1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCExpr.h" 36 #include "llvm/MC/MCInst.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "x86-instr-info" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "X86GenInstrInfo.inc" 49 50 static cl::opt<bool> 51 NoFusing("disable-spill-fusing", 52 cl::desc("Disable fusing of spill code into instructions"), 53 cl::Hidden); 54 static cl::opt<bool> 55 PrintFailedFusing("print-failed-fuse-candidates", 56 cl::desc("Print instructions that the allocator wants to" 57 " fuse, but the X86 backend currently can't"), 58 cl::Hidden); 59 static cl::opt<bool> 60 ReMatPICStubLoad("remat-pic-stub-load", 61 cl::desc("Re-materialize load from stub in PIC mode"), 62 cl::init(false), cl::Hidden); 63 static cl::opt<unsigned> 64 PartialRegUpdateClearance("partial-reg-update-clearance", 65 cl::desc("Clearance between two register writes " 66 "for inserting XOR to avoid partial " 67 "register update"), 68 cl::init(64), cl::Hidden); 69 static cl::opt<unsigned> 70 UndefRegClearance("undef-reg-clearance", 71 cl::desc("How many idle instructions we would like before " 72 "certain undef register reads"), 73 cl::init(128), cl::Hidden); 74 75 76 // Pin the vtable to this file. 77 void X86InstrInfo::anchor() {} 78 79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 80 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 81 : X86::ADJCALLSTACKDOWN32), 82 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 83 : X86::ADJCALLSTACKUP32), 84 X86::CATCHRET, 85 (STI.is64Bit() ? X86::RETQ : X86::RETL)), 86 Subtarget(STI), RI(STI.getTargetTriple()) { 87 } 88 89 bool 90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 91 Register &SrcReg, Register &DstReg, 92 unsigned &SubIdx) const { 93 switch (MI.getOpcode()) { 94 default: break; 95 case X86::MOVSX16rr8: 96 case X86::MOVZX16rr8: 97 case X86::MOVSX32rr8: 98 case X86::MOVZX32rr8: 99 case X86::MOVSX64rr8: 100 if (!Subtarget.is64Bit()) 101 // It's not always legal to reference the low 8-bit of the larger 102 // register in 32-bit mode. 103 return false; 104 LLVM_FALLTHROUGH; 105 case X86::MOVSX32rr16: 106 case X86::MOVZX32rr16: 107 case X86::MOVSX64rr16: 108 case X86::MOVSX64rr32: { 109 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 110 // Be conservative. 111 return false; 112 SrcReg = MI.getOperand(1).getReg(); 113 DstReg = MI.getOperand(0).getReg(); 114 switch (MI.getOpcode()) { 115 default: llvm_unreachable("Unreachable!"); 116 case X86::MOVSX16rr8: 117 case X86::MOVZX16rr8: 118 case X86::MOVSX32rr8: 119 case X86::MOVZX32rr8: 120 case X86::MOVSX64rr8: 121 SubIdx = X86::sub_8bit; 122 break; 123 case X86::MOVSX32rr16: 124 case X86::MOVZX32rr16: 125 case X86::MOVSX64rr16: 126 SubIdx = X86::sub_16bit; 127 break; 128 case X86::MOVSX64rr32: 129 SubIdx = X86::sub_32bit; 130 break; 131 } 132 return true; 133 } 134 } 135 return false; 136 } 137 138 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { 139 switch (MI.getOpcode()) { 140 default: 141 // By default, assume that the instruction is not data invariant. 142 return false; 143 144 // Some target-independent operations that trivially lower to data-invariant 145 // instructions. 146 case TargetOpcode::COPY: 147 case TargetOpcode::INSERT_SUBREG: 148 case TargetOpcode::SUBREG_TO_REG: 149 return true; 150 151 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 152 // However, they set flags and are perhaps the most surprisingly constant 153 // time operations so we call them out here separately. 154 case X86::IMUL16rr: 155 case X86::IMUL16rri8: 156 case X86::IMUL16rri: 157 case X86::IMUL32rr: 158 case X86::IMUL32rri8: 159 case X86::IMUL32rri: 160 case X86::IMUL64rr: 161 case X86::IMUL64rri32: 162 case X86::IMUL64rri8: 163 164 // Bit scanning and counting instructions that are somewhat surprisingly 165 // constant time as they scan across bits and do other fairly complex 166 // operations like popcnt, but are believed to be constant time on x86. 167 // However, these set flags. 168 case X86::BSF16rr: 169 case X86::BSF32rr: 170 case X86::BSF64rr: 171 case X86::BSR16rr: 172 case X86::BSR32rr: 173 case X86::BSR64rr: 174 case X86::LZCNT16rr: 175 case X86::LZCNT32rr: 176 case X86::LZCNT64rr: 177 case X86::POPCNT16rr: 178 case X86::POPCNT32rr: 179 case X86::POPCNT64rr: 180 case X86::TZCNT16rr: 181 case X86::TZCNT32rr: 182 case X86::TZCNT64rr: 183 184 // Bit manipulation instructions are effectively combinations of basic 185 // arithmetic ops, and should still execute in constant time. These also 186 // set flags. 187 case X86::BLCFILL32rr: 188 case X86::BLCFILL64rr: 189 case X86::BLCI32rr: 190 case X86::BLCI64rr: 191 case X86::BLCIC32rr: 192 case X86::BLCIC64rr: 193 case X86::BLCMSK32rr: 194 case X86::BLCMSK64rr: 195 case X86::BLCS32rr: 196 case X86::BLCS64rr: 197 case X86::BLSFILL32rr: 198 case X86::BLSFILL64rr: 199 case X86::BLSI32rr: 200 case X86::BLSI64rr: 201 case X86::BLSIC32rr: 202 case X86::BLSIC64rr: 203 case X86::BLSMSK32rr: 204 case X86::BLSMSK64rr: 205 case X86::BLSR32rr: 206 case X86::BLSR64rr: 207 case X86::TZMSK32rr: 208 case X86::TZMSK64rr: 209 210 // Bit extracting and clearing instructions should execute in constant time, 211 // and set flags. 212 case X86::BEXTR32rr: 213 case X86::BEXTR64rr: 214 case X86::BEXTRI32ri: 215 case X86::BEXTRI64ri: 216 case X86::BZHI32rr: 217 case X86::BZHI64rr: 218 219 // Shift and rotate. 220 case X86::ROL8r1: 221 case X86::ROL16r1: 222 case X86::ROL32r1: 223 case X86::ROL64r1: 224 case X86::ROL8rCL: 225 case X86::ROL16rCL: 226 case X86::ROL32rCL: 227 case X86::ROL64rCL: 228 case X86::ROL8ri: 229 case X86::ROL16ri: 230 case X86::ROL32ri: 231 case X86::ROL64ri: 232 case X86::ROR8r1: 233 case X86::ROR16r1: 234 case X86::ROR32r1: 235 case X86::ROR64r1: 236 case X86::ROR8rCL: 237 case X86::ROR16rCL: 238 case X86::ROR32rCL: 239 case X86::ROR64rCL: 240 case X86::ROR8ri: 241 case X86::ROR16ri: 242 case X86::ROR32ri: 243 case X86::ROR64ri: 244 case X86::SAR8r1: 245 case X86::SAR16r1: 246 case X86::SAR32r1: 247 case X86::SAR64r1: 248 case X86::SAR8rCL: 249 case X86::SAR16rCL: 250 case X86::SAR32rCL: 251 case X86::SAR64rCL: 252 case X86::SAR8ri: 253 case X86::SAR16ri: 254 case X86::SAR32ri: 255 case X86::SAR64ri: 256 case X86::SHL8r1: 257 case X86::SHL16r1: 258 case X86::SHL32r1: 259 case X86::SHL64r1: 260 case X86::SHL8rCL: 261 case X86::SHL16rCL: 262 case X86::SHL32rCL: 263 case X86::SHL64rCL: 264 case X86::SHL8ri: 265 case X86::SHL16ri: 266 case X86::SHL32ri: 267 case X86::SHL64ri: 268 case X86::SHR8r1: 269 case X86::SHR16r1: 270 case X86::SHR32r1: 271 case X86::SHR64r1: 272 case X86::SHR8rCL: 273 case X86::SHR16rCL: 274 case X86::SHR32rCL: 275 case X86::SHR64rCL: 276 case X86::SHR8ri: 277 case X86::SHR16ri: 278 case X86::SHR32ri: 279 case X86::SHR64ri: 280 case X86::SHLD16rrCL: 281 case X86::SHLD32rrCL: 282 case X86::SHLD64rrCL: 283 case X86::SHLD16rri8: 284 case X86::SHLD32rri8: 285 case X86::SHLD64rri8: 286 case X86::SHRD16rrCL: 287 case X86::SHRD32rrCL: 288 case X86::SHRD64rrCL: 289 case X86::SHRD16rri8: 290 case X86::SHRD32rri8: 291 case X86::SHRD64rri8: 292 293 // Basic arithmetic is constant time on the input but does set flags. 294 case X86::ADC8rr: 295 case X86::ADC8ri: 296 case X86::ADC16rr: 297 case X86::ADC16ri: 298 case X86::ADC16ri8: 299 case X86::ADC32rr: 300 case X86::ADC32ri: 301 case X86::ADC32ri8: 302 case X86::ADC64rr: 303 case X86::ADC64ri8: 304 case X86::ADC64ri32: 305 case X86::ADD8rr: 306 case X86::ADD8ri: 307 case X86::ADD16rr: 308 case X86::ADD16ri: 309 case X86::ADD16ri8: 310 case X86::ADD32rr: 311 case X86::ADD32ri: 312 case X86::ADD32ri8: 313 case X86::ADD64rr: 314 case X86::ADD64ri8: 315 case X86::ADD64ri32: 316 case X86::AND8rr: 317 case X86::AND8ri: 318 case X86::AND16rr: 319 case X86::AND16ri: 320 case X86::AND16ri8: 321 case X86::AND32rr: 322 case X86::AND32ri: 323 case X86::AND32ri8: 324 case X86::AND64rr: 325 case X86::AND64ri8: 326 case X86::AND64ri32: 327 case X86::OR8rr: 328 case X86::OR8ri: 329 case X86::OR16rr: 330 case X86::OR16ri: 331 case X86::OR16ri8: 332 case X86::OR32rr: 333 case X86::OR32ri: 334 case X86::OR32ri8: 335 case X86::OR64rr: 336 case X86::OR64ri8: 337 case X86::OR64ri32: 338 case X86::SBB8rr: 339 case X86::SBB8ri: 340 case X86::SBB16rr: 341 case X86::SBB16ri: 342 case X86::SBB16ri8: 343 case X86::SBB32rr: 344 case X86::SBB32ri: 345 case X86::SBB32ri8: 346 case X86::SBB64rr: 347 case X86::SBB64ri8: 348 case X86::SBB64ri32: 349 case X86::SUB8rr: 350 case X86::SUB8ri: 351 case X86::SUB16rr: 352 case X86::SUB16ri: 353 case X86::SUB16ri8: 354 case X86::SUB32rr: 355 case X86::SUB32ri: 356 case X86::SUB32ri8: 357 case X86::SUB64rr: 358 case X86::SUB64ri8: 359 case X86::SUB64ri32: 360 case X86::XOR8rr: 361 case X86::XOR8ri: 362 case X86::XOR16rr: 363 case X86::XOR16ri: 364 case X86::XOR16ri8: 365 case X86::XOR32rr: 366 case X86::XOR32ri: 367 case X86::XOR32ri8: 368 case X86::XOR64rr: 369 case X86::XOR64ri8: 370 case X86::XOR64ri32: 371 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 372 case X86::ADCX32rr: 373 case X86::ADCX64rr: 374 case X86::ADOX32rr: 375 case X86::ADOX64rr: 376 case X86::ANDN32rr: 377 case X86::ANDN64rr: 378 // Unary arithmetic operations. 379 case X86::DEC8r: 380 case X86::DEC16r: 381 case X86::DEC32r: 382 case X86::DEC64r: 383 case X86::INC8r: 384 case X86::INC16r: 385 case X86::INC32r: 386 case X86::INC64r: 387 case X86::NEG8r: 388 case X86::NEG16r: 389 case X86::NEG32r: 390 case X86::NEG64r: 391 392 // Unlike other arithmetic, NOT doesn't set EFLAGS. 393 case X86::NOT8r: 394 case X86::NOT16r: 395 case X86::NOT32r: 396 case X86::NOT64r: 397 398 // Various move instructions used to zero or sign extend things. Note that we 399 // intentionally don't support the _NOREX variants as we can't handle that 400 // register constraint anyways. 401 case X86::MOVSX16rr8: 402 case X86::MOVSX32rr8: 403 case X86::MOVSX32rr16: 404 case X86::MOVSX64rr8: 405 case X86::MOVSX64rr16: 406 case X86::MOVSX64rr32: 407 case X86::MOVZX16rr8: 408 case X86::MOVZX32rr8: 409 case X86::MOVZX32rr16: 410 case X86::MOVZX64rr8: 411 case X86::MOVZX64rr16: 412 case X86::MOV32rr: 413 414 // Arithmetic instructions that are both constant time and don't set flags. 415 case X86::RORX32ri: 416 case X86::RORX64ri: 417 case X86::SARX32rr: 418 case X86::SARX64rr: 419 case X86::SHLX32rr: 420 case X86::SHLX64rr: 421 case X86::SHRX32rr: 422 case X86::SHRX64rr: 423 424 // LEA doesn't actually access memory, and its arithmetic is constant time. 425 case X86::LEA16r: 426 case X86::LEA32r: 427 case X86::LEA64_32r: 428 case X86::LEA64r: 429 return true; 430 } 431 } 432 433 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { 434 switch (MI.getOpcode()) { 435 default: 436 // By default, assume that the load will immediately leak. 437 return false; 438 439 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 440 // However, they set flags and are perhaps the most surprisingly constant 441 // time operations so we call them out here separately. 442 case X86::IMUL16rm: 443 case X86::IMUL16rmi8: 444 case X86::IMUL16rmi: 445 case X86::IMUL32rm: 446 case X86::IMUL32rmi8: 447 case X86::IMUL32rmi: 448 case X86::IMUL64rm: 449 case X86::IMUL64rmi32: 450 case X86::IMUL64rmi8: 451 452 // Bit scanning and counting instructions that are somewhat surprisingly 453 // constant time as they scan across bits and do other fairly complex 454 // operations like popcnt, but are believed to be constant time on x86. 455 // However, these set flags. 456 case X86::BSF16rm: 457 case X86::BSF32rm: 458 case X86::BSF64rm: 459 case X86::BSR16rm: 460 case X86::BSR32rm: 461 case X86::BSR64rm: 462 case X86::LZCNT16rm: 463 case X86::LZCNT32rm: 464 case X86::LZCNT64rm: 465 case X86::POPCNT16rm: 466 case X86::POPCNT32rm: 467 case X86::POPCNT64rm: 468 case X86::TZCNT16rm: 469 case X86::TZCNT32rm: 470 case X86::TZCNT64rm: 471 472 // Bit manipulation instructions are effectively combinations of basic 473 // arithmetic ops, and should still execute in constant time. These also 474 // set flags. 475 case X86::BLCFILL32rm: 476 case X86::BLCFILL64rm: 477 case X86::BLCI32rm: 478 case X86::BLCI64rm: 479 case X86::BLCIC32rm: 480 case X86::BLCIC64rm: 481 case X86::BLCMSK32rm: 482 case X86::BLCMSK64rm: 483 case X86::BLCS32rm: 484 case X86::BLCS64rm: 485 case X86::BLSFILL32rm: 486 case X86::BLSFILL64rm: 487 case X86::BLSI32rm: 488 case X86::BLSI64rm: 489 case X86::BLSIC32rm: 490 case X86::BLSIC64rm: 491 case X86::BLSMSK32rm: 492 case X86::BLSMSK64rm: 493 case X86::BLSR32rm: 494 case X86::BLSR64rm: 495 case X86::TZMSK32rm: 496 case X86::TZMSK64rm: 497 498 // Bit extracting and clearing instructions should execute in constant time, 499 // and set flags. 500 case X86::BEXTR32rm: 501 case X86::BEXTR64rm: 502 case X86::BEXTRI32mi: 503 case X86::BEXTRI64mi: 504 case X86::BZHI32rm: 505 case X86::BZHI64rm: 506 507 // Basic arithmetic is constant time on the input but does set flags. 508 case X86::ADC8rm: 509 case X86::ADC16rm: 510 case X86::ADC32rm: 511 case X86::ADC64rm: 512 case X86::ADCX32rm: 513 case X86::ADCX64rm: 514 case X86::ADD8rm: 515 case X86::ADD16rm: 516 case X86::ADD32rm: 517 case X86::ADD64rm: 518 case X86::ADOX32rm: 519 case X86::ADOX64rm: 520 case X86::AND8rm: 521 case X86::AND16rm: 522 case X86::AND32rm: 523 case X86::AND64rm: 524 case X86::ANDN32rm: 525 case X86::ANDN64rm: 526 case X86::OR8rm: 527 case X86::OR16rm: 528 case X86::OR32rm: 529 case X86::OR64rm: 530 case X86::SBB8rm: 531 case X86::SBB16rm: 532 case X86::SBB32rm: 533 case X86::SBB64rm: 534 case X86::SUB8rm: 535 case X86::SUB16rm: 536 case X86::SUB32rm: 537 case X86::SUB64rm: 538 case X86::XOR8rm: 539 case X86::XOR16rm: 540 case X86::XOR32rm: 541 case X86::XOR64rm: 542 543 // Integer multiply w/o affecting flags is still believed to be constant 544 // time on x86. Called out separately as this is among the most surprising 545 // instructions to exhibit that behavior. 546 case X86::MULX32rm: 547 case X86::MULX64rm: 548 549 // Arithmetic instructions that are both constant time and don't set flags. 550 case X86::RORX32mi: 551 case X86::RORX64mi: 552 case X86::SARX32rm: 553 case X86::SARX64rm: 554 case X86::SHLX32rm: 555 case X86::SHLX64rm: 556 case X86::SHRX32rm: 557 case X86::SHRX64rm: 558 559 // Conversions are believed to be constant time and don't set flags. 560 case X86::CVTTSD2SI64rm: 561 case X86::VCVTTSD2SI64rm: 562 case X86::VCVTTSD2SI64Zrm: 563 case X86::CVTTSD2SIrm: 564 case X86::VCVTTSD2SIrm: 565 case X86::VCVTTSD2SIZrm: 566 case X86::CVTTSS2SI64rm: 567 case X86::VCVTTSS2SI64rm: 568 case X86::VCVTTSS2SI64Zrm: 569 case X86::CVTTSS2SIrm: 570 case X86::VCVTTSS2SIrm: 571 case X86::VCVTTSS2SIZrm: 572 case X86::CVTSI2SDrm: 573 case X86::VCVTSI2SDrm: 574 case X86::VCVTSI2SDZrm: 575 case X86::CVTSI2SSrm: 576 case X86::VCVTSI2SSrm: 577 case X86::VCVTSI2SSZrm: 578 case X86::CVTSI642SDrm: 579 case X86::VCVTSI642SDrm: 580 case X86::VCVTSI642SDZrm: 581 case X86::CVTSI642SSrm: 582 case X86::VCVTSI642SSrm: 583 case X86::VCVTSI642SSZrm: 584 case X86::CVTSS2SDrm: 585 case X86::VCVTSS2SDrm: 586 case X86::VCVTSS2SDZrm: 587 case X86::CVTSD2SSrm: 588 case X86::VCVTSD2SSrm: 589 case X86::VCVTSD2SSZrm: 590 // AVX512 added unsigned integer conversions. 591 case X86::VCVTTSD2USI64Zrm: 592 case X86::VCVTTSD2USIZrm: 593 case X86::VCVTTSS2USI64Zrm: 594 case X86::VCVTTSS2USIZrm: 595 case X86::VCVTUSI2SDZrm: 596 case X86::VCVTUSI642SDZrm: 597 case X86::VCVTUSI2SSZrm: 598 case X86::VCVTUSI642SSZrm: 599 600 // Loads to register don't set flags. 601 case X86::MOV8rm: 602 case X86::MOV8rm_NOREX: 603 case X86::MOV16rm: 604 case X86::MOV32rm: 605 case X86::MOV64rm: 606 case X86::MOVSX16rm8: 607 case X86::MOVSX32rm16: 608 case X86::MOVSX32rm8: 609 case X86::MOVSX32rm8_NOREX: 610 case X86::MOVSX64rm16: 611 case X86::MOVSX64rm32: 612 case X86::MOVSX64rm8: 613 case X86::MOVZX16rm8: 614 case X86::MOVZX32rm16: 615 case X86::MOVZX32rm8: 616 case X86::MOVZX32rm8_NOREX: 617 case X86::MOVZX64rm16: 618 case X86::MOVZX64rm8: 619 return true; 620 } 621 } 622 623 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 624 const MachineFunction *MF = MI.getParent()->getParent(); 625 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 626 627 if (isFrameInstr(MI)) { 628 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); 629 SPAdj -= getFrameAdjustment(MI); 630 if (!isFrameSetup(MI)) 631 SPAdj = -SPAdj; 632 return SPAdj; 633 } 634 635 // To know whether a call adjusts the stack, we need information 636 // that is bound to the following ADJCALLSTACKUP pseudo. 637 // Look for the next ADJCALLSTACKUP that follows the call. 638 if (MI.isCall()) { 639 const MachineBasicBlock *MBB = MI.getParent(); 640 auto I = ++MachineBasicBlock::const_iterator(MI); 641 for (auto E = MBB->end(); I != E; ++I) { 642 if (I->getOpcode() == getCallFrameDestroyOpcode() || 643 I->isCall()) 644 break; 645 } 646 647 // If we could not find a frame destroy opcode, then it has already 648 // been simplified, so we don't care. 649 if (I->getOpcode() != getCallFrameDestroyOpcode()) 650 return 0; 651 652 return -(I->getOperand(1).getImm()); 653 } 654 655 // Currently handle only PUSHes we can reasonably expect to see 656 // in call sequences 657 switch (MI.getOpcode()) { 658 default: 659 return 0; 660 case X86::PUSH32i8: 661 case X86::PUSH32r: 662 case X86::PUSH32rmm: 663 case X86::PUSH32rmr: 664 case X86::PUSHi32: 665 return 4; 666 case X86::PUSH64i8: 667 case X86::PUSH64r: 668 case X86::PUSH64rmm: 669 case X86::PUSH64rmr: 670 case X86::PUSH64i32: 671 return 8; 672 } 673 } 674 675 /// Return true and the FrameIndex if the specified 676 /// operand and follow operands form a reference to the stack frame. 677 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 678 int &FrameIndex) const { 679 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 680 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 681 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 682 MI.getOperand(Op + X86::AddrDisp).isImm() && 683 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 684 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 685 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 686 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 687 return true; 688 } 689 return false; 690 } 691 692 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 693 switch (Opcode) { 694 default: 695 return false; 696 case X86::MOV8rm: 697 case X86::KMOVBkm: 698 MemBytes = 1; 699 return true; 700 case X86::MOV16rm: 701 case X86::KMOVWkm: 702 MemBytes = 2; 703 return true; 704 case X86::MOV32rm: 705 case X86::MOVSSrm: 706 case X86::MOVSSrm_alt: 707 case X86::VMOVSSrm: 708 case X86::VMOVSSrm_alt: 709 case X86::VMOVSSZrm: 710 case X86::VMOVSSZrm_alt: 711 case X86::KMOVDkm: 712 MemBytes = 4; 713 return true; 714 case X86::MOV64rm: 715 case X86::LD_Fp64m: 716 case X86::MOVSDrm: 717 case X86::MOVSDrm_alt: 718 case X86::VMOVSDrm: 719 case X86::VMOVSDrm_alt: 720 case X86::VMOVSDZrm: 721 case X86::VMOVSDZrm_alt: 722 case X86::MMX_MOVD64rm: 723 case X86::MMX_MOVQ64rm: 724 case X86::KMOVQkm: 725 MemBytes = 8; 726 return true; 727 case X86::MOVAPSrm: 728 case X86::MOVUPSrm: 729 case X86::MOVAPDrm: 730 case X86::MOVUPDrm: 731 case X86::MOVDQArm: 732 case X86::MOVDQUrm: 733 case X86::VMOVAPSrm: 734 case X86::VMOVUPSrm: 735 case X86::VMOVAPDrm: 736 case X86::VMOVUPDrm: 737 case X86::VMOVDQArm: 738 case X86::VMOVDQUrm: 739 case X86::VMOVAPSZ128rm: 740 case X86::VMOVUPSZ128rm: 741 case X86::VMOVAPSZ128rm_NOVLX: 742 case X86::VMOVUPSZ128rm_NOVLX: 743 case X86::VMOVAPDZ128rm: 744 case X86::VMOVUPDZ128rm: 745 case X86::VMOVDQU8Z128rm: 746 case X86::VMOVDQU16Z128rm: 747 case X86::VMOVDQA32Z128rm: 748 case X86::VMOVDQU32Z128rm: 749 case X86::VMOVDQA64Z128rm: 750 case X86::VMOVDQU64Z128rm: 751 MemBytes = 16; 752 return true; 753 case X86::VMOVAPSYrm: 754 case X86::VMOVUPSYrm: 755 case X86::VMOVAPDYrm: 756 case X86::VMOVUPDYrm: 757 case X86::VMOVDQAYrm: 758 case X86::VMOVDQUYrm: 759 case X86::VMOVAPSZ256rm: 760 case X86::VMOVUPSZ256rm: 761 case X86::VMOVAPSZ256rm_NOVLX: 762 case X86::VMOVUPSZ256rm_NOVLX: 763 case X86::VMOVAPDZ256rm: 764 case X86::VMOVUPDZ256rm: 765 case X86::VMOVDQU8Z256rm: 766 case X86::VMOVDQU16Z256rm: 767 case X86::VMOVDQA32Z256rm: 768 case X86::VMOVDQU32Z256rm: 769 case X86::VMOVDQA64Z256rm: 770 case X86::VMOVDQU64Z256rm: 771 MemBytes = 32; 772 return true; 773 case X86::VMOVAPSZrm: 774 case X86::VMOVUPSZrm: 775 case X86::VMOVAPDZrm: 776 case X86::VMOVUPDZrm: 777 case X86::VMOVDQU8Zrm: 778 case X86::VMOVDQU16Zrm: 779 case X86::VMOVDQA32Zrm: 780 case X86::VMOVDQU32Zrm: 781 case X86::VMOVDQA64Zrm: 782 case X86::VMOVDQU64Zrm: 783 MemBytes = 64; 784 return true; 785 } 786 } 787 788 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 789 switch (Opcode) { 790 default: 791 return false; 792 case X86::MOV8mr: 793 case X86::KMOVBmk: 794 MemBytes = 1; 795 return true; 796 case X86::MOV16mr: 797 case X86::KMOVWmk: 798 MemBytes = 2; 799 return true; 800 case X86::MOV32mr: 801 case X86::MOVSSmr: 802 case X86::VMOVSSmr: 803 case X86::VMOVSSZmr: 804 case X86::KMOVDmk: 805 MemBytes = 4; 806 return true; 807 case X86::MOV64mr: 808 case X86::ST_FpP64m: 809 case X86::MOVSDmr: 810 case X86::VMOVSDmr: 811 case X86::VMOVSDZmr: 812 case X86::MMX_MOVD64mr: 813 case X86::MMX_MOVQ64mr: 814 case X86::MMX_MOVNTQmr: 815 case X86::KMOVQmk: 816 MemBytes = 8; 817 return true; 818 case X86::MOVAPSmr: 819 case X86::MOVUPSmr: 820 case X86::MOVAPDmr: 821 case X86::MOVUPDmr: 822 case X86::MOVDQAmr: 823 case X86::MOVDQUmr: 824 case X86::VMOVAPSmr: 825 case X86::VMOVUPSmr: 826 case X86::VMOVAPDmr: 827 case X86::VMOVUPDmr: 828 case X86::VMOVDQAmr: 829 case X86::VMOVDQUmr: 830 case X86::VMOVUPSZ128mr: 831 case X86::VMOVAPSZ128mr: 832 case X86::VMOVUPSZ128mr_NOVLX: 833 case X86::VMOVAPSZ128mr_NOVLX: 834 case X86::VMOVUPDZ128mr: 835 case X86::VMOVAPDZ128mr: 836 case X86::VMOVDQA32Z128mr: 837 case X86::VMOVDQU32Z128mr: 838 case X86::VMOVDQA64Z128mr: 839 case X86::VMOVDQU64Z128mr: 840 case X86::VMOVDQU8Z128mr: 841 case X86::VMOVDQU16Z128mr: 842 MemBytes = 16; 843 return true; 844 case X86::VMOVUPSYmr: 845 case X86::VMOVAPSYmr: 846 case X86::VMOVUPDYmr: 847 case X86::VMOVAPDYmr: 848 case X86::VMOVDQUYmr: 849 case X86::VMOVDQAYmr: 850 case X86::VMOVUPSZ256mr: 851 case X86::VMOVAPSZ256mr: 852 case X86::VMOVUPSZ256mr_NOVLX: 853 case X86::VMOVAPSZ256mr_NOVLX: 854 case X86::VMOVUPDZ256mr: 855 case X86::VMOVAPDZ256mr: 856 case X86::VMOVDQU8Z256mr: 857 case X86::VMOVDQU16Z256mr: 858 case X86::VMOVDQA32Z256mr: 859 case X86::VMOVDQU32Z256mr: 860 case X86::VMOVDQA64Z256mr: 861 case X86::VMOVDQU64Z256mr: 862 MemBytes = 32; 863 return true; 864 case X86::VMOVUPSZmr: 865 case X86::VMOVAPSZmr: 866 case X86::VMOVUPDZmr: 867 case X86::VMOVAPDZmr: 868 case X86::VMOVDQU8Zmr: 869 case X86::VMOVDQU16Zmr: 870 case X86::VMOVDQA32Zmr: 871 case X86::VMOVDQU32Zmr: 872 case X86::VMOVDQA64Zmr: 873 case X86::VMOVDQU64Zmr: 874 MemBytes = 64; 875 return true; 876 } 877 return false; 878 } 879 880 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 881 int &FrameIndex) const { 882 unsigned Dummy; 883 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 884 } 885 886 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 887 int &FrameIndex, 888 unsigned &MemBytes) const { 889 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 890 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 891 return MI.getOperand(0).getReg(); 892 return 0; 893 } 894 895 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 896 int &FrameIndex) const { 897 unsigned Dummy; 898 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 899 unsigned Reg; 900 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 901 return Reg; 902 // Check for post-frame index elimination operations 903 SmallVector<const MachineMemOperand *, 1> Accesses; 904 if (hasLoadFromStackSlot(MI, Accesses)) { 905 FrameIndex = 906 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 907 ->getFrameIndex(); 908 return MI.getOperand(0).getReg(); 909 } 910 } 911 return 0; 912 } 913 914 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 915 int &FrameIndex) const { 916 unsigned Dummy; 917 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 918 } 919 920 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 921 int &FrameIndex, 922 unsigned &MemBytes) const { 923 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 924 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 925 isFrameOperand(MI, 0, FrameIndex)) 926 return MI.getOperand(X86::AddrNumOperands).getReg(); 927 return 0; 928 } 929 930 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 931 int &FrameIndex) const { 932 unsigned Dummy; 933 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 934 unsigned Reg; 935 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 936 return Reg; 937 // Check for post-frame index elimination operations 938 SmallVector<const MachineMemOperand *, 1> Accesses; 939 if (hasStoreToStackSlot(MI, Accesses)) { 940 FrameIndex = 941 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 942 ->getFrameIndex(); 943 return MI.getOperand(X86::AddrNumOperands).getReg(); 944 } 945 } 946 return 0; 947 } 948 949 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 950 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { 951 // Don't waste compile time scanning use-def chains of physregs. 952 if (!BaseReg.isVirtual()) 953 return false; 954 bool isPICBase = false; 955 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 956 E = MRI.def_instr_end(); I != E; ++I) { 957 MachineInstr *DefMI = &*I; 958 if (DefMI->getOpcode() != X86::MOVPC32r) 959 return false; 960 assert(!isPICBase && "More than one PIC base?"); 961 isPICBase = true; 962 } 963 return isPICBase; 964 } 965 966 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 967 AAResults *AA) const { 968 switch (MI.getOpcode()) { 969 default: 970 // This function should only be called for opcodes with the ReMaterializable 971 // flag set. 972 llvm_unreachable("Unknown rematerializable operation!"); 973 break; 974 975 case X86::LOAD_STACK_GUARD: 976 case X86::AVX1_SETALLONES: 977 case X86::AVX2_SETALLONES: 978 case X86::AVX512_128_SET0: 979 case X86::AVX512_256_SET0: 980 case X86::AVX512_512_SET0: 981 case X86::AVX512_512_SETALLONES: 982 case X86::AVX512_FsFLD0SD: 983 case X86::AVX512_FsFLD0SS: 984 case X86::AVX512_FsFLD0F128: 985 case X86::AVX_SET0: 986 case X86::FsFLD0SD: 987 case X86::FsFLD0SS: 988 case X86::FsFLD0F128: 989 case X86::KSET0D: 990 case X86::KSET0Q: 991 case X86::KSET0W: 992 case X86::KSET1D: 993 case X86::KSET1Q: 994 case X86::KSET1W: 995 case X86::MMX_SET0: 996 case X86::MOV32ImmSExti8: 997 case X86::MOV32r0: 998 case X86::MOV32r1: 999 case X86::MOV32r_1: 1000 case X86::MOV32ri64: 1001 case X86::MOV64ImmSExti8: 1002 case X86::V_SET0: 1003 case X86::V_SETALLONES: 1004 case X86::MOV16ri: 1005 case X86::MOV32ri: 1006 case X86::MOV64ri: 1007 case X86::MOV64ri32: 1008 case X86::MOV8ri: 1009 case X86::PTILEZEROV: 1010 return true; 1011 1012 case X86::MOV8rm: 1013 case X86::MOV8rm_NOREX: 1014 case X86::MOV16rm: 1015 case X86::MOV32rm: 1016 case X86::MOV64rm: 1017 case X86::MOVSSrm: 1018 case X86::MOVSSrm_alt: 1019 case X86::MOVSDrm: 1020 case X86::MOVSDrm_alt: 1021 case X86::MOVAPSrm: 1022 case X86::MOVUPSrm: 1023 case X86::MOVAPDrm: 1024 case X86::MOVUPDrm: 1025 case X86::MOVDQArm: 1026 case X86::MOVDQUrm: 1027 case X86::VMOVSSrm: 1028 case X86::VMOVSSrm_alt: 1029 case X86::VMOVSDrm: 1030 case X86::VMOVSDrm_alt: 1031 case X86::VMOVAPSrm: 1032 case X86::VMOVUPSrm: 1033 case X86::VMOVAPDrm: 1034 case X86::VMOVUPDrm: 1035 case X86::VMOVDQArm: 1036 case X86::VMOVDQUrm: 1037 case X86::VMOVAPSYrm: 1038 case X86::VMOVUPSYrm: 1039 case X86::VMOVAPDYrm: 1040 case X86::VMOVUPDYrm: 1041 case X86::VMOVDQAYrm: 1042 case X86::VMOVDQUYrm: 1043 case X86::MMX_MOVD64rm: 1044 case X86::MMX_MOVQ64rm: 1045 // AVX-512 1046 case X86::VMOVSSZrm: 1047 case X86::VMOVSSZrm_alt: 1048 case X86::VMOVSDZrm: 1049 case X86::VMOVSDZrm_alt: 1050 case X86::VMOVAPDZ128rm: 1051 case X86::VMOVAPDZ256rm: 1052 case X86::VMOVAPDZrm: 1053 case X86::VMOVAPSZ128rm: 1054 case X86::VMOVAPSZ256rm: 1055 case X86::VMOVAPSZ128rm_NOVLX: 1056 case X86::VMOVAPSZ256rm_NOVLX: 1057 case X86::VMOVAPSZrm: 1058 case X86::VMOVDQA32Z128rm: 1059 case X86::VMOVDQA32Z256rm: 1060 case X86::VMOVDQA32Zrm: 1061 case X86::VMOVDQA64Z128rm: 1062 case X86::VMOVDQA64Z256rm: 1063 case X86::VMOVDQA64Zrm: 1064 case X86::VMOVDQU16Z128rm: 1065 case X86::VMOVDQU16Z256rm: 1066 case X86::VMOVDQU16Zrm: 1067 case X86::VMOVDQU32Z128rm: 1068 case X86::VMOVDQU32Z256rm: 1069 case X86::VMOVDQU32Zrm: 1070 case X86::VMOVDQU64Z128rm: 1071 case X86::VMOVDQU64Z256rm: 1072 case X86::VMOVDQU64Zrm: 1073 case X86::VMOVDQU8Z128rm: 1074 case X86::VMOVDQU8Z256rm: 1075 case X86::VMOVDQU8Zrm: 1076 case X86::VMOVUPDZ128rm: 1077 case X86::VMOVUPDZ256rm: 1078 case X86::VMOVUPDZrm: 1079 case X86::VMOVUPSZ128rm: 1080 case X86::VMOVUPSZ256rm: 1081 case X86::VMOVUPSZ128rm_NOVLX: 1082 case X86::VMOVUPSZ256rm_NOVLX: 1083 case X86::VMOVUPSZrm: { 1084 // Loads from constant pools are trivially rematerializable. 1085 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 1086 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 1087 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 1088 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 1089 MI.isDereferenceableInvariantLoad(AA)) { 1090 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 1091 if (BaseReg == 0 || BaseReg == X86::RIP) 1092 return true; 1093 // Allow re-materialization of PIC load. 1094 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) 1095 return false; 1096 const MachineFunction &MF = *MI.getParent()->getParent(); 1097 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1098 return regIsPICBase(BaseReg, MRI); 1099 } 1100 return false; 1101 } 1102 1103 case X86::LEA32r: 1104 case X86::LEA64r: { 1105 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 1106 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 1107 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 1108 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 1109 // lea fi#, lea GV, etc. are all rematerializable. 1110 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 1111 return true; 1112 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 1113 if (BaseReg == 0) 1114 return true; 1115 // Allow re-materialization of lea PICBase + x. 1116 const MachineFunction &MF = *MI.getParent()->getParent(); 1117 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1118 return regIsPICBase(BaseReg, MRI); 1119 } 1120 return false; 1121 } 1122 } 1123 } 1124 1125 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 1126 MachineBasicBlock::iterator I, 1127 Register DestReg, unsigned SubIdx, 1128 const MachineInstr &Orig, 1129 const TargetRegisterInfo &TRI) const { 1130 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 1131 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != 1132 MachineBasicBlock::LQR_Dead) { 1133 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 1134 // effects. 1135 int Value; 1136 switch (Orig.getOpcode()) { 1137 case X86::MOV32r0: Value = 0; break; 1138 case X86::MOV32r1: Value = 1; break; 1139 case X86::MOV32r_1: Value = -1; break; 1140 default: 1141 llvm_unreachable("Unexpected instruction!"); 1142 } 1143 1144 const DebugLoc &DL = Orig.getDebugLoc(); 1145 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 1146 .add(Orig.getOperand(0)) 1147 .addImm(Value); 1148 } else { 1149 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1150 MBB.insert(I, MI); 1151 } 1152 1153 MachineInstr &NewMI = *std::prev(I); 1154 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1155 } 1156 1157 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 1158 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 1159 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1160 MachineOperand &MO = MI.getOperand(i); 1161 if (MO.isReg() && MO.isDef() && 1162 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 1163 return true; 1164 } 1165 } 1166 return false; 1167 } 1168 1169 /// Check whether the shift count for a machine operand is non-zero. 1170 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 1171 unsigned ShiftAmtOperandIdx) { 1172 // The shift count is six bits with the REX.W prefix and five bits without. 1173 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 1174 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 1175 return Imm & ShiftCountMask; 1176 } 1177 1178 /// Check whether the given shift count is appropriate 1179 /// can be represented by a LEA instruction. 1180 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 1181 // Left shift instructions can be transformed into load-effective-address 1182 // instructions if we can encode them appropriately. 1183 // A LEA instruction utilizes a SIB byte to encode its scale factor. 1184 // The SIB.scale field is two bits wide which means that we can encode any 1185 // shift amount less than 4. 1186 return ShAmt < 4 && ShAmt > 0; 1187 } 1188 1189 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 1190 unsigned Opc, bool AllowSP, Register &NewSrc, 1191 bool &isKill, MachineOperand &ImplicitOp, 1192 LiveVariables *LV) const { 1193 MachineFunction &MF = *MI.getParent()->getParent(); 1194 const TargetRegisterClass *RC; 1195 if (AllowSP) { 1196 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 1197 } else { 1198 RC = Opc != X86::LEA32r ? 1199 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 1200 } 1201 Register SrcReg = Src.getReg(); 1202 1203 // For both LEA64 and LEA32 the register already has essentially the right 1204 // type (32-bit or 64-bit) we may just need to forbid SP. 1205 if (Opc != X86::LEA64_32r) { 1206 NewSrc = SrcReg; 1207 isKill = Src.isKill(); 1208 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1209 1210 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 1211 return false; 1212 1213 return true; 1214 } 1215 1216 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 1217 // another we need to add 64-bit registers to the final MI. 1218 if (SrcReg.isPhysical()) { 1219 ImplicitOp = Src; 1220 ImplicitOp.setImplicit(); 1221 1222 NewSrc = getX86SubSuperRegister(Src.getReg(), 64); 1223 isKill = Src.isKill(); 1224 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1225 } else { 1226 // Virtual register of the wrong class, we have to create a temporary 64-bit 1227 // vreg to feed into the LEA. 1228 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 1229 MachineInstr *Copy = 1230 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1231 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 1232 .add(Src); 1233 1234 // Which is obviously going to be dead after we're done with it. 1235 isKill = true; 1236 1237 if (LV) 1238 LV->replaceKillInstruction(SrcReg, MI, *Copy); 1239 } 1240 1241 // We've set all the parameters without issue. 1242 return true; 1243 } 1244 1245 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( 1246 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, 1247 LiveVariables *LV, bool Is8BitOp) const { 1248 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 1249 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 1250 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 1251 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 1252 "Unexpected type for LEA transform"); 1253 1254 // TODO: For a 32-bit target, we need to adjust the LEA variables with 1255 // something like this: 1256 // Opcode = X86::LEA32r; 1257 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1258 // OutRegLEA = 1259 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 1260 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 1261 if (!Subtarget.is64Bit()) 1262 return nullptr; 1263 1264 unsigned Opcode = X86::LEA64_32r; 1265 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1266 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1267 1268 // Build and insert into an implicit UNDEF value. This is OK because 1269 // we will be shifting and then extracting the lower 8/16-bits. 1270 // This has the potential to cause partial register stall. e.g. 1271 // movw (%rbp,%rcx,2), %dx 1272 // leal -65(%rdx), %esi 1273 // But testing has shown this *does* help performance in 64-bit mode (at 1274 // least on modern x86 machines). 1275 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1276 Register Dest = MI.getOperand(0).getReg(); 1277 Register Src = MI.getOperand(1).getReg(); 1278 bool IsDead = MI.getOperand(0).isDead(); 1279 bool IsKill = MI.getOperand(1).isKill(); 1280 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 1281 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 1282 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 1283 MachineInstr *InsMI = 1284 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1285 .addReg(InRegLEA, RegState::Define, SubReg) 1286 .addReg(Src, getKillRegState(IsKill)); 1287 1288 MachineInstrBuilder MIB = 1289 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 1290 switch (MIOpc) { 1291 default: llvm_unreachable("Unreachable!"); 1292 case X86::SHL8ri: 1293 case X86::SHL16ri: { 1294 unsigned ShAmt = MI.getOperand(2).getImm(); 1295 MIB.addReg(0).addImm(1ULL << ShAmt) 1296 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0); 1297 break; 1298 } 1299 case X86::INC8r: 1300 case X86::INC16r: 1301 addRegOffset(MIB, InRegLEA, true, 1); 1302 break; 1303 case X86::DEC8r: 1304 case X86::DEC16r: 1305 addRegOffset(MIB, InRegLEA, true, -1); 1306 break; 1307 case X86::ADD8ri: 1308 case X86::ADD8ri_DB: 1309 case X86::ADD16ri: 1310 case X86::ADD16ri8: 1311 case X86::ADD16ri_DB: 1312 case X86::ADD16ri8_DB: 1313 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 1314 break; 1315 case X86::ADD8rr: 1316 case X86::ADD8rr_DB: 1317 case X86::ADD16rr: 1318 case X86::ADD16rr_DB: { 1319 Register Src2 = MI.getOperand(2).getReg(); 1320 bool IsKill2 = MI.getOperand(2).isKill(); 1321 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 1322 unsigned InRegLEA2 = 0; 1323 MachineInstr *InsMI2 = nullptr; 1324 if (Src == Src2) { 1325 // ADD8rr/ADD16rr killed %reg1028, %reg1028 1326 // just a single insert_subreg. 1327 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 1328 } else { 1329 if (Subtarget.is64Bit()) 1330 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1331 else 1332 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1333 // Build and insert into an implicit UNDEF value. This is OK because 1334 // we will be shifting and then extracting the lower 8/16-bits. 1335 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2); 1336 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1337 .addReg(InRegLEA2, RegState::Define, SubReg) 1338 .addReg(Src2, getKillRegState(IsKill2)); 1339 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 1340 } 1341 if (LV && IsKill2 && InsMI2) 1342 LV->replaceKillInstruction(Src2, MI, *InsMI2); 1343 break; 1344 } 1345 } 1346 1347 MachineInstr *NewMI = MIB; 1348 MachineInstr *ExtMI = 1349 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1350 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 1351 .addReg(OutRegLEA, RegState::Kill, SubReg); 1352 1353 if (LV) { 1354 // Update live variables. 1355 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 1356 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 1357 if (IsKill) 1358 LV->replaceKillInstruction(Src, MI, *InsMI); 1359 if (IsDead) 1360 LV->replaceKillInstruction(Dest, MI, *ExtMI); 1361 } 1362 1363 return ExtMI; 1364 } 1365 1366 /// This method must be implemented by targets that 1367 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1368 /// may be able to convert a two-address instruction into a true 1369 /// three-address instruction on demand. This allows the X86 target (for 1370 /// example) to convert ADD and SHL instructions into LEA instructions if they 1371 /// would require register copies due to two-addressness. 1372 /// 1373 /// This method returns a null pointer if the transformation cannot be 1374 /// performed, otherwise it returns the new instruction. 1375 /// 1376 MachineInstr * 1377 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 1378 MachineInstr &MI, LiveVariables *LV) const { 1379 // The following opcodes also sets the condition code register(s). Only 1380 // convert them to equivalent lea if the condition code register def's 1381 // are dead! 1382 if (hasLiveCondCodeDef(MI)) 1383 return nullptr; 1384 1385 MachineFunction &MF = *MI.getParent()->getParent(); 1386 // All instructions input are two-addr instructions. Get the known operands. 1387 const MachineOperand &Dest = MI.getOperand(0); 1388 const MachineOperand &Src = MI.getOperand(1); 1389 1390 // Ideally, operations with undef should be folded before we get here, but we 1391 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 1392 // Without this, we have to forward undef state to new register operands to 1393 // avoid machine verifier errors. 