1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains code to lower X86 MachineInstrs to their corresponding 10 // MCInst records. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86ATTInstPrinter.h" 15 #include "MCTargetDesc/X86BaseInfo.h" 16 #include "MCTargetDesc/X86InstComments.h" 17 #include "MCTargetDesc/X86ShuffleDecode.h" 18 #include "MCTargetDesc/X86TargetStreamer.h" 19 #include "X86AsmPrinter.h" 20 #include "X86RegisterInfo.h" 21 #include "X86ShuffleDecodeConstantPool.h" 22 #include "X86Subtarget.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCCodeEmitter.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCFixup.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCSectionELF.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCSymbolELF.h" 46 #include "llvm/MC/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 50 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 51 #include <string> 52 53 using namespace llvm; 54 55 namespace { 56 57 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. 58 class X86MCInstLower { 59 MCContext &Ctx; 60 const MachineFunction &MF; 61 const TargetMachine &TM; 62 const MCAsmInfo &MAI; 63 X86AsmPrinter &AsmPrinter; 64 65 public: 66 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); 67 68 Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI, 69 const MachineOperand &MO) const; 70 void Lower(const MachineInstr *MI, MCInst &OutMI) const; 71 72 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; 73 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; 74 75 private: 76 MachineModuleInfoMachO &getMachOMMI() const; 77 }; 78 79 } // end anonymous namespace 80 81 /// A RAII helper which defines a region of instructions which can't have 82 /// padding added between them for correctness. 83 struct NoAutoPaddingScope { 84 MCStreamer &OS; 85 const bool OldAllowAutoPadding; 86 NoAutoPaddingScope(MCStreamer &OS) 87 : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) { 88 changeAndComment(false); 89 } 90 ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); } 91 void changeAndComment(bool b) { 92 if (b == OS.getAllowAutoPadding()) 93 return; 94 OS.setAllowAutoPadding(b); 95 if (b) 96 OS.emitRawComment("autopadding"); 97 else 98 OS.emitRawComment("noautopadding"); 99 } 100 }; 101 102 // Emit a minimal sequence of nops spanning NumBytes bytes. 103 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, 104 const X86Subtarget *Subtarget); 105 106 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst, 107 const MCSubtargetInfo &STI, 108 MCCodeEmitter *CodeEmitter) { 109 if (InShadow) { 110 SmallString<256> Code; 111 SmallVector<MCFixup, 4> Fixups; 112 raw_svector_ostream VecOS(Code); 113 CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI); 114 CurrentShadowSize += Code.size(); 115 if (CurrentShadowSize >= RequiredShadowSize) 116 InShadow = false; // The shadow is big enough. Stop counting. 117 } 118 } 119 120 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( 121 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { 122 if (InShadow && CurrentShadowSize < RequiredShadowSize) { 123 InShadow = false; 124 emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize, 125 &MF->getSubtarget<X86Subtarget>()); 126 } 127 } 128 129 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { 130 OutStreamer->emitInstruction(Inst, getSubtargetInfo()); 131 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get()); 132 } 133 134 X86MCInstLower::X86MCInstLower(const MachineFunction &mf, 135 X86AsmPrinter &asmprinter) 136 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()), 137 AsmPrinter(asmprinter) {} 138 139 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { 140 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>(); 141 } 142 143 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol 144 /// operand to an MCSymbol. 145 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { 146 const Triple &TT = TM.getTargetTriple(); 147 if (MO.isGlobal() && TT.isOSBinFormatELF()) 148 return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal()); 149 150 const DataLayout &DL = MF.getDataLayout(); 151 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && 152 "Isn't a symbol reference"); 153 154 MCSymbol *Sym = nullptr; 155 SmallString<128> Name; 156 StringRef Suffix; 157 158 switch (MO.getTargetFlags()) { 159 case X86II::MO_DLLIMPORT: 160 // Handle dllimport linkage. 161 Name += "__imp_"; 162 break; 163 case X86II::MO_COFFSTUB: 164 Name += ".refptr."; 165 break; 166 case X86II::MO_DARWIN_NONLAZY: 167 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 168 Suffix = "$non_lazy_ptr"; 169 break; 170 } 171 172 if (!Suffix.empty()) 173 Name += DL.getPrivateGlobalPrefix(); 174 175 if (MO.isGlobal()) { 176 const GlobalValue *GV = MO.getGlobal(); 177 AsmPrinter.getNameWithPrefix(Name, GV); 178 } else if (MO.isSymbol()) { 179 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL); 180 } else if (MO.isMBB()) { 181 assert(Suffix.empty()); 182 Sym = MO.getMBB()->getSymbol(); 183 } 184 185 Name += Suffix; 186 if (!Sym) 187 Sym = Ctx.getOrCreateSymbol(Name); 188 189 // If the target flags on the operand changes the name of the symbol, do that 190 // before we return the symbol. 191 switch (MO.getTargetFlags()) { 192 default: 193 break; 194 case X86II::MO_COFFSTUB: { 195 MachineModuleInfoCOFF &MMICOFF = 196 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>(); 197 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym); 198 if (!StubSym.getPointer()) { 199 assert(MO.isGlobal() && "Extern symbol not handled yet"); 200 StubSym = MachineModuleInfoImpl::StubValueTy( 201 AsmPrinter.getSymbol(MO.getGlobal()), true); 202 } 203 break; 204 } 205 case X86II::MO_DARWIN_NONLAZY: 206 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { 207 MachineModuleInfoImpl::StubValueTy &StubSym = 208 getMachOMMI().getGVStubEntry(Sym); 209 if (!StubSym.getPointer()) { 210 assert(MO.isGlobal() && "Extern symbol not handled yet"); 211 StubSym = MachineModuleInfoImpl::StubValueTy( 212 AsmPrinter.getSymbol(MO.getGlobal()), 213 !MO.getGlobal()->hasInternalLinkage()); 214 } 215 break; 216 } 217 } 218 219 return Sym; 220 } 221 222 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, 223 MCSymbol *Sym) const { 224 // FIXME: We would like an efficient form for this, so we don't have to do a 225 // lot of extra uniquing. 226 const MCExpr *Expr = nullptr; 227 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; 228 229 switch (MO.getTargetFlags()) { 230 default: 231 llvm_unreachable("Unknown target flag on GV operand"); 232 case X86II::MO_NO_FLAG: // No flag. 233 // These affect the name of the symbol, not any suffix. 234 case X86II::MO_DARWIN_NONLAZY: 235 case X86II::MO_DLLIMPORT: 236 case X86II::MO_COFFSTUB: 237 break; 238 239 case X86II::MO_TLVP: 240 RefKind = MCSymbolRefExpr::VK_TLVP; 241 break; 242 case X86II::MO_TLVP_PIC_BASE: 243 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); 244 // Subtract the pic base. 245 Expr = MCBinaryExpr::createSub( 246 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); 247 break; 248 case X86II::MO_SECREL: 249 RefKind = MCSymbolRefExpr::VK_SECREL; 250 break; 251 case X86II::MO_TLSGD: 252 RefKind = MCSymbolRefExpr::VK_TLSGD; 253 break; 254 case X86II::MO_TLSLD: 255 RefKind = MCSymbolRefExpr::VK_TLSLD; 256 break; 257 case X86II::MO_TLSLDM: 258 RefKind = MCSymbolRefExpr::VK_TLSLDM; 259 break; 260 case X86II::MO_GOTTPOFF: 261 RefKind = MCSymbolRefExpr::VK_GOTTPOFF; 262 break; 263 case X86II::MO_INDNTPOFF: 264 RefKind = MCSymbolRefExpr::VK_INDNTPOFF; 265 break; 266 case X86II::MO_TPOFF: 267 RefKind = MCSymbolRefExpr::VK_TPOFF; 268 break; 269 case X86II::MO_DTPOFF: 270 RefKind = MCSymbolRefExpr::VK_DTPOFF; 271 break; 272 case X86II::MO_NTPOFF: 273 RefKind = MCSymbolRefExpr::VK_NTPOFF; 274 break; 275 case X86II::MO_GOTNTPOFF: 276 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; 277 break; 278 case X86II::MO_GOTPCREL: 279 RefKind = MCSymbolRefExpr::VK_GOTPCREL; 280 break; 281 case X86II::MO_GOTPCREL_NORELAX: 282 RefKind = MCSymbolRefExpr::VK_GOTPCREL_NORELAX; 283 break; 284 case X86II::MO_GOT: 285 RefKind = MCSymbolRefExpr::VK_GOT; 286 break; 287 case X86II::MO_GOTOFF: 288 RefKind = MCSymbolRefExpr::VK_GOTOFF; 289 break; 290 case X86II::MO_PLT: 291 RefKind = MCSymbolRefExpr::VK_PLT; 292 break; 293 case X86II::MO_ABS8: 294 RefKind = MCSymbolRefExpr::VK_X86_ABS8; 295 break; 296 case X86II::MO_PIC_BASE_OFFSET: 297 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 298 Expr = MCSymbolRefExpr::create(Sym, Ctx); 299 // Subtract the pic base. 300 Expr = MCBinaryExpr::createSub( 301 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); 302 if (MO.isJTI()) { 303 assert(MAI.doesSetDirectiveSuppressReloc()); 304 // If .set directive is supported, use it to reduce the number of 305 // relocations the assembler will generate for differences between 306 // local labels. This is only safe when the symbols are in the same 307 // section so we are restricting it to jumptable references. 308 MCSymbol *Label = Ctx.createTempSymbol(); 309 AsmPrinter.OutStreamer->emitAssignment(Label, Expr); 310 Expr = MCSymbolRefExpr::create(Label, Ctx); 311 } 312 break; 313 } 314 315 if (!Expr) 316 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx); 317 318 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) 319 Expr = MCBinaryExpr::createAdd( 320 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx); 321 return MCOperand::createExpr(Expr); 322 } 323 324 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with 325 /// a short fixed-register form. 326 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { 327 unsigned ImmOp = Inst.getNumOperands() - 1; 328 assert(Inst.getOperand(0).isReg() && 329 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && 330 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && 331 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || 332 Inst.getNumOperands() == 2) && 333 "Unexpected instruction!"); 334 335 // Check whether the destination register can be fixed. 336 unsigned Reg = Inst.getOperand(0).getReg(); 337 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 338 return; 339 340 // If so, rewrite the instruction. 341 MCOperand Saved = Inst.getOperand(ImmOp); 342 Inst = MCInst(); 343 Inst.setOpcode(Opcode); 344 Inst.addOperand(Saved); 345 } 346 347 /// If a movsx instruction has a shorter encoding for the used register 348 /// simplify the instruction to use it instead. 349 static void SimplifyMOVSX(MCInst &Inst) { 350 unsigned NewOpcode = 0; 351 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); 352 switch (Inst.getOpcode()) { 353 default: 354 llvm_unreachable("Unexpected instruction!"); 355 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw 356 if (Op0 == X86::AX && Op1 == X86::AL) 357 NewOpcode = X86::CBW; 358 break; 359 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl 360 if (Op0 == X86::EAX && Op1 == X86::AX) 361 NewOpcode = X86::CWDE; 362 break; 363 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq 364 if (Op0 == X86::RAX && Op1 == X86::EAX) 365 NewOpcode = X86::CDQE; 366 break; 367 } 368 369 if (NewOpcode != 0) { 370 Inst = MCInst(); 371 Inst.setOpcode(NewOpcode); 372 } 373 } 374 375 /// Simplify things like MOV32rm to MOV32o32a. 376 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, 377 unsigned Opcode) { 378 // Don't make these simplifications in 64-bit mode; other assemblers don't 379 // perform them because they make the code larger. 380 if (Printer.getSubtarget().is64Bit()) 381 return; 382 383 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); 384 unsigned AddrBase = IsStore; 385 unsigned RegOp = IsStore ? 0 : 5; 386 unsigned AddrOp = AddrBase + 3; 387 assert( 388 Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && 389 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && 390 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && 391 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && 392 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && 393 (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) && 394 "Unexpected instruction!"); 395 396 // Check whether the destination register can be fixed. 