xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.h (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
15 
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include <vector>
22 
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
25 
26 namespace llvm {
27 class X86Subtarget;
28 
29 namespace X86 {
30 
31 enum AsmComments {
32   // For instr that was compressed from EVEX to LEGACY.
33   AC_EVEX_2_LEGACY = MachineInstr::TAsmComments,
34   // For instr that was compressed from EVEX to VEX.
35   AC_EVEX_2_VEX = AC_EVEX_2_LEGACY << 1
36 };
37 
38 /// Return a pair of condition code for the given predicate and whether
39 /// the instruction operands should be swaped to match the condition code.
40 std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
41 
42 /// Return a cmov opcode for the given register size in bytes, and operand type.
43 unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false);
44 
45 /// Return the source operand # for condition code by \p MCID. If the
46 /// instruction doesn't have a condition code, return -1.
47 int getCondSrcNoFromDesc(const MCInstrDesc &MCID);
48 
49 /// Return the condition code of the instruction. If the instruction doesn't
50 /// have a condition code, return X86::COND_INVALID.
51 CondCode getCondFromMI(const MachineInstr &MI);
52 
53 // Turn JCC instruction into condition code.
54 CondCode getCondFromBranch(const MachineInstr &MI);
55 
56 // Turn SETCC instruction into condition code.
57 CondCode getCondFromSETCC(const MachineInstr &MI);
58 
59 // Turn CMOV instruction into condition code.
60 CondCode getCondFromCMov(const MachineInstr &MI);
61 
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(CondCode CC);
65 
66 /// Get the VPCMP immediate for the given condition.
67 unsigned getVPCMPImmForCond(ISD::CondCode CC);
68 
69 /// Get the VPCMP immediate if the opcodes are swapped.
70 unsigned getSwappedVPCMPImm(unsigned Imm);
71 
72 /// Get the VPCOM immediate if the opcodes are swapped.
73 unsigned getSwappedVPCOMImm(unsigned Imm);
74 
75 /// Get the VCMP immediate if the opcodes are swapped.
76 unsigned getSwappedVCMPImm(unsigned Imm);
77 
78 /// Check if the instruction is X87 instruction.
79 bool isX87Instruction(MachineInstr &MI);
80 } // namespace X86
81 
82 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
83 /// a reference to a stub for a global, not the global itself.
84 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
85   switch (TargetFlag) {
86   case X86II::MO_DLLIMPORT:               // dllimport stub.
87   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
88   case X86II::MO_GOTPCREL_NORELAX:        // rip-relative GOT reference.
89   case X86II::MO_GOT:                     // normal GOT reference.
90   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
91   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
92   case X86II::MO_COFFSTUB:                // COFF .refptr stub.
93     return true;
94   default:
95     return false;
96   }
97 }
98 
99 /// isGlobalRelativeToPICBase - Return true if the specified global value
100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
103   switch (TargetFlag) {
104   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
105   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
106   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
107   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
108   case X86II::MO_TLVP:                    // ??? Pretty sure..
109     return true;
110   default:
111     return false;
112   }
113 }
114 
115 inline static bool isScale(const MachineOperand &MO) {
116   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
117                         MO.getImm() == 4 || MO.getImm() == 8);
118 }
119 
120 inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
121   if (MI.getOperand(Op).isFI())
122     return true;
123   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
124          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
125          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
126          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
127          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
128           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
129           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
130           MI.getOperand(Op + X86::AddrDisp).isJTI());
131 }
132 
133 inline static bool isMem(const MachineInstr &MI, unsigned Op) {
134   if (MI.getOperand(Op).isFI())
135     return true;
136   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
137          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
138 }
139 
140 class X86InstrInfo final : public X86GenInstrInfo {
141   X86Subtarget &Subtarget;
142   const X86RegisterInfo RI;
143 
144   virtual void anchor();
145 
146   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
147                          MachineBasicBlock *&FBB,
148                          SmallVectorImpl<MachineOperand> &Cond,
149                          SmallVectorImpl<MachineInstr *> &CondBranches,
150                          bool AllowModify) const;
151 
152 public:
153   explicit X86InstrInfo(X86Subtarget &STI);
154 
155   /// Given a machine instruction descriptor, returns the register
156   /// class constraint for OpNum, or NULL. Returned register class
157   /// may be different from the definition in the TD file, e.g.