1394 if (Src.isUndef()) 1395 return nullptr; 1396 if (MI.getNumOperands() > 2) 1397 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 1398 return nullptr; 1399 1400 MachineInstr *NewMI = nullptr; 1401 bool Is64Bit = Subtarget.is64Bit(); 1402 1403 bool Is8BitOp = false; 1404 unsigned MIOpc = MI.getOpcode(); 1405 switch (MIOpc) { 1406 default: llvm_unreachable("Unreachable!"); 1407 case X86::SHL64ri: { 1408 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1409 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1410 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1411 1412 // LEA can't handle RSP. 1413 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( 1414 Src.getReg(), &X86::GR64_NOSPRegClass)) 1415 return nullptr; 1416 1417 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 1418 .add(Dest) 1419 .addReg(0) 1420 .addImm(1ULL << ShAmt) 1421 .add(Src) 1422 .addImm(0) 1423 .addReg(0); 1424 break; 1425 } 1426 case X86::SHL32ri: { 1427 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1428 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1429 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1430 1431 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1432 1433 // LEA can't handle ESP. 1434 bool isKill; 1435 Register SrcReg; 1436 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1437 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 1438 SrcReg, isKill, ImplicitOp, LV)) 1439 return nullptr; 1440 1441 MachineInstrBuilder MIB = 1442 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1443 .add(Dest) 1444 .addReg(0) 1445 .addImm(1ULL << ShAmt) 1446 .addReg(SrcReg, getKillRegState(isKill)) 1447 .addImm(0) 1448 .addReg(0); 1449 if (ImplicitOp.getReg() != 0) 1450 MIB.add(ImplicitOp); 1451 NewMI = MIB; 1452 1453 break; 1454 } 1455 case X86::SHL8ri: 1456 Is8BitOp = true; 1457 LLVM_FALLTHROUGH; 1458 case X86::SHL16ri: { 1459 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1460 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1461 if (!isTruncatedShiftCountForLEA(ShAmt)) 1462 return nullptr; 1463 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1464 } 1465 case X86::INC64r: 1466 case X86::INC32r: { 1467 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 1468 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : 1469 (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1470 bool isKill; 1471 Register SrcReg; 1472 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1473 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 1474 ImplicitOp, LV)) 1475 return nullptr; 1476 1477 MachineInstrBuilder MIB = 1478 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1479 .add(Dest) 1480 .addReg(SrcReg, getKillRegState(isKill)); 1481 if (ImplicitOp.getReg() != 0) 1482 MIB.add(ImplicitOp); 1483 1484 NewMI = addOffset(MIB, 1); 1485 break; 1486 } 1487 case X86::DEC64r: 1488 case X86::DEC32r: { 1489 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 1490 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1491 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1492 1493 bool isKill; 1494 Register SrcReg; 1495 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1496 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 1497 ImplicitOp, LV)) 1498 return nullptr; 1499 1500 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1501 .add(Dest) 1502 .addReg(SrcReg, getKillRegState(isKill)); 1503 if (ImplicitOp.getReg() != 0) 1504 MIB.add(ImplicitOp); 1505 1506 NewMI = addOffset(MIB, -1); 1507 1508 break; 1509 } 1510 case X86::DEC8r: 1511 case X86::INC8r: 1512 Is8BitOp = true; 1513 LLVM_FALLTHROUGH; 1514 case X86::DEC16r: 1515 case X86::INC16r: 1516 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1517 case X86::ADD64rr: 1518 case X86::ADD64rr_DB: 1519 case X86::ADD32rr: 1520 case X86::ADD32rr_DB: { 1521 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1522 unsigned Opc; 1523 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1524 Opc = X86::LEA64r; 1525 else 1526 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1527 1528 bool isKill; 1529 Register SrcReg; 1530 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1531 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1532 SrcReg, isKill, ImplicitOp, LV)) 1533 return nullptr; 1534 1535 const MachineOperand &Src2 = MI.getOperand(2); 1536 bool isKill2; 1537 Register SrcReg2; 1538 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1539 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, 1540 SrcReg2, isKill2, ImplicitOp2, LV)) 1541 return nullptr; 1542 1543 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1544 if (ImplicitOp.getReg() != 0) 1545 MIB.add(ImplicitOp); 1546 if (ImplicitOp2.getReg() != 0) 1547 MIB.add(ImplicitOp2); 1548 1549 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1550 if (LV && Src2.isKill()) 1551 LV->replaceKillInstruction(SrcReg2, MI, *NewMI); 1552 break; 1553 } 1554 case X86::ADD8rr: 1555 case X86::ADD8rr_DB: 1556 Is8BitOp = true; 1557 LLVM_FALLTHROUGH; 1558 case X86::ADD16rr: 1559 case X86::ADD16rr_DB: 1560 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1561 case X86::ADD64ri32: 1562 case X86::ADD64ri8: 1563 case X86::ADD64ri32_DB: 1564 case X86::ADD64ri8_DB: 1565 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1566 NewMI = addOffset( 1567 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1568 MI.getOperand(2)); 1569 break; 1570 case X86::ADD32ri: 1571 case X86::ADD32ri8: 1572 case X86::ADD32ri_DB: 1573 case X86::ADD32ri8_DB: { 1574 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1575 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1576 1577 bool isKill; 1578 Register SrcReg; 1579 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1580 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1581 SrcReg, isKill, ImplicitOp, LV)) 1582 return nullptr; 1583 1584 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1585 .add(Dest) 1586 .addReg(SrcReg, getKillRegState(isKill)); 1587 if (ImplicitOp.getReg() != 0) 1588 MIB.add(ImplicitOp); 1589 1590 NewMI = addOffset(MIB, MI.getOperand(2)); 1591 break; 1592 } 1593 case X86::ADD8ri: 1594 case X86::ADD8ri_DB: 1595 Is8BitOp = true; 1596 LLVM_FALLTHROUGH; 1597 case X86::ADD16ri: 1598 case X86::ADD16ri8: 1599 case X86::ADD16ri_DB: 1600 case X86::ADD16ri8_DB: 1601 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1602 case X86::SUB8ri: 1603 case X86::SUB16ri8: 1604 case X86::SUB16ri: 1605 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1606 return nullptr; 1607 case X86::SUB32ri8: 1608 case X86::SUB32ri: { 1609 if (!MI.getOperand(2).isImm()) 1610 return nullptr; 1611 int64_t Imm = MI.getOperand(2).getImm(); 1612 if (!isInt<32>(-Imm)) 1613 return nullptr; 1614 1615 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1616 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1617 1618 bool isKill; 1619 Register SrcReg; 1620 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1621 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1622 SrcReg, isKill, ImplicitOp, LV)) 1623 return nullptr; 1624 1625 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1626 .add(Dest) 1627 .addReg(SrcReg, getKillRegState(isKill)); 1628 if (ImplicitOp.getReg() != 0) 1629 MIB.add(ImplicitOp); 1630 1631 NewMI = addOffset(MIB, -Imm); 1632 break; 1633 } 1634 1635 case X86::SUB64ri8: 1636 case X86::SUB64ri32: { 1637 if (!MI.getOperand(2).isImm()) 1638 return nullptr; 1639 int64_t Imm = MI.getOperand(2).getImm(); 1640 if (!isInt<32>(-Imm)) 1641 return nullptr; 1642 1643 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1644 1645 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), 1646 get(X86::LEA64r)).add(Dest).add(Src); 1647 NewMI = addOffset(MIB, -Imm); 1648 break; 1649 } 1650 1651 case X86::VMOVDQU8Z128rmk: 1652 case X86::VMOVDQU8Z256rmk: 1653 case X86::VMOVDQU8Zrmk: 1654 case X86::VMOVDQU16Z128rmk: 1655 case X86::VMOVDQU16Z256rmk: 1656 case X86::VMOVDQU16Zrmk: 1657 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: 1658 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: 1659 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: 1660 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: 1661 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: 1662 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: 1663 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: 1664 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: 1665 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: 1666 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: 1667 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: 1668 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: 1669 case X86::VBROADCASTSDZ256rmk: 1670 case X86::VBROADCASTSDZrmk: 1671 case X86::VBROADCASTSSZ128rmk: 1672 case X86::VBROADCASTSSZ256rmk: 1673 case X86::VBROADCASTSSZrmk: 1674 case X86::VPBROADCASTDZ128rmk: 1675 case X86::VPBROADCASTDZ256rmk: 1676 case X86::VPBROADCASTDZrmk: 1677 case X86::VPBROADCASTQZ128rmk: 1678 case X86::VPBROADCASTQZ256rmk: 1679 case X86::VPBROADCASTQZrmk: { 1680 unsigned Opc; 1681 switch (MIOpc) { 1682 default: llvm_unreachable("Unreachable!"); 1683 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; 1684 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; 1685 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; 1686 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; 1687 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; 1688 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; 1689 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1690 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1691 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1692 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1693 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1694 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1695 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1696 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1697 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1698 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1699 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1700 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1701 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1702 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1703 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1704 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1705 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1706 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1707 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1708 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1709 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1710 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1711 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1712 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1713 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break; 1714 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break; 1715 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break; 1716 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break; 1717 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break; 1718 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break; 1719 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break; 1720 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break; 1721 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break; 1722 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break; 1723 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break; 1724 } 1725 1726 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1727 .add(Dest) 1728 .add(MI.getOperand(2)) 1729 .add(Src) 1730 .add(MI.getOperand(3)) 1731 .add(MI.getOperand(4)) 1732 .add(MI.getOperand(5)) 1733 .add(MI.getOperand(6)) 1734 .add(MI.getOperand(7)); 1735 break; 1736 } 1737 1738 case X86::VMOVDQU8Z128rrk: 1739 case X86::VMOVDQU8Z256rrk: 1740 case X86::VMOVDQU8Zrrk: 1741 case X86::VMOVDQU16Z128rrk: 1742 case X86::VMOVDQU16Z256rrk: 1743 case X86::VMOVDQU16Zrrk: 1744 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: 1745 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: 1746 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: 1747 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: 1748 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: 1749 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: 1750 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: 1751 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: 1752 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: 1753 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: 1754 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: 1755 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { 1756 unsigned Opc; 1757 switch (MIOpc) { 1758 default: llvm_unreachable("Unreachable!"); 1759 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; 1760 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; 1761 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; 1762 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; 1763 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; 1764 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; 1765 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1766 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1767 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1768 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1769 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1770 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1771 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1772 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1773 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1774 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1775 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1776 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1777 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1778 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1779 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1780 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1781 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1782 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1783 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1784 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1785 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1786 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1787 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1788 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1789 } 1790 1791 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1792 .add(Dest) 1793 .add(MI.getOperand(2)) 1794 .add(Src) 1795 .add(MI.getOperand(3)); 1796 break; 1797 } 1798 } 1799 1800 if (!NewMI) return nullptr; 1801 1802 if (LV) { // Update live variables 1803 if (Src.isKill()) 1804 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); 1805 if (Dest.isDead()) 1806 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); 1807 } 1808 1809 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst 1810 return NewMI; 1811 } 1812 1813 /// This determines which of three possible cases of a three source commute 1814 /// the source indexes correspond to taking into account any mask operands. 1815 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 1816 /// possible. 1817 /// Case 0 - Possible to commute the first and second operands. 1818 /// Case 1 - Possible to commute the first and third operands. 1819 /// Case 2 - Possible to commute the second and third operands. 1820 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 1821 unsigned SrcOpIdx2) { 1822 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 1823 if (SrcOpIdx1 > SrcOpIdx2) 1824 std::swap(SrcOpIdx1, SrcOpIdx2); 1825 1826 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 1827 if (X86II::isKMasked(TSFlags)) { 1828 Op2++; 1829 Op3++; 1830 } 1831 1832 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 1833 return 0; 1834 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 1835 return 1; 1836 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 1837 return 2; 1838 llvm_unreachable("Unknown three src commute case."); 1839 } 1840 1841 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 1842 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 1843 const X86InstrFMA3Group &FMA3Group) const { 1844 1845 unsigned Opc = MI.getOpcode(); 1846 1847 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 1848 // analysis. The commute optimization is legal only if all users of FMA*_Int 1849 // use only the lowest element of the FMA*_Int instruction. Such analysis are 1850 // not implemented yet. So, just return 0 in that case. 1851 // When such analysis are available this place will be the right place for 1852 // calling it. 1853 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 1854 "Intrinsic instructions can't commute operand 1"); 1855 1856 // Determine which case this commute is or if it can't be done. 1857 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1858 SrcOpIdx2); 1859 assert(Case < 3 && "Unexpected case number!"); 1860 1861 // Define the FMA forms mapping array that helps to map input FMA form 1862 // to output FMA form to preserve the operation semantics after 1863 // commuting the operands. 1864 const unsigned Form132Index = 0; 1865 const unsigned Form213Index = 1; 1866 const unsigned Form231Index = 2; 1867 static const unsigned FormMapping[][3] = { 1868 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 1869 // FMA132 A, C, b; ==> FMA231 C, A, b; 1870 // FMA213 B, A, c; ==> FMA213 A, B, c; 1871 // FMA231 C, A, b; ==> FMA132 A, C, b; 1872 { Form231Index, Form213Index, Form132Index }, 1873 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 1874 // FMA132 A, c, B; ==> FMA132 B, c, A; 1875 // FMA213 B, a, C; ==> FMA231 C, a, B; 1876 // FMA231 C, a, B; ==> FMA213 B, a, C; 1877 { Form132Index, Form231Index, Form213Index }, 1878 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 1879 // FMA132 a, C, B; ==> FMA213 a, B, C; 1880 // FMA213 b, A, C; ==> FMA132 b, C, A; 1881 // FMA231 c, A, B; ==> FMA231 c, B, A; 1882 { Form213Index, Form132Index, Form231Index } 1883 }; 1884 1885 unsigned FMAForms[3]; 1886 FMAForms[0] = FMA3Group.get132Opcode(); 1887 FMAForms[1] = FMA3Group.get213Opcode(); 1888 FMAForms[2] = FMA3Group.get231Opcode(); 1889 unsigned FormIndex; 1890 for (FormIndex = 0; FormIndex < 3; FormIndex++) 1891 if (Opc == FMAForms[FormIndex]) 1892 break; 1893 1894 // Everything is ready, just adjust the FMA opcode and return it. 1895 FormIndex = FormMapping[Case][FormIndex]; 1896 return FMAForms[FormIndex]; 1897 } 1898 1899 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 1900 unsigned SrcOpIdx2) { 1901 // Determine which case this commute is or if it can't be done. 1902 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1903 SrcOpIdx2); 1904 assert(Case < 3 && "Unexpected case value!"); 1905 1906 // For each case we need to swap two pairs of bits in the final immediate. 1907 static const uint8_t SwapMasks[3][4] = { 1908 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. 1909 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. 1910 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. 1911 }; 1912 1913 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); 1914 // Clear out the bits we are swapping. 1915 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 1916 SwapMasks[Case][2] | SwapMasks[Case][3]); 1917 // If the immediate had a bit of the pair set, then set the opposite bit. 1918 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; 1919 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; 1920 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; 1921 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; 1922 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); 1923 } 1924 1925 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 1926 // commuted. 1927 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 1928 #define VPERM_CASES(Suffix) \ 1929 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ 1930 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ 1931 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ 1932 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ 1933 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ 1934 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ 1935 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ 1936 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ 1937 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ 1938 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ 1939 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ 1940 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: 1941 1942 #define VPERM_CASES_BROADCAST(Suffix) \ 1943 VPERM_CASES(Suffix) \ 1944 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ 1945 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ 1946 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ 1947 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ 1948 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ 1949 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: 1950 1951 switch (Opcode) { 1952 default: return false; 1953 VPERM_CASES(B) 1954 VPERM_CASES_BROADCAST(D) 1955 VPERM_CASES_BROADCAST(PD) 1956 VPERM_CASES_BROADCAST(PS) 1957 VPERM_CASES_BROADCAST(Q) 1958 VPERM_CASES(W) 1959 return true; 1960 } 1961 #undef VPERM_CASES_BROADCAST 1962 #undef VPERM_CASES 1963 } 1964 1965 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 1966 // from the I opcode to the T opcode and vice versa. 1967 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 1968 #define VPERM_CASES(Orig, New) \ 1969 case X86::Orig##128rr: return X86::New##128rr; \ 1970 case X86::Orig##128rrkz: return X86::New##128rrkz; \ 1971 case X86::Orig##128rm: return X86::New##128rm; \ 1972 case X86::Orig##128rmkz: return X86::New##128rmkz; \ 1973 case X86::Orig##256rr: return X86::New##256rr; \ 1974 case X86::Orig##256rrkz: return X86::New##256rrkz; \ 1975 case X86::Orig##256rm: return X86::New##256rm; \ 1976 case X86::Orig##256rmkz: return X86::New##256rmkz; \ 1977 case X86::Orig##rr: return X86::New##rr; \ 1978 case X86::Orig##rrkz: return X86::New##rrkz; \ 1979 case X86::Orig##rm: return X86::New##rm; \ 1980 case X86::Orig##rmkz: return X86::New##rmkz; 1981 1982 #define VPERM_CASES_BROADCAST(Orig, New) \ 1983 VPERM_CASES(Orig, New) \ 1984 case X86::Orig##128rmb: return X86::New##128rmb; \ 1985 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ 1986 case X86::Orig##256rmb: return X86::New##256rmb; \ 1987 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ 1988 case X86::Orig##rmb: return X86::New##rmb; \ 1989 case X86::Orig##rmbkz: return X86::New##rmbkz; 1990 1991 switch (Opcode) { 1992 VPERM_CASES(VPERMI2B, VPERMT2B) 1993 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 1994 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 1995 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 1996 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 1997 VPERM_CASES(VPERMI2W, VPERMT2W) 1998 VPERM_CASES(VPERMT2B, VPERMI2B) 1999 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 2000 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 2001 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 2002 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 2003 VPERM_CASES(VPERMT2W, VPERMI2W) 2004 } 2005 2006 llvm_unreachable("Unreachable!"); 2007 #undef VPERM_CASES_BROADCAST 2008 #undef VPERM_CASES 2009 } 2010 2011 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2012 unsigned OpIdx1, 2013 unsigned OpIdx2) const { 2014 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 2015 if (NewMI) 2016 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 2017 return MI; 2018 }; 2019 2020 switch (MI.getOpcode()) { 2021 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 2022 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 2023 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 2024 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 2025 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 2026 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 2027 unsigned Opc; 2028 unsigned Size; 2029 switch (MI.getOpcode()) { 2030 default: llvm_unreachable("Unreachable!"); 2031 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 2032 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 2033 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 2034 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 2035 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 2036 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 2037 } 2038 unsigned Amt = MI.getOperand(3).getImm(); 2039 auto &WorkingMI = cloneIfNew(MI); 2040 WorkingMI.setDesc(get(Opc)); 2041 WorkingMI.getOperand(3).setImm(Size - Amt); 2042 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2043 OpIdx1, OpIdx2); 2044 } 2045 case X86::PFSUBrr: 2046 case X86::PFSUBRrr: { 2047 // PFSUB x, y: x = x - y 2048 // PFSUBR x, y: x = y - x 2049 unsigned Opc = 2050 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); 2051 auto &WorkingMI = cloneIfNew(MI); 2052 WorkingMI.setDesc(get(Opc)); 2053 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2054 OpIdx1, OpIdx2); 2055 } 2056 case X86::BLENDPDrri: 2057 case X86::BLENDPSrri: 2058 case X86::VBLENDPDrri: 2059 case X86::VBLENDPSrri: 2060 // If we're optimizing for size, try to use MOVSD/MOVSS. 2061 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 2062 unsigned Mask, Opc; 2063 switch (MI.getOpcode()) { 2064 default: llvm_unreachable("Unreachable!"); 2065 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; 2066 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; 2067 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; 2068 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; 2069 } 2070 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 2071 auto &WorkingMI = cloneIfNew(MI); 2072 WorkingMI.setDesc(get(Opc)); 2073 WorkingMI.RemoveOperand(3); 2074 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, 2075 /*NewMI=*/false, 2076 OpIdx1, OpIdx2); 2077 } 2078 } 2079 LLVM_FALLTHROUGH; 2080 case X86::PBLENDWrri: 2081 case X86::VBLENDPDYrri: 2082 case X86::VBLENDPSYrri: 2083 case X86::VPBLENDDrri: 2084 case X86::VPBLENDWrri: 2085 case X86::VPBLENDDYrri: 2086 case X86::VPBLENDWYrri:{ 2087 int8_t Mask; 2088 switch (MI.getOpcode()) { 2089 default: llvm_unreachable("Unreachable!"); 2090 case X86::BLENDPDrri: Mask = (int8_t)0x03; break; 2091 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; 2092 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; 2093 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; 2094 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; 2095 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; 2096 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; 2097 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; 2098 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; 2099 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; 2100 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; 2101 } 2102 // Only the least significant bits of Imm are used. 2103 // Using int8_t to ensure it will be sign extended to the int64_t that 2104 // setImm takes in order to match isel behavior. 2105 int8_t Imm = MI.getOperand(3).getImm() & Mask; 2106 auto &WorkingMI = cloneIfNew(MI); 2107 WorkingMI.getOperand(3).setImm(Mask ^ Imm); 2108 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2109 OpIdx1, OpIdx2); 2110 } 2111 case X86::INSERTPSrr: 2112 case X86::VINSERTPSrr: 2113 case X86::VINSERTPSZrr: { 2114 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2115 unsigned ZMask = Imm & 15; 2116 unsigned DstIdx = (Imm >> 4) & 3; 2117 unsigned SrcIdx = (Imm >> 6) & 3; 2118 2119 // We can commute insertps if we zero 2 of the elements, the insertion is 2120 // "inline" and we don't override the insertion with a zero. 2121 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 2122 countPopulation(ZMask) == 2) { 2123 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15); 2124 assert(AltIdx < 4 && "Illegal insertion index"); 2125 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 2126 auto &WorkingMI = cloneIfNew(MI); 2127 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm); 2128 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2129 OpIdx1, OpIdx2); 2130 } 2131 return nullptr; 2132 } 2133 case X86::MOVSDrr: 2134 case X86::MOVSSrr: 2135 case X86::VMOVSDrr: 2136 case X86::VMOVSSrr:{ 2137 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 2138 if (Subtarget.hasSSE41()) { 2139 unsigned Mask, Opc; 2140 switch (MI.getOpcode()) { 2141 default: llvm_unreachable("Unreachable!"); 2142 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; 2143 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; 2144 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; 2145 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; 2146 } 2147 2148 auto &WorkingMI = cloneIfNew(MI); 2149 WorkingMI.setDesc(get(Opc)); 2150 WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); 2151 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2152 OpIdx1, OpIdx2); 2153 } 2154 2155 // Convert to SHUFPD. 2156 assert(MI.getOpcode() == X86::MOVSDrr && 2157 "Can only commute MOVSDrr without SSE4.1"); 2158 2159 auto &WorkingMI = cloneIfNew(MI); 2160 WorkingMI.setDesc(get(X86::SHUFPDrri)); 2161 WorkingMI.addOperand(MachineOperand::CreateImm(0x02)); 2162 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2163 OpIdx1, OpIdx2); 2164 } 2165 case X86::SHUFPDrri: { 2166 // Commute to MOVSD. 2167 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 2168 auto &WorkingMI = cloneIfNew(MI); 2169 WorkingMI.setDesc(get(X86::MOVSDrr)); 2170 WorkingMI.RemoveOperand(3); 2171 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2172 OpIdx1, OpIdx2); 2173 } 2174 case X86::PCLMULQDQrr: 2175 case X86::VPCLMULQDQrr: 2176 case X86::VPCLMULQDQYrr: 2177 case X86::VPCLMULQDQZrr: 2178 case X86::VPCLMULQDQZ128rr: 2179 case X86::VPCLMULQDQZ256rr: { 2180 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 2181 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 2182 unsigned Imm = MI.getOperand(3).getImm(); 2183 unsigned Src1Hi = Imm & 0x01; 2184 unsigned Src2Hi = Imm & 0x10; 2185 auto &WorkingMI = cloneIfNew(MI); 2186 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 2187 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2188 OpIdx1, OpIdx2); 2189 } 2190 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: 2191 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: 2192 case X86::VPCMPBZrri: case X86::VPCMPUBZrri: 2193 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: 2194 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: 2195 case X86::VPCMPDZrri: case X86::VPCMPUDZrri: 2196 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: 2197 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: 2198 case X86::VPCMPQZrri: case X86::VPCMPUQZrri: 2199 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: 2200 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: 2201 case X86::VPCMPWZrri: case X86::VPCMPUWZrri: 2202 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: 2203 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: 2204 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: 2205 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: 2206 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: 2207 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: 2208 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: 2209 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: 2210 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: 2211 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: 2212 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: 2213 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { 2214 // Flip comparison mode immediate (if necessary). 2215 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; 2216 Imm = X86::getSwappedVPCMPImm(Imm); 2217 auto &WorkingMI = cloneIfNew(MI); 2218 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); 2219 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2220 OpIdx1, OpIdx2); 2221 } 2222 case X86::VPCOMBri: case X86::VPCOMUBri: 2223 case X86::VPCOMDri: case X86::VPCOMUDri: 2224 case X86::VPCOMQri: case X86::VPCOMUQri: 2225 case X86::VPCOMWri: case X86::VPCOMUWri: { 2226 // Flip comparison mode immediate (if necessary). 2227 unsigned Imm = MI.getOperand(3).getImm() & 0x7; 2228 Imm = X86::getSwappedVPCOMImm(Imm); 2229 auto &WorkingMI = cloneIfNew(MI); 2230 WorkingMI.getOperand(3).setImm(Imm); 2231 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2232 OpIdx1, OpIdx2); 2233 } 2234 case X86::VCMPSDZrr: 2235 case X86::VCMPSSZrr: 2236 case X86::VCMPPDZrri: 2237 case X86::VCMPPSZrri: 2238 case X86::VCMPPDZ128rri: 2239 case X86::VCMPPSZ128rri: 2240 case X86::VCMPPDZ256rri: 2241 case X86::VCMPPSZ256rri: 2242 case X86::VCMPPDZrrik: 2243 case X86::VCMPPSZrrik: 2244 case X86::VCMPPDZ128rrik: 2245 case X86::VCMPPSZ128rrik: 2246 case X86::VCMPPDZ256rrik: 2247 case X86::VCMPPSZ256rrik: { 2248 unsigned Imm = 2249 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f; 2250 Imm = X86::getSwappedVCMPImm(Imm); 2251 auto &WorkingMI = cloneIfNew(MI); 2252 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm); 2253 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2254 OpIdx1, OpIdx2); 2255 } 2256 case X86::VPERM2F128rr: 2257 case X86::VPERM2I128rr: { 2258 // Flip permute source immediate. 2259 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 2260 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 2261 int8_t Imm = MI.getOperand(3).getImm() & 0xFF; 2262 auto &WorkingMI = cloneIfNew(MI); 2263 WorkingMI.getOperand(3).setImm(Imm ^ 0x22); 2264 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2265 OpIdx1, OpIdx2); 2266 } 2267 case X86::MOVHLPSrr: 2268 case X86::UNPCKHPDrr: 2269 case X86::VMOVHLPSrr: 2270 case X86::VUNPCKHPDrr: 2271 case X86::VMOVHLPSZrr: 2272 case X86::VUNPCKHPDZ128rr: { 2273 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 2274 2275 unsigned Opc = MI.getOpcode(); 2276 switch (Opc) { 2277 default: llvm_unreachable("Unreachable!"); 2278 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; 2279 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; 2280 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; 2281 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; 2282 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; 2283 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; 2284 } 2285 auto &WorkingMI = cloneIfNew(MI); 2286 WorkingMI.setDesc(get(Opc)); 2287 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2288 OpIdx1, OpIdx2); 2289 } 2290 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: { 2291 auto &WorkingMI = cloneIfNew(MI); 2292 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 2293 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 2294 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 2295 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2296 OpIdx1, OpIdx2); 2297 } 2298 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2299 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2300 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2301 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2302 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2303 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2304 case X86::VPTERNLOGDZrrik: 2305 case X86::VPTERNLOGDZ128rrik: 2306 case X86::VPTERNLOGDZ256rrik: 2307 case X86::VPTERNLOGQZrrik: 2308 case X86::VPTERNLOGQZ128rrik: 2309 case X86::VPTERNLOGQZ256rrik: 2310 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2311 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2312 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2313 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2314 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2315 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2316 case X86::VPTERNLOGDZ128rmbi: 2317 case X86::VPTERNLOGDZ256rmbi: 2318 case X86::VPTERNLOGDZrmbi: 2319 case X86::VPTERNLOGQZ128rmbi: 2320 case X86::VPTERNLOGQZ256rmbi: 2321 case X86::VPTERNLOGQZrmbi: 2322 case X86::VPTERNLOGDZ128rmbikz: 2323 case X86::VPTERNLOGDZ256rmbikz: 2324 case X86::VPTERNLOGDZrmbikz: 2325 case X86::VPTERNLOGQZ128rmbikz: 2326 case X86::VPTERNLOGQZ256rmbikz: 2327 case X86::VPTERNLOGQZrmbikz: { 2328 auto &WorkingMI = cloneIfNew(MI); 2329 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); 2330 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2331 OpIdx1, OpIdx2); 2332 } 2333 default: { 2334 if (isCommutableVPERMV3Instruction(MI.getOpcode())) { 2335 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); 2336 auto &WorkingMI = cloneIfNew(MI); 2337 WorkingMI.setDesc(get(Opc)); 2338 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2339 OpIdx1, OpIdx2); 2340 } 2341 2342 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2343 MI.getDesc().TSFlags); 2344 if (FMA3Group) { 2345 unsigned Opc = 2346 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); 2347 auto &WorkingMI = cloneIfNew(MI); 2348 WorkingMI.setDesc(get(Opc)); 2349 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2350 OpIdx1, OpIdx2); 2351 } 2352 2353 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2354 } 2355 } 2356 } 2357 2358 bool 2359 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 2360 unsigned &SrcOpIdx1, 2361 unsigned &SrcOpIdx2, 2362 bool IsIntrinsic) const { 2363 uint64_t TSFlags = MI.getDesc().TSFlags; 2364 2365 unsigned FirstCommutableVecOp = 1; 2366 unsigned LastCommutableVecOp = 3; 2367 unsigned KMaskOp = -1U; 2368 if (X86II::isKMasked(TSFlags)) { 2369 // For k-zero-masked operations it is Ok to commute the first vector 2370 // operand. Unless this is an intrinsic instruction. 2371 // For regular k-masked operations a conservative choice is done as the 2372 // elements of the first vector operand, for which the corresponding bit 2373 // in the k-mask operand is set to 0, are copied to the result of the 2374 // instruction. 2375 // TODO/FIXME: The commute still may be legal if it is known that the 2376 // k-mask operand is set to either all ones or all zeroes. 2377 // It is also Ok to commute the 1st operand if all users of MI use only 2378 // the elements enabled by the k-mask operand. For example, 2379 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 2380 // : v1[i]; 2381 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 2382 // // Ok, to commute v1 in FMADD213PSZrk. 2383 2384 // The k-mask operand has index = 2 for masked and zero-masked operations. 2385 KMaskOp = 2; 2386 2387 // The operand with index = 1 is used as a source for those elements for 2388 // which the corresponding bit in the k-mask is set to 0. 2389 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) 2390 FirstCommutableVecOp = 3; 2391 2392 LastCommutableVecOp++; 2393 } else if (IsIntrinsic) { 2394 // Commuting the first operand of an intrinsic instruction isn't possible 2395 // unless we can prove that only the lowest element of the result is used. 2396 FirstCommutableVecOp = 2; 2397 } 2398 2399 if (isMem(MI, LastCommutableVecOp)) 2400 LastCommutableVecOp--; 2401 2402 // Only the first RegOpsNum operands are commutable. 2403 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 2404 // that the operand is not specified/fixed. 2405 if (SrcOpIdx1 != CommuteAnyOperandIndex && 2406 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 2407 SrcOpIdx1 == KMaskOp)) 2408 return false; 2409 if (SrcOpIdx2 != CommuteAnyOperandIndex && 2410 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 2411 SrcOpIdx2 == KMaskOp)) 2412 return false; 2413 2414 // Look for two different register operands assumed to be commutable 2415 // regardless of the FMA opcode. The FMA opcode is adjusted later. 2416 if (SrcOpIdx1 == CommuteAnyOperandIndex || 2417 SrcOpIdx2 == CommuteAnyOperandIndex) { 2418 unsigned CommutableOpIdx2 = SrcOpIdx2; 2419 2420 // At least one of operands to be commuted is not specified and 2421 // this method is free to choose appropriate commutable operands. 2422 if (SrcOpIdx1 == SrcOpIdx2) 2423 // Both of operands are not fixed. By default set one of commutable 2424 // operands to the last register operand of the instruction. 2425 CommutableOpIdx2 = LastCommutableVecOp; 2426 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 2427 // Only one of operands is not fixed. 2428 CommutableOpIdx2 = SrcOpIdx1; 2429 2430 // CommutableOpIdx2 is well defined now. Let's choose another commutable 2431 // operand and assign its index to CommutableOpIdx1. 2432 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 2433 2434 unsigned CommutableOpIdx1; 2435 for (CommutableOpIdx1 = LastCommutableVecOp; 2436 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 2437 // Just ignore and skip the k-mask operand. 2438 if (CommutableOpIdx1 == KMaskOp) 2439 continue; 2440 2441 // The commuted operands must have different registers. 