xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.h (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include <vector>
22 
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
25 
26 namespace llvm {
27 class X86Subtarget;
28 
29 namespace X86 {
30 
31 enum AsmComments {
32   // For instr that was compressed from EVEX to VEX.
33   AC_EVEX_2_VEX = MachineInstr::TAsmComments
34 };
35 
36 /// Return a pair of condition code for the given predicate and whether
37 /// the instruction operands should be swaped to match the condition code.
38 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
39 
40 /// Return a cmov opcode for the given register size in bytes, and operand type.
41 unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
42 
43 /// Return the source operand # for condition code by \p MCID. If the
44 /// instruction doesn't have a condition code, return -1.
45 int getCondSrcNoFromDesc(const MCInstrDesc &MCID);
46 
47 /// Return the condition code of the instruction. If the instruction doesn't
48 /// have a condition code, return X86::COND_INVALID.
49 CondCode getCondFromMI(const MachineInstr &MI);
50 
51 // Turn JCC instruction into condition code.
52 CondCode getCondFromBranch(const MachineInstr &MI);
53 
54 // Turn SETCC instruction into condition code.
55 CondCode getCondFromSETCC(const MachineInstr &MI);
56 
57 // Turn CMOV instruction into condition code.
58 CondCode getCondFromCMov(const MachineInstr &MI);
59 
60 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
61 /// e.g. turning COND_E to COND_NE.
62 CondCode GetOppositeBranchCondition(CondCode CC);
63 
64 /// Get the VPCMP immediate for the given condition.
65 unsigned getVPCMPImmForCond(ISD::CondCode CC);
66 
67 /// Get the VPCMP immediate if the opcodes are swapped.
68 unsigned getSwappedVPCMPImm(unsigned Imm);
69 
70 /// Get the VPCOM immediate if the opcodes are swapped.
71 unsigned getSwappedVPCOMImm(unsigned Imm);
72 
73 /// Get the VCMP immediate if the opcodes are swapped.
74 unsigned getSwappedVCMPImm(unsigned Imm);
75 
76 /// Check if the instruction is X87 instruction.
77 bool isX87Instruction(MachineInstr &MI);
78 } // namespace X86
79 
80 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
81 /// a reference to a stub for a global, not the global itself.
82 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
83   switch (TargetFlag) {
84   case X86II::MO_DLLIMPORT:               // dllimport stub.
85   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
86   case X86II::MO_GOTPCREL_NORELAX:        // rip-relative GOT reference.
87   case X86II::MO_GOT:                     // normal GOT reference.
88   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
89   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
90   case X86II::MO_COFFSTUB:                // COFF .refptr stub.
91     return true;
92   default:
93     return false;
94   }
95 }
96 
97 /// isGlobalRelativeToPICBase - Return true if the specified global value
98 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
99 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
100 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
101   switch (TargetFlag) {
102   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
103   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
104   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
105   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
106   case X86II::MO_TLVP:                    // ??? Pretty sure..
107     return true;
108   default:
109     return false;
110   }
111 }
112 
113 inline static bool isScale(const MachineOperand &MO) {
114   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
115                         MO.getImm() == 4 || MO.getImm() == 8);
116 }
117 
118 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
119   if (MI.getOperand(Op).isFI())
120     return true;
121   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
122          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
123          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
124          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
125          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
126           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
127           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
128           MI.getOperand(Op + X86::AddrDisp).isJTI());
129 }
130 
131 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
132   if (MI.getOperand(Op).isFI())
133     return true;
134   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
135          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
136 }
137 
138 class X86InstrInfo final : public X86GenInstrInfo {
139   X86Subtarget &Subtarget;
140   const X86RegisterInfo RI;
141 
142   virtual void anchor();
143 
144   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
145                          MachineBasicBlock *&FBB,
146                          SmallVectorImpl<MachineOperand> &Cond,
147                          SmallVectorImpl<MachineInstr *> &CondBranches,
148                          bool AllowModify) const;
149 
150 public:
151   explicit X86InstrInfo(X86Subtarget &STI);
152 
153   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
154   /// such, whenever a client has an instance of instruction info, it should
155   /// always be able to get register info as well (through this method).