158   /// GR*RegClass (definition in TD file)
159   /// ->
160   /// GR*_NOREX2RegClass (Returned register class)
161   const TargetRegisterClass *
162   getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
163               const TargetRegisterInfo *TRI,
164               const MachineFunction &MF) const override;
165 
166   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
167   /// such, whenever a client has an instance of instruction info, it should
168   /// always be able to get register info as well (through this method).
169   ///
170   const X86RegisterInfo &getRegisterInfo() const { return RI; }
171 
172   /// Returns the stack pointer adjustment that happens inside the frame
173   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
174   int64_t getFrameAdjustment(const MachineInstr &I) const {
175     assert(isFrameInstr(I));
176     if (isFrameSetup(I))
177       return I.getOperand(2).getImm();
178     return I.getOperand(1).getImm();
179   }
180 
181   /// Sets the stack pointer adjustment made inside the frame made up by this
182   /// instruction.
183   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
184     assert(isFrameInstr(I));
185     if (isFrameSetup(I))
186       I.getOperand(2).setImm(V);
187     else
188       I.getOperand(1).setImm(V);
189   }
190 
191   /// getSPAdjust - This returns the stack pointer adjustment made by
192   /// this instruction. For x86, we need to handle more complex call
193   /// sequences involving PUSHes.
194   int getSPAdjust(const MachineInstr &MI) const override;
195 
196   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
197   /// extension instruction. That is, it's like a copy where it's legal for the
198   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
199   /// true, then it's expected the pre-extension value is available as a subreg
200   /// of the result register. This also returns the sub-register index in
201   /// SubIdx.
202   bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
203                              Register &DstReg, unsigned &SubIdx) const override;
204 
205   /// Returns true if the instruction has no behavior (specified or otherwise)
206   /// that is based on the value of any of its register operands
207   ///
208   /// Instructions are considered data invariant even if they set EFLAGS.
209   ///
210   /// A classical example of something that is inherently not data invariant is
211   /// an indirect jump -- the destination is loaded into icache based on the
212   /// bits set in the jump destination register.
213   ///
214   /// FIXME: This should become part of our instruction tables.
215   static bool isDataInvariant(MachineInstr &MI);
216 
217   /// Returns true if the instruction has no behavior (specified or otherwise)
218   /// that is based on the value loaded from memory or the value of any
219   /// non-address register operands.
220   ///
221   /// For example, if the latency of the instruction is dependent on the
222   /// particular bits set in any of the registers *or* any of the bits loaded
223   /// from memory.
224   ///
225   /// Instructions are considered data invariant even if they set EFLAGS.
226   ///
227   /// A classical example of something that is inherently not data invariant is
228   /// an indirect jump -- the destination is loaded into icache based on the
229   /// bits set in the jump destination register.
230   ///
231   /// FIXME: This should become part of our instruction tables.
232   static bool isDataInvariantLoad(MachineInstr &MI);
233 
234   unsigned isLoadFromStackSlot(const MachineInstr &MI,
235                                int &FrameIndex) const override;
236   unsigned isLoadFromStackSlot(const MachineInstr &MI,
237                                int &FrameIndex,
238                                unsigned &MemBytes) const override;
239   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
240   /// stack locations as well.  This uses a heuristic so it isn't
241   /// reliable for correctness.
242   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
243                                      int &FrameIndex) const override;
244 
245   unsigned isStoreToStackSlot(const MachineInstr &MI,
246                               int &FrameIndex) const override;
247   unsigned isStoreToStackSlot(const MachineInstr &MI,
248                               int &FrameIndex,
249                               unsigned &MemBytes) const override;
250   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
251   /// stack locations as well.  This uses a heuristic so it isn't
252   /// reliable for correctness.
253   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
254                                     int &FrameIndex) const override;
255 
256   bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
257   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
258                      Register DestReg, unsigned SubIdx,
259                      const MachineInstr &Orig,
260                      const TargetRegisterInfo &TRI) const override;
261 
262   /// Given an operand within a MachineInstr, insert preceding code to put it
263   /// into the right format for a particular kind of LEA instruction. This may
264   /// involve using an appropriate super-register instead (with an implicit use
265   /// of the original) or creating a new virtual register and inserting COPY
266   /// instructions to get the data into the right class.
267   ///
268   /// Reference parameters are set to indicate how caller should add this
269   /// operand to the LEA instruction.