2442 // Otherwise, the commute transformation does not change anything and 2443 // is useless then. 2444 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 2445 break; 2446 } 2447 2448 // No appropriate commutable operands were found. 2449 if (CommutableOpIdx1 < FirstCommutableVecOp) 2450 return false; 2451 2452 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 2453 // to return those values. 2454 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2455 CommutableOpIdx1, CommutableOpIdx2)) 2456 return false; 2457 } 2458 2459 return true; 2460 } 2461 2462 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2463 unsigned &SrcOpIdx1, 2464 unsigned &SrcOpIdx2) const { 2465 const MCInstrDesc &Desc = MI.getDesc(); 2466 if (!Desc.isCommutable()) 2467 return false; 2468 2469 switch (MI.getOpcode()) { 2470 case X86::CMPSDrr: 2471 case X86::CMPSSrr: 2472 case X86::CMPPDrri: 2473 case X86::CMPPSrri: 2474 case X86::VCMPSDrr: 2475 case X86::VCMPSSrr: 2476 case X86::VCMPPDrri: 2477 case X86::VCMPPSrri: 2478 case X86::VCMPPDYrri: 2479 case X86::VCMPPSYrri: 2480 case X86::VCMPSDZrr: 2481 case X86::VCMPSSZrr: 2482 case X86::VCMPPDZrri: 2483 case X86::VCMPPSZrri: 2484 case X86::VCMPPDZ128rri: 2485 case X86::VCMPPSZ128rri: 2486 case X86::VCMPPDZ256rri: 2487 case X86::VCMPPSZ256rri: 2488 case X86::VCMPPDZrrik: 2489 case X86::VCMPPSZrrik: 2490 case X86::VCMPPDZ128rrik: 2491 case X86::VCMPPSZ128rrik: 2492 case X86::VCMPPDZ256rrik: 2493 case X86::VCMPPSZ256rrik: { 2494 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 2495 2496 // Float comparison can be safely commuted for 2497 // Ordered/Unordered/Equal/NotEqual tests 2498 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 2499 switch (Imm) { 2500 default: 2501 // EVEX versions can be commuted. 2502 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) 2503 break; 2504 return false; 2505 case 0x00: // EQUAL 2506 case 0x03: // UNORDERED 2507 case 0x04: // NOT EQUAL 2508 case 0x07: // ORDERED 2509 break; 2510 } 2511 2512 // The indices of the commutable operands are 1 and 2 (or 2 and 3 2513 // when masked). 2514 // Assign them to the returned operand indices here. 2515 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2516 2 + OpOffset); 2517 } 2518 case X86::MOVSSrr: 2519 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 2520 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 2521 // AVX implies sse4.1. 2522 if (Subtarget.hasSSE41()) 2523 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2524 return false; 2525 case X86::SHUFPDrri: 2526 // We can commute this to MOVSD. 2527 if (MI.getOperand(3).getImm() == 0x02) 2528 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2529 return false; 2530 case X86::MOVHLPSrr: 2531 case X86::UNPCKHPDrr: 2532 case X86::VMOVHLPSrr: 2533 case X86::VUNPCKHPDrr: 2534 case X86::VMOVHLPSZrr: 2535 case X86::VUNPCKHPDZ128rr: 2536 if (Subtarget.hasSSE2()) 2537 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2538 return false; 2539 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2540 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2541 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2542 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2543 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2544 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2545 case X86::VPTERNLOGDZrrik: 2546 case X86::VPTERNLOGDZ128rrik: 2547 case X86::VPTERNLOGDZ256rrik: 2548 case X86::VPTERNLOGQZrrik: 2549 case X86::VPTERNLOGQZ128rrik: 2550 case X86::VPTERNLOGQZ256rrik: 2551 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2552 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2553 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2554 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2555 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2556 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2557 case X86::VPTERNLOGDZ128rmbi: 2558 case X86::VPTERNLOGDZ256rmbi: 2559 case X86::VPTERNLOGDZrmbi: 2560 case X86::VPTERNLOGQZ128rmbi: 2561 case X86::VPTERNLOGQZ256rmbi: 2562 case X86::VPTERNLOGQZrmbi: 2563 case X86::VPTERNLOGDZ128rmbikz: 2564 case X86::VPTERNLOGDZ256rmbikz: 2565 case X86::VPTERNLOGDZrmbikz: 2566 case X86::VPTERNLOGQZ128rmbikz: 2567 case X86::VPTERNLOGQZ256rmbikz: 2568 case X86::VPTERNLOGQZrmbikz: 2569 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2570 case X86::VPDPWSSDYrr: 2571 case X86::VPDPWSSDrr: 2572 case X86::VPDPWSSDSYrr: 2573 case X86::VPDPWSSDSrr: 2574 case X86::VPDPWSSDZ128r: 2575 case X86::VPDPWSSDZ128rk: 2576 case X86::VPDPWSSDZ128rkz: 2577 case X86::VPDPWSSDZ256r: 2578 case X86::VPDPWSSDZ256rk: 2579 case X86::VPDPWSSDZ256rkz: 2580 case X86::VPDPWSSDZr: 2581 case X86::VPDPWSSDZrk: 2582 case X86::VPDPWSSDZrkz: 2583 case X86::VPDPWSSDSZ128r: 2584 case X86::VPDPWSSDSZ128rk: 2585 case X86::VPDPWSSDSZ128rkz: 2586 case X86::VPDPWSSDSZ256r: 2587 case X86::VPDPWSSDSZ256rk: 2588 case X86::VPDPWSSDSZ256rkz: 2589 case X86::VPDPWSSDSZr: 2590 case X86::VPDPWSSDSZrk: 2591 case X86::VPDPWSSDSZrkz: 2592 case X86::VPMADD52HUQZ128r: 2593 case X86::VPMADD52HUQZ128rk: 2594 case X86::VPMADD52HUQZ128rkz: 2595 case X86::VPMADD52HUQZ256r: 2596 case X86::VPMADD52HUQZ256rk: 2597 case X86::VPMADD52HUQZ256rkz: 2598 case X86::VPMADD52HUQZr: 2599 case X86::VPMADD52HUQZrk: 2600 case X86::VPMADD52HUQZrkz: 2601 case X86::VPMADD52LUQZ128r: 2602 case X86::VPMADD52LUQZ128rk: 2603 case X86::VPMADD52LUQZ128rkz: 2604 case X86::VPMADD52LUQZ256r: 2605 case X86::VPMADD52LUQZ256rk: 2606 case X86::VPMADD52LUQZ256rkz: 2607 case X86::VPMADD52LUQZr: 2608 case X86::VPMADD52LUQZrk: 2609 case X86::VPMADD52LUQZrkz: { 2610 unsigned CommutableOpIdx1 = 2; 2611 unsigned CommutableOpIdx2 = 3; 2612 if (X86II::isKMasked(Desc.TSFlags)) { 2613 // Skip the mask register. 2614 ++CommutableOpIdx1; 2615 ++CommutableOpIdx2; 2616 } 2617 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2618 CommutableOpIdx1, CommutableOpIdx2)) 2619 return false; 2620 if (!MI.getOperand(SrcOpIdx1).isReg() || 2621 !MI.getOperand(SrcOpIdx2).isReg()) 2622 // No idea. 2623 return false; 2624 return true; 2625 } 2626 2627 default: 2628 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2629 MI.getDesc().TSFlags); 2630 if (FMA3Group) 2631 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 2632 FMA3Group->isIntrinsic()); 2633 2634 // Handled masked instructions since we need to skip over the mask input 2635 // and the preserved input. 2636 if (X86II::isKMasked(Desc.TSFlags)) { 2637 // First assume that the first input is the mask operand and skip past it. 2638 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 2639 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 2640 // Check if the first input is tied. If there isn't one then we only 2641 // need to skip the mask operand which we did above. 2642 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 2643 MCOI::TIED_TO) != -1)) { 2644 // If this is zero masking instruction with a tied operand, we need to 2645 // move the first index back to the first input since this must 2646 // be a 3 input instruction and we want the first two non-mask inputs. 2647 // Otherwise this is a 2 input instruction with a preserved input and 2648 // mask, so we need to move the indices to skip one more input. 2649 if (X86II::isKMergeMasked(Desc.TSFlags)) { 2650 ++CommutableOpIdx1; 2651 ++CommutableOpIdx2; 2652 } else { 2653 --CommutableOpIdx1; 2654 } 2655 } 2656 2657 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2658 CommutableOpIdx1, CommutableOpIdx2)) 2659 return false; 2660 2661 if (!MI.getOperand(SrcOpIdx1).isReg() || 2662 !MI.getOperand(SrcOpIdx2).isReg()) 2663 // No idea. 2664 return false; 2665 return true; 2666 } 2667 2668 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2669 } 2670 return false; 2671 } 2672 2673 static bool isConvertibleLEA(MachineInstr *MI) { 2674 unsigned Opcode = MI->getOpcode(); 2675 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && 2676 Opcode != X86::LEA64_32r) 2677 return false; 2678 2679 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); 2680 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); 2681 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); 2682 2683 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || 2684 Scale.getImm() > 1) 2685 return false; 2686 2687 return true; 2688 } 2689 2690 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { 2691 // Currently we're interested in following sequence only. 2692 // r3 = lea r1, r2 2693 // r5 = add r3, r4 2694 // Both r3 and r4 are killed in add, we hope the add instruction has the 2695 // operand order 2696 // r5 = add r4, r3 2697 // So later in X86FixupLEAs the lea instruction can be rewritten as add. 2698 unsigned Opcode = MI.getOpcode(); 2699 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) 2700 return false; 2701 2702 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2703 Register Reg1 = MI.getOperand(1).getReg(); 2704 Register Reg2 = MI.getOperand(2).getReg(); 2705 2706 // Check if Reg1 comes from LEA in the same MBB. 2707 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { 2708 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2709 Commute = true; 2710 return true; 2711 } 2712 } 2713 2714 // Check if Reg2 comes from LEA in the same MBB. 2715 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { 2716 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2717 Commute = false; 2718 return true; 2719 } 2720 } 2721 2722 return false; 2723 } 2724 2725 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 2726 switch (MI.getOpcode()) { 2727 default: return X86::COND_INVALID; 2728 case X86::JCC_1: 2729 return static_cast<X86::CondCode>( 2730 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2731 } 2732 } 2733 2734 /// Return condition code of a SETCC opcode. 2735 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 2736 switch (MI.getOpcode()) { 2737 default: return X86::COND_INVALID; 2738 case X86::SETCCr: case X86::SETCCm: 2739 return static_cast<X86::CondCode>( 2740 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2741 } 2742 } 2743 2744 /// Return condition code of a CMov opcode. 2745 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 2746 switch (MI.getOpcode()) { 2747 default: return X86::COND_INVALID; 2748 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: 2749 case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm: 2750 return static_cast<X86::CondCode>( 2751 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2752 } 2753 } 2754 2755 /// Return the inverse of the specified condition, 2756 /// e.g. turning COND_E to COND_NE. 2757 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2758 switch (CC) { 2759 default: llvm_unreachable("Illegal condition code!"); 2760 case X86::COND_E: return X86::COND_NE; 2761 case X86::COND_NE: return X86::COND_E; 2762 case X86::COND_L: return X86::COND_GE; 2763 case X86::COND_LE: return X86::COND_G; 2764 case X86::COND_G: return X86::COND_LE; 2765 case X86::COND_GE: return X86::COND_L; 2766 case X86::COND_B: return X86::COND_AE; 2767 case X86::COND_BE: return X86::COND_A; 2768 case X86::COND_A: return X86::COND_BE; 2769 case X86::COND_AE: return X86::COND_B; 2770 case X86::COND_S: return X86::COND_NS; 2771 case X86::COND_NS: return X86::COND_S; 2772 case X86::COND_P: return X86::COND_NP; 2773 case X86::COND_NP: return X86::COND_P; 2774 case X86::COND_O: return X86::COND_NO; 2775 case X86::COND_NO: return X86::COND_O; 2776 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; 2777 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; 2778 } 2779 } 2780 2781 /// Assuming the flags are set by MI(a,b), return the condition code if we 2782 /// modify the instructions such that flags are set by MI(b,a). 2783 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 2784 switch (CC) { 2785 default: return X86::COND_INVALID; 2786 case X86::COND_E: return X86::COND_E; 2787 case X86::COND_NE: return X86::COND_NE; 2788 case X86::COND_L: return X86::COND_G; 2789 case X86::COND_LE: return X86::COND_GE; 2790 case X86::COND_G: return X86::COND_L; 2791 case X86::COND_GE: return X86::COND_LE; 2792 case X86::COND_B: return X86::COND_A; 2793 case X86::COND_BE: return X86::COND_AE; 2794 case X86::COND_A: return X86::COND_B; 2795 case X86::COND_AE: return X86::COND_BE; 2796 } 2797 } 2798 2799 std::pair<X86::CondCode, bool> 2800 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 2801 X86::CondCode CC = X86::COND_INVALID; 2802 bool NeedSwap = false; 2803 switch (Predicate) { 2804 default: break; 2805 // Floating-point Predicates 2806 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; 2807 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; 2808 case CmpInst::FCMP_OGT: CC = X86::COND_A; break; 2809 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; 2810 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; 2811 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; 2812 case CmpInst::FCMP_ULT: CC = X86::COND_B; break; 2813 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; 2814 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; 2815 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; 2816 case CmpInst::FCMP_UNO: CC = X86::COND_P; break; 2817 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; 2818 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; 2819 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; 2820 2821 // Integer Predicates 2822 case CmpInst::ICMP_EQ: CC = X86::COND_E; break; 2823 case CmpInst::ICMP_NE: CC = X86::COND_NE; break; 2824 case CmpInst::ICMP_UGT: CC = X86::COND_A; break; 2825 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; 2826 case CmpInst::ICMP_ULT: CC = X86::COND_B; break; 2827 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; 2828 case CmpInst::ICMP_SGT: CC = X86::COND_G; break; 2829 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; 2830 case CmpInst::ICMP_SLT: CC = X86::COND_L; break; 2831 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; 2832 } 2833 2834 return std::make_pair(CC, NeedSwap); 2835 } 2836 2837 /// Return a setcc opcode based on whether it has memory operand. 2838 unsigned X86::getSETOpc(bool HasMemoryOperand) { 2839 return HasMemoryOperand ? X86::SETCCr : X86::SETCCm; 2840 } 2841 2842 /// Return a cmov opcode for the given register size in bytes, and operand type. 2843 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) { 2844 switch(RegBytes) { 2845 default: llvm_unreachable("Illegal register size!"); 2846 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr; 2847 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr; 2848 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr; 2849 } 2850 } 2851 2852 /// Get the VPCMP immediate for the given condition. 2853 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 2854 switch (CC) { 2855 default: llvm_unreachable("Unexpected SETCC condition"); 2856 case ISD::SETNE: return 4; 2857 case ISD::SETEQ: return 0; 2858 case ISD::SETULT: 2859 case ISD::SETLT: return 1; 2860 case ISD::SETUGT: 2861 case ISD::SETGT: return 6; 2862 case ISD::SETUGE: 2863 case ISD::SETGE: return 5; 2864 case ISD::SETULE: 2865 case ISD::SETLE: return 2; 2866 } 2867 } 2868 2869 /// Get the VPCMP immediate if the operands are swapped. 2870 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 2871 switch (Imm) { 2872 default: llvm_unreachable("Unreachable!"); 2873 case 0x01: Imm = 0x06; break; // LT -> NLE 2874 case 0x02: Imm = 0x05; break; // LE -> NLT 2875 case 0x05: Imm = 0x02; break; // NLT -> LE 2876 case 0x06: Imm = 0x01; break; // NLE -> LT 2877 case 0x00: // EQ 2878 case 0x03: // FALSE 2879 case 0x04: // NE 2880 case 0x07: // TRUE 2881 break; 2882 } 2883 2884 return Imm; 2885 } 2886 2887 /// Get the VPCOM immediate if the operands are swapped. 2888 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 2889 switch (Imm) { 2890 default: llvm_unreachable("Unreachable!"); 2891 case 0x00: Imm = 0x02; break; // LT -> GT 2892 case 0x01: Imm = 0x03; break; // LE -> GE 2893 case 0x02: Imm = 0x00; break; // GT -> LT 2894 case 0x03: Imm = 0x01; break; // GE -> LE 2895 case 0x04: // EQ 2896 case 0x05: // NE 2897 case 0x06: // FALSE 2898 case 0x07: // TRUE 2899 break; 2900 } 2901 2902 return Imm; 2903 } 2904 2905 /// Get the VCMP immediate if the operands are swapped. 2906 unsigned X86::getSwappedVCMPImm(unsigned Imm) { 2907 // Only need the lower 2 bits to distinquish. 2908 switch (Imm & 0x3) { 2909 default: llvm_unreachable("Unreachable!"); 2910 case 0x00: case 0x03: 2911 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. 2912 break; 2913 case 0x01: case 0x02: 2914 // Need to toggle bits 3:0. Bit 4 stays the same. 2915 Imm ^= 0xf; 2916 break; 2917 } 2918 2919 return Imm; 2920 } 2921 2922 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 2923 switch (MI.getOpcode()) { 2924 case X86::TCRETURNdi: 2925 case X86::TCRETURNri: 2926 case X86::TCRETURNmi: 2927 case X86::TCRETURNdi64: 2928 case X86::TCRETURNri64: 2929 case X86::TCRETURNmi64: 2930 return true; 2931 default: 2932 return false; 2933 } 2934 } 2935 2936 bool X86InstrInfo::canMakeTailCallConditional( 2937 SmallVectorImpl<MachineOperand> &BranchCond, 2938 const MachineInstr &TailCall) const { 2939 if (TailCall.getOpcode() != X86::TCRETURNdi && 2940 TailCall.getOpcode() != X86::TCRETURNdi64) { 2941 // Only direct calls can be done with a conditional branch. 2942 return false; 2943 } 2944 2945 const MachineFunction *MF = TailCall.getParent()->getParent(); 2946 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 2947 // Conditional tail calls confuse the Win64 unwinder. 2948 return false; 2949 } 2950 2951 assert(BranchCond.size() == 1); 2952 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 2953 // Can't make a conditional tail call with this condition. 2954 return false; 2955 } 2956 2957 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 2958 if (X86FI->getTCReturnAddrDelta() != 0 || 2959 TailCall.getOperand(1).getImm() != 0) { 2960 // A conditional tail call cannot do any stack adjustment. 2961 return false; 2962 } 2963 2964 return true; 2965 } 2966 2967 void X86InstrInfo::replaceBranchWithTailCall( 2968 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 2969 const MachineInstr &TailCall) const { 2970 assert(canMakeTailCallConditional(BranchCond, TailCall)); 2971 2972 MachineBasicBlock::iterator I = MBB.end(); 2973 while (I != MBB.begin()) { 2974 --I; 2975 if (I->isDebugInstr()) 2976 continue; 2977 if (!I->isBranch()) 2978 assert(0 && "Can't find the branch to replace!"); 2979 2980 X86::CondCode CC = X86::getCondFromBranch(*I); 2981 assert(BranchCond.size() == 1); 2982 if (CC != BranchCond[0].getImm()) 2983 continue; 2984 2985 break; 2986 } 2987 2988 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 2989 : X86::TCRETURNdi64cc; 2990 2991 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 2992 MIB->addOperand(TailCall.getOperand(0)); // Destination. 2993 MIB.addImm(0); // Stack offset (not used). 2994 MIB->addOperand(BranchCond[0]); // Condition. 2995 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 2996 2997 // Add implicit uses and defs of all live regs potentially clobbered by the 2998 // call. This way they still appear live across the call. 2999 LivePhysRegs LiveRegs(getRegisterInfo()); 3000 LiveRegs.addLiveOuts(MBB); 3001 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 3002 LiveRegs.stepForward(*MIB, Clobbers); 3003 for (const auto &C : Clobbers) { 3004 MIB.addReg(C.first, RegState::Implicit); 3005 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 3006 } 3007 3008 I->eraseFromParent(); 3009 } 3010 3011 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 3012 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 3013 // fallthrough MBB cannot be identified. 3014 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 3015 MachineBasicBlock *TBB) { 3016 // Look for non-EHPad successors other than TBB. If we find exactly one, it 3017 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 3018 // and fallthrough MBB. If we find more than one, we cannot identify the 3019 // fallthrough MBB and should return nullptr. 3020 MachineBasicBlock *FallthroughBB = nullptr; 3021 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { 3022 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) 3023 continue; 3024 // Return a nullptr if we found more than one fallthrough successor. 3025 if (FallthroughBB && FallthroughBB != TBB) 3026 return nullptr; 3027 FallthroughBB = *SI; 3028 } 3029 return FallthroughBB; 3030 } 3031 3032 bool X86InstrInfo::AnalyzeBranchImpl( 3033 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 3034 SmallVectorImpl<MachineOperand> &Cond, 3035 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 3036 3037 // Start from the bottom of the block and work up, examining the 3038 // terminator instructions. 3039 MachineBasicBlock::iterator I = MBB.end(); 3040 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 3041 while (I != MBB.begin()) { 3042 --I; 3043 if (I->isDebugInstr()) 3044 continue; 3045 3046 // Working from the bottom, when we see a non-terminator instruction, we're 3047 // done. 3048 if (!isUnpredicatedTerminator(*I)) 3049 break; 3050 3051 // A terminator that isn't a branch can't easily be handled by this 3052 // analysis. 3053 if (!I->isBranch()) 3054 return true; 3055 3056 // Handle unconditional branches. 3057 if (I->getOpcode() == X86::JMP_1) { 3058 UnCondBrIter = I; 3059 3060 if (!AllowModify) { 3061 TBB = I->getOperand(0).getMBB(); 3062 continue; 3063 } 3064 3065 // If the block has any instructions after a JMP, delete them. 3066 while (std::next(I) != MBB.end()) 3067 std::next(I)->eraseFromParent(); 3068 3069 Cond.clear(); 3070 FBB = nullptr; 3071 3072 // Delete the JMP if it's equivalent to a fall-through. 3073 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3074 TBB = nullptr; 3075 I->eraseFromParent(); 3076 I = MBB.end(); 3077 UnCondBrIter = MBB.end(); 3078 continue; 3079 } 3080 3081 // TBB is used to indicate the unconditional destination. 3082 TBB = I->getOperand(0).getMBB(); 3083 continue; 3084 } 3085 3086 // Handle conditional branches. 3087 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 3088 if (BranchCode == X86::COND_INVALID) 3089 return true; // Can't handle indirect branch. 3090 3091 // In practice we should never have an undef eflags operand, if we do 3092 // abort here as we are not prepared to preserve the flag. 3093 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef()) 3094 return true; 3095 3096 // Working from the bottom, handle the first conditional branch. 3097 if (Cond.empty()) { 3098 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 3099 if (AllowModify && UnCondBrIter != MBB.end() && 3100 MBB.isLayoutSuccessor(TargetBB)) { 3101 // If we can modify the code and it ends in something like: 3102 // 3103 // jCC L1 3104 // jmp L2 3105 // L1: 3106 // ... 3107 // L2: 3108 // 3109 // Then we can change this to: 3110 // 3111 // jnCC L2 3112 // L1: 3113 // ... 3114 // L2: 3115 // 3116 // Which is a bit more efficient. 3117 // We conditionally jump to the fall-through block. 3118 BranchCode = GetOppositeBranchCondition(BranchCode); 3119 MachineBasicBlock::iterator OldInst = I; 3120 3121 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1)) 3122 .addMBB(UnCondBrIter->getOperand(0).getMBB()) 3123 .addImm(BranchCode); 3124 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) 3125 .addMBB(TargetBB); 3126 3127 OldInst->eraseFromParent(); 3128 UnCondBrIter->eraseFromParent(); 3129 3130 // Restart the analysis. 3131 UnCondBrIter = MBB.end(); 3132 I = MBB.end(); 3133 continue; 3134 } 3135 3136 FBB = TBB; 3137 TBB = I->getOperand(0).getMBB(); 3138 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 3139 CondBranches.push_back(&*I); 3140 continue; 3141 } 3142 3143 // Handle subsequent conditional branches. Only handle the case where all 3144 // conditional branches branch to the same destination and their condition 3145 // opcodes fit one of the special multi-branch idioms. 3146 assert(Cond.size() == 1); 3147 assert(TBB); 3148 3149 // If the conditions are the same, we can leave them alone. 3150 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 3151 auto NewTBB = I->getOperand(0).getMBB(); 3152 if (OldBranchCode == BranchCode && TBB == NewTBB) 3153 continue; 3154 3155 // If they differ, see if they fit one of the known patterns. Theoretically, 3156 // we could handle more patterns here, but we shouldn't expect to see them 3157 // if instruction selection has done a reasonable job. 3158 if (TBB == NewTBB && 3159 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 3160 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 3161 BranchCode = X86::COND_NE_OR_P; 3162 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 3163 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 3164 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 3165 return true; 3166 3167 // X86::COND_E_AND_NP usually has two different branch destinations. 3168 // 3169 // JP B1 3170 // JE B2 3171 // JMP B1 3172 // B1: 3173 // B2: 3174 // 3175 // Here this condition branches to B2 only if NP && E. It has another 3176 // equivalent form: 3177 // 3178 // JNE B1 3179 // JNP B2 3180 // JMP B1 3181 // B1: 3182 // B2: 3183 // 3184 // Similarly it branches to B2 only if E && NP. That is why this condition 3185 // is named with COND_E_AND_NP. 3186 BranchCode = X86::COND_E_AND_NP; 3187 } else 3188 return true; 3189 3190 // Update the MachineOperand. 3191 Cond[0].setImm(BranchCode); 3192 CondBranches.push_back(&*I); 3193 } 3194 3195 return false; 3196 } 3197 3198 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 3199 MachineBasicBlock *&TBB, 3200 MachineBasicBlock *&FBB, 3201 SmallVectorImpl<MachineOperand> &Cond, 3202 bool AllowModify) const { 3203 SmallVector<MachineInstr *, 4> CondBranches; 3204 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 3205 } 3206 3207 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 3208 MachineBranchPredicate &MBP, 3209 bool AllowModify) const { 3210 using namespace std::placeholders; 3211 3212 SmallVector<MachineOperand, 4> Cond; 3213 SmallVector<MachineInstr *, 4> CondBranches; 3214 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 3215 AllowModify)) 3216 return true; 3217 3218 if (Cond.size() != 1) 3219 return true; 3220 3221 assert(MBP.TrueDest && "expected!"); 3222 3223 if (!MBP.FalseDest) 3224 MBP.FalseDest = MBB.getNextNode(); 3225 3226 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3227 3228 MachineInstr *ConditionDef = nullptr; 3229 bool SingleUseCondition = true; 3230 3231 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { 3232 if (I->modifiesRegister(X86::EFLAGS, TRI)) { 3233 ConditionDef = &*I; 3234 break; 3235 } 3236 3237 if (I->readsRegister(X86::EFLAGS, TRI)) 3238 SingleUseCondition = false; 3239 } 3240 3241 if (!ConditionDef) 3242 return true; 3243 3244 if (SingleUseCondition) { 3245 for (auto *Succ : MBB.successors()) 3246 if (Succ->isLiveIn(X86::EFLAGS)) 3247 SingleUseCondition = false; 3248 } 3249 3250 MBP.ConditionDef = ConditionDef; 3251 MBP.SingleUseCondition = SingleUseCondition; 3252 3253 // Currently we only recognize the simple pattern: 3254 // 3255 // test %reg, %reg 3256 // je %label 3257 // 3258 const unsigned TestOpcode = 3259 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 3260 3261 if (ConditionDef->getOpcode() == TestOpcode && 3262 ConditionDef->getNumOperands() == 3 && 3263 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 3264 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 3265 MBP.LHS = ConditionDef->getOperand(0); 3266 MBP.RHS = MachineOperand::CreateImm(0); 3267 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 3268 ? MachineBranchPredicate::PRED_NE 3269 : MachineBranchPredicate::PRED_EQ; 3270 return false; 3271 } 3272 3273 return true; 3274 } 3275 3276 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 3277 int *BytesRemoved) const { 3278 assert(!BytesRemoved && "code size not handled"); 3279 3280 MachineBasicBlock::iterator I = MBB.end(); 3281 unsigned Count = 0; 3282 3283 while (I != MBB.begin()) { 3284 --I; 3285 if (I->isDebugInstr()) 3286 continue; 3287 if (I->getOpcode() != X86::JMP_1 && 3288 X86::getCondFromBranch(*I) == X86::COND_INVALID) 3289 break; 3290 // Remove the branch. 3291 I->eraseFromParent(); 3292 I = MBB.end(); 3293 ++Count; 3294 } 3295 3296 return Count; 3297 } 3298 3299 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 3300 MachineBasicBlock *TBB, 3301 MachineBasicBlock *FBB, 3302 ArrayRef<MachineOperand> Cond, 3303 const DebugLoc &DL, 3304 int *BytesAdded) const { 3305 // Shouldn't be a fall through. 3306 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 3307 assert((Cond.size() == 1 || Cond.size() == 0) && 3308 "X86 branch conditions have one component!"); 3309 assert(!BytesAdded && "code size not handled"); 3310 3311 if (Cond.empty()) { 3312 // Unconditional branch? 3313 assert(!FBB && "Unconditional branch with multiple successors!"); 3314 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 3315 return 1; 3316 } 3317 3318 // If FBB is null, it is implied to be a fall-through block. 3319 bool FallThru = FBB == nullptr; 3320 3321 // Conditional branch. 3322 unsigned Count = 0; 3323 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 3324 switch (CC) { 3325 case X86::COND_NE_OR_P: 3326 // Synthesize NE_OR_P with two branches. 3327 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 3328 ++Count; 3329 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 3330 ++Count; 3331 break; 3332 case X86::COND_E_AND_NP: 3333 // Use the next block of MBB as FBB if it is null. 3334 if (FBB == nullptr) { 3335 FBB = getFallThroughMBB(&MBB, TBB); 3336 assert(FBB && "MBB cannot be the last block in function when the false " 3337 "body is a fall-through."); 3338 } 3339 // Synthesize COND_E_AND_NP with two branches. 3340 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 3341 ++Count; 3342 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 3343 ++Count; 3344 break; 3345 default: { 3346 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 3347 ++Count; 3348 } 3349 } 3350 if (!FallThru) { 3351 // Two-way Conditional branch. Insert the second branch. 3352 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 3353 ++Count; 3354 } 3355 return Count; 3356 } 3357 3358 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3359 ArrayRef<MachineOperand> Cond, 3360 Register DstReg, Register TrueReg, 3361 Register FalseReg, int &CondCycles, 3362 int &TrueCycles, int &FalseCycles) const { 3363 // Not all subtargets have cmov instructions. 3364 if (!Subtarget.hasCMov()) 3365 return false; 3366 if (Cond.size() != 1) 3367 return false; 3368 // We cannot do the composite conditions, at least not in SSA form. 3369 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 3370 return false; 3371 3372 // Check register classes. 3373 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3374 const TargetRegisterClass *RC = 3375 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 3376 if (!RC) 3377 return false; 3378 3379 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 3380 if (X86::GR16RegClass.hasSubClassEq(RC) || 3381 X86::GR32RegClass.hasSubClassEq(RC) || 3382 X86::GR64RegClass.hasSubClassEq(RC)) { 3383 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 3384 // Bridge. Probably Ivy Bridge as well. 3385 CondCycles = 2; 3386 TrueCycles = 2; 3387 FalseCycles = 2; 3388 return true; 3389 } 3390 3391 // Can't do vectors. 3392 return false; 3393 } 3394 3395 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 3396 MachineBasicBlock::iterator I, 3397 const DebugLoc &DL, Register DstReg, 3398 ArrayRef<MachineOperand> Cond, Register TrueReg, 3399 Register FalseReg) const { 3400 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3401 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 3402 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 3403 assert(Cond.size() == 1 && "Invalid Cond array"); 3404 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 3405 false /*HasMemoryOperand*/); 3406 BuildMI(MBB, I, DL, get(Opc), DstReg) 3407 .addReg(FalseReg) 3408 .addReg(TrueReg) 3409 .addImm(Cond[0].getImm()); 3410 } 3411 3412 /// Test if the given register is a physical h register. 3413 static bool isHReg(unsigned Reg) { 3414 return X86::GR8_ABCD_HRegClass.contains(Reg); 3415 } 3416 3417 // Try and copy between VR128/VR64 and GR64 registers. 3418 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 3419 const X86Subtarget &Subtarget) { 3420 bool HasAVX = Subtarget.hasAVX(); 3421 bool HasAVX512 = Subtarget.hasAVX512(); 3422 3423 // SrcReg(MaskReg) -> DestReg(GR64) 3424 // SrcReg(MaskReg) -> DestReg(GR32) 3425 3426 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3427 if (X86::VK16RegClass.contains(SrcReg)) { 3428 if (X86::GR64RegClass.contains(DestReg)) { 3429 assert(Subtarget.hasBWI()); 3430 return X86::KMOVQrk; 3431 } 3432 if (X86::GR32RegClass.contains(DestReg)) 3433 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; 3434 } 3435 3436 // SrcReg(GR64) -> DestReg(MaskReg) 3437 // SrcReg(GR32) -> DestReg(MaskReg) 3438 3439 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3440 if (X86::VK16RegClass.contains(DestReg)) { 3441 if (X86::GR64RegClass.contains(SrcReg)) { 3442 assert(Subtarget.hasBWI()); 3443 return X86::KMOVQkr; 3444 } 3445 if (X86::GR32RegClass.contains(SrcReg)) 3446 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; 3447 } 3448 3449 3450 // SrcReg(VR128) -> DestReg(GR64) 3451 // SrcReg(VR64) -> DestReg(GR64) 3452 // SrcReg(GR64) -> DestReg(VR128) 3453 // SrcReg(GR64) -> DestReg(VR64) 3454 3455 if (X86::GR64RegClass.contains(DestReg)) { 3456 if (X86::VR128XRegClass.contains(SrcReg)) 3457 // Copy from a VR128 register to a GR64 register. 3458 return HasAVX512 ? X86::VMOVPQIto64Zrr : 3459 HasAVX ? X86::VMOVPQIto64rr : 3460 X86::MOVPQIto64rr; 3461 if (X86::VR64RegClass.contains(SrcReg)) 3462 // Copy from a VR64 register to a GR64 register. 3463 return X86::MMX_MOVD64from64rr; 3464 } else if (X86::GR64RegClass.contains(SrcReg)) { 3465 // Copy from a GR64 register to a VR128 register. 3466 if (X86::VR128XRegClass.contains(DestReg)) 3467 return HasAVX512 ? X86::VMOV64toPQIZrr : 3468 HasAVX ? X86::VMOV64toPQIrr : 3469 X86::MOV64toPQIrr; 3470 // Copy from a GR64 register to a VR64 register. 3471 if (X86::VR64RegClass.contains(DestReg)) 3472 return X86::MMX_MOVD64to64rr; 3473 } 3474 3475 // SrcReg(VR128) -> DestReg(GR32) 3476 // SrcReg(GR32) -> DestReg(VR128) 3477 3478 if (X86::GR32RegClass.contains(DestReg) && 3479 X86::VR128XRegClass.contains(SrcReg)) 3480 // Copy from a VR128 register to a GR32 register. 3481 return HasAVX512 ? X86::VMOVPDI2DIZrr : 3482 HasAVX ? X86::VMOVPDI2DIrr : 3483 X86::MOVPDI2DIrr; 3484 3485 if (X86::VR128XRegClass.contains(DestReg) && 3486 X86::GR32RegClass.contains(SrcReg)) 3487 // Copy from a VR128 register to a VR128 register. 3488 return HasAVX512 ? X86::VMOVDI2PDIZrr : 3489 HasAVX ? X86::VMOVDI2PDIrr : 3490 X86::MOVDI2PDIrr; 3491 return 0; 3492 } 3493 3494 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 3495 MachineBasicBlock::iterator MI, 3496 const DebugLoc &DL, MCRegister DestReg, 3497 MCRegister SrcReg, bool KillSrc) const { 3498 // First deal with the normal symmetric copies. 3499 bool HasAVX = Subtarget.hasAVX(); 3500 bool HasVLX = Subtarget.hasVLX(); 3501 unsigned Opc = 0; 3502 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 3503 Opc = X86::MOV64rr; 3504 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 3505 Opc = X86::MOV32rr; 3506 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 3507 Opc = X86::MOV16rr; 3508 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 3509 // Copying to or from a physical H register on x86-64 requires a NOREX 3510 // move. Otherwise use a normal move. 3511 if ((isHReg(DestReg) || isHReg(SrcReg)) && 3512 Subtarget.is64Bit()) { 3513 Opc = X86::MOV8rr_NOREX; 3514 // Both operands must be encodable without an REX prefix. 3515 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 3516 "8-bit H register can not be copied outside GR8_NOREX"); 3517 } else 3518 Opc = X86::MOV8rr; 3519 } 3520 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 3521 Opc = X86::MMX_MOVQ64rr; 3522 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 3523 if (HasVLX) 3524 Opc = X86::VMOVAPSZ128rr; 3525 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 3526 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 3527 else { 3528 // If this an extended register and we don't have VLX we need to use a 3529 // 512-bit move. 3530 Opc = X86::VMOVAPSZrr; 3531 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3532 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, 3533 &X86::VR512RegClass); 3534 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, 3535 &X86::VR512RegClass); 3536 } 3537 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 3538 if (HasVLX) 3539 Opc = X86::VMOVAPSZ256rr; 3540 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 3541 Opc = X86::VMOVAPSYrr; 3542 else { 3543 // If this an extended register and we don't have VLX we need to use a 3544 // 512-bit move. 3545 Opc = X86::VMOVAPSZrr; 3546 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3547 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, 3548 &X86::VR512RegClass); 3549 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, 3550 &X86::VR512RegClass); 3551 } 3552 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 3553 Opc = X86::VMOVAPSZrr; 3554 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3555 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 3556 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; 3557 if (!Opc) 3558 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 3559 3560 if (Opc) { 3561 BuildMI(MBB, MI, DL, get(Opc), DestReg) 3562 .addReg(SrcReg, getKillRegState(KillSrc)); 3563 return; 3564 } 3565 3566 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 3567 // FIXME: We use a fatal error here because historically LLVM has tried 3568 // lower some of these physreg copies and we want to ensure we get 3569 // reasonable bug reports if someone encounters a case no other testing 3570 // found. This path should be removed after the LLVM 7 release. 3571 report_fatal_error("Unable to copy EFLAGS physical register!"); 3572 } 3573 3574 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 3575 << RI.getName(DestReg) << '\n'); 3576 report_fatal_error("Cannot emit physreg copy instruction"); 3577 } 3578 3579 Optional<DestSourcePair> 3580 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 3581 if (MI.isMoveReg()) 3582 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 3583 return None; 3584 } 3585 3586 static unsigned getLoadStoreRegOpcode(Register Reg, 3587 const TargetRegisterClass *RC, 3588 bool IsStackAligned, 3589 const X86Subtarget &STI, bool load) { 3590 bool HasAVX = STI.hasAVX(); 3591 bool HasAVX512 = STI.hasAVX512(); 3592 bool HasVLX = STI.hasVLX(); 3593 3594 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 3595 default: 3596 llvm_unreachable("Unknown spill size"); 3597 case 1: 3598 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 3599 if (STI.is64Bit()) 3600 // Copying to or from a physical H register on x86-64 requires a NOREX 3601 // move. Otherwise use a normal move. 3602 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 3603 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 3604 return load ? X86::MOV8rm : X86::MOV8mr; 3605 case 2: 3606 if (X86::VK16RegClass.hasSubClassEq(RC)) 3607 return load ? X86::KMOVWkm : X86::KMOVWmk; 3608 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 3609 return load ? X86::MOV16rm : X86::MOV16mr; 3610 case 4: 3611 if (X86::GR32RegClass.hasSubClassEq(RC)) 3612 return load ? X86::MOV32rm : X86::MOV32mr; 3613 if (X86::FR32XRegClass.hasSubClassEq(RC)) 3614 return load ? 3615 (HasAVX512 ? X86::VMOVSSZrm_alt : 3616 HasAVX ? X86::VMOVSSrm_alt : 3617 X86::MOVSSrm_alt) : 3618 (HasAVX512 ? X86::VMOVSSZmr : 3619 HasAVX ? X86::VMOVSSmr : 3620 X86::MOVSSmr); 3621 if (X86::RFP32RegClass.hasSubClassEq(RC)) 3622 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 3623 if (X86::VK32RegClass.hasSubClassEq(RC)) { 3624 assert(STI.hasBWI() && "KMOVD requires BWI"); 3625 return load ? X86::KMOVDkm : X86::KMOVDmk; 3626 } 3627 // All of these mask pair classes have the same spill size, the same kind 3628 // of kmov instructions can be used with all of them. 3629 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 3630 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 3631 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 3632 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 3633 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 3634 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 3635 llvm_unreachable("Unknown 4-byte regclass"); 3636 case 8: 3637 if (X86::GR64RegClass.hasSubClassEq(RC)) 3638 return load ? X86::MOV64rm : X86::MOV64mr; 3639 if (X86::FR64XRegClass.hasSubClassEq(RC)) 3640 return load ? 