1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineCombinerPattern.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCExpr.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <optional> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-instr-info" 52 53 #define GET_INSTRINFO_CTOR_DTOR 54 #include "X86GenInstrInfo.inc" 55 56 static cl::opt<bool> 57 NoFusing("disable-spill-fusing", 58 cl::desc("Disable fusing of spill code into instructions"), 59 cl::Hidden); 60 static cl::opt<bool> 61 PrintFailedFusing("print-failed-fuse-candidates", 62 cl::desc("Print instructions that the allocator wants to" 63 " fuse, but the X86 backend currently can't"), 64 cl::Hidden); 65 static cl::opt<bool> 66 ReMatPICStubLoad("remat-pic-stub-load", 67 cl::desc("Re-materialize load from stub in PIC mode"), 68 cl::init(false), cl::Hidden); 69 static cl::opt<unsigned> 70 PartialRegUpdateClearance("partial-reg-update-clearance", 71 cl::desc("Clearance between two register writes " 72 "for inserting XOR to avoid partial " 73 "register update"), 74 cl::init(64), cl::Hidden); 75 static cl::opt<unsigned> 76 UndefRegClearance("undef-reg-clearance", 77 cl::desc("How many idle instructions we would like before " 78 "certain undef register reads"), 79 cl::init(128), cl::Hidden); 80 81 82 // Pin the vtable to this file. 83 void X86InstrInfo::anchor() {} 84 85 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 86 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 87 : X86::ADJCALLSTACKDOWN32), 88 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 89 : X86::ADJCALLSTACKUP32), 90 X86::CATCHRET, 91 (STI.is64Bit() ? X86::RET64 : X86::RET32)), 92 Subtarget(STI), RI(STI.getTargetTriple()) { 93 } 94 95 bool 96 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 97 Register &SrcReg, Register &DstReg, 98 unsigned &SubIdx) const { 99 switch (MI.getOpcode()) { 100 default: break; 101 case X86::MOVSX16rr8: 102 case X86::MOVZX16rr8: 103 case X86::MOVSX32rr8: 104 case X86::MOVZX32rr8: 105 case X86::MOVSX64rr8: 106 if (!Subtarget.is64Bit()) 107 // It's not always legal to reference the low 8-bit of the larger 108 // register in 32-bit mode. 109 return false; 110 [[fallthrough]]; 111 case X86::MOVSX32rr16: 112 case X86::MOVZX32rr16: 113 case X86::MOVSX64rr16: 114 case X86::MOVSX64rr32: { 115 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 116 // Be conservative. 117 return false; 118 SrcReg = MI.getOperand(1).getReg(); 119 DstReg = MI.getOperand(0).getReg(); 120 switch (MI.getOpcode()) { 121 default: llvm_unreachable("Unreachable!"); 122 case X86::MOVSX16rr8: 123 case X86::MOVZX16rr8: 124 case X86::MOVSX32rr8: 125 case X86::MOVZX32rr8: 126 case X86::MOVSX64rr8: 127 SubIdx = X86::sub_8bit; 128 break; 129 case X86::MOVSX32rr16: 130 case X86::MOVZX32rr16: 131 case X86::MOVSX64rr16: 132 SubIdx = X86::sub_16bit; 133 break; 134 case X86::MOVSX64rr32: 135 SubIdx = X86::sub_32bit; 136 break; 137 } 138 return true; 139 } 140 } 141 return false; 142 } 143 144 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { 145 if (MI.mayLoad() || MI.mayStore()) 146 return false; 147 148 // Some target-independent operations that trivially lower to data-invariant 149 // instructions. 150 if (MI.isCopyLike() || MI.isInsertSubreg()) 151 return true; 152 153 unsigned Opcode = MI.getOpcode(); 154 using namespace X86; 155 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 156 // However, they set flags and are perhaps the most surprisingly constant 157 // time operations so we call them out here separately. 158 if (isIMUL(Opcode)) 159 return true; 160 // Bit scanning and counting instructions that are somewhat surprisingly 161 // constant time as they scan across bits and do other fairly complex 162 // operations like popcnt, but are believed to be constant time on x86. 163 // However, these set flags. 164 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || 165 isTZCNT(Opcode)) 166 return true; 167 // Bit manipulation instructions are effectively combinations of basic 168 // arithmetic ops, and should still execute in constant time. These also 169 // set flags. 170 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || 171 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || 172 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || 173 isTZMSK(Opcode)) 174 return true; 175 // Bit extracting and clearing instructions should execute in constant time, 176 // and set flags. 177 if (isBEXTR(Opcode) || isBZHI(Opcode)) 178 return true; 179 // Shift and rotate. 180 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || 181 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) 182 return true; 183 // Basic arithmetic is constant time on the input but does set flags. 184 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || 185 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) 186 return true; 187 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 188 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode)) 189 return true; 190 // Unary arithmetic operations. 191 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) 192 return true; 193 // Unlike other arithmetic, NOT doesn't set EFLAGS. 194 if (isNOT(Opcode)) 195 return true; 196 // Various move instructions used to zero or sign extend things. Note that we 197 // intentionally don't support the _NOREX variants as we can't handle that 198 // register constraint anyways. 199 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) 200 return true; 201 // Arithmetic instructions that are both constant time and don't set flags. 202 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) 203 return true; 204 // LEA doesn't actually access memory, and its arithmetic is constant time. 205 if (isLEA(Opcode)) 206 return true; 207 // By default, assume that the instruction is not data invariant. 208 return false; 209 } 210 211 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { 212 switch (MI.getOpcode()) { 213 default: 214 // By default, assume that the load will immediately leak. 215 return false; 216 217 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 218 // However, they set flags and are perhaps the most surprisingly constant 219 // time operations so we call them out here separately. 220 case X86::IMUL16rm: 221 case X86::IMUL16rmi: 222 case X86::IMUL32rm: 223 case X86::IMUL32rmi: 224 case X86::IMUL64rm: 225 case X86::IMUL64rmi32: 226 227 // Bit scanning and counting instructions that are somewhat surprisingly 228 // constant time as they scan across bits and do other fairly complex 229 // operations like popcnt, but are believed to be constant time on x86. 230 // However, these set flags. 231 case X86::BSF16rm: 232 case X86::BSF32rm: 233 case X86::BSF64rm: 234 case X86::BSR16rm: 235 case X86::BSR32rm: 236 case X86::BSR64rm: 237 case X86::LZCNT16rm: 238 case X86::LZCNT32rm: 239 case X86::LZCNT64rm: 240 case X86::POPCNT16rm: 241 case X86::POPCNT32rm: 242 case X86::POPCNT64rm: 243 case X86::TZCNT16rm: 244 case X86::TZCNT32rm: 245 case X86::TZCNT64rm: 246 247 // Bit manipulation instructions are effectively combinations of basic 248 // arithmetic ops, and should still execute in constant time. These also 249 // set flags. 250 case X86::BLCFILL32rm: 251 case X86::BLCFILL64rm: 252 case X86::BLCI32rm: 253 case X86::BLCI64rm: 254 case X86::BLCIC32rm: 255 case X86::BLCIC64rm: 256 case X86::BLCMSK32rm: 257 case X86::BLCMSK64rm: 258 case X86::BLCS32rm: 259 case X86::BLCS64rm: 260 case X86::BLSFILL32rm: 261 case X86::BLSFILL64rm: 262 case X86::BLSI32rm: 263 case X86::BLSI64rm: 264 case X86::BLSIC32rm: 265 case X86::BLSIC64rm: 266 case X86::BLSMSK32rm: 267 case X86::BLSMSK64rm: 268 case X86::BLSR32rm: 269 case X86::BLSR64rm: 270 case X86::TZMSK32rm: 271 case X86::TZMSK64rm: 272 273 // Bit extracting and clearing instructions should execute in constant time, 274 // and set flags. 275 case X86::BEXTR32rm: 276 case X86::BEXTR64rm: 277 case X86::BEXTRI32mi: 278 case X86::BEXTRI64mi: 279 case X86::BZHI32rm: 280 case X86::BZHI64rm: 281 282 // Basic arithmetic is constant time on the input but does set flags. 283 case X86::ADC8rm: 284 case X86::ADC16rm: 285 case X86::ADC32rm: 286 case X86::ADC64rm: 287 case X86::ADCX32rm: 288 case X86::ADCX64rm: 289 case X86::ADD8rm: 290 case X86::ADD16rm: 291 case X86::ADD32rm: 292 case X86::ADD64rm: 293 case X86::ADOX32rm: 294 case X86::ADOX64rm: 295 case X86::AND8rm: 296 case X86::AND16rm: 297 case X86::AND32rm: 298 case X86::AND64rm: 299 case X86::ANDN32rm: 300 case X86::ANDN64rm: 301 case X86::OR8rm: 302 case X86::OR16rm: 303 case X86::OR32rm: 304 case X86::OR64rm: 305 case X86::SBB8rm: 306 case X86::SBB16rm: 307 case X86::SBB32rm: 308 case X86::SBB64rm: 309 case X86::SUB8rm: 310 case X86::SUB16rm: 311 case X86::SUB32rm: 312 case X86::SUB64rm: 313 case X86::XOR8rm: 314 case X86::XOR16rm: 315 case X86::XOR32rm: 316 case X86::XOR64rm: 317 318 // Integer multiply w/o affecting flags is still believed to be constant 319 // time on x86. Called out separately as this is among the most surprising 320 // instructions to exhibit that behavior. 321 case X86::MULX32rm: 322 case X86::MULX64rm: 323 324 // Arithmetic instructions that are both constant time and don't set flags. 325 case X86::RORX32mi: 326 case X86::RORX64mi: 327 case X86::SARX32rm: 328 case X86::SARX64rm: 329 case X86::SHLX32rm: 330 case X86::SHLX64rm: 331 case X86::SHRX32rm: 332 case X86::SHRX64rm: 333 334 // Conversions are believed to be constant time and don't set flags. 335 case X86::CVTTSD2SI64rm: 336 case X86::VCVTTSD2SI64rm: 337 case X86::VCVTTSD2SI64Zrm: 338 case X86::CVTTSD2SIrm: 339 case X86::VCVTTSD2SIrm: 340 case X86::VCVTTSD2SIZrm: 341 case X86::CVTTSS2SI64rm: 342 case X86::VCVTTSS2SI64rm: 343 case X86::VCVTTSS2SI64Zrm: 344 case X86::CVTTSS2SIrm: 345 case X86::VCVTTSS2SIrm: 346 case X86::VCVTTSS2SIZrm: 347 case X86::CVTSI2SDrm: 348 case X86::VCVTSI2SDrm: 349 case X86::VCVTSI2SDZrm: 350 case X86::CVTSI2SSrm: 351 case X86::VCVTSI2SSrm: 352 case X86::VCVTSI2SSZrm: 353 case X86::CVTSI642SDrm: 354 case X86::VCVTSI642SDrm: 355 case X86::VCVTSI642SDZrm: 356 case X86::CVTSI642SSrm: 357 case X86::VCVTSI642SSrm: 358 case X86::VCVTSI642SSZrm: 359 case X86::CVTSS2SDrm: 360 case X86::VCVTSS2SDrm: 361 case X86::VCVTSS2SDZrm: 362 case X86::CVTSD2SSrm: 363 case X86::VCVTSD2SSrm: 364 case X86::VCVTSD2SSZrm: 365 // AVX512 added unsigned integer conversions. 366 case X86::VCVTTSD2USI64Zrm: 367 case X86::VCVTTSD2USIZrm: 368 case X86::VCVTTSS2USI64Zrm: 369 case X86::VCVTTSS2USIZrm: 370 case X86::VCVTUSI2SDZrm: 371 case X86::VCVTUSI642SDZrm: 372 case X86::VCVTUSI2SSZrm: 373 case X86::VCVTUSI642SSZrm: 374 375 // Loads to register don't set flags. 376 case X86::MOV8rm: 377 case X86::MOV8rm_NOREX: 378 case X86::MOV16rm: 379 case X86::MOV32rm: 380 case X86::MOV64rm: 381 case X86::MOVSX16rm8: 382 case X86::MOVSX32rm16: 383 case X86::MOVSX32rm8: 384 case X86::MOVSX32rm8_NOREX: 385 case X86::MOVSX64rm16: 386 case X86::MOVSX64rm32: 387 case X86::MOVSX64rm8: 388 case X86::MOVZX16rm8: 389 case X86::MOVZX32rm16: 390 case X86::MOVZX32rm8: 391 case X86::MOVZX32rm8_NOREX: 392 case X86::MOVZX64rm16: 393 case X86::MOVZX64rm8: 394 return true; 395 } 396 } 397 398 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 399 const MachineFunction *MF = MI.getParent()->getParent(); 400 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 401 402 if (isFrameInstr(MI)) { 403 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); 404 SPAdj -= getFrameAdjustment(MI); 405 if (!isFrameSetup(MI)) 406 SPAdj = -SPAdj; 407 return SPAdj; 408 } 409 410 // To know whether a call adjusts the stack, we need information 411 // that is bound to the following ADJCALLSTACKUP pseudo. 412 // Look for the next ADJCALLSTACKUP that follows the call. 413 if (MI.isCall()) { 414 const MachineBasicBlock *MBB = MI.getParent(); 415 auto I = ++MachineBasicBlock::const_iterator(MI); 416 for (auto E = MBB->end(); I != E; ++I) { 417 if (I->getOpcode() == getCallFrameDestroyOpcode() || 418 I->isCall()) 419 break; 420 } 421 422 // If we could not find a frame destroy opcode, then it has already 423 // been simplified, so we don't care. 424 if (I->getOpcode() != getCallFrameDestroyOpcode()) 425 return 0; 426 427 return -(I->getOperand(1).getImm()); 428 } 429 430 // Currently handle only PUSHes we can reasonably expect to see 431 // in call sequences 432 switch (MI.getOpcode()) { 433 default: 434 return 0; 435 case X86::PUSH32r: 436 case X86::PUSH32rmm: 437 case X86::PUSH32rmr: 438 case X86::PUSH32i: 439 return 4; 440 case X86::PUSH64r: 441 case X86::PUSH64rmm: 442 case X86::PUSH64rmr: 443 case X86::PUSH64i32: 444 return 8; 445 } 446 } 447 448 /// Return true and the FrameIndex if the specified 449 /// operand and follow operands form a reference to the stack frame. 450 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 451 int &FrameIndex) const { 452 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 453 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 454 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 455 MI.getOperand(Op + X86::AddrDisp).isImm() && 456 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 457 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 458 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 459 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 460 return true; 461 } 462 return false; 463 } 464 465 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 466 switch (Opcode) { 467 default: 468 return false; 469 case X86::MOV8rm: 470 case X86::KMOVBkm: 471 MemBytes = 1; 472 return true; 473 case X86::MOV16rm: 474 case X86::KMOVWkm: 475 case X86::VMOVSHZrm: 476 case X86::VMOVSHZrm_alt: 477 MemBytes = 2; 478 return true; 479 case X86::MOV32rm: 480 case X86::MOVSSrm: 481 case X86::MOVSSrm_alt: 482 case X86::VMOVSSrm: 483 case X86::VMOVSSrm_alt: 484 case X86::VMOVSSZrm: 485 case X86::VMOVSSZrm_alt: 486 case X86::KMOVDkm: 487 MemBytes = 4; 488 return true; 489 case X86::MOV64rm: 490 case X86::LD_Fp64m: 491 case X86::MOVSDrm: 492 case X86::MOVSDrm_alt: 493 case X86::VMOVSDrm: 494 case X86::VMOVSDrm_alt: 495 case X86::VMOVSDZrm: 496 case X86::VMOVSDZrm_alt: 497 case X86::MMX_MOVD64rm: 498 case X86::MMX_MOVQ64rm: 499 case X86::KMOVQkm: 500 MemBytes = 8; 501 return true; 502 case X86::MOVAPSrm: 503 case X86::MOVUPSrm: 504 case X86::MOVAPDrm: 505 case X86::MOVUPDrm: 506 case X86::MOVDQArm: 507 case X86::MOVDQUrm: 508 case X86::VMOVAPSrm: 509 case X86::VMOVUPSrm: 510 case X86::VMOVAPDrm: 511 case X86::VMOVUPDrm: 512 case X86::VMOVDQArm: 513 case X86::VMOVDQUrm: 514 case X86::VMOVAPSZ128rm: 515 case X86::VMOVUPSZ128rm: 516 case X86::VMOVAPSZ128rm_NOVLX: 517 case X86::VMOVUPSZ128rm_NOVLX: 518 case X86::VMOVAPDZ128rm: 519 case X86::VMOVUPDZ128rm: 520 case X86::VMOVDQU8Z128rm: 521 case X86::VMOVDQU16Z128rm: 522 case X86::VMOVDQA32Z128rm: 523 case X86::VMOVDQU32Z128rm: 524 case X86::VMOVDQA64Z128rm: 525 case X86::VMOVDQU64Z128rm: 526 MemBytes = 16; 527 return true; 528 case X86::VMOVAPSYrm: 529 case X86::VMOVUPSYrm: 530 case X86::VMOVAPDYrm: 531 case X86::VMOVUPDYrm: 532 case X86::VMOVDQAYrm: 533 case X86::VMOVDQUYrm: 534 case X86::VMOVAPSZ256rm: 535 case X86::VMOVUPSZ256rm: 536 case X86::VMOVAPSZ256rm_NOVLX: 537 case X86::VMOVUPSZ256rm_NOVLX: 538 case X86::VMOVAPDZ256rm: 539 case X86::VMOVUPDZ256rm: 540 case X86::VMOVDQU8Z256rm: 541 case X86::VMOVDQU16Z256rm: 542 case X86::VMOVDQA32Z256rm: 543 case X86::VMOVDQU32Z256rm: 544 case X86::VMOVDQA64Z256rm: 545 case X86::VMOVDQU64Z256rm: 546 MemBytes = 32; 547 return true; 548 case X86::VMOVAPSZrm: 549 case X86::VMOVUPSZrm: 550 case X86::VMOVAPDZrm: 551 case X86::VMOVUPDZrm: 552 case X86::VMOVDQU8Zrm: 553 case X86::VMOVDQU16Zrm: 554 case X86::VMOVDQA32Zrm: 555 case X86::VMOVDQU32Zrm: 556 case X86::VMOVDQA64Zrm: 557 case X86::VMOVDQU64Zrm: 558 MemBytes = 64; 559 return true; 560 } 561 } 562 563 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 564 switch (Opcode) { 565 default: 566 return false; 567 case X86::MOV8mr: 568 case X86::KMOVBmk: 569 MemBytes = 1; 570 return true; 571 case X86::MOV16mr: 572 case X86::KMOVWmk: 573 case X86::VMOVSHZmr: 574 MemBytes = 2; 575 return true; 576 case X86::MOV32mr: 577 case X86::MOVSSmr: 578 case X86::VMOVSSmr: 579 case X86::VMOVSSZmr: 580 case X86::KMOVDmk: 581 MemBytes = 4; 582 return true; 583 case X86::MOV64mr: 584 case X86::ST_FpP64m: 585 case X86::MOVSDmr: 586 case X86::VMOVSDmr: 587 case X86::VMOVSDZmr: 588 case X86::MMX_MOVD64mr: 589 case X86::MMX_MOVQ64mr: 590 case X86::MMX_MOVNTQmr: 591 case X86::KMOVQmk: 592 MemBytes = 8; 593 return true; 594 case X86::MOVAPSmr: 595 case X86::MOVUPSmr: 596 case X86::MOVAPDmr: 597 case X86::MOVUPDmr: 598 case X86::MOVDQAmr: 599 case X86::MOVDQUmr: 600 case X86::VMOVAPSmr: 601 case X86::VMOVUPSmr: 602 case X86::VMOVAPDmr: 603 case X86::VMOVUPDmr: 604 case X86::VMOVDQAmr: 605 case X86::VMOVDQUmr: 606 case X86::VMOVUPSZ128mr: 607 case X86::VMOVAPSZ128mr: 608 case X86::VMOVUPSZ128mr_NOVLX: 609 case X86::VMOVAPSZ128mr_NOVLX: 610 case X86::VMOVUPDZ128mr: 611 case X86::VMOVAPDZ128mr: 612 case X86::VMOVDQA32Z128mr: 613 case X86::VMOVDQU32Z128mr: 614 case X86::VMOVDQA64Z128mr: 615 case X86::VMOVDQU64Z128mr: 616 case X86::VMOVDQU8Z128mr: 617 case X86::VMOVDQU16Z128mr: 618 MemBytes = 16; 619 return true; 620 case X86::VMOVUPSYmr: 621 case X86::VMOVAPSYmr: 622 case X86::VMOVUPDYmr: 623 case X86::VMOVAPDYmr: 624 case X86::VMOVDQUYmr: 625 case X86::VMOVDQAYmr: 626 case X86::VMOVUPSZ256mr: 627 case X86::VMOVAPSZ256mr: 628 case X86::VMOVUPSZ256mr_NOVLX: 629 case X86::VMOVAPSZ256mr_NOVLX: 630 case X86::VMOVUPDZ256mr: 631 case X86::VMOVAPDZ256mr: 632 case X86::VMOVDQU8Z256mr: 633 case X86::VMOVDQU16Z256mr: 634 case X86::VMOVDQA32Z256mr: 635 case X86::VMOVDQU32Z256mr: 636 case X86::VMOVDQA64Z256mr: 637 case X86::VMOVDQU64Z256mr: 638 MemBytes = 32; 639 return true; 640 case