156   ///
157   const X86RegisterInfo &getRegisterInfo() const { return RI; }
158 
159   /// Returns the stack pointer adjustment that happens inside the frame
160   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
161   int64_t getFrameAdjustment(const MachineInstr &I) const {
162     assert(isFrameInstr(I));
163     if (isFrameSetup(I))
164       return I.getOperand(2).getImm();
165     return I.getOperand(1).getImm();
166   }
167 
168   /// Sets the stack pointer adjustment made inside the frame made up by this
169   /// instruction.
170   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
171     assert(isFrameInstr(I));
172     if (isFrameSetup(I))
173       I.getOperand(2).setImm(V);
174     else
175       I.getOperand(1).setImm(V);
176   }
177 
178   /// getSPAdjust - This returns the stack pointer adjustment made by
179   /// this instruction. For x86, we need to handle more complex call
180   /// sequences involving PUSHes.
181   int getSPAdjust(const MachineInstr &MI) const override;
182 
183   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
184   /// extension instruction. That is, it's like a copy where it's legal for the
185   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
186   /// true, then it's expected the pre-extension value is available as a subreg
187   /// of the result register. This also returns the sub-register index in
188   /// SubIdx.
189   bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
190                              Register &DstReg, unsigned &SubIdx) const override;
191 
192   /// Returns true if the instruction has no behavior (specified or otherwise)
193   /// that is based on the value of any of its register operands
194   ///
195   /// Instructions are considered data invariant even if they set EFLAGS.
196   ///
197   /// A classical example of something that is inherently not data invariant is
198   /// an indirect jump -- the destination is loaded into icache based on the
199   /// bits set in the jump destination register.
200   ///
201   /// FIXME: This should become part of our instruction tables.
202   static bool isDataInvariant(MachineInstr &MI);
203 
204   /// Returns true if the instruction has no behavior (specified or otherwise)
205   /// that is based on the value loaded from memory or the value of any
206   /// non-address register operands.
207   ///
208   /// For example, if the latency of the instruction is dependent on the
209   /// particular bits set in any of the registers *or* any of the bits loaded
210   /// from memory.
211   ///
212   /// Instructions are considered data invariant even if they set EFLAGS.
213   ///
214   /// A classical example of something that is inherently not data invariant is
215   /// an indirect jump -- the destination is loaded into icache based on the
216   /// bits set in the jump destination register.
217   ///
218   /// FIXME: This should become part of our instruction tables.
219   static bool isDataInvariantLoad(MachineInstr &MI);
220 
221   unsigned isLoadFromStackSlot(const MachineInstr &MI,
222                                int &FrameIndex) const override;
223   unsigned isLoadFromStackSlot(const MachineInstr &MI,
224                                int &FrameIndex,
225                                unsigned &MemBytes) const override;
226   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
227   /// stack locations as well.  This uses a heuristic so it isn't
228   /// reliable for correctness.
229   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
230                                      int &FrameIndex) const override;
231 
232   unsigned isStoreToStackSlot(const MachineInstr &MI,
233                               int &FrameIndex) const override;
234   unsigned isStoreToStackSlot(const MachineInstr &MI,
235                               int &FrameIndex,
236                               unsigned &MemBytes) const override;
237   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
238   /// stack locations as well.  This uses a heuristic so it isn't
239   /// reliable for correctness.
240   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
241                                     int &FrameIndex) const override;
242 
243   bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
244   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
245                      Register DestReg, unsigned SubIdx,
246                      const MachineInstr &Orig,
247                      const TargetRegisterInfo &TRI) const override;
248 
249   /// Given an operand within a MachineInstr, insert preceding code to put it
250   /// into the right format for a particular kind of LEA instruction. This may
251   /// involve using an appropriate super-register instead (with an implicit use
252   /// of the original) or creating a new virtual register and inserting COPY
253   /// instructions to get the data into the right class.