3641 (HasAVX512 ? X86::VMOVSDZrm_alt : 3642 HasAVX ? X86::VMOVSDrm_alt : 3643 X86::MOVSDrm_alt) : 3644 (HasAVX512 ? X86::VMOVSDZmr : 3645 HasAVX ? X86::VMOVSDmr : 3646 X86::MOVSDmr); 3647 if (X86::VR64RegClass.hasSubClassEq(RC)) 3648 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 3649 if (X86::RFP64RegClass.hasSubClassEq(RC)) 3650 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 3651 if (X86::VK64RegClass.hasSubClassEq(RC)) { 3652 assert(STI.hasBWI() && "KMOVQ requires BWI"); 3653 return load ? X86::KMOVQkm : X86::KMOVQmk; 3654 } 3655 llvm_unreachable("Unknown 8-byte regclass"); 3656 case 10: 3657 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 3658 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 3659 case 16: { 3660 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 3661 // If stack is realigned we can use aligned stores. 3662 if (IsStackAligned) 3663 return load ? 3664 (HasVLX ? X86::VMOVAPSZ128rm : 3665 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : 3666 HasAVX ? X86::VMOVAPSrm : 3667 X86::MOVAPSrm): 3668 (HasVLX ? X86::VMOVAPSZ128mr : 3669 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : 3670 HasAVX ? X86::VMOVAPSmr : 3671 X86::MOVAPSmr); 3672 else 3673 return load ? 3674 (HasVLX ? X86::VMOVUPSZ128rm : 3675 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : 3676 HasAVX ? X86::VMOVUPSrm : 3677 X86::MOVUPSrm): 3678 (HasVLX ? X86::VMOVUPSZ128mr : 3679 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : 3680 HasAVX ? X86::VMOVUPSmr : 3681 X86::MOVUPSmr); 3682 } 3683 if (X86::BNDRRegClass.hasSubClassEq(RC)) { 3684 if (STI.is64Bit()) 3685 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; 3686 else 3687 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; 3688 } 3689 llvm_unreachable("Unknown 16-byte regclass"); 3690 } 3691 case 32: 3692 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 3693 // If stack is realigned we can use aligned stores. 3694 if (IsStackAligned) 3695 return load ? 3696 (HasVLX ? X86::VMOVAPSZ256rm : 3697 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : 3698 X86::VMOVAPSYrm) : 3699 (HasVLX ? X86::VMOVAPSZ256mr : 3700 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : 3701 X86::VMOVAPSYmr); 3702 else 3703 return load ? 3704 (HasVLX ? X86::VMOVUPSZ256rm : 3705 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : 3706 X86::VMOVUPSYrm) : 3707 (HasVLX ? X86::VMOVUPSZ256mr : 3708 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : 3709 X86::VMOVUPSYmr); 3710 case 64: 3711 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 3712 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 3713 if (IsStackAligned) 3714 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 3715 else 3716 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 3717 } 3718 } 3719 3720 Optional<ExtAddrMode> 3721 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, 3722 const TargetRegisterInfo *TRI) const { 3723 const MCInstrDesc &Desc = MemI.getDesc(); 3724 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3725 if (MemRefBegin < 0) 3726 return None; 3727 3728 MemRefBegin += X86II::getOperandBias(Desc); 3729 3730 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); 3731 if (!BaseOp.isReg()) // Can be an MO_FrameIndex 3732 return None; 3733 3734 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); 3735 // Displacement can be symbolic 3736 if (!DispMO.isImm()) 3737 return None; 3738 3739 ExtAddrMode AM; 3740 AM.BaseReg = BaseOp.getReg(); 3741 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); 3742 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); 3743 AM.Displacement = DispMO.getImm(); 3744 return AM; 3745 } 3746 3747 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, 3748 const Register Reg, 3749 int64_t &ImmVal) const { 3750 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri) 3751 return false; 3752 // Mov Src can be a global address. 3753 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg) 3754 return false; 3755 ImmVal = MI.getOperand(1).getImm(); 3756 return true; 3757 } 3758 3759 bool X86InstrInfo::preservesZeroValueInReg( 3760 const MachineInstr *MI, const Register NullValueReg, 3761 const TargetRegisterInfo *TRI) const { 3762 if (!MI->modifiesRegister(NullValueReg, TRI)) 3763 return true; 3764 switch (MI->getOpcode()) { 3765 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax 3766 // X. 3767 case X86::SHR64ri: 3768 case X86::SHR32ri: 3769 case X86::SHL64ri: 3770 case X86::SHL32ri: 3771 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && 3772 "expected for shift opcode!"); 3773 return MI->getOperand(0).getReg() == NullValueReg && 3774 MI->getOperand(1).getReg() == NullValueReg; 3775 // Zero extend of a sub-reg of NullValueReg into itself does not change the 3776 // null value. 3777 case X86::MOV32rr: 3778 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { 3779 return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); 3780 }); 3781 default: 3782 return false; 3783 } 3784 llvm_unreachable("Should be handled above!"); 3785 } 3786 3787 bool X86InstrInfo::getMemOperandsWithOffsetWidth( 3788 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, 3789 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 3790 const TargetRegisterInfo *TRI) const { 3791 const MCInstrDesc &Desc = MemOp.getDesc(); 3792 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3793 if (MemRefBegin < 0) 3794 return false; 3795 3796 MemRefBegin += X86II::getOperandBias(Desc); 3797 3798 const MachineOperand *BaseOp = 3799 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 3800 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 3801 return false; 3802 3803 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 3804 return false; 3805 3806 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 3807 X86::NoRegister) 3808 return false; 3809 3810 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 3811 3812 // Displacement can be symbolic 3813 if (!DispMO.isImm()) 3814 return false; 3815 3816 Offset = DispMO.getImm(); 3817 3818 if (!BaseOp->isReg()) 3819 return false; 3820 3821 OffsetIsScalable = false; 3822 // FIXME: Relying on memoperands() may not be right thing to do here. Check 3823 // with X86 maintainers, and fix it accordingly. For now, it is ok, since 3824 // there is no use of `Width` for X86 back-end at the moment. 3825 Width = 3826 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; 3827 BaseOps.push_back(BaseOp); 3828 return true; 3829 } 3830 3831 static unsigned getStoreRegOpcode(Register SrcReg, 3832 const TargetRegisterClass *RC, 3833 bool IsStackAligned, 3834 const X86Subtarget &STI) { 3835 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); 3836 } 3837 3838 static unsigned getLoadRegOpcode(Register DestReg, 3839 const TargetRegisterClass *RC, 3840 bool IsStackAligned, const X86Subtarget &STI) { 3841 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); 3842 } 3843 3844 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 3845 MachineBasicBlock::iterator MI, 3846 Register SrcReg, bool isKill, int FrameIdx, 3847 const TargetRegisterClass *RC, 3848 const TargetRegisterInfo *TRI) const { 3849 const MachineFunction &MF = *MBB.getParent(); 3850 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3851 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 3852 "Stack slot too small for store"); 3853 if (RC->getID() == X86::TILERegClassID) { 3854 unsigned Opc = X86::TILESTORED; 3855 // tilestored %tmm, (%sp, %idx) 3856 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3857 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3858 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3859 MachineInstr *NewMI = 3860 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3861 .addReg(SrcReg, getKillRegState(isKill)); 3862 MachineOperand &MO = NewMI->getOperand(2); 3863 MO.setReg(VirtReg); 3864 MO.setIsKill(true); 3865 } else { 3866 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3867 bool isAligned = 3868 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3869 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 3870 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 3871 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3872 .addReg(SrcReg, getKillRegState(isKill)); 3873 } 3874 } 3875 3876 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 3877 MachineBasicBlock::iterator MI, 3878 Register DestReg, int FrameIdx, 3879 const TargetRegisterClass *RC, 3880 const TargetRegisterInfo *TRI) const { 3881 if (RC->getID() == X86::TILERegClassID) { 3882 unsigned Opc = X86::TILELOADD; 3883 // tileloadd (%sp, %idx), %tmm 3884 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3885 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3886 MachineInstr *NewMI = 3887 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3888 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), 3889 FrameIdx); 3890 MachineOperand &MO = NewMI->getOperand(3); 3891 MO.setReg(VirtReg); 3892 MO.setIsKill(true); 3893 } else { 3894 const MachineFunction &MF = *MBB.getParent(); 3895 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3896 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3897 bool isAligned = 3898 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3899 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 3900 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 3901 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), 3902 FrameIdx); 3903 } 3904 } 3905 3906 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 3907 Register &SrcReg2, int &CmpMask, 3908 int &CmpValue) const { 3909 switch (MI.getOpcode()) { 3910 default: break; 3911 case X86::CMP64ri32: 3912 case X86::CMP64ri8: 3913 case X86::CMP32ri: 3914 case X86::CMP32ri8: 3915 case X86::CMP16ri: 3916 case X86::CMP16ri8: 3917 case X86::CMP8ri: 3918 SrcReg = MI.getOperand(0).getReg(); 3919 SrcReg2 = 0; 3920 if (MI.getOperand(1).isImm()) { 3921 CmpMask = ~0; 3922 CmpValue = MI.getOperand(1).getImm(); 3923 } else { 3924 CmpMask = CmpValue = 0; 3925 } 3926 return true; 3927 // A SUB can be used to perform comparison. 3928 case X86::SUB64rm: 3929 case X86::SUB32rm: 3930 case X86::SUB16rm: 3931 case X86::SUB8rm: 3932 SrcReg = MI.getOperand(1).getReg(); 3933 SrcReg2 = 0; 3934 CmpMask = 0; 3935 CmpValue = 0; 3936 return true; 3937 case X86::SUB64rr: 3938 case X86::SUB32rr: 3939 case X86::SUB16rr: 3940 case X86::SUB8rr: 3941 SrcReg = MI.getOperand(1).getReg(); 3942 SrcReg2 = MI.getOperand(2).getReg(); 3943 CmpMask = 0; 3944 CmpValue = 0; 3945 return true; 3946 case X86::SUB64ri32: 3947 case X86::SUB64ri8: 3948 case X86::SUB32ri: 3949 case X86::SUB32ri8: 3950 case X86::SUB16ri: 3951 case X86::SUB16ri8: 3952 case X86::SUB8ri: 3953 SrcReg = MI.getOperand(1).getReg(); 3954 SrcReg2 = 0; 3955 if (MI.getOperand(2).isImm()) { 3956 CmpMask = ~0; 3957 CmpValue = MI.getOperand(2).getImm(); 3958 } else { 3959 CmpMask = CmpValue = 0; 3960 } 3961 return true; 3962 case X86::CMP64rr: 3963 case X86::CMP32rr: 3964 case X86::CMP16rr: 3965 case X86::CMP8rr: 3966 SrcReg = MI.getOperand(0).getReg(); 3967 SrcReg2 = MI.getOperand(1).getReg(); 3968 CmpMask = 0; 3969 CmpValue = 0; 3970 return true; 3971 case X86::TEST8rr: 3972 case X86::TEST16rr: 3973 case X86::TEST32rr: 3974 case X86::TEST64rr: 3975 SrcReg = MI.getOperand(0).getReg(); 3976 if (MI.getOperand(1).getReg() != SrcReg) 3977 return false; 3978 // Compare against zero. 3979 SrcReg2 = 0; 3980 CmpMask = ~0; 3981 CmpValue = 0; 3982 return true; 3983 } 3984 return false; 3985 } 3986 3987 /// Check whether the first instruction, whose only 3988 /// purpose is to update flags, can be made redundant. 3989 /// CMPrr can be made redundant by SUBrr if the operands are the same. 3990 /// This function can be extended later on. 3991 /// SrcReg, SrcRegs: register operands for FlagI. 3992 /// ImmValue: immediate for FlagI if it takes an immediate. 3993 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI, 3994 Register SrcReg, Register SrcReg2, 3995 int ImmMask, int ImmValue, 3996 const MachineInstr &OI) { 3997 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || 3998 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || 3999 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || 4000 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && 4001 ((OI.getOperand(1).getReg() == SrcReg && 4002 OI.getOperand(2).getReg() == SrcReg2) || 4003 (OI.getOperand(1).getReg() == SrcReg2 && 4004 OI.getOperand(2).getReg() == SrcReg))) 4005 return true; 4006 4007 if (ImmMask != 0 && 4008 ((FlagI.getOpcode() == X86::CMP64ri32 && 4009 OI.getOpcode() == X86::SUB64ri32) || 4010 (FlagI.getOpcode() == X86::CMP64ri8 && 4011 OI.getOpcode() == X86::SUB64ri8) || 4012 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || 4013 (FlagI.getOpcode() == X86::CMP32ri8 && 4014 OI.getOpcode() == X86::SUB32ri8) || 4015 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || 4016 (FlagI.getOpcode() == X86::CMP16ri8 && 4017 OI.getOpcode() == X86::SUB16ri8) || 4018 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && 4019 OI.getOperand(1).getReg() == SrcReg && 4020 OI.getOperand(2).getImm() == ImmValue) 4021 return true; 4022 return false; 4023 } 4024 4025 /// Check whether the definition can be converted 4026 /// to remove a comparison against zero. 4027 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, 4028 bool &ClearsOverflowFlag) { 4029 NoSignFlag = false; 4030 ClearsOverflowFlag = false; 4031 4032 switch (MI.getOpcode()) { 4033 default: return false; 4034 4035 // The shift instructions only modify ZF if their shift count is non-zero. 4036 // N.B.: The processor truncates the shift count depending on the encoding. 4037 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 4038 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 4039 return getTruncatedShiftCount(MI, 2) != 0; 4040 4041 // Some left shift instructions can be turned into LEA instructions but only 4042 // if their flags aren't used. Avoid transforming such instructions. 4043 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 4044 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 4045 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 4046 return ShAmt != 0; 4047 } 4048 4049 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 4050 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 4051 return getTruncatedShiftCount(MI, 3) != 0; 4052 4053 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 4054 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 4055 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 4056 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 4057 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 4058 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 4059 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 4060 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 4061 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 4062 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 4063 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 4064 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 4065 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: 4066 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: 4067 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: 4068 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: 4069 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: 4070 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: 4071 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: 4072 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: 4073 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: 4074 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: 4075 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 4076 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 4077 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 4078 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 4079 case X86::LZCNT16rr: case X86::LZCNT16rm: 4080 case X86::LZCNT32rr: case X86::LZCNT32rm: 4081 case X86::LZCNT64rr: case X86::LZCNT64rm: 4082 case X86::POPCNT16rr:case X86::POPCNT16rm: 4083 case X86::POPCNT32rr:case X86::POPCNT32rm: 4084 case X86::POPCNT64rr:case X86::POPCNT64rm: 4085 case X86::TZCNT16rr: case X86::TZCNT16rm: 4086 case X86::TZCNT32rr: case X86::TZCNT32rm: 4087 case X86::TZCNT64rr: case X86::TZCNT64rm: 4088 return true; 4089 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 4090 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 4091 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 4092 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 4093 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 4094 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 4095 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 4096 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 4097 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 4098 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 4099 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 4100 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 4101 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 4102 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 4103 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 4104 case X86::ANDN32rr: case X86::ANDN32rm: 4105 case X86::ANDN64rr: case X86::ANDN64rm: 4106 case X86::BLSI32rr: case X86::BLSI32rm: 4107 case X86::BLSI64rr: case X86::BLSI64rm: 4108 case X86::BLSMSK32rr: case X86::BLSMSK32rm: 4109 case X86::BLSMSK64rr: case X86::BLSMSK64rm: 4110 case X86::BLSR32rr: case X86::BLSR32rm: 4111 case X86::BLSR64rr: case X86::BLSR64rm: 4112 case X86::BLCFILL32rr: case X86::BLCFILL32rm: 4113 case X86::BLCFILL64rr: case X86::BLCFILL64rm: 4114 case X86::BLCI32rr: case X86::BLCI32rm: 4115 case X86::BLCI64rr: case X86::BLCI64rm: 4116 case X86::BLCIC32rr: case X86::BLCIC32rm: 4117 case X86::BLCIC64rr: case X86::BLCIC64rm: 4118 case X86::BLCMSK32rr: case X86::BLCMSK32rm: 4119 case X86::BLCMSK64rr: case X86::BLCMSK64rm: 4120 case X86::BLCS32rr: case X86::BLCS32rm: 4121 case X86::BLCS64rr: case X86::BLCS64rm: 4122 case X86::BLSFILL32rr: case X86::BLSFILL32rm: 4123 case X86::BLSFILL64rr: case X86::BLSFILL64rm: 4124 case X86::BLSIC32rr: case X86::BLSIC32rm: 4125 case X86::BLSIC64rr: case X86::BLSIC64rm: 4126 case X86::BZHI32rr: case X86::BZHI32rm: 4127 case X86::BZHI64rr: case X86::BZHI64rm: 4128 case X86::T1MSKC32rr: case X86::T1MSKC32rm: 4129 case X86::T1MSKC64rr: case X86::T1MSKC64rm: 4130 case X86::TZMSK32rr: case X86::TZMSK32rm: 4131 case X86::TZMSK64rr: case X86::TZMSK64rm: 4132 // These instructions clear the overflow flag just like TEST. 4133 // FIXME: These are not the only instructions in this switch that clear the 4134 // overflow flag. 4135 ClearsOverflowFlag = true; 4136 return true; 4137 case X86::BEXTR32rr: case X86::BEXTR64rr: 4138 case X86::BEXTR32rm: case X86::BEXTR64rm: 4139 case X86::BEXTRI32ri: case X86::BEXTRI32mi: 4140 case X86::BEXTRI64ri: case X86::BEXTRI64mi: 4141 // BEXTR doesn't update the sign flag so we can't use it. It does clear 4142 // the overflow flag, but that's not useful without the sign flag. 4143 NoSignFlag = true; 4144 return true; 4145 } 4146 } 4147 4148 /// Check whether the use can be converted to remove a comparison against zero. 4149 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { 4150 switch (MI.getOpcode()) { 4151 default: return X86::COND_INVALID; 4152 case X86::NEG8r: 4153 case X86::NEG16r: 4154 case X86::NEG32r: 4155 case X86::NEG64r: 4156 return X86::COND_AE; 4157 case X86::LZCNT16rr: 4158 case X86::LZCNT32rr: 4159 case X86::LZCNT64rr: 4160 return X86::COND_B; 4161 case X86::POPCNT16rr: 4162 case X86::POPCNT32rr: 4163 case X86::POPCNT64rr: 4164 return X86::COND_E; 4165 case X86::TZCNT16rr: 4166 case X86::TZCNT32rr: 4167 case X86::TZCNT64rr: 4168 return X86::COND_B; 4169 case X86::BSF16rr: 4170 case X86::BSF32rr: 4171 case X86::BSF64rr: 4172 case X86::BSR16rr: 4173 case X86::BSR32rr: 4174 case X86::BSR64rr: 4175 return X86::COND_E; 4176 case X86::BLSI32rr: 4177 case X86::BLSI64rr: 4178 return X86::COND_AE; 4179 case X86::BLSR32rr: 4180 case X86::BLSR64rr: 4181 case X86::BLSMSK32rr: 4182 case X86::BLSMSK64rr: 4183 return X86::COND_B; 4184 // TODO: TBM instructions. 4185 } 4186 } 4187 4188 /// Check if there exists an earlier instruction that 4189 /// operates on the same source operands and sets flags in the same way as 4190 /// Compare; remove Compare if possible. 4191 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 4192 Register SrcReg2, int CmpMask, 4193 int CmpValue, 4194 const MachineRegisterInfo *MRI) const { 4195 // Check whether we can replace SUB with CMP. 4196 switch (CmpInstr.getOpcode()) { 4197 default: break; 4198 case X86::SUB64ri32: 4199 case X86::SUB64ri8: 4200 case X86::SUB32ri: 4201 case X86::SUB32ri8: 4202 case X86::SUB16ri: 4203 case X86::SUB16ri8: 4204 case X86::SUB8ri: 4205 case X86::SUB64rm: 4206 case X86::SUB32rm: 4207 case X86::SUB16rm: 4208 case X86::SUB8rm: 4209 case X86::SUB64rr: 4210 case X86::SUB32rr: 4211 case X86::SUB16rr: 4212 case X86::SUB8rr: { 4213 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 4214 return false; 4215 // There is no use of the destination register, we can replace SUB with CMP. 4216 unsigned NewOpcode = 0; 4217 switch (CmpInstr.getOpcode()) { 4218 default: llvm_unreachable("Unreachable!"); 4219 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 4220 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 4221 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 4222 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 4223 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 4224 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 4225 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 4226 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 4227 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 4228 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 4229 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 4230 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 4231 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 4232 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 4233 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 4234 } 4235 CmpInstr.setDesc(get(NewOpcode)); 4236 CmpInstr.RemoveOperand(0); 4237 // Mutating this instruction invalidates any debug data associated with it. 4238 CmpInstr.dropDebugNumber(); 4239 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 4240 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 4241 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 4242 return false; 4243 } 4244 } 4245 4246 // Get the unique definition of SrcReg. 4247 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 4248 if (!MI) return false; 4249 4250 // CmpInstr is the first instruction of the BB. 4251 MachineBasicBlock::iterator I = CmpInstr, Def = MI; 4252 4253 // If we are comparing against zero, check whether we can use MI to update 4254 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. 4255 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 4256 if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) 4257 return false; 4258 4259 // If we have a use of the source register between the def and our compare 4260 // instruction we can eliminate the compare iff the use sets EFLAGS in the 4261 // right way. 4262 bool ShouldUpdateCC = false; 4263 bool NoSignFlag = false; 4264 bool ClearsOverflowFlag = false; 4265 X86::CondCode NewCC = X86::COND_INVALID; 4266 if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag, ClearsOverflowFlag)) { 4267 // Scan forward from the use until we hit the use we're looking for or the 4268 // compare instruction. 4269 for (MachineBasicBlock::iterator J = MI;; ++J) { 4270 // Do we have a convertible instruction? 4271 NewCC = isUseDefConvertible(*J); 4272 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && 4273 J->getOperand(1).getReg() == SrcReg) { 4274 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); 4275 ShouldUpdateCC = true; // Update CC later on. 4276 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going 4277 // with the new def. 4278 Def = J; 4279 MI = &*Def; 4280 break; 4281 } 4282 4283 if (J == I) 4284 return false; 4285 } 4286 } 4287 4288 // We are searching for an earlier instruction that can make CmpInstr 4289 // redundant and that instruction will be saved in Sub. 4290 MachineInstr *Sub = nullptr; 4291 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4292 4293 // We iterate backward, starting from the instruction before CmpInstr and 4294 // stop when reaching the definition of a source register or done with the BB. 4295 // RI points to the instruction before CmpInstr. 4296 // If the definition is in this basic block, RE points to the definition; 4297 // otherwise, RE is the rend of the basic block. 4298 MachineBasicBlock::reverse_iterator 4299 RI = ++I.getReverse(), 4300 RE = CmpInstr.getParent() == MI->getParent() 4301 ? Def.getReverse() /* points to MI */ 4302 : CmpInstr.getParent()->rend(); 4303 MachineInstr *Movr0Inst = nullptr; 4304 for (; RI != RE; ++RI) { 4305 MachineInstr &Instr = *RI; 4306 // Check whether CmpInstr can be made redundant by the current instruction. 4307 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, 4308 CmpValue, Instr)) { 4309 Sub = &Instr; 4310 break; 4311 } 4312 4313 if (Instr.modifiesRegister(X86::EFLAGS, TRI) || 4314 Instr.readsRegister(X86::EFLAGS, TRI)) { 4315 // This instruction modifies or uses EFLAGS. 4316 4317 // MOV32r0 etc. are implemented with xor which clobbers condition code. 4318 // They are safe to move up, if the definition to EFLAGS is dead and 4319 // earlier instructions do not read or write EFLAGS. 4320 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && 4321 Instr.registerDefIsDead(X86::EFLAGS, TRI)) { 4322 Movr0Inst = &Instr; 4323 continue; 4324 } 4325 4326 // We can't remove CmpInstr. 4327 return false; 4328 } 4329 } 4330 4331 // Return false if no candidates exist. 4332 if (!IsCmpZero && !Sub) 4333 return false; 4334 4335 bool IsSwapped = 4336 (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 && 4337 Sub->getOperand(2).getReg() == SrcReg); 4338 4339 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 4340 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 4341 // If we are done with the basic block, we need to check whether EFLAGS is 4342 // live-out. 4343 bool IsSafe = false; 4344 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate; 4345 MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); 4346 for (++I; I != E; ++I) { 4347 const MachineInstr &Instr = *I; 4348 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 4349 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 4350 // We should check the usage if this instruction uses and updates EFLAGS. 4351 if (!UseEFLAGS && ModifyEFLAGS) { 4352 // It is safe to remove CmpInstr if EFLAGS is updated again. 4353 IsSafe = true; 4354 break; 4355 } 4356 if (!UseEFLAGS && !ModifyEFLAGS) 4357 continue; 4358 4359 // EFLAGS is used by this instruction. 4360 X86::CondCode OldCC = X86::COND_INVALID; 4361 if (IsCmpZero || IsSwapped) { 4362 // We decode the condition code from opcode. 4363 if (Instr.isBranch()) 4364 OldCC = X86::getCondFromBranch(Instr); 4365 else { 4366 OldCC = X86::getCondFromSETCC(Instr); 4367 if (OldCC == X86::COND_INVALID) 4368 OldCC = X86::getCondFromCMov(Instr); 4369 } 4370 if (OldCC == X86::COND_INVALID) return false; 4371 } 4372 X86::CondCode ReplacementCC = X86::COND_INVALID; 4373 if (IsCmpZero) { 4374 switch (OldCC) { 4375 default: break; 4376 case X86::COND_A: case X86::COND_AE: 4377 case X86::COND_B: case X86::COND_BE: 4378 // CF is used, we can't perform this optimization. 4379 return false; 4380 case X86::COND_G: case X86::COND_GE: 4381 case X86::COND_L: case X86::COND_LE: 4382 case X86::COND_O: case X86::COND_NO: 4383 // If OF is used, the instruction needs to clear it like CmpZero does. 4384 if (!ClearsOverflowFlag) 4385 return false; 4386 break; 4387 case X86::COND_S: case X86::COND_NS: 4388 // If SF is used, but the instruction doesn't update the SF, then we 4389 // can't do the optimization. 4390 if (NoSignFlag) 4391 return false; 4392 break; 4393 } 4394 4395 // If we're updating the condition code check if we have to reverse the 4396 // condition. 4397 if (ShouldUpdateCC) 4398 switch (OldCC) { 4399 default: 4400 return false; 4401 case X86::COND_E: 4402 ReplacementCC = NewCC; 4403 break; 4404 case X86::COND_NE: 4405 ReplacementCC = GetOppositeBranchCondition(NewCC); 4406 break; 4407 } 4408 } else if (IsSwapped) { 4409 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 4410 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 4411 // We swap the condition code and synthesize the new opcode. 4412 ReplacementCC = getSwappedCondition(OldCC); 4413 if (ReplacementCC == X86::COND_INVALID) return false; 4414 } 4415 4416 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { 4417 // Push the MachineInstr to OpsToUpdate. 4418 // If it is safe to remove CmpInstr, the condition code of these 4419 // instructions will be modified. 4420 OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC)); 4421 } 4422 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 4423 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 4424 IsSafe = true; 4425 break; 4426 } 4427 } 4428 4429 // If EFLAGS is not killed nor re-defined, we should check whether it is 4430 // live-out. If it is live-out, do not optimize. 4431 if ((IsCmpZero || IsSwapped) && !IsSafe) { 4432 MachineBasicBlock *MBB = CmpInstr.getParent(); 4433 for (MachineBasicBlock *Successor : MBB->successors()) 4434 if (Successor->isLiveIn(X86::EFLAGS)) 4435 return false; 4436 } 4437 4438 // The instruction to be updated is either Sub or MI. 4439 Sub = IsCmpZero ? MI : Sub; 4440 // Move Movr0Inst to the appropriate place before Sub. 4441 if (Movr0Inst) { 4442 // Look backwards until we find a def that doesn't use the current EFLAGS. 4443 Def = Sub; 4444 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), 4445 InsertE = Sub->getParent()->rend(); 4446 for (; InsertI != InsertE; ++InsertI) { 4447 MachineInstr *Instr = &*InsertI; 4448 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 4449 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 4450 Sub->getParent()->remove(Movr0Inst); 4451 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 4452 Movr0Inst); 4453 break; 4454 } 4455 } 4456 if (InsertI == InsertE) 4457 return false; 4458 } 4459 4460 // Make sure Sub instruction defines EFLAGS and mark the def live. 4461 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS); 4462 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 4463 FlagDef->setIsDead(false); 4464 4465 CmpInstr.eraseFromParent(); 4466 4467 // Modify the condition code of instructions in OpsToUpdate. 4468 for (auto &Op : OpsToUpdate) { 4469 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 4470 .setImm(Op.second); 4471 } 4472 return true; 4473 } 4474 4475 /// Try to remove the load by folding it to a register 4476 /// operand at the use. We fold the load instructions if load defines a virtual 4477 /// register, the virtual register is used once in the same BB, and the 4478 /// instructions in-between do not load or store, and have no side effects. 4479 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 4480 const MachineRegisterInfo *MRI, 4481 Register &FoldAsLoadDefReg, 4482 MachineInstr *&DefMI) const { 4483 // Check whether we can move DefMI here. 4484 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 4485 assert(DefMI); 4486 bool SawStore = false; 4487 if (!DefMI->isSafeToMove(nullptr, SawStore)) 4488 return nullptr; 4489 4490 // Collect information about virtual register operands of MI. 4491 SmallVector<unsigned, 1> SrcOperandIds; 4492 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4493 MachineOperand &MO = MI.getOperand(i); 4494 if (!MO.isReg()) 4495 continue; 4496 Register Reg = MO.getReg(); 4497 if (Reg != FoldAsLoadDefReg) 4498 continue; 4499 // Do not fold if we have a subreg use or a def. 4500 if (MO.getSubReg() || MO.isDef()) 4501 return nullptr; 4502 SrcOperandIds.push_back(i); 4503 } 4504 if (SrcOperandIds.empty()) 4505 return nullptr; 4506 4507 // Check whether we can fold the def into SrcOperandId. 4508 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 4509 FoldAsLoadDefReg = 0; 4510 return FoldMI; 4511 } 4512 4513 return nullptr; 4514 } 4515 4516 /// Expand a single-def pseudo instruction to a two-addr 4517 /// instruction with two undef reads of the register being defined. 4518 /// This is used for mapping: 4519 /// %xmm4 = V_SET0 4520 /// to: 4521 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 4522 /// 4523 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 4524 const MCInstrDesc &Desc) { 4525 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4526 Register Reg = MIB.getReg(0); 4527 MIB->setDesc(Desc); 4528 4529 // MachineInstr::addOperand() will insert explicit operands before any 4530 // implicit operands. 4531 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4532 // But we don't trust that. 4533 assert(MIB.getReg(1) == Reg && 4534 MIB.getReg(2) == Reg && "Misplaced operand"); 4535 return true; 4536 } 4537 4538 /// Expand a single-def pseudo instruction to a two-addr 4539 /// instruction with two %k0 reads. 4540 /// This is used for mapping: 4541 /// %k4 = K_SET1 4542 /// to: 4543 /// %k4 = KXNORrr %k0, %k0 4544 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, 4545 Register Reg) { 4546 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4547 MIB->setDesc(Desc); 4548 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4549 return true; 4550 } 4551 4552 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 4553 bool MinusOne) { 4554 MachineBasicBlock &MBB = *MIB->getParent(); 4555 const DebugLoc &DL = MIB->getDebugLoc(); 4556 Register Reg = MIB.getReg(0); 4557 4558 // Insert the XOR. 4559 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 4560 .addReg(Reg, RegState::Undef) 4561 .addReg(Reg, RegState::Undef); 4562 4563 // Turn the pseudo into an INC or DEC. 4564 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 4565 MIB.addReg(Reg); 4566 4567 return true; 4568 } 4569 4570 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 4571 const TargetInstrInfo &TII, 4572 const X86Subtarget &Subtarget) { 4573 MachineBasicBlock &MBB = *MIB->getParent(); 4574 const DebugLoc &DL = MIB->getDebugLoc(); 4575 int64_t Imm = MIB->getOperand(1).getImm(); 4576 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 4577 MachineBasicBlock::iterator I = MIB.getInstr(); 4578 4579 int StackAdjustment; 4580 4581 if (Subtarget.is64Bit()) { 4582 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 4583 MIB->getOpcode() == X86::MOV32ImmSExti8); 4584 4585 // Can't use push/pop lowering if the function might write to the red zone. 4586 X86MachineFunctionInfo *X86FI = 4587 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 4588 if (X86FI->getUsesRedZone()) { 4589 MIB->setDesc(TII.get(MIB->getOpcode() == 4590 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); 4591 return true; 4592 } 4593 4594 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 4595 // widen the register if necessary. 4596 StackAdjustment = 8; 4597 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); 4598 MIB->setDesc(TII.get(X86::POP64r)); 4599 MIB->getOperand(0) 4600 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); 4601 } else { 4602 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 4603 StackAdjustment = 4; 4604 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); 4605 MIB->setDesc(TII.get(X86::POP32r)); 4606 } 4607 MIB->RemoveOperand(1); 4608 MIB->addImplicitDefUseOperands(*MBB.getParent()); 4609 4610 // Build CFI if necessary. 4611 MachineFunction &MF = *MBB.getParent(); 4612 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 4613 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 4614 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 4615 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 4616 if (EmitCFI) { 4617 TFL->BuildCFI(MBB, I, DL, 4618 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 4619 TFL->BuildCFI(MBB, std::next(I), DL, 4620 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 4621 } 4622 4623 return true; 4624 } 4625 4626 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 4627 // code sequence is needed for other targets. 4628 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 4629 const TargetInstrInfo &TII) { 4630 MachineBasicBlock &MBB = *MIB->getParent(); 4631 const DebugLoc &DL = MIB->getDebugLoc(); 4632 Register Reg = MIB.getReg(0); 4633 const GlobalValue *GV = 4634 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 4635 auto Flags = MachineMemOperand::MOLoad | 4636 MachineMemOperand::MODereferenceable | 4637 MachineMemOperand::MOInvariant; 4638 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4639 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); 4640 MachineBasicBlock::iterator I = MIB.getInstr(); 4641 4642 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 4643 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 4644 .addMemOperand(MMO); 4645 MIB->setDebugLoc(DL); 4646 MIB->setDesc(TII.get(X86::MOV64rm)); 4647 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 4648 } 4649 4650 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 4651 MachineBasicBlock &MBB = *MIB->getParent(); 4652 MachineFunction &MF = *MBB.getParent(); 4653 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 4654 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 4655 unsigned XorOp = 4656 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 4657 MIB->setDesc(TII.get(XorOp)); 4658 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 4659 return true; 4660 } 4661 4662 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4663 // but not VLX. If it uses an extended register we need to use an instruction 4664 // that loads the lower 128/256-bit, but is available with only AVX512F. 4665 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 4666 const TargetRegisterInfo *TRI, 4667 const MCInstrDesc &LoadDesc, 4668 const MCInstrDesc &BroadcastDesc, 4669 unsigned SubIdx) { 4670 Register DestReg = MIB.getReg(0); 4671 // Check if DestReg is XMM16-31 or YMM16-31. 4672 if (TRI->getEncodingValue(DestReg) < 16) { 4673 // We can use a normal VEX encoded load. 4674 MIB->setDesc(LoadDesc); 4675 } else { 4676 // Use a 128/256-bit VBROADCAST instruction. 4677 MIB->setDesc(BroadcastDesc); 4678 // Change the destination to a 512-bit register. 4679 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 4680 MIB->getOperand(0).setReg(DestReg); 4681 } 4682 return true; 4683 } 4684 4685 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4686 // but not VLX. If it uses an extended register we need to use an instruction 4687 // that stores the lower 128/256-bit, but is available with only AVX512F. 4688 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 4689 const TargetRegisterInfo *TRI, 4690 const MCInstrDesc &StoreDesc, 4691 const MCInstrDesc &ExtractDesc, 4692 unsigned SubIdx) { 4693 Register SrcReg = MIB.getReg(X86::AddrNumOperands); 4694 // Check if DestReg is XMM16-31 or YMM16-31. 4695 if (TRI->getEncodingValue(SrcReg) < 16) { 4696 // We can use a normal VEX encoded store. 4697 MIB->setDesc(StoreDesc); 4698 } else { 4699 // Use a VEXTRACTF instruction. 4700 MIB->setDesc(ExtractDesc); 4701 // Change the destination to a 512-bit register. 4702 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 4703 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 4704 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 4705 } 4706 4707 return true; 4708 } 4709 4710 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 4711 MIB->setDesc(Desc); 4712 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 4713 // Temporarily remove the immediate so we can add another source register. 4714 MIB->RemoveOperand(2); 4715 // Add the register. Don't copy the kill flag if there is one. 4716 MIB.addReg(MIB.getReg(1), 4717 getUndefRegState(MIB->getOperand(1).isUndef())); 4718 // Add back the immediate. 