X86::VMOVUPSZmr: 641 case X86::VMOVAPSZmr: 642 case X86::VMOVUPDZmr: 643 case X86::VMOVAPDZmr: 644 case X86::VMOVDQU8Zmr: 645 case X86::VMOVDQU16Zmr: 646 case X86::VMOVDQA32Zmr: 647 case X86::VMOVDQU32Zmr: 648 case X86::VMOVDQA64Zmr: 649 case X86::VMOVDQU64Zmr: 650 MemBytes = 64; 651 return true; 652 } 653 return false; 654 } 655 656 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 657 int &FrameIndex) const { 658 unsigned Dummy; 659 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 660 } 661 662 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 663 int &FrameIndex, 664 unsigned &MemBytes) const { 665 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 666 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 667 return MI.getOperand(0).getReg(); 668 return 0; 669 } 670 671 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 672 int &FrameIndex) const { 673 unsigned Dummy; 674 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 675 unsigned Reg; 676 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 677 return Reg; 678 // Check for post-frame index elimination operations 679 SmallVector<const MachineMemOperand *, 1> Accesses; 680 if (hasLoadFromStackSlot(MI, Accesses)) { 681 FrameIndex = 682 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 683 ->getFrameIndex(); 684 return MI.getOperand(0).getReg(); 685 } 686 } 687 return 0; 688 } 689 690 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 691 int &FrameIndex) const { 692 unsigned Dummy; 693 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 694 } 695 696 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 697 int &FrameIndex, 698 unsigned &MemBytes) const { 699 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 700 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 701 isFrameOperand(MI, 0, FrameIndex)) 702 return MI.getOperand(X86::AddrNumOperands).getReg(); 703 return 0; 704 } 705 706 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 707 int &FrameIndex) const { 708 unsigned Dummy; 709 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 710 unsigned Reg; 711 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 712 return Reg; 713 // Check for post-frame index elimination operations 714 SmallVector<const MachineMemOperand *, 1> Accesses; 715 if (hasStoreToStackSlot(MI, Accesses)) { 716 FrameIndex = 717 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 718 ->getFrameIndex(); 719 return MI.getOperand(X86::AddrNumOperands).getReg(); 720 } 721 } 722 return 0; 723 } 724 725 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 726 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { 727 // Don't waste compile time scanning use-def chains of physregs. 728 if (!BaseReg.isVirtual()) 729 return false; 730 bool isPICBase = false; 731 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 732 E = MRI.def_instr_end(); I != E; ++I) { 733 MachineInstr *DefMI = &*I; 734 if (DefMI->getOpcode() != X86::MOVPC32r) 735 return false; 736 assert(!isPICBase && "More than one PIC base?"); 737 isPICBase = true; 738 } 739 return isPICBase; 740 } 741 742 bool X86InstrInfo::isReallyTriviallyReMaterializable( 743 const MachineInstr &MI) const { 744 switch (MI.getOpcode()) { 745 default: 746 // This function should only be called for opcodes with the ReMaterializable 747 // flag set. 748 llvm_unreachable("Unknown rematerializable operation!"); 749 break; 750 751 case X86::LOAD_STACK_GUARD: 752 case X86::AVX1_SETALLONES: 753 case X86::AVX2_SETALLONES: 754 case X86::AVX512_128_SET0: 755 case X86::AVX512_256_SET0: 756 case X86::AVX512_512_SET0: 757 case X86::AVX512_512_SETALLONES: 758 case X86::AVX512_FsFLD0SD: 759 case X86::AVX512_FsFLD0SH: 760 case X86::AVX512_FsFLD0SS: 761 case X86::AVX512_FsFLD0F128: 762 case X86::AVX_SET0: 763 case X86::FsFLD0SD: 764 case X86::FsFLD0SS: 765 case X86::FsFLD0SH: 766 case X86::FsFLD0F128: 767 case X86::KSET0D: 768 case X86::KSET0Q: 769 case X86::KSET0W: 770 case X86::KSET1D: 771 case X86::KSET1Q: 772 case X86::KSET1W: 773 case X86::MMX_SET0: 774 case X86::MOV32ImmSExti8: 775 case X86::MOV32r0: 776 case X86::MOV32r1: 777 case X86::MOV32r_1: 778 case X86::MOV32ri64: 779 case X86::MOV64ImmSExti8: 780 case X86::V_SET0: 781 case X86::V_SETALLONES: 782 case X86::MOV16ri: 783 case X86::MOV32ri: 784 case X86::MOV64ri: 785 case X86::MOV64ri32: 786 case X86::MOV8ri: 787 case X86::PTILEZEROV: 788 return true; 789 790 case X86::MOV8rm: 791 case X86::MOV8rm_NOREX: 792 case X86::MOV16rm: 793 case X86::MOV32rm: 794 case X86::MOV64rm: 795 case X86::MOVSSrm: 796 case X86::MOVSSrm_alt: 797 case X86::MOVSDrm: 798 case X86::MOVSDrm_alt: 799 case X86::MOVAPSrm: 800 case X86::MOVUPSrm: 801 case X86::MOVAPDrm: 802 case X86::MOVUPDrm: 803 case X86::MOVDQArm: 804 case X86::MOVDQUrm: 805 case X86::VMOVSSrm: 806 case X86::VMOVSSrm_alt: 807 case X86::VMOVSDrm: 808 case X86::VMOVSDrm_alt: 809 case X86::VMOVAPSrm: 810 case X86::VMOVUPSrm: 811 case X86::VMOVAPDrm: 812 case X86::VMOVUPDrm: 813 case X86::VMOVDQArm: 814 case X86::VMOVDQUrm: 815 case X86::VMOVAPSYrm: 816 case X86::VMOVUPSYrm: 817 case X86::VMOVAPDYrm: 818 case X86::VMOVUPDYrm: 819 case X86::VMOVDQAYrm: 820 case X86::VMOVDQUYrm: 821 case X86::MMX_MOVD64rm: 822 case X86::MMX_MOVQ64rm: 823 // AVX-512 824 case X86::VMOVSSZrm: 825 case X86::VMOVSSZrm_alt: 826 case X86::VMOVSDZrm: 827 case X86::VMOVSDZrm_alt: 828 case X86::VMOVSHZrm: 829 case X86::VMOVSHZrm_alt: 830 case X86::VMOVAPDZ128rm: 831 case X86::VMOVAPDZ256rm: 832 case X86::VMOVAPDZrm: 833 case X86::VMOVAPSZ128rm: 834 case X86::VMOVAPSZ256rm: 835 case X86::VMOVAPSZ128rm_NOVLX: 836 case X86::VMOVAPSZ256rm_NOVLX: 837 case X86::VMOVAPSZrm: 838 case X86::VMOVDQA32Z128rm: 839 case X86::VMOVDQA32Z256rm: 840 case X86::VMOVDQA32Zrm: 841 case X86::VMOVDQA64Z128rm: 842 case X86::VMOVDQA64Z256rm: 843 case X86::VMOVDQA64Zrm: 844 case X86::VMOVDQU16Z128rm: 845 case X86::VMOVDQU16Z256rm: 846 case X86::VMOVDQU16Zrm: 847 case X86::VMOVDQU32Z128rm: 848 case X86::VMOVDQU32Z256rm: 849 case X86::VMOVDQU32Zrm: 850 case X86::VMOVDQU64Z128rm: 851 case X86::VMOVDQU64Z256rm: 852 case X86::VMOVDQU64Zrm: 853 case X86::VMOVDQU8Z128rm: 854 case X86::VMOVDQU8Z256rm: 855 case X86::VMOVDQU8Zrm: 856 case X86::VMOVUPDZ128rm: 857 case X86::VMOVUPDZ256rm: 858 case X86::VMOVUPDZrm: 859 case X86::VMOVUPSZ128rm: 860 case X86::VMOVUPSZ256rm: 861 case X86::VMOVUPSZ128rm_NOVLX: 862 case X86::VMOVUPSZ256rm_NOVLX: 863 case X86::VMOVUPSZrm: { 864 // Loads from constant pools are trivially rematerializable. 865 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 866 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 867 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 868 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 869 MI.isDereferenceableInvariantLoad()) { 870 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 871 if (BaseReg == 0 || BaseReg == X86::RIP) 872 return true; 873 // Allow re-materialization of PIC load. 874 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) 875 return false; 876 const MachineFunction &MF = *MI.getParent()->getParent(); 877 const MachineRegisterInfo &MRI = MF.getRegInfo(); 878 return regIsPICBase(BaseReg, MRI); 879 } 880 return false; 881 } 882 883 case X86::LEA32r: 884 case X86::LEA64r: { 885 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 886 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 887 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 888 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 889 // lea fi#, lea GV, etc. are all rematerializable. 890 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 891 return true; 892 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 893 if (BaseReg == 0) 894 return true; 895 // Allow re-materialization of lea PICBase + x. 896 const MachineFunction &MF = *MI.getParent()->getParent(); 897 const MachineRegisterInfo &MRI = MF.getRegInfo(); 898 return regIsPICBase(BaseReg, MRI); 899 } 900 return false; 901 } 902 } 903 } 904 905 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 906 MachineBasicBlock::iterator I, 907 Register DestReg, unsigned SubIdx, 908 const MachineInstr &Orig, 909 const TargetRegisterInfo &TRI) const { 910 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 911 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != 912 MachineBasicBlock::LQR_Dead) { 913 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 914 // effects. 915 int Value; 916 switch (Orig.getOpcode()) { 917 case X86::MOV32r0: Value = 0; break; 918 case X86::MOV32r1: Value = 1; break; 919 case X86::MOV32r_1: Value = -1; break; 920 default: 921 llvm_unreachable("Unexpected instruction!"); 922 } 923 924 const DebugLoc &DL = Orig.getDebugLoc(); 925 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 926 .add(Orig.getOperand(0)) 927 .addImm(Value); 928 } else { 929 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 930 MBB.insert(I, MI); 931 } 932 933 MachineInstr &NewMI = *std::prev(I); 934 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 935 } 936 937 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 938 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 939 for (const MachineOperand &MO : MI.operands()) { 940 if (MO.isReg() && MO.isDef() && 941 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 942 return true; 943 } 944 } 945 return false; 946 } 947 948 /// Check whether the shift count for a machine operand is non-zero. 949 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 950 unsigned ShiftAmtOperandIdx) { 951 // The shift count is six bits with the REX.W prefix and five bits without. 952 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 953 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 954 return Imm & ShiftCountMask; 955 } 956 957 /// Check whether the given shift count is appropriate 958 /// can be represented by a LEA instruction. 959 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 960 // Left shift instructions can be transformed into load-effective-address 961 // instructions if we can encode them appropriately. 962 // A LEA instruction utilizes a SIB byte to encode its scale factor. 963 // The SIB.scale field is two bits wide which means that we can encode any 964 // shift amount less than 4. 965 return ShAmt < 4 && ShAmt > 0; 966 } 967 968 static bool findRedundantFlagInstr(MachineInstr &CmpInstr, 969 MachineInstr &CmpValDefInstr, 970 const MachineRegisterInfo *MRI, 971 MachineInstr **AndInstr, 972 const TargetRegisterInfo *TRI, 973 bool &NoSignFlag, bool &ClearsOverflowFlag) { 974 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG && 975 CmpInstr.getOpcode() == X86::TEST64rr) && 976 !(CmpValDefInstr.getOpcode() == X86::COPY && 977 CmpInstr.getOpcode() == X86::TEST16rr)) 978 return false; 979 980 // CmpInstr is a TEST16rr/TEST64rr instruction, and 981 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two 982 // registers are identical. 983 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && 984 "CmpInstr is an analyzable TEST16rr/TEST64rr, and " 985 "`X86InstrInfo::analyzeCompare` requires two reg operands are the" 986 "same."); 987 988 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that 989 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case 990 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is 991 // redundant. 992 assert( 993 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && 994 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr " 995 "is a user of COPY sub16bit."); 996 MachineInstr *VregDefInstr = nullptr; 997 if (CmpInstr.getOpcode() == X86::TEST16rr) { 998 if (!CmpValDefInstr.getOperand(1).getReg().isVirtual()) 999 return false; 1000 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg()); 1001 if (!VregDefInstr) 1002 return false; 1003 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit 1004 // size, others 32/64 bit ops would test higher bits which test16rr don't 1005 // want to. 1006 if (!((VregDefInstr->getOpcode() == X86::AND32ri || 1007 VregDefInstr->getOpcode() == X86::AND64ri32) && 1008 isUInt<16>(VregDefInstr->getOperand(2).getImm()))) 1009 return false; 1010 } 1011 1012 if (CmpInstr.getOpcode() == X86::TEST64rr) { 1013 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is 1014 // typically 0. 1015 if (CmpValDefInstr.getOperand(1).getImm() != 0) 1016 return false; 1017 1018 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically 1019 // sub_32bit or sub_xmm. 1020 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit) 1021 return false; 1022 1023 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg()); 1024 } 1025 1026 assert(VregDefInstr && "Must have a definition (SSA)"); 1027 1028 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB 1029 // to simplify the subsequent analysis. 1030 // 1031 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of 1032 // `CmpValDefInstr.getParent()`, this could be handled. 1033 if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) 1034 return false; 1035 1036 if (X86::isAND(VregDefInstr->getOpcode())) { 1037 // Get a sequence of instructions like 1038 // %reg = and* ... // Set EFLAGS 1039 // ... // EFLAGS not changed 1040 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit 1041 // test64rr %extended_reg, %extended_reg, implicit-def $eflags 1042 // or 1043 // %reg = and32* ... 1044 // ... // EFLAGS not changed. 1045 // %src_reg = copy %reg.sub_16bit:gr32 1046 // test16rr %src_reg, %src_reg, implicit-def $eflags 1047 // 1048 // If subsequent readers use a subset of bits that don't change 1049 // after `and*` instructions, it's likely that the test64rr could 1050 // be optimized away. 1051 for (const MachineInstr &Instr : 1052 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)), 1053 MachineBasicBlock::iterator(CmpValDefInstr))) { 1054 // There are instructions between 'VregDefInstr' and 1055 // 'CmpValDefInstr' that modifies EFLAGS. 1056 if (Instr.modifiesRegister(X86::EFLAGS, TRI)) 1057 return false; 1058 } 1059 1060 *AndInstr = VregDefInstr; 1061 1062 // AND instruction will essentially update SF and clear OF, so 1063 // NoSignFlag should be false in the sense that SF is modified by `AND`. 1064 // 1065 // However, the implementation artifically sets `NoSignFlag` to true 1066 // to poison the SF bit; that is to say, if SF is looked at later, the 1067 // optimization (to erase TEST64rr) will be disabled. 1068 // 1069 // The reason to poison SF bit is that SF bit value could be different 1070 // in the `AND` and `TEST` operation; signed bit is not known for `AND`, 1071 // and is known to be 0 as a result of `TEST64rr`. 1072 // 1073 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into 1074 // the AND instruction and using the static information to guide peephole 1075 // optimization if possible. For example, it's possible to fold a 1076 // conditional move into a copy if the relevant EFLAG bits could be deduced 1077 // from an immediate operand of and operation. 1078 // 1079 NoSignFlag = true; 1080 // ClearsOverflowFlag is true for AND operation (no surprise). 1081 ClearsOverflowFlag = true; 1082 return true; 1083 } 1084 return false; 1085 } 1086 1087 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 1088 unsigned Opc, bool AllowSP, Register &NewSrc, 1089 bool &isKill, MachineOperand &ImplicitOp, 1090 LiveVariables *LV, LiveIntervals *LIS) const { 1091 MachineFunction &MF = *MI.getParent()->getParent(); 1092 const TargetRegisterClass *RC; 1093 if (AllowSP) { 1094 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 1095 } else { 1096 RC = Opc != X86::LEA32r ? 1097 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 1098 } 1099 Register SrcReg = Src.getReg(); 1100 isKill = MI.killsRegister(SrcReg); 1101 1102 // For both LEA64 and LEA32 the register already has essentially the right 1103 // type (32-bit or 64-bit) we may just need to forbid SP. 1104 if (Opc != X86::LEA64_32r) { 1105 NewSrc = SrcReg; 1106 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1107 1108 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 1109 return false; 1110 1111 return true; 1112 } 1113 1114 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 1115 // another we need to add 64-bit registers to the final MI. 1116 if (SrcReg.isPhysical()) { 1117 ImplicitOp = Src; 1118 ImplicitOp.setImplicit(); 1119 1120 NewSrc = getX86SubSuperRegister(SrcReg, 64); 1121 assert(NewSrc.isValid() && "Invalid Operand"); 1122 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1123 } else { 1124 // Virtual register of the wrong class, we have to create a temporary 64-bit 1125 // vreg to feed into the LEA. 1126 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 1127 MachineInstr *Copy = 1128 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1129 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 1130 .addReg(SrcReg, getKillRegState(isKill)); 1131 1132 // Which is obviously going to be dead after we're done with it. 1133 isKill = true; 1134 1135 if (LV) 1136 LV->replaceKillInstruction(SrcReg, MI, *Copy); 1137 1138 if (LIS) { 1139 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy); 1140 SlotIndex Idx = LIS->getInstructionIndex(MI); 1141 LiveInterval &LI = LIS->getInterval(SrcReg); 1142 LiveRange::Segment *S = LI.getSegmentContaining(Idx); 1143 if (S->end.getBaseIndex() == Idx) 1144 S->end = CopyIdx.getRegSlot(); 1145 } 1146 } 1147 1148 // We've set all the parameters without issue. 