254   ///
255   /// Reference parameters are set to indicate how caller should add this
256   /// operand to the LEA instruction.
257   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
258                       unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
259                       bool &isKill, MachineOperand &ImplicitOp,
260                       LiveVariables *LV, LiveIntervals *LIS) const;
261 
262   /// convertToThreeAddress - This method must be implemented by targets that
263   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
264   /// may be able to convert a two-address instruction into a true
265   /// three-address instruction on demand.  This allows the X86 target (for
266   /// example) to convert ADD and SHL instructions into LEA instructions if they
267   /// would require register copies due to two-addressness.
268   ///
269   /// This method returns a null pointer if the transformation cannot be
270   /// performed, otherwise it returns the new instruction.
271   ///
272   MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
273                                       LiveIntervals *LIS) const override;
274 
275   /// Returns true iff the routine could find two commutable operands in the
276   /// given machine instruction.
277   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
278   /// input values can be re-defined in this method only if the input values
279   /// are not pre-defined, which is designated by the special value
280   /// 'CommuteAnyOperandIndex' assigned to it.
281   /// If both of indices are pre-defined and refer to some operands, then the
282   /// method simply returns true if the corresponding operands are commutable
283   /// and returns false otherwise.
284   ///
285   /// For example, calling this method this way:
286   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
287   ///     findCommutedOpIndices(MI, Op1, Op2);
288   /// can be interpreted as a query asking to find an operand that would be
289   /// commutable with the operand#1.
290   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
291                              unsigned &SrcOpIdx2) const override;
292 
293   /// Returns true if we have preference on the operands order in MI, the
294   /// commute decision is returned in Commute.
295   bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
296 
297   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
298   /// performs the same computations as the given \p MI but which has the
299   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
300   /// It may return 0 if it is unsafe to commute the operands.
301   /// Note that a machine instruction (instead of its opcode) is passed as the
302   /// first parameter to make it possible to analyze the instruction's uses and
303   /// commute the first operand of FMA even when it seems unsafe when you look
304   /// at the opcode. For example, it is Ok to commute the first operand of
305   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
306   ///
307   /// The returned FMA opcode may differ from the opcode in the given \p MI.
308   /// For example, commuting the operands #1 and #3 in the following FMA
309   ///     FMA213 #1, #2, #3
310   /// results into instruction with adjusted opcode:
311   ///     FMA231 #3, #2, #1
312   unsigned
313   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
314                                  unsigned SrcOpIdx2,
315                                  const X86InstrFMA3Group &FMA3Group) const;
316 
317   // Branch analysis.
318   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
319   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
320                                   const MachineInstr &TailCall) const override;
321   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
322                                  SmallVectorImpl<MachineOperand> &Cond,
323                                  const MachineInstr &TailCall) const override;
324 
325   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326                      MachineBasicBlock *&FBB,
327                      SmallVectorImpl<MachineOperand> &Cond,
328                      bool AllowModify) const override;
329 
330   std::optional<ExtAddrMode>
331   getAddrModeFromMemoryOp(const MachineInstr &MemI,
332                           const TargetRegisterInfo *TRI) const override;
333 
334   bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
335                                int64_t &ImmVal) const override;
336 
337   bool preservesZeroValueInReg(const MachineInstr *MI,
338                                const Register NullValueReg,
339                                const TargetRegisterInfo *TRI) const override;
340 
341   bool getMemOperandsWithOffsetWidth(
342       const MachineInstr &LdSt,
343       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
344       bool &OffsetIsScalable, unsigned &Width,
345       const TargetRegisterInfo *TRI) const override;
346   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
347                               TargetInstrInfo::MachineBranchPredicate &MBP,
348                               bool AllowModify = false) const override;
349 
350   unsigned removeBranch(MachineBasicBlock &MBB,
351                         int *BytesRemoved = nullptr) const override;
352   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
353                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
354                         const DebugLoc &DL,
355                         int *BytesAdded = nullptr) const override;
