILPSZrmkz:
1722   case X86::VPERMILPDrm:
1723   case X86::VPERMILPDYrm:
1724   case X86::VPERMILPDZ128rm:
1725   case X86::VPERMILPDZ128rmk:
1726   case X86::VPERMILPDZ128rmkz:
1727   case X86::VPERMILPDZ256rm:
1728   case X86::VPERMILPDZ256rmk:
1729   case X86::VPERMILPDZ256rmkz:
1730   case X86::VPERMILPDZrm:
1731   case X86::VPERMILPDZrmk:
1732   case X86::VPERMILPDZrmkz: {
1733     unsigned ElSize;
1734     switch (MI->getOpcode()) {
1735     default: llvm_unreachable("Invalid opcode");
1736     case X86::VPERMILPSrm:
1737     case X86::VPERMILPSYrm:
1738     case X86::VPERMILPSZ128rm:
1739     case X86::VPERMILPSZ256rm:
1740     case X86::VPERMILPSZrm:
1741     case X86::VPERMILPSZ128rmkz:
1742     case X86::VPERMILPSZ256rmkz:
1743     case X86::VPERMILPSZrmkz:
1744     case X86::VPERMILPSZ128rmk:
1745     case X86::VPERMILPSZ256rmk:
1746     case X86::VPERMILPSZrmk:
1747       ElSize = 32;
1748       break;
1749     case X86::VPERMILPDrm:
1750     case X86::VPERMILPDYrm:
1751     case X86::VPERMILPDZ128rm:
1752     case X86::VPERMILPDZ256rm:
1753     case X86::VPERMILPDZrm:
1754     case X86::VPERMILPDZ128rmkz:
1755     case X86::VPERMILPDZ256rmkz:
1756     case X86::VPERMILPDZrmkz:
1757     case X86::VPERMILPDZ128rmk:
1758     case X86::VPERMILPDZ256rmk:
1759     case X86::VPERMILPDZrmk:
1760       ElSize = 64;
1761       break;
1762     }
1763 
1764     unsigned SrcIdx = 1;
1765     if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1766       // Skip mask operand.
1767       ++SrcIdx;
1768       if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1769         // Skip passthru operand.
1770         ++SrcIdx;
1771       }
1772     }
1773 
1774     if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1775       unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1776       SmallVector<int, 16> Mask;
1777       DecodeVPERMILPMask(C, ElSize, Width, Mask);
1778       if (!Mask.empty())
1779         OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1780     }
1781     break;
1782   }
1783 
1784   case X86::VPERMIL2PDrm:
1785   case X86::VPERMIL2PSrm:
1786   case X86::VPERMIL2PDYrm:
1787   case X86::VPERMIL2PSYrm: {
1788     assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
1789            "Unexpected number of operands!");
1790 
1791     const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
1792     if (!CtrlOp.isImm())
1793       break;
1794 
1795     unsigned ElSize;
1796     switch (MI->getOpcode()) {
1797     default: llvm_unreachable("Invalid opcode");
1798     case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
1799     case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
1800     }
1801 
1802     if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1803       unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1804       SmallVector<int, 16> Mask;
1805       DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
1806       if (!Mask.empty())
1807         OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1808     }
1809     break;
1810   }
1811 
1812   case X86::VPPERMrrm: {
1813     if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1814       unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1815       SmallVector<int, 16> Mask;
1816       DecodeVPPERMMask(C, Width, Mask);
1817       if (!Mask.empty())
1818         OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1819     }
1820     break;
1821   }
1822 
1823   case X86::MMX_MOVQ64rm: {
1824     if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1825       std::string Comment;
1826       raw_string_ostream CS(Comment);
1827       const MachineOperand &DstOp = MI->getOperand(0);
1828       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1829       if (auto *CF = dyn_cast<ConstantFP>(C)) {
1830         CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
1831         OutStreamer.AddComment(CS.str());
1832       }
1833     }
1834     break;
1835   }
1836 
1837   case X86::MOVSDrm:
1838   case X86::VMOVSDrm:
