1 //===- X86InterleavedAccess.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the X86 implementation of the interleaved accesses 11 /// optimization generating X86-specific instructions/intrinsics for 12 /// interleaved access groups. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "X86ISelLowering.h" 17 #include "X86Subtarget.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/VectorUtils.h" 21 #include "llvm/CodeGen/MachineValueType.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/Casting.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 37 using namespace llvm; 38 39 namespace { 40 41 /// This class holds necessary information to represent an interleaved 42 /// access group and supports utilities to lower the group into 43 /// X86-specific instructions/intrinsics. 44 /// E.g. A group of interleaving access loads (Factor = 2; accessing every 45 /// other element) 46 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr 47 /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> 48 /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> 49 class X86InterleavedAccessGroup { 50 /// Reference to the wide-load instruction of an interleaved access 51 /// group. 52 Instruction *const Inst; 53 54 /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. 55 ArrayRef<ShuffleVectorInst *> Shuffles; 56 57 /// Reference to the starting index of each user-shuffle. 58 ArrayRef<unsigned> Indices; 59 60 /// Reference to the interleaving stride in terms of elements. 61 const unsigned Factor; 62 63 /// Reference to the underlying target. 64 const X86Subtarget &Subtarget; 65 66 const DataLayout &DL; 67 68 IRBuilder<> &Builder; 69 70 /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors 71 /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. 72 void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, 73 SmallVectorImpl<Instruction *> &DecomposedVectors); 74 75 /// Performs matrix transposition on a 4x4 matrix \p InputVectors and 76 /// returns the transposed-vectors in \p TransposedVectors. 77 /// E.g. 78 /// InputVectors: 79 /// In-V0 = p1, p2, p3, p4 80 /// In-V1 = q1, q2, q3, q4 81 /// In-V2 = r1, r2, r3, r4 82 /// In-V3 = s1, s2, s3, s4 83 /// OutputVectors: 84 /// Out-V0 = p1, q1, r1, s1 85 /// Out-V1 = p2, q2, r2, s2 86 /// Out-V2 = p3, q3, r3, s3 87 /// Out-V3 = P4, q4, r4, s4 88 void transpose_4x4(ArrayRef<Instruction *> InputVectors, 89 SmallVectorImpl<Value *> &TransposedMatrix); 90 void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, 91 SmallVectorImpl<Value *> &TransposedMatrix, 92 unsigned NumSubVecElems); 93 void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, 94 SmallVectorImpl<Value *> &TransposedMatrix); 95 void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, 96 SmallVectorImpl<Value *> &TransposedMatrix, 97 unsigned NumSubVecElems); 98 void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, 99 SmallVectorImpl<Value *> &TransposedMatrix, 100 unsigned NumSubVecElems); 101 102 public: 103 /// In order to form an interleaved access group X86InterleavedAccessGroup 104 /// requires a wide-load instruction \p 'I', a group of interleaved-vectors 105 /// \p Shuffs, reference to the first indices of each interleaved-vector 106 /// \p 'Ind' and the interleaving stride factor \p F. In order to generate 107 /// X86-specific instructions/intrinsics it also requires the underlying 108 /// target information \p STarget. 109 explicit X86InterleavedAccessGroup(Instruction *I, 110 ArrayRef<ShuffleVectorInst *> Shuffs, 111 ArrayRef<unsigned> Ind, const unsigned F, 112 const X86Subtarget &STarget, 113 IRBuilder<> &B) 114 : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), 115 DL(Inst->getModule()->getDataLayout()), Builder(B) {} 116 117 /// Returns true if this interleaved access group can be lowered into 118 /// x86-specific instructions/intrinsics, false otherwise. 119 bool isSupported() const; 120 121 /// Lowers this interleaved access group into X86-specific 122 /// instructions/intrinsics. 123 bool lowerIntoOptimizedSequence(); 124 }; 125 126 } // end anonymous namespace 127 128 bool X86InterleavedAccessGroup::isSupported() const { 129 VectorType *ShuffleVecTy = Shuffles[0]->getType(); 130 Type *ShuffleEltTy = ShuffleVecTy->getElementType(); 131 unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); 132 unsigned WideInstSize; 133 134 // Currently, lowering is supported for the following vectors: 135 // Stride 4: 136 // 1. Store and load of 4-element vectors of 64 bits on AVX. 137 // 2. Store of 16/32-element vectors of 8 bits on AVX. 138 // Stride 3: 139 // 1. Load of 16/32-element vectors of 8 bits on AVX. 140 if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) 141 return false; 142 143 if (isa<LoadInst>(Inst)) { 144 WideInstSize = DL.getTypeSizeInBits(Inst->getType()); 145 if (cast<LoadInst>(Inst)->getPointerAddressSpace()) 146 return false; 147 } else 148 WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); 149 150 // We support shuffle represents stride 4 for byte type with size of 151 // WideInstSize. 