356   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
357                        Register, Register, Register, int &, int &,
358                        int &) const override;
359   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
360                     const DebugLoc &DL, Register DstReg,
361                     ArrayRef<MachineOperand> Cond, Register TrueReg,
362                     Register FalseReg) const override;
363   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
364                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
365                    bool KillSrc) const override;
366   void storeRegToStackSlot(MachineBasicBlock &MBB,
367                            MachineBasicBlock::iterator MI, Register SrcReg,
368                            bool isKill, int FrameIndex,
369                            const TargetRegisterClass *RC,
370                            const TargetRegisterInfo *TRI,
371                            Register VReg) const override;
372 
373   void loadRegFromStackSlot(MachineBasicBlock &MBB,
374                             MachineBasicBlock::iterator MI, Register DestReg,
375                             int FrameIndex, const TargetRegisterClass *RC,
376                             const TargetRegisterInfo *TRI,
377                             Register VReg) const override;
378 
379   void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
380                         unsigned Opc, Register Reg, int FrameIdx,
381                         bool isKill = false) const;
382 
383   bool expandPostRAPseudo(MachineInstr &MI) const override;
384 
385   /// Check whether the target can fold a load that feeds a subreg operand
386   /// (or a subreg operand that feeds a store).
387   bool isSubregFoldable() const override { return true; }
388 
389   /// foldMemoryOperand - If this target supports it, fold a load or store of
390   /// the specified stack slot into the specified machine instruction for the
391   /// specified operand(s).  If this is possible, the target should perform the
392   /// folding and return true, otherwise it should return false.  If it folds
393   /// the instruction, it is likely that the MachineInstruction the iterator
394   /// references has been changed.
395   MachineInstr *
396   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
397                         ArrayRef<unsigned> Ops,
398                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
399                         LiveIntervals *LIS = nullptr,
400                         VirtRegMap *VRM = nullptr) const override;
401 
402   /// foldMemoryOperand - Same as the previous version except it allows folding
403   /// of any load and store from / to any address, not just from a specific
404   /// stack slot.
405   MachineInstr *foldMemoryOperandImpl(
406       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
407       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
408       LiveIntervals *LIS = nullptr) const override;
409 
410   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
411   /// a store or a load and a store into two or more instruction. If this is
412   /// possible, returns true as well as the new instructions by reference.
413   bool
414   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
415                       bool UnfoldLoad, bool UnfoldStore,
416                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
417 
418   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
419                            SmallVectorImpl<SDNode *> &NewNodes) const override;
420 
421   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
422   /// instruction after load / store are unfolded from an instruction of the
423   /// specified opcode. It returns zero if the specified unfolding is not
424   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
425   /// index of the operand which will hold the register holding the loaded
426   /// value.
427   unsigned
428   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
429                              unsigned *LoadRegIndex = nullptr) const override;
430 
431   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
432   /// to determine if two loads are loading from the same base address. It
433   /// should only return true if the base pointers are the same and the
434   /// only differences between the two addresses are the offset. It also returns
435   /// the offsets by reference.
436   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
437                                int64_t &Offset2) const override;
438 
439   /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
440   ///	Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
441   /// intructions and prevent it from being re-scheduled.
442   bool isSchedulingBoundary(const MachineInstr &MI,
443                             const MachineBasicBlock *MBB,
444                             const MachineFunction &MF) const override;
445 
446   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
447   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
448   /// should be scheduled togther. On some targets if two loads are loading from
449   /// addresses in the same cache line, it's better if they are scheduled
450   /// together. This function takes two integers that represent the load offsets
451   /// from the common base address. It returns true if it decides it's desirable
452   /// to schedule the two loads together. "NumLoads" is the number of loads that
453   /// have already been scheduled after Load1.
