xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86MCInstLower.cpp (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86TargetStreamer.h"
18 #include "Utils/X86ShuffleDecode.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/StackMaps.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCCodeEmitter.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCFixup.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCSectionELF.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/MCSymbolELF.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
52 class X86MCInstLower {
53   MCContext &Ctx;
54   const MachineFunction &MF;
55   const TargetMachine &TM;
56   const MCAsmInfo &MAI;
57   X86AsmPrinter &AsmPrinter;
58 
59 public:
60   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
61 
62   Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
63                                           const MachineOperand &MO) const;
64   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
65 
66   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
67   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
68 
69 private:
70   MachineModuleInfoMachO &getMachOMMI() const;
71 };
72 
73 } // end anonymous namespace
74 
75 // Emit a minimal sequence of nops spanning NumBytes bytes.
76 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
77                      const MCSubtargetInfo &STI);
78 
79 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
80                                                  const MCSubtargetInfo &STI,
81                                                  MCCodeEmitter *CodeEmitter) {
82   if (InShadow) {
83     SmallString<256> Code;
84     SmallVector<MCFixup, 4> Fixups;
85     raw_svector_ostream VecOS(Code);
86     CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
87     CurrentShadowSize += Code.size();
88     if (CurrentShadowSize >= RequiredShadowSize)
89       InShadow = false; // The shadow is big enough. Stop counting.
90   }
91 }
92 
93 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
94     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
95   if (InShadow && CurrentShadowSize < RequiredShadowSize) {
96     InShadow = false;
97     EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
98              MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
99   }
100 }
101 
102 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
103   OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
104   SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
105 }
106 
107 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
108                                X86AsmPrinter &asmprinter)
109     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
110       AsmPrinter(asmprinter) {}
111 
112 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
113   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
114 }
115 
116 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
117 /// operand to an MCSymbol.
118 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
119   const DataLayout &DL = MF.getDataLayout();
120   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
121          "Isn't a symbol reference");
122 
123   MCSymbol *Sym = nullptr;
124   SmallString<128> Name;
125   StringRef Suffix;
126 
127   switch (MO.getTargetFlags()) {
128   case X86II::MO_DLLIMPORT:
129     // Handle dllimport linkage.
130     Name += "__imp_";
131     break;
132   case X86II::MO_COFFSTUB:
133     Name += ".refptr.";
134     break;
135   case X86II::MO_DARWIN_NONLAZY:
136   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
137     Suffix = "$non_lazy_ptr";
138     break;
139   }
140 
141   if (!Suffix.empty())
142     Name += DL.getPrivateGlobalPrefix();
143 
144   if (MO.isGlobal()) {
145     const GlobalValue *GV = MO.getGlobal();
146     AsmPrinter.getNameWithPrefix(Name, GV);
147   } else if (MO.isSymbol()) {
148     Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
149   } else if (MO.isMBB()) {
150     assert(Suffix.empty());
151     Sym = MO.getMBB()->getSymbol();
152   }
153 
154   Name += Suffix;
155   if (!Sym)
156     Sym = Ctx.getOrCreateSymbol(Name);
157 
158   // If the target flags on the operand changes the name of the symbol, do that
159   // before we return the symbol.
160   switch (MO.getTargetFlags()) {
161   default:
162     break;
163   case X86II::MO_COFFSTUB: {
164     MachineModuleInfoCOFF &MMICOFF =
165         MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
166     MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
167     if (!StubSym.getPointer()) {
168       assert(MO.isGlobal() && "Extern symbol not handled yet");
169       StubSym = MachineModuleInfoImpl::StubValueTy(
170           AsmPrinter.getSymbol(MO.getGlobal()), true);
171     }
172     break;
173   }
174   case X86II::MO_DARWIN_NONLAZY:
175   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
176     MachineModuleInfoImpl::StubValueTy &StubSym =
177         getMachOMMI().getGVStubEntry(Sym);
178     if (!StubSym.getPointer()) {
179       assert(MO.isGlobal() && "Extern symbol not handled yet");
180       StubSym = MachineModuleInfoImpl::StubValueTy(
181           AsmPrinter.getSymbol(MO.getGlobal()),
182           !MO.getGlobal()->hasInternalLinkage());
183     }
184     break;
185   }
186   }
187 
188   return Sym;
189 }
190 
191 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
192                                              MCSymbol *Sym) const {
193   // FIXME: We would like an efficient form for this, so we don't have to do a
194   // lot of extra uniquing.
195   const MCExpr *Expr = nullptr;
196   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
197 
198   switch (MO.getTargetFlags()) {
199   default:
200     llvm_unreachable("Unknown target flag on GV operand");
201   case X86II::MO_NO_FLAG: // No flag.
202   // These affect the name of the symbol, not any suffix.
203   case X86II::MO_DARWIN_NONLAZY:
204   case X86II::MO_DLLIMPORT:
205   case X86II::MO_COFFSTUB:
206     break;
207 
208   case X86II::MO_TLVP:
209     RefKind = MCSymbolRefExpr::VK_TLVP;
210     break;
211   case X86II::MO_TLVP_PIC_BASE:
212     Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
213     // Subtract the pic base.
214     Expr = MCBinaryExpr::createSub(
215         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
216     break;
217   case X86II::MO_SECREL:
218     RefKind = MCSymbolRefExpr::VK_SECREL;
219     break;
220   case X86II::MO_TLSGD:
221     RefKind = MCSymbolRefExpr::VK_TLSGD;
222     break;
223   case X86II::MO_TLSLD:
224     RefKind = MCSymbolRefExpr::VK_TLSLD;
225     break;
226   case X86II::MO_TLSLDM:
227     RefKind = MCSymbolRefExpr::VK_TLSLDM;
228     break;
229   case X86II::MO_GOTTPOFF:
230     RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
231     break;
232   case X86II::MO_INDNTPOFF:
233     RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
234     break;
235   case X86II::MO_TPOFF:
236     RefKind = MCSymbolRefExpr::VK_TPOFF;
237     break;
238   case X86II::MO_DTPOFF:
239     RefKind = MCSymbolRefExpr::VK_DTPOFF;
240     break;
241   case X86II::MO_NTPOFF:
242     RefKind = MCSymbolRefExpr::VK_NTPOFF;
243     break;
244   case X86II::MO_GOTNTPOFF:
245     RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
246     break;
247   case X86II::MO_GOTPCREL:
248     RefKind = MCSymbolRefExpr::VK_GOTPCREL;
249     break;
250   case X86II::MO_GOT:
251     RefKind = MCSymbolRefExpr::VK_GOT;
252     break;
253   case X86II::MO_GOTOFF:
254     RefKind = MCSymbolRefExpr::VK_GOTOFF;
255     break;
256   case X86II::MO_PLT:
257     RefKind = MCSymbolRefExpr::VK_PLT;
258     break;
259   case X86II::MO_ABS8:
260     RefKind = MCSymbolRefExpr::VK_X86_ABS8;
261     break;
262   case X86II::MO_PIC_BASE_OFFSET:
263   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
264     Expr = MCSymbolRefExpr::create(Sym, Ctx);
265     // Subtract the pic base.
266     Expr = MCBinaryExpr::createSub(
267         Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
268     if (MO.isJTI()) {
269       assert(MAI.doesSetDirectiveSuppressReloc());
270       // If .set directive is supported, use it to reduce the number of
271       // relocations the assembler will generate for differences between
272       // local labels. This is only safe when the symbols are in the same
273       // section so we are restricting it to jumptable references.
274       MCSymbol *Label = Ctx.createTempSymbol();
275       AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
276       Expr = MCSymbolRefExpr::create(Label, Ctx);
277     }
278     break;
279   }
280 
281   if (!Expr)
282     Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
283 
284   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
285     Expr = MCBinaryExpr::createAdd(
286         Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
287   return MCOperand::createExpr(Expr);
288 }
289 
290 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
291 /// a short fixed-register form.
292 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
293   unsigned ImmOp = Inst.getNumOperands() - 1;
294   assert(Inst.getOperand(0).isReg() &&
295          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
296          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
297            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
298           Inst.getNumOperands() == 2) &&
299          "Unexpected instruction!");
300 
301   // Check whether the destination register can be fixed.
302   unsigned Reg = Inst.getOperand(0).getReg();
303   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
304     return;
305 
306   // If so, rewrite the instruction.
307   MCOperand Saved = Inst.getOperand(ImmOp);
308   Inst = MCInst();
309   Inst.setOpcode(Opcode);
310   Inst.addOperand(Saved);
311 }
312 
313 /// If a movsx instruction has a shorter encoding for the used register
314 /// simplify the instruction to use it instead.
315 static void SimplifyMOVSX(MCInst &Inst) {
316   unsigned NewOpcode = 0;
317   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
318   switch (Inst.getOpcode()) {
319   default:
320     llvm_unreachable("Unexpected instruction!");
321   case X86::MOVSX16rr8: // movsbw %al, %ax   --> cbtw
322     if (Op0 == X86::AX && Op1 == X86::AL)
323       NewOpcode = X86::CBW;
324     break;
325   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
326     if (Op0 == X86::EAX && Op1 == X86::AX)
327       NewOpcode = X86::CWDE;
328     break;
329   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
330     if (Op0 == X86::RAX && Op1 == X86::EAX)
331       NewOpcode = X86::CDQE;
332     break;
333   }
334 
335   if (NewOpcode != 0) {
336     Inst = MCInst();
337     Inst.setOpcode(NewOpcode);
338   }
339 }
340 
341 /// Simplify things like MOV32rm to MOV32o32a.
342 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
343                                   unsigned Opcode) {
344   // Don't make these simplifications in 64-bit mode; other assemblers don't
345   // perform them because they make the code larger.
346   if (Printer.getSubtarget().is64Bit())
347     return;
348 
349   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
350   unsigned AddrBase = IsStore;
351   unsigned RegOp = IsStore ? 0 : 5;
352   unsigned AddrOp = AddrBase + 3;
353   assert(
354       Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
355       Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
356       Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
357       Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
358       Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
359       (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
360       "Unexpected instruction!");
361 
362   // Check whether the destination register can be fixed.
363   unsigned Reg = Inst.getOperand(RegOp).getReg();
364   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
365     return;
366 
367   // Check whether this is an absolute address.
368   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
369   // to do this here.
370   bool Absolute = true;
371   if (Inst.getOperand(AddrOp).isExpr()) {
372     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
373     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
374       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
375         Absolute = false;
376   }
377 
378   if (Absolute &&
379       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
380        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
381        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
382     return;
383 
384   // If so, rewrite the instruction.
385   MCOperand Saved = Inst.getOperand(AddrOp);
386   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
387   Inst = MCInst();
388   Inst.setOpcode(Opcode);
389   Inst.addOperand(Saved);
390   Inst.addOperand(Seg);
391 }
392 
393 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
394   return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
395 }
396 
397 Optional<MCOperand>
398 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
399                                     const MachineOperand &MO) const {
400   switch (MO.getType()) {
401   default:
402     MI->print(errs());
403     llvm_unreachable("unknown operand type");
404   case MachineOperand::MO_Register:
405     // Ignore all implicit register operands.
406     if (MO.isImplicit())
407       return None;
408     return MCOperand::createReg(MO.getReg());
409   case MachineOperand::MO_Immediate:
410     return MCOperand::createImm(MO.getImm());
411   case MachineOperand::MO_MachineBasicBlock:
412   case MachineOperand::MO_GlobalAddress:
413   case MachineOperand::MO_ExternalSymbol:
414     return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
415   case MachineOperand::MO_MCSymbol:
416     return LowerSymbolOperand(MO, MO.getMCSymbol());
417   case MachineOperand::MO_JumpTableIndex:
418     return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
419   case MachineOperand::MO_ConstantPoolIndex:
420     return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
421   case MachineOperand::MO_BlockAddress:
422     return LowerSymbolOperand(
423         MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
424   case MachineOperand::MO_RegisterMask:
425     // Ignore call clobbers.
426     return None;
427   }
428 }
429 
430 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
431 // information.
432 static unsigned convertTailJumpOpcode(unsigned Opcode) {
433   switch (Opcode) {
434   case X86::TAILJMPr:
435     Opcode = X86::JMP32r;
436     break;
437   case X86::TAILJMPm:
438     Opcode = X86::JMP32m;
439     break;
440   case X86::TAILJMPr64:
441     Opcode = X86::JMP64r;
442     break;
443   case X86::TAILJMPm64:
444     Opcode = X86::JMP64m;
445     break;
446   case X86::TAILJMPr64_REX:
447     Opcode = X86::JMP64r_REX;
448     break;
449   case X86::TAILJMPm64_REX:
450     Opcode = X86::JMP64m_REX;
451     break;
452   case X86::TAILJMPd:
453   case X86::TAILJMPd64:
454     Opcode = X86::JMP_1;
455     break;
456   case X86::TAILJMPd_CC:
457   case X86::TAILJMPd64_CC:
458     Opcode = X86::JCC_1;
459     break;
460   }
461 
462   return Opcode;
463 }
464 
465 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
466   OutMI.setOpcode(MI->getOpcode());
467 
468   for (const MachineOperand &MO : MI->operands())
469     if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
470       OutMI.addOperand(MaybeMCOp.getValue());
471 
472   // Handle a few special cases to eliminate operand modifiers.