1149 return true; 1150 } 1151 1152 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1153 MachineInstr &MI, 1154 LiveVariables *LV, 1155 LiveIntervals *LIS, 1156 bool Is8BitOp) const { 1157 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 1158 MachineBasicBlock &MBB = *MI.getParent(); 1159 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 1160 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 1161 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 1162 "Unexpected type for LEA transform"); 1163 1164 // TODO: For a 32-bit target, we need to adjust the LEA variables with 1165 // something like this: 1166 // Opcode = X86::LEA32r; 1167 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1168 // OutRegLEA = 1169 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 1170 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 1171 if (!Subtarget.is64Bit()) 1172 return nullptr; 1173 1174 unsigned Opcode = X86::LEA64_32r; 1175 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1176 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1177 Register InRegLEA2; 1178 1179 // Build and insert into an implicit UNDEF value. This is OK because 1180 // we will be shifting and then extracting the lower 8/16-bits. 1181 // This has the potential to cause partial register stall. e.g. 1182 // movw (%rbp,%rcx,2), %dx 1183 // leal -65(%rdx), %esi 1184 // But testing has shown this *does* help performance in 64-bit mode (at 1185 // least on modern x86 machines). 1186 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1187 Register Dest = MI.getOperand(0).getReg(); 1188 Register Src = MI.getOperand(1).getReg(); 1189 Register Src2; 1190 bool IsDead = MI.getOperand(0).isDead(); 1191 bool IsKill = MI.getOperand(1).isKill(); 1192 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 1193 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 1194 MachineInstr *ImpDef = 1195 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 1196 MachineInstr *InsMI = 1197 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1198 .addReg(InRegLEA, RegState::Define, SubReg) 1199 .addReg(Src, getKillRegState(IsKill)); 1200 MachineInstr *ImpDef2 = nullptr; 1201 MachineInstr *InsMI2 = nullptr; 1202 1203 MachineInstrBuilder MIB = 1204 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 1205 switch (MIOpc) { 1206 default: llvm_unreachable("Unreachable!"); 1207 case X86::SHL8ri: 1208 case X86::SHL16ri: { 1209 unsigned ShAmt = MI.getOperand(2).getImm(); 1210 MIB.addReg(0) 1211 .addImm(1LL << ShAmt) 1212 .addReg(InRegLEA, RegState::Kill) 1213 .addImm(0) 1214 .addReg(0); 1215 break; 1216 } 1217 case X86::INC8r: 1218 case X86::INC16r: 1219 addRegOffset(MIB, InRegLEA, true, 1); 1220 break; 1221 case X86::DEC8r: 1222 case X86::DEC16r: 1223 addRegOffset(MIB, InRegLEA, true, -1); 1224 break; 1225 case X86::ADD8ri: 1226 case X86::ADD8ri_DB: 1227 case X86::ADD16ri: 1228 case X86::ADD16ri_DB: 1229 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 1230 break; 1231 case X86::ADD8rr: 1232 case X86::ADD8rr_DB: 1233 case X86::ADD16rr: 1234 case X86::ADD16rr_DB: { 1235 Src2 = MI.getOperand(2).getReg(); 1236 bool IsKill2 = MI.getOperand(2).isKill(); 1237 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 1238 if (Src == Src2) { 1239 // ADD8rr/ADD16rr killed %reg1028, %reg1028 1240 // just a single insert_subreg. 1241 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 1242 } else { 1243 if (Subtarget.is64Bit()) 1244 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1245 else 1246 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1247 // Build and insert into an implicit UNDEF value. This is OK because 1248 // we will be shifting and then extracting the lower 8/16-bits. 1249 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), 1250 InRegLEA2); 1251 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1252 .addReg(InRegLEA2, RegState::Define, SubReg) 1253 .addReg(Src2, getKillRegState(IsKill2)); 1254 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 1255 } 1256 if (LV && IsKill2 && InsMI2) 1257 LV->replaceKillInstruction(Src2, MI, *InsMI2); 1258 break; 1259 } 1260 } 1261 1262 MachineInstr *NewMI = MIB; 1263 MachineInstr *ExtMI = 1264 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1265 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 1266 .addReg(OutRegLEA, RegState::Kill, SubReg); 1267 1268 if (LV) { 1269 // Update live variables. 1270 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 1271 if (InRegLEA2) 1272 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI); 1273 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 1274 if (IsKill) 1275 LV->replaceKillInstruction(Src, MI, *InsMI); 1276 if (IsDead) 1277 LV->replaceKillInstruction(Dest, MI, *ExtMI); 1278 } 1279 1280 if (LIS) { 1281 LIS->InsertMachineInstrInMaps(*ImpDef); 1282 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI); 1283 if (ImpDef2) 1284 LIS->InsertMachineInstrInMaps(*ImpDef2); 1285 SlotIndex Ins2Idx; 1286 if (InsMI2) 1287 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2); 1288 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 1289 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI); 1290 LIS->getInterval(InRegLEA); 1291 LIS->getInterval(OutRegLEA); 1292 if (InRegLEA2) 1293 LIS->getInterval(InRegLEA2); 1294 1295 // Move the use of Src up to InsMI. 1296 LiveInterval &SrcLI = LIS->getInterval(Src); 1297 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx); 1298 if (SrcSeg->end == NewIdx.getRegSlot()) 1299 SrcSeg->end = InsIdx.getRegSlot(); 1300 1301 if (InsMI2) { 1302 // Move the use of Src2 up to InsMI2. 1303 LiveInterval &Src2LI = LIS->getInterval(Src2); 1304 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx); 1305 if (Src2Seg->end == NewIdx.getRegSlot()) 1306 Src2Seg->end = Ins2Idx.getRegSlot(); 1307 } 1308 1309 // Move the definition of Dest down to ExtMI. 1310 LiveInterval &DestLI = LIS->getInterval(Dest); 1311 LiveRange::Segment *DestSeg = 1312 DestLI.getSegmentContaining(NewIdx.getRegSlot()); 1313 assert(DestSeg->start == NewIdx.getRegSlot() && 1314 DestSeg->valno->def == NewIdx.getRegSlot()); 1315 DestSeg->start = ExtIdx.getRegSlot(); 1316 DestSeg->valno->def = ExtIdx.getRegSlot(); 1317 } 1318 1319 return ExtMI; 1320 } 1321 1322 /// This method must be implemented by targets that 1323 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1324 /// may be able to convert a two-address instruction into a true 1325 /// three-address instruction on demand. This allows the X86 target (for 1326 /// example) to convert ADD and SHL instructions into LEA instructions if they 1327 /// would require register copies due to two-addressness. 1328 /// 1329 /// This method returns a null pointer if the transformation cannot be 1330 /// performed, otherwise it returns the new instruction. 1331 /// 1332 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, 1333 LiveVariables *LV, 1334 LiveIntervals *LIS) const { 1335 // The following opcodes also sets the condition code register(s). Only 1336 // convert them to equivalent lea if the condition code register def's 1337 // are dead! 1338 if (hasLiveCondCodeDef(MI)) 1339 return nullptr; 1340 1341 MachineFunction &MF = *MI.getParent()->getParent(); 1342 // All instructions input are two-addr instructions. Get the known operands. 1343 const MachineOperand &Dest = MI.getOperand(0); 1344 const MachineOperand &Src = MI.getOperand(1); 1345 1346 // Ideally, operations with undef should be folded before we get here, but we 1347 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 1348 // Without this, we have to forward undef state to new register operands to 1349 // avoid machine verifier errors. 1350 if (Src.isUndef()) 1351 return nullptr; 1352 if (MI.getNumOperands() > 2) 1353 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 1354 return nullptr; 1355 1356 MachineInstr *NewMI = nullptr; 1357 Register SrcReg, SrcReg2; 1358 bool Is64Bit = Subtarget.is64Bit(); 1359 1360 bool Is8BitOp = false; 1361 unsigned NumRegOperands = 2; 1362 unsigned MIOpc = MI.getOpcode(); 1363 switch (MIOpc) { 1364 default: llvm_unreachable("Unreachable!"); 1365 case X86::SHL64ri: { 1366 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1367 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1368 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1369 1370 // LEA can't handle RSP. 1371 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( 1372 Src.getReg(), &X86::GR64_NOSPRegClass)) 1373 return nullptr; 1374 1375 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 1376 .add(Dest) 1377 .addReg(0) 1378 .addImm(1LL << ShAmt) 1379 .add(Src) 1380 .addImm(0) 1381 .addReg(0); 1382 break; 1383 } 1384 case X86::SHL32ri: { 1385 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1386 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1387 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1388 1389 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1390 1391 // LEA can't handle ESP. 1392 bool isKill; 1393 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1394 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1395 ImplicitOp, LV, LIS)) 1396 return nullptr; 1397 1398 MachineInstrBuilder MIB = 1399 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1400 .add(Dest) 1401 .addReg(0) 1402 .addImm(1LL << ShAmt) 1403 .addReg(SrcReg, getKillRegState(isKill)) 1404 .addImm(0) 1405 .addReg(0); 1406 if (ImplicitOp.getReg() != 0) 1407 MIB.add(ImplicitOp); 1408 NewMI = MIB; 1409 1410 // Add kills if classifyLEAReg created a new register. 1411 if (LV && SrcReg != Src.getReg()) 1412 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1413 break; 1414 } 1415 case X86::SHL8ri: 1416 Is8BitOp = true; 1417 [[fallthrough]]; 1418 case X86::SHL16ri: { 1419 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1420 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1421 if (!isTruncatedShiftCountForLEA(ShAmt)) 1422 return nullptr; 1423 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1424 } 1425 case X86::INC64r: 1426 case X86::INC32r: { 1427 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 1428 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : 1429 (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1430 bool isKill; 1431 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1432 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1433 ImplicitOp, LV, LIS)) 1434 return nullptr; 1435 1436 MachineInstrBuilder MIB = 1437 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1438 .add(Dest) 1439 .addReg(SrcReg, getKillRegState(isKill)); 1440 if (ImplicitOp.getReg() != 0) 1441 MIB.add(ImplicitOp); 1442 1443 NewMI = addOffset(MIB, 1); 1444 1445 // Add kills if classifyLEAReg created a new register. 1446 if (LV && SrcReg != Src.getReg()) 1447 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1448 break; 1449 } 1450 case X86::DEC64r: 1451 case X86::DEC32r: { 1452 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 1453 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1454 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1455 1456 bool isKill; 1457 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1458 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1459 ImplicitOp, LV, LIS)) 1460 return nullptr; 1461 1462 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1463 .add(Dest) 1464 .addReg(SrcReg, getKillRegState(isKill)); 1465 if (ImplicitOp.getReg() != 0) 1466 MIB.add(ImplicitOp); 1467 1468 NewMI = addOffset(MIB, -1); 1469 1470 // Add kills if classifyLEAReg created a new register. 1471 if (LV && SrcReg != Src.getReg()) 1472 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1473 break; 1474 } 1475 case X86::DEC8r: 1476 case X86::INC8r: 1477 Is8BitOp = true; 1478 [[fallthrough]]; 1479 case X86::DEC16r: 1480 case X86::INC16r: 1481 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1482 case X86::ADD64rr: 1483 case X86::ADD64rr_DB: 1484 case X86::ADD32rr: 1485 case X86::ADD32rr_DB: { 1486 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1487 unsigned Opc; 1488 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1489 Opc = X86::LEA64r; 1490 else 1491 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1492 1493 const MachineOperand &Src2 = MI.getOperand(2); 1494 bool isKill2; 1495 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1496 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2, 1497 ImplicitOp2, LV, LIS)) 1498 return nullptr; 1499 1500 bool isKill; 1501 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1502 if (Src.getReg() == Src2.getReg()) { 1503 // Don't call classify LEAReg a second time on the same register, in case 1504 // the first call inserted a COPY from Src2 and marked it as killed. 1505 isKill = isKill2; 1506 SrcReg = SrcReg2; 1507 } else { 1508 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1509 ImplicitOp, LV, LIS)) 1510 return nullptr; 1511 } 1512 1513 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1514 if (ImplicitOp.getReg() != 0) 1515 MIB.add(ImplicitOp); 1516 if (ImplicitOp2.getReg() != 0) 1517 MIB.add(ImplicitOp2); 1518 1519 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1520 1521 // Add kills if classifyLEAReg created a new register. 1522 if (LV) { 1523 if (SrcReg2 != Src2.getReg()) 1524 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI); 1525 if (SrcReg != SrcReg2 && SrcReg != Src.getReg()) 1526 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1527 } 1528 NumRegOperands = 3; 1529 break; 1530 } 1531 case X86::ADD8rr: 1532 case X86::ADD8rr_DB: 1533 Is8BitOp = true; 1534 [[fallthrough]]; 1535 case X86::ADD16rr: 1536 case X86::ADD16rr_DB: 1537 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1538 case X86::ADD64ri32: 1539 case X86::ADD64ri32_DB: 1540 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1541 NewMI = addOffset( 1542 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1543 MI.getOperand(2)); 1544 break; 1545 case X86::ADD32ri: 1546 case X86::ADD32ri_DB: { 1547 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1548 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1549 1550 bool isKill; 1551 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1552 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1553 ImplicitOp, LV, LIS)) 1554 return nullptr; 1555 1556 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1557 .add(Dest) 1558 .addReg(SrcReg, getKillRegState(isKill)); 1559 if (ImplicitOp.getReg() != 0) 1560 MIB.add(ImplicitOp); 1561 1562 NewMI = addOffset(MIB, MI.getOperand(2)); 1563 1564 // Add kills if classifyLEAReg created a new register. 1565 if (LV && SrcReg != Src.getReg()) 1566 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1567 break; 1568 } 1569 case X86::ADD8ri: 1570 case X86::ADD8ri_DB: 1571 Is8BitOp = true; 1572 [[fallthrough]]; 1573 case X86::ADD16ri: 1574 case X86::ADD16ri_DB: 1575 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1576 case X86::SUB8ri: 1577 case X86::SUB16ri: 1578 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1579 return nullptr; 1580 case X86::SUB32ri: { 1581 if (!MI.getOperand(2).isImm()) 1582 return nullptr; 1583 int64_t Imm = MI.getOperand(2).getImm(); 1584 if (!isInt<32>(-Imm)) 1585 return nullptr; 1586 1587 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1588 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1589 1590 bool isKill; 1591 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1592 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1593 ImplicitOp, LV, LIS)) 1594 return nullptr; 1595 1596 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1597 .add(Dest) 1598 .addReg(SrcReg, getKillRegState(isKill)); 1599 if (ImplicitOp.getReg() != 0) 1600 MIB.add(ImplicitOp); 1601 1602 NewMI = addOffset(MIB, -Imm); 1603 1604 // Add kills if classifyLEAReg created a new register. 