454   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
455                                int64_t Offset2,
456                                unsigned NumLoads) const override;
457 
458   MCInst getNop() const override;
459 
460   bool
461   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
462 
463   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
464   /// instruction that defines the specified register class.
465   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
466 
467   /// True if MI has a condition code def, e.g. EFLAGS, that is
468   /// not marked dead.
469   bool hasLiveCondCodeDef(MachineInstr &MI) const;
470 
471   /// getGlobalBaseReg - Return a virtual register initialized with the
472   /// the global base register value. Output instructions required to
473   /// initialize the register in the function entry block, if necessary.
474   ///
475   unsigned getGlobalBaseReg(MachineFunction *MF) const;
476 
477   std::pair<uint16_t, uint16_t>
478   getExecutionDomain(const MachineInstr &MI) const override;
479 
480   uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
481 
482   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
483 
484   bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
485 
486   unsigned
487   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
488                                const TargetRegisterInfo *TRI) const override;
489   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
490                                 const TargetRegisterInfo *TRI) const override;
491   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
492                                  const TargetRegisterInfo *TRI) const override;
493 
494   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
495                                       unsigned OpNum,
496                                       ArrayRef<MachineOperand> MOs,
497                                       MachineBasicBlock::iterator InsertPt,
498                                       unsigned Size, Align Alignment,
499                                       bool AllowCommute) const;
500 
501   bool isHighLatencyDef(int opc) const override;
502 
503   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
504                              const MachineRegisterInfo *MRI,
505                              const MachineInstr &DefMI, unsigned DefIdx,
506                              const MachineInstr &UseMI,
507                              unsigned UseIdx) const override;
508 
509   bool useMachineCombiner() const override { return true; }
510 
511   bool isAssociativeAndCommutative(const MachineInstr &Inst,
512                                    bool Invert) const override;
513 
514   bool hasReassociableOperands(const MachineInstr &Inst,
515                                const MachineBasicBlock *MBB) const override;
516 
517   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
518                              MachineInstr &NewMI1,
519                              MachineInstr &NewMI2) const override;
520 
521   /// analyzeCompare - For a comparison instruction, return the source registers
522   /// in SrcReg and SrcReg2 if having two register operands, and the value it
523   /// compares against in CmpValue. Return true if the comparison instruction
524   /// can be analyzed.
525   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
526                       Register &SrcReg2, int64_t &CmpMask,
527                       int64_t &CmpValue) const override;
528 
529   /// optimizeCompareInstr - Check if there exists an earlier instruction that
530   /// operates on the same source operands and sets flags in the same way as
531   /// Compare; remove Compare if possible.
532   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
533                             Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
534                             const MachineRegisterInfo *MRI) const override;
535 
536   /// optimizeLoadInstr - Try to remove the load by folding it to a register
537   /// operand at the use. We fold the load instructions if and only if the
538   /// def and use are in the same BB. We only look at one load and see
539   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
540   /// defined by the load we are trying to fold. DefMI returns the machine
541   /// instruction that defines FoldAsLoadDefReg, and the function returns
542   /// the machine instruction generated due to folding.
543   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
544                                   const MachineRegisterInfo *MRI,
545                                   Register &FoldAsLoadDefReg,
546                                   MachineInstr *&DefMI) const override;
547 
548   std::pair<unsigned, unsigned>
549   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
550 
551   ArrayRef<std::pair<unsigned, const char *>>
552   getSerializableDirectMachineOperandTargetFlags() const override;
553 
554   outliner::OutlinedFunction getOutliningCandidateInfo(
555       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
556 
557   bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
558                                    bool OutlineFromLinkOnceODRs) const override;
559 
560   outliner::InstrType
561   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
562 
563   void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
564                           const outliner::OutlinedFunction &OF) const override;
565 
566   MachineBasicBlock::iterator
567   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
568                      MachineBasicBlock::iterator &It, MachineFunction &MF,
569                      outliner::Candidate &C) const override;
570 
571   bool verifyInstruction(const MachineInstr &MI,
572                          StringRef &ErrInfo) const override;
573 #define GET_INSTRINFO_HELPER_DECLS
574 #include "X86GenInstrInfo.inc"
575 
576   static bool hasLockPrefix(const MachineInstr &MI) {
577     return MI.getDesc().TSFlags & X86II::LOCK;
578   }
579 
580   std::optional<ParamLoadedValue>
581   describeLoadedValue(const MachineInstr &MI, Register Reg) const override;
582 
583 protected:
584   /// Commutes the operands in the given instruction by changing the operands
585   /// order and/or changing the instruction's opcode and/or the immediate value
586   /// operand.