397 unsigned Reg = Inst.getOperand(RegOp).getReg(); 398 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) 399 return; 400 401 // Check whether this is an absolute address. 402 // FIXME: We know TLVP symbol refs aren't, but there should be a better way 403 // to do this here. 404 bool Absolute = true; 405 if (Inst.getOperand(AddrOp).isExpr()) { 406 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); 407 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) 408 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) 409 Absolute = false; 410 } 411 412 if (Absolute && 413 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || 414 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || 415 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) 416 return; 417 418 // If so, rewrite the instruction. 419 MCOperand Saved = Inst.getOperand(AddrOp); 420 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); 421 Inst = MCInst(); 422 Inst.setOpcode(Opcode); 423 Inst.addOperand(Saved); 424 Inst.addOperand(Seg); 425 } 426 427 static unsigned getRetOpcode(const X86Subtarget &Subtarget) { 428 return Subtarget.is64Bit() ? X86::RET64 : X86::RET32; 429 } 430 431 Optional<MCOperand> 432 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, 433 const MachineOperand &MO) const { 434 switch (MO.getType()) { 435 default: 436 MI->print(errs()); 437 llvm_unreachable("unknown operand type"); 438 case MachineOperand::MO_Register: 439 // Ignore all implicit register operands. 440 if (MO.isImplicit()) 441 return None; 442 return MCOperand::createReg(MO.getReg()); 443 case MachineOperand::MO_Immediate: 444 return MCOperand::createImm(MO.getImm()); 445 case MachineOperand::MO_MachineBasicBlock: 446 case MachineOperand::MO_GlobalAddress: 447 case MachineOperand::MO_ExternalSymbol: 448 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); 449 case MachineOperand::MO_MCSymbol: 450 return LowerSymbolOperand(MO, MO.getMCSymbol()); 451 case MachineOperand::MO_JumpTableIndex: 452 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); 453 case MachineOperand::MO_ConstantPoolIndex: 454 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); 455 case MachineOperand::MO_BlockAddress: 456 return LowerSymbolOperand( 457 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); 458 case MachineOperand::MO_RegisterMask: 459 // Ignore call clobbers. 460 return None; 461 } 462 } 463 464 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding 465 // information. 466 static unsigned convertTailJumpOpcode(unsigned Opcode) { 467 switch (Opcode) { 468 case X86::TAILJMPr: 469 Opcode = X86::JMP32r; 470 break; 471 case X86::TAILJMPm: 472 Opcode = X86::JMP32m; 473 break; 474 case X86::TAILJMPr64: 475 Opcode = X86::JMP64r; 476 break; 477 case X86::TAILJMPm64: 478 Opcode = X86::JMP64m; 479 break; 480 case X86::TAILJMPr64_REX: 481 Opcode = X86::JMP64r_REX; 482 break; 483 case X86::TAILJMPm64_REX: 484 Opcode = X86::JMP64m_REX; 485 break; 486 case X86::TAILJMPd: 487 case X86::TAILJMPd64: 488 Opcode = X86::JMP_1; 489 break; 490 case X86::TAILJMPd_CC: 491 case X86::TAILJMPd64_CC: 492 Opcode = X86::JCC_1; 493 break; 494 } 495 496 return Opcode; 497 } 498 499 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { 500 OutMI.setOpcode(MI->getOpcode()); 501 502 for (const MachineOperand &MO : MI->operands()) 503 if (auto MaybeMCOp = LowerMachineOperand(MI, MO)) 504 OutMI.addOperand(MaybeMCOp.getValue()); 505 506 // Handle a few special cases to eliminate operand modifiers. 507 switch (OutMI.getOpcode()) { 508 case X86::LEA64_32r: 509 case X86::LEA64r: 510 case X86::LEA16r: 511 case X86::LEA32r: 512 // LEA should have a segment register, but it must be empty. 513 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && 514 "Unexpected # of LEA operands"); 515 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && 516 "LEA has segment specified!"); 517 break; 518 519 case X86::MULX32Hrr: 520 case X86::MULX32Hrm: 521 case X86::MULX64Hrr: 522 case X86::MULX64Hrm: { 523 // Turn into regular MULX by duplicating the destination. 524 unsigned NewOpc; 525 switch (OutMI.getOpcode()) { 526 default: llvm_unreachable("Invalid opcode"); 527 case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break; 528 case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break; 529 case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break; 530 case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break; 531 } 532 OutMI.setOpcode(NewOpc); 533 // Duplicate the destination. 534 unsigned DestReg = OutMI.getOperand(0).getReg(); 535 OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg)); 536 break; 537 } 538 539 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B 540 // if one of the registers is extended, but other isn't. 541 case X86::VMOVZPQILo2PQIrr: 542 case X86::VMOVAPDrr: 543 case X86::VMOVAPDYrr: 544 case X86::VMOVAPSrr: 545 case X86::VMOVAPSYrr: 546 case X86::VMOVDQArr: 547 case X86::VMOVDQAYrr: 548 case X86::VMOVDQUrr: 549 case X86::VMOVDQUYrr: 550 case X86::VMOVUPDrr: 551 case X86::VMOVUPDYrr: 552 case X86::VMOVUPSrr: 553 case X86::VMOVUPSYrr: { 554 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 555 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { 556 unsigned NewOpc; 557 switch (OutMI.getOpcode()) { 558 default: llvm_unreachable("Invalid opcode"); 559 case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; 560 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; 561 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; 562 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; 563 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; 564 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; 565 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; 566 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; 567 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; 568 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; 569 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; 570 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; 571 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; 572 } 573 OutMI.setOpcode(NewOpc); 574 } 575 break; 576 } 577 case X86::VMOVSDrr: 578 case X86::VMOVSSrr: { 579 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && 580 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { 581 unsigned NewOpc; 582 switch (OutMI.getOpcode()) { 583 default: llvm_unreachable("Invalid opcode"); 584 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; 585 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; 586 } 587 OutMI.setOpcode(NewOpc); 588 } 589 break; 590 } 591 592 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik: 593 case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik: 594 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik: 595 case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik: 596 case X86::VPCMPBZrmi: case X86::VPCMPBZrmik: 597 case X86::VPCMPBZrri: case X86::VPCMPBZrrik: 598 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik: 599 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk: 600 case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik: 601 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik: 602 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk: 603 case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik: 604 case X86::VPCMPDZrmi: case X86::VPCMPDZrmik: 605 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk: 606 case X86::VPCMPDZrri: case X86::VPCMPDZrrik: 607 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik: 608 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk: 609 case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik: 610 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik: 611 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk: 612 case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik: 613 case X86::VPCMPQZrmi: case X86::VPCMPQZrmik: 614 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk: 615 case X86::VPCMPQZrri: case X86::VPCMPQZrrik: 616 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik: 617 case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik: 618 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik: 619 case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik: 620 case X86::VPCMPWZrmi: case X86::VPCMPWZrmik: 621 case X86::VPCMPWZrri: case X86::VPCMPWZrrik: { 622 // Turn immediate 0 into the VPCMPEQ instruction. 623 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) { 624 unsigned NewOpc; 625 switch (OutMI.getOpcode()) { 626 default: llvm_unreachable("Invalid opcode"); 627 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break; 628 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break; 629 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break; 630 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break; 631 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break; 632 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break; 633 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break; 634 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break; 635 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break; 636 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break; 637 case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break; 638 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break; 639 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break; 640 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break; 641 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break; 642 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break; 643 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break; 644 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break; 645 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break; 646 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break; 647 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break; 648 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break; 649 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break; 650 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break; 651 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break; 652 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break; 653 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break; 654 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break; 655 case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break; 656 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break; 657 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break; 658 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break; 659 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break; 660 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break; 661 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break; 662 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break; 663 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break; 664 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break; 665 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break; 666 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break; 667 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break; 668 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break; 669 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break; 670 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break; 671 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break; 672 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break; 673 case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break; 674 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break; 675 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break; 676 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break; 677 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break; 678 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break; 679 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break; 680 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break; 681 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break; 682 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break; 683 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break; 684 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break; 685 case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break; 686 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break; 687 } 688 689 OutMI.setOpcode(NewOpc); 690 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1)); 691 break; 692 } 693 694 // Turn immediate 6 into the VPCMPGT instruction. 