473   switch (OutMI.getOpcode()) {
474   case X86::LEA64_32r:
475   case X86::LEA64r:
476   case X86::LEA16r:
477   case X86::LEA32r:
478     // LEA should have a segment register, but it must be empty.
479     assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
480            "Unexpected # of LEA operands");
481     assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
482            "LEA has segment specified!");
483     break;
484 
485   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
486   // if one of the registers is extended, but other isn't.
487   case X86::VMOVZPQILo2PQIrr:
488   case X86::VMOVAPDrr:
489   case X86::VMOVAPDYrr:
490   case X86::VMOVAPSrr:
491   case X86::VMOVAPSYrr:
492   case X86::VMOVDQArr:
493   case X86::VMOVDQAYrr:
494   case X86::VMOVDQUrr:
495   case X86::VMOVDQUYrr:
496   case X86::VMOVUPDrr:
497   case X86::VMOVUPDYrr:
498   case X86::VMOVUPSrr:
499   case X86::VMOVUPSYrr: {
500     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
501         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
502       unsigned NewOpc;
503       switch (OutMI.getOpcode()) {
504       default: llvm_unreachable("Invalid opcode");
505       case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
506       case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
507       case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
508       case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
509       case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
510       case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
511       case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
512       case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
513       case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
514       case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
515       case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
516       case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
517       case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
518       }
519       OutMI.setOpcode(NewOpc);
520     }
521     break;
522   }
523   case X86::VMOVSDrr:
524   case X86::VMOVSSrr: {
525     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
526         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
527       unsigned NewOpc;
528       switch (OutMI.getOpcode()) {
529       default: llvm_unreachable("Invalid opcode");
530       case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
531       case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
532       }
533       OutMI.setOpcode(NewOpc);
534     }
535     break;
536   }
537 
538   case X86::VPCMPBZ128rmi:  case X86::VPCMPBZ128rmik:
539   case X86::VPCMPBZ128rri:  case X86::VPCMPBZ128rrik:
540   case X86::VPCMPBZ256rmi:  case X86::VPCMPBZ256rmik:
541   case X86::VPCMPBZ256rri:  case X86::VPCMPBZ256rrik:
542   case X86::VPCMPBZrmi:     case X86::VPCMPBZrmik:
543   case X86::VPCMPBZrri:     case X86::VPCMPBZrrik:
544   case X86::VPCMPDZ128rmi:  case X86::VPCMPDZ128rmik:
545   case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
546   case X86::VPCMPDZ128rri:  case X86::VPCMPDZ128rrik:
547   case X86::VPCMPDZ256rmi:  case X86::VPCMPDZ256rmik:
548   case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
549   case X86::VPCMPDZ256rri:  case X86::VPCMPDZ256rrik:
550   case X86::VPCMPDZrmi:     case X86::VPCMPDZrmik:
551   case X86::VPCMPDZrmib:    case X86::VPCMPDZrmibk:
552   case X86::VPCMPDZrri:     case X86::VPCMPDZrrik:
553   case X86::VPCMPQZ128rmi:  case X86::VPCMPQZ128rmik:
554   case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
555   case X86::VPCMPQZ128rri:  case X86::VPCMPQZ128rrik:
556   case X86::VPCMPQZ256rmi:  case X86::VPCMPQZ256rmik:
557   case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
558   case X86::VPCMPQZ256rri:  case X86::VPCMPQZ256rrik:
559   case X86::VPCMPQZrmi:     case X86::VPCMPQZrmik:
560   case X86::VPCMPQZrmib:    case X86::VPCMPQZrmibk:
561   case X86::VPCMPQZrri:     case X86::VPCMPQZrrik:
562   case X86::VPCMPWZ128rmi:  case X86::VPCMPWZ128rmik:
563   case X86::VPCMPWZ128rri:  case X86::VPCMPWZ128rrik:
564   case X86::VPCMPWZ256rmi:  case X86::VPCMPWZ256rmik:
565   case X86::VPCMPWZ256rri:  case X86::VPCMPWZ256rrik:
566   case X86::VPCMPWZrmi:     case X86::VPCMPWZrmik:
567   case X86::VPCMPWZrri:     case X86::VPCMPWZrrik: {
568     // Turn immediate 0 into the VPCMPEQ instruction.
569     if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) {
570       unsigned NewOpc;
571       switch (OutMI.getOpcode()) {
572       default: llvm_unreachable("Invalid opcode");
573       case X86::VPCMPBZ128rmi:   NewOpc = X86::VPCMPEQBZ128rm;   break;
574       case X86::VPCMPBZ128rmik:  NewOpc = X86::VPCMPEQBZ128rmk;  break;
575       case X86::VPCMPBZ128rri:   NewOpc = X86::VPCMPEQBZ128rr;   break;
576       case X86::VPCMPBZ128rrik:  NewOpc = X86::VPCMPEQBZ128rrk;  break;
577       case X86::VPCMPBZ256rmi:   NewOpc = X86::VPCMPEQBZ256rm;   break;
578       case X86::VPCMPBZ256rmik:  NewOpc = X86::VPCMPEQBZ256rmk;  break;
579       case X86::VPCMPBZ256rri:   NewOpc = X86::VPCMPEQBZ256rr;   break;
580       case X86::VPCMPBZ256rrik:  NewOpc = X86::VPCMPEQBZ256rrk;  break;
581       case X86::VPCMPBZrmi:      NewOpc = X86::VPCMPEQBZrm;      break;
582       case X86::VPCMPBZrmik:     NewOpc = X86::VPCMPEQBZrmk;     break;
583       case X86::VPCMPBZrri:      NewOpc = X86::VPCMPEQBZrr;      break;
584       case X86::VPCMPBZrrik:     NewOpc = X86::VPCMPEQBZrrk;     break;
585       case X86::VPCMPDZ128rmi:   NewOpc = X86::VPCMPEQDZ128rm;   break;
586       case X86::VPCMPDZ128rmib:  NewOpc = X86::VPCMPEQDZ128rmb;  break;
587       case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break;
588       case X86::VPCMPDZ128rmik:  NewOpc = X86::VPCMPEQDZ128rmk;  break;
589       case X86::VPCMPDZ128rri:   NewOpc = X86::VPCMPEQDZ128rr;   break;
590       case X86::VPCMPDZ128rrik:  NewOpc = X86::VPCMPEQDZ128rrk;  break;
591       case X86::VPCMPDZ256rmi:   NewOpc = X86::VPCMPEQDZ256rm;   break;
592       case X86::VPCMPDZ256rmib:  NewOpc = X86::VPCMPEQDZ256rmb;  break;
593       case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break;
594       case X86::VPCMPDZ256rmik:  NewOpc = X86::VPCMPEQDZ256rmk;  break;
595       case X86::VPCMPDZ256rri:   NewOpc = X86::VPCMPEQDZ256rr;   break;
596       case X86::VPCMPDZ256rrik:  NewOpc = X86::VPCMPEQDZ256rrk;  break;
597       case X86::VPCMPDZrmi:      NewOpc = X86::VPCMPEQDZrm;      break;
598       case X86::VPCMPDZrmib:     NewOpc = X86::VPCMPEQDZrmb;     break;
599       case X86::VPCMPDZrmibk:    NewOpc = X86::VPCMPEQDZrmbk;    break;
600       case X86::VPCMPDZrmik:     NewOpc = X86::VPCMPEQDZrmk;     break;
601       case X86::VPCMPDZrri:      NewOpc = X86::VPCMPEQDZrr;      break;
602       case X86::VPCMPDZrrik:     NewOpc = X86::VPCMPEQDZrrk;     break;
603       case X86::VPCMPQZ128rmi:   NewOpc = X86::VPCMPEQQZ128rm;   break;
604       case X86::VPCMPQZ128rmib:  NewOpc = X86::VPCMPEQQZ128rmb;  break;
605       case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break;
606       case X86::VPCMPQZ128rmik:  NewOpc = X86::VPCMPEQQZ128rmk;  break;
607       case X86::VPCMPQZ128rri:   NewOpc = X86::VPCMPEQQZ128rr;   break;
608       case X86::VPCMPQZ128rrik:  NewOpc = X86::VPCMPEQQZ128rrk;  break;
609       case X86::VPCMPQZ256rmi:   NewOpc = X86::VPCMPEQQZ256rm;   break;
610       case X86::VPCMPQZ256rmib:  NewOpc = X86::VPCMPEQQZ256rmb;  break;
611       case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break;
612       case X86::VPCMPQZ256rmik:  NewOpc = X86::VPCMPEQQZ256rmk;  break;
613       case X86::VPCMPQZ256rri:   NewOpc = X86::VPCMPEQQZ256rr;   break;
614       case X86::VPCMPQZ256rrik:  NewOpc = X86::VPCMPEQQZ256rrk;  break;
615       case X86::VPCMPQZrmi:      NewOpc = X86::VPCMPEQQZrm;      break;
616       case X86::VPCMPQZrmib:     NewOpc = X86::VPCMPEQQZrmb;     break;
617       case X86::VPCMPQZrmibk:    NewOpc = X86::VPCMPEQQZrmbk;    break;
618       case X86::VPCMPQZrmik:     NewOpc = X86::VPCMPEQQZrmk;     break;
619       case X86::VPCMPQZrri:      NewOpc = X86::VPCMPEQQZrr;      break;
620       case X86::VPCMPQZrrik:     NewOpc = X86::VPCMPEQQZrrk;     break;
621       case X86::VPCMPWZ128rmi:   NewOpc = X86::VPCMPEQWZ128rm;   break;
622       case X86::VPCMPWZ128rmik:  NewOpc = X86::VPCMPEQWZ128rmk;  break;
623       case X86::VPCMPWZ128rri:   NewOpc = X86::VPCMPEQWZ128rr;   break;
624       case X86::VPCMPWZ128rrik:  NewOpc = X86::VPCMPEQWZ128rrk;  break;
625       case X86::VPCMPWZ256rmi:   NewOpc = X86::VPCMPEQWZ256rm;   break;
626       case X86::VPCMPWZ256rmik:  NewOpc = X86::VPCMPEQWZ256rmk;  break;
627       case X86::VPCMPWZ256rri:   NewOpc = X86::VPCMPEQWZ256rr;   break;
628       case X86::VPCMPWZ256rrik:  NewOpc = X86::VPCMPEQWZ256rrk;  break;
629       case X86::VPCMPWZrmi:      NewOpc = X86::VPCMPEQWZrm;      break;
630       case X86::VPCMPWZrmik:     NewOpc = X86::VPCMPEQWZrmk;     break;
631       case X86::VPCMPWZrri:      NewOpc = X86::VPCMPEQWZrr;      break;
632       case X86::VPCMPWZrrik:     NewOpc = X86::VPCMPEQWZrrk;     break;
633       }
634 
635       OutMI.setOpcode(NewOpc);
636       OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
637       break;
638     }
639 
640     // Turn immediate 6 into the VPCMPGT instruction.