1839   case X86::VMOVSDZrm:
1840   case X86::MOVSDrm_alt:
1841   case X86::VMOVSDrm_alt:
1842   case X86::VMOVSDZrm_alt:
1843   case X86::MOVQI2PQIrm:
1844   case X86::VMOVQI2PQIrm:
1845   case X86::VMOVQI2PQIZrm:
1846     printZeroUpperMove(MI, OutStreamer, 64, 128, "mem[0],zero");
1847       break;
1848 
1849   case X86::MOVSSrm:
1850   case X86::VMOVSSrm:
1851   case X86::VMOVSSZrm:
1852   case X86::MOVSSrm_alt:
1853   case X86::VMOVSSrm_alt:
1854   case X86::VMOVSSZrm_alt:
1855   case X86::MOVDI2PDIrm:
1856   case X86::VMOVDI2PDIrm:
1857   case X86::VMOVDI2PDIZrm:
1858     printZeroUpperMove(MI, OutStreamer, 32, 128, "mem[0],zero,zero,zero");
1859     break;
1860 
1861 #define MOV_CASE(Prefix, Suffix)                                               \
1862   case X86::Prefix##MOVAPD##Suffix##rm:                                        \
1863   case X86::Prefix##MOVAPS##Suffix##rm:                                        \
1864   case X86::Prefix##MOVUPD##Suffix##rm:                                        \
1865   case X86::Prefix##MOVUPS##Suffix##rm:                                        \
1866   case X86::Prefix##MOVDQA##Suffix##rm:                                        \
1867   case X86::Prefix##MOVDQU##Suffix##rm:
1868 
1869 #define MOV_AVX512_CASE(Suffix)                                                \
1870   case X86::VMOVDQA64##Suffix##rm:                                             \
1871   case X86::VMOVDQA32##Suffix##rm:                                             \
1872   case X86::VMOVDQU64##Suffix##rm:                                             \
1873   case X86::VMOVDQU32##Suffix##rm:                                             \
1874   case X86::VMOVDQU16##Suffix##rm:                                             \
1875   case X86::VMOVDQU8##Suffix##rm:                                              \
1876   case X86::VMOVAPS##Suffix##rm:                                               \
1877   case X86::VMOVAPD##Suffix##rm:                                               \
1878   case X86::VMOVUPS##Suffix##rm:                                               \
1879   case X86::VMOVUPD##Suffix##rm:
1880 
1881 #define CASE_128_MOV_RM()                                                      \
1882   MOV_CASE(, )   /* SSE */                                                     \
1883   MOV_CASE(V, )  /* AVX-128 */                                                 \
1884   MOV_AVX512_CASE(Z128)
1885 
1886 #define CASE_256_MOV_RM()                                                      \
1887   MOV_CASE(V, Y) /* AVX-256 */                                                 \
1888   MOV_AVX512_CASE(Z256)
1889 
1890 #define CASE_512_MOV_RM()                                                      \
1891   MOV_AVX512_CASE(Z)
1892 
1893     // For loads from a constant pool to a vector register, print the constant
1894     // loaded.
1895     CASE_128_MOV_RM()
1896     printBroadcast(MI, OutStreamer, 1, 128);
1897     break;
1898     CASE_256_MOV_RM()
1899     printBroadcast(MI, OutStreamer, 1, 256);
1900     break;
1901     CASE_512_MOV_RM()
1902     printBroadcast(MI, OutStreamer, 1, 512);
1903     break;
1904   case X86::VBROADCASTF128rm:
1905   case X86::VBROADCASTI128rm:
1906   case X86::VBROADCASTF32X4Z256rm:
1907   case X86::VBROADCASTF64X2Z128rm:
1908   case X86::VBROADCASTI32X4Z256rm:
1909   case X86::VBROADCASTI64X2Z128rm:
1910     printBroadcast(MI, OutStreamer, 2, 128);
1911     break;
1912   case X86::VBROADCASTF32X4rm:
1913   case X86::VBROADCASTF64X2rm:
1914   case X86::VBROADCASTI32X4rm:
1915   case X86::VBROADCASTI64X2rm:
1916     printBroadcast(MI, OutStreamer, 4, 128);
1917     break;
1918   case X86::VBROADCASTF32X8rm:
1919   case X86::VBROADCASTF64X4rm:
1920   case X86::VBROADCASTI32X8rm:
1921   case X86::VBROADCASTI64X4rm:
1922     printBroadcast(MI, OutStreamer, 2, 256);
1923     break;
1924 
1925   // For broadcast loads from a constant pool to a vector register, repeatedly
1926   // print the constant loaded.