587   ///
588   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
589   /// to be commuted.
590   ///
591   /// Do not call this method for a non-commutable instruction or
592   /// non-commutable operands.
593   /// Even though the instruction is commutable, the method may still
594   /// fail to commute the operands, null pointer is returned in such cases.
595   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
596                                        unsigned CommuteOpIdx1,
597                                        unsigned CommuteOpIdx2) const override;
598 
599   /// If the specific machine instruction is a instruction that moves/copies
600   /// value from one register to another register return destination and source
601   /// registers as machine operands.
602   std::optional<DestSourcePair>
603   isCopyInstrImpl(const MachineInstr &MI) const override;
604 
605 private:
606   /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
607   /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
608   /// super-register and then truncating back down to a 8/16-bit sub-register.
609   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI,
610                                              LiveVariables *LV,
611                                              LiveIntervals *LIS,
612                                              bool Is8BitOp) const;
613 
614   /// Handles memory folding for special case instructions, for instance those
615   /// requiring custom manipulation of the address.
616   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
617                                         unsigned OpNum,
618                                         ArrayRef<MachineOperand> MOs,
619                                         MachineBasicBlock::iterator InsertPt,
620                                         unsigned Size, Align Alignment) const;
621 
622   /// isFrameOperand - Return true and the FrameIndex if the specified
623   /// operand and follow operands form a reference to the stack frame.
624   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
625                       int &FrameIndex) const;
626 
627   /// Returns true iff the routine could find two commutable operands in the
628   /// given machine instruction with 3 vector inputs.
629   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
630   /// input values can be re-defined in this method only if the input values
631   /// are not pre-defined, which is designated by the special value
632   /// 'CommuteAnyOperandIndex' assigned to it.
633   /// If both of indices are pre-defined and refer to some operands, then the
634   /// method simply returns true if the corresponding operands are commutable
635   /// and returns false otherwise.
636   ///
637   /// For example, calling this method this way:
638   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
639   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
640   /// can be interpreted as a query asking to find an operand that would be
641   /// commutable with the operand#1.
642   ///
643   /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
644   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
645                                      unsigned &SrcOpIdx1,
646                                      unsigned &SrcOpIdx2,
647                                      bool IsIntrinsic = false) const;
648 
649   /// Returns true when instruction \p FlagI produces the same flags as \p OI.
650   /// The caller should pass in the results of calling analyzeCompare on \p OI:
651   /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
652   /// If the flags match \p OI as if it had the input operands swapped then the
653   /// function succeeds and sets \p IsSwapped to true.
654   ///
655   /// Examples of OI, FlagI pairs returning true:
656   ///   CMP %1, 42   and  CMP %1, 42
657   ///   CMP %1, %2   and  %3 = SUB %1, %2
658   ///   TEST %1, %1  and  %2 = SUB %1, 0
659   ///   CMP %1, %2   and  %3 = SUB %2, %1  ; IsSwapped=true
660   bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg,
661                             Register SrcReg2, int64_t ImmMask, int64_t ImmValue,
662                             const MachineInstr &OI, bool *IsSwapped,
663                             int64_t *ImmDelta) const;
664 };
665 
666 } // namespace llvm
667 
668 #endif
669