1605 if (LV && SrcReg != Src.getReg()) 1606 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1607 break; 1608 } 1609 1610 case X86::SUB64ri32: { 1611 if (!MI.getOperand(2).isImm()) 1612 return nullptr; 1613 int64_t Imm = MI.getOperand(2).getImm(); 1614 if (!isInt<32>(-Imm)) 1615 return nullptr; 1616 1617 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1618 1619 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), 1620 get(X86::LEA64r)).add(Dest).add(Src); 1621 NewMI = addOffset(MIB, -Imm); 1622 break; 1623 } 1624 1625 case X86::VMOVDQU8Z128rmk: 1626 case X86::VMOVDQU8Z256rmk: 1627 case X86::VMOVDQU8Zrmk: 1628 case X86::VMOVDQU16Z128rmk: 1629 case X86::VMOVDQU16Z256rmk: 1630 case X86::VMOVDQU16Zrmk: 1631 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: 1632 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: 1633 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: 1634 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: 1635 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: 1636 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: 1637 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: 1638 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: 1639 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: 1640 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: 1641 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: 1642 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: 1643 case X86::VBROADCASTSDZ256rmk: 1644 case X86::VBROADCASTSDZrmk: 1645 case X86::VBROADCASTSSZ128rmk: 1646 case X86::VBROADCASTSSZ256rmk: 1647 case X86::VBROADCASTSSZrmk: 1648 case X86::VPBROADCASTDZ128rmk: 1649 case X86::VPBROADCASTDZ256rmk: 1650 case X86::VPBROADCASTDZrmk: 1651 case X86::VPBROADCASTQZ128rmk: 1652 case X86::VPBROADCASTQZ256rmk: 1653 case X86::VPBROADCASTQZrmk: { 1654 unsigned Opc; 1655 switch (MIOpc) { 1656 default: llvm_unreachable("Unreachable!"); 1657 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; 1658 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; 1659 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; 1660 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; 1661 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; 1662 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; 1663 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1664 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1665 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1666 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1667 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1668 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1669 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1670 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1671 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1672 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1673 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1674 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1675 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1676 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1677 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1678 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1679 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1680 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1681 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1682 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1683 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1684 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1685 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1686 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1687 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break; 1688 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break; 1689 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break; 1690 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break; 1691 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break; 1692 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break; 1693 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break; 1694 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break; 1695 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break; 1696 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break; 1697 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break; 1698 } 1699 1700 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1701 .add(Dest) 1702 .add(MI.getOperand(2)) 1703 .add(Src) 1704 .add(MI.getOperand(3)) 1705 .add(MI.getOperand(4)) 1706 .add(MI.getOperand(5)) 1707 .add(MI.getOperand(6)) 1708 .add(MI.getOperand(7)); 1709 NumRegOperands = 4; 1710 break; 1711 } 1712 1713 case X86::VMOVDQU8Z128rrk: 1714 case X86::VMOVDQU8Z256rrk: 1715 case X86::VMOVDQU8Zrrk: 1716 case X86::VMOVDQU16Z128rrk: 1717 case X86::VMOVDQU16Z256rrk: 1718 case X86::VMOVDQU16Zrrk: 1719 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: 1720 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: 1721 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: 1722 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: 1723 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: 1724 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: 1725 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: 1726 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: 1727 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: 1728 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: 1729 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: 1730 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { 1731 unsigned Opc; 1732 switch (MIOpc) { 1733 default: llvm_unreachable("Unreachable!"); 1734 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; 1735 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; 1736 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; 1737 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; 1738 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; 1739 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; 1740 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1741 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1742 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1743 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1744 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1745 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1746 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1747 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1748 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1749 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1750 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1751 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1752 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1753 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1754 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1755 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1756 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1757 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1758 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1759 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1760 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1761 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1762 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1763 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1764 } 1765 1766 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1767 .add(Dest) 1768 .add(MI.getOperand(2)) 1769 .add(Src) 1770 .add(MI.getOperand(3)); 1771 NumRegOperands = 4; 1772 break; 1773 } 1774 } 1775 1776 if (!NewMI) return nullptr; 1777 1778 if (LV) { // Update live variables 1779 for (unsigned I = 0; I < NumRegOperands; ++I) { 1780 MachineOperand &Op = MI.getOperand(I); 1781 if (Op.isReg() && (Op.isDead() || Op.isKill())) 1782 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI); 1783 } 1784 } 1785 1786 MachineBasicBlock &MBB = *MI.getParent(); 1787 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst 1788 1789 if (LIS) { 1790 LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 1791 if (SrcReg) 1792 LIS->getInterval(SrcReg); 1793 if (SrcReg2) 1794 LIS->getInterval(SrcReg2); 1795 } 1796 1797 return NewMI; 1798 } 1799 1800 /// This determines which of three possible cases of a three source commute 1801 /// the source indexes correspond to taking into account any mask operands. 1802 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 1803 /// possible. 1804 /// Case 0 - Possible to commute the first and second operands. 1805 /// Case 1 - Possible to commute the first and third operands. 1806 /// Case 2 - Possible to commute the second and third operands. 1807 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 1808 unsigned SrcOpIdx2) { 1809 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 1810 if (SrcOpIdx1 > SrcOpIdx2) 1811 std::swap(SrcOpIdx1, SrcOpIdx2); 1812 1813 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 1814 if (X86II::isKMasked(TSFlags)) { 1815 Op2++; 1816 Op3++; 1817 } 1818 1819 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 1820 return 0; 1821 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 1822 return 1; 1823 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 1824 return 2; 1825 llvm_unreachable("Unknown three src commute case."); 1826 } 1827 1828 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 1829 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 1830 const X86InstrFMA3Group &FMA3Group) const { 1831 1832 unsigned Opc = MI.getOpcode(); 1833 1834 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 1835 // analysis. The commute optimization is legal only if all users of FMA*_Int 1836 // use only the lowest element of the FMA*_Int instruction. Such analysis are 1837 // not implemented yet. So, just return 0 in that case. 1838 // When such analysis are available this place will be the right place for 1839 // calling it. 1840 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 1841 "Intrinsic instructions can't commute operand 1"); 1842 1843 // Determine which case this commute is or if it can't be done. 1844 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1845 SrcOpIdx2); 1846 assert(Case < 3 && "Unexpected case number!"); 1847 1848 // Define the FMA forms mapping array that helps to map input FMA form 1849 // to output FMA form to preserve the operation semantics after 1850 // commuting the operands. 1851 const unsigned Form132Index = 0; 1852 const unsigned Form213Index = 1; 1853 const unsigned Form231Index = 2; 1854 static const unsigned FormMapping[][3] = { 1855 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 1856 // FMA132 A, C, b; ==> FMA231 C, A, b; 1857 // FMA213 B, A, c; ==> FMA213 A, B, c; 1858 // FMA231 C, A, b; ==> FMA132 A, C, b; 1859 { Form231Index, Form213Index, Form132Index }, 1860 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 1861 // FMA132 A, c, B; ==> FMA132 B, c, A; 1862 // FMA213 B, a, C; ==> FMA231 C, a, B; 1863 // FMA231 C, a, B; ==> FMA213 B, a, C; 1864 { Form132Index, Form231Index, Form213Index }, 1865 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 1866 // FMA132 a, C, B; ==> FMA213 a, B, C; 1867 // FMA213 b, A, C; ==> FMA132 b, C, A; 1868 // FMA231 c, A, B; ==> FMA231 c, B, A; 1869 { Form213Index, Form132Index, Form231Index } 1870 }; 1871 1872 unsigned FMAForms[3]; 1873 FMAForms[0] = FMA3Group.get132Opcode(); 1874 FMAForms[1] = FMA3Group.get213Opcode(); 1875 FMAForms[2] = FMA3Group.get231Opcode(); 1876 1877 // Everything is ready, just adjust the FMA opcode and return it. 1878 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) 1879 if (Opc == FMAForms[FormIndex]) 1880 return FMAForms[FormMapping[Case][FormIndex]]; 1881 1882 llvm_unreachable("Illegal FMA3 format"); 1883 } 1884 1885 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 1886 unsigned SrcOpIdx2) { 1887 // Determine which case this commute is or if it can't be done. 1888 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1889 SrcOpIdx2); 1890 assert(Case < 3 && "Unexpected case value!"); 1891 1892 // For each case we need to swap two pairs of bits in the final immediate. 1893 static const uint8_t SwapMasks[3][4] = { 1894 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. 1895 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. 1896 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. 1897 }; 1898 1899 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); 1900 // Clear out the bits we are swapping. 1901 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 1902 SwapMasks[Case][2] | SwapMasks[Case][3]); 1903 // If the immediate had a bit of the pair set, then set the opposite bit. 1904 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; 1905 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; 1906 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; 1907 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; 1908 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); 1909 } 1910 1911 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 1912 // commuted. 1913 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 1914 #define VPERM_CASES(Suffix) \ 1915 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ 1916 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ 1917 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ 1918 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ 1919 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ 1920 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ 1921 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ 1922 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ 1923 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ 1924 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ 1925 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ 1926 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: 1927 1928 #define VPERM_CASES_BROADCAST(Suffix) \ 1929 VPERM_CASES(Suffix) \ 1930 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ 1931 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ 1932 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ 1933 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ 1934 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ 1935 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: 1936 1937 switch (Opcode) { 1938 default: return false; 1939 VPERM_CASES(B) 1940 VPERM_CASES_BROADCAST(D) 1941 VPERM_CASES_BROADCAST(PD) 1942 VPERM_CASES_BROADCAST(PS) 1943 VPERM_CASES_BROADCAST(Q) 1944 VPERM_CASES(W) 1945 return true; 1946 } 1947 #undef VPERM_CASES_BROADCAST 1948 #undef VPERM_CASES 1949 } 1950 1951 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 1952 // from the I opcode to the T opcode and vice versa. 1953 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 1954 #define VPERM_CASES(Orig, New) \ 1955 case X86::Orig##128rr: return X86::New##128rr; \ 1956 case X86::Orig##128rrkz: return X86::New##128rrkz; \ 1957 case X86::Orig##128rm: return X86::New##128rm; \ 1958 case X86::Orig##128rmkz: return X86::New##128rmkz; \ 1959 case X86::Orig##256rr: return X86::New##256rr; \ 1960 case X86::Orig##256rrkz: return X86::New##256rrkz; \ 1961 case X86::Orig##256rm: return X86::New##256rm; \ 1962 case X86::Orig##256rmkz: return X86::New##256rmkz; \ 1963 case X86::Orig##rr: return X86::New##rr; \ 1964 case X86::Orig##rrkz: return X86::New##rrkz; \ 1965 case X86::Orig##rm: return X86::New##rm; \ 1966 case X86::Orig##rmkz: return X86::New##rmkz; 1967 1968 #define VPERM_CASES_BROADCAST(Orig, New) \ 1969 VPERM_CASES(Orig, New) \ 1970 case X86::Orig##128rmb: return X86::New##128rmb; \ 1971 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ 1972 case X86::Orig##256rmb: return X86::New##256rmb; \ 1973 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ 1974 case X86::Orig##rmb: return X86::New##rmb; \ 1975 case X86::Orig##rmbkz: return X86::New##rmbkz; 1976 1977 switch (Opcode) { 1978 VPERM_CASES(VPERMI2B, VPERMT2B) 1979 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 1980 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 1981 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 1982 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 1983 VPERM_CASES(VPERMI2W, VPERMT2W) 1984 VPERM_CASES(VPERMT2B, VPERMI2B) 1985 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 1986 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 1987 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 1988 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 1989 VPERM_CASES(VPERMT2W, VPERMI2W) 1990 } 1991 1992 llvm_unreachable("Unreachable!"); 1993 #undef VPERM_CASES_BROADCAST 1994 #undef VPERM_CASES 1995 } 1996 1997 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1998 unsigned OpIdx1, 1999 unsigned OpIdx2) const { 2000 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 2001 if (NewMI) 2002 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 2003 return MI; 2004 }; 2005 2006 switch (MI.getOpcode()) { 2007 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 2008 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 2009 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 2010 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 2011 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 2012 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 2013 unsigned Opc; 2014 unsigned Size; 2015 switch (MI.getOpcode()) { 2016 default: llvm_unreachable("Unreachable!"); 2017 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 2018 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 2019 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 2020 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 2021 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 2022 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 2023 } 2024 unsigned Amt = MI.getOperand(3).getImm(); 2025 auto &WorkingMI = cloneIfNew(MI); 2026 WorkingMI.setDesc(get(Opc)); 2027 WorkingMI.getOperand(3).setImm(Size - Amt); 2028 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2029 OpIdx1, OpIdx2); 2030 } 2031 case X86::PFSUBrr: 2032 case X86::PFSUBRrr: { 2033 // PFSUB x, y: x = x - y 2034 // PFSUBR x, y: x = y - x 2035 unsigned Opc = 2036 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); 2037 auto &WorkingMI = cloneIfNew(MI); 2038 WorkingMI.setDesc(get(Opc)); 2039 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2040 OpIdx1, OpIdx2); 2041 } 2042 case X86::BLENDPDrri: 2043 case X86::BLENDPSrri: 2044 case X86::VBLENDPDrri: 2045 case X86::VBLENDPSrri: 2046 // If we're optimizing for size, try to use MOVSD/MOVSS. 2047 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 2048 unsigned Mask, Opc; 2049 switch (MI.getOpcode()) { 2050 default: llvm_unreachable("Unreachable!"); 2051 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; 2052 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; 2053 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; 2054 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; 2055 } 2056 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 2057 auto &WorkingMI = cloneIfNew(MI); 2058 WorkingMI.setDesc(get(Opc)); 2059 WorkingMI.removeOperand(3); 2060 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, 2061 /*NewMI=*/false, 2062 OpIdx1, OpIdx2); 2063 } 2064 } 2065 [[fallthrough]]; 2066 case X86::PBLENDWrri: 2067 case X86::VBLENDPDYrri: 2068 case X86::VBLENDPSYrri: 2069 case X86::VPBLENDDrri: 2070 case X86::VPBLENDWrri: 2071 case X86::VPBLENDDYrri: 2072 case X86::VPBLENDWYrri:{ 2073 int8_t Mask; 2074 switch (MI.getOpcode()) { 2075 default: llvm_unreachable("Unreachable!"); 2076 case X86::BLENDPDrri: Mask = (int8_t)0x03; break; 2077 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; 2078 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; 2079 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; 2080 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; 2081 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; 2082 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; 2083 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; 2084 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; 2085 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; 2086 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; 2087 } 2088 // Only the least significant bits of Imm are used. 2089 // Using int8_t to ensure it will be sign extended to the int64_t that 2090 // setImm takes in order to match isel behavior. 