1927   case X86::MOVDDUPrm:
1928   case X86::VMOVDDUPrm:
1929   case X86::VMOVDDUPZ128rm:
1930   case X86::VPBROADCASTQrm:
1931   case X86::VPBROADCASTQZ128rm:
1932     printBroadcast(MI, OutStreamer, 2, 64);
1933     break;
1934   case X86::VBROADCASTSDYrm:
1935   case X86::VBROADCASTSDZ256rm:
1936   case X86::VPBROADCASTQYrm:
1937   case X86::VPBROADCASTQZ256rm:
1938     printBroadcast(MI, OutStreamer, 4, 64);
1939     break;
1940   case X86::VBROADCASTSDZrm:
1941   case X86::VPBROADCASTQZrm:
1942     printBroadcast(MI, OutStreamer, 8, 64);
1943     break;
1944   case X86::VBROADCASTSSrm:
1945   case X86::VBROADCASTSSZ128rm:
1946   case X86::VPBROADCASTDrm:
1947   case X86::VPBROADCASTDZ128rm:
1948     printBroadcast(MI, OutStreamer, 4, 32);
1949     break;
1950   case X86::VBROADCASTSSYrm:
1951   case X86::VBROADCASTSSZ256rm:
1952   case X86::VPBROADCASTDYrm:
1953   case X86::VPBROADCASTDZ256rm:
1954     printBroadcast(MI, OutStreamer, 8, 32);
1955     break;
1956   case X86::VBROADCASTSSZrm:
1957   case X86::VPBROADCASTDZrm:
1958     printBroadcast(MI, OutStreamer, 16, 32);
1959     break;
1960   case X86::VPBROADCASTWrm:
1961   case X86::VPBROADCASTWZ128rm:
1962     printBroadcast(MI, OutStreamer, 8, 16);
1963     break;
1964   case X86::VPBROADCASTWYrm:
1965   case X86::VPBROADCASTWZ256rm:
1966     printBroadcast(MI, OutStreamer, 16, 16);
1967     break;
1968   case X86::VPBROADCASTWZrm:
1969     printBroadcast(MI, OutStreamer, 32, 16);
1970     break;
1971   case X86::VPBROADCASTBrm:
1972   case X86::VPBROADCASTBZ128rm:
1973     printBroadcast(MI, OutStreamer, 16, 8);
1974     break;
1975   case X86::VPBROADCASTBYrm:
1976   case X86::VPBROADCASTBZ256rm:
1977     printBroadcast(MI, OutStreamer, 32, 8);
1978     break;
1979   case X86::VPBROADCASTBZrm:
1980     printBroadcast(MI, OutStreamer, 64, 8);
1981     break;
1982   }
1983 }
1984 
1985 void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
1986   // FIXME: Enable feature predicate checks once all the test pass.
1987   // X86_MC::verifyInstructionPredicates(MI->getOpcode(),
1988   //                                     Subtarget->getFeatureBits());
1989 
1990   X86MCInstLower MCInstLowering(*MF, *this);
1991   const X86RegisterInfo *RI =
1992       MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1993 
1994   if (MI->getOpcode() == X86::OR64rm) {
1995     for (auto &Opd : MI->operands()) {
1996       if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) ==
1997                                 "swift_async_extendedFramePointerFlags") {
1998         ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true;
1999       }
2000     }
2001   }
2002 
2003   // Add comments for values loaded from constant pool.
2004   if (OutStreamer->isVerboseAsm())
2005     addConstantComments(MI, *OutStreamer);
2006 
2007   // Add a comment about EVEX compression
2008   if (TM.Options.MCOptions.ShowMCEncoding) {
2009     if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_LEGACY)
2010       OutStreamer->AddComment("EVEX TO LEGACY Compression ", false);
2011     else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
2012       OutStreamer->AddComment("EVEX TO VEX Compression ", false);
2013     else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_EVEX)
2014       OutStreamer->AddComment("EVEX TO EVEX Compression ", false);
2015   }
2016 
2017   switch (MI->getOpcode()) {
2018   case TargetOpcode::DBG_VALUE:
2019     llvm_unreachable("Should be handled target independently");
2020 
2021   case X86::EH_RETURN:
2022   case X86::EH_RETURN64: {
2023     // Lower these as normal, but add some comments.