152 if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) 153 return true; 154 155 if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 && 156 (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || 157 WideInstSize == 2048)) 158 return true; 159 160 if (ShuffleElemSize == 8 && Factor == 3 && 161 (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) 162 return true; 163 164 return false; 165 } 166 167 void X86InterleavedAccessGroup::decompose( 168 Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, 169 SmallVectorImpl<Instruction *> &DecomposedVectors) { 170 assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && 171 "Expected Load or Shuffle"); 172 173 Type *VecWidth = VecInst->getType(); 174 (void)VecWidth; 175 assert(VecWidth->isVectorTy() && 176 DL.getTypeSizeInBits(VecWidth) >= 177 DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && 178 "Invalid Inst-size!!!"); 179 180 if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) { 181 Value *Op0 = SVI->getOperand(0); 182 Value *Op1 = SVI->getOperand(1); 183 184 // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. 185 for (unsigned i = 0; i < NumSubVectors; ++i) 186 DecomposedVectors.push_back( 187 cast<ShuffleVectorInst>(Builder.CreateShuffleVector( 188 Op0, Op1, 189 createSequentialMask(Indices[i], SubVecTy->getNumElements(), 190 0)))); 191 return; 192 } 193 194 // Decompose the load instruction. 195 LoadInst *LI = cast<LoadInst>(VecInst); 196 Type *VecBaseTy; 197 unsigned int NumLoads = NumSubVectors; 198 // In the case of stride 3 with a vector of 32 elements load the information 199 // in the following way: 200 // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] 201 unsigned VecLength = DL.getTypeSizeInBits(VecWidth); 202 Value *VecBasePtr = LI->getPointerOperand(); 203 if (VecLength == 768 || VecLength == 1536) { 204 VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16); 205 NumLoads = NumSubVectors * (VecLength / 384); 206 } else { 207 VecBaseTy = SubVecTy; 208 } 209 // Generate N loads of T type. 210 assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && 211 "VecBaseTy's size must be a multiple of 8"); 212 const Align FirstAlignment = LI->getAlign(); 213 const Align SubsequentAlignment = commonAlignment( 214 FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8); 215 Align Alignment = FirstAlignment; 216 for (unsigned i = 0; i < NumLoads; i++) { 217 // TODO: Support inbounds GEP. 218 Value *NewBasePtr = 219 Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i)); 220 Instruction *NewLoad = 221 Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment); 222 DecomposedVectors.push_back(NewLoad); 223 Alignment = SubsequentAlignment; 224 } 225 } 226 227 // Changing the scale of the vector type by reducing the number of elements and 228 // doubling the scalar size. 229 static MVT scaleVectorType(MVT VT) { 230 unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; 231 return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), 232 VT.getVectorNumElements() / 2); 233 } 234 235 static constexpr int Concat[] = { 236 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 237 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 238 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 239 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; 240 241 // genShuffleBland - Creates shuffle according to two vectors.This function is 242 // only works on instructions with lane inside 256 registers. According to 243 // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The 244 // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. 245 // Where the 'LowOffset' refers to the first vector and the highOffset refers to 246 // the second vector. 247 // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| 248 // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| 249 // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| 250 // For the sequence to work as a mirror to the load. 251 // We must consider the elements order as above. 252 // In this function we are combining two types of shuffles. 