695 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) { 696 unsigned NewOpc; 697 switch (OutMI.getOpcode()) { 698 default: llvm_unreachable("Invalid opcode"); 699 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break; 700 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break; 701 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break; 702 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break; 703 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break; 704 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break; 705 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break; 706 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break; 707 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break; 708 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break; 709 case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break; 710 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break; 711 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break; 712 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break; 713 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break; 714 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break; 715 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break; 716 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break; 717 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break; 718 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break; 719 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break; 720 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break; 721 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break; 722 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break; 723 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break; 724 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break; 725 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break; 726 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break; 727 case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break; 728 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break; 729 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break; 730 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break; 731 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break; 732 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break; 733 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break; 734 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break; 735 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break; 736 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break; 737 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break; 738 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break; 739 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break; 740 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break; 741 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break; 742 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break; 743 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break; 744 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break; 745 case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break; 746 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break; 747 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break; 748 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break; 749 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break; 750 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break; 751 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break; 752 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break; 753 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break; 754 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break; 755 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break; 756 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break; 757 case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break; 758 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break; 759 } 760 761 OutMI.setOpcode(NewOpc); 762 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1)); 763 break; 764 } 765 766 break; 767 } 768 769 // CALL64r, CALL64pcrel32 - These instructions used to have 770 // register inputs modeled as normal uses instead of implicit uses. As such, 771 // they we used to truncate off all but the first operand (the callee). This 772 // issue seems to have been fixed at some point. This assert verifies that. 773 case X86::CALL64r: 774 case X86::CALL64pcrel32: 775 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!"); 776 break; 777 778 case X86::EH_RETURN: 779 case X86::EH_RETURN64: { 780 OutMI = MCInst(); 781 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); 782 break; 783 } 784 785 case X86::CLEANUPRET: { 786 // Replace CLEANUPRET with the appropriate RET. 787 OutMI = MCInst(); 788 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); 789 break; 790 } 791 792 case X86::CATCHRET: { 793 // Replace CATCHRET with the appropriate RET. 794 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); 795 unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; 796 OutMI = MCInst(); 797 OutMI.setOpcode(getRetOpcode(Subtarget)); 798 OutMI.addOperand(MCOperand::createReg(ReturnReg)); 799 break; 800 } 801 802 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump 803 // instruction. 804 case X86::TAILJMPr: 805 case X86::TAILJMPr64: 806 case X86::TAILJMPr64_REX: 807 case X86::TAILJMPd: 808 case X86::TAILJMPd64: 809 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!"); 810 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); 811 break; 812 813 case X86::TAILJMPd_CC: 814 case X86::TAILJMPd64_CC: 815 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!"); 816 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); 817 break; 818 819 case X86::TAILJMPm: 820 case X86::TAILJMPm64: 821 case X86::TAILJMPm64_REX: 822 assert(OutMI.getNumOperands() == X86::AddrNumOperands && 823 "Unexpected number of operands!"); 824 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); 825 break; 826 827 case X86::DEC16r: 828 case X86::DEC32r: 829 case X86::INC16r: 830 case X86::INC32r: 831 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions. 832 if (!AsmPrinter.getSubtarget().is64Bit()) { 833 unsigned Opcode; 834 switch (OutMI.getOpcode()) { 835 default: llvm_unreachable("Invalid opcode"); 836 case X86::DEC16r: Opcode = X86::DEC16r_alt; break; 837 case X86::DEC32r: Opcode = X86::DEC32r_alt; break; 838 case X86::INC16r: Opcode = X86::INC16r_alt; break; 839 case X86::INC32r: Opcode = X86::INC32r_alt; break; 840 } 841 OutMI.setOpcode(Opcode); 842 } 843 break; 844 845 // We don't currently select the correct instruction form for instructions 846 // which have a short %eax, etc. form. Handle this by custom lowering, for 847 // now. 848 // 849 // Note, we are currently not handling the following instructions: 850 // MOV64ao8, MOV64o8a 851 // XCHG16ar, XCHG32ar, XCHG64ar 852 case X86::MOV8mr_NOREX: 853 case X86::MOV8mr: 854 case X86::MOV8rm_NOREX: 855 case X86::MOV8rm: 856 case X86::MOV16mr: 857 case X86::MOV16rm: 858 case X86::MOV32mr: 859 case X86::MOV32rm: { 860 unsigned NewOpc; 861 switch (OutMI.getOpcode()) { 862 default: llvm_unreachable("Invalid opcode"); 863 case X86::MOV8mr_NOREX: 864 case X86::MOV8mr: NewOpc = X86::MOV8o32a; break; 865 case X86::MOV8rm_NOREX: 866 case X86::MOV8rm: NewOpc = X86::MOV8ao32; break; 867 case X86::MOV16mr: NewOpc = X86::MOV16o32a; break; 868 case X86::MOV16rm: NewOpc = X86::MOV16ao32; break; 869 case X86::MOV32mr: NewOpc = X86::MOV32o32a; break; 870 case X86::MOV32rm: NewOpc = X86::MOV32ao32; break; 871 } 872 SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc); 873 break; 874 } 875 876 case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32: 877 case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32: 878 case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32: 879 case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32: 880 case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32: 881 case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32: 882 case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32: 883 case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32: 884 case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: { 885 unsigned NewOpc; 886 switch (OutMI.getOpcode()) { 887 default: llvm_unreachable("Invalid opcode"); 888 case X86::ADC8ri: NewOpc = X86::ADC8i8; break; 889 case X86::ADC16ri: NewOpc = X86::ADC16i16; break; 890 case X86::ADC32ri: NewOpc = X86::ADC32i32; break; 891 case X86::ADC64ri32: NewOpc = X86::ADC64i32; break; 892 case X86::ADD8ri: NewOpc = X86::ADD8i8; break; 893 case X86::ADD16ri: NewOpc = X86::ADD16i16; break; 894 case X86::ADD32ri: NewOpc = X86::ADD32i32; break; 895 case X86::ADD64ri32: NewOpc = X86::ADD64i32; break; 896 case X86::AND8ri: NewOpc = X86::AND8i8; break; 897 case X86::AND16ri: NewOpc = X86::AND16i16; break; 898 case X86::AND32ri: NewOpc = X86::AND32i32; break; 899 case X86::AND64ri32: NewOpc = X86::AND64i32; break; 900 case X86::CMP8ri: NewOpc = X86::CMP8i8; break; 901 case X86::CMP16ri: NewOpc = X86::CMP16i16; break; 902 case X86::CMP32ri: NewOpc = X86::CMP32i32; break; 903 case X86::CMP64ri32: NewOpc = X86::CMP64i32; break; 904 case X86::OR8ri: NewOpc = X86::OR8i8; break; 905 case X86::OR16ri: NewOpc = X86::OR16i16; break; 906 case X86::OR32ri: NewOpc = X86::OR32i32; break; 907 case X86::OR64ri32: NewOpc = X86::OR64i32; break; 908 case X86::SBB8ri: NewOpc = X86::SBB8i8; break; 909 case X86::SBB16ri: NewOpc = X86::SBB16i16; break; 910 case X86::SBB32ri: NewOpc = X86::SBB32i32; break; 911 case X86::SBB64ri32: NewOpc = X86::SBB64i32; break; 912 case X86::SUB8ri: NewOpc = X86::SUB8i8; break; 913 case X86::SUB16ri: NewOpc = X86::SUB16i16; break; 914 case X86::SUB32ri: NewOpc = X86::SUB32i32; break; 915 case X86::SUB64ri32: NewOpc = X86::SUB64i32; break; 916 case X86::TEST8ri: NewOpc = X86::TEST8i8; break; 917 case X86::TEST16ri: NewOpc = X86::TEST16i16; break; 918 case X86::TEST32ri: NewOpc = X86::TEST32i32; break; 919 case X86::TEST64ri32: NewOpc = X86::TEST64i32; break; 920 case X86::XOR8ri: NewOpc = X86::XOR8i8; break; 921 case X86::XOR16ri: NewOpc = X86::XOR16i16; break; 922 case X86::XOR32ri: NewOpc = X86::XOR32i32; break; 923 case X86::XOR64ri32: NewOpc = X86::XOR64i32; break; 924 } 925 SimplifyShortImmForm(OutMI, NewOpc); 926 break; 927 } 928 929 // Try to shrink some forms of movsx. 930 case X86::MOVSX16rr8: 931 case X86::MOVSX32rr16: 932 case X86::MOVSX64rr32: 933 SimplifyMOVSX(OutMI); 934 break; 935 936 case X86::VCMPPDrri: 937 case X86::VCMPPDYrri: 938 case X86::VCMPPSrri: 939 case X86::VCMPPSYrri: 940 case X86::VCMPSDrr: 941 case X86::VCMPSSrr: { 942 // Swap the operands if it will enable a 2 byte VEX encoding. 943 // FIXME: Change the immediate to improve opportunities? 944 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) && 945 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { 946 unsigned Imm = MI->getOperand(3).getImm() & 0x7; 947 switch (Imm) { 948 default: break; 949 case 0x00: // EQUAL 950 case 0x03: // UNORDERED 951 case 0x04: // NOT EQUAL 952 case 0x07: // ORDERED 953 std::swap(OutMI.getOperand(1), OutMI.getOperand(2)); 954 break; 955 } 956 } 957 break; 958 } 959 960 case X86::VMOVHLPSrr: 961 case X86::VUNPCKHPDrr: 962 // These are not truly commutable so hide them from the default case. 963 break; 964 965 default: { 966 // If the instruction is a commutable arithmetic instruction we might be 967 // able to commute the operands to get a 2 byte VEX prefix. 