2024     Register Reg = MI->getOperand(0).getReg();
2025     OutStreamer->AddComment(StringRef("eh_return, addr: %") +
2026                             X86ATTInstPrinter::getRegisterName(Reg));
2027     break;
2028   }
2029   case X86::CLEANUPRET: {
2030     // Lower these as normal, but add some comments.
2031     OutStreamer->AddComment("CLEANUPRET");
2032     break;
2033   }
2034 
2035   case X86::CATCHRET: {
2036     // Lower these as normal, but add some comments.
2037     OutStreamer->AddComment("CATCHRET");
2038     break;
2039   }
2040 
2041   case X86::ENDBR32:
2042   case X86::ENDBR64: {
2043     // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2044     // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2045     // non-empty. If MI is the initial ENDBR, place the
2046     // __patchable_function_entries label after ENDBR.
2047     if (CurrentPatchableFunctionEntrySym &&
2048         CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
2049         MI == &MF->front().front()) {
2050       MCInst Inst;
2051       MCInstLowering.Lower(MI, Inst);
2052       EmitAndCountInstruction(Inst);
2053       CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
2054       OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
2055       return;
2056     }
2057     break;
2058   }
2059 
2060   case X86::TAILJMPd64:
2061     if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2062       EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2063     [[fallthrough]];
2064   case X86::TAILJMPr:
2065   case X86::TAILJMPm:
2066   case X86::TAILJMPd:
2067   case X86::TAILJMPd_CC:
2068   case X86::TAILJMPr64:
2069   case X86::TAILJMPm64:
2070   case X86::TAILJMPd64_CC:
2071   case X86::TAILJMPr64_REX:
2072   case X86::TAILJMPm64_REX:
2073     // Lower these as normal, but add some comments.
2074     OutStreamer->AddComment("TAILCALL");
2075     break;
2076 
2077   case X86::TLS_addr32:
2078   case X86::TLS_addr64:
2079   case X86::TLS_addrX32:
2080   case X86::TLS_base_addr32:
2081   case X86::TLS_base_addr64:
2082   case X86::TLS_base_addrX32:
2083     return LowerTlsAddr(MCInstLowering, *MI);
2084 
2085   case X86::MOVPC32r: {
2086     // This is a pseudo op for a two instruction sequence with a label, which
2087     // looks like:
2088     //     call "L1$pb"
2089     // "L1$pb":
2090     //     popl %esi
2091 
2092     // Emit the call.
2093     MCSymbol *PICBase = MF->getPICBaseSymbol();
2094     // FIXME: We would like an efficient form for this, so we don't have to do a
2095     // lot of extra uniquing.
2096     EmitAndCountInstruction(
2097         MCInstBuilder(X86::CALLpcrel32)
2098             .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2099 
2100     const X86FrameLowering *FrameLowering =
2101         MF->getSubtarget<X86Subtarget>().getFrameLowering();
2102     bool hasFP = FrameLowering->hasFP(*MF);
2103 
2104     // TODO: This is needed only if we require precise CFA.
2105     bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2106                                !OutStreamer->getDwarfFrameInfos().back().End;
2107 
2108     int stackGrowth = -RI->getSlotSize();
2109 
2110     if (HasActiveDwarfFrame && !hasFP) {
2111       OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
2112       MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
2113     }
2114 
2115     // Emit the label.
2116     OutStreamer->emitLabel(PICBase);
2117 
2118     // popl $reg
2119     EmitAndCountInstruction(
2120         MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2121 
2122     if (HasActiveDwarfFrame && !hasFP) {
2123       OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
2124     }
2125     return;
2126   }
2127 
2128   case X86::ADD32ri: {
2129     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2130     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2131       break;
2132 
2133     // Okay, we have something like:
2134     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2135 
2136     // For this, we want to print something like:
2137     //   MYGLOBAL + (. - PICBASE)
2138     // However, we can't generate a ".", so just emit a new label here and refer
2139     // to it.
2140     MCSymbol *DotSym = OutContext.createTempSymbol();
2141     OutStreamer->emitLabel(DotSym);
2142 
2143     // Now that we have emitted the label, lower the complex operand expression.