641     if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) {
642       unsigned NewOpc;
643       switch (OutMI.getOpcode()) {
644       default: llvm_unreachable("Invalid opcode");
645       case X86::VPCMPBZ128rmi:   NewOpc = X86::VPCMPGTBZ128rm;   break;
646       case X86::VPCMPBZ128rmik:  NewOpc = X86::VPCMPGTBZ128rmk;  break;
647       case X86::VPCMPBZ128rri:   NewOpc = X86::VPCMPGTBZ128rr;   break;
648       case X86::VPCMPBZ128rrik:  NewOpc = X86::VPCMPGTBZ128rrk;  break;
649       case X86::VPCMPBZ256rmi:   NewOpc = X86::VPCMPGTBZ256rm;   break;
650       case X86::VPCMPBZ256rmik:  NewOpc = X86::VPCMPGTBZ256rmk;  break;
651       case X86::VPCMPBZ256rri:   NewOpc = X86::VPCMPGTBZ256rr;   break;
652       case X86::VPCMPBZ256rrik:  NewOpc = X86::VPCMPGTBZ256rrk;  break;
653       case X86::VPCMPBZrmi:      NewOpc = X86::VPCMPGTBZrm;      break;
654       case X86::VPCMPBZrmik:     NewOpc = X86::VPCMPGTBZrmk;     break;
655       case X86::VPCMPBZrri:      NewOpc = X86::VPCMPGTBZrr;      break;
656       case X86::VPCMPBZrrik:     NewOpc = X86::VPCMPGTBZrrk;     break;
657       case X86::VPCMPDZ128rmi:   NewOpc = X86::VPCMPGTDZ128rm;   break;
658       case X86::VPCMPDZ128rmib:  NewOpc = X86::VPCMPGTDZ128rmb;  break;
659       case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break;
660       case X86::VPCMPDZ128rmik:  NewOpc = X86::VPCMPGTDZ128rmk;  break;
661       case X86::VPCMPDZ128rri:   NewOpc = X86::VPCMPGTDZ128rr;   break;
662       case X86::VPCMPDZ128rrik:  NewOpc = X86::VPCMPGTDZ128rrk;  break;
663       case X86::VPCMPDZ256rmi:   NewOpc = X86::VPCMPGTDZ256rm;   break;
664       case X86::VPCMPDZ256rmib:  NewOpc = X86::VPCMPGTDZ256rmb;  break;
665       case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break;
666       case X86::VPCMPDZ256rmik:  NewOpc = X86::VPCMPGTDZ256rmk;  break;
667       case X86::VPCMPDZ256rri:   NewOpc = X86::VPCMPGTDZ256rr;   break;
668       case X86::VPCMPDZ256rrik:  NewOpc = X86::VPCMPGTDZ256rrk;  break;
669       case X86::VPCMPDZrmi:      NewOpc = X86::VPCMPGTDZrm;      break;
670       case X86::VPCMPDZrmib:     NewOpc = X86::VPCMPGTDZrmb;     break;
671       case X86::VPCMPDZrmibk:    NewOpc = X86::VPCMPGTDZrmbk;    break;
672       case X86::VPCMPDZrmik:     NewOpc = X86::VPCMPGTDZrmk;     break;
673       case X86::VPCMPDZrri:      NewOpc = X86::VPCMPGTDZrr;      break;
674       case X86::VPCMPDZrrik:     NewOpc = X86::VPCMPGTDZrrk;     break;
675       case X86::VPCMPQZ128rmi:   NewOpc = X86::VPCMPGTQZ128rm;   break;
676       case X86::VPCMPQZ128rmib:  NewOpc = X86::VPCMPGTQZ128rmb;  break;
677       case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break;
678       case X86::VPCMPQZ128rmik:  NewOpc = X86::VPCMPGTQZ128rmk;  break;
679       case X86::VPCMPQZ128rri:   NewOpc = X86::VPCMPGTQZ128rr;   break;
680       case X86::VPCMPQZ128rrik:  NewOpc = X86::VPCMPGTQZ128rrk;  break;
681       case X86::VPCMPQZ256rmi:   NewOpc = X86::VPCMPGTQZ256rm;   break;
682       case X86::VPCMPQZ256rmib:  NewOpc = X86::VPCMPGTQZ256rmb;  break;
683       case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break;
684       case X86::VPCMPQZ256rmik:  NewOpc = X86::VPCMPGTQZ256rmk;  break;
685       case X86::VPCMPQZ256rri:   NewOpc = X86::VPCMPGTQZ256rr;   break;
686       case X86::VPCMPQZ256rrik:  NewOpc = X86::VPCMPGTQZ256rrk;  break;
687       case X86::VPCMPQZrmi:      NewOpc = X86::VPCMPGTQZrm;      break;
688       case X86::VPCMPQZrmib:     NewOpc = X86::VPCMPGTQZrmb;     break;
689       case X86::VPCMPQZrmibk:    NewOpc = X86::VPCMPGTQZrmbk;    break;
690       case X86::VPCMPQZrmik:     NewOpc = X86::VPCMPGTQZrmk;     break;
691       case X86::VPCMPQZrri:      NewOpc = X86::VPCMPGTQZrr;      break;
692       case X86::VPCMPQZrrik:     NewOpc = X86::VPCMPGTQZrrk;     break;
693       case X86::VPCMPWZ128rmi:   NewOpc = X86::VPCMPGTWZ128rm;   break;
694       case X86::VPCMPWZ128rmik:  NewOpc = X86::VPCMPGTWZ128rmk;  break;
695       case X86::VPCMPWZ128rri:   NewOpc = X86::VPCMPGTWZ128rr;   break;
696       case X86::VPCMPWZ128rrik:  NewOpc = X86::VPCMPGTWZ128rrk;  break;
697       case X86::VPCMPWZ256rmi:   NewOpc = X86::VPCMPGTWZ256rm;   break;
698       case X86::VPCMPWZ256rmik:  NewOpc = X86::VPCMPGTWZ256rmk;  break;
699       case X86::VPCMPWZ256rri:   NewOpc = X86::VPCMPGTWZ256rr;   break;
700       case X86::VPCMPWZ256rrik:  NewOpc = X86::VPCMPGTWZ256rrk;  break;
701       case X86::VPCMPWZrmi:      NewOpc = X86::VPCMPGTWZrm;      break;
702       case X86::VPCMPWZrmik:     NewOpc = X86::VPCMPGTWZrmk;     break;
703       case X86::VPCMPWZrri:      NewOpc = X86::VPCMPGTWZrr;      break;
704       case X86::VPCMPWZrrik:     NewOpc = X86::VPCMPGTWZrrk;     break;
705       }
706 
707       OutMI.setOpcode(NewOpc);
708       OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
709       break;
710     }
711 
712     break;
713   }
714 
715   // CALL64r, CALL64pcrel32 - These instructions used to have
716   // register inputs modeled as normal uses instead of implicit uses.  As such,
717   // they we used to truncate off all but the first operand (the callee). This
718   // issue seems to have been fixed at some point. This assert verifies that.
719   case X86::CALL64r:
720   case X86::CALL64pcrel32:
721     assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
722     break;
723 
724   case X86::EH_RETURN:
725   case X86::EH_RETURN64: {
726     OutMI = MCInst();
727     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
728     break;
729   }
730 
731   case X86::CLEANUPRET: {
732     // Replace CLEANUPRET with the appropriate RET.
733     OutMI = MCInst();
734     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
735     break;
736   }
737 
738   case X86::CATCHRET: {
739     // Replace CATCHRET with the appropriate RET.
740     const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
741     unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
742     OutMI = MCInst();
743     OutMI.setOpcode(getRetOpcode(Subtarget));
744     OutMI.addOperand(MCOperand::createReg(ReturnReg));
745     break;
746   }
747 
748   // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
749   // instruction.
750   case X86::TAILJMPr:
751   case X86::TAILJMPr64:
752   case X86::TAILJMPr64_REX:
753   case X86::TAILJMPd:
754   case X86::TAILJMPd64:
755     assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
756     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
757     break;
758 
759   case X86::TAILJMPd_CC:
760   case X86::TAILJMPd64_CC:
761     assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
762     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
763     break;
764 
765   case X86::TAILJMPm:
766   case X86::TAILJMPm64:
767   case X86::TAILJMPm64_REX:
768     assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
769            "Unexpected number of operands!");
770     OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
771     break;
772 
773   case X86::DEC16r:
774   case X86::DEC32r:
775   case X86::INC16r:
776   case X86::INC32r:
777     // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
778     if (!AsmPrinter.getSubtarget().is64Bit()) {
779       unsigned Opcode;
780       switch (OutMI.getOpcode()) {
781       default: llvm_unreachable("Invalid opcode");
782       case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
783       case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
784       case X86::INC16r: Opcode = X86::INC16r_alt; break;
785       case X86::INC32r: Opcode = X86::INC32r_alt; break;
786       }
787       OutMI.setOpcode(Opcode);
788     }
789     break;
790 
791   // We don't currently select the correct instruction form for instructions
792   // which have a short %eax, etc. form. Handle this by custom lowering, for
793   // now.
794   //
795   // Note, we are currently not handling the following instructions:
796   // MOV64ao8, MOV64o8a
797   // XCHG16ar, XCHG32ar, XCHG64ar
798   case X86::MOV8mr_NOREX:
799   case X86::MOV8mr:
800   case X86::MOV8rm_NOREX:
801   case X86::MOV8rm:
802   case X86::MOV16mr:
803   case X86::MOV16rm:
804   case X86::MOV32mr:
805   case X86::MOV32rm: {
806     unsigned NewOpc;
807     switch (OutMI.getOpcode()) {
808     default: llvm_unreachable("Invalid opcode");
809     case X86::MOV8mr_NOREX:
810     case X86::MOV8mr:  NewOpc = X86::MOV8o32a; break;
811     case X86::MOV8rm_NOREX:
812     case X86::MOV8rm:  NewOpc = X86::MOV8ao32; break;
813     case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
814     case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
815     case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
816     case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
817     }
818     SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
819     break;
820   }
821 
822   case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
823   case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
824   case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
825   case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
826   case X86::OR8ri:  case X86::OR16ri:  case X86::OR32ri:  case X86::OR64ri32:
827   case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
828   case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
829   case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
830   case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
831     unsigned NewOpc;
832     switch (OutMI.getOpcode()) {
833     default: llvm_unreachable("Invalid opcode");
834     case X86::ADC8ri:     NewOpc = X86::ADC8i8;    break;
835     case X86::ADC16ri:    NewOpc = X86::ADC16i16;  break;
836     case X86::ADC32ri:    NewOpc = X86::ADC32i32;  break;
837     case X86::ADC64ri32:  NewOpc = X86::ADC64i32;  break;
838     case X86::ADD8ri:     NewOpc = X86::ADD8i8;    break;
839     case X86::ADD16ri:    NewOpc = X86::ADD16i16;  break;
840     case X86::ADD32ri:    NewOpc = X86::ADD32i32;  break;
841     case X86::ADD64ri32:  NewOpc = X86::ADD64i32;  break;
842     case X86::AND8ri:     NewOpc = X86::AND8i8;    break;
843     case X86::AND16ri:    NewOpc = X86::AND16i16;  break;
844     case X86::AND32ri:    NewOpc = X86::AND32i32;  break;
845     case X86::AND64ri32:  NewOpc = X86::AND64i32;  break;
846     case X86::CMP8ri:     NewOpc = X86::CMP8i8;    break;
847     case X86::CMP16ri:    NewOpc = X86::CMP16i16;  break;
848     case X86::CMP32ri:    NewOpc = X86::CMP32i32;  break;
849     case X86::CMP64ri32:  NewOpc = X86::CMP64i32;  break;
850     case X86::OR8ri:      NewOpc = X86::OR8i8;     break;
851     case X86::OR16ri:     NewOpc = X86::OR16i16;   break;
852     case X86::OR32ri:     NewOpc = X86::OR32i32;   break;
853     case X86::OR64ri32:   NewOpc = X86::OR64i32;   break;
854     case X86::SBB8ri:     NewOpc = X86::SBB8i8;    break;
855     case X86::SBB16ri:    NewOpc = X86::SBB16i16;  break;
856     case X86::SBB32ri:    NewOpc = X86::SBB32i32;  break;
857     case X86::SBB64ri32:  NewOpc = X86::SBB64i32;  break;
858     case X86::SUB8ri:     NewOpc = X86::SUB8i8;    break;
859     case X86::SUB16ri:    NewOpc = X86::SUB16i16;  break;
860     case X86::SUB32ri:    NewOpc = X86::SUB32i32;  break;
861     case X86::SUB64ri32:  NewOpc = X86::SUB64i32;  break;
862     case X86::TEST8ri:    NewOpc = X86::TEST8i8;   break;
863     case X86::TEST16ri:   NewOpc = X86::TEST16i16; break;
864     case X86::TEST32ri:   NewOpc = X86::TEST32i32; break;
865     case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
866     case X86::XOR8ri:     NewOpc = X86::XOR8i8;    break;
867     case X86::XOR16ri:    NewOpc = X86::XOR16i16;  break;
868     case X86::XOR32ri:    NewOpc = X86::XOR32i32;  break;
869     case X86::XOR64ri32:  NewOpc = X86::XOR64i32;  break;
870     }
871     SimplifyShortImmForm(OutMI, NewOpc);
872     break;
873   }
874 
875   // Try to shrink some forms of movsx.
876   case X86::MOVSX16rr8:
877   case X86::MOVSX32rr16:
878   case X86::MOVSX64rr32:
879     SimplifyMOVSX(OutMI);
880     break;
881 
882   case X86::VCMPPDrri:
883   case X86::VCMPPDYrri:
884   case X86::VCMPPSrri:
885   case X86::VCMPPSYrri:
886   case X86::VCMPSDrr:
887   case X86::VCMPSSrr: {
888     // Swap the operands if it will enable a 2 byte VEX encoding.
889     // FIXME: Change the immediate to improve opportunities?
