xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.h (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include <vector>
22 
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
25 
26 namespace llvm {
27 class X86Subtarget;
28 
29 namespace X86 {
30 
31 enum AsmComments {
32   // For instr that was compressed from EVEX to LEGACY.
33   AC_EVEX_2_LEGACY = MachineInstr::TAsmComments,
34   // For instr that was compressed from EVEX to VEX.
35   AC_EVEX_2_VEX = AC_EVEX_2_LEGACY << 1,
36   // For instr that was compressed from EVEX to EVEX.
37   AC_EVEX_2_EVEX = AC_EVEX_2_VEX << 1
38 };
39 
40 /// Return a pair of condition code for the given predicate and whether
41 /// the instruction operands should be swaped to match the condition code.
42 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
43 
44 /// Return a cmov opcode for the given register size in bytes, and operand type.
45 unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
46 
47 /// Return the source operand # for condition code by \p MCID. If the
48 /// instruction doesn't have a condition code, return -1.
49 int getCondSrcNoFromDesc(const MCInstrDesc &MCID);
50 
51 /// Return the condition code of the instruction. If the instruction doesn't
52 /// have a condition code, return X86::COND_INVALID.
53 CondCode getCondFromMI(const MachineInstr &MI);
54 
55 // Turn JCC instruction into condition code.
56 CondCode getCondFromBranch(const MachineInstr &MI);
57 
58 // Turn SETCC instruction into condition code.
59 CondCode getCondFromSETCC(const MachineInstr &MI);
60 
61 // Turn CMOV instruction into condition code.
62 CondCode getCondFromCMov(const MachineInstr &MI);
63 
64 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65 /// e.g. turning COND_E to COND_NE.
66 CondCode GetOppositeBranchCondition(CondCode CC);
67 
68 /// Get the VPCMP immediate for the given condition.
69 unsigned getVPCMPImmForCond(ISD::CondCode CC);
70 
71 /// Get the VPCMP immediate if the opcodes are swapped.
72 unsigned getSwappedVPCMPImm(unsigned Imm);
73 
74 /// Get the VPCOM immediate if the opcodes are swapped.
75 unsigned getSwappedVPCOMImm(unsigned Imm);
76 
77 /// Get the VCMP immediate if the opcodes are swapped.
78 unsigned getSwappedVCMPImm(unsigned Imm);
79 
80 /// Check if the instruction is X87 instruction.
81 bool isX87Instruction(MachineInstr &MI);
82 
83 /// Return the index of the instruction's first address operand, if it has a
84 /// memory reference, or -1 if it has none. Unlike X86II::getMemoryOperandNo(),
85 /// this also works for both pseudo instructions (e.g., TCRETURNmi) as well as
86 /// real instructions (e.g., JMP64m).
87 int getFirstAddrOperandIdx(const MachineInstr &MI);
88 
89 /// Find any constant pool entry associated with a specific instruction operand.
90 const Constant *getConstantFromPool(const MachineInstr &MI, unsigned OpNo);
91 
92 } // namespace X86
93 
94 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
95 /// a reference to a stub for a global, not the global itself.
96 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
97   switch (TargetFlag) {
98   case X86II::MO_DLLIMPORT:               // dllimport stub.
99   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
100   case X86II::MO_GOTPCREL_NORELAX:        // rip-relative GOT reference.
101   case X86II::MO_GOT:                     // normal GOT reference.
102   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
103   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
104   case X86II::MO_COFFSTUB:                // COFF .refptr stub.
105     return true;
106   default:
107     return false;
108   }
109 }
110 
111 /// isGlobalRelativeToPICBase - Return true if the specified global value
112 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
113 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
114 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
115   switch (TargetFlag) {
116   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
117   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
118   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
119   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
120   case X86II::MO_TLVP:                    // ??? Pretty sure..
121     return true;
122   default:
123     return false;
124   }
125 }
126 
127 inline static bool isScale(const MachineOperand &MO) {
128   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
129                         MO.getImm() == 4 || MO.getImm() == 8);
130 }
131 
132 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
133   if (MI.getOperand(Op).isFI())
134     return true;
135   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
136          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
137          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
138          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
139          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
140           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
141           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
142           MI.getOperand(Op + X86::AddrDisp).isJTI());
143 }
144 
145 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
146   if (MI.getOperand(Op).isFI())
147     return true;
148   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
149          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
150 }
151 
152 class X86InstrInfo final : public X86GenInstrInfo {
153   X86Subtarget &Subtarget;
154   const X86RegisterInfo RI;
155 
156   virtual void anchor();
157 
158   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
159                          MachineBasicBlock *&FBB,
160                          SmallVectorImpl<MachineOperand> &Cond,
161                          SmallVectorImpl<MachineInstr *> &CondBranches,
162                          bool AllowModify) const;
163 
164 public:
165   explicit X86InstrInfo(X86Subtarget &STI);
166 
167   /// Given a machine instruction descriptor, returns the register
168   /// class constraint for OpNum, or NULL. Returned register class
169   /// may be different from the definition in the TD file, e.g.