2144     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2145 
2146     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2147     const MCExpr *PICBase =
2148         MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2149     DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2150 
2151     DotExpr = MCBinaryExpr::createAdd(
2152         MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2153 
2154     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2155                                 .addReg(MI->getOperand(0).getReg())
2156                                 .addReg(MI->getOperand(1).getReg())
2157                                 .addExpr(DotExpr));
2158     return;
2159   }
2160   case TargetOpcode::STATEPOINT:
2161     return LowerSTATEPOINT(*MI, MCInstLowering);
2162 
2163   case TargetOpcode::FAULTING_OP:
2164     return LowerFAULTING_OP(*MI, MCInstLowering);
2165 
2166   case TargetOpcode::FENTRY_CALL:
2167     return LowerFENTRY_CALL(*MI, MCInstLowering);
2168 
2169   case TargetOpcode::PATCHABLE_OP:
2170     return LowerPATCHABLE_OP(*MI, MCInstLowering);
2171 
2172   case TargetOpcode::STACKMAP:
2173     return LowerSTACKMAP(*MI);
2174 
2175   case TargetOpcode::PATCHPOINT:
2176     return LowerPATCHPOINT(*MI, MCInstLowering);
2177 
2178   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2179     return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2180 
2181   case TargetOpcode::PATCHABLE_RET:
2182     return LowerPATCHABLE_RET(*MI, MCInstLowering);
2183 
2184   case TargetOpcode::PATCHABLE_TAIL_CALL:
2185     return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2186 
2187   case TargetOpcode::PATCHABLE_EVENT_CALL:
2188     return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2189 
2190   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2191     return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2192 
2193   case X86::MORESTACK_RET:
2194     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2195     return;
2196 
2197   case X86::KCFI_CHECK:
2198     return LowerKCFI_CHECK(*MI);
2199 
2200   case X86::ASAN_CHECK_MEMACCESS:
2201     return LowerASAN_CHECK_MEMACCESS(*MI);
2202 
2203   case X86::MORESTACK_RET_RESTORE_R10:
2204     // Return, then restore R10.
2205     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2206     EmitAndCountInstruction(
2207         MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2208     return;
2209 
2210   case X86::SEH_PushReg:
2211   case X86::SEH_SaveReg:
2212   case X86::SEH_SaveXMM:
2213   case X86::SEH_StackAlloc:
2214   case X86::SEH_StackAlign:
2215   case X86::SEH_SetFrame:
2216   case X86::SEH_PushFrame:
2217   case X86::SEH_EndPrologue:
2218     EmitSEHInstruction(MI);
2219     return;
2220 
2221   case X86::SEH_Epilogue: {
2222     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2223     MachineBasicBlock::const_iterator MBBI(MI);
2224     // Check if preceded by a call and emit nop if so.
2225     for (MBBI = PrevCrossBBInst(MBBI);
2226          MBBI != MachineBasicBlock::const_iterator();
2227          MBBI = PrevCrossBBInst(MBBI)) {
2228       // Pseudo instructions that aren't a call are assumed to not emit any
2229       // code. If they do, we worst case generate unnecessary noops after a
2230       // call.
2231       if (MBBI->isCall() || !MBBI->isPseudo()) {
2232         if (MBBI->isCall())
2233           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2234         break;
2235       }
2236     }
2237     return;
2238   }
2239   case X86::UBSAN_UD1:
2240     EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
2241                                 .addReg(X86::EAX)
2242                                 .addReg(X86::EAX)
2243                                 .addImm(1)
2244                                 .addReg(X86::NoRegister)
2245                                 .addImm(MI->getOperand(0).getImm())
2246                                 .addReg(X86::NoRegister));
2247     return;
2248   case X86::CALL64pcrel32:
2249     if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2250       EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2251     break;
2252   }
2253 
2254   MCInst TmpInst;
2255   MCInstLowering.Lower(MI, TmpInst);
2256 
2257   // Stackmap shadows cannot include branch targets, so we can count the bytes
2258   // in a call towards the shadow, but must ensure that the no thread returns
2259   // in to the stackmap shadow.  The only way to achieve this is if the call
2260   // is at the end of the shadow.
2261   if (MI->isCall()) {
2262     // Count then size of the call towards the shadow
2263     SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2264     // Then flush the shadow so that we fill with nops before the call, not
2265     // after it.
2266     SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2267     // Then emit the call
2268     OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
2269     return;
2270   }
2271 
2272   EmitAndCountInstruction(TmpInst);
2273 }
2274