4719 MIB.addImm(ShiftAmt); 4720 return true; 4721 } 4722 4723 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 4724 bool HasAVX = Subtarget.hasAVX(); 4725 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4726 switch (MI.getOpcode()) { 4727 case X86::MOV32r0: 4728 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 4729 case X86::MOV32r1: 4730 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 4731 case X86::MOV32r_1: 4732 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 4733 case X86::MOV32ImmSExti8: 4734 case X86::MOV64ImmSExti8: 4735 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 4736 case X86::SETB_C32r: 4737 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 4738 case X86::SETB_C64r: 4739 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 4740 case X86::MMX_SET0: 4741 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); 4742 case X86::V_SET0: 4743 case X86::FsFLD0SS: 4744 case X86::FsFLD0SD: 4745 case X86::FsFLD0F128: 4746 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 4747 case X86::AVX_SET0: { 4748 assert(HasAVX && "AVX not supported"); 4749 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4750 Register SrcReg = MIB.getReg(0); 4751 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4752 MIB->getOperand(0).setReg(XReg); 4753 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 4754 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4755 return true; 4756 } 4757 case X86::AVX512_128_SET0: 4758 case X86::AVX512_FsFLD0SS: 4759 case X86::AVX512_FsFLD0SD: 4760 case X86::AVX512_FsFLD0F128: { 4761 bool HasVLX = Subtarget.hasVLX(); 4762 Register SrcReg = MIB.getReg(0); 4763 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4764 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 4765 return Expand2AddrUndef(MIB, 4766 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4767 // Extended register without VLX. Use a larger XOR. 4768 SrcReg = 4769 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 4770 MIB->getOperand(0).setReg(SrcReg); 4771 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4772 } 4773 case X86::AVX512_256_SET0: 4774 case X86::AVX512_512_SET0: { 4775 bool HasVLX = Subtarget.hasVLX(); 4776 Register SrcReg = MIB.getReg(0); 4777 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4778 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 4779 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4780 MIB->getOperand(0).setReg(XReg); 4781 Expand2AddrUndef(MIB, 4782 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4783 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4784 return true; 4785 } 4786 if (MI.getOpcode() == X86::AVX512_256_SET0) { 4787 // No VLX so we must reference a zmm. 4788 unsigned ZReg = 4789 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 4790 MIB->getOperand(0).setReg(ZReg); 4791 } 4792 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4793 } 4794 case X86::V_SETALLONES: 4795 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 4796 case X86::AVX2_SETALLONES: 4797 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 4798 case X86::AVX1_SETALLONES: { 4799 Register Reg = MIB.getReg(0); 4800 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 4801 MIB->setDesc(get(X86::VCMPPSYrri)); 4802 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 4803 return true; 4804 } 4805 case X86::AVX512_512_SETALLONES: { 4806 Register Reg = MIB.getReg(0); 4807 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 4808 // VPTERNLOGD needs 3 register inputs and an immediate. 4809 // 0xff will return 1s for any input. 4810 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) 4811 .addReg(Reg, RegState::Undef).addImm(0xff); 4812 return true; 4813 } 4814 case X86::AVX512_512_SEXT_MASK_32: 4815 case X86::AVX512_512_SEXT_MASK_64: { 4816 Register Reg = MIB.getReg(0); 4817 Register MaskReg = MIB.getReg(1); 4818 unsigned MaskState = getRegState(MIB->getOperand(1)); 4819 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? 4820 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; 4821 MI.RemoveOperand(1); 4822 MIB->setDesc(get(Opc)); 4823 // VPTERNLOG needs 3 register inputs and an immediate. 4824 // 0xff will return 1s for any input. 4825 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) 4826 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); 4827 return true; 4828 } 4829 case X86::VMOVAPSZ128rm_NOVLX: 4830 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 4831 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4832 case X86::VMOVUPSZ128rm_NOVLX: 4833 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 4834 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4835 case X86::VMOVAPSZ256rm_NOVLX: 4836 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 4837 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4838 case X86::VMOVUPSZ256rm_NOVLX: 4839 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 4840 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4841 case X86::VMOVAPSZ128mr_NOVLX: 4842 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 4843 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4844 case X86::VMOVUPSZ128mr_NOVLX: 4845 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 4846 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4847 case X86::VMOVAPSZ256mr_NOVLX: 4848 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 4849 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4850 case X86::VMOVUPSZ256mr_NOVLX: 4851 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 4852 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4853 case X86::MOV32ri64: { 4854 Register Reg = MIB.getReg(0); 4855 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 4856 MI.setDesc(get(X86::MOV32ri)); 4857 MIB->getOperand(0).setReg(Reg32); 4858 MIB.addReg(Reg, RegState::ImplicitDefine); 4859 return true; 4860 } 4861 4862 // KNL does not recognize dependency-breaking idioms for mask registers, 4863 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 4864 // Using %k0 as the undef input register is a performance heuristic based 4865 // on the assumption that %k0 is used less frequently than the other mask 4866 // registers, since it is not usable as a write mask. 4867 // FIXME: A more advanced approach would be to choose the best input mask 4868 // register based on context. 4869 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); 4870 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); 4871 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); 4872 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); 4873 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); 4874 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); 4875 case TargetOpcode::LOAD_STACK_GUARD: 4876 expandLoadStackGuard(MIB, *this); 4877 return true; 4878 case X86::XOR64_FP: 4879 case X86::XOR32_FP: 4880 return expandXorFP(MIB, *this); 4881 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 4882 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 4883 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 4884 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 4885 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; 4886 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; 4887 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; 4888 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; 4889 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; 4890 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; 4891 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; 4892 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; 4893 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break; 4894 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break; 4895 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break; 4896 } 4897 return false; 4898 } 4899 4900 /// Return true for all instructions that only update 4901 /// the first 32 or 64-bits of the destination register and leave the rest 4902 /// unmodified. This can be used to avoid folding loads if the instructions 4903 /// only update part of the destination register, and the non-updated part is 4904 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 4905 /// instructions breaks the partial register dependency and it can improve 4906 /// performance. e.g.: 4907 /// 4908 /// movss (%rdi), %xmm0 4909 /// cvtss2sd %xmm0, %xmm0 4910 /// 4911 /// Instead of 4912 /// cvtss2sd (%rdi), %xmm0 4913 /// 4914 /// FIXME: This should be turned into a TSFlags. 4915 /// 4916 static bool hasPartialRegUpdate(unsigned Opcode, 4917 const X86Subtarget &Subtarget, 4918 bool ForLoadFold = false) { 4919 switch (Opcode) { 4920 case X86::CVTSI2SSrr: 4921 case X86::CVTSI2SSrm: 4922 case X86::CVTSI642SSrr: 4923 case X86::CVTSI642SSrm: 4924 case X86::CVTSI2SDrr: 4925 case X86::CVTSI2SDrm: 4926 case X86::CVTSI642SDrr: 4927 case X86::CVTSI642SDrm: 4928 // Load folding won't effect the undef register update since the input is 4929 // a GPR. 4930 return !ForLoadFold; 4931 case X86::CVTSD2SSrr: 4932 case X86::CVTSD2SSrm: 4933 case X86::CVTSS2SDrr: 4934 case X86::CVTSS2SDrm: 4935 case X86::MOVHPDrm: 4936 case X86::MOVHPSrm: 4937 case X86::MOVLPDrm: 4938 case X86::MOVLPSrm: 4939 case X86::RCPSSr: 4940 case X86::RCPSSm: 4941 case X86::RCPSSr_Int: 4942 case X86::RCPSSm_Int: 4943 case X86::ROUNDSDr: 4944 case X86::ROUNDSDm: 4945 case X86::ROUNDSSr: 4946 case X86::ROUNDSSm: 4947 case X86::RSQRTSSr: 4948 case X86::RSQRTSSm: 4949 case X86::RSQRTSSr_Int: 4950 case X86::RSQRTSSm_Int: 4951 case X86::SQRTSSr: 4952 case X86::SQRTSSm: 4953 case X86::SQRTSSr_Int: 4954 case X86::SQRTSSm_Int: 4955 case X86::SQRTSDr: 4956 case X86::SQRTSDm: 4957 case X86::SQRTSDr_Int: 4958 case X86::SQRTSDm_Int: 4959 return true; 4960 // GPR 4961 case X86::POPCNT32rm: 4962 case X86::POPCNT32rr: 4963 case X86::POPCNT64rm: 4964 case X86::POPCNT64rr: 4965 return Subtarget.hasPOPCNTFalseDeps(); 4966 case X86::LZCNT32rm: 4967 case X86::LZCNT32rr: 4968 case X86::LZCNT64rm: 4969 case X86::LZCNT64rr: 4970 case X86::TZCNT32rm: 4971 case X86::TZCNT32rr: 4972 case X86::TZCNT64rm: 4973 case X86::TZCNT64rr: 4974 return Subtarget.hasLZCNTFalseDeps(); 4975 } 4976 4977 return false; 4978 } 4979 4980 /// Inform the BreakFalseDeps pass how many idle 4981 /// instructions we would like before a partial register update. 4982 unsigned X86InstrInfo::getPartialRegUpdateClearance( 4983 const MachineInstr &MI, unsigned OpNum, 4984 const TargetRegisterInfo *TRI) const { 4985 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 4986 return 0; 4987 4988 // If MI is marked as reading Reg, the partial register update is wanted. 4989 const MachineOperand &MO = MI.getOperand(0); 4990 Register Reg = MO.getReg(); 4991 if (Reg.isVirtual()) { 4992 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 4993 return 0; 4994 } else { 4995 if (MI.readsRegister(Reg, TRI)) 4996 return 0; 4997 } 4998 4999 // If any instructions in the clearance range are reading Reg, insert a 5000 // dependency breaking instruction, which is inexpensive and is likely to 5001 // be hidden in other instruction's cycles. 5002 return PartialRegUpdateClearance; 5003 } 5004 5005 // Return true for any instruction the copies the high bits of the first source 5006 // operand into the unused high bits of the destination operand. 5007 // Also returns true for instructions that have two inputs where one may 5008 // be undef and we want it to use the same register as the other input. 5009 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, 5010 bool ForLoadFold = false) { 5011 // Set the OpNum parameter to the first source operand. 5012 switch (Opcode) { 5013 case X86::MMX_PUNPCKHBWirr: 5014 case X86::MMX_PUNPCKHWDirr: 5015 case X86::MMX_PUNPCKHDQirr: 5016 case X86::MMX_PUNPCKLBWirr: 5017 case X86::MMX_PUNPCKLWDirr: 5018 case X86::MMX_PUNPCKLDQirr: 5019 case X86::MOVHLPSrr: 5020 case X86::PACKSSWBrr: 5021 case X86::PACKUSWBrr: 5022 case X86::PACKSSDWrr: 5023 case X86::PACKUSDWrr: 5024 case X86::PUNPCKHBWrr: 5025 case X86::PUNPCKLBWrr: 5026 case X86::PUNPCKHWDrr: 5027 case X86::PUNPCKLWDrr: 5028 case X86::PUNPCKHDQrr: 5029 case X86::PUNPCKLDQrr: 5030 case X86::PUNPCKHQDQrr: 5031 case X86::PUNPCKLQDQrr: 5032 case X86::SHUFPDrri: 5033 case X86::SHUFPSrri: 5034 // These instructions are sometimes used with an undef first or second 5035 // source. Return true here so BreakFalseDeps will assign this source to the 5036 // same register as the first source to avoid a false dependency. 5037 // Operand 1 of these instructions is tied so they're separate from their 5038 // VEX counterparts. 5039 return OpNum == 2 && !ForLoadFold; 5040 5041 case X86::VMOVLHPSrr: 5042 case X86::VMOVLHPSZrr: 5043 case X86::VPACKSSWBrr: 5044 case X86::VPACKUSWBrr: 5045 case X86::VPACKSSDWrr: 5046 case X86::VPACKUSDWrr: 5047 case X86::VPACKSSWBZ128rr: 5048 case X86::VPACKUSWBZ128rr: 5049 case X86::VPACKSSDWZ128rr: 5050 case X86::VPACKUSDWZ128rr: 5051 case X86::VPERM2F128rr: 5052 case X86::VPERM2I128rr: 5053 case X86::VSHUFF32X4Z256rri: 5054 case X86::VSHUFF32X4Zrri: 5055 case X86::VSHUFF64X2Z256rri: 5056 case X86::VSHUFF64X2Zrri: 5057 case X86::VSHUFI32X4Z256rri: 5058 case X86::VSHUFI32X4Zrri: 5059 case X86::VSHUFI64X2Z256rri: 5060 case X86::VSHUFI64X2Zrri: 5061 case X86::VPUNPCKHBWrr: 5062 case X86::VPUNPCKLBWrr: 5063 case X86::VPUNPCKHBWYrr: 5064 case X86::VPUNPCKLBWYrr: 5065 case X86::VPUNPCKHBWZ128rr: 5066 case X86::VPUNPCKLBWZ128rr: 5067 case X86::VPUNPCKHBWZ256rr: 5068 case X86::VPUNPCKLBWZ256rr: 5069 case X86::VPUNPCKHBWZrr: 5070 case X86::VPUNPCKLBWZrr: 5071 case X86::VPUNPCKHWDrr: 5072 case X86::VPUNPCKLWDrr: 5073 case X86::VPUNPCKHWDYrr: 5074 case X86::VPUNPCKLWDYrr: 5075 case X86::VPUNPCKHWDZ128rr: 5076 case X86::VPUNPCKLWDZ128rr: 5077 case X86::VPUNPCKHWDZ256rr: 5078 case X86::VPUNPCKLWDZ256rr: 5079 case X86::VPUNPCKHWDZrr: 5080 case X86::VPUNPCKLWDZrr: 5081 case X86::VPUNPCKHDQrr: 5082 case X86::VPUNPCKLDQrr: 5083 case X86::VPUNPCKHDQYrr: 5084 case X86::VPUNPCKLDQYrr: 5085 case X86::VPUNPCKHDQZ128rr: 5086 case X86::VPUNPCKLDQZ128rr: 5087 case X86::VPUNPCKHDQZ256rr: 5088 case X86::VPUNPCKLDQZ256rr: 5089 case X86::VPUNPCKHDQZrr: 5090 case X86::VPUNPCKLDQZrr: 5091 case X86::VPUNPCKHQDQrr: 5092 case X86::VPUNPCKLQDQrr: 5093 case X86::VPUNPCKHQDQYrr: 5094 case X86::VPUNPCKLQDQYrr: 5095 case X86::VPUNPCKHQDQZ128rr: 5096 case X86::VPUNPCKLQDQZ128rr: 5097 case X86::VPUNPCKHQDQZ256rr: 5098 case X86::VPUNPCKLQDQZ256rr: 5099 case X86::VPUNPCKHQDQZrr: 5100 case X86::VPUNPCKLQDQZrr: 5101 // These instructions are sometimes used with an undef first or second 5102 // source. Return true here so BreakFalseDeps will assign this source to the 5103 // same register as the first source to avoid a false dependency. 5104 return (OpNum == 1 || OpNum == 2) && !ForLoadFold; 5105 5106 case X86::VCVTSI2SSrr: 5107 case X86::VCVTSI2SSrm: 5108 case X86::VCVTSI2SSrr_Int: 5109 case X86::VCVTSI2SSrm_Int: 5110 case X86::VCVTSI642SSrr: 5111 case X86::VCVTSI642SSrm: 5112 case X86::VCVTSI642SSrr_Int: 5113 case X86::VCVTSI642SSrm_Int: 5114 case X86::VCVTSI2SDrr: 5115 case X86::VCVTSI2SDrm: 5116 case X86::VCVTSI2SDrr_Int: 5117 case X86::VCVTSI2SDrm_Int: 5118 case X86::VCVTSI642SDrr: 5119 case X86::VCVTSI642SDrm: 5120 case X86::VCVTSI642SDrr_Int: 5121 case X86::VCVTSI642SDrm_Int: 5122 // AVX-512 5123 case X86::VCVTSI2SSZrr: 5124 case X86::VCVTSI2SSZrm: 5125 case X86::VCVTSI2SSZrr_Int: 5126 case X86::VCVTSI2SSZrrb_Int: 5127 case X86::VCVTSI2SSZrm_Int: 5128 case X86::VCVTSI642SSZrr: 5129 case X86::VCVTSI642SSZrm: 5130 case X86::VCVTSI642SSZrr_Int: 5131 case X86::VCVTSI642SSZrrb_Int: 5132 case X86::VCVTSI642SSZrm_Int: 5133 case X86::VCVTSI2SDZrr: 5134 case X86::VCVTSI2SDZrm: 5135 case X86::VCVTSI2SDZrr_Int: 5136 case X86::VCVTSI2SDZrm_Int: 5137 case X86::VCVTSI642SDZrr: 5138 case X86::VCVTSI642SDZrm: 5139 case X86::VCVTSI642SDZrr_Int: 5140 case X86::VCVTSI642SDZrrb_Int: 5141 case X86::VCVTSI642SDZrm_Int: 5142 case X86::VCVTUSI2SSZrr: 5143 case X86::VCVTUSI2SSZrm: 5144 case X86::VCVTUSI2SSZrr_Int: 5145 case X86::VCVTUSI2SSZrrb_Int: 5146 case X86::VCVTUSI2SSZrm_Int: 5147 case X86::VCVTUSI642SSZrr: 5148 case X86::VCVTUSI642SSZrm: 5149 case X86::VCVTUSI642SSZrr_Int: 5150 case X86::VCVTUSI642SSZrrb_Int: 5151 case X86::VCVTUSI642SSZrm_Int: 5152 case X86::VCVTUSI2SDZrr: 5153 case X86::VCVTUSI2SDZrm: 5154 case X86::VCVTUSI2SDZrr_Int: 5155 case X86::VCVTUSI2SDZrm_Int: 5156 case X86::VCVTUSI642SDZrr: 5157 case X86::VCVTUSI642SDZrm: 5158 case X86::VCVTUSI642SDZrr_Int: 5159 case X86::VCVTUSI642SDZrrb_Int: 5160 case X86::VCVTUSI642SDZrm_Int: 5161 // Load folding won't effect the undef register update since the input is 5162 // a GPR. 5163 return OpNum == 1 && !ForLoadFold; 5164 case X86::VCVTSD2SSrr: 5165 case X86::VCVTSD2SSrm: 5166 case X86::VCVTSD2SSrr_Int: 5167 case X86::VCVTSD2SSrm_Int: 5168 case X86::VCVTSS2SDrr: 5169 case X86::VCVTSS2SDrm: 5170 case X86::VCVTSS2SDrr_Int: 5171 case X86::VCVTSS2SDrm_Int: 5172 case X86::VRCPSSr: 5173 case X86::VRCPSSr_Int: 5174 case X86::VRCPSSm: 5175 case X86::VRCPSSm_Int: 5176 case X86::VROUNDSDr: 5177 case X86::VROUNDSDm: 5178 case X86::VROUNDSDr_Int: 5179 case X86::VROUNDSDm_Int: 5180 case X86::VROUNDSSr: 5181 case X86::VROUNDSSm: 5182 case X86::VROUNDSSr_Int: 5183 case X86::VROUNDSSm_Int: 5184 case X86::VRSQRTSSr: 5185 case X86::VRSQRTSSr_Int: 5186 case X86::VRSQRTSSm: 5187 case X86::VRSQRTSSm_Int: 5188 case X86::VSQRTSSr: 5189 case X86::VSQRTSSr_Int: 5190 case X86::VSQRTSSm: 5191 case X86::VSQRTSSm_Int: 5192 case X86::VSQRTSDr: 5193 case X86::VSQRTSDr_Int: 5194 case X86::VSQRTSDm: 5195 case X86::VSQRTSDm_Int: 5196 // AVX-512 5197 case X86::VCVTSD2SSZrr: 5198 case X86::VCVTSD2SSZrr_Int: 5199 case X86::VCVTSD2SSZrrb_Int: 5200 case X86::VCVTSD2SSZrm: 5201 case X86::VCVTSD2SSZrm_Int: 5202 case X86::VCVTSS2SDZrr: 5203 case X86::VCVTSS2SDZrr_Int: 5204 case X86::VCVTSS2SDZrrb_Int: 5205 case X86::VCVTSS2SDZrm: 5206 case X86::VCVTSS2SDZrm_Int: 5207 case X86::VGETEXPSDZr: 5208 case X86::VGETEXPSDZrb: 5209 case X86::VGETEXPSDZm: 5210 case X86::VGETEXPSSZr: 5211 case X86::VGETEXPSSZrb: 5212 case X86::VGETEXPSSZm: 5213 case X86::VGETMANTSDZrri: 5214 case X86::VGETMANTSDZrrib: 5215 case X86::VGETMANTSDZrmi: 5216 case X86::VGETMANTSSZrri: 5217 case X86::VGETMANTSSZrrib: 5218 case X86::VGETMANTSSZrmi: 5219 case X86::VRNDSCALESDZr: 5220 case X86::VRNDSCALESDZr_Int: 5221 case X86::VRNDSCALESDZrb_Int: 5222 case X86::VRNDSCALESDZm: 5223 case X86::VRNDSCALESDZm_Int: 5224 case X86::VRNDSCALESSZr: 5225 case X86::VRNDSCALESSZr_Int: 5226 case X86::VRNDSCALESSZrb_Int: 5227 case X86::VRNDSCALESSZm: 5228 case X86::VRNDSCALESSZm_Int: 5229 case X86::VRCP14SDZrr: 5230 case X86::VRCP14SDZrm: 5231 case X86::VRCP14SSZrr: 5232 case X86::VRCP14SSZrm: 5233 case X86::VRCP28SDZr: 5234 case X86::VRCP28SDZrb: 5235 case X86::VRCP28SDZm: 5236 case X86::VRCP28SSZr: 5237 case X86::VRCP28SSZrb: 5238 case X86::VRCP28SSZm: 5239 case X86::VREDUCESSZrmi: 5240 case X86::VREDUCESSZrri: 5241 case X86::VREDUCESSZrrib: 5242 case X86::VRSQRT14SDZrr: 5243 case X86::VRSQRT14SDZrm: 5244 case X86::VRSQRT14SSZrr: 5245 case X86::VRSQRT14SSZrm: 5246 case X86::VRSQRT28SDZr: 5247 case X86::VRSQRT28SDZrb: 5248 case X86::VRSQRT28SDZm: 5249 case X86::VRSQRT28SSZr: 5250 case X86::VRSQRT28SSZrb: 5251 case X86::VRSQRT28SSZm: 5252 case X86::VSQRTSSZr: 5253 case X86::VSQRTSSZr_Int: 5254 case X86::VSQRTSSZrb_Int: 5255 case X86::VSQRTSSZm: 5256 case X86::VSQRTSSZm_Int: 5257 case X86::VSQRTSDZr: 5258 case X86::VSQRTSDZr_Int: 5259 case X86::VSQRTSDZrb_Int: 5260 case X86::VSQRTSDZm: 5261 case X86::VSQRTSDZm_Int: 5262 return OpNum == 1; 5263 case X86::VMOVSSZrrk: 5264 case X86::VMOVSDZrrk: 5265 return OpNum == 3 && !ForLoadFold; 5266 case X86::VMOVSSZrrkz: 5267 case X86::VMOVSDZrrkz: 5268 return OpNum == 2 && !ForLoadFold; 5269 } 5270 5271 return false; 5272 } 5273 5274 /// Inform the BreakFalseDeps pass how many idle instructions we would like 5275 /// before certain undef register reads. 5276 /// 5277 /// This catches the VCVTSI2SD family of instructions: 5278 /// 5279 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 5280 /// 5281 /// We should to be careful *not* to catch VXOR idioms which are presumably 5282 /// handled specially in the pipeline: 5283 /// 5284 /// vxorps undef %xmm1, undef %xmm1, %xmm1 5285 /// 5286 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 5287 /// high bits that are passed-through are not live. 5288 unsigned 5289 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 5290 const TargetRegisterInfo *TRI) const { 5291 const MachineOperand &MO = MI.getOperand(OpNum); 5292 if (Register::isPhysicalRegister(MO.getReg()) && 5293 hasUndefRegUpdate(MI.getOpcode(), OpNum)) 5294 return UndefRegClearance; 5295 5296 return 0; 5297 } 5298 5299 void X86InstrInfo::breakPartialRegDependency( 5300 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5301 Register Reg = MI.getOperand(OpNum).getReg(); 5302 // If MI kills this register, the false dependence is already broken. 5303 if (MI.killsRegister(Reg, TRI)) 5304 return; 5305 5306 if (X86::VR128RegClass.contains(Reg)) { 5307 // These instructions are all floating point domain, so xorps is the best 5308 // choice. 5309 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 5310 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 5311 .addReg(Reg, RegState::Undef) 5312 .addReg(Reg, RegState::Undef); 5313 MI.addRegisterKilled(Reg, TRI, true); 5314 } else if (X86::VR256RegClass.contains(Reg)) { 5315 // Use vxorps to clear the full ymm register. 5316 // It wants to read and write the xmm sub-register. 5317 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5318 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 5319 .addReg(XReg, RegState::Undef) 5320 .addReg(XReg, RegState::Undef) 5321 .addReg(Reg, RegState::ImplicitDefine); 5322 MI.addRegisterKilled(Reg, TRI, true); 5323 } else if (X86::GR64RegClass.contains(Reg)) { 5324 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 5325 // as well. 5326 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); 5327 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 5328 .addReg(XReg, RegState::Undef) 5329 .addReg(XReg, RegState::Undef) 5330 .addReg(Reg, RegState::ImplicitDefine); 5331 MI.addRegisterKilled(Reg, TRI, true); 5332 } else if (X86::GR32RegClass.contains(Reg)) { 5333 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 5334 .addReg(Reg, RegState::Undef) 5335 .addReg(Reg, RegState::Undef); 5336 MI.addRegisterKilled(Reg, TRI, true); 5337 } 5338 } 5339 5340 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 5341 int PtrOffset = 0) { 5342 unsigned NumAddrOps = MOs.size(); 5343 5344 if (NumAddrOps < 4) { 5345 // FrameIndex only - add an immediate offset (whether its zero or not). 5346 for (unsigned i = 0; i != NumAddrOps; ++i) 5347 MIB.add(MOs[i]); 5348 addOffset(MIB, PtrOffset); 5349 } else { 5350 // General Memory Addressing - we need to add any offset to an existing 5351 // offset. 5352 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 5353 for (unsigned i = 0; i != NumAddrOps; ++i) { 5354 const MachineOperand &MO = MOs[i]; 5355 if (i == 3 && PtrOffset != 0) { 5356 MIB.addDisp(MO, PtrOffset); 5357 } else { 5358 MIB.add(MO); 5359 } 5360 } 5361 } 5362 } 5363 5364 static void updateOperandRegConstraints(MachineFunction &MF, 5365 MachineInstr &NewMI, 5366 const TargetInstrInfo &TII) { 5367 MachineRegisterInfo &MRI = MF.getRegInfo(); 5368 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 5369 5370 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 5371 MachineOperand &MO = NewMI.getOperand(Idx); 5372 // We only need to update constraints on virtual register operands. 5373 if (!MO.isReg()) 5374 continue; 5375 Register Reg = MO.getReg(); 5376 if (!Reg.isVirtual()) 5377 continue; 5378 5379 auto *NewRC = MRI.constrainRegClass( 5380 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 5381 if (!NewRC) { 5382 LLVM_DEBUG( 5383 dbgs() << "WARNING: Unable to update register constraint for operand " 5384 << Idx << " of instruction:\n"; 5385 NewMI.dump(); dbgs() << "\n"); 5386 } 5387 } 5388 } 5389 5390 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 5391 ArrayRef<MachineOperand> MOs, 5392 MachineBasicBlock::iterator InsertPt, 5393 MachineInstr &MI, 5394 const TargetInstrInfo &TII) { 5395 // Create the base instruction with the memory operand as the first part. 5396 // Omit the implicit operands, something BuildMI can't do. 5397 MachineInstr *NewMI = 5398 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5399 MachineInstrBuilder MIB(MF, NewMI); 5400 addOperands(MIB, MOs); 5401 5402 // Loop over the rest of the ri operands, converting them over. 5403 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 5404 for (unsigned i = 0; i != NumOps; ++i) { 5405 MachineOperand &MO = MI.getOperand(i + 2); 5406 MIB.add(MO); 5407 } 5408 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { 5409 MachineOperand &MO = MI.getOperand(i); 5410 MIB.add(MO); 5411 } 5412 5413 updateOperandRegConstraints(MF, *NewMI, TII); 5414 5415 MachineBasicBlock *MBB = InsertPt->getParent(); 5416 MBB->insert(InsertPt, NewMI); 5417 5418 return MIB; 5419 } 5420 5421 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 5422 unsigned OpNo, ArrayRef<MachineOperand> MOs, 5423 MachineBasicBlock::iterator InsertPt, 5424 MachineInstr &MI, const TargetInstrInfo &TII, 5425 int PtrOffset = 0) { 5426 // Omit the implicit operands, something BuildMI can't do. 5427 MachineInstr *NewMI = 5428 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5429 MachineInstrBuilder MIB(MF, NewMI); 5430 5431 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5432 MachineOperand &MO = MI.getOperand(i); 5433 if (i == OpNo) { 5434 assert(MO.isReg() && "Expected to fold into reg operand!"); 5435 addOperands(MIB, MOs, PtrOffset); 5436 } else { 5437 MIB.add(MO); 5438 } 5439 } 5440 5441 updateOperandRegConstraints(MF, *NewMI, TII); 5442 5443 // Copy the NoFPExcept flag from the instruction we're fusing. 5444 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 5445 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); 5446 5447 MachineBasicBlock *MBB = InsertPt->getParent(); 5448 MBB->insert(InsertPt, NewMI); 5449 5450 return MIB; 5451 } 5452 5453 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 5454 ArrayRef<MachineOperand> MOs, 5455 MachineBasicBlock::iterator InsertPt, 5456 MachineInstr &MI) { 5457 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 5458 MI.getDebugLoc(), TII.get(Opcode)); 5459 addOperands(MIB, MOs); 5460 return MIB.addImm(0); 5461 } 5462 5463 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 5464 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 5465 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5466 unsigned Size, Align Alignment) const { 5467 switch (MI.getOpcode()) { 5468 case X86::INSERTPSrr: 5469 case X86::VINSERTPSrr: 5470 case X86::VINSERTPSZrr: 5471 // Attempt to convert the load of inserted vector into a fold load 5472 // of a single float. 5473 if (OpNum == 2) { 5474 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 5475 unsigned ZMask = Imm & 15; 5476 unsigned DstIdx = (Imm >> 4) & 3; 5477 unsigned SrcIdx = (Imm >> 6) & 3; 5478 5479 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5480 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5481 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5482 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) { 5483 int PtrOffset = SrcIdx * 4; 5484 unsigned NewImm = (DstIdx << 4) | ZMask; 5485 unsigned NewOpCode = 5486 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : 5487 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : 5488 X86::INSERTPSrm; 5489 MachineInstr *NewMI = 5490 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 5491 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 5492 return NewMI; 5493 } 5494 } 5495 break; 5496 case X86::MOVHLPSrr: 5497 case X86::VMOVHLPSrr: 5498 case X86::VMOVHLPSZrr: 5499 // Move the upper 64-bits of the second operand to the lower 64-bits. 5500 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 5501 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 5502 if (OpNum == 2) { 5503 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5504 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5505 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5506 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { 5507 unsigned NewOpCode = 5508 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : 5509 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : 5510 X86::MOVLPSrm; 5511 MachineInstr *NewMI = 5512 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 5513 return NewMI; 5514 } 5515 } 5516 break; 5517 case X86::UNPCKLPDrr: 5518 // If we won't be able to fold this to the memory form of UNPCKL, use 5519 // MOVHPD instead. Done as custom because we can't have this in the load 5520 // table twice. 5521 if (OpNum == 2) { 5522 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5523 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5524 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5525 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { 5526 MachineInstr *NewMI = 5527 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 5528 return NewMI; 5529 } 5530 } 5531 break; 5532 } 5533 5534 return nullptr; 5535 } 5536 5537 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 5538 MachineInstr &MI) { 5539 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) || 5540 !MI.getOperand(1).isReg()) 5541 return false; 5542 5543 // The are two cases we need to handle depending on where in the pipeline 5544 // the folding attempt is being made. 5545 // -Register has the undef flag set. 5546 // -Register is produced by the IMPLICIT_DEF instruction. 5547 5548 if (MI.getOperand(1).isUndef()) 5549 return true; 5550 5551 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5552 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 5553 return VRegDef && VRegDef->isImplicitDef(); 5554 } 5555 5556 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5557 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 5558 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5559 unsigned Size, Align Alignment, bool AllowCommute) const { 5560 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 5561 bool isTwoAddrFold = false; 5562 5563 // For CPUs that favor the register form of a call or push, 5564 // do not fold loads into calls or pushes, unless optimizing for size 5565 // aggressively. 5566 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 5567 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || 5568 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || 5569 MI.getOpcode() == X86::PUSH64r)) 5570 return nullptr; 5571 5572 // Avoid partial and undef register update stalls unless optimizing for size. 5573 if (!MF.getFunction().hasOptSize() && 5574 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5575 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5576 return nullptr; 5577 5578 unsigned NumOps = MI.getDesc().getNumOperands(); 5579 bool isTwoAddr = 5580 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 5581 5582 // FIXME: AsmPrinter doesn't know how to handle 5583 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 5584 if (MI.getOpcode() == X86::ADD32ri && 5585 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 5586 return nullptr; 5587 5588 // GOTTPOFF relocation loads can only be folded into add instructions. 5589 // FIXME: Need to exclude other relocations that only support specific 5590 // instructions. 5591 if (MOs.size() == X86::AddrNumOperands && 5592 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 5593 MI.getOpcode() != X86::ADD64rr) 5594 return nullptr; 5595 5596 MachineInstr *NewMI = nullptr; 5597 5598 // Attempt to fold any custom cases we have. 5599 if (MachineInstr *CustomMI = foldMemoryOperandCustom( 5600 MF, MI, OpNum, MOs, InsertPt, Size, Alignment)) 5601 return CustomMI; 5602 5603 const X86MemoryFoldTableEntry *I = nullptr; 5604 5605 // Folding a memory location into the two-address part of a two-address 5606 // instruction is different than folding it other places. It requires 5607 // replacing the *two* registers with the memory location. 5608 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && 5609 MI.getOperand(1).isReg() && 5610 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 5611 I = lookupTwoAddrFoldTable(MI.getOpcode()); 5612 isTwoAddrFold = true; 5613 } else { 5614 if (OpNum == 0) { 5615 if (MI.getOpcode() == X86::MOV32r0) { 5616 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 5617 if (NewMI) 5618 return NewMI; 5619 } 5620 } 5621 5622 I = lookupFoldTable(MI.getOpcode(), OpNum); 5623 } 5624 5625 if (I != nullptr) { 5626 unsigned Opcode = I->DstOp; 5627 bool FoldedLoad = 5628 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0; 5629 bool FoldedStore = 5630 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE); 5631 MaybeAlign MinAlign = 5632 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT); 5633 if (MinAlign && Alignment < *MinAlign) 5634 return nullptr; 5635 bool NarrowToMOV32rm = false; 5636 if (Size) { 5637 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5638 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, 5639 &RI, MF); 5640 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5641 // Check if it's safe to fold the load. If the size of the object is 5642 // narrower than the load width, then it's not. 5643 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 5644 if (FoldedLoad && Size < RCSize) { 5645 // If this is a 64-bit load, but the spill slot is 32, then we can do 5646 // a 32-bit load which is implicitly zero-extended. This likely is 5647 // due to live interval analysis remat'ing a load from stack slot. 5648 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 5649 return nullptr; 5650 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 5651 return nullptr; 5652 Opcode = X86::MOV32rm; 5653 NarrowToMOV32rm = true; 5654 } 5655 // For stores, make sure the size of the object is equal to the size of 5656 // the store. If the object is larger, the extra bits would be garbage. If 5657 // the object is smaller we might overwrite another object or fault. 5658 if (FoldedStore && Size != RCSize) 5659 return nullptr; 5660 } 5661 5662 if (isTwoAddrFold) 5663 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 5664 else 5665 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 5666 5667 if (NarrowToMOV32rm) { 5668 // If this is the special case where we use a MOV32rm to load a 32-bit 5669 // value and zero-extend the top bits. Change the destination register 5670 // to a 32-bit one. 5671 Register DstReg = NewMI->getOperand(0).getReg(); 5672 if (DstReg.isPhysical()) 5673 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 5674 else 5675 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 5676 } 5677 return NewMI; 5678 } 5679 5680 // If the instruction and target operand are commutable, commute the 5681 // instruction and try again. 5682 if (AllowCommute) { 5683 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 5684 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 5685 bool HasDef = MI.getDesc().getNumDefs(); 5686 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 5687 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); 5688 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); 5689 bool Tied1 = 5690 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 5691 bool Tied2 = 5692 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 5693 5694 // If either of the commutable operands are tied to the destination 5695 // then we can not commute + fold. 5696 if ((HasDef && Reg0 == Reg1 && Tied1) || 5697 (HasDef && Reg0 == Reg2 && Tied2)) 5698 return nullptr; 5699 5700 MachineInstr *CommutedMI = 5701 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5702 if (!CommutedMI) { 5703 // Unable to commute. 5704 return nullptr; 5705 } 5706 if (CommutedMI != &MI) { 5707 // New instruction. We can't fold from this. 5708 CommutedMI->eraseFromParent(); 5709 return nullptr; 5710 } 5711 5712 // Attempt to fold with the commuted version of the instruction. 5713 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, 5714 Alignment, /*AllowCommute=*/false); 5715 if (NewMI) 5716 return NewMI; 5717 5718 // Folding failed again - undo the commute before returning. 5719 MachineInstr *UncommutedMI = 5720 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5721 if (!UncommutedMI) { 5722 // Unable to commute. 5723 return nullptr; 5724 } 5725 if (UncommutedMI != &MI) { 5726 // New instruction. It doesn't need to be kept. 5727 UncommutedMI->eraseFromParent(); 5728 return nullptr; 5729 } 5730 5731 // Return here to prevent duplicate fuse failure report. 5732 return nullptr; 5733 } 5734 } 5735 5736 // No fusion 5737 if (PrintFailedFusing && !MI.isCopy()) 5738 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; 5739 return nullptr; 5740 } 5741 5742 MachineInstr * 5743 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 5744 ArrayRef<unsigned> Ops, 5745 MachineBasicBlock::iterator InsertPt, 5746 int FrameIndex, LiveIntervals *LIS, 5747 VirtRegMap *VRM) const { 5748 // Check switch flag 5749 if (NoFusing) 5750 return nullptr; 5751 5752 // Avoid partial and undef register update stalls unless optimizing for size. 5753 if (!MF.getFunction().hasOptSize() && 5754 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5755 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5756 return nullptr; 5757 5758 // Don't fold subreg spills, or reloads that use a high subreg. 5759 for (auto Op : Ops) { 5760 MachineOperand &MO = MI.getOperand(Op); 5761 auto SubReg = MO.getSubReg(); 5762 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 5763 return nullptr; 5764 } 5765 5766 const MachineFrameInfo &MFI = MF.getFrameInfo(); 5767 unsigned Size = MFI.getObjectSize(FrameIndex); 5768 Align Alignment = MFI.getObjectAlign(FrameIndex); 5769 // If the function stack isn't realigned we don't want to fold instructions 5770 // that need increased alignment. 5771 if (!RI.hasStackRealignment(MF)) 5772 Alignment = 5773 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); 5774 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 5775 unsigned NewOpc = 0; 5776 unsigned RCSize = 0; 5777 switch (MI.getOpcode()) { 5778 default: return nullptr; 5779 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 5780 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 5781 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 5782 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 5783 } 5784 // Check if it's safe to fold the load. If the size of the object is 5785 // narrower than the load width, then it's not. 5786 if (Size < RCSize) 5787 return nullptr; 5788 // Change to CMPXXri r, 0 first. 5789 MI.setDesc(get(NewOpc)); 5790 MI.getOperand(1).ChangeToImmediate(0); 5791 } else if (Ops.size() != 1) 5792 return nullptr; 5793 5794 return foldMemoryOperandImpl(MF, MI, Ops[0], 5795 MachineOperand::CreateFI(FrameIndex), InsertPt, 5796 Size, Alignment, /*AllowCommute=*/true); 5797 } 5798 5799 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 5800 /// because the latter uses contents that wouldn't be defined in the folded 5801 /// version. For instance, this transformation isn't legal: 5802 /// movss (%rdi), %xmm0 5803 /// addps %xmm0, %xmm0 5804 /// -> 5805 /// addps (%rdi), %xmm0 5806 /// 5807 /// But this one is: 5808 /// movss (%rdi), %xmm0 5809 /// addss %xmm0, %xmm0 5810 /// -> 5811 /// addss (%rdi), %xmm0 5812 /// 5813 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 5814 const MachineInstr &UserMI, 5815 const MachineFunction &MF) { 5816 unsigned Opc = LoadMI.getOpcode(); 5817 unsigned UserOpc = UserMI.getOpcode(); 5818 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5819 const TargetRegisterClass *RC = 5820 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 5821 unsigned RegSize = TRI.getRegSizeInBits(*RC); 5822 5823 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 5824 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 5825 Opc == X86::VMOVSSZrm_alt) && 5826 RegSize > 32) { 5827 // These instructions only load 32 bits, we can't fold them if the 5828 // destination register is wider than 32 bits (4 bytes), and its user 5829 // instruction isn't scalar (SS). 