2091 int8_t Imm = MI.getOperand(3).getImm() & Mask; 2092 auto &WorkingMI = cloneIfNew(MI); 2093 WorkingMI.getOperand(3).setImm(Mask ^ Imm); 2094 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2095 OpIdx1, OpIdx2); 2096 } 2097 case X86::INSERTPSrr: 2098 case X86::VINSERTPSrr: 2099 case X86::VINSERTPSZrr: { 2100 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2101 unsigned ZMask = Imm & 15; 2102 unsigned DstIdx = (Imm >> 4) & 3; 2103 unsigned SrcIdx = (Imm >> 6) & 3; 2104 2105 // We can commute insertps if we zero 2 of the elements, the insertion is 2106 // "inline" and we don't override the insertion with a zero. 2107 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 2108 llvm::popcount(ZMask) == 2) { 2109 unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15); 2110 assert(AltIdx < 4 && "Illegal insertion index"); 2111 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 2112 auto &WorkingMI = cloneIfNew(MI); 2113 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm); 2114 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2115 OpIdx1, OpIdx2); 2116 } 2117 return nullptr; 2118 } 2119 case X86::MOVSDrr: 2120 case X86::MOVSSrr: 2121 case X86::VMOVSDrr: 2122 case X86::VMOVSSrr:{ 2123 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 2124 if (Subtarget.hasSSE41()) { 2125 unsigned Mask, Opc; 2126 switch (MI.getOpcode()) { 2127 default: llvm_unreachable("Unreachable!"); 2128 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; 2129 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; 2130 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; 2131 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; 2132 } 2133 2134 auto &WorkingMI = cloneIfNew(MI); 2135 WorkingMI.setDesc(get(Opc)); 2136 WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); 2137 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2138 OpIdx1, OpIdx2); 2139 } 2140 2141 // Convert to SHUFPD. 2142 assert(MI.getOpcode() == X86::MOVSDrr && 2143 "Can only commute MOVSDrr without SSE4.1"); 2144 2145 auto &WorkingMI = cloneIfNew(MI); 2146 WorkingMI.setDesc(get(X86::SHUFPDrri)); 2147 WorkingMI.addOperand(MachineOperand::CreateImm(0x02)); 2148 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2149 OpIdx1, OpIdx2); 2150 } 2151 case X86::SHUFPDrri: { 2152 // Commute to MOVSD. 2153 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 2154 auto &WorkingMI = cloneIfNew(MI); 2155 WorkingMI.setDesc(get(X86::MOVSDrr)); 2156 WorkingMI.removeOperand(3); 2157 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2158 OpIdx1, OpIdx2); 2159 } 2160 case X86::PCLMULQDQrr: 2161 case X86::VPCLMULQDQrr: 2162 case X86::VPCLMULQDQYrr: 2163 case X86::VPCLMULQDQZrr: 2164 case X86::VPCLMULQDQZ128rr: 2165 case X86::VPCLMULQDQZ256rr: { 2166 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 2167 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 2168 unsigned Imm = MI.getOperand(3).getImm(); 2169 unsigned Src1Hi = Imm & 0x01; 2170 unsigned Src2Hi = Imm & 0x10; 2171 auto &WorkingMI = cloneIfNew(MI); 2172 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 2173 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2174 OpIdx1, OpIdx2); 2175 } 2176 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: 2177 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: 2178 case X86::VPCMPBZrri: case X86::VPCMPUBZrri: 2179 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: 2180 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: 2181 case X86::VPCMPDZrri: case X86::VPCMPUDZrri: 2182 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: 2183 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: 2184 case X86::VPCMPQZrri: case X86::VPCMPUQZrri: 2185 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: 2186 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: 2187 case X86::VPCMPWZrri: case X86::VPCMPUWZrri: 2188 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: 2189 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: 2190 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: 2191 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: 2192 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: 2193 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: 2194 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: 2195 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: 2196 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: 2197 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: 2198 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: 2199 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { 2200 // Flip comparison mode immediate (if necessary). 2201 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; 2202 Imm = X86::getSwappedVPCMPImm(Imm); 2203 auto &WorkingMI = cloneIfNew(MI); 2204 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); 2205 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2206 OpIdx1, OpIdx2); 2207 } 2208 case X86::VPCOMBri: case X86::VPCOMUBri: 2209 case X86::VPCOMDri: case X86::VPCOMUDri: 2210 case X86::VPCOMQri: case X86::VPCOMUQri: 2211 case X86::VPCOMWri: case X86::VPCOMUWri: { 2212 // Flip comparison mode immediate (if necessary). 2213 unsigned Imm = MI.getOperand(3).getImm() & 0x7; 2214 Imm = X86::getSwappedVPCOMImm(Imm); 2215 auto &WorkingMI = cloneIfNew(MI); 2216 WorkingMI.getOperand(3).setImm(Imm); 2217 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2218 OpIdx1, OpIdx2); 2219 } 2220 case X86::VCMPSDZrr: 2221 case X86::VCMPSSZrr: 2222 case X86::VCMPPDZrri: 2223 case X86::VCMPPSZrri: 2224 case X86::VCMPSHZrr: 2225 case X86::VCMPPHZrri: 2226 case X86::VCMPPHZ128rri: 2227 case X86::VCMPPHZ256rri: 2228 case X86::VCMPPDZ128rri: 2229 case X86::VCMPPSZ128rri: 2230 case X86::VCMPPDZ256rri: 2231 case X86::VCMPPSZ256rri: 2232 case X86::VCMPPDZrrik: 2233 case X86::VCMPPSZrrik: 2234 case X86::VCMPPDZ128rrik: 2235 case X86::VCMPPSZ128rrik: 2236 case X86::VCMPPDZ256rrik: 2237 case X86::VCMPPSZ256rrik: { 2238 unsigned Imm = 2239 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f; 2240 Imm = X86::getSwappedVCMPImm(Imm); 2241 auto &WorkingMI = cloneIfNew(MI); 2242 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm); 2243 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2244 OpIdx1, OpIdx2); 2245 } 2246 case X86::VPERM2F128rr: 2247 case X86::VPERM2I128rr: { 2248 // Flip permute source immediate. 2249 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 2250 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 2251 int8_t Imm = MI.getOperand(3).getImm() & 0xFF; 2252 auto &WorkingMI = cloneIfNew(MI); 2253 WorkingMI.getOperand(3).setImm(Imm ^ 0x22); 2254 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2255 OpIdx1, OpIdx2); 2256 } 2257 case X86::MOVHLPSrr: 2258 case X86::UNPCKHPDrr: 2259 case X86::VMOVHLPSrr: 2260 case X86::VUNPCKHPDrr: 2261 case X86::VMOVHLPSZrr: 2262 case X86::VUNPCKHPDZ128rr: { 2263 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 2264 2265 unsigned Opc = MI.getOpcode(); 2266 switch (Opc) { 2267 default: llvm_unreachable("Unreachable!"); 2268 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; 2269 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; 2270 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; 2271 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; 2272 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; 2273 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; 2274 } 2275 auto &WorkingMI = cloneIfNew(MI); 2276 WorkingMI.setDesc(get(Opc)); 2277 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2278 OpIdx1, OpIdx2); 2279 } 2280 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: { 2281 auto &WorkingMI = cloneIfNew(MI); 2282 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 2283 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 2284 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 2285 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2286 OpIdx1, OpIdx2); 2287 } 2288 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2289 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2290 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2291 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2292 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2293 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2294 case X86::VPTERNLOGDZrrik: 2295 case X86::VPTERNLOGDZ128rrik: 2296 case X86::VPTERNLOGDZ256rrik: 2297 case X86::VPTERNLOGQZrrik: 2298 case X86::VPTERNLOGQZ128rrik: 2299 case X86::VPTERNLOGQZ256rrik: 2300 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2301 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2302 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2303 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2304 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2305 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2306 case X86::VPTERNLOGDZ128rmbi: 2307 case X86::VPTERNLOGDZ256rmbi: 2308 case X86::VPTERNLOGDZrmbi: 2309 case X86::VPTERNLOGQZ128rmbi: 2310 case X86::VPTERNLOGQZ256rmbi: 2311 case X86::VPTERNLOGQZrmbi: 2312 case X86::VPTERNLOGDZ128rmbikz: 2313 case X86::VPTERNLOGDZ256rmbikz: 2314 case X86::VPTERNLOGDZrmbikz: 2315 case X86::VPTERNLOGQZ128rmbikz: 2316 case X86::VPTERNLOGQZ256rmbikz: 2317 case X86::VPTERNLOGQZrmbikz: { 2318 auto &WorkingMI = cloneIfNew(MI); 2319 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); 2320 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2321 OpIdx1, OpIdx2); 2322 } 2323 default: { 2324 if (isCommutableVPERMV3Instruction(MI.getOpcode())) { 2325 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); 2326 auto &WorkingMI = cloneIfNew(MI); 2327 WorkingMI.setDesc(get(Opc)); 2328 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2329 OpIdx1, OpIdx2); 2330 } 2331 2332 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2333 MI.getDesc().TSFlags); 2334 if (FMA3Group) { 2335 unsigned Opc = 2336 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); 2337 auto &WorkingMI = cloneIfNew(MI); 2338 WorkingMI.setDesc(get(Opc)); 2339 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2340 OpIdx1, OpIdx2); 2341 } 2342 2343 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2344 } 2345 } 2346 } 2347 2348 bool 2349 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 2350 unsigned &SrcOpIdx1, 2351 unsigned &SrcOpIdx2, 2352 bool IsIntrinsic) const { 2353 uint64_t TSFlags = MI.getDesc().TSFlags; 2354 2355 unsigned FirstCommutableVecOp = 1; 2356 unsigned LastCommutableVecOp = 3; 2357 unsigned KMaskOp = -1U; 2358 if (X86II::isKMasked(TSFlags)) { 2359 // For k-zero-masked operations it is Ok to commute the first vector 2360 // operand. Unless this is an intrinsic instruction. 2361 // For regular k-masked operations a conservative choice is done as the 2362 // elements of the first vector operand, for which the corresponding bit 2363 // in the k-mask operand is set to 0, are copied to the result of the 2364 // instruction. 2365 // TODO/FIXME: The commute still may be legal if it is known that the 2366 // k-mask operand is set to either all ones or all zeroes. 2367 // It is also Ok to commute the 1st operand if all users of MI use only 2368 // the elements enabled by the k-mask operand. For example, 2369 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 2370 // : v1[i]; 2371 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 2372 // // Ok, to commute v1 in FMADD213PSZrk. 2373 2374 // The k-mask operand has index = 2 for masked and zero-masked operations. 2375 KMaskOp = 2; 2376 2377 // The operand with index = 1 is used as a source for those elements for 2378 // which the corresponding bit in the k-mask is set to 0. 2379 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) 2380 FirstCommutableVecOp = 3; 2381 2382 LastCommutableVecOp++; 2383 } else if (IsIntrinsic) { 2384 // Commuting the first operand of an intrinsic instruction isn't possible 2385 // unless we can prove that only the lowest element of the result is used. 2386 FirstCommutableVecOp = 2; 2387 } 2388 2389 if (isMem(MI, LastCommutableVecOp)) 2390 LastCommutableVecOp--; 2391 2392 // Only the first RegOpsNum operands are commutable. 2393 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 2394 // that the operand is not specified/fixed. 2395 if (SrcOpIdx1 != CommuteAnyOperandIndex && 2396 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 2397 SrcOpIdx1 == KMaskOp)) 2398 return false; 2399 if (SrcOpIdx2 != CommuteAnyOperandIndex && 2400 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 2401 SrcOpIdx2 == KMaskOp)) 2402 return false; 2403 2404 // Look for two different register operands assumed to be commutable 2405 // regardless of the FMA opcode. The FMA opcode is adjusted later. 2406 if (SrcOpIdx1 == CommuteAnyOperandIndex || 2407 SrcOpIdx2 == CommuteAnyOperandIndex) { 2408 unsigned CommutableOpIdx2 = SrcOpIdx2; 2409 2410 // At least one of operands to be commuted is not specified and 2411 // this method is free to choose appropriate commutable operands. 2412 if (SrcOpIdx1 == SrcOpIdx2) 2413 // Both of operands are not fixed. By default set one of commutable 2414 // operands to the last register operand of the instruction. 2415 CommutableOpIdx2 = LastCommutableVecOp; 2416 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 2417 // Only one of operands is not fixed. 2418 CommutableOpIdx2 = SrcOpIdx1; 2419 2420 // CommutableOpIdx2 is well defined now. Let's choose another commutable 2421 // operand and assign its index to CommutableOpIdx1. 2422 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 2423 2424 unsigned CommutableOpIdx1; 2425 for (CommutableOpIdx1 = LastCommutableVecOp; 2426 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 2427 // Just ignore and skip the k-mask operand. 2428 if (CommutableOpIdx1 == KMaskOp) 2429 continue; 2430 2431 // The commuted operands must have different registers. 2432 // Otherwise, the commute transformation does not change anything and 2433 // is useless then. 2434 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 2435 break; 2436 } 2437 2438 // No appropriate commutable operands were found. 2439 if (CommutableOpIdx1 < FirstCommutableVecOp) 2440 return false; 2441 2442 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 2443 // to return those values. 2444 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2445 CommutableOpIdx1, CommutableOpIdx2)) 2446 return false; 2447 } 2448 2449 return true; 2450 } 2451 2452 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2453 unsigned &SrcOpIdx1, 2454 unsigned &SrcOpIdx2) const { 2455 const MCInstrDesc &Desc = MI.getDesc(); 2456 if (!Desc.isCommutable()) 2457 return false; 2458 2459 switch (MI.getOpcode()) { 2460 case X86::CMPSDrr: 2461 case X86::CMPSSrr: 2462 case X86::CMPPDrri: 2463 case X86::CMPPSrri: 2464 case X86::VCMPSDrr: 2465 case X86::VCMPSSrr: 2466 case X86::VCMPPDrri: 2467 case X86::VCMPPSrri: 2468 case X86::VCMPPDYrri: 2469 case X86::VCMPPSYrri: 2470 case X86::VCMPSDZrr: 2471 case X86::VCMPSSZrr: 2472 case X86::VCMPPDZrri: 2473 case X86::VCMPPSZrri: 2474 case X86::VCMPSHZrr: 2475 case X86::VCMPPHZrri: 2476 case X86::VCMPPHZ128rri: 2477 case X86::VCMPPHZ256rri: 2478 case X86::VCMPPDZ128rri: 2479 case X86::VCMPPSZ128rri: 2480 case X86::VCMPPDZ256rri: 2481 case X86::VCMPPSZ256rri: 2482 case X86::VCMPPDZrrik: 2483 case X86::VCMPPSZrrik: 2484 case X86::VCMPPDZ128rrik: 2485 case X86::VCMPPSZ128rrik: 2486 case X86::VCMPPDZ256rrik: 2487 case X86::VCMPPSZ256rrik: { 2488 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 2489 2490 // Float comparison can be safely commuted for 2491 // Ordered/Unordered/Equal/NotEqual tests 2492 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 2493 switch (Imm) { 2494 default: 2495 // EVEX versions can be commuted. 2496 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) 2497 break; 2498 return false; 2499 case 0x00: // EQUAL 2500 case 0x03: // UNORDERED 2501 case 0x04: // NOT EQUAL 2502 case 0x07: // ORDERED 2503 break; 2504 } 2505 2506 // The indices of the commutable operands are 1 and 2 (or 2 and 3 2507 // when masked). 2508 // Assign them to the returned operand indices here. 2509 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2510 2 + OpOffset); 2511 } 2512 case X86::MOVSSrr: 2513 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 2514 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 2515 // AVX implies sse4.1. 2516 if (Subtarget.hasSSE41()) 2517 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2518 return false; 2519 case X86::SHUFPDrri: 2520 // We can commute this to MOVSD. 