253 // The first one is vpshufed and the second is a type of "blend" shuffle. 254 // By computing the shuffle on a sequence of 16 elements(one lane) and add the 255 // correct offset. We are creating a vpsuffed + blend sequence between two 256 // shuffles. 257 static void genShuffleBland(MVT VT, ArrayRef<int> Mask, 258 SmallVectorImpl<int> &Out, int LowOffset, 259 int HighOffset) { 260 assert(VT.getSizeInBits() >= 256 && 261 "This function doesn't accept width smaller then 256"); 262 unsigned NumOfElm = VT.getVectorNumElements(); 263 for (int I : Mask) 264 Out.push_back(I + LowOffset); 265 for (int I : Mask) 266 Out.push_back(I + HighOffset + NumOfElm); 267 } 268 269 // reorderSubVector returns the data to is the original state. And de-facto is 270 // the opposite of the function concatSubVector. 271 272 // For VecElems = 16 273 // Invec[0] - |0| TransposedMatrix[0] - |0| 274 // Invec[1] - |1| => TransposedMatrix[1] - |1| 275 // Invec[2] - |2| TransposedMatrix[2] - |2| 276 277 // For VecElems = 32 278 // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| 279 // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| 280 // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| 281 282 // For VecElems = 64 283 // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | 284 // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | 285 // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| 286 287 static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, 288 ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, 289 unsigned VecElems, unsigned Stride, 290 IRBuilder<> &Builder) { 291 292 if (VecElems == 16) { 293 for (unsigned i = 0; i < Stride; i++) 294 TransposedMatrix[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); 295 return; 296 } 297 298 SmallVector<int, 32> OptimizeShuf; 299 Value *Temp[8]; 300 301 for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { 302 genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, 303 (i + 1) / Stride * 16); 304 Temp[i / 2] = Builder.CreateShuffleVector( 305 Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); 306 OptimizeShuf.clear(); 307 } 308 309 if (VecElems == 32) { 310 std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); 311 return; 312 } else 313 for (unsigned i = 0; i < Stride; i++) 314 TransposedMatrix[i] = 315 Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); 316 } 317 318 void X86InterleavedAccessGroup::interleave8bitStride4VF8( 319 ArrayRef<Instruction *> Matrix, 320 SmallVectorImpl<Value *> &TransposedMatrix) { 321 // Assuming we start from the following vectors: 322 // Matrix[0]= c0 c1 c2 c3 c4 ... c7 323 // Matrix[1]= m0 m1 m2 m3 m4 ... m7 324 // Matrix[2]= y0 y1 y2 y3 y4 ... y7 325 // Matrix[3]= k0 k1 k2 k3 k4 ... k7 326 327 MVT VT = MVT::v8i16; 328 TransposedMatrix.resize(2); 329 SmallVector<int, 16> MaskLow; 330 SmallVector<int, 32> MaskLowTemp1, MaskLowWord; 331 SmallVector<int, 32> MaskHighTemp1, MaskHighWord; 332 333 for (unsigned i = 0; i < 8; ++i) { 334 MaskLow.push_back(i); 335 MaskLow.push_back(i + 8); 336 } 337 338 createUnpackShuffleMask(VT, MaskLowTemp1, true, false); 339 createUnpackShuffleMask(VT, MaskHighTemp1, false, false); 340 narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord); 341 narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord); 342 // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 343 // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 344 Value *IntrVec1Low = 345 Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); 346 Value *IntrVec2Low = 347 Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); 348 349 // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 350 // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 351 352 TransposedMatrix[0] = 353 Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); 354 TransposedMatrix[1] = 355 Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); 356 } 357 358 void X86InterleavedAccessGroup::interleave8bitStride4( 359 ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, 360 unsigned NumOfElm) { 361 // Example: Assuming we start from the following vectors: 362 // Matrix[0]= c0 c1 c2 c3 c4 ... c31 363 // Matrix[1]= m0 m1 m2 m3 m4 ... m31 364 // Matrix[2]= y0 y1 y2 y3 y4 ... y31 365 // Matrix[3]= k0 k1 k2 k3 k4 ... k31 366 367 MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm); 368 MVT HalfVT = scaleVectorType(VT); 369 370 TransposedMatrix.resize(4); 371 SmallVector<int, 32> MaskHigh; 372 SmallVector<int, 32> MaskLow; 373 SmallVector<int, 32> LowHighMask[2]; 374 SmallVector<int, 32> MaskHighTemp; 375 SmallVector<int, 32> MaskLowTemp; 376 377 // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 378 // shuffle pattern. 