890     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
891         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
892       unsigned Imm = MI->getOperand(3).getImm() & 0x7;
893       switch (Imm) {
894       default: break;
895       case 0x00: // EQUAL
896       case 0x03: // UNORDERED
897       case 0x04: // NOT EQUAL
898       case 0x07: // ORDERED
899         std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
900         break;
901       }
902     }
903     break;
904   }
905 
906   case X86::VMOVHLPSrr:
907   case X86::VUNPCKHPDrr:
908     // These are not truly commutable so hide them from the default case.
909     break;
910 
911   default: {
912     // If the instruction is a commutable arithmetic instruction we might be
913     // able to commute the operands to get a 2 byte VEX prefix.
914     uint64_t TSFlags = MI->getDesc().TSFlags;
915     if (MI->getDesc().isCommutable() &&
916         (TSFlags & X86II::EncodingMask) == X86II::VEX &&
917         (TSFlags & X86II::OpMapMask) == X86II::TB &&
918         (TSFlags & X86II::FormMask) == X86II::MRMSrcReg &&
919         !(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) &&
920         OutMI.getNumOperands() == 3) {
921       if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
922           X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg()))
923         std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
924     }
925     break;
926   }
927   }
928 }
929 
930 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
931                                  const MachineInstr &MI) {
932   bool Is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
933                   MI.getOpcode() == X86::TLS_base_addr64;
934   MCContext &Ctx = OutStreamer->getContext();
935 
936   MCSymbolRefExpr::VariantKind SRVK;
937   switch (MI.getOpcode()) {
938   case X86::TLS_addr32:
939   case X86::TLS_addr64:
940     SRVK = MCSymbolRefExpr::VK_TLSGD;
941     break;
942   case X86::TLS_base_addr32:
943     SRVK = MCSymbolRefExpr::VK_TLSLDM;
944     break;
945   case X86::TLS_base_addr64:
946     SRVK = MCSymbolRefExpr::VK_TLSLD;
947     break;
948   default:
949     llvm_unreachable("unexpected opcode");
950   }
951 
952   const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
953       MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
954 
955   // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
956   // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
957   // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
958   // only using GOT when GOTPCRELX is enabled.
959   // TODO Delete the workaround when GOTPCRELX becomes commonplace.
960   bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
961                 Ctx.getAsmInfo()->canRelaxRelocations();
962 
963   if (Is64Bits) {
964     bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
965     if (NeedsPadding)
966       EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
967     EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
968                                 .addReg(X86::RDI)
969                                 .addReg(X86::RIP)
970                                 .addImm(1)
971                                 .addReg(0)
972                                 .addExpr(Sym)
973                                 .addReg(0));
974     const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
975     if (NeedsPadding) {
976       if (!UseGot)
977         EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
978       EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
979       EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
980     }
981     if (UseGot) {
982       const MCExpr *Expr = MCSymbolRefExpr::create(
983           TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
984       EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
985                                   .addReg(X86::RIP)
986                                   .addImm(1)
987                                   .addReg(0)
988                                   .addExpr(Expr)
989                                   .addReg(0));
990     } else {
991       EmitAndCountInstruction(
992           MCInstBuilder(X86::CALL64pcrel32)
993               .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
994                                                MCSymbolRefExpr::VK_PLT, Ctx)));
995     }
996   } else {
997     if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
998       EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
999                                   .addReg(X86::EAX)
1000                                   .addReg(0)
1001                                   .addImm(1)
1002                                   .addReg(X86::EBX)
1003                                   .addExpr(Sym)
1004                                   .addReg(0));
1005     } else {
1006       EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
1007                                   .addReg(X86::EAX)
1008                                   .addReg(X86::EBX)
1009                                   .addImm(1)
1010                                   .addReg(0)
1011                                   .addExpr(Sym)
1012                                   .addReg(0));
1013     }
1014 
1015     const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
1016     if (UseGot) {
1017       const MCExpr *Expr =
1018           MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
1019       EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
1020                                   .addReg(X86::EBX)
1021                                   .addImm(1)
1022                                   .addReg(0)
1023                                   .addExpr(Expr)
1024                                   .addReg(0));
1025     } else {
1026       EmitAndCountInstruction(
1027           MCInstBuilder(X86::CALLpcrel32)
1028               .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
1029                                                MCSymbolRefExpr::VK_PLT, Ctx)));
1030     }
1031   }
1032 }
1033 
1034 /// Return the longest nop which can be efficiently decoded for the given
1035 /// target cpu.  15-bytes is the longest single NOP instruction, but some
1036 /// platforms can't decode the longest forms efficiently.
1037 static unsigned MaxLongNopLength(const MCSubtargetInfo &STI) {
1038   uint64_t MaxNopLength = 10;
1039   if (STI.getFeatureBits()[X86::ProcIntelSLM])
1040     MaxNopLength = 7;
1041   else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP])
1042     MaxNopLength = 15;
1043   else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP])
1044     MaxNopLength = 11;
1045   return MaxNopLength;
1046 }
1047 
1048 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
1049 /// bytes.  Return the size of nop emitted.
1050 static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
1051                         const MCSubtargetInfo &STI) {
1052   if (!Is64Bit) {
1053     // TODO Do additional checking if the CPU supports multi-byte nops.
1054     OS.EmitInstruction(MCInstBuilder(X86::NOOP), STI);
1055     return 1;
1056   }
1057 
1058   // Cap a single nop emission at the profitable value for the target
1059   NumBytes = std::min(NumBytes, MaxLongNopLength(STI));
1060 
1061   unsigned NopSize;
1062   unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
1063   IndexReg = Displacement = SegmentReg = 0;
1064   BaseReg = X86::RAX;
1065   ScaleVal = 1;
1066   switch (NumBytes) {
1067   case 0:
1068     llvm_unreachable("Zero nops?");
1069     break;
1070   case 1:
1071     NopSize = 1;
1072     Opc = X86::NOOP;
1073     break;
1074   case 2:
1075     NopSize = 2;
1076     Opc = X86::XCHG16ar;
1077     break;
1078   case 3:
1079     NopSize = 3;
1080     Opc = X86::NOOPL;
1081     break;
1082   case 4:
1083     NopSize = 4;
1084     Opc = X86::NOOPL;
1085     Displacement = 8;
1086     break;
1087   case 5:
1088     NopSize = 5;
1089     Opc = X86::NOOPL;
1090     Displacement = 8;
1091     IndexReg = X86::RAX;
1092     break;
1093   case 6:
1094     NopSize = 6;
1095     Opc = X86::NOOPW;
1096     Displacement = 8;
1097     IndexReg = X86::RAX;
1098     break;
1099   case 7:
1100     NopSize = 7;
1101     Opc = X86::NOOPL;
1102     Displacement = 512;
1103     break;
1104   case 8:
1105     NopSize = 8;
1106     Opc = X86::NOOPL;
1107     Displacement = 512;
1108     IndexReg = X86::RAX;
1109     break;
1110   case 9:
1111     NopSize = 9;
1112     Opc = X86::NOOPW;
1113     Displacement = 512;
1114     IndexReg = X86::RAX;
1115     break;
1116   default:
1117     NopSize = 10;
1118     Opc = X86::NOOPW;
1119     Displacement = 512;
1120     IndexReg = X86::RAX;
1121     SegmentReg = X86::CS;
1122     break;
1123   }
1124 
1125   unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
1126   NopSize += NumPrefixes;
1127   for (unsigned i = 0; i != NumPrefixes; ++i)
1128     OS.EmitBytes("\x66");
1129 
1130   switch (Opc) {
1131   default: llvm_unreachable("Unexpected opcode");
1132   case X86::NOOP:
1133     OS.EmitInstruction(MCInstBuilder(Opc), STI);
1134     break;
1135   case X86::XCHG16ar:
1136     OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
1137     break;
1138   case X86::NOOPL:
1139   case X86::NOOPW:
1140     OS.EmitInstruction(MCInstBuilder(Opc)
1141                            .addReg(BaseReg)
1142                            .addImm(ScaleVal)
1143                            .addReg(IndexReg)
1144                            .addImm(Displacement)
1145                            .addReg(SegmentReg),
1146                        STI);
1147     break;
1148   }
1149   assert(NopSize <= NumBytes && "We overemitted?");
1150   return NopSize;
1151 }
1152 
1153 /// Emit the optimal amount of multi-byte nops on X86.
1154 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
1155                      const MCSubtargetInfo &STI) {
1156   unsigned NopsToEmit = NumBytes;
1157   (void)NopsToEmit;
1158   while (NumBytes) {
1159     NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
1160     assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
1161   }
1162 }
1163 
1164 /// A RAII helper which defines a region of instructions which can't have
1165 /// padding added between them for correctness.
1166 struct NoAutoPaddingScope {
1167   MCStreamer &OS;
1168   const bool OldAllowAutoPadding;
1169   NoAutoPaddingScope(MCStreamer &OS)
1170     : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
1171     changeAndComment(false);
1172   }
1173   ~NoAutoPaddingScope() {
1174     changeAndComment(OldAllowAutoPadding);
1175   }
1176   void changeAndComment(bool b) {
1177     if (b == OS.getAllowAutoPadding())
1178       return;
1179     OS.setAllowAutoPadding(b);
1180     if (b)
1181       OS.emitRawComment("autopadding");
1182     else
1183       OS.emitRawComment("noautopadding");
1184   }
1185 };
1186 
1187 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
1188                                     X86MCInstLower &MCIL) {
1189   assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
1190 
1191   NoAutoPaddingScope NoPadScope(*OutStreamer);
1192 
1193   StatepointOpers SOpers(&MI);
1194   if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
1195     EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
1196              getSubtargetInfo());
1197   } else {
1198     // Lower call target and choose correct opcode
1199     const MachineOperand &CallTarget = SOpers.getCallTarget();
1200     MCOperand CallTargetMCOp;
1201     unsigned CallOpcode;
1202     switch (CallTarget.getType()) {
1203     case MachineOperand::MO_GlobalAddress:
1204     case MachineOperand::MO_ExternalSymbol:
1205       CallTargetMCOp = MCIL.LowerSymbolOperand(
1206           CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
1207       CallOpcode = X86::CALL64pcrel32;
1208       // Currently, we only support relative addressing with statepoints.
1209       // Otherwise, we'll need a scratch register to hold the target
1210       // address.  You'll fail asserts during load & relocation if this
1211       // symbol is to far away. (TODO: support non-relative addressing)
1212       break;
1213     case MachineOperand::MO_Immediate:
1214       CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
1215       CallOpcode = X86::CALL64pcrel32;
1216       // Currently, we only support relative addressing with statepoints.
1217       // Otherwise, we'll need a scratch register to hold the target
1218       // immediate.  You'll fail asserts during load & relocation if this
1219       // address is to far away. (TODO: support non-relative addressing)
1220       break;
1221     case MachineOperand::MO_Register:
1222       // FIXME: Add retpoline support and remove this.
1223       if (Subtarget->useRetpolineIndirectCalls())
1224         report_fatal_error("Lowering register statepoints with retpoline not "
1225                            "yet implemented.");
1226       CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
1227       CallOpcode = X86::CALL64r;
1228       break;
1229     default:
1230       llvm_unreachable("Unsupported operand type in statepoint call target");
1231       break;
1232     }
1233 
1234     // Emit call
1235     MCInst CallInst;
1236     CallInst.setOpcode(CallOpcode);
1237     CallInst.addOperand(CallTargetMCOp);
1238     OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
1239   }
1240 
1241   // Record our statepoint node in the same section used by STACKMAP
1242   // and PATCHPOINT
1243   auto &Ctx = OutStreamer->getContext();
1244   MCSymbol *MILabel = Ctx.createTempSymbol();
1245   OutStreamer->EmitLabel(MILabel);
1246   SM.recordStatepoint(*MILabel, MI);
1247 }
1248 
1249 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
1250                                      X86MCInstLower &MCIL) {
1251   // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
1252   //                  <opcode>, <operands>
1253 
1254   NoAutoPaddingScope NoPadScope(*OutStreamer);
1255 
1256   Register DefRegister = FaultingMI.getOperand(0).getReg();
1257   FaultMaps::FaultKind FK =
1258       static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
1259   MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
1260   unsigned Opcode = FaultingMI.getOperand(3).getImm();
1261   unsigned OperandsBeginIdx = 4;
1262 
1263   auto &Ctx = OutStreamer->getContext();
1264   MCSymbol *FaultingLabel = Ctx.createTempSymbol();
1265   OutStreamer->EmitLabel(FaultingLabel);
1266 
1267   assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
1268   FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
1269 
1270   MCInst MI;
1271   MI.setOpcode(Opcode);
1272 
1273   if (DefRegister != X86::NoRegister)
1274     MI.addOperand(MCOperand::createReg(DefRegister));
1275 
1276   for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
1277             E = FaultingMI.operands_end();
1278        I != E; ++I)
1279     if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
1280       MI.addOperand(MaybeOperand.getValue());
1281 
1282   OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
1283   OutStreamer->EmitInstruction(MI, getSubtargetInfo());
1284 }
1285 
1286 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
1287                                      X86MCInstLower &MCIL) {
1288   bool Is64Bits = Subtarget->is64Bit();
1289   MCContext &Ctx = OutStreamer->getContext();
1290   MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
1291   const MCSymbolRefExpr *Op =
1292       MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
1293 
1294   EmitAndCountInstruction(
1295       MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
1296           .addExpr(Op));
1297 }
1298 
1299 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
1300                                       X86MCInstLower &MCIL) {
1301   // PATCHABLE_OP minsize, opcode, operands
1302 
1303   NoAutoPaddingScope NoPadScope(*OutStreamer);
1304 
1305   unsigned MinSize = MI.getOperand(0).getImm();
1306   unsigned Opcode = MI.getOperand(1).getImm();
1307 
1308   MCInst MCI;
1309   MCI.setOpcode(Opcode);
1310   for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
1311     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1312       MCI.addOperand(MaybeOperand.getValue());
1313 
1314   SmallString<256> Code;
1315   SmallVector<MCFixup, 4> Fixups;
1316   raw_svector_ostream VecOS(Code);
1317   CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
1318 
1319   if (Code.size() < MinSize) {
1320     if (MinSize == 2 && Opcode == X86::PUSH64r) {
1321       // This is an optimization that lets us get away without emitting a nop in
1322       // many cases.