2521 if (MI.getOperand(3).getImm() == 0x02) 2522 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2523 return false; 2524 case X86::MOVHLPSrr: 2525 case X86::UNPCKHPDrr: 2526 case X86::VMOVHLPSrr: 2527 case X86::VUNPCKHPDrr: 2528 case X86::VMOVHLPSZrr: 2529 case X86::VUNPCKHPDZ128rr: 2530 if (Subtarget.hasSSE2()) 2531 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2532 return false; 2533 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2534 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2535 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2536 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2537 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2538 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2539 case X86::VPTERNLOGDZrrik: 2540 case X86::VPTERNLOGDZ128rrik: 2541 case X86::VPTERNLOGDZ256rrik: 2542 case X86::VPTERNLOGQZrrik: 2543 case X86::VPTERNLOGQZ128rrik: 2544 case X86::VPTERNLOGQZ256rrik: 2545 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2546 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2547 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2548 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2549 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2550 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2551 case X86::VPTERNLOGDZ128rmbi: 2552 case X86::VPTERNLOGDZ256rmbi: 2553 case X86::VPTERNLOGDZrmbi: 2554 case X86::VPTERNLOGQZ128rmbi: 2555 case X86::VPTERNLOGQZ256rmbi: 2556 case X86::VPTERNLOGQZrmbi: 2557 case X86::VPTERNLOGDZ128rmbikz: 2558 case X86::VPTERNLOGDZ256rmbikz: 2559 case X86::VPTERNLOGDZrmbikz: 2560 case X86::VPTERNLOGQZ128rmbikz: 2561 case X86::VPTERNLOGQZ256rmbikz: 2562 case X86::VPTERNLOGQZrmbikz: 2563 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2564 case X86::VPDPWSSDYrr: 2565 case X86::VPDPWSSDrr: 2566 case X86::VPDPWSSDSYrr: 2567 case X86::VPDPWSSDSrr: 2568 case X86::VPDPWUUDrr: 2569 case X86::VPDPWUUDYrr: 2570 case X86::VPDPWUUDSrr: 2571 case X86::VPDPWUUDSYrr: 2572 case X86::VPDPBSSDSrr: 2573 case X86::VPDPBSSDSYrr: 2574 case X86::VPDPBSSDrr: 2575 case X86::VPDPBSSDYrr: 2576 case X86::VPDPBUUDSrr: 2577 case X86::VPDPBUUDSYrr: 2578 case X86::VPDPBUUDrr: 2579 case X86::VPDPBUUDYrr: 2580 case X86::VPDPWSSDZ128r: 2581 case X86::VPDPWSSDZ128rk: 2582 case X86::VPDPWSSDZ128rkz: 2583 case X86::VPDPWSSDZ256r: 2584 case X86::VPDPWSSDZ256rk: 2585 case X86::VPDPWSSDZ256rkz: 2586 case X86::VPDPWSSDZr: 2587 case X86::VPDPWSSDZrk: 2588 case X86::VPDPWSSDZrkz: 2589 case X86::VPDPWSSDSZ128r: 2590 case X86::VPDPWSSDSZ128rk: 2591 case X86::VPDPWSSDSZ128rkz: 2592 case X86::VPDPWSSDSZ256r: 2593 case X86::VPDPWSSDSZ256rk: 2594 case X86::VPDPWSSDSZ256rkz: 2595 case X86::VPDPWSSDSZr: 2596 case X86::VPDPWSSDSZrk: 2597 case X86::VPDPWSSDSZrkz: 2598 case X86::VPMADD52HUQrr: 2599 case X86::VPMADD52HUQYrr: 2600 case X86::VPMADD52HUQZ128r: 2601 case X86::VPMADD52HUQZ128rk: 2602 case X86::VPMADD52HUQZ128rkz: 2603 case X86::VPMADD52HUQZ256r: 2604 case X86::VPMADD52HUQZ256rk: 2605 case X86::VPMADD52HUQZ256rkz: 2606 case X86::VPMADD52HUQZr: 2607 case X86::VPMADD52HUQZrk: 2608 case X86::VPMADD52HUQZrkz: 2609 case X86::VPMADD52LUQrr: 2610 case X86::VPMADD52LUQYrr: 2611 case X86::VPMADD52LUQZ128r: 2612 case X86::VPMADD52LUQZ128rk: 2613 case X86::VPMADD52LUQZ128rkz: 2614 case X86::VPMADD52LUQZ256r: 2615 case X86::VPMADD52LUQZ256rk: 2616 case X86::VPMADD52LUQZ256rkz: 2617 case X86::VPMADD52LUQZr: 2618 case X86::VPMADD52LUQZrk: 2619 case X86::VPMADD52LUQZrkz: 2620 case X86::VFMADDCPHZr: 2621 case X86::VFMADDCPHZrk: 2622 case X86::VFMADDCPHZrkz: 2623 case X86::VFMADDCPHZ128r: 2624 case X86::VFMADDCPHZ128rk: 2625 case X86::VFMADDCPHZ128rkz: 2626 case X86::VFMADDCPHZ256r: 2627 case X86::VFMADDCPHZ256rk: 2628 case X86::VFMADDCPHZ256rkz: 2629 case X86::VFMADDCSHZr: 2630 case X86::VFMADDCSHZrk: 2631 case X86::VFMADDCSHZrkz: { 2632 unsigned CommutableOpIdx1 = 2; 2633 unsigned CommutableOpIdx2 = 3; 2634 if (X86II::isKMasked(Desc.TSFlags)) { 2635 // Skip the mask register. 2636 ++CommutableOpIdx1; 2637 ++CommutableOpIdx2; 2638 } 2639 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2640 CommutableOpIdx1, CommutableOpIdx2)) 2641 return false; 2642 if (!MI.getOperand(SrcOpIdx1).isReg() || 2643 !MI.getOperand(SrcOpIdx2).isReg()) 2644 // No idea. 2645 return false; 2646 return true; 2647 } 2648 2649 default: 2650 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2651 MI.getDesc().TSFlags); 2652 if (FMA3Group) 2653 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 2654 FMA3Group->isIntrinsic()); 2655 2656 // Handled masked instructions since we need to skip over the mask input 2657 // and the preserved input. 2658 if (X86II::isKMasked(Desc.TSFlags)) { 2659 // First assume that the first input is the mask operand and skip past it. 2660 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 2661 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 2662 // Check if the first input is tied. If there isn't one then we only 2663 // need to skip the mask operand which we did above. 2664 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 2665 MCOI::TIED_TO) != -1)) { 2666 // If this is zero masking instruction with a tied operand, we need to 2667 // move the first index back to the first input since this must 2668 // be a 3 input instruction and we want the first two non-mask inputs. 2669 // Otherwise this is a 2 input instruction with a preserved input and 2670 // mask, so we need to move the indices to skip one more input. 2671 if (X86II::isKMergeMasked(Desc.TSFlags)) { 2672 ++CommutableOpIdx1; 2673 ++CommutableOpIdx2; 2674 } else { 2675 --CommutableOpIdx1; 2676 } 2677 } 2678 2679 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2680 CommutableOpIdx1, CommutableOpIdx2)) 2681 return false; 2682 2683 if (!MI.getOperand(SrcOpIdx1).isReg() || 2684 !MI.getOperand(SrcOpIdx2).isReg()) 2685 // No idea. 2686 return false; 2687 return true; 2688 } 2689 2690 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2691 } 2692 return false; 2693 } 2694 2695 static bool isConvertibleLEA(MachineInstr *MI) { 2696 unsigned Opcode = MI->getOpcode(); 2697 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && 2698 Opcode != X86::LEA64_32r) 2699 return false; 2700 2701 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); 2702 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); 2703 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); 2704 2705 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || 2706 Scale.getImm() > 1) 2707 return false; 2708 2709 return true; 2710 } 2711 2712 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { 2713 // Currently we're interested in following sequence only. 2714 // r3 = lea r1, r2 2715 // r5 = add r3, r4 2716 // Both r3 and r4 are killed in add, we hope the add instruction has the 2717 // operand order 2718 // r5 = add r4, r3 2719 // So later in X86FixupLEAs the lea instruction can be rewritten as add. 2720 unsigned Opcode = MI.getOpcode(); 2721 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) 2722 return false; 2723 2724 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2725 Register Reg1 = MI.getOperand(1).getReg(); 2726 Register Reg2 = MI.getOperand(2).getReg(); 2727 2728 // Check if Reg1 comes from LEA in the same MBB. 2729 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { 2730 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2731 Commute = true; 2732 return true; 2733 } 2734 } 2735 2736 // Check if Reg2 comes from LEA in the same MBB. 2737 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { 2738 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2739 Commute = false; 2740 return true; 2741 } 2742 } 2743 2744 return false; 2745 } 2746 2747 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { 2748 unsigned Opcode = MCID.getOpcode(); 2749 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode))) 2750 return -1; 2751 // Assume that condition code is always the last use operand. 2752 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); 2753 return NumUses - 1; 2754 } 2755 2756 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { 2757 const MCInstrDesc &MCID = MI.getDesc(); 2758 int CondNo = getCondSrcNoFromDesc(MCID); 2759 if (CondNo < 0) 2760 return X86::COND_INVALID; 2761 CondNo += MCID.getNumDefs(); 2762 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm()); 2763 } 2764 2765 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 2766 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2767 : X86::COND_INVALID; 2768 } 2769 2770 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 2771 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2772 : X86::COND_INVALID; 2773 } 2774 2775 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 2776 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2777 : X86::COND_INVALID; 2778 } 2779 2780 /// Return the inverse of the specified condition, 2781 /// e.g. turning COND_E to COND_NE. 2782 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2783 switch (CC) { 2784 default: llvm_unreachable("Illegal condition code!"); 2785 case X86::COND_E: return X86::COND_NE; 2786 case X86::COND_NE: return X86::COND_E; 2787 case X86::COND_L: return X86::COND_GE; 2788 case X86::COND_LE: return X86::COND_G; 2789 case X86::COND_G: return X86::COND_LE; 2790 case X86::COND_GE: return X86::COND_L; 2791 case X86::COND_B: return X86::COND_AE; 2792 case X86::COND_BE: return X86::COND_A; 2793 case X86::COND_A: return X86::COND_BE; 2794 case X86::COND_AE: return X86::COND_B; 2795 case X86::COND_S: return X86::COND_NS; 2796 case X86::COND_NS: return X86::COND_S; 2797 case X86::COND_P: return X86::COND_NP; 2798 case X86::COND_NP: return X86::COND_P; 2799 case X86::COND_O: return X86::COND_NO; 2800 case X86::COND_NO: return X86::COND_O; 2801 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; 2802 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; 2803 } 2804 } 2805 2806 /// Assuming the flags are set by MI(a,b), return the condition code if we 2807 /// modify the instructions such that flags are set by MI(b,a). 2808 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 2809 switch (CC) { 2810 default: return X86::COND_INVALID; 2811 case X86::COND_E: return X86::COND_E; 2812 case X86::COND_NE: return X86::COND_NE; 2813 case X86::COND_L: return X86::COND_G; 2814 case X86::COND_LE: return X86::COND_GE; 2815 case X86::COND_G: return X86::COND_L; 2816 case X86::COND_GE: return X86::COND_LE; 2817 case X86::COND_B: return X86::COND_A; 2818 case X86::COND_BE: return X86::COND_AE; 2819 case X86::COND_A: return X86::COND_B; 2820 case X86::COND_AE: return X86::COND_BE; 2821 } 2822 } 2823 2824 std::pair<X86::CondCode, bool> 2825 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 2826 X86::CondCode CC = X86::COND_INVALID; 2827 bool NeedSwap = false; 2828 switch (Predicate) { 2829 default: break; 2830 // Floating-point Predicates 2831 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; 2832 case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]]; 2833 case CmpInst::FCMP_OGT: CC = X86::COND_A; break; 2834 case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]]; 2835 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; 2836 case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]]; 2837 case CmpInst::FCMP_ULT: CC = X86::COND_B; break; 2838 case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]]; 2839 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; 2840 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; 2841 case CmpInst::FCMP_UNO: CC = X86::COND_P; break; 2842 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; 2843 case CmpInst::FCMP_OEQ: [[fallthrough]]; 2844 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; 2845 2846 // Integer Predicates 2847 case CmpInst::ICMP_EQ: CC = X86::COND_E; break; 2848 case CmpInst::ICMP_NE: CC = X86::COND_NE; break; 2849 case CmpInst::ICMP_UGT: CC = X86::COND_A; break; 2850 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; 2851 case CmpInst::ICMP_ULT: CC = X86::COND_B; break; 2852 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; 2853 case CmpInst::ICMP_SGT: CC = X86::COND_G; break; 2854 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; 2855 case CmpInst::ICMP_SLT: CC = X86::COND_L; break; 2856 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; 2857 } 2858 2859 return std::make_pair(CC, NeedSwap); 2860 } 2861 2862 /// Return a cmov opcode for the given register size in bytes, and operand type. 2863 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) { 2864 switch(RegBytes) { 2865 default: llvm_unreachable("Illegal register size!"); 2866 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr; 2867 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr; 2868 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr; 2869 } 2870 } 2871 2872 /// Get the VPCMP immediate for the given condition. 2873 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 2874 switch (CC) { 2875 default: llvm_unreachable("Unexpected SETCC condition"); 2876 case ISD::SETNE: return 4; 2877 case ISD::SETEQ: return 0; 2878 case ISD::SETULT: 2879 case ISD::SETLT: return 1; 2880 case ISD::SETUGT: 2881 case ISD::SETGT: return 6; 2882 case ISD::SETUGE: 2883 case ISD::SETGE: return 5; 2884 case ISD::SETULE: 2885 case ISD::SETLE: return 2; 2886 } 2887 } 2888 2889 /// Get the VPCMP immediate if the operands are swapped. 2890 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 2891 switch (Imm) { 2892 default: llvm_unreachable("Unreachable!"); 2893 case 0x01: Imm = 0x06; break; // LT -> NLE 2894 case 0x02: Imm = 0x05; break; // LE -> NLT 2895 case 0x05: Imm = 0x02; break; // NLT -> LE 2896 case 0x06: Imm = 0x01; break; // NLE -> LT 2897 case 0x00: // EQ 2898 case 0x03: // FALSE 2899 case 0x04: // NE 2900 case 0x07: // TRUE 2901 break; 2902 } 2903 2904 return Imm; 2905 } 2906 2907 /// Get the VPCOM immediate if the operands are swapped. 2908 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 2909 switch (Imm) { 2910 default: llvm_unreachable("Unreachable!"); 2911 case 0x00: Imm = 0x02; break; // LT -> GT 2912 case 0x01: Imm = 0x03; break; // LE -> GE 2913 case 0x02: Imm = 0x00; break; // GT -> LT 2914 case 0x03: Imm = 0x01; break; // GE -> LE 2915 case 0x04: // EQ 2916 case 0x05: // NE 2917 case 0x06: // FALSE 2918 case 0x07: // TRUE 2919 break; 2920 } 2921 2922 return Imm; 2923 } 2924 2925 /// Get the VCMP immediate if the operands are swapped. 2926 unsigned X86::getSwappedVCMPImm(unsigned Imm) { 2927 // Only need the lower 2 bits to distinquish. 2928 switch (Imm & 0x3) { 2929 default: llvm_unreachable("Unreachable!"); 2930 case 0x00: case 0x03: 2931 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. 2932 break; 2933 case 0x01: case 0x02: 2934 // Need to toggle bits 3:0. Bit 4 stays the same. 2935 Imm ^= 0xf; 2936 break; 2937 } 2938 2939 return Imm; 2940 } 2941 2942 /// Return true if the Reg is X87 register. 2943 static bool isX87Reg(unsigned Reg) { 2944 return (Reg == X86::FPCW || Reg == X86::FPSW || 2945 (Reg >= X86::ST0 && Reg <= X86::ST7)); 2946 } 2947 2948 /// check if the instruction is X87 instruction 2949 bool X86::isX87Instruction(MachineInstr &MI) { 2950 for (const MachineOperand &MO : MI.operands()) { 2951 if (!MO.isReg()) 2952 continue; 2953 if (isX87Reg(MO.getReg())) 2954 return true; 2955 } 2956 return false; 2957 } 2958 2959 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 2960 switch (MI.getOpcode()) { 2961 case X86::TCRETURNdi: 2962 case X86::TCRETURNri: 2963 case X86::TCRETURNmi: 2964 case X86::TCRETURNdi64: 2965 case X86::TCRETURNri64: 2966 case X86::TCRETURNmi64: 2967 return true; 2968 default: 2969 return false; 2970 } 2971 } 2972 2973 bool X86InstrInfo::canMakeTailCallConditional( 2974 SmallVectorImpl<MachineOperand> &BranchCond, 2975 const MachineInstr &TailCall) const { 2976 2977 const MachineFunction *MF = TailCall.getMF(); 2978 2979 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) { 2980 // Kernel patches thunk calls in runtime, these should never be conditional. 2981 const MachineOperand &Target = TailCall.getOperand(0); 2982 if (Target.isSymbol()) { 2983 StringRef Symbol(Target.getSymbolName()); 2984 // this is currently only relevant to r11/kernel indirect thunk. 2985 if (Symbol.equals("__x86_indirect_thunk_r11")) 2986 return false; 2987 } 2988 } 2989 2990 if (TailCall.getOpcode() != X86::TCRETURNdi && 2991 TailCall.getOpcode() != X86::TCRETURNdi64) { 2992 // Only direct calls can be done with a conditional branch. 2993 return false; 2994 } 2995 2996 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 2997 // Conditional tail calls confuse the Win64 unwinder. 2998 return false; 2999 } 3000 3001 assert(BranchCond.size() == 1); 3002 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 3003 // Can't make a conditional tail call with this condition. 3004 return false; 3005 } 3006 3007 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 3008 if (X86FI->getTCReturnAddrDelta() != 0 || 3009 TailCall.getOperand(1).getImm() != 0) { 3010 // A conditional tail call cannot do any stack adjustment. 3011 return false; 3012 } 3013 3014 return true; 3015 } 3016 3017 void X86InstrInfo::replaceBranchWithTailCall( 3018 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 3019 const MachineInstr &TailCall) const { 3020 assert(canMakeTailCallConditional(BranchCond, TailCall)); 3021 3022 MachineBasicBlock::iterator I = MBB.end(); 3023 while (I != MBB.begin()) { 3024 --I; 3025 if (I->isDebugInstr()) 3026 continue; 3027 if (!I->isBranch()) 3028 assert(0 && "Can't find the branch to replace!"); 3029 3030 X86::CondCode CC = X86::getCondFromBranch(*I); 3031 assert(BranchCond.size() == 1); 3032 if (CC != BranchCond[0].getImm()) 3033 continue; 3034 3035 break; 3036 } 3037 3038 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 3039 : X86::TCRETURNdi64cc; 3040 3041 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 3042 MIB->addOperand(TailCall.getOperand(0)); // Destination. 3043 MIB.addImm(0); // Stack offset (not used). 3044 MIB->addOperand(BranchCond[0]); // Condition. 3045 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 3046 3047 // Add implicit uses and defs of all live regs potentially clobbered by the 3048 // call. This way they still appear live across the call. 3049 LivePhysRegs LiveRegs(getRegisterInfo()); 3050 LiveRegs.addLiveOuts(MBB); 3051 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 3052 LiveRegs.stepForward(*MIB, Clobbers); 3053 for (const auto &C : Clobbers) { 3054 MIB.addReg(C.first, RegState::Implicit); 3055 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 3056 } 3057 3058 I->eraseFromParent(); 3059 } 3060 3061 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 3062 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 3063 // fallthrough MBB cannot be identified. 