270   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
271                       unsigned LEAOpcode, bool AllowSP, Register &NewSrc,
272                       bool &isKill, MachineOperand &ImplicitOp,
273                       LiveVariables *LV, LiveIntervals *LIS) const;
274 
275   /// convertToThreeAddress - This method must be implemented by targets that
276   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
277   /// may be able to convert a two-address instruction into a true
278   /// three-address instruction on demand.  This allows the X86 target (for
279   /// example) to convert ADD and SHL instructions into LEA instructions if they
280   /// would require register copies due to two-addressness.
281   ///
282   /// This method returns a null pointer if the transformation cannot be
283   /// performed, otherwise it returns the new instruction.
284   ///
285   MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
286                                       LiveIntervals *LIS) const override;
287 
288   /// Returns true iff the routine could find two commutable operands in the
289   /// given machine instruction.
290   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
291   /// input values can be re-defined in this method only if the input values
292   /// are not pre-defined, which is designated by the special value
293   /// 'CommuteAnyOperandIndex' assigned to it.
294   /// If both of indices are pre-defined and refer to some operands, then the
295   /// method simply returns true if the corresponding operands are commutable
296   /// and returns false otherwise.
297   ///
298   /// For example, calling this method this way:
299   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
300   ///     findCommutedOpIndices(MI, Op1, Op2);
301   /// can be interpreted as a query asking to find an operand that would be
302   /// commutable with the operand#1.
303   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
304                              unsigned &SrcOpIdx2) const override;
305 
306   /// Returns true if we have preference on the operands order in MI, the
307   /// commute decision is returned in Commute.
308   bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override;
309 
310   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
311   /// performs the same computations as the given \p MI but which has the
312   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
313   /// It may return 0 if it is unsafe to commute the operands.
314   /// Note that a machine instruction (instead of its opcode) is passed as the
315   /// first parameter to make it possible to analyze the instruction's uses and
316   /// commute the first operand of FMA even when it seems unsafe when you look
317   /// at the opcode. For example, it is Ok to commute the first operand of
318   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
319   ///
320   /// The returned FMA opcode may differ from the opcode in the given \p MI.
321   /// For example, commuting the operands #1 and #3 in the following FMA
322   ///     FMA213 #1, #2, #3
323   /// results into instruction with adjusted opcode:
324   ///     FMA231 #3, #2, #1
325   unsigned
326   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
327                                  unsigned SrcOpIdx2,
328                                  const X86InstrFMA3Group &FMA3Group) const;
329 
330   // Branch analysis.
331   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
332   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
333                                   const MachineInstr &TailCall) const override;
334   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
335                                  SmallVectorImpl<MachineOperand> &Cond,
336                                  const MachineInstr &TailCall) const override;
337 
338   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
339                      MachineBasicBlock *&FBB,
340                      SmallVectorImpl<MachineOperand> &Cond,
341                      bool AllowModify) const override;
342 
343   int getJumpTableIndex(const MachineInstr &MI) const override;
344 
345   std::optional<ExtAddrMode>
346   getAddrModeFromMemoryOp(const MachineInstr &MemI,
347                           const TargetRegisterInfo *TRI) const override;
348 
349   bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
350                                int64_t &ImmVal) const override;
351 
352   bool preservesZeroValueInReg(const MachineInstr *MI,
353                                const Register NullValueReg,
354                                const TargetRegisterInfo *TRI) const override;
355 
356   bool getMemOperandsWithOffsetWidth(
357       const MachineInstr &LdSt,
358       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
359       bool &OffsetIsScalable, unsigned &Width,
360       const TargetRegisterInfo *TRI) const override;
361   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
362                               TargetInstrInfo::MachineBranchPredicate &MBP,
363                               bool AllowModify = false) const override;
364 
365   unsigned removeBranch(MachineBasicBlock &MBB,
366                         int *BytesRemoved = nullptr) const override;
367   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
368                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
369                         const DebugLoc &DL,
370                         int *BytesAdded = nullptr) const override;
371   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
372                        Register, Register, Register, int &, int &,
373                        int &) const override;
374   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
375                     const DebugLoc &DL, Register DstReg,
376                     ArrayRef<MachineOperand> Cond, Register TrueReg,
377                     Register FalseReg) const override;
378   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
379                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
380                    bool KillSrc) const override;
381   void storeRegToStackSlot(MachineBasicBlock &MBB,
382                            MachineBasicBlock::iterator MI, Register SrcReg,
383                            bool isKill, int FrameIndex,
384                            const TargetRegisterClass *RC,
385                            const TargetRegisterInfo *TRI,
386                            Register VReg) const override;
387 
388   void loadRegFromStackSlot(MachineBasicBlock &MBB,
389                             MachineBasicBlock::iterator MI, Register DestReg,
390                             int FrameIndex, const TargetRegisterClass *RC,
391                             const TargetRegisterInfo *TRI,
392                             Register VReg) const override;
393 
394   void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
395                         unsigned Opc, Register Reg, int FrameIdx,
396                         bool isKill = false) const;
397 
398   bool expandPostRAPseudo(MachineInstr &MI) const override;
399 
400   /// Check whether the target can fold a load that feeds a subreg operand
401   /// (or a subreg operand that feeds a store).