5830 switch (UserOpc) { 5831 case X86::CVTSS2SDrr_Int: 5832 case X86::VCVTSS2SDrr_Int: 5833 case X86::VCVTSS2SDZrr_Int: 5834 case X86::VCVTSS2SDZrr_Intk: 5835 case X86::VCVTSS2SDZrr_Intkz: 5836 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int: 5837 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int: 5838 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int: 5839 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int: 5840 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int: 5841 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int: 5842 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int: 5843 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int: 5844 case X86::RCPSSr_Int: case X86::VRCPSSr_Int: 5845 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int: 5846 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int: 5847 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int: 5848 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int: 5849 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: 5850 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: 5851 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: 5852 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: 5853 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: 5854 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: 5855 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int: 5856 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: 5857 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: 5858 case X86::VCMPSSZrr_Intk: 5859 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: 5860 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: 5861 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: 5862 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: 5863 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: 5864 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: 5865 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: 5866 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: 5867 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: 5868 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: 5869 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: 5870 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: 5871 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: 5872 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: 5873 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: 5874 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: 5875 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: 5876 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: 5877 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: 5878 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: 5879 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: 5880 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: 5881 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: 5882 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: 5883 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: 5884 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: 5885 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: 5886 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: 5887 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: 5888 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: 5889 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: 5890 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: 5891 case X86::VFIXUPIMMSSZrri: 5892 case X86::VFIXUPIMMSSZrrik: 5893 case X86::VFIXUPIMMSSZrrikz: 5894 case X86::VFPCLASSSSZrr: 5895 case X86::VFPCLASSSSZrrk: 5896 case X86::VGETEXPSSZr: 5897 case X86::VGETEXPSSZrk: 5898 case X86::VGETEXPSSZrkz: 5899 case X86::VGETMANTSSZrri: 5900 case X86::VGETMANTSSZrrik: 5901 case X86::VGETMANTSSZrrikz: 5902 case X86::VRANGESSZrri: 5903 case X86::VRANGESSZrrik: 5904 case X86::VRANGESSZrrikz: 5905 case X86::VRCP14SSZrr: 5906 case X86::VRCP14SSZrrk: 5907 case X86::VRCP14SSZrrkz: 5908 case X86::VRCP28SSZr: 5909 case X86::VRCP28SSZrk: 5910 case X86::VRCP28SSZrkz: 5911 case X86::VREDUCESSZrri: 5912 case X86::VREDUCESSZrrik: 5913 case X86::VREDUCESSZrrikz: 5914 case X86::VRNDSCALESSZr_Int: 5915 case X86::VRNDSCALESSZr_Intk: 5916 case X86::VRNDSCALESSZr_Intkz: 5917 case X86::VRSQRT14SSZrr: 5918 case X86::VRSQRT14SSZrrk: 5919 case X86::VRSQRT14SSZrrkz: 5920 case X86::VRSQRT28SSZr: 5921 case X86::VRSQRT28SSZrk: 5922 case X86::VRSQRT28SSZrkz: 5923 case X86::VSCALEFSSZrr: 5924 case X86::VSCALEFSSZrrk: 5925 case X86::VSCALEFSSZrrkz: 5926 return false; 5927 default: 5928 return true; 5929 } 5930 } 5931 5932 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 5933 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 5934 Opc == X86::VMOVSDZrm_alt) && 5935 RegSize > 64) { 5936 // These instructions only load 64 bits, we can't fold them if the 5937 // destination register is wider than 64 bits (8 bytes), and its user 5938 // instruction isn't scalar (SD). 5939 switch (UserOpc) { 5940 case X86::CVTSD2SSrr_Int: 5941 case X86::VCVTSD2SSrr_Int: 5942 case X86::VCVTSD2SSZrr_Int: 5943 case X86::VCVTSD2SSZrr_Intk: 5944 case X86::VCVTSD2SSZrr_Intkz: 5945 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int: 5946 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int: 5947 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int: 5948 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int: 5949 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int: 5950 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int: 5951 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int: 5952 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int: 5953 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int: 5954 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int: 5955 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int: 5956 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: 5957 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: 5958 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: 5959 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: 5960 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: 5961 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: 5962 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int: 5963 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: 5964 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: 5965 case X86::VCMPSDZrr_Intk: 5966 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: 5967 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: 5968 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: 5969 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: 5970 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: 5971 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: 5972 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: 5973 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: 5974 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: 5975 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: 5976 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: 5977 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: 5978 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: 5979 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: 5980 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: 5981 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: 5982 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: 5983 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: 5984 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: 5985 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: 5986 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: 5987 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: 5988 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: 5989 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: 5990 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: 5991 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: 5992 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: 5993 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: 5994 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: 5995 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: 5996 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: 5997 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: 5998 case X86::VFIXUPIMMSDZrri: 5999 case X86::VFIXUPIMMSDZrrik: 6000 case X86::VFIXUPIMMSDZrrikz: 6001 case X86::VFPCLASSSDZrr: 6002 case X86::VFPCLASSSDZrrk: 6003 case X86::VGETEXPSDZr: 6004 case X86::VGETEXPSDZrk: 6005 case X86::VGETEXPSDZrkz: 6006 case X86::VGETMANTSDZrri: 6007 case X86::VGETMANTSDZrrik: 6008 case X86::VGETMANTSDZrrikz: 6009 case X86::VRANGESDZrri: 6010 case X86::VRANGESDZrrik: 6011 case X86::VRANGESDZrrikz: 6012 case X86::VRCP14SDZrr: 6013 case X86::VRCP14SDZrrk: 6014 case X86::VRCP14SDZrrkz: 6015 case X86::VRCP28SDZr: 6016 case X86::VRCP28SDZrk: 6017 case X86::VRCP28SDZrkz: 6018 case X86::VREDUCESDZrri: 6019 case X86::VREDUCESDZrrik: 6020 case X86::VREDUCESDZrrikz: 6021 case X86::VRNDSCALESDZr_Int: 6022 case X86::VRNDSCALESDZr_Intk: 6023 case X86::VRNDSCALESDZr_Intkz: 6024 case X86::VRSQRT14SDZrr: 6025 case X86::VRSQRT14SDZrrk: 6026 case X86::VRSQRT14SDZrrkz: 6027 case X86::VRSQRT28SDZr: 6028 case X86::VRSQRT28SDZrk: 6029 case X86::VRSQRT28SDZrkz: 6030 case X86::VSCALEFSDZrr: 6031 case X86::VSCALEFSDZrrk: 6032 case X86::VSCALEFSDZrrkz: 6033 return false; 6034 default: 6035 return true; 6036 } 6037 } 6038 6039 return false; 6040 } 6041 6042 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6043 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 6044 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 6045 LiveIntervals *LIS) const { 6046 6047 // TODO: Support the case where LoadMI loads a wide register, but MI 6048 // only uses a subreg. 6049 for (auto Op : Ops) { 6050 if (MI.getOperand(Op).getSubReg()) 6051 return nullptr; 6052 } 6053 6054 // If loading from a FrameIndex, fold directly from the FrameIndex. 6055 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 6056 int FrameIndex; 6057 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 6058 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6059 return nullptr; 6060 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 6061 } 6062 6063 // Check switch flag 6064 if (NoFusing) return nullptr; 6065 6066 // Avoid partial and undef register update stalls unless optimizing for size. 6067 if (!MF.getFunction().hasOptSize() && 6068 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6069 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6070 return nullptr; 6071 6072 // Determine the alignment of the load. 6073 Align Alignment; 6074 if (LoadMI.hasOneMemOperand()) 6075 Alignment = (*LoadMI.memoperands_begin())->getAlign(); 6076 else 6077 switch (LoadMI.getOpcode()) { 6078 case X86::AVX512_512_SET0: 6079 case X86::AVX512_512_SETALLONES: 6080 Alignment = Align(64); 6081 break; 6082 case X86::AVX2_SETALLONES: 6083 case X86::AVX1_SETALLONES: 6084 case X86::AVX_SET0: 6085 case X86::AVX512_256_SET0: 6086 Alignment = Align(32); 6087 break; 6088 case X86::V_SET0: 6089 case X86::V_SETALLONES: 6090 case X86::AVX512_128_SET0: 6091 case X86::FsFLD0F128: 6092 case X86::AVX512_FsFLD0F128: 6093 Alignment = Align(16); 6094 break; 6095 case X86::MMX_SET0: 6096 case X86::FsFLD0SD: 6097 case X86::AVX512_FsFLD0SD: 6098 Alignment = Align(8); 6099 break; 6100 case X86::FsFLD0SS: 6101 case X86::AVX512_FsFLD0SS: 6102 Alignment = Align(4); 6103 break; 6104 default: 6105 return nullptr; 6106 } 6107 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6108 unsigned NewOpc = 0; 6109 switch (MI.getOpcode()) { 6110 default: return nullptr; 6111 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 6112 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 6113 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 6114 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 6115 } 6116 // Change to CMPXXri r, 0 first. 6117 MI.setDesc(get(NewOpc)); 6118 MI.getOperand(1).ChangeToImmediate(0); 6119 } else if (Ops.size() != 1) 6120 return nullptr; 6121 6122 // Make sure the subregisters match. 6123 // Otherwise we risk changing the size of the load. 6124 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 6125 return nullptr; 6126 6127 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 6128 switch (LoadMI.getOpcode()) { 6129 case X86::MMX_SET0: 6130 case X86::V_SET0: 6131 case X86::V_SETALLONES: 6132 case X86::AVX2_SETALLONES: 6133 case X86::AVX1_SETALLONES: 6134 case X86::AVX_SET0: 6135 case X86::AVX512_128_SET0: 6136 case X86::AVX512_256_SET0: 6137 case X86::AVX512_512_SET0: 6138 case X86::AVX512_512_SETALLONES: 6139 case X86::FsFLD0SD: 6140 case X86::AVX512_FsFLD0SD: 6141 case X86::FsFLD0SS: 6142 case X86::AVX512_FsFLD0SS: 6143 case X86::FsFLD0F128: 6144 case X86::AVX512_FsFLD0F128: { 6145 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 6146 // Create a constant-pool entry and operands to load from it. 6147 6148 // Medium and large mode can't fold loads this way. 6149 if (MF.getTarget().getCodeModel() != CodeModel::Small && 6150 MF.getTarget().getCodeModel() != CodeModel::Kernel) 6151 return nullptr; 6152 6153 // x86-32 PIC requires a PIC base register for constant pools. 6154 unsigned PICBase = 0; 6155 // Since we're using Small or Kernel code model, we can always use 6156 // RIP-relative addressing for a smaller encoding. 6157 if (Subtarget.is64Bit()) { 6158 PICBase = X86::RIP; 6159 } else if (MF.getTarget().isPositionIndependent()) { 6160 // FIXME: PICBase = getGlobalBaseReg(&MF); 6161 // This doesn't work for several reasons. 6162 // 1. GlobalBaseReg may have been spilled. 6163 // 2. It may not be live at MI. 6164 return nullptr; 6165 } 6166 6167 // Create a constant-pool entry. 6168 MachineConstantPool &MCP = *MF.getConstantPool(); 6169 Type *Ty; 6170 unsigned Opc = LoadMI.getOpcode(); 6171 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) 6172 Ty = Type::getFloatTy(MF.getFunction().getContext()); 6173 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) 6174 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 6175 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128) 6176 Ty = Type::getFP128Ty(MF.getFunction().getContext()); 6177 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) 6178 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6179 16); 6180 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || 6181 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) 6182 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6183 8); 6184 else if (Opc == X86::MMX_SET0) 6185 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6186 2); 6187 else 6188 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6189 4); 6190 6191 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || 6192 Opc == X86::AVX512_512_SETALLONES || 6193 Opc == X86::AVX1_SETALLONES); 6194 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 6195 Constant::getNullValue(Ty); 6196 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 6197 6198 // Create operands to load from the constant pool entry. 6199 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 6200 MOs.push_back(MachineOperand::CreateImm(1)); 6201 MOs.push_back(MachineOperand::CreateReg(0, false)); 6202 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 6203 MOs.push_back(MachineOperand::CreateReg(0, false)); 6204 break; 6205 } 6206 default: { 6207 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6208 return nullptr; 6209 6210 // Folding a normal load. Just copy the load's address operands. 6211 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 6212 LoadMI.operands_begin() + NumOps); 6213 break; 6214 } 6215 } 6216 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 6217 /*Size=*/0, Alignment, /*AllowCommute=*/true); 6218 } 6219 6220 static SmallVector<MachineMemOperand *, 2> 6221 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6222 SmallVector<MachineMemOperand *, 2> LoadMMOs; 6223 6224 for (MachineMemOperand *MMO : MMOs) { 6225 if (!MMO->isLoad()) 6226 continue; 6227 6228 if (!MMO->isStore()) { 6229 // Reuse the MMO. 6230 LoadMMOs.push_back(MMO); 6231 } else { 6232 // Clone the MMO and unset the store flag. 6233 LoadMMOs.push_back(MF.getMachineMemOperand( 6234 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 6235 } 6236 } 6237 6238 return LoadMMOs; 6239 } 6240 6241 static SmallVector<MachineMemOperand *, 2> 6242 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6243 SmallVector<MachineMemOperand *, 2> StoreMMOs; 6244 6245 for (MachineMemOperand *MMO : MMOs) { 6246 if (!MMO->isStore()) 6247 continue; 6248 6249 if (!MMO->isLoad()) { 6250 // Reuse the MMO. 6251 StoreMMOs.push_back(MMO); 6252 } else { 6253 // Clone the MMO and unset the load flag. 6254 StoreMMOs.push_back(MF.getMachineMemOperand( 6255 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 6256 } 6257 } 6258 6259 return StoreMMOs; 6260 } 6261 6262 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I, 6263 const TargetRegisterClass *RC, 6264 const X86Subtarget &STI) { 6265 assert(STI.hasAVX512() && "Expected at least AVX512!"); 6266 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); 6267 assert((SpillSize == 64 || STI.hasVLX()) && 6268 "Can't broadcast less than 64 bytes without AVX512VL!"); 6269 6270 switch (I->Flags & TB_BCAST_MASK) { 6271 default: llvm_unreachable("Unexpected broadcast type!"); 6272 case TB_BCAST_D: 6273 switch (SpillSize) { 6274 default: llvm_unreachable("Unknown spill size"); 6275 case 16: return X86::VPBROADCASTDZ128rm; 6276 case 32: return X86::VPBROADCASTDZ256rm; 6277 case 64: return X86::VPBROADCASTDZrm; 6278 } 6279 break; 6280 case TB_BCAST_Q: 6281 switch (SpillSize) { 6282 default: llvm_unreachable("Unknown spill size"); 6283 case 16: return X86::VPBROADCASTQZ128rm; 6284 case 32: return X86::VPBROADCASTQZ256rm; 6285 case 64: return X86::VPBROADCASTQZrm; 6286 } 6287 break; 6288 case TB_BCAST_SS: 6289 switch (SpillSize) { 6290 default: llvm_unreachable("Unknown spill size"); 6291 case 16: return X86::VBROADCASTSSZ128rm; 6292 case 32: return X86::VBROADCASTSSZ256rm; 6293 case 64: return X86::VBROADCASTSSZrm; 6294 } 6295 break; 6296 case TB_BCAST_SD: 6297 switch (SpillSize) { 6298 default: llvm_unreachable("Unknown spill size"); 6299 case 16: return X86::VMOVDDUPZ128rm; 6300 case 32: return X86::VBROADCASTSDZ256rm; 6301 case 64: return X86::VBROADCASTSDZrm; 6302 } 6303 break; 6304 } 6305 } 6306 6307 bool X86InstrInfo::unfoldMemoryOperand( 6308 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 6309 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 6310 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 6311 if (I == nullptr) 6312 return false; 6313 unsigned Opc = I->DstOp; 6314 unsigned Index = I->Flags & TB_INDEX_MASK; 6315 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6316 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6317 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6318 if (UnfoldLoad && !FoldedLoad) 6319 return false; 6320 UnfoldLoad &= FoldedLoad; 6321 if (UnfoldStore && !FoldedStore) 6322 return false; 6323 UnfoldStore &= FoldedStore; 6324 6325 const MCInstrDesc &MCID = get(Opc); 6326 6327 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6328 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6329 // TODO: Check if 32-byte or greater accesses are slow too? 6330 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 6331 Subtarget.isUnalignedMem16Slow()) 6332 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 6333 // conservatively assume the address is unaligned. That's bad for 6334 // performance. 6335 return false; 6336 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 6337 SmallVector<MachineOperand,2> BeforeOps; 6338 SmallVector<MachineOperand,2> AfterOps; 6339 SmallVector<MachineOperand,4> ImpOps; 6340 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 6341 MachineOperand &Op = MI.getOperand(i); 6342 if (i >= Index && i < Index + X86::AddrNumOperands) 6343 AddrOps.push_back(Op); 6344 else if (Op.isReg() && Op.isImplicit()) 6345 ImpOps.push_back(Op); 6346 else if (i < Index) 6347 BeforeOps.push_back(Op); 6348 else if (i > Index) 6349 AfterOps.push_back(Op); 6350 } 6351 6352 // Emit the load or broadcast instruction. 6353 if (UnfoldLoad) { 6354 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 6355 6356 unsigned Opc; 6357 if (FoldedBCast) { 6358 Opc = getBroadcastOpcode(I, RC, Subtarget); 6359 } else { 6360 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6361 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6362 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); 6363 } 6364 6365 DebugLoc DL; 6366 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); 6367 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6368 MIB.add(AddrOps[i]); 6369 MIB.setMemRefs(MMOs); 6370 NewMIs.push_back(MIB); 6371 6372 if (UnfoldStore) { 6373 // Address operands cannot be marked isKill. 6374 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 6375 MachineOperand &MO = NewMIs[0]->getOperand(i); 6376 if (MO.isReg()) 6377 MO.setIsKill(false); 6378 } 6379 } 6380 } 6381 6382 // Emit the data processing instruction. 6383 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 6384 MachineInstrBuilder MIB(MF, DataMI); 6385 6386 if (FoldedStore) 6387 MIB.addReg(Reg, RegState::Define); 6388 for (MachineOperand &BeforeOp : BeforeOps) 6389 MIB.add(BeforeOp); 6390 if (FoldedLoad) 6391 MIB.addReg(Reg); 6392 for (MachineOperand &AfterOp : AfterOps) 6393 MIB.add(AfterOp); 6394 for (MachineOperand &ImpOp : ImpOps) { 6395 MIB.addReg(ImpOp.getReg(), 6396 getDefRegState(ImpOp.isDef()) | 6397 RegState::Implicit | 6398 getKillRegState(ImpOp.isKill()) | 6399 getDeadRegState(ImpOp.isDead()) | 6400 getUndefRegState(ImpOp.isUndef())); 6401 } 6402 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6403 switch (DataMI->getOpcode()) { 6404 default: break; 6405 case X86::CMP64ri32: 6406 case X86::CMP64ri8: 6407 case X86::CMP32ri: 6408 case X86::CMP32ri8: 6409 case X86::CMP16ri: 6410 case X86::CMP16ri8: 6411 case X86::CMP8ri: { 6412 MachineOperand &MO0 = DataMI->getOperand(0); 6413 MachineOperand &MO1 = DataMI->getOperand(1); 6414 if (MO1.isImm() && MO1.getImm() == 0) { 6415 unsigned NewOpc; 6416 switch (DataMI->getOpcode()) { 6417 default: llvm_unreachable("Unreachable!"); 6418 case X86::CMP64ri8: 6419 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 6420 case X86::CMP32ri8: 6421 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 6422 case X86::CMP16ri8: 6423 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 6424 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 6425 } 6426 DataMI->setDesc(get(NewOpc)); 6427 MO1.ChangeToRegister(MO0.getReg(), false); 6428 } 6429 } 6430 } 6431 NewMIs.push_back(DataMI); 6432 6433 // Emit the store instruction. 6434 if (UnfoldStore) { 6435 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 6436 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 6437 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); 6438 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6439 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); 6440 DebugLoc DL; 6441 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 6442 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6443 MIB.add(AddrOps[i]); 6444 MIB.addReg(Reg, RegState::Kill); 6445 MIB.setMemRefs(MMOs); 6446 NewMIs.push_back(MIB); 6447 } 6448 6449 return true; 6450 } 6451 6452 bool 6453 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 6454 SmallVectorImpl<SDNode*> &NewNodes) const { 6455 if (!N->isMachineOpcode()) 6456 return false; 6457 6458 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 6459 if (I == nullptr) 6460 return false; 6461 unsigned Opc = I->DstOp; 6462 unsigned Index = I->Flags & TB_INDEX_MASK; 6463 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6464 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6465 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6466 const MCInstrDesc &MCID = get(Opc); 6467 MachineFunction &MF = DAG.getMachineFunction(); 6468 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6469 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6470 unsigned NumDefs = MCID.NumDefs; 6471 std::vector<SDValue> AddrOps; 6472 std::vector<SDValue> BeforeOps; 6473 std::vector<SDValue> AfterOps; 6474 SDLoc dl(N); 6475 unsigned NumOps = N->getNumOperands(); 6476 for (unsigned i = 0; i != NumOps-1; ++i) { 6477 SDValue Op = N->getOperand(i); 6478 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 6479 AddrOps.push_back(Op); 6480 else if (i < Index-NumDefs) 6481 BeforeOps.push_back(Op); 6482 else if (i > Index-NumDefs) 6483 AfterOps.push_back(Op); 6484 } 6485 SDValue Chain = N->getOperand(NumOps-1); 6486 AddrOps.push_back(Chain); 6487 6488 // Emit the load instruction. 6489 SDNode *Load = nullptr; 6490 if (FoldedLoad) { 6491 EVT VT = *TRI.legalclasstypes_begin(*RC); 6492 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 6493 if (MMOs.empty() && RC == &X86::VR128RegClass && 6494 Subtarget.isUnalignedMem16Slow()) 6495 // Do not introduce a slow unaligned load. 6496 return false; 6497 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6498 // memory access is slow above. 6499 6500 unsigned Opc; 6501 if (FoldedBCast) { 6502 Opc = getBroadcastOpcode(I, RC, Subtarget); 6503 } else { 6504 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6505 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6506 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); 6507 } 6508 6509 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); 6510 NewNodes.push_back(Load); 6511 6512 // Preserve memory reference information. 6513 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 6514 } 6515 6516 // Emit the data processing instruction. 6517 std::vector<EVT> VTs; 6518 const TargetRegisterClass *DstRC = nullptr; 6519 if (MCID.getNumDefs() > 0) { 6520 DstRC = getRegClass(MCID, 0, &RI, MF); 6521 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 6522 } 6523 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 6524 EVT VT = N->getValueType(i); 6525 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 6526 VTs.push_back(VT); 6527 } 6528 if (Load) 6529 BeforeOps.push_back(SDValue(Load, 0)); 6530 llvm::append_range(BeforeOps, AfterOps); 6531 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6532 switch (Opc) { 6533 default: break; 6534 case X86::CMP64ri32: 6535 case X86::CMP64ri8: 6536 case X86::CMP32ri: 6537 case X86::CMP32ri8: 6538 case X86::CMP16ri: 6539 case X86::CMP16ri8: 6540 case X86::CMP8ri: 6541 if (isNullConstant(BeforeOps[1])) { 6542 switch (Opc) { 6543 default: llvm_unreachable("Unreachable!"); 6544 case X86::CMP64ri8: 6545 case X86::CMP64ri32: Opc = X86::TEST64rr; break; 6546 case X86::CMP32ri8: 6547 case X86::CMP32ri: Opc = X86::TEST32rr; break; 6548 case X86::CMP16ri8: 6549 case X86::CMP16ri: Opc = X86::TEST16rr; break; 6550 case X86::CMP8ri: Opc = X86::TEST8rr; break; 6551 } 6552 BeforeOps[1] = BeforeOps[0]; 6553 } 6554 } 6555 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 6556 NewNodes.push_back(NewNode); 6557 6558 // Emit the store instruction. 6559 if (FoldedStore) { 6560 AddrOps.pop_back(); 6561 AddrOps.push_back(SDValue(NewNode, 0)); 6562 AddrOps.push_back(Chain); 6563 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 6564 if (MMOs.empty() && RC == &X86::VR128RegClass && 6565 Subtarget.isUnalignedMem16Slow()) 6566 // Do not introduce a slow unaligned store. 6567 return false; 6568 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6569 // memory access is slow above. 6570 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6571 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6572 SDNode *Store = 6573 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 6574 dl, MVT::Other, AddrOps); 6575 NewNodes.push_back(Store); 6576 6577 // Preserve memory reference information. 6578 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 6579 } 6580 6581 return true; 6582 } 6583 6584 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 6585 bool UnfoldLoad, bool UnfoldStore, 6586 unsigned *LoadRegIndex) const { 6587 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); 6588 if (I == nullptr) 6589 return 0; 6590 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6591 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6592 if (UnfoldLoad && !FoldedLoad) 6593 return 0; 6594 if (UnfoldStore && !FoldedStore) 6595 return 0; 6596 if (LoadRegIndex) 6597 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 6598 return I->DstOp; 6599 } 6600 6601 bool 6602 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 6603 int64_t &Offset1, int64_t &Offset2) const { 6604 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 6605 return false; 6606 unsigned Opc1 = Load1->getMachineOpcode(); 6607 unsigned Opc2 = Load2->getMachineOpcode(); 6608 switch (Opc1) { 6609 default: return false; 6610 case X86::MOV8rm: 6611 case X86::MOV16rm: 6612 case X86::MOV32rm: 6613 case X86::MOV64rm: 6614 case X86::LD_Fp32m: 6615 case X86::LD_Fp64m: 6616 case X86::LD_Fp80m: 6617 case X86::MOVSSrm: 6618 case X86::MOVSSrm_alt: 6619 case X86::MOVSDrm: 6620 case X86::MOVSDrm_alt: 6621 case X86::MMX_MOVD64rm: 6622 case X86::MMX_MOVQ64rm: 6623 case X86::MOVAPSrm: 6624 case X86::MOVUPSrm: 6625 case X86::MOVAPDrm: 6626 case X86::MOVUPDrm: 6627 case X86::MOVDQArm: 6628 case X86::MOVDQUrm: 6629 // AVX load instructions 6630 case X86::VMOVSSrm: 6631 case X86::VMOVSSrm_alt: 6632 case X86::VMOVSDrm: 6633 case X86::VMOVSDrm_alt: 6634 case X86::VMOVAPSrm: 6635 case X86::VMOVUPSrm: 6636 case X86::VMOVAPDrm: 6637 case X86::VMOVUPDrm: 6638 case X86::VMOVDQArm: 6639 case X86::VMOVDQUrm: 6640 case X86::VMOVAPSYrm: 6641 case X86::VMOVUPSYrm: 6642 case X86::VMOVAPDYrm: 6643 case X86::VMOVUPDYrm: 6644 case X86::VMOVDQAYrm: 6645 case X86::VMOVDQUYrm: 6646 // AVX512 load instructions 6647 case X86::VMOVSSZrm: 6648 case X86::VMOVSSZrm_alt: 6649 case X86::VMOVSDZrm: 6650 case X86::VMOVSDZrm_alt: 6651 case X86::VMOVAPSZ128rm: 6652 case X86::VMOVUPSZ128rm: 6653 case X86::VMOVAPSZ128rm_NOVLX: 6654 case X86::VMOVUPSZ128rm_NOVLX: 6655 case X86::VMOVAPDZ128rm: 6656 case X86::VMOVUPDZ128rm: 6657 case X86::VMOVDQU8Z128rm: 6658 case X86::VMOVDQU16Z128rm: 6659 case X86::VMOVDQA32Z128rm: 6660 case X86::VMOVDQU32Z128rm: 6661 case X86::VMOVDQA64Z128rm: 6662 case X86::VMOVDQU64Z128rm: 6663 case X86::VMOVAPSZ256rm: 6664 case X86::VMOVUPSZ256rm: 6665 case X86::VMOVAPSZ256rm_NOVLX: 6666 case X86::VMOVUPSZ256rm_NOVLX: 6667 case X86::VMOVAPDZ256rm: 6668 case X86::VMOVUPDZ256rm: 6669 case X86::VMOVDQU8Z256rm: 6670 case X86::VMOVDQU16Z256rm: 6671 case X86::VMOVDQA32Z256rm: 6672 case X86::VMOVDQU32Z256rm: 6673 case X86::VMOVDQA64Z256rm: 6674 case X86::VMOVDQU64Z256rm: 6675 case X86::VMOVAPSZrm: 6676 case X86::VMOVUPSZrm: 6677 case X86::VMOVAPDZrm: 6678 case X86::VMOVUPDZrm: 6679 case X86::VMOVDQU8Zrm: 6680 case X86::VMOVDQU16Zrm: 6681 case X86::VMOVDQA32Zrm: 6682 case X86::VMOVDQU32Zrm: 6683 case X86::VMOVDQA64Zrm: 6684 case X86::VMOVDQU64Zrm: 6685 case X86::KMOVBkm: 6686 case X86::KMOVWkm: 6687 case X86::KMOVDkm: 6688 case X86::KMOVQkm: 6689 break; 6690 } 6691 switch (Opc2) { 6692 default: return false; 6693 case X86::MOV8rm: 6694 case X86::MOV16rm: 6695 case X86::MOV32rm: 6696 case X86::MOV64rm: 6697 case X86::LD_Fp32m: 6698 case X86::LD_Fp64m: 6699 case X86::LD_Fp80m: 6700 case X86::MOVSSrm: 6701 case X86::MOVSSrm_alt: 6702 case X86::MOVSDrm: 6703 case X86::MOVSDrm_alt: 6704 case X86::MMX_MOVD64rm: 6705 case X86::MMX_MOVQ64rm: 6706 case X86::MOVAPSrm: 6707 case X86::MOVUPSrm: 6708 case X86::MOVAPDrm: 6709 case X86::MOVUPDrm: 6710 case X86::MOVDQArm: 6711 case X86::MOVDQUrm: 6712 // AVX load instructions 6713 case X86::VMOVSSrm: 6714 case X86::VMOVSSrm_alt: 6715 case X86::VMOVSDrm: 6716 case X86::VMOVSDrm_alt: 6717 case X86::VMOVAPSrm: 6718 case X86::VMOVUPSrm: 6719 case X86::VMOVAPDrm: 6720 case X86::VMOVUPDrm: 6721 case X86::VMOVDQArm: 6722 case X86::VMOVDQUrm: 6723 case X86::VMOVAPSYrm: 6724 case X86::VMOVUPSYrm: 6725 case X86::VMOVAPDYrm: 6726 case X86::VMOVUPDYrm: 6727 case X86::VMOVDQAYrm: 6728 case X86::VMOVDQUYrm: 6729 // AVX512 load instructions 6730 case X86::VMOVSSZrm: 6731 case X86::VMOVSSZrm_alt: 6732 case X86::VMOVSDZrm: 6733 case X86::VMOVSDZrm_alt: 6734 case X86::VMOVAPSZ128rm: 6735 case X86::VMOVUPSZ128rm: 6736 case X86::VMOVAPSZ128rm_NOVLX: 6737 case X86::VMOVUPSZ128rm_NOVLX: 6738 case X86::VMOVAPDZ128rm: 6739 case X86::VMOVUPDZ128rm: 6740 case X86::VMOVDQU8Z128rm: 6741 case X86::VMOVDQU16Z128rm: 6742 case X86::VMOVDQA32Z128rm: 6743 case X86::VMOVDQU32Z128rm: 6744 case X86::VMOVDQA64Z128rm: 6745 case X86::VMOVDQU64Z128rm: 6746 case X86::VMOVAPSZ256rm: 6747 case X86::VMOVUPSZ256rm: 6748 case X86::VMOVAPSZ256rm_NOVLX: 6749 case X86::VMOVUPSZ256rm_NOVLX: 6750 case X86::VMOVAPDZ256rm: 6751 case X86::VMOVUPDZ256rm: 6752 case X86::VMOVDQU8Z256rm: 6753 case X86::VMOVDQU16Z256rm: 6754 case X86::VMOVDQA32Z256rm: 6755 case X86::VMOVDQU32Z256rm: 6756 case X86::VMOVDQA64Z256rm: 6757 case X86::VMOVDQU64Z256rm: 6758 case X86::VMOVAPSZrm: 6759 case X86::VMOVUPSZrm: 6760 case X86::VMOVAPDZrm: 6761 case X86::VMOVUPDZrm: 6762 case X86::VMOVDQU8Zrm: 6763 case X86::VMOVDQU16Zrm: 6764 case X86::VMOVDQA32Zrm: 6765 case X86::VMOVDQU32Zrm: 6766 case X86::VMOVDQA64Zrm: 6767 case X86::VMOVDQU64Zrm: 6768 case X86::KMOVBkm: 6769 case X86::KMOVWkm: 6770 case X86::KMOVDkm: 6771 case X86::KMOVQkm: 6772 break; 6773 } 6774 6775 // Lambda to check if both the loads have the same value for an operand index. 6776 auto HasSameOp = [&](int I) { 6777 return Load1->getOperand(I) == Load2->getOperand(I); 6778 }; 6779 6780 // All operands except the displacement should match. 6781 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 6782 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 6783 return false; 6784 6785 // Chain Operand must be the same. 6786 if (!HasSameOp(5)) 6787 return false; 6788 6789 // Now let's examine if the displacements are constants. 6790 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 6791 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 6792 if (!Disp1 || !Disp2) 6793 return false; 6794 6795 Offset1 = Disp1->getSExtValue(); 6796 Offset2 = Disp2->getSExtValue(); 6797 return true; 6798 } 6799 6800 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 6801 int64_t Offset1, int64_t Offset2, 6802 unsigned NumLoads) const { 6803 assert(Offset2 > Offset1); 6804 if ((Offset2 - Offset1) / 8 > 64) 6805 return false; 6806 6807 unsigned Opc1 = Load1->getMachineOpcode(); 6808 unsigned Opc2 = Load2->getMachineOpcode(); 6809 if (Opc1 != Opc2) 6810 return false; // FIXME: overly conservative? 6811 6812 switch (Opc1) { 6813 default: break; 6814 case X86::LD_Fp32m: 6815 case X86::LD_Fp64m: 6816 case X86::LD_Fp80m: 6817 case X86::MMX_MOVD64rm: 6818 case X86::MMX_MOVQ64rm: 6819 return false; 6820 } 6821 6822 EVT VT = Load1->getValueType(0); 6823 switch (VT.getSimpleVT().SimpleTy) { 6824 default: 6825 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 6826 // have 16 of them to play with. 6827 if (Subtarget.is64Bit()) { 6828 if (NumLoads >= 3) 6829 return false; 6830 } else if (NumLoads) { 6831 return false; 6832 } 6833 break; 6834 case MVT::i8: 6835 case MVT::i16: 6836 case MVT::i32: 6837 case MVT::i64: 6838 case MVT::f32: 6839 case MVT::f64: 6840 if (NumLoads) 6841 return false; 6842 break; 6843 } 6844 6845 return true; 6846 } 6847 6848 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, 6849 const MachineBasicBlock *MBB, 6850 const MachineFunction &MF) const { 6851 6852 // ENDBR instructions should not be scheduled around. 6853 unsigned Opcode = MI.getOpcode(); 6854 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || 6855 Opcode == X86::LDTILECFG) 6856 return true; 6857 6858 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 6859 } 6860 6861 bool X86InstrInfo:: 6862 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 6863 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 6864 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 6865 Cond[0].setImm(GetOppositeBranchCondition(CC)); 6866 return false; 6867 } 6868 6869 bool X86InstrInfo:: 6870 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 6871 // FIXME: Return false for x87 stack register classes for now. We can't 6872 // allow any loads of these registers before FpGet_ST0_80. 6873 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 6874 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 6875 RC == &X86::RFP80RegClass); 6876 } 6877 6878 /// Return a virtual register initialized with the 6879 /// the global base register value. Output instructions required to 6880 /// initialize the register in the function entry block, if necessary. 6881 /// 6882 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 6883 /// 6884 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 6885 assert((!Subtarget.is64Bit() || 6886 MF->getTarget().getCodeModel() == CodeModel::Medium || 6887 MF->getTarget().getCodeModel() == CodeModel::Large) && 6888 "X86-64 PIC uses RIP relative addressing"); 6889 6890 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 6891 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 6892 if (GlobalBaseReg != 0) 6893 return GlobalBaseReg; 6894 6895 // Create the register. The code to initialize it is inserted 6896 // later, by the CGBR pass (below). 6897 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 6898 GlobalBaseReg = RegInfo.createVirtualRegister( 6899 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 6900 X86FI->setGlobalBaseReg(GlobalBaseReg); 6901 return GlobalBaseReg; 6902 } 6903 6904 // These are the replaceable SSE instructions. Some of these have Int variants 6905 // that we don't include here. We don't want to replace instructions selected 6906 // by intrinsics. 