170   /// GR*RegClass (definition in TD file)
171   /// ->
172   /// GR*_NOREX2RegClass (Returned register class)
173   const TargetRegisterClass *
174   getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
175               const TargetRegisterInfo *TRI,
176               const MachineFunction &MF) const override;
177 
178   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
179   /// such, whenever a client has an instance of instruction info, it should
180   /// always be able to get register info as well (through this method).
181   ///
182   const X86RegisterInfo &getRegisterInfo() const { return RI; }
183 
184   /// Returns the stack pointer adjustment that happens inside the frame
185   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
186   int64_t getFrameAdjustment(const MachineInstr &I) const {
187     assert(isFrameInstr(I));
188     if (isFrameSetup(I))
189       return I.getOperand(2).getImm();
190     return I.getOperand(1).getImm();
191   }
192 
193   /// Sets the stack pointer adjustment made inside the frame made up by this
194   /// instruction.
195   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
196     assert(isFrameInstr(I));
197     if (isFrameSetup(I))
198       I.getOperand(2).setImm(V);
199     else
200       I.getOperand(1).setImm(V);
201   }
202 
203   /// getSPAdjust - This returns the stack pointer adjustment made by
204   /// this instruction. For x86, we need to handle more complex call
205   /// sequences involving PUSHes.
206   int getSPAdjust(const MachineInstr &MI) const override;
207 
208   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
209   /// extension instruction. That is, it's like a copy where it's legal for the
210   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
211   /// true, then it's expected the pre-extension value is available as a subreg
212   /// of the result register. This also returns the sub-register index in
213   /// SubIdx.
214   bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
215                              Register &DstReg, unsigned &SubIdx) const override;
216 
217   /// Returns true if the instruction has no behavior (specified or otherwise)
218   /// that is based on the value of any of its register operands
219   ///
220   /// Instructions are considered data invariant even if they set EFLAGS.
221   ///
222   /// A classical example of something that is inherently not data invariant is
223   /// an indirect jump -- the destination is loaded into icache based on the
224   /// bits set in the jump destination register.
225   ///
226   /// FIXME: This should become part of our instruction tables.
227   static bool isDataInvariant(MachineInstr &MI);
228 
229   /// Returns true if the instruction has no behavior (specified or otherwise)
230   /// that is based on the value loaded from memory or the value of any
231   /// non-address register operands.
232   ///
233   /// For example, if the latency of the instruction is dependent on the
234   /// particular bits set in any of the registers *or* any of the bits loaded
235   /// from memory.
236   ///
237   /// Instructions are considered data invariant even if they set EFLAGS.
238   ///
239   /// A classical example of something that is inherently not data invariant is
240   /// an indirect jump -- the destination is loaded into icache based on the
241   /// bits set in the jump destination register.
242   ///
243   /// FIXME: This should become part of our instruction tables.
244   static bool isDataInvariantLoad(MachineInstr &MI);
245 
246   unsigned isLoadFromStackSlot(const MachineInstr &MI,
247                                int &FrameIndex) const override;
248   unsigned isLoadFromStackSlot(const MachineInstr &MI,
249                                int &FrameIndex,
250                                unsigned &MemBytes) const override;
251   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
252   /// stack locations as well.  This uses a heuristic so it isn't
253   /// reliable for correctness.
254   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
255                                      int &FrameIndex) const override;
256 
257   unsigned isStoreToStackSlot(const MachineInstr &MI,
258                               int &FrameIndex) const override;
259   unsigned isStoreToStackSlot(const MachineInstr &MI,
260                               int &FrameIndex,
261                               unsigned &MemBytes) const override;
262   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
263   /// stack locations as well.  This uses a heuristic so it isn't
264   /// reliable for correctness.