402   bool isSubregFoldable() const override { return true; }
403 
404   /// foldMemoryOperand - If this target supports it, fold a load or store of
405   /// the specified stack slot into the specified machine instruction for the
406   /// specified operand(s).  If this is possible, the target should perform the
407   /// folding and return true, otherwise it should return false.  If it folds
408   /// the instruction, it is likely that the MachineInstruction the iterator
409   /// references has been changed.
410   MachineInstr *
411   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
412                         ArrayRef<unsigned> Ops,
413                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
414                         LiveIntervals *LIS = nullptr,
415                         VirtRegMap *VRM = nullptr) const override;
416 
417   /// foldMemoryOperand - Same as the previous version except it allows folding
418   /// of any load and store from / to any address, not just from a specific
419   /// stack slot.
420   MachineInstr *foldMemoryOperandImpl(
421       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
422       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
423       LiveIntervals *LIS = nullptr) const override;
424 
425   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
426   /// a store or a load and a store into two or more instruction. If this is
427   /// possible, returns true as well as the new instructions by reference.
428   bool
429   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
430                       bool UnfoldLoad, bool UnfoldStore,
431                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
432 
433   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
434                            SmallVectorImpl<SDNode *> &NewNodes) const override;
435 
436   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
437   /// instruction after load / store are unfolded from an instruction of the
438   /// specified opcode. It returns zero if the specified unfolding is not
439   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
440   /// index of the operand which will hold the register holding the loaded
441   /// value.
442   unsigned
443   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
444                              unsigned *LoadRegIndex = nullptr) const override;
445 
446   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
447   /// to determine if two loads are loading from the same base address. It
448   /// should only return true if the base pointers are the same and the
449   /// only differences between the two addresses are the offset. It also returns
450   /// the offsets by reference.
451   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
452                                int64_t &Offset2) const override;
453 
454   /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
455   ///	Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
456   /// intructions and prevent it from being re-scheduled.
457   bool isSchedulingBoundary(const MachineInstr &MI,
458                             const MachineBasicBlock *MBB,
459                             const MachineFunction &MF) const override;
460 
461   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
462   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
463   /// should be scheduled togther. On some targets if two loads are loading from
464   /// addresses in the same cache line, it's better if they are scheduled
465   /// together. This function takes two integers that represent the load offsets
466   /// from the common base address. It returns true if it decides it's desirable
467   /// to schedule the two loads together. "NumLoads" is the number of loads that
468   /// have already been scheduled after Load1.
469   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
470                                int64_t Offset2,
471                                unsigned NumLoads) const override;
472 
473   void insertNoop(MachineBasicBlock &MBB,
474                   MachineBasicBlock::iterator MI) const override;
475 
476   MCInst getNop() const override;
477 
478   bool
479   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
480 
481   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
482   /// instruction that defines the specified register class.
483   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
484 
485   /// True if MI has a condition code def, e.g. EFLAGS, that is
486   /// not marked dead.
487   bool hasLiveCondCodeDef(MachineInstr &MI) const;
488 
489   /// getGlobalBaseReg - Return a virtual register initialized with the
490   /// the global base register value. Output instructions required to
491   /// initialize the register in the function entry block, if necessary.