1323       //
1324       // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1325       // bytes too, so the check on MinSize is important.
1326       MCI.setOpcode(X86::PUSH64rmr);
1327     } else {
1328       unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
1329                                  getSubtargetInfo());
1330       assert(NopSize == MinSize && "Could not implement MinSize!");
1331       (void)NopSize;
1332     }
1333   }
1334 
1335   OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
1336 }
1337 
1338 // Lower a stackmap of the form:
1339 // <id>, <shadowBytes>, ...
1340 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1341   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1342 
1343   auto &Ctx = OutStreamer->getContext();
1344   MCSymbol *MILabel = Ctx.createTempSymbol();
1345   OutStreamer->EmitLabel(MILabel);
1346 
1347   SM.recordStackMap(*MILabel, MI);
1348   unsigned NumShadowBytes = MI.getOperand(1).getImm();
1349   SMShadowTracker.reset(NumShadowBytes);
1350 }
1351 
1352 // Lower a patchpoint of the form:
1353 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1354 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1355                                     X86MCInstLower &MCIL) {
1356   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1357 
1358   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1359 
1360   NoAutoPaddingScope NoPadScope(*OutStreamer);
1361 
1362   auto &Ctx = OutStreamer->getContext();
1363   MCSymbol *MILabel = Ctx.createTempSymbol();
1364   OutStreamer->EmitLabel(MILabel);
1365   SM.recordPatchPoint(*MILabel, MI);
1366 
1367   PatchPointOpers opers(&MI);
1368   unsigned ScratchIdx = opers.getNextScratchIdx();
1369   unsigned EncodedBytes = 0;
1370   const MachineOperand &CalleeMO = opers.getCallTarget();
1371 
1372   // Check for null target. If target is non-null (i.e. is non-zero or is
1373   // symbolic) then emit a call.
1374   if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1375     MCOperand CalleeMCOp;
1376     switch (CalleeMO.getType()) {
1377     default:
1378       /// FIXME: Add a verifier check for bad callee types.
1379       llvm_unreachable("Unrecognized callee operand type.");
1380     case MachineOperand::MO_Immediate:
1381       if (CalleeMO.getImm())
1382         CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1383       break;
1384     case MachineOperand::MO_ExternalSymbol:
1385     case MachineOperand::MO_GlobalAddress:
1386       CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1387                                            MCIL.GetSymbolFromOperand(CalleeMO));
1388       break;
1389     }
1390 
1391     // Emit MOV to materialize the target address and the CALL to target.
1392     // This is encoded with 12-13 bytes, depending on which register is used.
1393     Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1394     if (X86II::isX86_64ExtendedReg(ScratchReg))
1395       EncodedBytes = 13;
1396     else
1397       EncodedBytes = 12;
1398 
1399     EmitAndCountInstruction(
1400         MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1401     // FIXME: Add retpoline support and remove this.
1402     if (Subtarget->useRetpolineIndirectCalls())
1403       report_fatal_error(
1404           "Lowering patchpoint with retpoline not yet implemented.");
1405     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1406   }
1407 
1408   // Emit padding.
1409   unsigned NumBytes = opers.getNumPatchBytes();
1410   assert(NumBytes >= EncodedBytes &&
1411          "Patchpoint can't request size less than the length of a call.");
1412 
1413   EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
1414            getSubtargetInfo());
1415 }
1416 
1417 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1418                                               X86MCInstLower &MCIL) {
1419   assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1420 
1421   NoAutoPaddingScope NoPadScope(*OutStreamer);
1422 
1423   // We want to emit the following pattern, which follows the x86 calling
1424   // convention to prepare for the trampoline call to be patched in.
1425   //
1426   //   .p2align 1, ...
1427   // .Lxray_event_sled_N:
1428   //   jmp +N                        // jump across the instrumentation sled
1429   //   ...                           // set up arguments in register
1430   //   callq __xray_CustomEvent@plt  // force dependency to symbol
1431   //   ...
1432   //   <jump here>
1433   //
1434   // After patching, it would look something like:
1435   //
1436   //   nopw (2-byte nop)
1437   //   ...
1438   //   callq __xrayCustomEvent  // already lowered
1439   //   ...
1440   //
1441   // ---
1442   // First we emit the label and the jump.
1443   auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1444   OutStreamer->AddComment("# XRay Custom Event Log");
1445   OutStreamer->EmitCodeAlignment(2);
1446   OutStreamer->EmitLabel(CurSled);
1447 
1448   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1449   // an operand (computed as an offset from the jmp instruction).
1450   // FIXME: Find another less hacky way do force the relative jump.
1451   OutStreamer->EmitBinaryData("\xeb\x0f");
1452 
1453   // The default C calling convention will place two arguments into %rcx and
1454   // %rdx -- so we only work with those.
1455   const Register DestRegs[] = {X86::RDI, X86::RSI};
1456   bool UsedMask[] = {false, false};
1457   // Filled out in loop.
1458   Register SrcRegs[] = {0, 0};
1459 
1460   // Then we put the operands in the %rdi and %rsi registers. We spill the
1461   // values in the register before we clobber them, and mark them as used in
1462   // UsedMask. In case the arguments are already in the correct register, we use
1463   // emit nops appropriately sized to keep the sled the same size in every
1464   // situation.
1465   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1466     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1467       assert(Op->isReg() && "Only support arguments in registers");
1468       SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1469       if (SrcRegs[I] != DestRegs[I]) {
1470         UsedMask[I] = true;
1471         EmitAndCountInstruction(
1472             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1473       } else {
1474         EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1475       }
1476     }
1477 
1478   // Now that the register values are stashed, mov arguments into place.
1479   // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1480   // earlier DestReg. We will have already overwritten over the register before
1481   // we can copy from it.
1482   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1483     if (SrcRegs[I] != DestRegs[I])
1484       EmitAndCountInstruction(
1485           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1486 
1487   // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1488   // name of the trampoline to be implemented by the XRay runtime.
1489   auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1490   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1491   if (isPositionIndependent())
1492     TOp.setTargetFlags(X86II::MO_PLT);
1493 
1494   // Emit the call instruction.
1495   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1496                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1497 
1498   // Restore caller-saved and used registers.
1499   for (unsigned I = sizeof UsedMask; I-- > 0;)
1500     if (UsedMask[I])
1501       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1502     else
1503       EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1504 
1505   OutStreamer->AddComment("xray custom event end.");
1506 
1507   // Record the sled version. Older versions of this sled were spelled
1508   // differently, so we let the runtime handle the different offsets we're
1509   // using.
1510   recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
1511 }
1512 
1513 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1514                                                     X86MCInstLower &MCIL) {
1515   assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1516 
1517   NoAutoPaddingScope NoPadScope(*OutStreamer);
1518 
1519   // We want to emit the following pattern, which follows the x86 calling
1520   // convention to prepare for the trampoline call to be patched in.
1521   //
1522   //   .p2align 1, ...
1523   // .Lxray_event_sled_N:
1524   //   jmp +N                        // jump across the instrumentation sled
1525   //   ...                           // set up arguments in register
1526   //   callq __xray_TypedEvent@plt  // force dependency to symbol
1527   //   ...
1528   //   <jump here>
1529   //
1530   // After patching, it would look something like:
1531   //
1532   //   nopw (2-byte nop)
1533   //   ...
1534   //   callq __xrayTypedEvent  // already lowered
1535   //   ...
1536   //
1537   // ---
1538   // First we emit the label and the jump.
1539   auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1540   OutStreamer->AddComment("# XRay Typed Event Log");
1541   OutStreamer->EmitCodeAlignment(2);
1542   OutStreamer->EmitLabel(CurSled);
1543 
1544   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1545   // an operand (computed as an offset from the jmp instruction).
1546   // FIXME: Find another less hacky way do force the relative jump.
1547   OutStreamer->EmitBinaryData("\xeb\x14");
1548 
1549   // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1550   // so we'll work with those. Or we may be called via SystemV, in which case
1551   // we don't have to do any translation.
1552   const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1553   bool UsedMask[] = {false, false, false};
1554 
1555   // Will fill out src regs in the loop.
1556   Register SrcRegs[] = {0, 0, 0};
1557 
1558   // Then we put the operands in the SystemV registers. We spill the values in
1559   // the registers before we clobber them, and mark them as used in UsedMask.
1560   // In case the arguments are already in the correct register, we emit nops
1561   // appropriately sized to keep the sled the same size in every situation.
1562   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1563     if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1564       // TODO: Is register only support adequate?
1565       assert(Op->isReg() && "Only supports arguments in registers");
1566       SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1567       if (SrcRegs[I] != DestRegs[I]) {
1568         UsedMask[I] = true;
1569         EmitAndCountInstruction(
1570             MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1571       } else {
1572         EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1573       }
1574     }
1575 
1576   // In the above loop we only stash all of the destination registers or emit
1577   // nops if the arguments are already in the right place. Doing the actually
1578   // moving is postponed until after all the registers are stashed so nothing
1579   // is clobbers. We've already added nops to account for the size of mov and
1580   // push if the register is in the right place, so we only have to worry about
1581   // emitting movs.
1582   // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1583   // earlier DestReg. We will have already overwritten over the register before
1584   // we can copy from it.
1585   for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1586     if (UsedMask[I])
1587       EmitAndCountInstruction(
1588           MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1589 
1590   // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1591   // name of the trampoline to be implemented by the XRay runtime.
1592   auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1593   MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1594   if (isPositionIndependent())
1595     TOp.setTargetFlags(X86II::MO_PLT);
1596 
1597   // Emit the call instruction.
1598   EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1599                               .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1600 
1601   // Restore caller-saved and used registers.
1602   for (unsigned I = sizeof UsedMask; I-- > 0;)
1603     if (UsedMask[I])
1604       EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1605     else
1606       EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1607 
1608   OutStreamer->AddComment("xray typed event end.");
1609 
1610   // Record the sled version.
1611   recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
1612 }
1613 
1614 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1615                                                   X86MCInstLower &MCIL) {
1616 
1617   NoAutoPaddingScope NoPadScope(*OutStreamer);
1618 
1619   const Function &F = MF->getFunction();
1620   if (F.hasFnAttribute("patchable-function-entry")) {
1621     unsigned Num;
1622     if (F.getFnAttribute("patchable-function-entry")
1623             .getValueAsString()
1624             .getAsInteger(10, Num))
1625       return;
1626     EmitNops(*OutStreamer, Num, Subtarget->is64Bit(), getSubtargetInfo());
1627     return;
1628   }
1629   // We want to emit the following pattern:
1630   //
1631   //   .p2align 1, ...
1632   // .Lxray_sled_N:
1633   //   jmp .tmpN
1634   //   # 9 bytes worth of noops
1635   //
1636   // We need the 9 bytes because at runtime, we'd be patching over the full 11
1637   // bytes with the following pattern:
1638   //
1639   //   mov %r10, <function id, 32-bit>   // 6 bytes
1640   //   call <relative offset, 32-bits>   // 5 bytes
1641   //
1642   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1643   OutStreamer->EmitCodeAlignment(2);
1644   OutStreamer->EmitLabel(CurSled);
1645 
1646   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1647   // an operand (computed as an offset from the jmp instruction).
1648   // FIXME: Find another less hacky way do force the relative jump.