379 380 createUnpackShuffleMask(VT, MaskLow, true, false); 381 createUnpackShuffleMask(VT, MaskHigh, false, false); 382 383 // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 384 // shuffle pattern. 385 386 createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false); 387 createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false); 388 narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]); 389 narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]); 390 391 // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 392 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 393 // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 394 // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 395 Value *IntrVec[4]; 396 397 IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); 398 IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); 399 IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); 400 IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); 401 402 // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 403 // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 404 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 405 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 406 407 Value *VecOut[4]; 408 for (int i = 0; i < 4; i++) 409 VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2], 410 LowHighMask[i % 2]); 411 412 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 413 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 414 // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 415 // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 416 417 if (VT == MVT::v16i8) { 418 std::copy(VecOut, VecOut + 4, TransposedMatrix.begin()); 419 return; 420 } 421 422 reorderSubVector(VT, TransposedMatrix, VecOut, ArrayRef(Concat, 16), NumOfElm, 423 4, Builder); 424 } 425 426 // createShuffleStride returns shuffle mask of size N. 427 // The shuffle pattern is as following : 428 // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), 429 // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., 430 // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} 431 // Where Lane is the # of lanes in a register: 432 // VectorSize = 128 => Lane = 1 433 // VectorSize = 256 => Lane = 2 434 // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 435 // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} 436 static void createShuffleStride(MVT VT, int Stride, 437 SmallVectorImpl<int> &Mask) { 438 int VectorSize = VT.getSizeInBits(); 439 int VF = VT.getVectorNumElements(); 440 int LaneCount = std::max(VectorSize / 128, 1); 441 for (int Lane = 0; Lane < LaneCount; Lane++) 442 for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) 443 Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); 444 } 445 446 // setGroupSize sets 'SizeInfo' to the size(number of elements) of group 447 // inside mask a shuffleMask. A mask contains exactly 3 groups, where 448 // each group is a monotonically increasing sequence with stride 3. 449 // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} 450 static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { 451 int VectorSize = VT.getSizeInBits(); 452 int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); 453 for (int i = 0, FirstGroupElement = 0; i < 3; i++) { 454 int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); 455 SizeInfo.push_back(GroupSize); 456 FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; 457 } 458 } 459 460 // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. 461 // vpalign works according to lanes 462 // Where Lane is the # of lanes in a register: 463 // VectorWide = 128 => Lane = 1 464 // VectorWide = 256 => Lane = 2 465 // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. 466 // For Lane = 2 shuffle pattern is: 467 // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. 