6907 static const uint16_t ReplaceableInstrs[][3] = { 6908 //PackedSingle PackedDouble PackedInt 6909 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 6910 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 6911 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 6912 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 6913 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 6914 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 6915 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, 6916 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, 6917 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, 6918 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm }, 6919 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, 6920 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm }, 6921 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 6922 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 6923 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 6924 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 6925 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 6926 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 6927 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 6928 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 6929 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 6930 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, 6931 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, 6932 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, 6933 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, 6934 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, 6935 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, 6936 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, 6937 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, 6938 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, 6939 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, 6940 // AVX 128-bit support 6941 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 6942 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 6943 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 6944 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 6945 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 6946 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 6947 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, 6948 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, 6949 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, 6950 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm }, 6951 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, 6952 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm }, 6953 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 6954 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 6955 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 6956 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 6957 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 6958 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 6959 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 6960 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 6961 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 6962 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, 6963 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, 6964 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, 6965 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, 6966 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, 6967 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, 6968 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, 6969 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, 6970 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, 6971 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, 6972 // AVX 256-bit support 6973 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 6974 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 6975 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 6976 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 6977 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 6978 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 6979 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, 6980 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, 6981 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, 6982 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, 6983 // AVX512 support 6984 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, 6985 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, 6986 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, 6987 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, 6988 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, 6989 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, 6990 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, 6991 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm }, 6992 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, 6993 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm }, 6994 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr }, 6995 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm }, 6996 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr }, 6997 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm }, 6998 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr }, 6999 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm }, 7000 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr }, 7001 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm }, 7002 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr }, 7003 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm }, 7004 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr }, 7005 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm }, 7006 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, 7007 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, 7008 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, 7009 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, 7010 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, 7011 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, 7012 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, 7013 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, 7014 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, 7015 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, 7016 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, 7017 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, 7018 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, 7019 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, 7020 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, 7021 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, 7022 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, 7023 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, 7024 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, 7025 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, 7026 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, 7027 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, 7028 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, 7029 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, 7030 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, 7031 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, 7032 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, 7033 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, 7034 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, 7035 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, 7036 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, 7037 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, 7038 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, 7039 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, 7040 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, 7041 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, 7042 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, 7043 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, 7044 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, 7045 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, 7046 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, 7047 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, 7048 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, 7049 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, 7050 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, 7051 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, 7052 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, 7053 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, 7054 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, 7055 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, 7056 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, 7057 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, 7058 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, 7059 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, 7060 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, 7061 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, 7062 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, 7063 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, 7064 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, 7065 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, 7066 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, 7067 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, 7068 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, 7069 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, 7070 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, 7071 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, 7072 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, 7073 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, 7074 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, 7075 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, 7076 }; 7077 7078 static const uint16_t ReplaceableInstrsAVX2[][3] = { 7079 //PackedSingle PackedDouble PackedInt 7080 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 7081 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 7082 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 7083 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 7084 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 7085 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 7086 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 7087 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 7088 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 7089 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 7090 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 7091 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 7092 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm}, 7093 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr}, 7094 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 7095 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 7096 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 7097 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, 7098 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, 7099 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, 7100 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, 7101 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, 7102 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, 7103 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, 7104 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, 7105 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, 7106 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, 7107 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, 7108 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, 7109 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, 7110 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, 7111 }; 7112 7113 static const uint16_t ReplaceableInstrsFP[][3] = { 7114 //PackedSingle PackedDouble 7115 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END }, 7116 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END }, 7117 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END }, 7118 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END }, 7119 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END }, 7120 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END }, 7121 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END }, 7122 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END }, 7123 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END }, 7124 }; 7125 7126 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { 7127 //PackedSingle PackedDouble PackedInt 7128 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 7129 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 7130 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 7131 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 7132 }; 7133 7134 static const uint16_t ReplaceableInstrsAVX512[][4] = { 7135 // Two integer columns for 64-bit and 32-bit elements. 7136 //PackedSingle PackedDouble PackedInt PackedInt 7137 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, 7138 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, 7139 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, 7140 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, 7141 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, 7142 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, 7143 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, 7144 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, 7145 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, 7146 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, 7147 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, 7148 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, 7149 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, 7150 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, 7151 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, 7152 }; 7153 7154 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { 7155 // Two integer columns for 64-bit and 32-bit elements. 7156 //PackedSingle PackedDouble PackedInt PackedInt 7157 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7158 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7159 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7160 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7161 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7162 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7163 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7164 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7165 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7166 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7167 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7168 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7169 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7170 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7171 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7172 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7173 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, 7174 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, 7175 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, 7176 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, 7177 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, 7178 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, 7179 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, 7180 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, 7181 }; 7182 7183 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { 7184 // Two integer columns for 64-bit and 32-bit elements. 7185 //PackedSingle PackedDouble 7186 //PackedInt PackedInt 7187 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, 7188 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, 7189 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, 7190 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, 7191 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, 7192 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, 7193 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, 7194 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, 7195 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, 7196 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, 7197 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, 7198 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, 7199 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, 7200 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, 7201 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, 7202 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, 7203 { X86::VORPSZ128rmk, X86::VORPDZ128rmk, 7204 X86::VPORQZ128rmk, X86::VPORDZ128rmk }, 7205 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, 7206 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, 7207 { X86::VORPSZ128rrk, X86::VORPDZ128rrk, 7208 X86::VPORQZ128rrk, X86::VPORDZ128rrk }, 7209 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, 7210 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, 7211 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, 7212 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, 7213 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, 7214 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, 7215 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, 7216 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, 7217 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, 7218 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, 7219 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, 7220 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, 7221 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, 7222 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, 7223 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, 7224 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, 7225 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, 7226 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, 7227 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, 7228 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, 7229 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, 7230 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, 7231 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, 7232 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, 7233 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, 7234 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, 7235 { X86::VORPSZ256rmk, X86::VORPDZ256rmk, 7236 X86::VPORQZ256rmk, X86::VPORDZ256rmk }, 7237 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, 7238 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, 7239 { X86::VORPSZ256rrk, X86::VORPDZ256rrk, 7240 X86::VPORQZ256rrk, X86::VPORDZ256rrk }, 7241 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, 7242 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, 7243 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, 7244 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, 7245 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, 7246 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, 7247 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, 7248 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, 7249 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, 7250 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, 7251 { X86::VANDNPSZrmk, X86::VANDNPDZrmk, 7252 X86::VPANDNQZrmk, X86::VPANDNDZrmk }, 7253 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, 7254 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, 7255 { X86::VANDNPSZrrk, X86::VANDNPDZrrk, 7256 X86::VPANDNQZrrk, X86::VPANDNDZrrk }, 7257 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, 7258 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, 7259 { X86::VANDPSZrmk, X86::VANDPDZrmk, 7260 X86::VPANDQZrmk, X86::VPANDDZrmk }, 7261 { X86::VANDPSZrmkz, X86::VANDPDZrmkz, 7262 X86::VPANDQZrmkz, X86::VPANDDZrmkz }, 7263 { X86::VANDPSZrrk, X86::VANDPDZrrk, 7264 X86::VPANDQZrrk, X86::VPANDDZrrk }, 7265 { X86::VANDPSZrrkz, X86::VANDPDZrrkz, 7266 X86::VPANDQZrrkz, X86::VPANDDZrrkz }, 7267 { X86::VORPSZrmk, X86::VORPDZrmk, 7268 X86::VPORQZrmk, X86::VPORDZrmk }, 7269 { X86::VORPSZrmkz, X86::VORPDZrmkz, 7270 X86::VPORQZrmkz, X86::VPORDZrmkz }, 7271 { X86::VORPSZrrk, X86::VORPDZrrk, 7272 X86::VPORQZrrk, X86::VPORDZrrk }, 7273 { X86::VORPSZrrkz, X86::VORPDZrrkz, 7274 X86::VPORQZrrkz, X86::VPORDZrrkz }, 7275 { X86::VXORPSZrmk, X86::VXORPDZrmk, 7276 X86::VPXORQZrmk, X86::VPXORDZrmk }, 7277 { X86::VXORPSZrmkz, X86::VXORPDZrmkz, 7278 X86::VPXORQZrmkz, X86::VPXORDZrmkz }, 7279 { X86::VXORPSZrrk, X86::VXORPDZrrk, 7280 X86::VPXORQZrrk, X86::VPXORDZrrk }, 7281 { X86::VXORPSZrrkz, X86::VXORPDZrrkz, 7282 X86::VPXORQZrrkz, X86::VPXORDZrrkz }, 7283 // Broadcast loads can be handled the same as masked operations to avoid 7284 // changing element size. 7285 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, 7286 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, 7287 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, 7288 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, 7289 { X86::VORPSZ128rmb, X86::VORPDZ128rmb, 7290 X86::VPORQZ128rmb, X86::VPORDZ128rmb }, 7291 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, 7292 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, 7293 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, 7294 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, 7295 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, 7296 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, 7297 { X86::VORPSZ256rmb, X86::VORPDZ256rmb, 7298 X86::VPORQZ256rmb, X86::VPORDZ256rmb }, 7299 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, 7300 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, 7301 { X86::VANDNPSZrmb, X86::VANDNPDZrmb, 7302 X86::VPANDNQZrmb, X86::VPANDNDZrmb }, 7303 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7304 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7305 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7306 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7307 { X86::VORPSZrmb, X86::VORPDZrmb, 7308 X86::VPORQZrmb, X86::VPORDZrmb }, 7309 { X86::VXORPSZrmb, X86::VXORPDZrmb, 7310 X86::VPXORQZrmb, X86::VPXORDZrmb }, 7311 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, 7312 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, 7313 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, 7314 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, 7315 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, 7316 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, 7317 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, 7318 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, 7319 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, 7320 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, 7321 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, 7322 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, 7323 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, 7324 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, 7325 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, 7326 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, 7327 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, 7328 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, 7329 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7330 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7331 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7332 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7333 { X86::VORPSZrmbk, X86::VORPDZrmbk, 7334 X86::VPORQZrmbk, X86::VPORDZrmbk }, 7335 { X86::VXORPSZrmbk, X86::VXORPDZrmbk, 7336 X86::VPXORQZrmbk, X86::VPXORDZrmbk }, 7337 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, 7338 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, 7339 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, 7340 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, 7341 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, 7342 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, 7343 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, 7344 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, 7345 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, 7346 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, 7347 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, 7348 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, 7349 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, 7350 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, 7351 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, 7352 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, 7353 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, 7354 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, 7355 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7356 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7357 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7358 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7359 { X86::VORPSZrmbkz, X86::VORPDZrmbkz, 7360 X86::VPORQZrmbkz, X86::VPORDZrmbkz }, 7361 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, 7362 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, 7363 }; 7364 7365 // NOTE: These should only be used by the custom domain methods. 7366 static const uint16_t ReplaceableBlendInstrs[][3] = { 7367 //PackedSingle PackedDouble PackedInt 7368 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, 7369 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, 7370 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, 7371 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, 7372 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, 7373 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, 7374 }; 7375 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = { 7376 //PackedSingle PackedDouble PackedInt 7377 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, 7378 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, 7379 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, 7380 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, 7381 }; 7382 7383 // Special table for changing EVEX logic instructions to VEX. 7384 // TODO: Should we run EVEX->VEX earlier? 7385 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { 7386 // Two integer columns for 64-bit and 32-bit elements. 7387 //PackedSingle PackedDouble PackedInt PackedInt 7388 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7389 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7390 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7391 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7392 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7393 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7394 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7395 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7396 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7397 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7398 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7399 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7400 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7401 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7402 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7403 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7404 }; 7405 7406 // FIXME: Some shuffle and unpack instructions have equivalents in different 7407 // domains, but they require a bit more work than just switching opcodes. 7408 7409 static const uint16_t *lookup(unsigned opcode, unsigned domain, 7410 ArrayRef<uint16_t[3]> Table) { 7411 for (const uint16_t (&Row)[3] : Table) 7412 if (Row[domain-1] == opcode) 7413 return Row; 7414 return nullptr; 7415 } 7416 7417 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 7418 ArrayRef<uint16_t[4]> Table) { 7419 // If this is the integer domain make sure to check both integer columns. 7420 for (const uint16_t (&Row)[4] : Table) 7421 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) 7422 return Row; 7423 return nullptr; 7424 } 7425 7426 // Helper to attempt to widen/narrow blend masks. 7427 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 7428 unsigned NewWidth, unsigned *pNewMask = nullptr) { 7429 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 7430 "Illegal blend mask scale"); 7431 unsigned NewMask = 0; 7432 7433 if ((OldWidth % NewWidth) == 0) { 7434 unsigned Scale = OldWidth / NewWidth; 7435 unsigned SubMask = (1u << Scale) - 1; 7436 for (unsigned i = 0; i != NewWidth; ++i) { 7437 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 7438 if (Sub == SubMask) 7439 NewMask |= (1u << i); 7440 else if (Sub != 0x0) 7441 return false; 7442 } 7443 } else { 7444 unsigned Scale = NewWidth / OldWidth; 7445 unsigned SubMask = (1u << Scale) - 1; 7446 for (unsigned i = 0; i != OldWidth; ++i) { 7447 if (OldMask & (1 << i)) { 7448 NewMask |= (SubMask << (i * Scale)); 7449 } 7450 } 7451 } 7452 7453 if (pNewMask) 7454 *pNewMask = NewMask; 7455 return true; 7456 } 7457 7458 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 7459 unsigned Opcode = MI.getOpcode(); 7460 unsigned NumOperands = MI.getDesc().getNumOperands(); 7461 7462 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 7463 uint16_t validDomains = 0; 7464 if (MI.getOperand(NumOperands - 1).isImm()) { 7465 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 7466 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 7467 validDomains |= 0x2; // PackedSingle 7468 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 7469 validDomains |= 0x4; // PackedDouble 7470 if (!Is256 || Subtarget.hasAVX2()) 7471 validDomains |= 0x8; // PackedInt 7472 } 7473 return validDomains; 7474 }; 7475 7476 switch (Opcode) { 7477 case X86::BLENDPDrmi: 7478 case X86::BLENDPDrri: 7479 case X86::VBLENDPDrmi: 7480 case X86::VBLENDPDrri: 7481 return GetBlendDomains(2, false); 7482 case X86::VBLENDPDYrmi: 7483 case X86::VBLENDPDYrri: 7484 return GetBlendDomains(4, true); 7485 case X86::BLENDPSrmi: 7486 case X86::BLENDPSrri: 7487 case X86::VBLENDPSrmi: 7488 case X86::VBLENDPSrri: 7489 case X86::VPBLENDDrmi: 7490 case X86::VPBLENDDrri: 7491 return GetBlendDomains(4, false); 7492 case X86::VBLENDPSYrmi: 7493 case X86::VBLENDPSYrri: 7494 case X86::VPBLENDDYrmi: 7495 case X86::VPBLENDDYrri: 7496 return GetBlendDomains(8, true); 7497 case X86::PBLENDWrmi: 7498 case X86::PBLENDWrri: 7499 case X86::VPBLENDWrmi: 7500 case X86::VPBLENDWrri: 7501 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 7502 case X86::VPBLENDWYrmi: 7503 case X86::VPBLENDWYrri: 7504 return GetBlendDomains(8, false); 7505 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 7506 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 7507 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 7508 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 7509 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 7510 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 7511 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 7512 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 7513 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 7514 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 7515 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 7516 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 7517 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 7518 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 7519 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 7520 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: 7521 // If we don't have DQI see if we can still switch from an EVEX integer 7522 // instruction to a VEX floating point instruction. 7523 if (Subtarget.hasDQI()) 7524 return 0; 7525 7526 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 7527 return 0; 7528 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 7529 return 0; 7530 // Register forms will have 3 operands. Memory form will have more. 7531 if (NumOperands == 3 && 7532 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 7533 return 0; 7534 7535 // All domains are valid. 7536 return 0xe; 7537 case X86::MOVHLPSrr: 7538 // We can swap domains when both inputs are the same register. 7539 // FIXME: This doesn't catch all the cases we would like. If the input 7540 // register isn't KILLed by the instruction, the two address instruction 7541 // pass puts a COPY on one input. The other input uses the original 7542 // register. This prevents the same physical register from being used by 7543 // both inputs. 7544 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 7545 MI.getOperand(0).getSubReg() == 0 && 7546 MI.getOperand(1).getSubReg() == 0 && 7547 MI.getOperand(2).getSubReg() == 0) 7548 return 0x6; 7549 return 0; 7550 case X86::SHUFPDrri: 7551 return 0x6; 7552 } 7553 return 0; 7554 } 7555 7556 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 7557 unsigned Domain) const { 7558 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 7559 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7560 assert(dom && "Not an SSE instruction"); 7561 7562 unsigned Opcode = MI.getOpcode(); 7563 unsigned NumOperands = MI.getDesc().getNumOperands(); 7564 7565 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 7566 if (MI.getOperand(NumOperands - 1).isImm()) { 7567 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 7568 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 7569 unsigned NewImm = Imm; 7570 7571 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 7572 if (!table) 7573 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 7574 7575 if (Domain == 1) { // PackedSingle 7576 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 7577 } else if (Domain == 2) { // PackedDouble 7578 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 7579 } else if (Domain == 3) { // PackedInt 7580 if (Subtarget.hasAVX2()) { 7581 // If we are already VPBLENDW use that, else use VPBLENDD. 7582 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 7583 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 7584 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 7585 } 7586 } else { 7587 assert(!Is256 && "128-bit vector expected"); 7588 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 7589 } 7590 } 7591 7592 assert(table && table[Domain - 1] && "Unknown domain op"); 7593 MI.setDesc(get(table[Domain - 1])); 7594 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 7595 } 7596 return true; 7597 }; 7598 7599 switch (Opcode) { 7600 case X86::BLENDPDrmi: 7601 case X86::BLENDPDrri: 7602 case X86::VBLENDPDrmi: 7603 case X86::VBLENDPDrri: 7604 return SetBlendDomain(2, false); 7605 case X86::VBLENDPDYrmi: 7606 case X86::VBLENDPDYrri: 7607 return SetBlendDomain(4, true); 7608 case X86::BLENDPSrmi: 7609 case X86::BLENDPSrri: 7610 case X86::VBLENDPSrmi: 7611 case X86::VBLENDPSrri: 7612 case X86::VPBLENDDrmi: 7613 case X86::VPBLENDDrri: 7614 return SetBlendDomain(4, false); 7615 case X86::VBLENDPSYrmi: 7616 case X86::VBLENDPSYrri: 7617 case X86::VPBLENDDYrmi: 7618 case X86::VPBLENDDYrri: 7619 return SetBlendDomain(8, true); 7620 case X86::PBLENDWrmi: 7621 case X86::PBLENDWrri: 7622 case X86::VPBLENDWrmi: 7623 case X86::VPBLENDWrri: 7624 return SetBlendDomain(8, false); 7625 case X86::VPBLENDWYrmi: 7626 case X86::VPBLENDWYrri: 7627 return SetBlendDomain(16, true); 7628 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 7629 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 7630 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 7631 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 7632 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 7633 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 7634 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 7635 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 7636 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 7637 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 7638 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 7639 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 7640 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 7641 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 7642 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 7643 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { 7644 // Without DQI, convert EVEX instructions to VEX instructions. 7645 if (Subtarget.hasDQI()) 7646 return false; 7647 7648 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, 7649 ReplaceableCustomAVX512LogicInstrs); 7650 assert(table && "Instruction not found in table?"); 7651 // Don't change integer Q instructions to D instructions and 7652 // use D intructions if we started with a PS instruction. 7653 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7654 Domain = 4; 7655 MI.setDesc(get(table[Domain - 1])); 7656 return true; 7657 } 7658 case X86::UNPCKHPDrr: 7659 case X86::MOVHLPSrr: 7660 // We just need to commute the instruction which will switch the domains. 7661 if (Domain != dom && Domain != 3 && 7662 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 7663 MI.getOperand(0).getSubReg() == 0 && 7664 MI.getOperand(1).getSubReg() == 0 && 7665 MI.getOperand(2).getSubReg() == 0) { 7666 commuteInstruction(MI, false); 7667 return true; 7668 } 7669 // We must always return true for MOVHLPSrr. 7670 if (Opcode == X86::MOVHLPSrr) 7671 return true; 7672 break; 7673 case X86::SHUFPDrri: { 7674 if (Domain == 1) { 7675 unsigned Imm = MI.getOperand(3).getImm(); 7676 unsigned NewImm = 0x44; 7677 if (Imm & 1) NewImm |= 0x0a; 7678 if (Imm & 2) NewImm |= 0xa0; 7679 MI.getOperand(3).setImm(NewImm); 7680 MI.setDesc(get(X86::SHUFPSrri)); 7681 } 7682 return true; 7683 } 7684 } 7685 return false; 7686 } 7687 7688 std::pair<uint16_t, uint16_t> 7689 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 7690 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7691 unsigned opcode = MI.getOpcode(); 7692 uint16_t validDomains = 0; 7693 if (domain) { 7694 // Attempt to match for custom instructions. 7695 validDomains = getExecutionDomainCustom(MI); 7696 if (validDomains) 7697 return std::make_pair(domain, validDomains); 7698 7699 if (lookup(opcode, domain, ReplaceableInstrs)) { 7700 validDomains = 0xe; 7701 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 7702 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 7703 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 7704 validDomains = 0x6; 7705 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 7706 // Insert/extract instructions should only effect domain if AVX2 7707 // is enabled. 7708 if (!Subtarget.hasAVX2()) 7709 return std::make_pair(0, 0); 7710 validDomains = 0xe; 7711 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 7712 validDomains = 0xe; 7713 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, 7714 ReplaceableInstrsAVX512DQ)) { 7715 validDomains = 0xe; 7716 } else if (Subtarget.hasDQI()) { 7717 if (const uint16_t *table = lookupAVX512(opcode, domain, 7718 ReplaceableInstrsAVX512DQMasked)) { 7719 if (domain == 1 || (domain == 3 && table[3] == opcode)) 7720 validDomains = 0xa; 7721 else 7722 validDomains = 0xc; 7723 } 7724 } 7725 } 7726 return std::make_pair(domain, validDomains); 7727 } 7728 7729 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 7730 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 7731 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7732 assert(dom && "Not an SSE instruction"); 7733 7734 // Attempt to match for custom instructions. 7735 if (setExecutionDomainCustom(MI, Domain)) 7736 return; 7737 7738 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 7739 if (!table) { // try the other table 7740 assert((Subtarget.hasAVX2() || Domain < 3) && 7741 "256-bit vector operations only available in AVX2"); 7742 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 7743 } 7744 if (!table) { // try the FP table 7745 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 7746 assert((!table || Domain < 3) && 7747 "Can only select PackedSingle or PackedDouble"); 7748 } 7749 if (!table) { // try the other table 7750 assert(Subtarget.hasAVX2() && 7751 "256-bit insert/extract only available in AVX2"); 7752 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 7753 } 7754 if (!table) { // try the AVX512 table 7755 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 7756 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 7757 // Don't change integer Q instructions to D instructions. 7758 if (table && Domain == 3 && table[3] == MI.getOpcode()) 7759 Domain = 4; 7760 } 7761 if (!table) { // try the AVX512DQ table 7762 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 7763 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 7764 // Don't change integer Q instructions to D instructions and 7765 // use D instructions if we started with a PS instruction. 