968 uint64_t TSFlags = MI->getDesc().TSFlags; 969 if (MI->getDesc().isCommutable() && 970 (TSFlags & X86II::EncodingMask) == X86II::VEX && 971 (TSFlags & X86II::OpMapMask) == X86II::TB && 972 (TSFlags & X86II::FormMask) == X86II::MRMSrcReg && 973 !(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) && 974 OutMI.getNumOperands() == 3) { 975 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) && 976 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) 977 std::swap(OutMI.getOperand(1), OutMI.getOperand(2)); 978 } 979 break; 980 } 981 } 982 } 983 984 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, 985 const MachineInstr &MI) { 986 NoAutoPaddingScope NoPadScope(*OutStreamer); 987 bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 && 988 MI.getOpcode() != X86::TLS_base_addr32; 989 bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 || 990 MI.getOpcode() == X86::TLS_base_addr64; 991 MCContext &Ctx = OutStreamer->getContext(); 992 993 MCSymbolRefExpr::VariantKind SRVK; 994 switch (MI.getOpcode()) { 995 case X86::TLS_addr32: 996 case X86::TLS_addr64: 997 case X86::TLS_addrX32: 998 SRVK = MCSymbolRefExpr::VK_TLSGD; 999 break; 1000 case X86::TLS_base_addr32: 1001 SRVK = MCSymbolRefExpr::VK_TLSLDM; 1002 break; 1003 case X86::TLS_base_addr64: 1004 case X86::TLS_base_addrX32: 1005 SRVK = MCSymbolRefExpr::VK_TLSLD; 1006 break; 1007 default: 1008 llvm_unreachable("unexpected opcode"); 1009 } 1010 1011 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create( 1012 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx); 1013 1014 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD 1015 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is 1016 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by 1017 // only using GOT when GOTPCRELX is enabled. 1018 // TODO Delete the workaround when GOTPCRELX becomes commonplace. 1019 bool UseGot = MMI->getModule()->getRtLibUseGOT() && 1020 Ctx.getAsmInfo()->canRelaxRelocations(); 1021 1022 if (Is64Bits) { 1023 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD; 1024 if (NeedsPadding && Is64BitsLP64) 1025 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 1026 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r) 1027 .addReg(X86::RDI) 1028 .addReg(X86::RIP) 1029 .addImm(1) 1030 .addReg(0) 1031 .addExpr(Sym) 1032 .addReg(0)); 1033 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr"); 1034 if (NeedsPadding) { 1035 if (!UseGot) 1036 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 1037 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); 1038 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX)); 1039 } 1040 if (UseGot) { 1041 const MCExpr *Expr = MCSymbolRefExpr::create( 1042 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx); 1043 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m) 1044 .addReg(X86::RIP) 1045 .addImm(1) 1046 .addReg(0) 1047 .addExpr(Expr) 1048 .addReg(0)); 1049 } else { 1050 EmitAndCountInstruction( 1051 MCInstBuilder(X86::CALL64pcrel32) 1052 .addExpr(MCSymbolRefExpr::create(TlsGetAddr, 1053 MCSymbolRefExpr::VK_PLT, Ctx))); 1054 } 1055 } else { 1056 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) { 1057 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r) 1058 .addReg(X86::EAX) 1059 .addReg(0) 1060 .addImm(1) 1061 .addReg(X86::EBX) 1062 .addExpr(Sym) 1063 .addReg(0)); 1064 } else { 1065 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r) 1066 .addReg(X86::EAX) 1067 .addReg(X86::EBX) 1068 .addImm(1) 1069 .addReg(0) 1070 .addExpr(Sym) 1071 .addReg(0)); 1072 } 1073 1074 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr"); 1075 if (UseGot) { 1076 const MCExpr *Expr = 1077 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx); 1078 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m) 1079 .addReg(X86::EBX) 1080 .addImm(1) 1081 .addReg(0) 1082 .addExpr(Expr) 1083 .addReg(0)); 1084 } else { 1085 EmitAndCountInstruction( 1086 MCInstBuilder(X86::CALLpcrel32) 1087 .addExpr(MCSymbolRefExpr::create(TlsGetAddr, 1088 MCSymbolRefExpr::VK_PLT, Ctx))); 1089 } 1090 } 1091 } 1092 1093 /// Emit the largest nop instruction smaller than or equal to \p NumBytes 1094 /// bytes. Return the size of nop emitted. 1095 static unsigned emitNop(MCStreamer &OS, unsigned NumBytes, 1096 const X86Subtarget *Subtarget) { 1097 // Determine the longest nop which can be efficiently decoded for the given 1098 // target cpu. 15-bytes is the longest single NOP instruction, but some 1099 // platforms can't decode the longest forms efficiently. 1100 unsigned MaxNopLength = 1; 1101 if (Subtarget->is64Bit()) { 1102 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the 1103 // IndexReg/BaseReg below need to be updated. 1104 if (Subtarget->hasFeature(X86::TuningFast7ByteNOP)) 1105 MaxNopLength = 7; 1106 else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP)) 1107 MaxNopLength = 15; 1108 else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP)) 1109 MaxNopLength = 11; 1110 else 1111 MaxNopLength = 10; 1112 } if (Subtarget->is32Bit()) 1113 MaxNopLength = 2; 1114 1115 // Cap a single nop emission at the profitable value for the target 1116 NumBytes = std::min(NumBytes, MaxNopLength); 1117 1118 unsigned NopSize; 1119 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; 1120 IndexReg = Displacement = SegmentReg = 0; 1121 BaseReg = X86::RAX; 1122 ScaleVal = 1; 1123 switch (NumBytes) { 1124 case 0: 1125 llvm_unreachable("Zero nops?"); 1126 break; 1127 case 1: 1128 NopSize = 1; 1129 Opc = X86::NOOP; 1130 break; 1131 case 2: 1132 NopSize = 2; 1133 Opc = X86::XCHG16ar; 1134 break; 1135 case 3: 1136 NopSize = 3; 1137 Opc = X86::NOOPL; 1138 break; 1139 case 4: 1140 NopSize = 4; 1141 Opc = X86::NOOPL; 1142 Displacement = 8; 1143 break; 1144 case 5: 1145 NopSize = 5; 1146 Opc = X86::NOOPL; 1147 Displacement = 8; 1148 IndexReg = X86::RAX; 1149 break; 1150 case 6: 1151 NopSize = 6; 1152 Opc = X86::NOOPW; 1153 Displacement = 8; 1154 IndexReg = X86::RAX; 1155 break; 1156 case 7: 1157 NopSize = 7; 1158 Opc = X86::NOOPL; 1159 Displacement = 512; 1160 break; 1161 case 8: 1162 NopSize = 8; 1163 Opc = X86::NOOPL; 1164 Displacement = 512; 1165 IndexReg = X86::RAX; 1166 break; 1167 case 9: 1168 NopSize = 9; 1169 Opc = X86::NOOPW; 1170 Displacement = 512; 1171 IndexReg = X86::RAX; 1172 break; 1173 default: 1174 NopSize = 10; 1175 Opc = X86::NOOPW; 1176 Displacement = 512; 1177 IndexReg = X86::RAX; 1178 SegmentReg = X86::CS; 1179 break; 1180 } 1181 1182 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U); 1183 NopSize += NumPrefixes; 1184 for (unsigned i = 0; i != NumPrefixes; ++i) 1185 OS.emitBytes("\x66"); 1186 1187 switch (Opc) { 1188 default: llvm_unreachable("Unexpected opcode"); 1189 case X86::NOOP: 1190 OS.emitInstruction(MCInstBuilder(Opc), *Subtarget); 1191 break; 1192 case X86::XCHG16ar: 1193 OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), 1194 *Subtarget); 1195 break; 1196 case X86::NOOPL: 1197 case X86::NOOPW: 1198 OS.emitInstruction(MCInstBuilder(Opc) 1199 .addReg(BaseReg) 1200 .addImm(ScaleVal) 1201 .addReg(IndexReg) 1202 .addImm(Displacement) 1203 .addReg(SegmentReg), 1204 *Subtarget); 1205 break; 1206 } 1207 assert(NopSize <= NumBytes && "We overemitted?"); 1208 return NopSize; 1209 } 1210 1211 /// Emit the optimal amount of multi-byte nops on X86. 1212 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, 1213 const X86Subtarget *Subtarget) { 1214 unsigned NopsToEmit = NumBytes; 1215 (void)NopsToEmit; 1216 while (NumBytes) { 1217 NumBytes -= emitNop(OS, NumBytes, Subtarget); 1218 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!"); 1219 } 1220 } 1221 1222 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, 1223 X86MCInstLower &MCIL) { 1224 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64"); 1225 1226 NoAutoPaddingScope NoPadScope(*OutStreamer); 1227 1228 StatepointOpers SOpers(&MI); 1229 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { 1230 emitX86Nops(*OutStreamer, PatchBytes, Subtarget); 1231 } else { 1232 // Lower call target and choose correct opcode 1233 const MachineOperand &CallTarget = SOpers.getCallTarget(); 1234 MCOperand CallTargetMCOp; 1235 unsigned CallOpcode; 1236 switch (CallTarget.getType()) { 1237 case MachineOperand::MO_GlobalAddress: 1238 case MachineOperand::MO_ExternalSymbol: 1239 CallTargetMCOp = MCIL.LowerSymbolOperand( 1240 CallTarget, MCIL.GetSymbolFromOperand(CallTarget)); 1241 CallOpcode = X86::CALL64pcrel32; 1242 // Currently, we only support relative addressing with statepoints. 1243 // Otherwise, we'll need a scratch register to hold the target 1244 // address. You'll fail asserts during load & relocation if this 1245 // symbol is to far away. (TODO: support non-relative addressing) 1246 break; 1247 case MachineOperand::MO_Immediate: 1248 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); 1249 CallOpcode = X86::CALL64pcrel32; 1250 // Currently, we only support relative addressing with statepoints. 1251 // Otherwise, we'll need a scratch register to hold the target 1252 // immediate. You'll fail asserts during load & relocation if this 1253 // address is to far away. (TODO: support non-relative addressing) 1254 break; 1255 case MachineOperand::MO_Register: 1256 // FIXME: Add retpoline support and remove this. 1257 if (Subtarget->useIndirectThunkCalls()) 1258 report_fatal_error("Lowering register statepoints with thunks not " 1259 "yet implemented."); 1260 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); 1261 CallOpcode = X86::CALL64r; 1262 break; 1263 default: 1264 llvm_unreachable("Unsupported operand type in statepoint call target"); 1265 break; 1266 } 1267 1268 // Emit call 1269 MCInst CallInst; 1270 CallInst.setOpcode(CallOpcode); 1271 CallInst.addOperand(CallTargetMCOp); 1272 OutStreamer->emitInstruction(CallInst, getSubtargetInfo()); 1273 } 1274 1275 // Record our statepoint node in the same section used by STACKMAP 1276 // and PATCHPOINT 1277 auto &Ctx = OutStreamer->getContext(); 1278 MCSymbol *MILabel = Ctx.createTempSymbol(); 1279 OutStreamer->emitLabel(MILabel); 1280 SM.recordStatepoint(*MILabel, MI); 1281 } 1282 1283 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, 1284 X86MCInstLower &MCIL) { 1285 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, 1286 // <opcode>, <operands> 1287 1288 NoAutoPaddingScope NoPadScope(*OutStreamer); 1289 1290 Register DefRegister = FaultingMI.getOperand(0).getReg(); 1291 FaultMaps::FaultKind FK = 1292 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm()); 1293 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); 1294 unsigned Opcode = FaultingMI.getOperand(3).getImm(); 1295 unsigned OperandsBeginIdx = 4; 1296 1297 auto &Ctx = OutStreamer->getContext(); 1298 MCSymbol *FaultingLabel = Ctx.createTempSymbol(); 1299 OutStreamer->emitLabel(FaultingLabel); 1300 1301 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); 1302 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel); 1303 1304 MCInst MI; 1305 MI.setOpcode(Opcode); 1306 1307 if (DefRegister != X86::NoRegister) 1308 MI.addOperand(MCOperand::createReg(DefRegister)); 1309 1310 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, 1311 E = FaultingMI.operands_end(); 1312 I != E; ++I) 1313 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I)) 1314 MI.addOperand(MaybeOperand.getValue()); 1315 1316 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName()); 1317 OutStreamer->emitInstruction(MI, getSubtargetInfo()); 1318 } 1319 1320 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, 1321 X86MCInstLower &MCIL) { 1322 bool Is64Bits = Subtarget->is64Bit(); 1323 MCContext &Ctx = OutStreamer->getContext(); 1324 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__"); 1325 const MCSymbolRefExpr *Op = 1326 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx); 1327 1328 EmitAndCountInstruction( 1329 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) 1330 .addExpr(Op)); 1331 } 1332 