265   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
266                                     int &FrameIndex) const override;
267 
268   bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
269   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
270                      Register DestReg, unsigned SubIdx,
271                      const MachineInstr &Orig,
272                      const TargetRegisterInfo &TRI) const override;
273 
274   /// Given an operand within a MachineInstr, insert preceding code to put it
275   /// into the right format for a particular kind of LEA instruction. This may
276   /// involve using an appropriate super-register instead (with an implicit use
277   /// of the original) or creating a new virtual register and inserting COPY
278   /// instructions to get the data into the right class.
279   ///
280   /// Reference parameters are set to indicate how caller should add this
281   /// operand to the LEA instruction.
282   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
283                       unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
284                       bool &isKill, MachineOperand &ImplicitOp,
285                       LiveVariables *LV, LiveIntervals *LIS) const;
286 
287   /// convertToThreeAddress - This method must be implemented by targets that
288   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
289   /// may be able to convert a two-address instruction into a true
290   /// three-address instruction on demand.  This allows the X86 target (for
291   /// example) to convert ADD and SHL instructions into LEA instructions if they
292   /// would require register copies due to two-addressness.
293   ///
294   /// This method returns a null pointer if the transformation cannot be
295   /// performed, otherwise it returns the new instruction.
296   ///
297   MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
298                                       LiveIntervals *LIS) const override;
299 
300   /// Returns true iff the routine could find two commutable operands in the
301   /// given machine instruction.
302   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
303   /// input values can be re-defined in this method only if the input values
304   /// are not pre-defined, which is designated by the special value
305   /// 'CommuteAnyOperandIndex' assigned to it.
306   /// If both of indices are pre-defined and refer to some operands, then the
307   /// method simply returns true if the corresponding operands are commutable
308   /// and returns false otherwise.
309   ///
310   /// For example, calling this method this way:
311   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
312   ///     findCommutedOpIndices(MI, Op1, Op2);
313   /// can be interpreted as a query asking to find an operand that would be
314   /// commutable with the operand#1.
315   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
316                              unsigned &SrcOpIdx2) const override;
317 
318   /// Returns true if we have preference on the operands order in MI, the
319   /// commute decision is returned in Commute.
320   bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
321 
322   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
323   /// performs the same computations as the given \p MI but which has the
324   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
325   /// It may return 0 if it is unsafe to commute the operands.
326   /// Note that a machine instruction (instead of its opcode) is passed as the
327   /// first parameter to make it possible to analyze the instruction's uses and
328   /// commute the first operand of FMA even when it seems unsafe when you look
329   /// at the opcode. For example, it is Ok to commute the first operand of
330   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
331   ///
332   /// The returned FMA opcode may differ from the opcode in the given \p MI.
333   /// For example, commuting the operands #1 and #3 in the following FMA
334   ///     FMA213 #1, #2, #3
335   /// results into instruction with adjusted opcode:
336   ///     FMA231 #3, #2, #1
337   unsigned
338   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
339                                  unsigned SrcOpIdx2,
340                                  const X86InstrFMA3Group &FMA3Group) const;
341 
342   // Branch analysis.
343   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
344   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
345                                   const MachineInstr &TailCall) const override;
346   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
347                                  SmallVectorImpl<MachineOperand> &Cond,
348                                  const MachineInstr &TailCall) const override;
349 
350   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
351                      MachineBasicBlock *&FBB,
352                      SmallVectorImpl<MachineOperand> &Cond,
353                      bool AllowModify) const override;
354 
355   int getJumpTableIndex(const MachineInstr &MI) const override;
356 
357   std::optional<ExtAddrMode>
358   getAddrModeFromMemoryOp(const MachineInstr &MemI,
359                           const TargetRegisterInfo *TRI) const override;
360 
361   bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
362                                int64_t &ImmVal) const override;
363 
364   bool preservesZeroValueInReg(const MachineInstr *MI,
365                                const Register NullValueReg,
366                                const TargetRegisterInfo *TRI) const override;
367 
368   bool getMemOperandsWithOffsetWidth(
369       const MachineInstr &LdSt,
370       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
371       bool &OffsetIsScalable, unsigned &Width,
372       const TargetRegisterInfo *TRI) const override;
373   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
374                               TargetInstrInfo::MachineBranchPredicate &MBP,
375                               bool AllowModify = false) const override;
376 
377   unsigned removeBranch(MachineBasicBlock &MBB,
378                         int *BytesRemoved = nullptr) const override;
379   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
380                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
381                         const DebugLoc &DL,
382                         int *BytesAdded = nullptr) const override;
383   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
384                        Register, Register, Register, int &, int &,
385                        int &) const override;
386   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
387                     const DebugLoc &DL, Register DstReg,
388                     ArrayRef<MachineOperand> Cond, Register TrueReg,
389                     Register FalseReg) const override;
390   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
391                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
392                    bool KillSrc) const override;
393   void storeRegToStackSlot(MachineBasicBlock &MBB,
394                            MachineBasicBlock::iterator MI, Register SrcReg,
395                            bool isKill, int FrameIndex,
396                            const TargetRegisterClass *RC,
397                            const TargetRegisterInfo *TRI,
398                            Register VReg) const override;
399 
400   void loadRegFromStackSlot(MachineBasicBlock &MBB,
401                             MachineBasicBlock::iterator MI, Register DestReg,
402                             int FrameIndex, const TargetRegisterClass *RC,
403                             const TargetRegisterInfo *TRI,
404                             Register VReg) const override;
405 
406   void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
407                         unsigned Opc, Register Reg, int FrameIdx,
408                         bool isKill = false) const;
409 
410   bool expandPostRAPseudo(MachineInstr &MI) const override;
411 
412   /// Check whether the target can fold a load that feeds a subreg operand
413   /// (or a subreg operand that feeds a store).