468 // Imm variable sets the offset amount. The result of the 469 // function is stored inside ShuffleMask vector and it built as described in 470 // the begin of the description. AlignDirection is a boolean that indicates the 471 // direction of the alignment. (false - align to the "right" side while true - 472 // align to the "left" side) 473 static void DecodePALIGNRMask(MVT VT, unsigned Imm, 474 SmallVectorImpl<int> &ShuffleMask, 475 bool AlignDirection = true, bool Unary = false) { 476 unsigned NumElts = VT.getVectorNumElements(); 477 unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); 478 unsigned NumLaneElts = NumElts / NumLanes; 479 480 Imm = AlignDirection ? Imm : (NumLaneElts - Imm); 481 unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); 482 483 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 484 for (unsigned i = 0; i != NumLaneElts; ++i) { 485 unsigned Base = i + Offset; 486 // if i+offset is out of this lane then we actually need the other source 487 // If Unary the other source is the first source. 488 if (Base >= NumLaneElts) 489 Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; 490 ShuffleMask.push_back(Base + l); 491 } 492 } 493 } 494 495 // concatSubVector - The function rebuilds the data to a correct expected 496 // order. An assumption(The shape of the matrix) was taken for the 497 // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. 498 // This function ensures that the data is built in correct way for the lane 499 // instructions. Each lane inside the vector is a 128-bit length. 500 // 501 // The 'InVec' argument contains the data in increasing order. In InVec[0] You 502 // can find the first 128 bit data. The number of different lanes inside a 503 // vector depends on the 'VecElems'.In general, the formula is 504 // VecElems * type / 128. The size of the array 'InVec' depends and equal to 505 // 'VecElems'. 506 507 // For VecElems = 16 508 // Invec[0] - |0| Vec[0] - |0| 509 // Invec[1] - |1| => Vec[1] - |1| 510 // Invec[2] - |2| Vec[2] - |2| 511 512 // For VecElems = 32 513 // Invec[0] - |0|1| Vec[0] - |0|3| 514 // Invec[1] - |2|3| => Vec[1] - |1|4| 515 // Invec[2] - |4|5| Vec[2] - |2|5| 516 517 // For VecElems = 64 518 // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | 519 // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| 520 // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| 521 522 static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, 523 unsigned VecElems, IRBuilder<> &Builder) { 524 if (VecElems == 16) { 525 for (int i = 0; i < 3; i++) 526 Vec[i] = InVec[i]; 527 return; 528 } 529 530 for (unsigned j = 0; j < VecElems / 32; j++) 531 for (int i = 0; i < 3; i++) 532 Vec[i + j * 3] = Builder.CreateShuffleVector( 533 InVec[j * 6 + i], InVec[j * 6 + i + 3], ArrayRef(Concat, 32)); 534 535 if (VecElems == 32) 536 return; 537 538 for (int i = 0; i < 3; i++) 539 Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat); 540 } 541 542 void X86InterleavedAccessGroup::deinterleave8bitStride3( 543 ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, 544 unsigned VecElems) { 545 // Example: Assuming we start from the following vectors: 546 // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 547 // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 548 // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 549 550 TransposedMatrix.resize(3); 551 SmallVector<int, 32> VPShuf; 552 SmallVector<int, 32> VPAlign[2]; 553 SmallVector<int, 32> VPAlign2; 554 SmallVector<int, 32> VPAlign3; 555 SmallVector<int, 3> GroupSize; 556 Value *Vec[6], *TempVector[3]; 557 558 MVT VT = MVT::getVT(Shuffles[0]->getType()); 559 560 createShuffleStride(VT, 3, VPShuf); 561 setGroupSize(VT, GroupSize); 562 563 for (int i = 0; i < 2; i++) 564 DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); 565 566 DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); 567 DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); 568 569 concatSubVector(Vec, InVec, VecElems, Builder); 570 // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 571 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 572 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 573 574 for (int i = 0; i < 3; i++) 575 Vec[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); 576 577 // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 578 // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 579 // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 580 581 for (int i = 0; i < 3; i++) 582 TempVector[i] = 583 Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); 584 585 // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 586 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 587 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 588 589 for (int i = 0; i < 3; i++) 590 Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], 591 VPAlign[1]); 592 593 // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 594 // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 595 // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 596 597 Value *TempVec = Builder.CreateShuffleVector(Vec[1], VPAlign3); 598 TransposedMatrix[0] = Builder.CreateShuffleVector(Vec[0], VPAlign2); 599 TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; 600 TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; 601 } 602 603 // group2Shuffle reorder the shuffle stride back into continuous order. 