7766 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7767 Domain = 4; 7768 } 7769 if (!table) { // try the AVX512DQMasked table 7770 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 7771 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 7772 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7773 Domain = 4; 7774 } 7775 assert(table && "Cannot change domain"); 7776 MI.setDesc(get(table[Domain - 1])); 7777 } 7778 7779 /// Return the noop instruction to use for a noop. 7780 MCInst X86InstrInfo::getNop() const { 7781 MCInst Nop; 7782 Nop.setOpcode(X86::NOOP); 7783 return Nop; 7784 } 7785 7786 bool X86InstrInfo::isHighLatencyDef(int opc) const { 7787 switch (opc) { 7788 default: return false; 7789 case X86::DIVPDrm: 7790 case X86::DIVPDrr: 7791 case X86::DIVPSrm: 7792 case X86::DIVPSrr: 7793 case X86::DIVSDrm: 7794 case X86::DIVSDrm_Int: 7795 case X86::DIVSDrr: 7796 case X86::DIVSDrr_Int: 7797 case X86::DIVSSrm: 7798 case X86::DIVSSrm_Int: 7799 case X86::DIVSSrr: 7800 case X86::DIVSSrr_Int: 7801 case X86::SQRTPDm: 7802 case X86::SQRTPDr: 7803 case X86::SQRTPSm: 7804 case X86::SQRTPSr: 7805 case X86::SQRTSDm: 7806 case X86::SQRTSDm_Int: 7807 case X86::SQRTSDr: 7808 case X86::SQRTSDr_Int: 7809 case X86::SQRTSSm: 7810 case X86::SQRTSSm_Int: 7811 case X86::SQRTSSr: 7812 case X86::SQRTSSr_Int: 7813 // AVX instructions with high latency 7814 case X86::VDIVPDrm: 7815 case X86::VDIVPDrr: 7816 case X86::VDIVPDYrm: 7817 case X86::VDIVPDYrr: 7818 case X86::VDIVPSrm: 7819 case X86::VDIVPSrr: 7820 case X86::VDIVPSYrm: 7821 case X86::VDIVPSYrr: 7822 case X86::VDIVSDrm: 7823 case X86::VDIVSDrm_Int: 7824 case X86::VDIVSDrr: 7825 case X86::VDIVSDrr_Int: 7826 case X86::VDIVSSrm: 7827 case X86::VDIVSSrm_Int: 7828 case X86::VDIVSSrr: 7829 case X86::VDIVSSrr_Int: 7830 case X86::VSQRTPDm: 7831 case X86::VSQRTPDr: 7832 case X86::VSQRTPDYm: 7833 case X86::VSQRTPDYr: 7834 case X86::VSQRTPSm: 7835 case X86::VSQRTPSr: 7836 case X86::VSQRTPSYm: 7837 case X86::VSQRTPSYr: 7838 case X86::VSQRTSDm: 7839 case X86::VSQRTSDm_Int: 7840 case X86::VSQRTSDr: 7841 case X86::VSQRTSDr_Int: 7842 case X86::VSQRTSSm: 7843 case X86::VSQRTSSm_Int: 7844 case X86::VSQRTSSr: 7845 case X86::VSQRTSSr_Int: 7846 // AVX512 instructions with high latency 7847 case X86::VDIVPDZ128rm: 7848 case X86::VDIVPDZ128rmb: 7849 case X86::VDIVPDZ128rmbk: 7850 case X86::VDIVPDZ128rmbkz: 7851 case X86::VDIVPDZ128rmk: 7852 case X86::VDIVPDZ128rmkz: 7853 case X86::VDIVPDZ128rr: 7854 case X86::VDIVPDZ128rrk: 7855 case X86::VDIVPDZ128rrkz: 7856 case X86::VDIVPDZ256rm: 7857 case X86::VDIVPDZ256rmb: 7858 case X86::VDIVPDZ256rmbk: 7859 case X86::VDIVPDZ256rmbkz: 7860 case X86::VDIVPDZ256rmk: 7861 case X86::VDIVPDZ256rmkz: 7862 case X86::VDIVPDZ256rr: 7863 case X86::VDIVPDZ256rrk: 7864 case X86::VDIVPDZ256rrkz: 7865 case X86::VDIVPDZrrb: 7866 case X86::VDIVPDZrrbk: 7867 case X86::VDIVPDZrrbkz: 7868 case X86::VDIVPDZrm: 7869 case X86::VDIVPDZrmb: 7870 case X86::VDIVPDZrmbk: 7871 case X86::VDIVPDZrmbkz: 7872 case X86::VDIVPDZrmk: 7873 case X86::VDIVPDZrmkz: 7874 case X86::VDIVPDZrr: 7875 case X86::VDIVPDZrrk: 7876 case X86::VDIVPDZrrkz: 7877 case X86::VDIVPSZ128rm: 7878 case X86::VDIVPSZ128rmb: 7879 case X86::VDIVPSZ128rmbk: 7880 case X86::VDIVPSZ128rmbkz: 7881 case X86::VDIVPSZ128rmk: 7882 case X86::VDIVPSZ128rmkz: 7883 case X86::VDIVPSZ128rr: 7884 case X86::VDIVPSZ128rrk: 7885 case X86::VDIVPSZ128rrkz: 7886 case X86::VDIVPSZ256rm: 7887 case X86::VDIVPSZ256rmb: 7888 case X86::VDIVPSZ256rmbk: 7889 case X86::VDIVPSZ256rmbkz: 7890 case X86::VDIVPSZ256rmk: 7891 case X86::VDIVPSZ256rmkz: 7892 case X86::VDIVPSZ256rr: 7893 case X86::VDIVPSZ256rrk: 7894 case X86::VDIVPSZ256rrkz: 7895 case X86::VDIVPSZrrb: 7896 case X86::VDIVPSZrrbk: 7897 case X86::VDIVPSZrrbkz: 7898 case X86::VDIVPSZrm: 7899 case X86::VDIVPSZrmb: 7900 case X86::VDIVPSZrmbk: 7901 case X86::VDIVPSZrmbkz: 7902 case X86::VDIVPSZrmk: 7903 case X86::VDIVPSZrmkz: 7904 case X86::VDIVPSZrr: 7905 case X86::VDIVPSZrrk: 7906 case X86::VDIVPSZrrkz: 7907 case X86::VDIVSDZrm: 7908 case X86::VDIVSDZrr: 7909 case X86::VDIVSDZrm_Int: 7910 case X86::VDIVSDZrm_Intk: 7911 case X86::VDIVSDZrm_Intkz: 7912 case X86::VDIVSDZrr_Int: 7913 case X86::VDIVSDZrr_Intk: 7914 case X86::VDIVSDZrr_Intkz: 7915 case X86::VDIVSDZrrb_Int: 7916 case X86::VDIVSDZrrb_Intk: 7917 case X86::VDIVSDZrrb_Intkz: 7918 case X86::VDIVSSZrm: 7919 case X86::VDIVSSZrr: 7920 case X86::VDIVSSZrm_Int: 7921 case X86::VDIVSSZrm_Intk: 7922 case X86::VDIVSSZrm_Intkz: 7923 case X86::VDIVSSZrr_Int: 7924 case X86::VDIVSSZrr_Intk: 7925 case X86::VDIVSSZrr_Intkz: 7926 case X86::VDIVSSZrrb_Int: 7927 case X86::VDIVSSZrrb_Intk: 7928 case X86::VDIVSSZrrb_Intkz: 7929 case X86::VSQRTPDZ128m: 7930 case X86::VSQRTPDZ128mb: 7931 case X86::VSQRTPDZ128mbk: 7932 case X86::VSQRTPDZ128mbkz: 7933 case X86::VSQRTPDZ128mk: 7934 case X86::VSQRTPDZ128mkz: 7935 case X86::VSQRTPDZ128r: 7936 case X86::VSQRTPDZ128rk: 7937 case X86::VSQRTPDZ128rkz: 7938 case X86::VSQRTPDZ256m: 7939 case X86::VSQRTPDZ256mb: 7940 case X86::VSQRTPDZ256mbk: 7941 case X86::VSQRTPDZ256mbkz: 7942 case X86::VSQRTPDZ256mk: 7943 case X86::VSQRTPDZ256mkz: 7944 case X86::VSQRTPDZ256r: 7945 case X86::VSQRTPDZ256rk: 7946 case X86::VSQRTPDZ256rkz: 7947 case X86::VSQRTPDZm: 7948 case X86::VSQRTPDZmb: 7949 case X86::VSQRTPDZmbk: 7950 case X86::VSQRTPDZmbkz: 7951 case X86::VSQRTPDZmk: 7952 case X86::VSQRTPDZmkz: 7953 case X86::VSQRTPDZr: 7954 case X86::VSQRTPDZrb: 7955 case X86::VSQRTPDZrbk: 7956 case X86::VSQRTPDZrbkz: 7957 case X86::VSQRTPDZrk: 7958 case X86::VSQRTPDZrkz: 7959 case X86::VSQRTPSZ128m: 7960 case X86::VSQRTPSZ128mb: 7961 case X86::VSQRTPSZ128mbk: 7962 case X86::VSQRTPSZ128mbkz: 7963 case X86::VSQRTPSZ128mk: 7964 case X86::VSQRTPSZ128mkz: 7965 case X86::VSQRTPSZ128r: 7966 case X86::VSQRTPSZ128rk: 7967 case X86::VSQRTPSZ128rkz: 7968 case X86::VSQRTPSZ256m: 7969 case X86::VSQRTPSZ256mb: 7970 case X86::VSQRTPSZ256mbk: 7971 case X86::VSQRTPSZ256mbkz: 7972 case X86::VSQRTPSZ256mk: 7973 case X86::VSQRTPSZ256mkz: 7974 case X86::VSQRTPSZ256r: 7975 case X86::VSQRTPSZ256rk: 7976 case X86::VSQRTPSZ256rkz: 7977 case X86::VSQRTPSZm: 7978 case X86::VSQRTPSZmb: 7979 case X86::VSQRTPSZmbk: 7980 case X86::VSQRTPSZmbkz: 7981 case X86::VSQRTPSZmk: 7982 case X86::VSQRTPSZmkz: 7983 case X86::VSQRTPSZr: 7984 case X86::VSQRTPSZrb: 7985 case X86::VSQRTPSZrbk: 7986 case X86::VSQRTPSZrbkz: 7987 case X86::VSQRTPSZrk: 7988 case X86::VSQRTPSZrkz: 7989 case X86::VSQRTSDZm: 7990 case X86::VSQRTSDZm_Int: 7991 case X86::VSQRTSDZm_Intk: 7992 case X86::VSQRTSDZm_Intkz: 7993 case X86::VSQRTSDZr: 7994 case X86::VSQRTSDZr_Int: 7995 case X86::VSQRTSDZr_Intk: 7996 case X86::VSQRTSDZr_Intkz: 7997 case X86::VSQRTSDZrb_Int: 7998 case X86::VSQRTSDZrb_Intk: 7999 case X86::VSQRTSDZrb_Intkz: 8000 case X86::VSQRTSSZm: 8001 case X86::VSQRTSSZm_Int: 8002 case X86::VSQRTSSZm_Intk: 8003 case X86::VSQRTSSZm_Intkz: 8004 case X86::VSQRTSSZr: 8005 case X86::VSQRTSSZr_Int: 8006 case X86::VSQRTSSZr_Intk: 8007 case X86::VSQRTSSZr_Intkz: 8008 case X86::VSQRTSSZrb_Int: 8009 case X86::VSQRTSSZrb_Intk: 8010 case X86::VSQRTSSZrb_Intkz: 8011 8012 case X86::VGATHERDPDYrm: 8013 case X86::VGATHERDPDZ128rm: 8014 case X86::VGATHERDPDZ256rm: 8015 case X86::VGATHERDPDZrm: 8016 case X86::VGATHERDPDrm: 8017 case X86::VGATHERDPSYrm: 8018 case X86::VGATHERDPSZ128rm: 8019 case X86::VGATHERDPSZ256rm: 8020 case X86::VGATHERDPSZrm: 8021 case X86::VGATHERDPSrm: 8022 case X86::VGATHERPF0DPDm: 8023 case X86::VGATHERPF0DPSm: 8024 case X86::VGATHERPF0QPDm: 8025 case X86::VGATHERPF0QPSm: 8026 case X86::VGATHERPF1DPDm: 8027 case X86::VGATHERPF1DPSm: 8028 case X86::VGATHERPF1QPDm: 8029 case X86::VGATHERPF1QPSm: 8030 case X86::VGATHERQPDYrm: 8031 case X86::VGATHERQPDZ128rm: 8032 case X86::VGATHERQPDZ256rm: 8033 case X86::VGATHERQPDZrm: 8034 case X86::VGATHERQPDrm: 8035 case X86::VGATHERQPSYrm: 8036 case X86::VGATHERQPSZ128rm: 8037 case X86::VGATHERQPSZ256rm: 8038 case X86::VGATHERQPSZrm: 8039 case X86::VGATHERQPSrm: 8040 case X86::VPGATHERDDYrm: 8041 case X86::VPGATHERDDZ128rm: 8042 case X86::VPGATHERDDZ256rm: 8043 case X86::VPGATHERDDZrm: 8044 case X86::VPGATHERDDrm: 8045 case X86::VPGATHERDQYrm: 8046 case X86::VPGATHERDQZ128rm: 8047 case X86::VPGATHERDQZ256rm: 8048 case X86::VPGATHERDQZrm: 8049 case X86::VPGATHERDQrm: 8050 case X86::VPGATHERQDYrm: 8051 case X86::VPGATHERQDZ128rm: 8052 case X86::VPGATHERQDZ256rm: 8053 case X86::VPGATHERQDZrm: 8054 case X86::VPGATHERQDrm: 8055 case X86::VPGATHERQQYrm: 8056 case X86::VPGATHERQQZ128rm: 8057 case X86::VPGATHERQQZ256rm: 8058 case X86::VPGATHERQQZrm: 8059 case X86::VPGATHERQQrm: 8060 case X86::VSCATTERDPDZ128mr: 8061 case X86::VSCATTERDPDZ256mr: 8062 case X86::VSCATTERDPDZmr: 8063 case X86::VSCATTERDPSZ128mr: 8064 case X86::VSCATTERDPSZ256mr: 8065 case X86::VSCATTERDPSZmr: 8066 case X86::VSCATTERPF0DPDm: 8067 case X86::VSCATTERPF0DPSm: 8068 case X86::VSCATTERPF0QPDm: 8069 case X86::VSCATTERPF0QPSm: 8070 case X86::VSCATTERPF1DPDm: 8071 case X86::VSCATTERPF1DPSm: 8072 case X86::VSCATTERPF1QPDm: 8073 case X86::VSCATTERPF1QPSm: 8074 case X86::VSCATTERQPDZ128mr: 8075 case X86::VSCATTERQPDZ256mr: 8076 case X86::VSCATTERQPDZmr: 8077 case X86::VSCATTERQPSZ128mr: 8078 case X86::VSCATTERQPSZ256mr: 8079 case X86::VSCATTERQPSZmr: 8080 case X86::VPSCATTERDDZ128mr: 8081 case X86::VPSCATTERDDZ256mr: 8082 case X86::VPSCATTERDDZmr: 8083 case X86::VPSCATTERDQZ128mr: 8084 case X86::VPSCATTERDQZ256mr: 8085 case X86::VPSCATTERDQZmr: 8086 case X86::VPSCATTERQDZ128mr: 8087 case X86::VPSCATTERQDZ256mr: 8088 case X86::VPSCATTERQDZmr: 8089 case X86::VPSCATTERQQZ128mr: 8090 case X86::VPSCATTERQQZ256mr: 8091 case X86::VPSCATTERQQZmr: 8092 return true; 8093 } 8094 } 8095 8096 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 8097 const MachineRegisterInfo *MRI, 8098 const MachineInstr &DefMI, 8099 unsigned DefIdx, 8100 const MachineInstr &UseMI, 8101 unsigned UseIdx) const { 8102 return isHighLatencyDef(DefMI.getOpcode()); 8103 } 8104 8105 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 8106 const MachineBasicBlock *MBB) const { 8107 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && 8108 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); 8109 8110 // Integer binary math/logic instructions have a third source operand: 8111 // the EFLAGS register. That operand must be both defined here and never 8112 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 8113 // not change anything because rearranging the operands could affect other 8114 // instructions that depend on the exact status flags (zero, sign, etc.) 8115 // that are set by using these particular operands with this operation. 8116 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS); 8117 assert((Inst.getNumDefs() == 1 || FlagDef) && 8118 "Implicit def isn't flags?"); 8119 if (FlagDef && !FlagDef->isDead()) 8120 return false; 8121 8122 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 8123 } 8124 8125 // TODO: There are many more machine instruction opcodes to match: 8126 // 1. Other data types (integer, vectors) 8127 // 2. Other math / logic operations (xor, or) 8128 // 3. Other forms of the same operation (intrinsics and other variants) 8129 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 8130 switch (Inst.getOpcode()) { 8131 case X86::AND8rr: 8132 case X86::AND16rr: 8133 case X86::AND32rr: 8134 case X86::AND64rr: 8135 case X86::OR8rr: 8136 case X86::OR16rr: 8137 case X86::OR32rr: 8138 case X86::OR64rr: 8139 case X86::XOR8rr: 8140 case X86::XOR16rr: 8141 case X86::XOR32rr: 8142 case X86::XOR64rr: 8143 case X86::IMUL16rr: 8144 case X86::IMUL32rr: 8145 case X86::IMUL64rr: 8146 case X86::PANDrr: 8147 case X86::PORrr: 8148 case X86::PXORrr: 8149 case X86::ANDPDrr: 8150 case X86::ANDPSrr: 8151 case X86::ORPDrr: 8152 case X86::ORPSrr: 8153 case X86::XORPDrr: 8154 case X86::XORPSrr: 8155 case X86::PADDBrr: 8156 case X86::PADDWrr: 8157 case X86::PADDDrr: 8158 case X86::PADDQrr: 8159 case X86::PMULLWrr: 8160 case X86::PMULLDrr: 8161 case X86::PMAXSBrr: 8162 case X86::PMAXSDrr: 8163 case X86::PMAXSWrr: 8164 case X86::PMAXUBrr: 8165 case X86::PMAXUDrr: 8166 case X86::PMAXUWrr: 8167 case X86::PMINSBrr: 8168 case X86::PMINSDrr: 8169 case X86::PMINSWrr: 8170 case X86::PMINUBrr: 8171 case X86::PMINUDrr: 8172 case X86::PMINUWrr: 8173 case X86::VPANDrr: 8174 case X86::VPANDYrr: 8175 case X86::VPANDDZ128rr: 8176 case X86::VPANDDZ256rr: 8177 case X86::VPANDDZrr: 8178 case X86::VPANDQZ128rr: 8179 case X86::VPANDQZ256rr: 8180 case X86::VPANDQZrr: 8181 case X86::VPORrr: 8182 case X86::VPORYrr: 8183 case X86::VPORDZ128rr: 8184 case X86::VPORDZ256rr: 8185 case X86::VPORDZrr: 8186 case X86::VPORQZ128rr: 8187 case X86::VPORQZ256rr: 8188 case X86::VPORQZrr: 8189 case X86::VPXORrr: 8190 case X86::VPXORYrr: 8191 case X86::VPXORDZ128rr: 8192 case X86::VPXORDZ256rr: 8193 case X86::VPXORDZrr: 8194 case X86::VPXORQZ128rr: 8195 case X86::VPXORQZ256rr: 8196 case X86::VPXORQZrr: 8197 case X86::VANDPDrr: 8198 case X86::VANDPSrr: 8199 case X86::VANDPDYrr: 8200 case X86::VANDPSYrr: 8201 case X86::VANDPDZ128rr: 8202 case X86::VANDPSZ128rr: 8203 case X86::VANDPDZ256rr: 8204 case X86::VANDPSZ256rr: 8205 case X86::VANDPDZrr: 8206 case X86::VANDPSZrr: 8207 case X86::VORPDrr: 8208 case X86::VORPSrr: 8209 case X86::VORPDYrr: 8210 case X86::VORPSYrr: 8211 case X86::VORPDZ128rr: 8212 case X86::VORPSZ128rr: 8213 case X86::VORPDZ256rr: 8214 case X86::VORPSZ256rr: 8215 case X86::VORPDZrr: 8216 case X86::VORPSZrr: 8217 case X86::VXORPDrr: 8218 case X86::VXORPSrr: 8219 case X86::VXORPDYrr: 8220 case X86::VXORPSYrr: 8221 case X86::VXORPDZ128rr: 8222 case X86::VXORPSZ128rr: 8223 case X86::VXORPDZ256rr: 8224 case X86::VXORPSZ256rr: 8225 case X86::VXORPDZrr: 8226 case X86::VXORPSZrr: 8227 case X86::KADDBrr: 8228 case X86::KADDWrr: 8229 case X86::KADDDrr: 8230 case X86::KADDQrr: 8231 case X86::KANDBrr: 8232 case X86::KANDWrr: 8233 case X86::KANDDrr: 8234 case X86::KANDQrr: 8235 case X86::KORBrr: 8236 case X86::KORWrr: 8237 case X86::KORDrr: 8238 case X86::KORQrr: 8239 case X86::KXORBrr: 8240 case X86::KXORWrr: 8241 case X86::KXORDrr: 8242 case X86::KXORQrr: 8243 case X86::VPADDBrr: 8244 case X86::VPADDWrr: 8245 case X86::VPADDDrr: 8246 case X86::VPADDQrr: 8247 case X86::VPADDBYrr: 8248 case X86::VPADDWYrr: 8249 case X86::VPADDDYrr: 8250 case X86::VPADDQYrr: 8251 case X86::VPADDBZ128rr: 8252 case X86::VPADDWZ128rr: 8253 case X86::VPADDDZ128rr: 8254 case X86::VPADDQZ128rr: 8255 case X86::VPADDBZ256rr: 8256 case X86::VPADDWZ256rr: 8257 case X86::VPADDDZ256rr: 8258 case X86::VPADDQZ256rr: 8259 case X86::VPADDBZrr: 8260 case X86::VPADDWZrr: 8261 case X86::VPADDDZrr: 8262 case X86::VPADDQZrr: 8263 case X86::VPMULLWrr: 8264 case X86::VPMULLWYrr: 8265 case X86::VPMULLWZ128rr: 8266 case X86::VPMULLWZ256rr: 8267 case X86::VPMULLWZrr: 8268 case X86::VPMULLDrr: 8269 case X86::VPMULLDYrr: 8270 case X86::VPMULLDZ128rr: 8271 case X86::VPMULLDZ256rr: 8272 case X86::VPMULLDZrr: 8273 case X86::VPMULLQZ128rr: 8274 case X86::VPMULLQZ256rr: 8275 case X86::VPMULLQZrr: 8276 case X86::VPMAXSBrr: 8277 case X86::VPMAXSBYrr: 8278 case X86::VPMAXSBZ128rr: 8279 case X86::VPMAXSBZ256rr: 8280 case X86::VPMAXSBZrr: 8281 case X86::VPMAXSDrr: 8282 case X86::VPMAXSDYrr: 8283 case X86::VPMAXSDZ128rr: 8284 case X86::VPMAXSDZ256rr: 8285 case X86::VPMAXSDZrr: 8286 case X86::VPMAXSQZ128rr: 8287 case X86::VPMAXSQZ256rr: 8288 case X86::VPMAXSQZrr: 8289 case X86::VPMAXSWrr: 8290 case X86::VPMAXSWYrr: 8291 case X86::VPMAXSWZ128rr: 8292 case X86::VPMAXSWZ256rr: 8293 case X86::VPMAXSWZrr: 8294 case X86::VPMAXUBrr: 8295 case X86::VPMAXUBYrr: 8296 case X86::VPMAXUBZ128rr: 8297 case X86::VPMAXUBZ256rr: 8298 case X86::VPMAXUBZrr: 8299 case X86::VPMAXUDrr: 8300 case X86::VPMAXUDYrr: 8301 case X86::VPMAXUDZ128rr: 8302 case X86::VPMAXUDZ256rr: 8303 case X86::VPMAXUDZrr: 8304 case X86::VPMAXUQZ128rr: 8305 case X86::VPMAXUQZ256rr: 8306 case X86::VPMAXUQZrr: 8307 case X86::VPMAXUWrr: 8308 case X86::VPMAXUWYrr: 8309 case X86::VPMAXUWZ128rr: 8310 case X86::VPMAXUWZ256rr: 8311 case X86::VPMAXUWZrr: 8312 case X86::VPMINSBrr: 8313 case X86::VPMINSBYrr: 8314 case X86::VPMINSBZ128rr: 8315 case X86::VPMINSBZ256rr: 8316 case X86::VPMINSBZrr: 8317 case X86::VPMINSDrr: 8318 case X86::VPMINSDYrr: 8319 case X86::VPMINSDZ128rr: 8320 case X86::VPMINSDZ256rr: 8321 case X86::VPMINSDZrr: 8322 case X86::VPMINSQZ128rr: 8323 case X86::VPMINSQZ256rr: 8324 case X86::VPMINSQZrr: 8325 case X86::VPMINSWrr: 8326 case X86::VPMINSWYrr: 8327 case X86::VPMINSWZ128rr: 8328 case X86::VPMINSWZ256rr: 8329 case X86::VPMINSWZrr: 8330 case X86::VPMINUBrr: 8331 case X86::VPMINUBYrr: 8332 case X86::VPMINUBZ128rr: 8333 case X86::VPMINUBZ256rr: 8334 case X86::VPMINUBZrr: 8335 case X86::VPMINUDrr: 8336 case X86::VPMINUDYrr: 8337 case X86::VPMINUDZ128rr: 8338 case X86::VPMINUDZ256rr: 8339 case X86::VPMINUDZrr: 8340 case X86::VPMINUQZ128rr: 8341 case X86::VPMINUQZ256rr: 8342 case X86::VPMINUQZrr: 8343 case X86::VPMINUWrr: 8344 case X86::VPMINUWYrr: 8345 case X86::VPMINUWZ128rr: 8346 case X86::VPMINUWZ256rr: 8347 case X86::VPMINUWZrr: 8348 // Normal min/max instructions are not commutative because of NaN and signed 8349 // zero semantics, but these are. Thus, there's no need to check for global 8350 // relaxed math; the instructions themselves have the properties we need. 8351 case X86::MAXCPDrr: 8352 case X86::MAXCPSrr: 8353 case X86::MAXCSDrr: 8354 case X86::MAXCSSrr: 8355 case X86::MINCPDrr: 8356 case X86::MINCPSrr: 8357 case X86::MINCSDrr: 8358 case X86::MINCSSrr: 8359 case X86::VMAXCPDrr: 8360 case X86::VMAXCPSrr: 8361 case X86::VMAXCPDYrr: 8362 case X86::VMAXCPSYrr: 8363 case X86::VMAXCPDZ128rr: 8364 case X86::VMAXCPSZ128rr: 8365 case X86::VMAXCPDZ256rr: 8366 case X86::VMAXCPSZ256rr: 8367 case X86::VMAXCPDZrr: 8368 case X86::VMAXCPSZrr: 8369 case X86::VMAXCSDrr: 8370 case X86::VMAXCSSrr: 8371 case X86::VMAXCSDZrr: 8372 case X86::VMAXCSSZrr: 8373 case X86::VMINCPDrr: 8374 case X86::VMINCPSrr: 8375 case X86::VMINCPDYrr: 8376 case X86::VMINCPSYrr: 8377 case X86::VMINCPDZ128rr: 8378 case X86::VMINCPSZ128rr: 8379 case X86::VMINCPDZ256rr: 8380 case X86::VMINCPSZ256rr: 8381 case X86::VMINCPDZrr: 8382 case X86::VMINCPSZrr: 8383 case X86::VMINCSDrr: 8384 case X86::VMINCSSrr: 8385 case X86::VMINCSDZrr: 8386 case X86::VMINCSSZrr: 8387 return true; 8388 case X86::ADDPDrr: 8389 case X86::ADDPSrr: 8390 case X86::ADDSDrr: 8391 case X86::ADDSSrr: 8392 case X86::MULPDrr: 8393 case X86::MULPSrr: 8394 case X86::MULSDrr: 8395 case X86::MULSSrr: 8396 case X86::VADDPDrr: 8397 case X86::VADDPSrr: 8398 case X86::VADDPDYrr: 8399 case X86::VADDPSYrr: 8400 case X86::VADDPDZ128rr: 8401 case X86::VADDPSZ128rr: 8402 case X86::VADDPDZ256rr: 8403 case X86::VADDPSZ256rr: 8404 case X86::VADDPDZrr: 8405 case X86::VADDPSZrr: 8406 case X86::VADDSDrr: 8407 case X86::VADDSSrr: 8408 case X86::VADDSDZrr: 8409 case X86::VADDSSZrr: 8410 case X86::VMULPDrr: 8411 case X86::VMULPSrr: 8412 case X86::VMULPDYrr: 8413 case X86::VMULPSYrr: 8414 case X86::VMULPDZ128rr: 8415 case X86::VMULPSZ128rr: 8416 case X86::VMULPDZ256rr: 8417 case X86::VMULPSZ256rr: 8418 case X86::VMULPDZrr: 8419 case X86::VMULPSZrr: 8420 case X86::VMULSDrr: 8421 case X86::VMULSSrr: 8422 case X86::VMULSDZrr: 8423 case X86::VMULSSZrr: 8424 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 8425 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 8426 default: 8427 return false; 8428 } 8429 } 8430 8431 /// If \p DescribedReg overlaps with the MOVrr instruction's destination 8432 /// register then, if possible, describe the value in terms of the source 8433 /// register. 8434 static Optional<ParamLoadedValue> 8435 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, 8436 const TargetRegisterInfo *TRI) { 8437 Register DestReg = MI.getOperand(0).getReg(); 8438 Register SrcReg = MI.getOperand(1).getReg(); 8439 8440 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 8441 8442 // If the described register is the destination, just return the source. 8443 if (DestReg == DescribedReg) 8444 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8445 8446 // If the described register is a sub-register of the destination register, 8447 // then pick out the source register's corresponding sub-register. 8448 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { 8449 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); 8450 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 8451 } 8452 8453 // The remaining case to consider is when the described register is a 8454 // super-register of the destination register. MOV8rr and MOV16rr does not 8455 // write to any of the other bytes in the register, meaning that we'd have to 8456 // describe the value using a combination of the source register and the 8457 // non-overlapping bits in the described register, which is not currently 8458 // possible. 8459 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || 8460 !TRI->isSuperRegister(DestReg, DescribedReg)) 8461 return None; 8462 8463 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); 8464 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8465 } 8466 8467 Optional<ParamLoadedValue> 8468 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 8469 const MachineOperand *Op = nullptr; 8470 DIExpression *Expr = nullptr; 8471 8472 const TargetRegisterInfo *TRI = &getRegisterInfo(); 8473 8474 switch (MI.getOpcode()) { 8475 case X86::LEA32r: 8476 case X86::LEA64r: 8477 case X86::LEA64_32r: { 8478 // We may need to describe a 64-bit parameter with a 32-bit LEA. 8479 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8480 return None; 8481 8482 // Operand 4 could be global address. For now we do not support 8483 // such situation. 8484 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) 8485 return None; 8486 8487 const MachineOperand &Op1 = MI.getOperand(1); 8488 const MachineOperand &Op2 = MI.getOperand(3); 8489 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister || 8490 Register::isPhysicalRegister(Op2.getReg()))); 8491 8492 // Omit situations like: 8493 // %rsi = lea %rsi, 4, ... 8494 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || 8495 Op2.getReg() == MI.getOperand(0).getReg()) 8496 return None; 8497 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && 8498 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || 8499 (Op2.getReg() != X86::NoRegister && 8500 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) 8501 return None; 8502 8503 int64_t Coef = MI.getOperand(2).getImm(); 8504 int64_t Offset = MI.getOperand(4).getImm(); 8505 SmallVector<uint64_t, 8> Ops; 8506 8507 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { 8508 Op = &Op1; 8509 } else if (Op1.isFI()) 8510 Op = &Op1; 8511 8512 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { 8513 Ops.push_back(dwarf::DW_OP_constu); 8514 Ops.push_back(Coef + 1); 8515 Ops.push_back(dwarf::DW_OP_mul); 8516 } else { 8517 if (Op && Op2.getReg() != X86::NoRegister) { 8518 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); 8519 if (dwarfReg < 0) 8520 return None; 8521 else if (dwarfReg < 32) { 8522 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); 8523 Ops.push_back(0); 8524 } else { 8525 Ops.push_back(dwarf::DW_OP_bregx); 8526 Ops.push_back(dwarfReg); 8527 Ops.push_back(0); 8528 } 8529 } else if (!Op) { 8530 assert(Op2.getReg() != X86::NoRegister); 8531 Op = &Op2; 8532 } 8533 8534 if (Coef > 1) { 8535 assert(Op2.getReg() != X86::NoRegister); 8536 Ops.push_back(dwarf::DW_OP_constu); 8537 Ops.push_back(Coef); 8538 Ops.push_back(dwarf::DW_OP_mul); 8539 } 8540 8541 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && 8542 Op2.getReg() != X86::NoRegister) { 8543 Ops.push_back(dwarf::DW_OP_plus); 8544 } 8545 } 8546 8547 DIExpression::appendOffset(Ops, Offset); 8548 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); 8549 8550 return ParamLoadedValue(*Op, Expr);; 8551 } 8552 case X86::MOV8ri: 8553 case X86::MOV16ri: 8554 // TODO: Handle MOV8ri and MOV16ri. 8555 return None; 8556 case X86::MOV32ri: 8557 case X86::MOV64ri: 8558 case X86::MOV64ri32: 8559 // MOV32ri may be used for producing zero-extended 32-bit immediates in 8560 // 64-bit parameters, so we need to consider super-registers. 8561 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8562 return None; 8563 return ParamLoadedValue(MI.getOperand(1), Expr); 8564 case X86::MOV8rr: 8565 case X86::MOV16rr: 8566 case X86::MOV32rr: 8567 case X86::MOV64rr: 8568 return describeMOVrrLoadedValue(MI, Reg, TRI); 8569 case X86::XOR32rr: { 8570 // 64-bit parameters are zero-materialized using XOR32rr, so also consider 8571 // super-registers. 8572 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8573 return None; 8574 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 8575 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); 8576 return None; 8577 } 8578 case X86::MOVSX64rr32: { 8579 // We may need to describe the lower 32 bits of the MOVSX; for example, in 8580 // cases like this: 8581 // 8582 // $ebx = [...] 8583 // $rdi = MOVSX64rr32 $ebx 8584 // $esi = MOV32rr $edi 8585 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) 8586 return None; 8587 8588 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 8589 8590 // If the described register is the destination register we need to 8591 // sign-extend the source register from 32 bits. The other case we handle 8592 // is when the described register is the 32-bit sub-register of the 8593 // destination register, in case we just need to return the source 8594 // register. 8595 if (Reg == MI.getOperand(0).getReg()) 8596 Expr = DIExpression::appendExt(Expr, 32, 64, true); 8597 else 8598 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && 8599 "Unhandled sub-register case for MOVSX64rr32"); 8600 8601 return ParamLoadedValue(MI.getOperand(1), Expr); 8602 } 8603 default: 8604 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); 8605 return TargetInstrInfo::describeLoadedValue(MI, Reg); 8606 } 8607 } 8608 8609 /// This is an architecture-specific helper function of reassociateOps. 8610 /// Set special operand attributes for new instructions after reassociation. 8611 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 8612 MachineInstr &OldMI2, 8613 MachineInstr &NewMI1, 8614 MachineInstr &NewMI2) const { 8615 // Propagate FP flags from the original instructions. 8616 // But clear poison-generating flags because those may not be valid now. 8617 // TODO: There should be a helper function for copying only fast-math-flags. 8618 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 8619 NewMI1.setFlags(IntersectedFlags); 8620 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 8621 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 8622 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 8623 8624 NewMI2.setFlags(IntersectedFlags); 8625 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 8626 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 8627 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 8628 8629 // Integer instructions may define an implicit EFLAGS dest register operand. 8630 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS); 8631 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS); 8632 8633 assert(!OldFlagDef1 == !OldFlagDef2 && 8634 "Unexpected instruction type for reassociation"); 8635 8636 if (!OldFlagDef1 || !OldFlagDef2) 8637 return; 8638 8639 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && 8640 "Must have dead EFLAGS operand in reassociable instruction"); 8641 8642 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS); 8643 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS); 8644 8645 assert(NewFlagDef1 && NewFlagDef2 && 8646 "Unexpected operand in reassociable instruction"); 8647 8648 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 8649 // of this pass or other passes. The EFLAGS operands must be dead in these new 8650 // instructions because the EFLAGS operands in the original instructions must 8651 // be dead in order for reassociation to occur. 8652 NewFlagDef1->setIsDead(); 8653 NewFlagDef2->setIsDead(); 8654 } 8655 8656 std::pair<unsigned, unsigned> 8657 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 8658 return std::make_pair(TF, 0u); 8659 } 8660 8661 ArrayRef<std::pair<unsigned, const char *>> 8662 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 8663 using namespace X86II; 8664 static const std::pair<unsigned, const char *> TargetFlags[] = { 8665 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 8666 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 8667 {MO_GOT, "x86-got"}, 8668 {MO_GOTOFF, "x86-gotoff"}, 8669 {MO_GOTPCREL, "x86-gotpcrel"}, 8670 {MO_PLT, "x86-plt"}, 8671 {MO_TLSGD, "x86-tlsgd"}, 8672 {MO_TLSLD, "x86-tlsld"}, 8673 {MO_TLSLDM, "x86-tlsldm"}, 8674 {MO_GOTTPOFF, "x86-gottpoff"}, 8675 {MO_INDNTPOFF, "x86-indntpoff"}, 8676 {MO_TPOFF, "x86-tpoff"}, 8677 {MO_DTPOFF, "x86-dtpoff"}, 8678 {MO_NTPOFF, "x86-ntpoff"}, 8679 {MO_GOTNTPOFF, "x86-gotntpoff"}, 8680 {MO_DLLIMPORT, "x86-dllimport"}, 8681 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 8682 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 8683 {MO_TLVP, "x86-tlvp"}, 8684 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 8685 {MO_SECREL, "x86-secrel"}, 8686 {MO_COFFSTUB, "x86-coffstub"}}; 8687 return makeArrayRef(TargetFlags); 8688 } 8689 8690 namespace { 8691 /// Create Global Base Reg pass. This initializes the PIC 8692 /// global base register for x86-32. 8693 struct CGBR : public MachineFunctionPass { 8694 static char ID; 8695 CGBR() : MachineFunctionPass(ID) {} 8696 8697 bool runOnMachineFunction(MachineFunction &MF) override { 8698 const X86TargetMachine *TM = 8699 static_cast<const X86TargetMachine *>(&MF.getTarget()); 8700 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 8701 8702 // Don't do anything in the 64-bit small and kernel code models. They use 8703 // RIP-relative addressing for everything. 8704 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || 8705 TM->getCodeModel() == CodeModel::Kernel)) 8706 return false; 8707 8708 // Only emit a global base reg in PIC mode. 8709 if (!TM->isPositionIndependent()) 8710 return false; 8711 8712 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 8713 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 8714 8715 // If we didn't need a GlobalBaseReg, don't insert code. 8716 if (GlobalBaseReg == 0) 8717 return false; 8718 8719 // Insert the set of GlobalBaseReg into the first MBB of the function 8720 MachineBasicBlock &FirstMBB = MF.front(); 8721 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 8722 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 8723 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8724 const X86InstrInfo *TII = STI.getInstrInfo(); 8725 8726 Register PC; 8727 if (STI.isPICStyleGOT()) 8728 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 8729 else 8730 PC = GlobalBaseReg; 8731 8732 if (STI.is64Bit()) { 8733 if (TM->getCodeModel() == CodeModel::Medium) { 8734 // In the medium code model, use a RIP-relative LEA to materialize the 8735 // GOT. 8736 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 8737 .addReg(X86::RIP) 8738 .addImm(0) 8739 .addReg(0) 8740 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 8741 .addReg(0); 8742 } else if (TM->getCodeModel() == CodeModel::Large) { 8743 // In the large code model, we are aiming for this code, though the 8744 // register allocation may vary: 8745 // leaq .LN$pb(%rip), %rax 8746 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 8747 // addq %rcx, %rax 8748 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 8749 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 8750 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 8751 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 8752 .addReg(X86::RIP) 8753 .addImm(0) 8754 .addReg(0) 8755 .addSym(MF.getPICBaseSymbol()) 8756 .addReg(0); 8757 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 8758 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 8759 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 8760 X86II::MO_PIC_BASE_OFFSET); 8761 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 8762 .addReg(PBReg, RegState::Kill) 8763 .addReg(GOTReg, RegState::Kill); 8764 } else { 8765 llvm_unreachable("unexpected code model"); 8766 } 8767 } else { 8768 // Operand of MovePCtoStack is completely ignored by asm printer. It's 8769 // only used in JIT code emission as displacement to pc. 8770 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 8771 8772 // If we're using vanilla 'GOT' PIC style, we should use relative 8773 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 8774 if (STI.isPICStyleGOT()) { 8775 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 8776 // %some_register 8777 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 8778 .addReg(PC) 8779 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 8780 X86II::MO_GOT_ABSOLUTE_ADDRESS); 8781 } 8782 } 8783 8784 return true; 8785 } 8786 8787 StringRef getPassName() const override { 8788 return "X86 PIC Global Base Reg Initialization"; 8789 } 8790 8791 void getAnalysisUsage(AnalysisUsage &AU) const override { 8792 AU.setPreservesCFG(); 8793 MachineFunctionPass::getAnalysisUsage(AU); 8794 } 8795 }; 8796 } // namespace 8797 8798 char CGBR::ID = 0; 8799 FunctionPass* 8800 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 8801 8802 namespace { 8803 struct LDTLSCleanup : public MachineFunctionPass { 8804 static char ID; 8805 LDTLSCleanup() : MachineFunctionPass(ID) {} 8806 8807 bool runOnMachineFunction(MachineFunction &MF) override { 8808 if (skipFunction(MF.getFunction())) 8809 return false; 8810 8811 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 8812 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 8813 // No point folding accesses if there isn't at least two. 8814 return false; 8815 } 8816 8817 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 8818 return VisitNode(DT->getRootNode(), 0); 8819 } 8820 8821 // Visit the dominator subtree rooted at Node in pre-order. 8822 // If TLSBaseAddrReg is non-null, then use that to replace any 8823 // TLS_base_addr instructions. Otherwise, create the register 8824 // when the first such instruction is seen, and then use it 8825 // as we encounter more instructions. 8826 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 8827 MachineBasicBlock *BB = Node->getBlock(); 8828 bool Changed = false; 8829 8830 // Traverse the current block. 8831 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 8832 ++I) { 8833 switch (I->getOpcode()) { 8834 case X86::TLS_base_addr32: 8835 case X86::TLS_base_addr64: 8836 if (TLSBaseAddrReg) 8837 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 8838 else 8839 I = SetRegister(*I, &TLSBaseAddrReg); 8840 Changed = true; 8841 break; 8842 default: 8843 break; 8844 } 8845 } 8846 8847 // Visit the children of this block in the dominator tree. 8848 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) { 8849 Changed |= VisitNode(*I, TLSBaseAddrReg); 8850 } 8851 8852 return Changed; 8853 } 8854 8855 // Replace the TLS_base_addr instruction I with a copy from 8856 // TLSBaseAddrReg, returning the new instruction. 8857 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 8858 unsigned TLSBaseAddrReg) { 8859 MachineFunction *MF = I.getParent()->getParent(); 8860 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 8861 const bool is64Bit = STI.is64Bit(); 8862 const X86InstrInfo *TII = STI.getInstrInfo(); 8863 8864 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 8865 MachineInstr *Copy = 8866 BuildMI(*I.getParent(), I, I.getDebugLoc(), 8867 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 8868 .addReg(TLSBaseAddrReg); 8869 8870 // Erase the TLS_base_addr instruction. 8871 I.eraseFromParent(); 8872 8873 return Copy; 8874 } 8875 8876 // Create a virtual register in *TLSBaseAddrReg, and populate it by 8877 // inserting a copy instruction after I. Returns the new instruction. 8878 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 8879 MachineFunction *MF = I.getParent()->getParent(); 8880 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 8881 const bool is64Bit = STI.is64Bit(); 8882 const X86InstrInfo *TII = STI.getInstrInfo(); 8883 8884 // Create a virtual register for the TLS base address. 8885 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 8886 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 8887 ? &X86::GR64RegClass 8888 : &X86::GR32RegClass); 8889 8890 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 8891 MachineInstr *Next = I.getNextNode(); 8892 MachineInstr *Copy = 8893 BuildMI(*I.getParent(), Next, I.getDebugLoc(), 8894 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 8895 .addReg(is64Bit ? X86::RAX : X86::EAX); 8896 8897 return Copy; 8898 } 8899 8900 StringRef getPassName() const override { 8901 return "Local Dynamic TLS Access Clean-up"; 8902 } 8903 8904 void getAnalysisUsage(AnalysisUsage &AU) const override { 8905 AU.setPreservesCFG(); 8906 AU.addRequired<MachineDominatorTree>(); 8907 MachineFunctionPass::getAnalysisUsage(AU); 8908 } 8909 }; 8910 } 8911 8912 char LDTLSCleanup::ID = 0; 8913 FunctionPass* 8914 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 8915 8916 /// Constants defining how certain sequences should be outlined. 8917 /// 8918 /// \p MachineOutlinerDefault implies that the function is called with a call 8919 /// instruction, and a return must be emitted for the outlined function frame. 8920 /// 8921 /// That is, 8922 /// 8923 /// I1 OUTLINED_FUNCTION: 8924 /// I2 --> call OUTLINED_FUNCTION I1 8925 /// I3 I2 8926 /// I3 8927 /// ret 8928 /// 8929 /// * Call construction overhead: 1 (call instruction) 8930 /// * Frame construction overhead: 1 (return instruction) 8931 /// 8932 /// \p MachineOutlinerTailCall implies that the function is being tail called. 8933 /// A jump is emitted instead of a call, and the return is already present in 8934 /// the outlined sequence. That is, 8935 /// 8936 /// I1 OUTLINED_FUNCTION: 8937 /// I2 --> jmp OUTLINED_FUNCTION I1 8938 /// ret I2 8939 /// ret 8940 /// 8941 /// * Call construction overhead: 1 (jump instruction) 8942 /// * Frame construction overhead: 0 (don't need to return) 8943 /// 8944 enum MachineOutlinerClass { 8945 MachineOutlinerDefault, 8946 MachineOutlinerTailCall 8947 }; 8948 8949 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( 8950 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 8951 unsigned SequenceSize = 8952 std::accumulate(RepeatedSequenceLocs[0].front(), 8953 std::next(RepeatedSequenceLocs[0].back()), 0, 8954 [](unsigned Sum, const MachineInstr &MI) { 8955 // FIXME: x86 doesn't implement getInstSizeInBytes, so 8956 // we can't tell the cost. Just assume each instruction 8957 // is one byte. 8958 if (MI.isDebugInstr() || MI.isKill()) 8959 return Sum; 8960 return Sum + 1; 8961 }); 8962 8963 // We check to see if CFI Instructions are present, and if they are 8964 // we find the number of CFI Instructions in the candidates. 8965 unsigned CFICount = 0; 8966 MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front(); 8967 for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx(); 8968 Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) { 8969 const std::vector<MCCFIInstruction> &CFIInstructions = 8970 RepeatedSequenceLocs[0].getMF()->getFrameInstructions(); 8971 if (MBBI->isCFIInstruction()) { 8972 unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex(); 8973 MCCFIInstruction CFI = CFIInstructions[CFIIndex]; 8974 CFICount++; 8975 } 8976 MBBI++; 8977 } 8978 8979 // We compare the number of found CFI Instructions to the number of CFI 8980 // instructions in the parent function for each candidate. We must check this 8981 // since if we outline one of the CFI instructions in a function, we have to 8982 // outline them all for correctness. If we do not, the address offsets will be 8983 // incorrect between the two sections of the program. 8984 for (outliner::Candidate &C : RepeatedSequenceLocs) { 8985 std::vector<MCCFIInstruction> CFIInstructions = 8986 C.getMF()->getFrameInstructions(); 8987 8988 if (CFICount > 0 && CFICount != CFIInstructions.size()) 8989 return outliner::OutlinedFunction(); 8990 } 8991 8992 // FIXME: Use real size in bytes for call and ret instructions. 8993 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 8994 for (outliner::Candidate &C : RepeatedSequenceLocs) 8995 C.setCallInfo(MachineOutlinerTailCall, 1); 8996 8997 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 8998 0, // Number of bytes to emit frame. 8999 MachineOutlinerTailCall // Type of frame. 9000 ); 9001 } 9002 9003 if (CFICount > 0) 9004 return outliner::OutlinedFunction(); 9005 9006 for (outliner::Candidate &C : RepeatedSequenceLocs) 9007 C.setCallInfo(MachineOutlinerDefault, 1); 9008 9009 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, 9010 MachineOutlinerDefault); 9011 } 9012 9013 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, 9014 bool OutlineFromLinkOnceODRs) const { 9015 const Function &F = MF.getFunction(); 9016 9017 // Does the function use a red zone? If it does, then we can't risk messing 9018 // with the stack. 9019 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 9020 // It could have a red zone. If it does, then we don't want to touch it. 9021 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 9022 if (!X86FI || X86FI->getUsesRedZone()) 9023 return false; 9024 } 9025 9026 // If we *don't* want to outline from things that could potentially be deduped 9027 // then return false. 9028 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 9029 return false; 9030 9031 // This function is viable for outlining, so return true. 9032 return true; 9033 } 9034 9035 outliner::InstrType 9036 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 9037 MachineInstr &MI = *MIT; 9038 // Don't allow debug values to impact outlining type. 9039 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 9040 return outliner::InstrType::Invisible; 9041 9042 // At this point, KILL instructions don't really tell us much so we can go 9043 // ahead and skip over them. 9044 if (MI.isKill()) 9045 return outliner::InstrType::Invisible; 9046 9047 // Is this a tail call? If yes, we can outline as a tail call. 9048 if (isTailCall(MI)) 9049 return outliner::InstrType::Legal; 9050 9051 // Is this the terminator of a basic block? 9052 if (MI.isTerminator() || MI.isReturn()) { 9053 9054 // Does its parent have any successors in its MachineFunction? 9055 if (MI.getParent()->succ_empty()) 9056 return outliner::InstrType::Legal; 9057 9058 // It does, so we can't tail call it. 9059 return outliner::InstrType::Illegal; 9060 } 9061 9062 // Don't outline anything that modifies or reads from the stack pointer. 9063 // 9064 // FIXME: There are instructions which are being manually built without 9065 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 9066 // able to remove the extra checks once those are fixed up. For example, 9067 // sometimes we might get something like %rax = POP64r 1. This won't be 9068 // caught by modifiesRegister or readsRegister even though the instruction 9069 // really ought to be formed so that modifiesRegister/readsRegister would 9070 // catch it. 9071 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 9072 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 9073 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 9074 return outliner::InstrType::Illegal; 9075 9076 // Outlined calls change the instruction pointer, so don't read from it. 9077 if (MI.readsRegister(X86::RIP, &RI) || 9078 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 9079 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 9080 return outliner::InstrType::Illegal; 9081 9082 // Positions can't safely be outlined. 9083 if (MI.isPosition()) 9084 return outliner::InstrType::Illegal; 9085 9086 // Make sure none of the operands of this instruction do anything tricky. 9087 for (const MachineOperand &MOP : MI.operands()) 9088 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 9089 MOP.isTargetIndex()) 9090 return outliner::InstrType::Illegal; 9091 9092 return outliner::InstrType::Legal; 9093 } 9094 9095 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, 9096 MachineFunction &MF, 9097 const outliner::OutlinedFunction &OF) 9098 const { 9099 // If we're a tail call, we already have a return, so don't do anything. 9100 if (OF.FrameConstructionID == MachineOutlinerTailCall) 9101 return; 9102 9103 // We're a normal call, so our sequence doesn't have a return instruction. 9104 // Add it in. 9105 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); 9106 MBB.insert(MBB.end(), retq); 9107 } 9108 9109 MachineBasicBlock::iterator 9110 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 9111 MachineBasicBlock::iterator &It, 9112 MachineFunction &MF, 9113 const outliner::Candidate &C) const { 9114 // Is it a tail call? 9115 if (C.CallConstructionID == MachineOutlinerTailCall) { 9116 // Yes, just insert a JMP. 9117 It = MBB.insert(It, 9118 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 9119 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9120 } else { 9121 // No, insert a call. 9122 It = MBB.insert(It, 9123 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 9124 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9125 } 9126 9127 return It; 9128 } 9129 9130 #define GET_INSTRINFO_HELPERS 9131 #include "X86GenInstrInfo.inc" 9132