492   ///
493   unsigned getGlobalBaseReg(MachineFunction *MF) const;
494 
495   std::pair<uint16_t, uint16_t>
496   getExecutionDomain(const MachineInstr &MI) const override;
497 
498   uint16_t getExecutionDomainCustom(const MachineInstr &MI) const;
499 
500   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
501 
502   bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const;
503 
504   unsigned
505   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
506                                const TargetRegisterInfo *TRI) const override;
507   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
508                                 const TargetRegisterInfo *TRI) const override;
509   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
510                                  const TargetRegisterInfo *TRI) const override;
511 
512   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
513                                       unsigned OpNum,
514                                       ArrayRef<MachineOperand> MOs,
515                                       MachineBasicBlock::iterator InsertPt,
516                                       unsigned Size, Align Alignment,
517                                       bool AllowCommute) const;
518 
519   bool isHighLatencyDef(int opc) const override;
520 
521   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
522                              const MachineRegisterInfo *MRI,
523                              const MachineInstr &DefMI, unsigned DefIdx,
524                              const MachineInstr &UseMI,
525                              unsigned UseIdx) const override;
526 
527   bool useMachineCombiner() const override { return true; }
528 
529   bool isAssociativeAndCommutative(const MachineInstr &Inst,
530                                    bool Invert) const override;
531 
532   bool hasReassociableOperands(const MachineInstr &Inst,
533                                const MachineBasicBlock *MBB) const override;
534 
535   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
536                              MachineInstr &NewMI1,
537                              MachineInstr &NewMI2) const override;
538 
539   /// analyzeCompare - For a comparison instruction, return the source registers
540   /// in SrcReg and SrcReg2 if having two register operands, and the value it
541   /// compares against in CmpValue. Return true if the comparison instruction
542   /// can be analyzed.
543   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
544                       Register &SrcReg2, int64_t &CmpMask,
545                       int64_t &CmpValue) const override;
546 
547   /// optimizeCompareInstr - Check if there exists an earlier instruction that
548   /// operates on the same source operands and sets flags in the same way as
549   /// Compare; remove Compare if possible.
550   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
551                             Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
552                             const MachineRegisterInfo *MRI) const override;
553 
554   /// optimizeLoadInstr - Try to remove the load by folding it to a register
555   /// operand at the use. We fold the load instructions if and only if the
556   /// def and use are in the same BB. We only look at one load and see
557   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
558   /// defined by the load we are trying to fold. DefMI returns the machine
559   /// instruction that defines FoldAsLoadDefReg, and the function returns
560   /// the machine instruction generated due to folding.
561   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
562                                   const MachineRegisterInfo *MRI,
563                                   Register &FoldAsLoadDefReg,
564                                   MachineInstr *&DefMI) const override;
565 
566   bool FoldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, Register Reg,
567                          int64_t ImmVal, MachineRegisterInfo *MRI,
568                          bool MakeChange) const;
569 
570   /// Reg is known to be defined by a move immediate instruction, try to fold
571   /// the immediate into the use instruction.
572   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
573                      MachineRegisterInfo *MRI) const override;
574 
575   std::pair<unsigned, unsigned>
576   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
577 
578   ArrayRef<std::pair<unsigned, const char *>>
579   getSerializableDirectMachineOperandTargetFlags() const override;
580 
581   std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
582       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
583 
584   bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
585                                    bool OutlineFromLinkOnceODRs) const override;
586 
587   outliner::InstrType
588   getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
589 
590   void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
591                           const outliner::OutlinedFunction &OF) const override;
592 
593   MachineBasicBlock::iterator
594   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
595                      MachineBasicBlock::iterator &It, MachineFunction &MF,
596                      outliner::Candidate &C) const override;
597 
598   void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
599                           MachineBasicBlock::iterator Iter, DebugLoc &DL,
600                           bool AllowSideEffects = true) const override;
601 
602   bool verifyInstruction(const MachineInstr &MI,
603                          StringRef &ErrInfo) const override;
604 #define GET_INSTRINFO_HELPER_DECLS
605 #include "X86GenInstrInfo.inc"
606 
607   static bool hasLockPrefix(const MachineInstr &MI) {
608     return MI.getDesc().TSFlags & X86II::LOCK;
609   }
610 
611   std::optional<ParamLoadedValue>
612   describeLoadedValue(const MachineInstr &MI, Register Reg) const override;
613 
614 protected:
615   /// Commutes the operands in the given instruction by changing the operands
616   /// order and/or changing the instruction's opcode and/or the immediate value
617   /// operand.
618   ///
619   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
620   /// to be commuted.
621   ///
622   /// Do not call this method for a non-commutable instruction or
623   /// non-commutable operands.