3064 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 3065 MachineBasicBlock *TBB) { 3066 // Look for non-EHPad successors other than TBB. If we find exactly one, it 3067 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 3068 // and fallthrough MBB. If we find more than one, we cannot identify the 3069 // fallthrough MBB and should return nullptr. 3070 MachineBasicBlock *FallthroughBB = nullptr; 3071 for (MachineBasicBlock *Succ : MBB->successors()) { 3072 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) 3073 continue; 3074 // Return a nullptr if we found more than one fallthrough successor. 3075 if (FallthroughBB && FallthroughBB != TBB) 3076 return nullptr; 3077 FallthroughBB = Succ; 3078 } 3079 return FallthroughBB; 3080 } 3081 3082 bool X86InstrInfo::AnalyzeBranchImpl( 3083 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 3084 SmallVectorImpl<MachineOperand> &Cond, 3085 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 3086 3087 // Start from the bottom of the block and work up, examining the 3088 // terminator instructions. 3089 MachineBasicBlock::iterator I = MBB.end(); 3090 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 3091 while (I != MBB.begin()) { 3092 --I; 3093 if (I->isDebugInstr()) 3094 continue; 3095 3096 // Working from the bottom, when we see a non-terminator instruction, we're 3097 // done. 3098 if (!isUnpredicatedTerminator(*I)) 3099 break; 3100 3101 // A terminator that isn't a branch can't easily be handled by this 3102 // analysis. 3103 if (!I->isBranch()) 3104 return true; 3105 3106 // Handle unconditional branches. 3107 if (I->getOpcode() == X86::JMP_1) { 3108 UnCondBrIter = I; 3109 3110 if (!AllowModify) { 3111 TBB = I->getOperand(0).getMBB(); 3112 continue; 3113 } 3114 3115 // If the block has any instructions after a JMP, delete them. 3116 MBB.erase(std::next(I), MBB.end()); 3117 3118 Cond.clear(); 3119 FBB = nullptr; 3120 3121 // Delete the JMP if it's equivalent to a fall-through. 3122 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3123 TBB = nullptr; 3124 I->eraseFromParent(); 3125 I = MBB.end(); 3126 UnCondBrIter = MBB.end(); 3127 continue; 3128 } 3129 3130 // TBB is used to indicate the unconditional destination. 3131 TBB = I->getOperand(0).getMBB(); 3132 continue; 3133 } 3134 3135 // Handle conditional branches. 3136 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 3137 if (BranchCode == X86::COND_INVALID) 3138 return true; // Can't handle indirect branch. 3139 3140 // In practice we should never have an undef eflags operand, if we do 3141 // abort here as we are not prepared to preserve the flag. 3142 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef()) 3143 return true; 3144 3145 // Working from the bottom, handle the first conditional branch. 3146 if (Cond.empty()) { 3147 FBB = TBB; 3148 TBB = I->getOperand(0).getMBB(); 3149 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 3150 CondBranches.push_back(&*I); 3151 continue; 3152 } 3153 3154 // Handle subsequent conditional branches. Only handle the case where all 3155 // conditional branches branch to the same destination and their condition 3156 // opcodes fit one of the special multi-branch idioms. 3157 assert(Cond.size() == 1); 3158 assert(TBB); 3159 3160 // If the conditions are the same, we can leave them alone. 3161 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 3162 auto NewTBB = I->getOperand(0).getMBB(); 3163 if (OldBranchCode == BranchCode && TBB == NewTBB) 3164 continue; 3165 3166 // If they differ, see if they fit one of the known patterns. Theoretically, 3167 // we could handle more patterns here, but we shouldn't expect to see them 3168 // if instruction selection has done a reasonable job. 3169 if (TBB == NewTBB && 3170 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 3171 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 3172 BranchCode = X86::COND_NE_OR_P; 3173 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 3174 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 3175 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 3176 return true; 3177 3178 // X86::COND_E_AND_NP usually has two different branch destinations. 3179 // 3180 // JP B1 3181 // JE B2 3182 // JMP B1 3183 // B1: 3184 // B2: 3185 // 3186 // Here this condition branches to B2 only if NP && E. It has another 3187 // equivalent form: 3188 // 3189 // JNE B1 3190 // JNP B2 3191 // JMP B1 3192 // B1: 3193 // B2: 3194 // 3195 // Similarly it branches to B2 only if E && NP. That is why this condition 3196 // is named with COND_E_AND_NP. 3197 BranchCode = X86::COND_E_AND_NP; 3198 } else 3199 return true; 3200 3201 // Update the MachineOperand. 3202 Cond[0].setImm(BranchCode); 3203 CondBranches.push_back(&*I); 3204 } 3205 3206 return false; 3207 } 3208 3209 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 3210 MachineBasicBlock *&TBB, 3211 MachineBasicBlock *&FBB, 3212 SmallVectorImpl<MachineOperand> &Cond, 3213 bool AllowModify) const { 3214 SmallVector<MachineInstr *, 4> CondBranches; 3215 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 3216 } 3217 3218 static int getJumpTableIndexFromAddr(const MachineInstr &MI) { 3219 const MCInstrDesc &Desc = MI.getDesc(); 3220 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3221 assert(MemRefBegin >= 0 && "instr should have memory operand"); 3222 MemRefBegin += X86II::getOperandBias(Desc); 3223 3224 const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp); 3225 if (!MO.isJTI()) 3226 return -1; 3227 3228 return MO.getIndex(); 3229 } 3230 3231 static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, 3232 Register Reg) { 3233 if (!Reg.isVirtual()) 3234 return -1; 3235 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 3236 if (MI == nullptr) 3237 return -1; 3238 unsigned Opcode = MI->getOpcode(); 3239 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r) 3240 return -1; 3241 return getJumpTableIndexFromAddr(*MI); 3242 } 3243 3244 int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const { 3245 unsigned Opcode = MI.getOpcode(); 3246 // Switch-jump pattern for non-PIC code looks like: 3247 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg 3248 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) { 3249 return getJumpTableIndexFromAddr(MI); 3250 } 3251 // The pattern for PIC code looks like: 3252 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X 3253 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg 3254 // %2 = ADD64rr %1, %0 3255 // JMP64r %2 3256 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) { 3257 Register Reg = MI.getOperand(0).getReg(); 3258 if (!Reg.isVirtual()) 3259 return -1; 3260 const MachineFunction &MF = *MI.getParent()->getParent(); 3261 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3262 MachineInstr *Add = MRI.getUniqueVRegDef(Reg); 3263 if (Add == nullptr) 3264 return -1; 3265 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr) 3266 return -1; 3267 int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg()); 3268 if (JTI1 >= 0) 3269 return JTI1; 3270 int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg()); 3271 if (JTI2 >= 0) 3272 return JTI2; 3273 } 3274 return -1; 3275 } 3276 3277 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 3278 MachineBranchPredicate &MBP, 3279 bool AllowModify) const { 3280 using namespace std::placeholders; 3281 3282 SmallVector<MachineOperand, 4> Cond; 3283 SmallVector<MachineInstr *, 4> CondBranches; 3284 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 3285 AllowModify)) 3286 return true; 3287 3288 if (Cond.size() != 1) 3289 return true; 3290 3291 assert(MBP.TrueDest && "expected!"); 3292 3293 if (!MBP.FalseDest) 3294 MBP.FalseDest = MBB.getNextNode(); 3295 3296 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3297 3298 MachineInstr *ConditionDef = nullptr; 3299 bool SingleUseCondition = true; 3300 3301 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) { 3302 if (MI.modifiesRegister(X86::EFLAGS, TRI)) { 3303 ConditionDef = &MI; 3304 break; 3305 } 3306 3307 if (MI.readsRegister(X86::EFLAGS, TRI)) 3308 SingleUseCondition = false; 3309 } 3310 3311 if (!ConditionDef) 3312 return true; 3313 3314 if (SingleUseCondition) { 3315 for (auto *Succ : MBB.successors()) 3316 if (Succ->isLiveIn(X86::EFLAGS)) 3317 SingleUseCondition = false; 3318 } 3319 3320 MBP.ConditionDef = ConditionDef; 3321 MBP.SingleUseCondition = SingleUseCondition; 3322 3323 // Currently we only recognize the simple pattern: 3324 // 3325 // test %reg, %reg 3326 // je %label 3327 // 3328 const unsigned TestOpcode = 3329 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 3330 3331 if (ConditionDef->getOpcode() == TestOpcode && 3332 ConditionDef->getNumOperands() == 3 && 3333 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 3334 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 3335 MBP.LHS = ConditionDef->getOperand(0); 3336 MBP.RHS = MachineOperand::CreateImm(0); 3337 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 3338 ? MachineBranchPredicate::PRED_NE 3339 : MachineBranchPredicate::PRED_EQ; 3340 return false; 3341 } 3342 3343 return true; 3344 } 3345 3346 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 3347 int *BytesRemoved) const { 3348 assert(!BytesRemoved && "code size not handled"); 3349 3350 MachineBasicBlock::iterator I = MBB.end(); 3351 unsigned Count = 0; 3352 3353 while (I != MBB.begin()) { 3354 --I; 3355 if (I->isDebugInstr()) 3356 continue; 3357 if (I->getOpcode() != X86::JMP_1 && 3358 X86::getCondFromBranch(*I) == X86::COND_INVALID) 3359 break; 3360 // Remove the branch. 3361 I->eraseFromParent(); 3362 I = MBB.end(); 3363 ++Count; 3364 } 3365 3366 return Count; 3367 } 3368 3369 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 3370 MachineBasicBlock *TBB, 3371 MachineBasicBlock *FBB, 3372 ArrayRef<MachineOperand> Cond, 3373 const DebugLoc &DL, 3374 int *BytesAdded) const { 3375 // Shouldn't be a fall through. 3376 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 3377 assert((Cond.size() == 1 || Cond.size() == 0) && 3378 "X86 branch conditions have one component!"); 3379 assert(!BytesAdded && "code size not handled"); 3380 3381 if (Cond.empty()) { 3382 // Unconditional branch? 3383 assert(!FBB && "Unconditional branch with multiple successors!"); 3384 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 3385 return 1; 3386 } 3387 3388 // If FBB is null, it is implied to be a fall-through block. 3389 bool FallThru = FBB == nullptr; 3390 3391 // Conditional branch. 3392 unsigned Count = 0; 3393 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 3394 switch (CC) { 3395 case X86::COND_NE_OR_P: 3396 // Synthesize NE_OR_P with two branches. 3397 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 3398 ++Count; 3399 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 3400 ++Count; 3401 break; 3402 case X86::COND_E_AND_NP: 3403 // Use the next block of MBB as FBB if it is null. 3404 if (FBB == nullptr) { 3405 FBB = getFallThroughMBB(&MBB, TBB); 3406 assert(FBB && "MBB cannot be the last block in function when the false " 3407 "body is a fall-through."); 3408 } 3409 // Synthesize COND_E_AND_NP with two branches. 3410 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 3411 ++Count; 3412 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 3413 ++Count; 3414 break; 3415 default: { 3416 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 3417 ++Count; 3418 } 3419 } 3420 if (!FallThru) { 3421 // Two-way Conditional branch. Insert the second branch. 3422 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 3423 ++Count; 3424 } 3425 return Count; 3426 } 3427 3428 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3429 ArrayRef<MachineOperand> Cond, 3430 Register DstReg, Register TrueReg, 3431 Register FalseReg, int &CondCycles, 3432 int &TrueCycles, int &FalseCycles) const { 3433 // Not all subtargets have cmov instructions. 3434 if (!Subtarget.canUseCMOV()) 3435 return false; 3436 if (Cond.size() != 1) 3437 return false; 3438 // We cannot do the composite conditions, at least not in SSA form. 3439 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 3440 return false; 3441 3442 // Check register classes. 3443 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3444 const TargetRegisterClass *RC = 3445 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 3446 if (!RC) 3447 return false; 3448 3449 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 3450 if (X86::GR16RegClass.hasSubClassEq(RC) || 3451 X86::GR32RegClass.hasSubClassEq(RC) || 3452 X86::GR64RegClass.hasSubClassEq(RC)) { 3453 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 3454 // Bridge. Probably Ivy Bridge as well. 3455 CondCycles = 2; 3456 TrueCycles = 2; 3457 FalseCycles = 2; 3458 return true; 3459 } 3460 3461 // Can't do vectors. 3462 return false; 3463 } 3464 3465 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 3466 MachineBasicBlock::iterator I, 3467 const DebugLoc &DL, Register DstReg, 3468 ArrayRef<MachineOperand> Cond, Register TrueReg, 3469 Register FalseReg) const { 3470 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3471 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 3472 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 3473 assert(Cond.size() == 1 && "Invalid Cond array"); 3474 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 3475 false /*HasMemoryOperand*/); 3476 BuildMI(MBB, I, DL, get(Opc), DstReg) 3477 .addReg(FalseReg) 3478 .addReg(TrueReg) 3479 .addImm(Cond[0].getImm()); 3480 } 3481 3482 /// Test if the given register is a physical h register. 3483 static bool isHReg(unsigned Reg) { 3484 return X86::GR8_ABCD_HRegClass.contains(Reg); 3485 } 3486 3487 // Try and copy between VR128/VR64 and GR64 registers. 3488 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 3489 const X86Subtarget &Subtarget) { 3490 bool HasAVX = Subtarget.hasAVX(); 3491 bool HasAVX512 = Subtarget.hasAVX512(); 3492 3493 // SrcReg(MaskReg) -> DestReg(GR64) 3494 // SrcReg(MaskReg) -> DestReg(GR32) 3495 3496 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3497 if (X86::VK16RegClass.contains(SrcReg)) { 3498 if (X86::GR64RegClass.contains(DestReg)) { 3499 assert(Subtarget.hasBWI()); 3500 return X86::KMOVQrk; 3501 } 3502 if (X86::GR32RegClass.contains(DestReg)) 3503 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; 3504 } 3505 3506 // SrcReg(GR64) -> DestReg(MaskReg) 3507 // SrcReg(GR32) -> DestReg(MaskReg) 3508 3509 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3510 if (X86::VK16RegClass.contains(DestReg)) { 3511 if (X86::GR64RegClass.contains(SrcReg)) { 3512 assert(Subtarget.hasBWI()); 3513 return X86::KMOVQkr; 3514 } 3515 if (X86::GR32RegClass.contains(SrcReg)) 3516 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; 3517 } 3518 3519 3520 // SrcReg(VR128) -> DestReg(GR64) 3521 // SrcReg(VR64) -> DestReg(GR64) 3522 // SrcReg(GR64) -> DestReg(VR128) 3523 // SrcReg(GR64) -> DestReg(VR64) 3524 3525 if (X86::GR64RegClass.contains(DestReg)) { 3526 if (X86::VR128XRegClass.contains(SrcReg)) 3527 // Copy from a VR128 register to a GR64 register. 3528 return HasAVX512 ? X86::VMOVPQIto64Zrr : 3529 HasAVX ? X86::VMOVPQIto64rr : 3530 X86::MOVPQIto64rr; 3531 if (X86::VR64RegClass.contains(SrcReg)) 3532 // Copy from a VR64 register to a GR64 register. 3533 return X86::MMX_MOVD64from64rr; 3534 } else if (X86::GR64RegClass.contains(SrcReg)) { 3535 // Copy from a GR64 register to a VR128 register. 3536 if (X86::VR128XRegClass.contains(DestReg)) 3537 return HasAVX512 ? X86::VMOV64toPQIZrr : 3538 HasAVX ? X86::VMOV64toPQIrr : 3539 X86::MOV64toPQIrr; 3540 // Copy from a GR64 register to a VR64 register. 3541 if (X86::VR64RegClass.contains(DestReg)) 3542 return X86::MMX_MOVD64to64rr; 3543 } 3544 3545 // SrcReg(VR128) -> DestReg(GR32) 3546 // SrcReg(GR32) -> DestReg(VR128) 3547 3548 if (X86::GR32RegClass.contains(DestReg) && 3549 X86::VR128XRegClass.contains(SrcReg)) 3550 // Copy from a VR128 register to a GR32 register. 3551 return HasAVX512 ? X86::VMOVPDI2DIZrr : 3552 HasAVX ? X86::VMOVPDI2DIrr : 3553 X86::MOVPDI2DIrr; 3554 3555 if (X86::VR128XRegClass.contains(DestReg) && 3556 X86::GR32RegClass.contains(SrcReg)) 3557 // Copy from a VR128 register to a VR128 register. 3558 return HasAVX512 ? X86::VMOVDI2PDIZrr : 3559 HasAVX ? X86::VMOVDI2PDIrr : 3560 X86::MOVDI2PDIrr; 3561 return 0; 3562 } 3563 3564 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 3565 MachineBasicBlock::iterator MI, 3566 const DebugLoc &DL, MCRegister DestReg, 3567 MCRegister SrcReg, bool KillSrc) const { 3568 // First deal with the normal symmetric copies. 3569 bool HasAVX = Subtarget.hasAVX(); 3570 bool HasVLX = Subtarget.hasVLX(); 3571 unsigned Opc = 0; 3572 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 3573 Opc = X86::MOV64rr; 3574 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 3575 Opc = X86::MOV32rr; 3576 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 3577 Opc = X86::MOV16rr; 3578 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 3579 // Copying to or from a physical H register on x86-64 requires a NOREX 3580 // move. Otherwise use a normal move. 3581 if ((isHReg(DestReg) || isHReg(SrcReg)) && 3582 Subtarget.is64Bit()) { 3583 Opc = X86::MOV8rr_NOREX; 3584 // Both operands must be encodable without an REX prefix. 