1333 void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) { 1334 // FIXME: Make this work on non-ELF. 1335 if (!TM.getTargetTriple().isOSBinFormatELF()) { 1336 report_fatal_error("llvm.asan.check.memaccess only supported on ELF"); 1337 return; 1338 } 1339 1340 const auto &Reg = MI.getOperand(0).getReg(); 1341 ASanAccessInfo AccessInfo(MI.getOperand(1).getImm()); 1342 1343 uint64_t ShadowBase; 1344 int MappingScale; 1345 bool OrShadowOffset; 1346 getAddressSanitizerParams(Triple(TM.getTargetTriple()), 64, 1347 AccessInfo.CompileKernel, &ShadowBase, 1348 &MappingScale, &OrShadowOffset); 1349 1350 std::string Name = AccessInfo.IsWrite ? "store" : "load"; 1351 std::string Op = OrShadowOffset ? "or" : "add"; 1352 std::string SymName = "__asan_check_" + Name + "_" + Op + "_" + 1353 utostr(1ULL << AccessInfo.AccessSizeIndex) + "_" + 1354 TM.getMCRegisterInfo()->getName(Reg.asMCReg()); 1355 if (OrShadowOffset) 1356 report_fatal_error( 1357 "OrShadowOffset is not supported with optimized callbacks"); 1358 1359 EmitAndCountInstruction( 1360 MCInstBuilder(X86::CALL64pcrel32) 1361 .addExpr(MCSymbolRefExpr::create( 1362 OutContext.getOrCreateSymbol(SymName), OutContext))); 1363 } 1364 1365 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, 1366 X86MCInstLower &MCIL) { 1367 // PATCHABLE_OP minsize, opcode, operands 1368 1369 NoAutoPaddingScope NoPadScope(*OutStreamer); 1370 1371 unsigned MinSize = MI.getOperand(0).getImm(); 1372 unsigned Opcode = MI.getOperand(1).getImm(); 1373 1374 MCInst MCI; 1375 MCI.setOpcode(Opcode); 1376 for (auto &MO : drop_begin(MI.operands(), 2)) 1377 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) 1378 MCI.addOperand(MaybeOperand.getValue()); 1379 1380 SmallString<256> Code; 1381 SmallVector<MCFixup, 4> Fixups; 1382 raw_svector_ostream VecOS(Code); 1383 CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo()); 1384 1385 if (Code.size() < MinSize) { 1386 if (MinSize == 2 && Subtarget->is32Bit() && 1387 Subtarget->isTargetWindowsMSVC() && 1388 (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) { 1389 // For compatibilty reasons, when targetting MSVC, is is important to 1390 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools 1391 // rely specifically on this pattern to be able to patch a function. 1392 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE. 1393 OutStreamer->emitInstruction( 1394 MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI), 1395 *Subtarget); 1396 } else if (MinSize == 2 && Opcode == X86::PUSH64r) { 1397 // This is an optimization that lets us get away without emitting a nop in 1398 // many cases. 1399 // 1400 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two 1401 // bytes too, so the check on MinSize is important. 1402 MCI.setOpcode(X86::PUSH64rmr); 1403 } else { 1404 unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget); 1405 assert(NopSize == MinSize && "Could not implement MinSize!"); 1406 (void)NopSize; 1407 } 1408 } 1409 1410 OutStreamer->emitInstruction(MCI, getSubtargetInfo()); 1411 } 1412 1413 // Lower a stackmap of the form: 1414 // <id>, <shadowBytes>, ... 1415 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { 1416 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); 1417 1418 auto &Ctx = OutStreamer->getContext(); 1419 MCSymbol *MILabel = Ctx.createTempSymbol(); 1420 OutStreamer->emitLabel(MILabel); 1421 1422 SM.recordStackMap(*MILabel, MI); 1423 unsigned NumShadowBytes = MI.getOperand(1).getImm(); 1424 SMShadowTracker.reset(NumShadowBytes); 1425 } 1426 1427 // Lower a patchpoint of the form: 1428 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... 1429 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, 1430 X86MCInstLower &MCIL) { 1431 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64"); 1432 1433 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); 1434 1435 NoAutoPaddingScope NoPadScope(*OutStreamer); 1436 1437 auto &Ctx = OutStreamer->getContext(); 1438 MCSymbol *MILabel = Ctx.createTempSymbol(); 1439 OutStreamer->emitLabel(MILabel); 1440 SM.recordPatchPoint(*MILabel, MI); 1441 1442 PatchPointOpers opers(&MI); 1443 unsigned ScratchIdx = opers.getNextScratchIdx(); 1444 unsigned EncodedBytes = 0; 1445 const MachineOperand &CalleeMO = opers.getCallTarget(); 1446 1447 // Check for null target. If target is non-null (i.e. is non-zero or is 1448 // symbolic) then emit a call. 1449 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { 1450 MCOperand CalleeMCOp; 1451 switch (CalleeMO.getType()) { 1452 default: 1453 /// FIXME: Add a verifier check for bad callee types. 1454 llvm_unreachable("Unrecognized callee operand type."); 1455 case MachineOperand::MO_Immediate: 1456 if (CalleeMO.getImm()) 1457 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm()); 1458 break; 1459 case MachineOperand::MO_ExternalSymbol: 1460 case MachineOperand::MO_GlobalAddress: 1461 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO, 1462 MCIL.GetSymbolFromOperand(CalleeMO)); 1463 break; 1464 } 1465 1466 // Emit MOV to materialize the target address and the CALL to target. 1467 // This is encoded with 12-13 bytes, depending on which register is used. 1468 Register ScratchReg = MI.getOperand(ScratchIdx).getReg(); 1469 if (X86II::isX86_64ExtendedReg(ScratchReg)) 1470 EncodedBytes = 13; 1471 else 1472 EncodedBytes = 12; 1473 1474 EmitAndCountInstruction( 1475 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp)); 1476 // FIXME: Add retpoline support and remove this. 1477 if (Subtarget->useIndirectThunkCalls()) 1478 report_fatal_error( 1479 "Lowering patchpoint with thunks not yet implemented."); 1480 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg)); 1481 } 1482 1483 // Emit padding. 1484 unsigned NumBytes = opers.getNumPatchBytes(); 1485 assert(NumBytes >= EncodedBytes && 1486 "Patchpoint can't request size less than the length of a call."); 1487 1488 emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget); 1489 } 1490 1491 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, 1492 X86MCInstLower &MCIL) { 1493 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64"); 1494 1495 NoAutoPaddingScope NoPadScope(*OutStreamer); 1496 1497 // We want to emit the following pattern, which follows the x86 calling 1498 // convention to prepare for the trampoline call to be patched in. 1499 // 1500 // .p2align 1, ... 1501 // .Lxray_event_sled_N: 1502 // jmp +N // jump across the instrumentation sled 1503 // ... // set up arguments in register 1504 // callq __xray_CustomEvent@plt // force dependency to symbol 1505 // ... 1506 // <jump here> 1507 // 1508 // After patching, it would look something like: 1509 // 1510 // nopw (2-byte nop) 1511 // ... 1512 // callq __xrayCustomEvent // already lowered 1513 // ... 1514 // 1515 // --- 1516 // First we emit the label and the jump. 1517 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true); 1518 OutStreamer->AddComment("# XRay Custom Event Log"); 1519 OutStreamer->emitCodeAlignment(2, &getSubtargetInfo()); 1520 OutStreamer->emitLabel(CurSled); 1521 1522 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as 1523 // an operand (computed as an offset from the jmp instruction). 1524 // FIXME: Find another less hacky way do force the relative jump. 1525 OutStreamer->emitBinaryData("\xeb\x0f"); 1526 1527 // The default C calling convention will place two arguments into %rcx and 1528 // %rdx -- so we only work with those. 1529 const Register DestRegs[] = {X86::RDI, X86::RSI}; 1530 bool UsedMask[] = {false, false}; 1531 // Filled out in loop. 1532 Register SrcRegs[] = {0, 0}; 1533 1534 // Then we put the operands in the %rdi and %rsi registers. We spill the 1535 // values in the register before we clobber them, and mark them as used in 1536 // UsedMask. In case the arguments are already in the correct register, we use 1537 // emit nops appropriately sized to keep the sled the same size in every 1538 // situation. 1539 for (unsigned I = 0; I < MI.getNumOperands(); ++I) 1540 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { 1541 assert(Op->isReg() && "Only support arguments in registers"); 1542 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64); 1543 if (SrcRegs[I] != DestRegs[I]) { 1544 UsedMask[I] = true; 1545 EmitAndCountInstruction( 1546 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); 1547 } else { 1548 emitX86Nops(*OutStreamer, 4, Subtarget); 1549 } 1550 } 1551 1552 // Now that the register values are stashed, mov arguments into place. 1553 // FIXME: This doesn't work if one of the later SrcRegs is equal to an 1554 // earlier DestReg. We will have already overwritten over the register before 1555 // we can copy from it. 1556 for (unsigned I = 0; I < MI.getNumOperands(); ++I) 1557 if (SrcRegs[I] != DestRegs[I]) 1558 EmitAndCountInstruction( 1559 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); 1560 1561 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the 1562 // name of the trampoline to be implemented by the XRay runtime. 1563 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent"); 1564 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); 1565 if (isPositionIndependent()) 1566 TOp.setTargetFlags(X86II::MO_PLT); 1567 1568 // Emit the call instruction. 1569 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) 1570 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); 1571 1572 // Restore caller-saved and used registers. 1573 for (unsigned I = sizeof UsedMask; I-- > 0;) 1574 if (UsedMask[I]) 1575 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); 1576 else 1577 emitX86Nops(*OutStreamer, 1, Subtarget); 1578 1579 OutStreamer->AddComment("xray custom event end."); 1580 1581 // Record the sled version. Version 0 of this sled was spelled differently, so 1582 // we let the runtime handle the different offsets we're using. Version 2 1583 // changed the absolute address to a PC-relative address. 1584 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2); 1585 } 1586 1587 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, 1588 X86MCInstLower &MCIL) { 1589 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64"); 1590 1591 NoAutoPaddingScope NoPadScope(*OutStreamer); 1592 1593 // We want to emit the following pattern, which follows the x86 calling 1594 // convention to prepare for the trampoline call to be patched in. 1595 // 1596 // .p2align 1, ... 1597 // .Lxray_event_sled_N: 1598 // jmp +N // jump across the instrumentation sled 1599 // ... // set up arguments in register 1600 // callq __xray_TypedEvent@plt // force dependency to symbol 1601 // ... 1602 // <jump here> 1603 // 1604 // After patching, it would look something like: 1605 // 1606 // nopw (2-byte nop) 1607 // ... 1608 // callq __xrayTypedEvent // already lowered 1609 // ... 1610 // 1611 // --- 1612 // First we emit the label and the jump. 1613 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true); 1614 OutStreamer->AddComment("# XRay Typed Event Log"); 1615 OutStreamer->emitCodeAlignment(2, &getSubtargetInfo()); 1616 OutStreamer->emitLabel(CurSled); 1617 1618 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as 1619 // an operand (computed as an offset from the jmp instruction). 1620 // FIXME: Find another less hacky way do force the relative jump. 1621 OutStreamer->emitBinaryData("\xeb\x14"); 1622 1623 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, 1624 // so we'll work with those. Or we may be called via SystemV, in which case 1625 // we don't have to do any translation. 1626 const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; 1627 bool UsedMask[] = {false, false, false}; 1628 1629 // Will fill out src regs in the loop. 1630 Register SrcRegs[] = {0, 0, 0}; 1631 1632 // Then we put the operands in the SystemV registers. We spill the values in 1633 // the registers before we clobber them, and mark them as used in UsedMask. 1634 // In case the arguments are already in the correct register, we emit nops 1635 // appropriately sized to keep the sled the same size in every situation. 1636 for (unsigned I = 0; I < MI.getNumOperands(); ++I) 1637 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { 1638 // TODO: Is register only support adequate? 