1649   OutStreamer->EmitBytes("\xeb\x09");
1650   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1651   recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
1652 }
1653 
1654 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1655                                        X86MCInstLower &MCIL) {
1656   NoAutoPaddingScope NoPadScope(*OutStreamer);
1657 
1658   // Since PATCHABLE_RET takes the opcode of the return statement as an
1659   // argument, we use that to emit the correct form of the RET that we want.
1660   // i.e. when we see this:
1661   //
1662   //   PATCHABLE_RET X86::RET ...
1663   //
1664   // We should emit the RET followed by sleds.
1665   //
1666   //   .p2align 1, ...
1667   // .Lxray_sled_N:
1668   //   ret  # or equivalent instruction
1669   //   # 10 bytes worth of noops
1670   //
1671   // This just makes sure that the alignment for the next instruction is 2.
1672   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1673   OutStreamer->EmitCodeAlignment(2);
1674   OutStreamer->EmitLabel(CurSled);
1675   unsigned OpCode = MI.getOperand(0).getImm();
1676   MCInst Ret;
1677   Ret.setOpcode(OpCode);
1678   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1679     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1680       Ret.addOperand(MaybeOperand.getValue());
1681   OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
1682   EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
1683   recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
1684 }
1685 
1686 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1687                                              X86MCInstLower &MCIL) {
1688   NoAutoPaddingScope NoPadScope(*OutStreamer);
1689 
1690   // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1691   // instruction so we lower that particular instruction and its operands.
1692   // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1693   // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1694   // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1695   // tail call much like how we have it in PATCHABLE_RET.
1696   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1697   OutStreamer->EmitCodeAlignment(2);
1698   OutStreamer->EmitLabel(CurSled);
1699   auto Target = OutContext.createTempSymbol();
1700 
1701   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1702   // an operand (computed as an offset from the jmp instruction).
1703   // FIXME: Find another less hacky way do force the relative jump.
1704   OutStreamer->EmitBytes("\xeb\x09");
1705   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1706   OutStreamer->EmitLabel(Target);
1707   recordSled(CurSled, MI, SledKind::TAIL_CALL);
1708 
1709   unsigned OpCode = MI.getOperand(0).getImm();
1710   OpCode = convertTailJumpOpcode(OpCode);
1711   MCInst TC;
1712   TC.setOpcode(OpCode);
1713 
1714   // Before emitting the instruction, add a comment to indicate that this is
1715   // indeed a tail call.
1716   OutStreamer->AddComment("TAILCALL");
1717   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1718     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1719       TC.addOperand(MaybeOperand.getValue());
1720   OutStreamer->EmitInstruction(TC, getSubtargetInfo());
1721 }
1722 
1723 // Returns instruction preceding MBBI in MachineFunction.
1724 // If MBBI is the first instruction of the first basic block, returns null.
1725 static MachineBasicBlock::const_iterator
1726 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1727   const MachineBasicBlock *MBB = MBBI->getParent();
1728   while (MBBI == MBB->begin()) {
1729     if (MBB == &MBB->getParent()->front())
1730       return MachineBasicBlock::const_iterator();
1731     MBB = MBB->getPrevNode();
1732     MBBI = MBB->end();
1733   }
1734   --MBBI;
1735   return MBBI;
1736 }
1737 
1738 static const Constant *getConstantFromPool(const MachineInstr &MI,
1739                                            const MachineOperand &Op) {
1740   if (!Op.isCPI() || Op.getOffset() != 0)
1741     return nullptr;
1742 
1743   ArrayRef<MachineConstantPoolEntry> Constants =
1744       MI.getParent()->getParent()->getConstantPool()->getConstants();
1745   const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1746 
1747   // Bail if this is a machine constant pool entry, we won't be able to dig out
1748   // anything useful.
1749   if (ConstantEntry.isMachineConstantPoolEntry())
1750     return nullptr;
1751 
1752   const Constant *C = ConstantEntry.Val.ConstVal;
1753   assert((!C || ConstantEntry.getType() == C->getType()) &&
1754          "Expected a constant of the same type!");
1755   return C;
1756 }
1757 
1758 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1759                                      unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1760   std::string Comment;
1761 
1762   // Compute the name for a register. This is really goofy because we have
1763   // multiple instruction printers that could (in theory) use different
1764   // names. Fortunately most people use the ATT style (outside of Windows)
1765   // and they actually agree on register naming here. Ultimately, this is
1766   // a comment, and so its OK if it isn't perfect.
1767   auto GetRegisterName = [](unsigned RegNum) -> StringRef {
1768     return X86ATTInstPrinter::getRegisterName(RegNum);
1769   };
1770 
1771   const MachineOperand &DstOp = MI->getOperand(0);
1772   const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1773   const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1774 
1775   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1776   StringRef Src1Name =
1777       SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1778   StringRef Src2Name =
1779       SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1780 
1781   // One source operand, fix the mask to print all elements in one span.
1782   SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
1783   if (Src1Name == Src2Name)
1784     for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1785       if (ShuffleMask[i] >= e)
1786         ShuffleMask[i] -= e;
1787 
1788   raw_string_ostream CS(Comment);
1789   CS << DstName;
1790 
1791   // Handle AVX512 MASK/MASXZ write mask comments.
1792   // MASK: zmmX {%kY}
1793   // MASKZ: zmmX {%kY} {z}
1794   if (SrcOp1Idx > 1) {
1795     assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1796 
1797     const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1798     if (WriteMaskOp.isReg()) {
1799       CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1800 
1801       if (SrcOp1Idx == 2) {
1802         CS << " {z}";
1803       }
1804     }
1805   }
1806 
1807   CS << " = ";
1808 
1809   for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1810     if (i != 0)
1811       CS << ",";
1812     if (ShuffleMask[i] == SM_SentinelZero) {
1813       CS << "zero";
1814       continue;
1815     }
1816 
1817     // Otherwise, it must come from src1 or src2.  Print the span of elements
1818     // that comes from this src.
1819     bool isSrc1 = ShuffleMask[i] < (int)e;
1820     CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1821 
1822     bool IsFirst = true;
1823     while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1824            (ShuffleMask[i] < (int)e) == isSrc1) {
1825       if (!IsFirst)
1826         CS << ',';
1827       else
1828         IsFirst = false;
1829       if (ShuffleMask[i] == SM_SentinelUndef)
1830         CS << "u";
1831       else
1832         CS << ShuffleMask[i] % (int)e;
1833       ++i;
1834     }
1835     CS << ']';
1836     --i; // For loop increments element #.
1837   }
1838   CS.flush();
1839 
1840   return Comment;
1841 }
1842 
1843 static void printConstant(const APInt &Val, raw_ostream &CS) {
1844   if (Val.getBitWidth() <= 64) {
1845     CS << Val.getZExtValue();
1846   } else {
1847     // print multi-word constant as (w0,w1)
1848     CS << "(";
1849     for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1850       if (i > 0)
1851         CS << ",";
1852       CS << Val.getRawData()[i];
1853     }
1854     CS << ")";
1855   }
1856 }
1857 
1858 static void printConstant(const APFloat &Flt, raw_ostream &CS) {
1859   SmallString<32> Str;
1860   // Force scientific notation to distinquish from integers.
1861   Flt.toString(Str, 0, 0);
1862   CS << Str;
1863 }
1864 
1865 static void printConstant(const Constant *COp, raw_ostream &CS) {
1866   if (isa<UndefValue>(COp)) {
1867     CS << "u";
1868   } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1869     printConstant(CI->getValue(), CS);
1870   } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1871     printConstant(CF->getValueAPF(), CS);
1872   } else {
1873     CS << "?";
1874   }
1875 }
1876 
1877 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1878   assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1879   assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1880 
1881   // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1882   if (EmitFPOData) {
1883     X86TargetStreamer *XTS =
1884         static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1885     switch (MI->getOpcode()) {
1886     case X86::SEH_PushReg:
1887       XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1888       break;
1889     case X86::SEH_StackAlloc:
1890       XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1891       break;
1892     case X86::SEH_StackAlign:
1893       XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1894       break;
1895     case X86::SEH_SetFrame:
1896       assert(MI->getOperand(1).getImm() == 0 &&
1897              ".cv_fpo_setframe takes no offset");
1898       XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1899       break;
1900     case X86::SEH_EndPrologue:
1901       XTS->emitFPOEndPrologue();
1902       break;
1903     case X86::SEH_SaveReg:
1904     case X86::SEH_SaveXMM:
1905     case X86::SEH_PushFrame:
1906       llvm_unreachable("SEH_ directive incompatible with FPO");
1907       break;
1908     default:
1909       llvm_unreachable("expected SEH_ instruction");
1910     }
1911     return;
1912   }
1913 
1914   // Otherwise, use the .seh_ directives for all other Windows platforms.
1915   switch (MI->getOpcode()) {
1916   case X86::SEH_PushReg:
1917     OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm());
1918     break;
1919 
1920   case X86::SEH_SaveReg:
1921     OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(),
1922                                    MI->getOperand(1).getImm());
1923     break;
1924 
1925   case X86::SEH_SaveXMM:
1926     OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(),
1927                                    MI->getOperand(1).getImm());
1928     break;
1929 
1930   case X86::SEH_StackAlloc:
1931     OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
1932     break;
1933 
1934   case X86::SEH_SetFrame:
1935     OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(),
1936                                     MI->getOperand(1).getImm());
1937     break;
1938 
1939   case X86::SEH_PushFrame:
1940     OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
1941     break;
1942 
1943   case X86::SEH_EndPrologue:
1944     OutStreamer->EmitWinCFIEndProlog();
1945     break;
1946 
1947   default:
1948     llvm_unreachable("expected SEH_ instruction");
1949   }
1950 }
1951 
1952 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1953   if (Info.RegClass == X86::VR128RegClassID ||
1954       Info.RegClass == X86::VR128XRegClassID)
1955     return 128;
1956   if (Info.RegClass == X86::VR256RegClassID ||
1957       Info.RegClass == X86::VR256XRegClassID)
1958     return 256;
1959   if (Info.RegClass == X86::VR512RegClassID)
1960     return 512;
1961   llvm_unreachable("Unknown register class!");
1962 }
1963 
1964 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
1965   X86MCInstLower MCInstLowering(*MF, *this);
1966   const X86RegisterInfo *RI =
1967       MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1968 
1969   // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
1970   // are compressed from EVEX encoding to VEX encoding.
1971   if (TM.Options.MCOptions.ShowMCEncoding) {
1972     if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
1973       OutStreamer->AddComment("EVEX TO VEX Compression ", false);
1974   }
1975 
1976   switch (MI->getOpcode()) {
1977   case TargetOpcode::DBG_VALUE:
1978     llvm_unreachable("Should be handled target independently");
1979 
1980   // Emit nothing here but a comment if we can.
1981   case X86::Int_MemBarrier:
1982     OutStreamer->emitRawComment("MEMBARRIER");
1983     return;
1984 
1985   case X86::EH_RETURN:
1986   case X86::EH_RETURN64: {
1987     // Lower these as normal, but add some comments.
1988     Register Reg = MI->getOperand(0).getReg();
1989     OutStreamer->AddComment(StringRef("eh_return, addr: %") +
1990                             X86ATTInstPrinter::getRegisterName(Reg));
1991     break;
1992   }
1993   case X86::CLEANUPRET: {
1994     // Lower these as normal, but add some comments.
1995     OutStreamer->AddComment("CLEANUPRET");
1996     break;
1997   }
1998 
1999   case X86::CATCHRET: {
2000     // Lower these as normal, but add some comments.
2001     OutStreamer->AddComment("CATCHRET");
2002     break;
2003   }
2004 
2005   case X86::ENDBR32:
2006   case X86::ENDBR64: {
2007     // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2008     // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2009     // non-empty. If MI is the initial ENDBR, place the
2010     // __patchable_function_entries label after ENDBR.
2011     if (CurrentPatchableFunctionEntrySym &&
2012         CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
2013         MI == &MF->front().front()) {
2014       MCInst Inst;
2015       MCInstLowering.Lower(MI, Inst);
2016       EmitAndCountInstruction(Inst);
2017       CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
2018       OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym);
2019       return;
2020     }
2021     break;
2022   }
2023 
2024   case X86::TAILJMPr:
2025   case X86::TAILJMPm:
2026   case X86::TAILJMPd:
2027   case X86::TAILJMPd_CC:
2028   case X86::TAILJMPr64:
2029   case X86::TAILJMPm64:
2030   case X86::TAILJMPd64:
2031   case X86::TAILJMPd64_CC:
2032   case X86::TAILJMPr64_REX:
2033   case X86::TAILJMPm64_REX:
2034     // Lower these as normal, but add some comments.