624   /// Even though the instruction is commutable, the method may still
625   /// fail to commute the operands, null pointer is returned in such cases.
626   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
627                                        unsigned CommuteOpIdx1,
628                                        unsigned CommuteOpIdx2) const override;
629 
630   /// If the specific machine instruction is a instruction that moves/copies
631   /// value from one register to another register return destination and source
632   /// registers as machine operands.
633   std::optional<DestSourcePair>
634   isCopyInstrImpl(const MachineInstr &MI) const override;
635 
636   /// Return true when there is potentially a faster code sequence for an
637   /// instruction chain ending in \p Root. All potential patterns are listed in
638   /// the \p Pattern vector. Pattern should be sorted in priority order since
639   /// the pattern evaluator stops checking as soon as it finds a faster
640   /// sequence.
641   bool
642   getMachineCombinerPatterns(MachineInstr &Root,
643                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
644                              bool DoRegPressureReduce) const override;
645 
646   /// When getMachineCombinerPatterns() finds potential patterns,
647   /// this function generates the instructions that could replace the
648   /// original code sequence.
649   void genAlternativeCodeSequence(
650       MachineInstr &Root, MachineCombinerPattern Pattern,
651       SmallVectorImpl<MachineInstr *> &InsInstrs,
652       SmallVectorImpl<MachineInstr *> &DelInstrs,
653       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
654 
655   /// When calculate the latency of the root instruction, accumulate the
656   /// latency of the sequence to the root latency.
657   /// \param Root - Instruction that could be combined with one of its operands
658   /// For X86 instruction (vpmaddwd + vpmaddwd) -> vpdpwssd, the vpmaddwd
659   /// is not in the critical path, so the root latency only include vpmaddwd.
660   bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const override {
661     return false;
662   }
663 
664   void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
665                              int FI) const override;
666 
667 private:
668   /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
669   /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
670   /// super-register and then truncating back down to a 8/16-bit sub-register.
671   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI,
672                                              LiveVariables *LV,
673                                              LiveIntervals *LIS,
674                                              bool Is8BitOp) const;
675 
676   /// Handles memory folding for special case instructions, for instance those
677   /// requiring custom manipulation of the address.
678   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
679                                         unsigned OpNum,
680                                         ArrayRef<MachineOperand> MOs,
681                                         MachineBasicBlock::iterator InsertPt,
682                                         unsigned Size, Align Alignment) const;
683 
684   /// isFrameOperand - Return true and the FrameIndex if the specified
685   /// operand and follow operands form a reference to the stack frame.
686   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
687                       int &FrameIndex) const;
688 
689   /// Returns true iff the routine could find two commutable operands in the
690   /// given machine instruction with 3 vector inputs.
691   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
692   /// input values can be re-defined in this method only if the input values
693   /// are not pre-defined, which is designated by the special value
694   /// 'CommuteAnyOperandIndex' assigned to it.
695   /// If both of indices are pre-defined and refer to some operands, then the
696   /// method simply returns true if the corresponding operands are commutable
697   /// and returns false otherwise.
698   ///
699   /// For example, calling this method this way:
700   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
701   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
702   /// can be interpreted as a query asking to find an operand that would be
703   /// commutable with the operand#1.
704   ///
705   /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
706   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
707                                      unsigned &SrcOpIdx1,
708                                      unsigned &SrcOpIdx2,
709                                      bool IsIntrinsic = false) const;
710 
711   /// Returns true when instruction \p FlagI produces the same flags as \p OI.
712   /// The caller should pass in the results of calling analyzeCompare on \p OI:
713   /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
714   /// If the flags match \p OI as if it had the input operands swapped then the
715   /// function succeeds and sets \p IsSwapped to true.
716   ///
717   /// Examples of OI, FlagI pairs returning true:
718   ///   CMP %1, 42   and  CMP %1, 42
719   ///   CMP %1, %2   and  %3 = SUB %1, %2
720   ///   TEST %1, %1  and  %2 = SUB %1, 0
721   ///   CMP %1, %2   and  %3 = SUB %2, %1  ; IsSwapped=true
722   bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg,
723                             Register SrcReg2, int64_t ImmMask, int64_t ImmValue,
724                             const MachineInstr &OI, bool *IsSwapped,
725                             int64_t *ImmDelta) const;
726 };
727 
728 } // namespace llvm
729 
730 #endif
731