1639 assert(Op->isReg() && "Only supports arguments in registers"); 1640 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64); 1641 if (SrcRegs[I] != DestRegs[I]) { 1642 UsedMask[I] = true; 1643 EmitAndCountInstruction( 1644 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); 1645 } else { 1646 emitX86Nops(*OutStreamer, 4, Subtarget); 1647 } 1648 } 1649 1650 // In the above loop we only stash all of the destination registers or emit 1651 // nops if the arguments are already in the right place. Doing the actually 1652 // moving is postponed until after all the registers are stashed so nothing 1653 // is clobbers. We've already added nops to account for the size of mov and 1654 // push if the register is in the right place, so we only have to worry about 1655 // emitting movs. 1656 // FIXME: This doesn't work if one of the later SrcRegs is equal to an 1657 // earlier DestReg. We will have already overwritten over the register before 1658 // we can copy from it. 1659 for (unsigned I = 0; I < MI.getNumOperands(); ++I) 1660 if (UsedMask[I]) 1661 EmitAndCountInstruction( 1662 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); 1663 1664 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the 1665 // name of the trampoline to be implemented by the XRay runtime. 1666 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent"); 1667 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); 1668 if (isPositionIndependent()) 1669 TOp.setTargetFlags(X86II::MO_PLT); 1670 1671 // Emit the call instruction. 1672 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) 1673 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); 1674 1675 // Restore caller-saved and used registers. 1676 for (unsigned I = sizeof UsedMask; I-- > 0;) 1677 if (UsedMask[I]) 1678 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); 1679 else 1680 emitX86Nops(*OutStreamer, 1, Subtarget); 1681 1682 OutStreamer->AddComment("xray typed event end."); 1683 1684 // Record the sled version. 1685 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2); 1686 } 1687 1688 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, 1689 X86MCInstLower &MCIL) { 1690 1691 NoAutoPaddingScope NoPadScope(*OutStreamer); 1692 1693 const Function &F = MF->getFunction(); 1694 if (F.hasFnAttribute("patchable-function-entry")) { 1695 unsigned Num; 1696 if (F.getFnAttribute("patchable-function-entry") 1697 .getValueAsString() 1698 .getAsInteger(10, Num)) 1699 return; 1700 emitX86Nops(*OutStreamer, Num, Subtarget); 1701 return; 1702 } 1703 // We want to emit the following pattern: 1704 // 1705 // .p2align 1, ... 1706 // .Lxray_sled_N: 1707 // jmp .tmpN 1708 // # 9 bytes worth of noops 1709 // 1710 // We need the 9 bytes because at runtime, we'd be patching over the full 11 1711 // bytes with the following pattern: 1712 // 1713 // mov %r10, <function id, 32-bit> // 6 bytes 1714 // call <relative offset, 32-bits> // 5 bytes 1715 // 1716 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1717 OutStreamer->emitCodeAlignment(2, &getSubtargetInfo()); 1718 OutStreamer->emitLabel(CurSled); 1719 1720 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as 1721 // an operand (computed as an offset from the jmp instruction). 1722 // FIXME: Find another less hacky way do force the relative jump. 1723 OutStreamer->emitBytes("\xeb\x09"); 1724 emitX86Nops(*OutStreamer, 9, Subtarget); 1725 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2); 1726 } 1727 1728 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, 1729 X86MCInstLower &MCIL) { 1730 NoAutoPaddingScope NoPadScope(*OutStreamer); 1731 1732 // Since PATCHABLE_RET takes the opcode of the return statement as an 1733 // argument, we use that to emit the correct form of the RET that we want. 1734 // i.e. when we see this: 1735 // 1736 // PATCHABLE_RET X86::RET ... 1737 // 1738 // We should emit the RET followed by sleds. 1739 // 1740 // .p2align 1, ... 1741 // .Lxray_sled_N: 1742 // ret # or equivalent instruction 1743 // # 10 bytes worth of noops 1744 // 1745 // This just makes sure that the alignment for the next instruction is 2. 1746 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1747 OutStreamer->emitCodeAlignment(2, &getSubtargetInfo()); 1748 OutStreamer->emitLabel(CurSled); 1749 unsigned OpCode = MI.getOperand(0).getImm(); 1750 MCInst Ret; 1751 Ret.setOpcode(OpCode); 1752 for (auto &MO : drop_begin(MI.operands())) 1753 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) 1754 Ret.addOperand(MaybeOperand.getValue()); 1755 OutStreamer->emitInstruction(Ret, getSubtargetInfo()); 1756 emitX86Nops(*OutStreamer, 10, Subtarget); 1757 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2); 1758 } 1759 1760 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, 1761 X86MCInstLower &MCIL) { 1762 NoAutoPaddingScope NoPadScope(*OutStreamer); 1763 1764 // Like PATCHABLE_RET, we have the actual instruction in the operands to this 1765 // instruction so we lower that particular instruction and its operands. 1766 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how 1767 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to 1768 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual 1769 // tail call much like how we have it in PATCHABLE_RET. 1770 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 1771 OutStreamer->emitCodeAlignment(2, &getSubtargetInfo()); 1772 OutStreamer->emitLabel(CurSled); 1773 auto Target = OutContext.createTempSymbol(); 1774 1775 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as 1776 // an operand (computed as an offset from the jmp instruction). 1777 // FIXME: Find another less hacky way do force the relative jump. 1778 OutStreamer->emitBytes("\xeb\x09"); 1779 emitX86Nops(*OutStreamer, 9, Subtarget); 1780 OutStreamer->emitLabel(Target); 1781 recordSled(CurSled, MI, SledKind::TAIL_CALL, 2); 1782 1783 unsigned OpCode = MI.getOperand(0).getImm(); 1784 OpCode = convertTailJumpOpcode(OpCode); 1785 MCInst TC; 1786 TC.setOpcode(OpCode); 1787 1788 // Before emitting the instruction, add a comment to indicate that this is 1789 // indeed a tail call. 1790 OutStreamer->AddComment("TAILCALL"); 1791 for (auto &MO : drop_begin(MI.operands())) 1792 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) 1793 TC.addOperand(MaybeOperand.getValue()); 1794 OutStreamer->emitInstruction(TC, getSubtargetInfo()); 1795 } 1796 1797 // Returns instruction preceding MBBI in MachineFunction. 1798 // If MBBI is the first instruction of the first basic block, returns null. 1799 static MachineBasicBlock::const_iterator 1800 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { 1801 const MachineBasicBlock *MBB = MBBI->getParent(); 1802 while (MBBI == MBB->begin()) { 1803 if (MBB == &MBB->getParent()->front()) 1804 return MachineBasicBlock::const_iterator(); 1805 MBB = MBB->getPrevNode(); 1806 MBBI = MBB->end(); 1807 } 1808 --MBBI; 1809 return MBBI; 1810 } 1811 1812 static const Constant *getConstantFromPool(const MachineInstr &MI, 1813 const MachineOperand &Op) { 1814 if (!Op.isCPI() || Op.getOffset() != 0) 1815 return nullptr; 1816 1817 ArrayRef<MachineConstantPoolEntry> Constants = 1818 MI.getParent()->getParent()->getConstantPool()->getConstants(); 1819 const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()]; 1820 1821 // Bail if this is a machine constant pool entry, we won't be able to dig out 1822 // anything useful. 1823 if (ConstantEntry.isMachineConstantPoolEntry()) 1824 return nullptr; 1825 1826 return ConstantEntry.Val.ConstVal; 1827 } 1828 1829 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx, 1830 unsigned SrcOp2Idx, ArrayRef<int> Mask) { 1831 std::string Comment; 1832 1833 // Compute the name for a register. This is really goofy because we have 1834 // multiple instruction printers that could (in theory) use different 1835 // names. Fortunately most people use the ATT style (outside of Windows) 1836 // and they actually agree on register naming here. Ultimately, this is 1837 // a comment, and so its OK if it isn't perfect. 1838 auto GetRegisterName = [](unsigned RegNum) -> StringRef { 1839 return X86ATTInstPrinter::getRegisterName(RegNum); 1840 }; 1841 1842 const MachineOperand &DstOp = MI->getOperand(0); 1843 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx); 1844 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx); 1845 1846 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem"; 1847 StringRef Src1Name = 1848 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem"; 1849 StringRef Src2Name = 1850 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem"; 1851 1852 // One source operand, fix the mask to print all elements in one span. 1853 SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end()); 1854 if (Src1Name == Src2Name) 1855 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) 1856 if (ShuffleMask[i] >= e) 1857 ShuffleMask[i] -= e; 1858 1859 raw_string_ostream CS(Comment); 1860 CS << DstName; 1861 1862 // Handle AVX512 MASK/MASXZ write mask comments. 1863 // MASK: zmmX {%kY} 1864 // MASKZ: zmmX {%kY} {z} 1865 if (SrcOp1Idx > 1) { 1866 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask"); 1867 1868 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1); 1869 if (WriteMaskOp.isReg()) { 1870 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}"; 1871 1872 if (SrcOp1Idx == 2) { 1873 CS << " {z}"; 1874 } 1875 } 1876 } 1877 1878 CS << " = "; 1879 1880 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { 1881 if (i != 0) 1882 CS << ","; 1883 if (ShuffleMask[i] == SM_SentinelZero) { 1884 CS << "zero"; 1885 continue; 1886 } 1887 1888 // Otherwise, it must come from src1 or src2. Print the span of elements 1889 // that comes from this src. 1890 bool isSrc1 = ShuffleMask[i] < (int)e; 1891 CS << (isSrc1 ? Src1Name : Src2Name) << '['; 1892 1893 bool IsFirst = true; 1894 while (i != e && ShuffleMask[i] != SM_SentinelZero && 1895 (ShuffleMask[i] < (int)e) == isSrc1) { 1896 if (!IsFirst) 1897 CS << ','; 1898 else 1899 IsFirst = false; 1900 if (ShuffleMask[i] == SM_SentinelUndef) 1901 CS << "u"; 1902 else 1903 CS << ShuffleMask[i] % (int)e; 1904 ++i; 1905 } 1906 CS << ']'; 1907 --i; // For loop increments element #. 1908 } 1909 CS.flush(); 1910 1911 return Comment; 1912 } 1913 1914 static void printConstant(const APInt &Val, raw_ostream &CS) { 1915 if (Val.getBitWidth() <= 64) { 1916 CS << Val.getZExtValue(); 1917 } else { 1918 // print multi-word constant as (w0,w1) 1919 CS << "("; 1920 for (int i = 0, N = Val.getNumWords(); i < N; ++i) { 1921 if (i > 0) 1922 CS << ","; 1923 CS << Val.getRawData()[i]; 1924 } 1925 CS << ")"; 1926 } 1927 } 1928 1929 static void printConstant(const APFloat &Flt, raw_ostream &CS) { 1930 SmallString<32> Str; 1931 // Force scientific notation to distinquish from integers. 1932 Flt.toString(Str, 0, 0); 1933 CS << Str; 1934 } 1935 1936 static void printConstant(const Constant *COp, raw_ostream &CS) { 1937 if (isa<UndefValue>(COp)) { 1938 CS << "u"; 1939 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) { 1940 printConstant(CI->getValue(), CS); 1941 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) { 1942 printConstant(CF->getValueAPF(), CS); 1943 } else { 1944 CS << "?"; 1945 } 1946 } 1947 1948 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { 1949 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); 1950 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only"); 1951 1952 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. 1953 if (EmitFPOData) { 1954 X86TargetStreamer *XTS = 1955 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); 1956 switch (MI->getOpcode()) { 1957 case X86::SEH_PushReg: 1958 XTS->emitFPOPushReg(MI->getOperand(0).getImm()); 1959 break; 1960 case X86::SEH_StackAlloc: 1961 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm()); 1962 break; 1963 case X86::SEH_StackAlign: 1964 XTS->emitFPOStackAlign(MI->getOperand(0).getImm()); 1965 break; 1966 case X86::SEH_SetFrame: 1967 assert(MI->getOperand(1).getImm() == 0 && 1968 ".cv_fpo_setframe takes no offset"); 1969 XTS->emitFPOSetFrame(MI->getOperand(0).getImm()); 1970 break; 1971 case X86::SEH_EndPrologue: 1972 XTS->emitFPOEndPrologue(); 1973 break; 1974 case X86::SEH_SaveReg: 1975 case X86::SEH_SaveXMM: 1976 case X86::SEH_PushFrame: 1977 llvm_unreachable("SEH_ directive incompatible with FPO"); 1978 break; 1979 default: 1980 llvm_unreachable("expected SEH_ instruction"); 1981 } 1982 return; 1983 } 1984 1985 // Otherwise, use the .seh_ directives for all other Windows platforms. 