2035     OutStreamer->AddComment("TAILCALL");
2036     break;
2037 
2038   case X86::TLS_addr32:
2039   case X86::TLS_addr64:
2040   case X86::TLS_base_addr32:
2041   case X86::TLS_base_addr64:
2042     return LowerTlsAddr(MCInstLowering, *MI);
2043 
2044   // Loading/storing mask pairs requires two kmov operations. The second one of these
2045   // needs a 2 byte displacement relative to the specified address (with 32 bit spill
2046   // size). The pairs of 1bit masks up to 16 bit masks all use the same spill size,
2047   // they all are stored using MASKPAIR16STORE, loaded using MASKPAIR16LOAD.
2048   //
2049   // The displacement value might wrap around in theory, thus the asserts in both
2050   // cases.
2051   case X86::MASKPAIR16LOAD: {
2052     int64_t Disp = MI->getOperand(1 + X86::AddrDisp).getImm();
2053     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
2054     Register Reg = MI->getOperand(0).getReg();
2055     Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
2056     Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
2057 
2058     // Load the first mask register
2059     MCInstBuilder MIB = MCInstBuilder(X86::KMOVWkm);
2060     MIB.addReg(Reg0);
2061     for (int i = 0; i < X86::AddrNumOperands; ++i) {
2062       auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
2063       MIB.addOperand(Op.getValue());
2064     }
2065     EmitAndCountInstruction(MIB);
2066 
2067     // Load the second mask register of the pair
2068     MIB = MCInstBuilder(X86::KMOVWkm);
2069     MIB.addReg(Reg1);
2070     for (int i = 0; i < X86::AddrNumOperands; ++i) {
2071       if (i == X86::AddrDisp) {
2072         MIB.addImm(Disp + 2);
2073       } else {
2074         auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
2075         MIB.addOperand(Op.getValue());
2076       }
2077     }
2078     EmitAndCountInstruction(MIB);
2079     return;
2080   }
2081 
2082   case X86::MASKPAIR16STORE: {
2083     int64_t Disp = MI->getOperand(X86::AddrDisp).getImm();
2084     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
2085     Register Reg = MI->getOperand(X86::AddrNumOperands).getReg();
2086     Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
2087     Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
2088 
2089     // Store the first mask register
2090     MCInstBuilder MIB = MCInstBuilder(X86::KMOVWmk);
2091     for (int i = 0; i < X86::AddrNumOperands; ++i)
2092       MIB.addOperand(MCInstLowering.LowerMachineOperand(MI, MI->getOperand(i)).getValue());
2093     MIB.addReg(Reg0);
2094     EmitAndCountInstruction(MIB);
2095 
2096     // Store the second mask register of the pair
2097     MIB = MCInstBuilder(X86::KMOVWmk);
2098     for (int i = 0; i < X86::AddrNumOperands; ++i) {
2099       if (i == X86::AddrDisp) {
2100         MIB.addImm(Disp + 2);
2101       } else {
2102         auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(0 + i));
2103         MIB.addOperand(Op.getValue());
2104       }
2105     }
2106     MIB.addReg(Reg1);
2107     EmitAndCountInstruction(MIB);
2108     return;
2109   }
2110 
2111   case X86::MOVPC32r: {
2112     // This is a pseudo op for a two instruction sequence with a label, which
2113     // looks like:
2114     //     call "L1$pb"
2115     // "L1$pb":
2116     //     popl %esi
2117 
2118     // Emit the call.
2119     MCSymbol *PICBase = MF->getPICBaseSymbol();
2120     // FIXME: We would like an efficient form for this, so we don't have to do a
2121     // lot of extra uniquing.
2122     EmitAndCountInstruction(
2123         MCInstBuilder(X86::CALLpcrel32)
2124             .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2125 
2126     const X86FrameLowering *FrameLowering =
2127         MF->getSubtarget<X86Subtarget>().getFrameLowering();
2128     bool hasFP = FrameLowering->hasFP(*MF);
2129 
2130     // TODO: This is needed only if we require precise CFA.
2131     bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2132                                !OutStreamer->getDwarfFrameInfos().back().End;
2133 
2134     int stackGrowth = -RI->getSlotSize();
2135 
2136     if (HasActiveDwarfFrame && !hasFP) {
2137       OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
2138     }
2139 
2140     // Emit the label.
2141     OutStreamer->EmitLabel(PICBase);
2142 
2143     // popl $reg
2144     EmitAndCountInstruction(
2145         MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2146 
2147     if (HasActiveDwarfFrame && !hasFP) {
2148       OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
2149     }
2150     return;
2151   }
2152 
2153   case X86::ADD32ri: {
2154     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2155     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2156       break;
2157 
2158     // Okay, we have something like:
2159     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2160 
2161     // For this, we want to print something like:
2162     //   MYGLOBAL + (. - PICBASE)
2163     // However, we can't generate a ".", so just emit a new label here and refer
2164     // to it.
2165     MCSymbol *DotSym = OutContext.createTempSymbol();
2166     OutStreamer->EmitLabel(DotSym);
2167 
2168     // Now that we have emitted the label, lower the complex operand expression.
2169     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2170 
2171     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2172     const MCExpr *PICBase =
2173         MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2174     DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2175 
2176     DotExpr = MCBinaryExpr::createAdd(
2177         MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2178 
2179     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2180                                 .addReg(MI->getOperand(0).getReg())
2181                                 .addReg(MI->getOperand(1).getReg())
2182                                 .addExpr(DotExpr));
2183     return;
2184   }
2185   case TargetOpcode::STATEPOINT:
2186     return LowerSTATEPOINT(*MI, MCInstLowering);
2187 
2188   case TargetOpcode::FAULTING_OP:
2189     return LowerFAULTING_OP(*MI, MCInstLowering);
2190 
2191   case TargetOpcode::FENTRY_CALL:
2192     return LowerFENTRY_CALL(*MI, MCInstLowering);
2193 
2194   case TargetOpcode::PATCHABLE_OP:
2195     return LowerPATCHABLE_OP(*MI, MCInstLowering);
2196 
2197   case TargetOpcode::STACKMAP:
2198     return LowerSTACKMAP(*MI);
2199 
2200   case TargetOpcode::PATCHPOINT:
2201     return LowerPATCHPOINT(*MI, MCInstLowering);
2202 
2203   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2204     return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2205 
2206   case TargetOpcode::PATCHABLE_RET:
2207     return LowerPATCHABLE_RET(*MI, MCInstLowering);
2208 
2209   case TargetOpcode::PATCHABLE_TAIL_CALL:
2210     return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2211 
2212   case TargetOpcode::PATCHABLE_EVENT_CALL:
2213     return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2214 
2215   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2216     return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2217 
2218   case X86::MORESTACK_RET:
2219     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2220     return;
2221 
2222   case X86::MORESTACK_RET_RESTORE_R10:
2223     // Return, then restore R10.
2224     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2225     EmitAndCountInstruction(
2226         MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2227     return;
2228 
2229   case X86::SEH_PushReg:
2230   case X86::SEH_SaveReg:
2231   case X86::SEH_SaveXMM:
2232   case X86::SEH_StackAlloc:
2233   case X86::SEH_StackAlign:
2234   case X86::SEH_SetFrame:
2235   case X86::SEH_PushFrame:
2236   case X86::SEH_EndPrologue:
2237     EmitSEHInstruction(MI);
2238     return;
2239 
2240   case X86::SEH_Epilogue: {
2241     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2242     MachineBasicBlock::const_iterator MBBI(MI);
2243     // Check if preceded by a call and emit nop if so.
2244     for (MBBI = PrevCrossBBInst(MBBI);
2245          MBBI != MachineBasicBlock::const_iterator();
2246          MBBI = PrevCrossBBInst(MBBI)) {
2247       // Conservatively assume that pseudo instructions don't emit code and keep
2248       // looking for a call. We may emit an unnecessary nop in some cases.
2249       if (!MBBI->isPseudo()) {
2250         if (MBBI->isCall())
2251           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2252         break;
2253       }
2254     }
2255     return;
2256   }
2257 
2258   // Lower PSHUFB and VPERMILP normally but add a comment if we can find
2259   // a constant shuffle mask. We won't be able to do this at the MC layer
2260   // because the mask isn't an immediate.
2261   case X86::PSHUFBrm:
2262   case X86::VPSHUFBrm:
2263   case X86::VPSHUFBYrm:
2264   case X86::VPSHUFBZ128rm:
2265   case X86::VPSHUFBZ128rmk:
2266   case X86::VPSHUFBZ128rmkz:
2267   case X86::VPSHUFBZ256rm:
2268   case X86::VPSHUFBZ256rmk:
2269   case X86::VPSHUFBZ256rmkz:
2270   case X86::VPSHUFBZrm:
2271   case X86::VPSHUFBZrmk:
2272   case X86::VPSHUFBZrmkz: {
2273     if (!OutStreamer->isVerboseAsm())
2274       break;
2275     unsigned SrcIdx, MaskIdx;
2276     switch (MI->getOpcode()) {
2277     default: llvm_unreachable("Invalid opcode");
2278     case X86::PSHUFBrm:
2279     case X86::VPSHUFBrm:
2280     case X86::VPSHUFBYrm:
2281     case X86::VPSHUFBZ128rm:
2282     case X86::VPSHUFBZ256rm:
2283     case X86::VPSHUFBZrm:
2284       SrcIdx = 1; MaskIdx = 5; break;
2285     case X86::VPSHUFBZ128rmkz:
2286     case X86::VPSHUFBZ256rmkz:
2287     case X86::VPSHUFBZrmkz:
2288       SrcIdx = 2; MaskIdx = 6; break;
2289     case X86::VPSHUFBZ128rmk:
2290     case X86::VPSHUFBZ256rmk:
2291     case X86::VPSHUFBZrmk:
2292       SrcIdx = 3; MaskIdx = 7; break;
2293     }
2294 
2295     assert(MI->getNumOperands() >= 6 &&
2296            "We should always have at least 6 operands!");
2297 
2298     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2299     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2300       unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2301       SmallVector<int, 64> Mask;
2302       DecodePSHUFBMask(C, Width, Mask);
2303       if (!Mask.empty())
2304         OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2305     }
2306     break;
2307   }
2308 
2309   case X86::VPERMILPSrm:
2310   case X86::VPERMILPSYrm:
2311   case X86::VPERMILPSZ128rm:
2312   case X86::VPERMILPSZ128rmk:
2313   case X86::VPERMILPSZ128rmkz:
2314   case X86::VPERMILPSZ256rm:
2315   case X86::VPERMILPSZ256rmk:
2316   case X86::VPERMILPSZ256rmkz:
2317   case X86::VPERMILPSZrm:
2318   case X86::VPERMILPSZrmk:
2319   case X86::VPERMILPSZrmkz:
2320   case X86::VPERMILPDrm:
2321   case X86::VPERMILPDYrm:
2322   case X86::VPERMILPDZ128rm:
2323   case X86::VPERMILPDZ128rmk:
2324   case X86::VPERMILPDZ128rmkz:
2325   case X86::VPERMILPDZ256rm:
2326   case X86::VPERMILPDZ256rmk:
2327   case X86::VPERMILPDZ256rmkz:
2328   case X86::VPERMILPDZrm:
2329   case X86::VPERMILPDZrmk:
2330   case X86::VPERMILPDZrmkz: {
2331     if (!OutStreamer->isVerboseAsm())
2332       break;
2333     unsigned SrcIdx, MaskIdx;
2334     unsigned ElSize;
2335     switch (MI->getOpcode()) {
2336     default: llvm_unreachable("Invalid opcode");
2337     case X86::VPERMILPSrm:
2338     case X86::VPERMILPSYrm:
2339     case X86::VPERMILPSZ128rm:
2340     case X86::VPERMILPSZ256rm:
2341     case X86::VPERMILPSZrm:
2342       SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
2343     case X86::VPERMILPSZ128rmkz:
2344     case X86::VPERMILPSZ256rmkz:
2345     case X86::VPERMILPSZrmkz:
2346       SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
2347     case X86::VPERMILPSZ128rmk:
2348     case X86::VPERMILPSZ256rmk:
2349     case X86::VPERMILPSZrmk:
2350       SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
2351     case X86::VPERMILPDrm:
2352     case X86::VPERMILPDYrm:
2353     case X86::VPERMILPDZ128rm:
2354     case X86::VPERMILPDZ256rm:
2355     case X86::VPERMILPDZrm:
2356       SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
2357     case X86::VPERMILPDZ128rmkz:
2358     case X86::VPERMILPDZ256rmkz:
2359     case X86::VPERMILPDZrmkz:
2360       SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
2361     case X86::VPERMILPDZ128rmk:
2362     case X86::VPERMILPDZ256rmk:
2363     case X86::VPERMILPDZrmk:
2364       SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
2365     }
2366 
2367     assert(MI->getNumOperands() >= 6 &&
2368            "We should always have at least 6 operands!");
2369 