604 // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => 605 // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. 606 static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, 607 SmallVectorImpl<int> &Output) { 608 int IndexGroup[3] = {0, 0, 0}; 609 int Index = 0; 610 int VectorWidth = VT.getSizeInBits(); 611 int VF = VT.getVectorNumElements(); 612 // Find the index of the different groups. 613 int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; 614 for (int i = 0; i < 3; i++) { 615 IndexGroup[(Index * 3) % (VF / Lane)] = Index; 616 Index += Mask[i]; 617 } 618 // According to the index compute the convert mask. 619 for (int i = 0; i < VF / Lane; i++) { 620 Output.push_back(IndexGroup[i % 3]); 621 IndexGroup[i % 3]++; 622 } 623 } 624 625 void X86InterleavedAccessGroup::interleave8bitStride3( 626 ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, 627 unsigned VecElems) { 628 // Example: Assuming we start from the following vectors: 629 // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 630 // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 631 // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 632 633 TransposedMatrix.resize(3); 634 SmallVector<int, 3> GroupSize; 635 SmallVector<int, 32> VPShuf; 636 SmallVector<int, 32> VPAlign[3]; 637 SmallVector<int, 32> VPAlign2; 638 SmallVector<int, 32> VPAlign3; 639 640 Value *Vec[3], *TempVector[3]; 641 MVT VT = MVT::getVectorVT(MVT::i8, VecElems); 642 643 setGroupSize(VT, GroupSize); 644 645 for (int i = 0; i < 3; i++) 646 DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]); 647 648 DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true); 649 DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true); 650 651 // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 652 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 653 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 654 655 Vec[0] = Builder.CreateShuffleVector(InVec[0], VPAlign2); 656 Vec[1] = Builder.CreateShuffleVector(InVec[1], VPAlign3); 657 Vec[2] = InVec[2]; 658 659 // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 660 // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 661 // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 662 663 for (int i = 0; i < 3; i++) 664 TempVector[i] = 665 Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]); 666 667 // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 668 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 669 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 670 671 for (int i = 0; i < 3; i++) 672 Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3], 673 VPAlign[2]); 674 675 // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 676 // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 677 // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 678 679 unsigned NumOfElm = VT.getVectorNumElements(); 680 group2Shuffle(VT, GroupSize, VPShuf); 681 reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder); 682 } 683 684 void X86InterleavedAccessGroup::transpose_4x4( 685 ArrayRef<Instruction *> Matrix, 686 SmallVectorImpl<Value *> &TransposedMatrix) { 687 assert(Matrix.size() == 4 && "Invalid matrix size"); 688 TransposedMatrix.resize(4); 689 690 // dst = src1[0,1],src2[0,1] 691 static constexpr int IntMask1[] = {0, 1, 4, 5}; 692 ArrayRef<int> Mask = ArrayRef(IntMask1, 4); 693 Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); 694 Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); 695 696 // dst = src1[2,3],src2[2,3] 697 static constexpr int IntMask2[] = {2, 3, 6, 7}; 698 Mask = ArrayRef(IntMask2, 4); 699 Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); 700 Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); 701 702 // dst = src1[0],src2[0],src1[2],src2[2] 703 static constexpr int IntMask3[] = {0, 4, 2, 6}; 704 Mask = ArrayRef(IntMask3, 4); 705 TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); 706 TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); 707 708 // dst = src1[1],src2[1],src1[3],src2[3] 709 static constexpr int IntMask4[] = {1, 5, 3, 7}; 710 Mask = ArrayRef(IntMask4, 4); 711 TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); 712 TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); 713 } 714 715 // Lowers this interleaved access group into X86-specific 716 // instructions/intrinsics. 