1986 switch (MI->getOpcode()) { 1987 case X86::SEH_PushReg: 1988 OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm()); 1989 break; 1990 1991 case X86::SEH_SaveReg: 1992 OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(), 1993 MI->getOperand(1).getImm()); 1994 break; 1995 1996 case X86::SEH_SaveXMM: 1997 OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(), 1998 MI->getOperand(1).getImm()); 1999 break; 2000 2001 case X86::SEH_StackAlloc: 2002 OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm()); 2003 break; 2004 2005 case X86::SEH_SetFrame: 2006 OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(), 2007 MI->getOperand(1).getImm()); 2008 break; 2009 2010 case X86::SEH_PushFrame: 2011 OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm()); 2012 break; 2013 2014 case X86::SEH_EndPrologue: 2015 OutStreamer->EmitWinCFIEndProlog(); 2016 break; 2017 2018 default: 2019 llvm_unreachable("expected SEH_ instruction"); 2020 } 2021 } 2022 2023 static unsigned getRegisterWidth(const MCOperandInfo &Info) { 2024 if (Info.RegClass == X86::VR128RegClassID || 2025 Info.RegClass == X86::VR128XRegClassID) 2026 return 128; 2027 if (Info.RegClass == X86::VR256RegClassID || 2028 Info.RegClass == X86::VR256XRegClassID) 2029 return 256; 2030 if (Info.RegClass == X86::VR512RegClassID) 2031 return 512; 2032 llvm_unreachable("Unknown register class!"); 2033 } 2034 2035 static void addConstantComments(const MachineInstr *MI, 2036 MCStreamer &OutStreamer) { 2037 switch (MI->getOpcode()) { 2038 // Lower PSHUFB and VPERMILP normally but add a comment if we can find 2039 // a constant shuffle mask. We won't be able to do this at the MC layer 2040 // because the mask isn't an immediate. 2041 case X86::PSHUFBrm: 2042 case X86::VPSHUFBrm: 2043 case X86::VPSHUFBYrm: 2044 case X86::VPSHUFBZ128rm: 2045 case X86::VPSHUFBZ128rmk: 2046 case X86::VPSHUFBZ128rmkz: 2047 case X86::VPSHUFBZ256rm: 2048 case X86::VPSHUFBZ256rmk: 2049 case X86::VPSHUFBZ256rmkz: 2050 case X86::VPSHUFBZrm: 2051 case X86::VPSHUFBZrmk: 2052 case X86::VPSHUFBZrmkz: { 2053 unsigned SrcIdx = 1; 2054 if (X86II::isKMasked(MI->getDesc().TSFlags)) { 2055 // Skip mask operand. 2056 ++SrcIdx; 2057 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) { 2058 // Skip passthru operand. 2059 ++SrcIdx; 2060 } 2061 } 2062 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp; 2063 2064 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) && 2065 "Unexpected number of operands!"); 2066 2067 const MachineOperand &MaskOp = MI->getOperand(MaskIdx); 2068 if (auto *C = getConstantFromPool(*MI, MaskOp)) { 2069 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); 2070 SmallVector<int, 64> Mask; 2071 DecodePSHUFBMask(C, Width, Mask); 2072 if (!Mask.empty()) 2073 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask)); 2074 } 2075 break; 2076 } 2077 2078 case X86::VPERMILPSrm: 2079 case X86::VPERMILPSYrm: 2080 case X86::VPERMILPSZ128rm: 2081 case X86::VPERMILPSZ128rmk: 2082 case X86::VPERMILPSZ128rmkz: 2083 case X86::VPERMILPSZ256rm: 2084 case X86::VPERMILPSZ256rmk: 2085 case X86::VPERMILPSZ256rmkz: 2086 case X86::VPERMILPSZrm: 2087 case X86::VPERMILPSZrmk: 2088 case X86::VPERMILPSZrmkz: 2089 case X86::VPERMILPDrm: 2090 case X86::VPERMILPDYrm: 2091 case X86::VPERMILPDZ128rm: 2092 case X86::VPERMILPDZ128rmk: 2093 case X86::VPERMILPDZ128rmkz: 2094 case X86::VPERMILPDZ256rm: 2095 case X86::VPERMILPDZ256rmk: 2096 case X86::VPERMILPDZ256rmkz: 2097 case X86::VPERMILPDZrm: 2098 case X86::VPERMILPDZrmk: 2099 case X86::VPERMILPDZrmkz: { 2100 unsigned ElSize; 2101 switch (MI->getOpcode()) { 2102 default: llvm_unreachable("Invalid opcode"); 2103 case X86::VPERMILPSrm: 2104 case X86::VPERMILPSYrm: 2105 case X86::VPERMILPSZ128rm: 2106 case X86::VPERMILPSZ256rm: 2107 case X86::VPERMILPSZrm: 2108 case X86::VPERMILPSZ128rmkz: 2109 case X86::VPERMILPSZ256rmkz: 2110 case X86::VPERMILPSZrmkz: 2111 case X86::VPERMILPSZ128rmk: 2112 case X86::VPERMILPSZ256rmk: 2113 case X86::VPERMILPSZrmk: 2114 ElSize = 32; 2115 break; 2116 case X86::VPERMILPDrm: 2117 case X86::VPERMILPDYrm: 2118 case X86::VPERMILPDZ128rm: 2119 case X86::VPERMILPDZ256rm: 2120 case X86::VPERMILPDZrm: 2121 case X86::VPERMILPDZ128rmkz: 2122 case X86::VPERMILPDZ256rmkz: 2123 case X86::VPERMILPDZrmkz: 2124 case X86::VPERMILPDZ128rmk: 2125 case X86::VPERMILPDZ256rmk: 2126 case X86::VPERMILPDZrmk: 2127 ElSize = 64; 2128 break; 2129 } 2130 2131 unsigned SrcIdx = 1; 2132 if (X86II::isKMasked(MI->getDesc().TSFlags)) { 2133 // Skip mask operand. 2134 ++SrcIdx; 2135 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) { 2136 // Skip passthru operand. 2137 ++SrcIdx; 2138 } 2139 } 2140 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp; 2141 2142 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) && 2143 "Unexpected number of operands!"); 2144 2145 const MachineOperand &MaskOp = MI->getOperand(MaskIdx); 2146 if (auto *C = getConstantFromPool(*MI, MaskOp)) { 2147 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); 2148 SmallVector<int, 16> Mask; 2149 DecodeVPERMILPMask(C, ElSize, Width, Mask); 2150 if (!Mask.empty()) 2151 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask)); 2152 } 2153 break; 2154 } 2155 2156 case X86::VPERMIL2PDrm: 2157 case X86::VPERMIL2PSrm: 2158 case X86::VPERMIL2PDYrm: 2159 case X86::VPERMIL2PSYrm: { 2160 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) && 2161 "Unexpected number of operands!"); 2162 2163 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1); 2164 if (!CtrlOp.isImm()) 2165 break; 2166 2167 unsigned ElSize; 2168 switch (MI->getOpcode()) { 2169 default: llvm_unreachable("Invalid opcode"); 2170 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; 2171 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; 2172 } 2173 2174 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp); 2175 if (auto *C = getConstantFromPool(*MI, MaskOp)) { 2176 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); 2177 SmallVector<int, 16> Mask; 2178 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask); 2179 if (!Mask.empty()) 2180 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask)); 2181 } 2182 break; 2183 } 2184 2185 case X86::VPPERMrrm: { 2186 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands) && 2187 "Unexpected number of operands!"); 2188 2189 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp); 2190 if (auto *C = getConstantFromPool(*MI, MaskOp)) { 2191 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); 2192 SmallVector<int, 16> Mask; 2193 DecodeVPPERMMask(C, Width, Mask); 2194 if (!Mask.empty()) 2195 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask)); 2196 } 2197 break; 2198 } 2199 2200 case X86::MMX_MOVQ64rm: { 2201 assert(MI->getNumOperands() == (1 + X86::AddrNumOperands) && 2202 "Unexpected number of operands!"); 2203 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { 2204 std::string Comment; 2205 raw_string_ostream CS(Comment); 2206 const MachineOperand &DstOp = MI->getOperand(0); 2207 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; 2208 if (auto *CF = dyn_cast<ConstantFP>(C)) { 2209 CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false); 2210 OutStreamer.AddComment(CS.str()); 2211 } 2212 } 2213 break; 2214 } 2215 2216 #define MOV_CASE(Prefix, Suffix) \ 2217 case X86::Prefix##MOVAPD##Suffix##rm: \ 2218 case X86::Prefix##MOVAPS##Suffix##rm: \ 2219 case X86::Prefix##MOVUPD##Suffix##rm: \ 2220 case X86::Prefix##MOVUPS##Suffix##rm: \ 2221 case X86::Prefix##MOVDQA##Suffix##rm: \ 2222 case X86::Prefix##MOVDQU##Suffix##rm: 2223 2224 #define MOV_AVX512_CASE(Suffix) \ 2225 case X86::VMOVDQA64##Suffix##rm: \ 2226 case X86::VMOVDQA32##Suffix##rm: \ 2227 case X86::VMOVDQU64##Suffix##rm: \ 2228 case X86::VMOVDQU32##Suffix##rm: \ 2229 case X86::VMOVDQU16##Suffix##rm: \ 2230 case X86::VMOVDQU8##Suffix##rm: \ 2231 case X86::VMOVAPS##Suffix##rm: \ 2232 case X86::VMOVAPD##Suffix##rm: \ 2233 case X86::VMOVUPS##Suffix##rm: \ 2234 case X86::VMOVUPD##Suffix##rm: 2235 2236 #define CASE_ALL_MOV_RM() \ 2237 MOV_CASE(, ) /* SSE */ \ 2238 MOV_CASE(V, ) /* AVX-128 */ \ 2239 MOV_CASE(V, Y) /* AVX-256 */ \ 2240 MOV_AVX512_CASE(Z) \ 2241 MOV_AVX512_CASE(Z256) \ 2242 MOV_AVX512_CASE(Z128) 2243 2244 // For loads from a constant pool to a vector register, print the constant 2245 // loaded. 2246 CASE_ALL_MOV_RM() 2247 case X86::VBROADCASTF128: 2248 case X86::VBROADCASTI128: 2249 case X86::VBROADCASTF32X4Z256rm: 2250 case X86::VBROADCASTF32X4rm: 2251 case X86::VBROADCASTF32X8rm: 2252 case X86::VBROADCASTF64X2Z128rm: 2253 case X86::VBROADCASTF64X2rm: 2254 case X86::VBROADCASTF64X4rm: 2255 case X86::VBROADCASTI32X4Z256rm: 2256 case X86::VBROADCASTI32X4rm: 2257 case X86::VBROADCASTI32X8rm: 2258 case X86::VBROADCASTI64X2Z128rm: 2259 case X86::VBROADCASTI64X2rm: 2260 case X86::VBROADCASTI64X4rm: 2261 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) && 2262 "Unexpected number of operands!"); 2263 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { 2264 int NumLanes = 1; 2265 // Override NumLanes for the broadcast instructions. 2266 switch (MI->getOpcode()) { 2267 case X86::VBROADCASTF128: NumLanes = 2; break; 2268 case X86::VBROADCASTI128: NumLanes = 2; break; 2269 case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break; 2270 case X86::VBROADCASTF32X4rm: NumLanes = 4; break; 2271 case X86::VBROADCASTF32X8rm: NumLanes = 2; break; 2272 case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break; 2273 case X86::VBROADCASTF64X2rm: NumLanes = 4; break; 2274 case X86::VBROADCASTF64X4rm: NumLanes = 2; break; 2275 case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break; 2276 case X86::VBROADCASTI32X4rm: NumLanes = 4; break; 2277 case X86::VBROADCASTI32X8rm: NumLanes = 2; break; 2278 case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break; 2279 case X86::VBROADCASTI64X2rm: NumLanes = 4; break; 2280 case X86::VBROADCASTI64X4rm: NumLanes = 2; break; 2281 } 2282 2283 std::string Comment; 2284 raw_string_ostream CS(Comment); 2285 const MachineOperand &DstOp = MI->getOperand(0); 2286 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; 2287 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { 2288 CS << "["; 2289 for (int l = 0; l != NumLanes; ++l) { 2290 for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; 2291 ++i) { 2292 if (i != 0 || l != 0) 2293 CS << ","; 2294 if (CDS->getElementType()->isIntegerTy()) 2295 printConstant(CDS->getElementAsAPInt(i), CS); 2296 else if (CDS->getElementType()->isHalfTy() || 2297 CDS->getElementType()->isFloatTy() || 2298 CDS->getElementType()->isDoubleTy()) 2299 printConstant(CDS->getElementAsAPFloat(i), CS); 2300 else 2301 CS << "?"; 2302 } 2303 } 2304 CS << "]"; 2305 OutStreamer.AddComment(CS.str()); 2306 } else if (auto *CV = dyn_cast<ConstantVector>(C)) { 2307 CS << "<"; 2308 for (int l = 0; l != NumLanes; ++l) { 2309 for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; 2310 ++i) { 2311 if (i != 0 || l != 0) 2312 CS << ","; 2313 printConstant(CV->getOperand(i), CS); 2314 } 2315 } 2316 CS << ">"; 2317 OutStreamer.AddComment(CS.str()); 2318 } 2319 } 2320 break; 2321 2322 case X86::MOVDDUPrm: 2323 case X86::VMOVDDUPrm: 2324 case X86::VMOVDDUPZ128rm: 2325 case X86::VBROADCASTSSrm: 2326 case X86::VBROADCASTSSYrm: 2327 case X86::VBROADCASTSSZ128rm: 2328 case X86::VBROADCASTSSZ256rm: 2329 case X86::VBROADCASTSSZrm: 2330 case X86::VBROADCASTSDYrm: 2331 case X86::VBROADCASTSDZ256rm: 2332 case X86::VBROADCASTSDZrm: 2333 case X86::VPBROADCASTBrm: 2334 case X86::VPBROADCASTBYrm: 2335 case X86::VPBROADCASTBZ128rm: 2336 case