2370     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2371     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2372       unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2373       SmallVector<int, 16> Mask;
2374       DecodeVPERMILPMask(C, ElSize, Width, Mask);
2375       if (!Mask.empty())
2376         OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2377     }
2378     break;
2379   }
2380 
2381   case X86::VPERMIL2PDrm:
2382   case X86::VPERMIL2PSrm:
2383   case X86::VPERMIL2PDYrm:
2384   case X86::VPERMIL2PSYrm: {
2385     if (!OutStreamer->isVerboseAsm())
2386       break;
2387     assert(MI->getNumOperands() >= 8 &&
2388            "We should always have at least 8 operands!");
2389 
2390     const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
2391     if (!CtrlOp.isImm())
2392       break;
2393 
2394     unsigned ElSize;
2395     switch (MI->getOpcode()) {
2396     default: llvm_unreachable("Invalid opcode");
2397     case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
2398     case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
2399     }
2400 
2401     const MachineOperand &MaskOp = MI->getOperand(6);
2402     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2403       unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2404       SmallVector<int, 16> Mask;
2405       DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
2406       if (!Mask.empty())
2407         OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2408     }
2409     break;
2410   }
2411 
2412   case X86::VPPERMrrm: {
2413     if (!OutStreamer->isVerboseAsm())
2414       break;
2415     assert(MI->getNumOperands() >= 7 &&
2416            "We should always have at least 7 operands!");
2417 
2418     const MachineOperand &MaskOp = MI->getOperand(6);
2419     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2420       unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2421       SmallVector<int, 16> Mask;
2422       DecodeVPPERMMask(C, Width, Mask);
2423       if (!Mask.empty())
2424         OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2425     }
2426     break;
2427   }
2428 
2429   case X86::MMX_MOVQ64rm: {
2430     if (!OutStreamer->isVerboseAsm())
2431       break;
2432     if (MI->getNumOperands() <= 4)
2433       break;
2434     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2435       std::string Comment;
2436       raw_string_ostream CS(Comment);
2437       const MachineOperand &DstOp = MI->getOperand(0);
2438       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2439       if (auto *CF = dyn_cast<ConstantFP>(C)) {
2440         CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
2441         OutStreamer->AddComment(CS.str());
2442       }
2443     }
2444     break;
2445   }
2446 
2447 #define MOV_CASE(Prefix, Suffix)                                               \
2448   case X86::Prefix##MOVAPD##Suffix##rm:                                        \
2449   case X86::Prefix##MOVAPS##Suffix##rm:                                        \
2450   case X86::Prefix##MOVUPD##Suffix##rm:                                        \
2451   case X86::Prefix##MOVUPS##Suffix##rm:                                        \
2452   case X86::Prefix##MOVDQA##Suffix##rm:                                        \
2453   case X86::Prefix##MOVDQU##Suffix##rm:
2454 
2455 #define MOV_AVX512_CASE(Suffix)                                                \
2456   case X86::VMOVDQA64##Suffix##rm:                                             \
2457   case X86::VMOVDQA32##Suffix##rm:                                             \
2458   case X86::VMOVDQU64##Suffix##rm:                                             \
2459   case X86::VMOVDQU32##Suffix##rm:                                             \
2460   case X86::VMOVDQU16##Suffix##rm:                                             \
2461   case X86::VMOVDQU8##Suffix##rm:                                              \
2462   case X86::VMOVAPS##Suffix##rm:                                               \
2463   case X86::VMOVAPD##Suffix##rm:                                               \
2464   case X86::VMOVUPS##Suffix##rm:                                               \
2465   case X86::VMOVUPD##Suffix##rm:
2466 
2467 #define CASE_ALL_MOV_RM()                                                      \
2468   MOV_CASE(, )   /* SSE */                                                     \
2469   MOV_CASE(V, )  /* AVX-128 */                                                 \
2470   MOV_CASE(V, Y) /* AVX-256 */                                                 \
2471   MOV_AVX512_CASE(Z)                                                           \
2472   MOV_AVX512_CASE(Z256)                                                        \
2473   MOV_AVX512_CASE(Z128)
2474 
2475     // For loads from a constant pool to a vector register, print the constant
2476     // loaded.
2477     CASE_ALL_MOV_RM()
2478   case X86::VBROADCASTF128:
2479   case X86::VBROADCASTI128:
2480   case X86::VBROADCASTF32X4Z256rm:
2481   case X86::VBROADCASTF32X4rm:
2482   case X86::VBROADCASTF32X8rm:
2483   case X86::VBROADCASTF64X2Z128rm:
2484   case X86::VBROADCASTF64X2rm:
2485   case X86::VBROADCASTF64X4rm:
2486   case X86::VBROADCASTI32X4Z256rm:
2487   case X86::VBROADCASTI32X4rm:
2488   case X86::VBROADCASTI32X8rm:
2489   case X86::VBROADCASTI64X2Z128rm:
2490   case X86::VBROADCASTI64X2rm:
2491   case X86::VBROADCASTI64X4rm:
2492     if (!OutStreamer->isVerboseAsm())
2493       break;
2494     if (MI->getNumOperands() <= 4)
2495       break;
2496     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2497       int NumLanes = 1;
2498       // Override NumLanes for the broadcast instructions.
2499       switch (MI->getOpcode()) {
2500       case X86::VBROADCASTF128:        NumLanes = 2; break;
2501       case X86::VBROADCASTI128:        NumLanes = 2; break;
2502       case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
2503       case X86::VBROADCASTF32X4rm:     NumLanes = 4; break;
2504       case X86::VBROADCASTF32X8rm:     NumLanes = 2; break;
2505       case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
2506       case X86::VBROADCASTF64X2rm:     NumLanes = 4; break;
2507       case X86::VBROADCASTF64X4rm:     NumLanes = 2; break;
2508       case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
2509       case X86::VBROADCASTI32X4rm:     NumLanes = 4; break;
2510       case X86::VBROADCASTI32X8rm:     NumLanes = 2; break;
2511       case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
2512       case X86::VBROADCASTI64X2rm:     NumLanes = 4; break;
2513       case X86::VBROADCASTI64X4rm:     NumLanes = 2; break;
2514       }
2515 
2516       std::string Comment;
2517       raw_string_ostream CS(Comment);
2518       const MachineOperand &DstOp = MI->getOperand(0);
2519       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2520       if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
2521         CS << "[";
2522         for (int l = 0; l != NumLanes; ++l) {
2523           for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
2524                ++i) {
2525             if (i != 0 || l != 0)
2526               CS << ",";
2527             if (CDS->getElementType()->isIntegerTy())
2528               printConstant(CDS->getElementAsAPInt(i), CS);
2529             else if (CDS->getElementType()->isHalfTy() ||
2530                      CDS->getElementType()->isFloatTy() ||
2531                      CDS->getElementType()->isDoubleTy())
2532               printConstant(CDS->getElementAsAPFloat(i), CS);
2533             else
2534               CS << "?";
2535           }
2536         }
2537         CS << "]";
2538         OutStreamer->AddComment(CS.str());
2539       } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
2540         CS << "<";
2541         for (int l = 0; l != NumLanes; ++l) {
2542           for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
2543                ++i) {
2544             if (i != 0 || l != 0)
2545               CS << ",";
2546             printConstant(CV->getOperand(i), CS);
2547           }
2548         }
2549         CS << ">";
2550         OutStreamer->AddComment(CS.str());
2551       }
2552     }
2553     break;
2554   case X86::MOVDDUPrm:
2555   case X86::VMOVDDUPrm:
2556   case X86::VMOVDDUPZ128rm:
2557   case X86::VBROADCASTSSrm:
2558   case X86::VBROADCASTSSYrm:
2559   case X86::VBROADCASTSSZ128m:
2560   case X86::VBROADCASTSSZ256m:
2561   case X86::VBROADCASTSSZm:
2562   case X86::VBROADCASTSDYrm:
2563   case X86::VBROADCASTSDZ256m:
2564   case X86::VBROADCASTSDZm:
2565   case X86::VPBROADCASTBrm:
2566   case X86::VPBROADCASTBYrm:
2567   case X86::VPBROADCASTBZ128m:
2568   case X86::VPBROADCASTBZ256m:
2569   case X86::VPBROADCASTBZm:
2570   case X86::VPBROADCASTDrm:
2571   case X86::VPBROADCASTDYrm:
2572   case X86::VPBROADCASTDZ128m:
2573   case X86::VPBROADCASTDZ256m:
2574   case X86::VPBROADCASTDZm:
2575   case X86::VPBROADCASTQrm:
2576   case X86::VPBROADCASTQYrm:
2577   case X86::VPBROADCASTQZ128m:
2578   case X86::VPBROADCASTQZ256m:
2579   case X86::VPBROADCASTQZm:
2580   case X86::VPBROADCASTWrm:
2581   case X86::VPBROADCASTWYrm:
2582   case X86::VPBROADCASTWZ128m:
2583   case X86::VPBROADCASTWZ256m:
2584   case X86::VPBROADCASTWZm:
2585     if (!OutStreamer->isVerboseAsm())
2586       break;
2587     if (MI->getNumOperands() <= 4)
2588       break;
2589     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2590       int NumElts;
2591       switch (MI->getOpcode()) {
2592       default: llvm_unreachable("Invalid opcode");
2593       case X86::MOVDDUPrm:         NumElts = 2;  break;
2594       case X86::VMOVDDUPrm:        NumElts = 2;  break;
2595       case X86::VMOVDDUPZ128rm:    NumElts = 2;  break;
2596       case X86::VBROADCASTSSrm:    NumElts = 4;  break;
2597       case X86::VBROADCASTSSYrm:   NumElts = 8;  break;
2598       case X86::VBROADCASTSSZ128m: NumElts = 4;  break;
2599       case X86::VBROADCASTSSZ256m: NumElts = 8;  break;
2600       case X86::VBROADCASTSSZm:    NumElts = 16; break;
2601       case X86::VBROADCASTSDYrm:   NumElts = 4;  break;
2602       case X86::VBROADCASTSDZ256m: NumElts = 4;  break;
2603       case X86::VBROADCASTSDZm:    NumElts = 8;  break;
2604       case X86::VPBROADCASTBrm:    NumElts = 16; break;
2605       case X86::VPBROADCASTBYrm:   NumElts = 32; break;
2606       case X86::VPBROADCASTBZ128m: NumElts = 16; break;
2607       case X86::VPBROADCASTBZ256m: NumElts = 32; break;
2608       case X86::VPBROADCASTBZm:    NumElts = 64; break;
2609       case X86::VPBROADCASTDrm:    NumElts = 4;  break;
2610       case X86::VPBROADCASTDYrm:   NumElts = 8;  break;
2611       case X86::VPBROADCASTDZ128m: NumElts = 4;  break;
2612       case X86::VPBROADCASTDZ256m: NumElts = 8;  break;
2613       case X86::VPBROADCASTDZm:    NumElts = 16; break;
2614       case X86::VPBROADCASTQrm:    NumElts = 2;  break;
2615       case X86::VPBROADCASTQYrm:   NumElts = 4;  break;
2616       case X86::VPBROADCASTQZ128m: NumElts = 2;  break;
2617       case X86::VPBROADCASTQZ256m: NumElts = 4;  break;
2618       case X86::VPBROADCASTQZm:    NumElts = 8;  break;
2619       case X86::VPBROADCASTWrm:    NumElts = 8;  break;
2620       case X86::VPBROADCASTWYrm:   NumElts = 16; break;
2621       case X86::VPBROADCASTWZ128m: NumElts = 8;  break;
2622       case X86::VPBROADCASTWZ256m: NumElts = 16; break;
2623       case X86::VPBROADCASTWZm:    NumElts = 32; break;
2624       }
2625 
2626       std::string Comment;
2627       raw_string_ostream CS(Comment);
2628       const MachineOperand &DstOp = MI->getOperand(0);
2629       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2630       CS << "[";
2631       for (int i = 0; i != NumElts; ++i) {
2632         if (i != 0)
2633           CS << ",";
2634         printConstant(C, CS);
2635       }
2636       CS << "]";
2637       OutStreamer->AddComment(CS.str());
2638     }
2639   }
2640 
2641   MCInst TmpInst;
2642   MCInstLowering.Lower(MI, TmpInst);
2643 
2644   // Stackmap shadows cannot include branch targets, so we can count the bytes
2645   // in a call towards the shadow, but must ensure that the no thread returns
2646   // in to the stackmap shadow.  The only way to achieve this is if the call
2647   // is at the end of the shadow.
2648   if (MI->isCall()) {
2649     // Count then size of the call towards the shadow
2650     SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2651     // Then flush the shadow so that we fill with nops before the call, not
2652     // after it.
2653     SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2654     // Then emit the call
2655     OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
2656     return;
2657   }
2658 
2659   EmitAndCountInstruction(TmpInst);
2660 }
2661