414   bool isSubregFoldable() const override { return true; }
415 
416   /// foldMemoryOperand - If this target supports it, fold a load or store of
417   /// the specified stack slot into the specified machine instruction for the
418   /// specified operand(s).  If this is possible, the target should perform the
419   /// folding and return true, otherwise it should return false.  If it folds
420   /// the instruction, it is likely that the MachineInstruction the iterator
421   /// references has been changed.
422   MachineInstr *
423   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
424                         ArrayRef<unsigned> Ops,
425                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
426                         LiveIntervals *LIS = nullptr,
427                         VirtRegMap *VRM = nullptr) const override;
428 
429   /// foldMemoryOperand - Same as the previous version except it allows folding
430   /// of any load and store from / to any address, not just from a specific
431   /// stack slot.
432   MachineInstr *foldMemoryOperandImpl(
433       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
434       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
435       LiveIntervals *LIS = nullptr) const override;
436 
437   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
438   /// a store or a load and a store into two or more instruction. If this is
439   /// possible, returns true as well as the new instructions by reference.
440   bool
441   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
442                       bool UnfoldLoad, bool UnfoldStore,
443                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
444 
445   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
446                            SmallVectorImpl<SDNode *> &NewNodes) const override;
447 
448   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
449   /// instruction after load / store are unfolded from an instruction of the
450   /// specified opcode. It returns zero if the specified unfolding is not
451   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
452   /// index of the operand which will hold the register holding the loaded
453   /// value.
454   unsigned
455   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
456                              unsigned *LoadRegIndex = nullptr) const override;
457 
458   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
459   /// to determine if two loads are loading from the same base address. It
460   /// should only return true if the base pointers are the same and the
461   /// only differences between the two addresses are the offset. It also returns
462   /// the offsets by reference.
463   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
464                                int64_t &Offset2) const override;
465 
466   /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
467   ///	Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
468   /// intructions and prevent it from being re-scheduled.
469   bool isSchedulingBoundary(const MachineInstr &MI,
470                             const MachineBasicBlock *MBB,
471                             const MachineFunction &MF) const override;
472 
473   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
474   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
475   /// should be scheduled togther. On some targets if two loads are loading from
476   /// addresses in the same cache line, it's better if they are scheduled
477   /// together. This function takes two integers that represent the load offsets
478   /// from the common base address. It returns true if it decides it's desirable
479   /// to schedule the two loads together. "NumLoads" is the number of loads that
480   /// have already been scheduled after Load1.
481   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
482                                int64_t Offset2,
483                                unsigned NumLoads) const override;
484 
485   void insertNoop(MachineBasicBlock &MBB,
486                   MachineBasicBlock::iterator MI) const override;
487 
488   MCInst getNop() const override;
489 
490   bool
491   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
492 
493   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
494   /// instruction that defines the specified register class.
495   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
496 
497   /// True if MI has a condition code def, e.g. EFLAGS, that is
498   /// not marked dead.
499   bool hasLiveCondCodeDef(MachineInstr &MI) const;
500 
501   /// getGlobalBaseReg - Return a virtual register initialized with the
502   /// the global base register value. Output instructions required to
503   /// initialize the register in the function entry block, if necessary.