717 bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { 718 SmallVector<Instruction *, 4> DecomposedVectors; 719 SmallVector<Value *, 4> TransposedVectors; 720 auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType()); 721 722 if (isa<LoadInst>(Inst)) { 723 auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType()); 724 unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; 725 switch (NumSubVecElems) { 726 default: 727 return false; 728 case 4: 729 case 8: 730 case 16: 731 case 32: 732 case 64: 733 if (ShuffleTy->getNumElements() != NumSubVecElems) 734 return false; 735 break; 736 } 737 738 // Try to generate target-sized register(/instruction). 739 decompose(Inst, Factor, ShuffleTy, DecomposedVectors); 740 741 // Perform matrix-transposition in order to compute interleaved 742 // results by generating some sort of (optimized) target-specific 743 // instructions. 744 745 if (NumSubVecElems == 4) 746 transpose_4x4(DecomposedVectors, TransposedVectors); 747 else 748 deinterleave8bitStride3(DecomposedVectors, TransposedVectors, 749 NumSubVecElems); 750 751 // Now replace the unoptimized-interleaved-vectors with the 752 // transposed-interleaved vectors. 753 for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) 754 Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); 755 756 return true; 757 } 758 759 Type *ShuffleEltTy = ShuffleTy->getElementType(); 760 unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; 761 762 // Lower the interleaved stores: 763 // 1. Decompose the interleaved wide shuffle into individual shuffle 764 // vectors. 765 decompose(Shuffles[0], Factor, 766 FixedVectorType::get(ShuffleEltTy, NumSubVecElems), 767 DecomposedVectors); 768 769 // 2. Transpose the interleaved-vectors into vectors of contiguous 770 // elements. 771 switch (NumSubVecElems) { 772 case 4: 773 transpose_4x4(DecomposedVectors, TransposedVectors); 774 break; 775 case 8: 776 interleave8bitStride4VF8(DecomposedVectors, TransposedVectors); 777 break; 778 case 16: 779 case 32: 780 case 64: 781 if (Factor == 4) 782 interleave8bitStride4(DecomposedVectors, TransposedVectors, 783 NumSubVecElems); 784 if (Factor == 3) 785 interleave8bitStride3(DecomposedVectors, TransposedVectors, 786 NumSubVecElems); 787 break; 788 default: 789 return false; 790 } 791 792 // 3. Concatenate the contiguous-vectors back into a wide vector. 793 Value *WideVec = concatenateVectors(Builder, TransposedVectors); 794 795 // 4. Generate a store instruction for wide-vec. 796 StoreInst *SI = cast<StoreInst>(Inst); 797 Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign()); 798 799 return true; 800 } 801 802 // Lower interleaved load(s) into target specific instructions/ 803 // intrinsics. Lowering sequence varies depending on the vector-types, factor, 804 // number of shuffles and ISA. 805 // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. 806 bool X86TargetLowering::lowerInterleavedLoad( 807 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 808 ArrayRef<unsigned> Indices, unsigned Factor) const { 809 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 810 "Invalid interleave factor"); 811 assert(!Shuffles.empty() && "Empty shufflevector input"); 812 assert(Shuffles.size() == Indices.size() && 813 "Unmatched number of shufflevectors and indices"); 814 815 // Create an interleaved access group. 816 IRBuilder<> Builder(LI); 817 X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, 818 Builder); 819 820 return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); 821 } 822 823 bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, 824 ShuffleVectorInst *SVI, 825 unsigned Factor) const { 826 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 827 "Invalid interleave factor"); 828 829 assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == 830 0 && 831 "Invalid interleaved store"); 832 833 // Holds the indices of SVI that correspond to the starting index of each 834 // interleaved shuffle. 835 SmallVector<unsigned, 4> Indices; 836 auto Mask = SVI->getShuffleMask(); 837 for (unsigned i = 0; i < Factor; i++) 838 Indices.push_back(Mask[i]); 839 840 ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI); 841 842 // Create an interleaved access group. 843 IRBuilder<> Builder(SI); 844 X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, 845 Builder); 846 847 return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); 848 } 849