X86::VPBROADCASTBZ256rm: 2337 case X86::VPBROADCASTBZrm: 2338 case X86::VPBROADCASTDrm: 2339 case X86::VPBROADCASTDYrm: 2340 case X86::VPBROADCASTDZ128rm: 2341 case X86::VPBROADCASTDZ256rm: 2342 case X86::VPBROADCASTDZrm: 2343 case X86::VPBROADCASTQrm: 2344 case X86::VPBROADCASTQYrm: 2345 case X86::VPBROADCASTQZ128rm: 2346 case X86::VPBROADCASTQZ256rm: 2347 case X86::VPBROADCASTQZrm: 2348 case X86::VPBROADCASTWrm: 2349 case X86::VPBROADCASTWYrm: 2350 case X86::VPBROADCASTWZ128rm: 2351 case X86::VPBROADCASTWZ256rm: 2352 case X86::VPBROADCASTWZrm: 2353 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) && 2354 "Unexpected number of operands!"); 2355 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { 2356 int NumElts; 2357 switch (MI->getOpcode()) { 2358 default: llvm_unreachable("Invalid opcode"); 2359 case X86::MOVDDUPrm: NumElts = 2; break; 2360 case X86::VMOVDDUPrm: NumElts = 2; break; 2361 case X86::VMOVDDUPZ128rm: NumElts = 2; break; 2362 case X86::VBROADCASTSSrm: NumElts = 4; break; 2363 case X86::VBROADCASTSSYrm: NumElts = 8; break; 2364 case X86::VBROADCASTSSZ128rm: NumElts = 4; break; 2365 case X86::VBROADCASTSSZ256rm: NumElts = 8; break; 2366 case X86::VBROADCASTSSZrm: NumElts = 16; break; 2367 case X86::VBROADCASTSDYrm: NumElts = 4; break; 2368 case X86::VBROADCASTSDZ256rm: NumElts = 4; break; 2369 case X86::VBROADCASTSDZrm: NumElts = 8; break; 2370 case X86::VPBROADCASTBrm: NumElts = 16; break; 2371 case X86::VPBROADCASTBYrm: NumElts = 32; break; 2372 case X86::VPBROADCASTBZ128rm: NumElts = 16; break; 2373 case X86::VPBROADCASTBZ256rm: NumElts = 32; break; 2374 case X86::VPBROADCASTBZrm: NumElts = 64; break; 2375 case X86::VPBROADCASTDrm: NumElts = 4; break; 2376 case X86::VPBROADCASTDYrm: NumElts = 8; break; 2377 case X86::VPBROADCASTDZ128rm: NumElts = 4; break; 2378 case X86::VPBROADCASTDZ256rm: NumElts = 8; break; 2379 case X86::VPBROADCASTDZrm: NumElts = 16; break; 2380 case X86::VPBROADCASTQrm: NumElts = 2; break; 2381 case X86::VPBROADCASTQYrm: NumElts = 4; break; 2382 case X86::VPBROADCASTQZ128rm: NumElts = 2; break; 2383 case X86::VPBROADCASTQZ256rm: NumElts = 4; break; 2384 case X86::VPBROADCASTQZrm: NumElts = 8; break; 2385 case X86::VPBROADCASTWrm: NumElts = 8; break; 2386 case X86::VPBROADCASTWYrm: NumElts = 16; break; 2387 case X86::VPBROADCASTWZ128rm: NumElts = 8; break; 2388 case X86::VPBROADCASTWZ256rm: NumElts = 16; break; 2389 case X86::VPBROADCASTWZrm: NumElts = 32; break; 2390 } 2391 2392 std::string Comment; 2393 raw_string_ostream CS(Comment); 2394 const MachineOperand &DstOp = MI->getOperand(0); 2395 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; 2396 CS << "["; 2397 for (int i = 0; i != NumElts; ++i) { 2398 if (i != 0) 2399 CS << ","; 2400 printConstant(C, CS); 2401 } 2402 CS << "]"; 2403 OutStreamer.AddComment(CS.str()); 2404 } 2405 } 2406 } 2407 2408 void X86AsmPrinter::emitInstruction(const MachineInstr *MI) { 2409 X86MCInstLower MCInstLowering(*MF, *this); 2410 const X86RegisterInfo *RI = 2411 MF->getSubtarget<X86Subtarget>().getRegisterInfo(); 2412 2413 if (MI->getOpcode() == X86::OR64rm) { 2414 for (auto &Opd : MI->operands()) { 2415 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) == 2416 "swift_async_extendedFramePointerFlags") { 2417 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true; 2418 } 2419 } 2420 } 2421 2422 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that 2423 // are compressed from EVEX encoding to VEX encoding. 2424 if (TM.Options.MCOptions.ShowMCEncoding) { 2425 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) 2426 OutStreamer->AddComment("EVEX TO VEX Compression ", false); 2427 } 2428 2429 // Add comments for values loaded from constant pool. 2430 if (OutStreamer->isVerboseAsm()) 2431 addConstantComments(MI, *OutStreamer); 2432 2433 switch (MI->getOpcode()) { 2434 case TargetOpcode::DBG_VALUE: 2435 llvm_unreachable("Should be handled target independently"); 2436 2437 // Emit nothing here but a comment if we can. 2438 case X86::Int_MemBarrier: 2439 OutStreamer->emitRawComment("MEMBARRIER"); 2440 return; 2441 2442 case X86::EH_RETURN: 2443 case X86::EH_RETURN64: { 2444 // Lower these as normal, but add some comments. 2445 Register Reg = MI->getOperand(0).getReg(); 2446 OutStreamer->AddComment(StringRef("eh_return, addr: %") + 2447 X86ATTInstPrinter::getRegisterName(Reg)); 2448 break; 2449 } 2450 case X86::CLEANUPRET: { 2451 // Lower these as normal, but add some comments. 2452 OutStreamer->AddComment("CLEANUPRET"); 2453 break; 2454 } 2455 2456 case X86::CATCHRET: { 2457 // Lower these as normal, but add some comments. 2458 OutStreamer->AddComment("CATCHRET"); 2459 break; 2460 } 2461 2462 case X86::ENDBR32: 2463 case X86::ENDBR64: { 2464 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for 2465 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be 2466 // non-empty. If MI is the initial ENDBR, place the 2467 // __patchable_function_entries label after ENDBR. 2468 if (CurrentPatchableFunctionEntrySym && 2469 CurrentPatchableFunctionEntrySym == CurrentFnBegin && 2470 MI == &MF->front().front()) { 2471 MCInst Inst; 2472 MCInstLowering.Lower(MI, Inst); 2473 EmitAndCountInstruction(Inst); 2474 CurrentPatchableFunctionEntrySym = createTempSymbol("patch"); 2475 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 2476 return; 2477 } 2478 break; 2479 } 2480 2481 case X86::TAILJMPr: 2482 case X86::TAILJMPm: 2483 case X86::TAILJMPd: 2484 case X86::TAILJMPd_CC: 2485 case X86::TAILJMPr64: 2486 case X86::TAILJMPm64: 2487 case X86::TAILJMPd64: 2488 case X86::TAILJMPd64_CC: 2489 case X86::TAILJMPr64_REX: 2490 case X86::TAILJMPm64_REX: 2491 // Lower these as normal, but add some comments. 2492 OutStreamer->AddComment("TAILCALL"); 2493 break; 2494 2495 case X86::TLS_addr32: 2496 case X86::TLS_addr64: 2497 case X86::TLS_addrX32: 2498 case X86::TLS_base_addr32: 2499 case X86::TLS_base_addr64: 2500 case X86::TLS_base_addrX32: 2501 return LowerTlsAddr(MCInstLowering, *MI); 2502 2503 case X86::MOVPC32r: { 2504 // This is a pseudo op for a two instruction sequence with a label, which 2505 // looks like: 2506 // call "L1$pb" 2507 // "L1$pb": 2508 // popl %esi 2509 2510 // Emit the call. 2511 MCSymbol *PICBase = MF->getPICBaseSymbol(); 2512 // FIXME: We would like an efficient form for this, so we don't have to do a 2513 // lot of extra uniquing. 2514 EmitAndCountInstruction( 2515 MCInstBuilder(X86::CALLpcrel32) 2516 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 2517 2518 const X86FrameLowering *FrameLowering = 2519 MF->getSubtarget<X86Subtarget>().getFrameLowering(); 2520 bool hasFP = FrameLowering->hasFP(*MF); 2521 2522 // TODO: This is needed only if we require precise CFA. 2523 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && 2524 !OutStreamer->getDwarfFrameInfos().back().End; 2525 2526 int stackGrowth = -RI->getSlotSize(); 2527 2528 if (HasActiveDwarfFrame && !hasFP) { 2529 OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth); 2530 } 2531 2532 // Emit the label. 2533 OutStreamer->emitLabel(PICBase); 2534 2535 // popl $reg 2536 EmitAndCountInstruction( 2537 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg())); 2538 2539 if (HasActiveDwarfFrame && !hasFP) { 2540 OutStreamer->emitCFIAdjustCfaOffset(stackGrowth); 2541 } 2542 return; 2543 } 2544 2545 case X86::ADD32ri: { 2546 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. 2547 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) 2548 break; 2549 2550 // Okay, we have something like: 2551 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) 2552 2553 // For this, we want to print something like: 2554 // MYGLOBAL + (. - PICBASE) 2555 // However, we can't generate a ".", so just emit a new label here and refer 2556 // to it. 2557 MCSymbol *DotSym = OutContext.createTempSymbol(); 2558 OutStreamer->emitLabel(DotSym); 2559 2560 // Now that we have emitted the label, lower the complex operand expression. 2561 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); 2562 2563 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 2564 const MCExpr *PICBase = 2565 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 2566 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext); 2567 2568 DotExpr = MCBinaryExpr::createAdd( 2569 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext); 2570 2571 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri) 2572 .addReg(MI->getOperand(0).getReg()) 2573 .addReg(MI->getOperand(1).getReg()) 2574 .addExpr(DotExpr)); 2575 return; 2576 } 2577 case TargetOpcode::STATEPOINT: 2578 return LowerSTATEPOINT(*MI, MCInstLowering); 2579 2580 case TargetOpcode::FAULTING_OP: 2581 return LowerFAULTING_OP(*MI, MCInstLowering); 2582 2583 case TargetOpcode::FENTRY_CALL: 2584 return LowerFENTRY_CALL(*MI, MCInstLowering); 2585 2586 case TargetOpcode::PATCHABLE_OP: 2587 return LowerPATCHABLE_OP(*MI, MCInstLowering); 2588 2589 case TargetOpcode::STACKMAP: 2590 return LowerSTACKMAP(*MI); 2591 2592 case TargetOpcode::PATCHPOINT: 2593 return LowerPATCHPOINT(*MI, MCInstLowering); 2594 2595 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: 2596 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering); 2597 2598 case TargetOpcode::PATCHABLE_RET: 2599 return LowerPATCHABLE_RET(*MI, MCInstLowering); 2600 2601 case TargetOpcode::PATCHABLE_TAIL_CALL: 2602 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering); 2603 2604 case TargetOpcode::PATCHABLE_EVENT_CALL: 2605 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering); 2606 2607 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: 2608 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering); 2609 2610 case X86::MORESTACK_RET: 2611 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); 2612 return; 2613 2614 case X86::ASAN_CHECK_MEMACCESS: 2615 return LowerASAN_CHECK_MEMACCESS(*MI); 2616 2617 case X86::MORESTACK_RET_RESTORE_R10: 2618 // Return, then restore R10. 2619 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); 2620 EmitAndCountInstruction( 2621 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX)); 2622 return; 2623 2624 case X86::SEH_PushReg: 2625 case X86::SEH_SaveReg: 2626 case X86::SEH_SaveXMM: 2627 case X86::SEH_StackAlloc: 2628 case X86::SEH_StackAlign: 2629 case X86::SEH_SetFrame: 2630 case X86::SEH_PushFrame: 2631 case X86::SEH_EndPrologue: 2632 EmitSEHInstruction(MI); 2633 return; 2634 2635 case X86::SEH_Epilogue: { 2636 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); 2637 MachineBasicBlock::const_iterator MBBI(MI); 2638 // Check if preceded by a call and emit nop if so. 2639 for (MBBI = PrevCrossBBInst(MBBI); 2640 MBBI != MachineBasicBlock::const_iterator(); 2641 MBBI = PrevCrossBBInst(MBBI)) { 2642 // Conservatively assume that pseudo instructions don't emit code and keep 2643 // looking for a call. We may emit an unnecessary nop in some cases. 2644 if (!MBBI->isPseudo()) { 2645 if (MBBI->isCall()) 2646 EmitAndCountInstruction(MCInstBuilder(X86::NOOP)); 2647 break; 2648 } 2649 } 2650 return; 2651 } 2652 case X86::UBSAN_UD1: 2653 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm) 2654 .addReg(X86::EAX) 2655 .addReg(X86::EAX) 2656 .addImm(1) 2657 .addReg(X86::NoRegister) 2658 .addImm(MI->getOperand(0).getImm()) 2659 .addReg(X86::NoRegister)); 2660 return; 2661 } 2662 2663 MCInst TmpInst; 2664 MCInstLowering.Lower(MI, TmpInst); 2665 2666 // Stackmap shadows cannot include branch targets, so we can count the bytes 2667 // in a call towards the shadow, but must ensure that the no thread returns 2668 // in to the stackmap shadow. The only way to achieve this is if the call 2669 // is at the end of the shadow. 2670 if (MI->isCall()) { 2671 // Count then size of the call towards the shadow 2672 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get()); 2673 // Then flush the shadow so that we fill with nops before the call, not 2674 // after it. 2675 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); 2676 // Then emit the call 2677 OutStreamer->emitInstruction(TmpInst, getSubtargetInfo()); 2678 return; 2679 } 2680 2681 EmitAndCountInstruction(TmpInst); 2682 } 2683