504   ///
505   unsigned getGlobalBaseReg(MachineFunction *MF) const;
506 
507   std::pair<uint16_t, uint16_t>
508   getExecutionDomain(const MachineInstr &MI) const override;
509 
510   uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
511 
512   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
513 
514   bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
515 
516   unsigned
517   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
518                                const TargetRegisterInfo *TRI) const override;
519   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
520                                 const TargetRegisterInfo *TRI) const override;
521   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
522                                  const TargetRegisterInfo *TRI) const override;
523 
524   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
525                                       unsigned OpNum,
526                                       ArrayRef<MachineOperand> MOs,
527                                       MachineBasicBlock::iterator InsertPt,
528                                       unsigned Size, Align Alignment,
529                                       bool AllowCommute) const;
530 
531   bool isHighLatencyDef(int opc) const override;
532 
533   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
534                              const MachineRegisterInfo *MRI,
535                              const MachineInstr &DefMI, unsigned DefIdx,
536                              const MachineInstr &UseMI,
537                              unsigned UseIdx) const override;
538 
539   bool useMachineCombiner() const override { return true; }
540 
541   bool isAssociativeAndCommutative(const MachineInstr &Inst,
542                                    bool Invert) const override;
543 
544   bool hasReassociableOperands(const MachineInstr &Inst,
545                                const MachineBasicBlock *MBB) const override;
546 
547   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
548                              MachineInstr &NewMI1,
549                              MachineInstr &NewMI2) const override;
550 
551   /// analyzeCompare - For a comparison instruction, return the source registers
552   /// in SrcReg and SrcReg2 if having two register operands, and the value it
553   /// compares against in CmpValue. Return true if the comparison instruction
554   /// can be analyzed.
555   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
556                       Register &SrcReg2, int64_t &CmpMask,
557                       int64_t &CmpValue) const override;
558 
559   /// optimizeCompareInstr - Check if there exists an earlier instruction that
560   /// operates on the same source operands and sets flags in the same way as
561   /// Compare; remove Compare if possible.
562   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
563                             Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
564                             const MachineRegisterInfo *MRI) const override;
565 
566   /// optimizeLoadInstr - Try to remove the load by folding it to a register
567   /// operand at the use. We fold the load instructions if and only if the
568   /// def and use are in the same BB. We only look at one load and see
569   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
570   /// defined by the load we are trying to fold. DefMI returns the machine
571   /// instruction that defines FoldAsLoadDefReg, and the function returns
572   /// the machine instruction generated due to folding.
573   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
574                                   const MachineRegisterInfo *MRI,
575                                   Register &FoldAsLoadDefReg,
576                                   MachineInstr *&DefMI) const override;
577 
578   bool FoldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, Register Reg,
579                          int64_t ImmVal, MachineRegisterInfo *MRI,
580                          bool MakeChange) const;
581 
582   /// Reg is known to be defined by a move immediate instruction, try to fold
583   /// the immediate into the use instruction.
584   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
585                      MachineRegisterInfo *MRI) const override;
586 
587   std::pair<unsigned, unsigned>
588   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
589 
590   ArrayRef<std::pair<unsigned, const char *>>
591   getSerializableDirectMachineOperandTargetFlags() const override;
592 
593   std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
594       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
595 
596   bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
597                                    bool OutlineFromLinkOnceODRs) const override;
598 
599   outliner::InstrType
600   getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
601 
602   void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
603                           const outliner::OutlinedFunction &OF) const override;
604 
605   MachineBasicBlock::iterator
606   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
607                      MachineBasicBlock::iterator &It, MachineFunction &MF,
608                      outliner::Candidate &C) const override;
609 
610   void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
611                           MachineBasicBlock::iterator Iter, DebugLoc &DL,
612                           bool AllowSideEffects = true) const override;
613 
614   bool verifyInstruction(const MachineInstr &MI,
615                          StringRef &ErrInfo) const override;
616 #define GET_INSTRINFO_HELPER_DECLS
617 #include "X86GenInstrInfo.inc"
618 
619   static bool hasLockPrefix(const MachineInstr &MI) {
620     return MI.getDesc().TSFlags & X86II::LOCK;
621   }
622 
623   std::optional<ParamLoadedValue>
624   describeLoadedValue(const MachineInstr &MI, Register Reg) const override;
625 
626 protected:
627   /// Commutes the operands in the given instruction by changing the operands
628   /// order and/or changing the instruction's opcode and/or the immediate value
629   /// operand.
630   ///
631   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
632   /// to be commuted.
633   ///
634   /// Do not call this method for a non-commutable instruction or
635   /// non-commutable operands.
636   /// Even though the instruction is commutable, the method may still
637   /// fail to commute the operands, null pointer is returned in such cases.
638   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
639                                        unsigned CommuteOpIdx1,
640                                        unsigned CommuteOpIdx2) const override;
641 
642   /// If the specific machine instruction is a instruction that moves/copies
643   /// value from one register to another register return destination and source
644   /// registers as machine operands.
645   std::optional<DestSourcePair>
646   isCopyInstrImpl(const MachineInstr &MI) const override;
647 
648   /// Return true when there is potentially a faster code sequence for an
649   /// instruction chain ending in \p Root. All potential patterns are listed in
650   /// the \p Pattern vector. Pattern should be sorted in priority order since
651   /// the pattern evaluator stops checking as soon as it finds a faster
652   /// sequence.
653   bool
654   getMachineCombinerPatterns(MachineInstr &Root,
655                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
656                              bool DoRegPressureReduce) const override;
657 
658   /// When getMachineCombinerPatterns() finds potential patterns,
659   /// this function generates the instructions that could replace the
660   /// original code sequence.
661   void genAlternativeCodeSequence(
662       MachineInstr &Root, MachineCombinerPattern Pattern,
663       SmallVectorImpl<MachineInstr *> &InsInstrs,
664       SmallVectorImpl<MachineInstr *> &DelInstrs,
665       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
666 
667   /// When calculate the latency of the root instruction, accumulate the
668   /// latency of the sequence to the root latency.
669   /// \param Root - Instruction that could be combined with one of its operands
670   /// For X86 instruction (vpmaddwd + vpmaddwd) -> vpdpwssd, the vpmaddwd
671   /// is not in the critical path, so the root latency only include vpmaddwd.
672   bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const override {
673     return false;
674   }
675 
676   void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
677                              int FI) const override;
678 
679 private:
680   /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
681   /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
682   /// super-register and then truncating back down to a 8/16-bit sub-register.
683   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI,
684                                              LiveVariables *LV,
685                                              LiveIntervals *LIS,
686                                              bool Is8BitOp) const;
687 
688   /// Handles memory folding for special case instructions, for instance those
689   /// requiring custom manipulation of the address.
690   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
691                                         unsigned OpNum,
692                                         ArrayRef<MachineOperand> MOs,
693                                         MachineBasicBlock::iterator InsertPt,
694                                         unsigned Size, Align Alignment) const;
695 
696   /// isFrameOperand - Return true and the FrameIndex if the specified
697   /// operand and follow operands form a reference to the stack frame.
698   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
699                       int &FrameIndex) const;
700 
701   /// Returns true iff the routine could find two commutable operands in the
702   /// given machine instruction with 3 vector inputs.
703   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
704   /// input values can be re-defined in this method only if the input values
705   /// are not pre-defined, which is designated by the special value
706   /// 'CommuteAnyOperandIndex' assigned to it.
707   /// If both of indices are pre-defined and refer to some operands, then the
708   /// method simply returns true if the corresponding operands are commutable
709   /// and returns false otherwise.
710   ///
711   /// For example, calling this method this way:
712   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
713   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
714   /// can be interpreted as a query asking to find an operand that would be
715   /// commutable with the operand#1.
716   ///
717   /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
718   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
719                                      unsigned &SrcOpIdx1,
720                                      unsigned &SrcOpIdx2,
721                                      bool IsIntrinsic = false) const;
722 
723   /// Returns true when instruction \p FlagI produces the same flags as \p OI.
724   /// The caller should pass in the results of calling analyzeCompare on \p OI:
725   /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
726   /// If the flags match \p OI as if it had the input operands swapped then the
727   /// function succeeds and sets \p IsSwapped to true.
728   ///
729   /// Examples of OI, FlagI pairs returning true:
730   ///   CMP %1, 42   and  CMP %1, 42
731   ///   CMP %1, %2   and  %3 = SUB %1, %2
732   ///   TEST %1, %1  and  %2 = SUB %1, 0
733   ///   CMP %1, %2   and  %3 = SUB %2, %1  ; IsSwapped=true
734   bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg,
735                             Register SrcReg2, int64_t ImmMask, int64_t ImmValue,
736                             const MachineInstr &OI, bool *IsSwapped,
737                             int64_t *ImmDelta) const;
738 };
739 
740 } // namespace llvm
741 
742 #endif
743