3585 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 3586 "8-bit H register can not be copied outside GR8_NOREX"); 3587 } else 3588 Opc = X86::MOV8rr; 3589 } 3590 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 3591 Opc = X86::MMX_MOVQ64rr; 3592 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 3593 if (HasVLX) 3594 Opc = X86::VMOVAPSZ128rr; 3595 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 3596 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 3597 else { 3598 // If this an extended register and we don't have VLX we need to use a 3599 // 512-bit move. 3600 Opc = X86::VMOVAPSZrr; 3601 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3602 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, 3603 &X86::VR512RegClass); 3604 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, 3605 &X86::VR512RegClass); 3606 } 3607 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 3608 if (HasVLX) 3609 Opc = X86::VMOVAPSZ256rr; 3610 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 3611 Opc = X86::VMOVAPSYrr; 3612 else { 3613 // If this an extended register and we don't have VLX we need to use a 3614 // 512-bit move. 3615 Opc = X86::VMOVAPSZrr; 3616 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3617 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, 3618 &X86::VR512RegClass); 3619 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, 3620 &X86::VR512RegClass); 3621 } 3622 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 3623 Opc = X86::VMOVAPSZrr; 3624 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3625 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 3626 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; 3627 if (!Opc) 3628 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 3629 3630 if (Opc) { 3631 BuildMI(MBB, MI, DL, get(Opc), DestReg) 3632 .addReg(SrcReg, getKillRegState(KillSrc)); 3633 return; 3634 } 3635 3636 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 3637 // FIXME: We use a fatal error here because historically LLVM has tried 3638 // lower some of these physreg copies and we want to ensure we get 3639 // reasonable bug reports if someone encounters a case no other testing 3640 // found. This path should be removed after the LLVM 7 release. 3641 report_fatal_error("Unable to copy EFLAGS physical register!"); 3642 } 3643 3644 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 3645 << RI.getName(DestReg) << '\n'); 3646 report_fatal_error("Cannot emit physreg copy instruction"); 3647 } 3648 3649 std::optional<DestSourcePair> 3650 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 3651 if (MI.isMoveReg()) 3652 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 3653 return std::nullopt; 3654 } 3655 3656 static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) { 3657 if (STI.hasFP16()) 3658 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; 3659 if (Load) 3660 return STI.hasAVX512() ? X86::VMOVSSZrm 3661 : STI.hasAVX() ? X86::VMOVSSrm 3662 : X86::MOVSSrm; 3663 else 3664 return STI.hasAVX512() ? X86::VMOVSSZmr 3665 : STI.hasAVX() ? X86::VMOVSSmr 3666 : X86::MOVSSmr; 3667 } 3668 3669 static unsigned getLoadStoreRegOpcode(Register Reg, 3670 const TargetRegisterClass *RC, 3671 bool IsStackAligned, 3672 const X86Subtarget &STI, bool Load) { 3673 bool HasAVX = STI.hasAVX(); 3674 bool HasAVX512 = STI.hasAVX512(); 3675 bool HasVLX = STI.hasVLX(); 3676 3677 assert(RC != nullptr && "Invalid target register class"); 3678 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 3679 default: 3680 llvm_unreachable("Unknown spill size"); 3681 case 1: 3682 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 3683 if (STI.is64Bit()) 3684 // Copying to or from a physical H register on x86-64 requires a NOREX 3685 // move. Otherwise use a normal move. 3686 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 3687 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 3688 return Load ? X86::MOV8rm : X86::MOV8mr; 3689 case 2: 3690 if (X86::VK16RegClass.hasSubClassEq(RC)) 3691 return Load ? X86::KMOVWkm : X86::KMOVWmk; 3692 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 3693 return Load ? X86::MOV16rm : X86::MOV16mr; 3694 case 4: 3695 if (X86::GR32RegClass.hasSubClassEq(RC)) 3696 return Load ? X86::MOV32rm : X86::MOV32mr; 3697 if (X86::FR32XRegClass.hasSubClassEq(RC)) 3698 return Load ? 3699 (HasAVX512 ? X86::VMOVSSZrm_alt : 3700 HasAVX ? X86::VMOVSSrm_alt : 3701 X86::MOVSSrm_alt) : 3702 (HasAVX512 ? X86::VMOVSSZmr : 3703 HasAVX ? X86::VMOVSSmr : 3704 X86::MOVSSmr); 3705 if (X86::RFP32RegClass.hasSubClassEq(RC)) 3706 return Load ? X86::LD_Fp32m : X86::ST_Fp32m; 3707 if (X86::VK32RegClass.hasSubClassEq(RC)) { 3708 assert(STI.hasBWI() && "KMOVD requires BWI"); 3709 return Load ? X86::KMOVDkm : X86::KMOVDmk; 3710 } 3711 // All of these mask pair classes have the same spill size, the same kind 3712 // of kmov instructions can be used with all of them. 3713 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 3714 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 3715 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 3716 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 3717 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 3718 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 3719 if (X86::FR16RegClass.hasSubClassEq(RC) || 3720 X86::FR16XRegClass.hasSubClassEq(RC)) 3721 return getLoadStoreOpcodeForFP16(Load, STI); 3722 llvm_unreachable("Unknown 4-byte regclass"); 3723 case 8: 3724 if (X86::GR64RegClass.hasSubClassEq(RC)) 3725 return Load ? X86::MOV64rm : X86::MOV64mr; 3726 if (X86::FR64XRegClass.hasSubClassEq(RC)) 3727 return Load ? 3728 (HasAVX512 ? X86::VMOVSDZrm_alt : 3729 HasAVX ? X86::VMOVSDrm_alt : 3730 X86::MOVSDrm_alt) : 3731 (HasAVX512 ? X86::VMOVSDZmr : 3732 HasAVX ? X86::VMOVSDmr : 3733 X86::MOVSDmr); 3734 if (X86::VR64RegClass.hasSubClassEq(RC)) 3735 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 3736 if (X86::RFP64RegClass.hasSubClassEq(RC)) 3737 return Load ? X86::LD_Fp64m : X86::ST_Fp64m; 3738 if (X86::VK64RegClass.hasSubClassEq(RC)) { 3739 assert(STI.hasBWI() && "KMOVQ requires BWI"); 3740 return Load ? X86::KMOVQkm : X86::KMOVQmk; 3741 } 3742 llvm_unreachable("Unknown 8-byte regclass"); 3743 case 10: 3744 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 3745 return Load ? X86::LD_Fp80m : X86::ST_FpP80m; 3746 case 16: { 3747 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 3748 // If stack is realigned we can use aligned stores. 3749 if (IsStackAligned) 3750 return Load ? 3751 (HasVLX ? X86::VMOVAPSZ128rm : 3752 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : 3753 HasAVX ? X86::VMOVAPSrm : 3754 X86::MOVAPSrm): 3755 (HasVLX ? X86::VMOVAPSZ128mr : 3756 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : 3757 HasAVX ? X86::VMOVAPSmr : 3758 X86::MOVAPSmr); 3759 else 3760 return Load ? 3761 (HasVLX ? X86::VMOVUPSZ128rm : 3762 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : 3763 HasAVX ? X86::VMOVUPSrm : 3764 X86::MOVUPSrm): 3765 (HasVLX ? X86::VMOVUPSZ128mr : 3766 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : 3767 HasAVX ? X86::VMOVUPSmr : 3768 X86::MOVUPSmr); 3769 } 3770 llvm_unreachable("Unknown 16-byte regclass"); 3771 } 3772 case 32: 3773 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 3774 // If stack is realigned we can use aligned stores. 3775 if (IsStackAligned) 3776 return Load ? 3777 (HasVLX ? X86::VMOVAPSZ256rm : 3778 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : 3779 X86::VMOVAPSYrm) : 3780 (HasVLX ? X86::VMOVAPSZ256mr : 3781 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : 3782 X86::VMOVAPSYmr); 3783 else 3784 return Load ? 3785 (HasVLX ? X86::VMOVUPSZ256rm : 3786 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : 3787 X86::VMOVUPSYrm) : 3788 (HasVLX ? X86::VMOVUPSZ256mr : 3789 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : 3790 X86::VMOVUPSYmr); 3791 case 64: 3792 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 3793 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 3794 if (IsStackAligned) 3795 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 3796 else 3797 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 3798 case 1024: 3799 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass"); 3800 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE"); 3801 return Load ? X86::TILELOADD : X86::TILESTORED; 3802 } 3803 } 3804 3805 std::optional<ExtAddrMode> 3806 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, 3807 const TargetRegisterInfo *TRI) const { 3808 const MCInstrDesc &Desc = MemI.getDesc(); 3809 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3810 if (MemRefBegin < 0) 3811 return std::nullopt; 3812 3813 MemRefBegin += X86II::getOperandBias(Desc); 3814 3815 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); 3816 if (!BaseOp.isReg()) // Can be an MO_FrameIndex 3817 return std::nullopt; 3818 3819 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); 3820 // Displacement can be symbolic 3821 if (!DispMO.isImm()) 3822 return std::nullopt; 3823 3824 ExtAddrMode AM; 3825 AM.BaseReg = BaseOp.getReg(); 3826 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); 3827 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); 3828 AM.Displacement = DispMO.getImm(); 3829 return AM; 3830 } 3831 3832 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, 3833 StringRef &ErrInfo) const { 3834 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr); 3835 if (!AMOrNone) 3836 return true; 3837 3838 ExtAddrMode AM = *AMOrNone; 3839 3840 if (AM.ScaledReg != X86::NoRegister) { 3841 switch (AM.Scale) { 3842 case 1: 3843 case 2: 3844 case 4: 3845 case 8: 3846 break; 3847 default: 3848 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8"; 3849 return false; 3850 } 3851 } 3852 if (!isInt<32>(AM.Displacement)) { 3853 ErrInfo = "Displacement in address must fit into 32-bit signed " 3854 "integer"; 3855 return false; 3856 } 3857 3858 return true; 3859 } 3860 3861 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, 3862 const Register Reg, 3863 int64_t &ImmVal) const { 3864 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri) 3865 return false; 3866 // Mov Src can be a global address. 3867 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg) 3868 return false; 3869 ImmVal = MI.getOperand(1).getImm(); 3870 return true; 3871 } 3872 3873 bool X86InstrInfo::preservesZeroValueInReg( 3874 const MachineInstr *MI, const Register NullValueReg, 3875 const TargetRegisterInfo *TRI) const { 3876 if (!MI->modifiesRegister(NullValueReg, TRI)) 3877 return true; 3878 switch (MI->getOpcode()) { 3879 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax 3880 // X. 3881 case X86::SHR64ri: 3882 case X86::SHR32ri: 3883 case X86::SHL64ri: 3884 case X86::SHL32ri: 3885 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && 3886 "expected for shift opcode!"); 3887 return MI->getOperand(0).getReg() == NullValueReg && 3888 MI->getOperand(1).getReg() == NullValueReg; 3889 // Zero extend of a sub-reg of NullValueReg into itself does not change the 3890 // null value. 3891 case X86::MOV32rr: 3892 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { 3893 return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); 3894 }); 3895 default: 3896 return false; 3897 } 3898 llvm_unreachable("Should be handled above!"); 3899 } 3900 3901 bool X86InstrInfo::getMemOperandsWithOffsetWidth( 3902 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, 3903 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 3904 const TargetRegisterInfo *TRI) const { 3905 const MCInstrDesc &Desc = MemOp.getDesc(); 3906 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3907 if (MemRefBegin < 0) 3908 return false; 3909 3910 MemRefBegin += X86II::getOperandBias(Desc); 3911 3912 const MachineOperand *BaseOp = 3913 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 3914 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 3915 return false; 3916 3917 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 3918 return false; 3919 3920 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 3921 X86::NoRegister) 3922 return false; 3923 3924 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 3925 3926 // Displacement can be symbolic 3927 if (!DispMO.isImm()) 3928 return false; 3929 3930 Offset = DispMO.getImm(); 3931 3932 if (!BaseOp->isReg()) 3933 return false; 3934 3935 OffsetIsScalable = false; 3936 // FIXME: Relying on memoperands() may not be right thing to do here. Check 3937 // with X86 maintainers, and fix it accordingly. For now, it is ok, since 3938 // there is no use of `Width` for X86 back-end at the moment. 3939 Width = 3940 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; 3941 BaseOps.push_back(BaseOp); 3942 return true; 3943 } 3944 3945 static unsigned getStoreRegOpcode(Register SrcReg, 3946 const TargetRegisterClass *RC, 3947 bool IsStackAligned, 3948 const X86Subtarget &STI) { 3949 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); 3950 } 3951 3952 static unsigned getLoadRegOpcode(Register DestReg, 3953 const TargetRegisterClass *RC, 3954 bool IsStackAligned, const X86Subtarget &STI) { 3955 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); 3956 } 3957 3958 static bool isAMXOpcode(unsigned Opc) { 3959 switch (Opc) { 3960 default: 3961 return false; 3962 case X86::TILELOADD: 3963 case X86::TILESTORED: 3964 return true; 3965 } 3966 } 3967 3968 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB, 3969 MachineBasicBlock::iterator MI, 3970 unsigned Opc, Register Reg, int FrameIdx, 3971 bool isKill) const { 3972 switch (Opc) { 3973 default: 3974 llvm_unreachable("Unexpected special opcode!"); 3975 case X86::TILESTORED: { 3976 // tilestored %tmm, (%sp, %idx) 3977 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3978 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3979 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3980 MachineInstr *NewMI = 3981 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3982 .addReg(Reg, getKillRegState(isKill)); 3983 MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg); 3984 MO.setReg(VirtReg); 3985 MO.setIsKill(true); 3986 break; 3987 } 3988 case X86::TILELOADD: { 3989 // tileloadd (%sp, %idx), %tmm 3990 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3991 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3992 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3993 MachineInstr *NewMI = addFrameReference( 3994 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx); 3995 MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg); 3996 MO.setReg(VirtReg); 3997 MO.setIsKill(true); 3998 break; 3999 } 4000 } 4001 } 4002 4003 void X86InstrInfo::storeRegToStackSlot( 4004 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 4005 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 4006 const TargetRegisterInfo *TRI, Register VReg) const { 4007 const MachineFunction &MF = *MBB.getParent(); 4008 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4009 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 4010 "Stack slot too small for store"); 4011 4012 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 4013 bool isAligned = 4014 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 4015 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 4016 4017 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 4018 if (isAMXOpcode(Opc)) 4019 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill); 4020 else 4021 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 4022 .addReg(SrcReg, getKillRegState(isKill)); 4023 } 4024 4025 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 4026 MachineBasicBlock::iterator MI, 4027 Register DestReg, int FrameIdx, 4028 const TargetRegisterClass *RC, 4029 const TargetRegisterInfo *TRI, 4030 Register VReg) const { 4031 const MachineFunction &MF = *MBB.getParent(); 4032 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4033 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 4034 "Load size exceeds stack slot"); 4035 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 4036 bool isAligned = 4037 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 4038 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 4039 4040 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 4041 if (isAMXOpcode(Opc)) 4042 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx); 4043 else 4044 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), 4045 FrameIdx); 4046 } 4047 4048 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 4049 Register &SrcReg2, int64_t &CmpMask, 4050 int64_t &CmpValue) const { 4051 switch (MI.getOpcode()) { 4052 default: break; 4053 case X86::CMP64ri32: 4054 case X86::CMP32ri: 4055 case X86::CMP16ri: 4056 case X86::CMP8ri: 4057 SrcReg = MI.getOperand(0).getReg(); 4058 SrcReg2 = 0; 4059 if (MI.getOperand(1).isImm()) { 4060 CmpMask = ~0; 4061 CmpValue = MI.getOperand(1).getImm(); 4062 } else { 4063 CmpMask = CmpValue = 0; 4064 } 4065 return true; 4066 // A SUB can be used to perform comparison. 4067 case X86::SUB64rm: 4068 case X86::SUB32rm: 4069 case X86::SUB16rm: 4070 case X86::SUB8rm: 4071 SrcReg = MI.getOperand(1).getReg(); 4072 SrcReg2 = 0; 4073 CmpMask = 0; 4074 CmpValue = 0; 4075 return true; 4076 case X86::SUB64rr: 4077 case X86::SUB32rr: 4078 case X86::SUB16rr: 4079 case X86::SUB8rr: 4080 SrcReg = MI.getOperand(1).getReg(); 4081 SrcReg2 = MI.getOperand(2).getReg(); 4082 CmpMask = 0; 4083 CmpValue = 0; 4084 return true; 4085 case X86::SUB64ri32: 4086 case X86::SUB32ri: 4087 case X86::SUB16ri: 4088 case X86::SUB8ri: 4089 SrcReg = MI.getOperand(1).getReg(); 4090 SrcReg2 = 0; 4091 if (MI.getOperand(2).isImm()) { 4092 CmpMask = ~0; 4093 CmpValue = MI.getOperand(2).getImm(); 4094 } else { 4095 CmpMask = CmpValue = 0; 4096 } 4097 return true; 4098 case X86::CMP64rr: 4099 case X86::CMP32rr: 4100 case X86::CMP16rr: 4101 case X86::CMP8rr: 4102 SrcReg = MI.getOperand(0).getReg(); 4103 SrcReg2 = MI.getOperand(1).getReg(); 4104 CmpMask = 0; 4105 CmpValue = 0; 4106 return true; 4107 case X86::TEST8rr: 4108 case X86::TEST16rr: 4109 case X86::TEST32rr: 4110 case X86::TEST64rr: 4111 SrcReg = MI.getOperand(0).getReg(); 4112 if (MI.getOperand(1).getReg() != SrcReg) 4113 return false; 4114 // Compare against zero. 4115 SrcReg2 = 0; 4116 CmpMask = ~0; 4117 CmpValue = 0; 4118 return true; 4119 } 4120 return false; 4121 } 4122 4123 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, 4124 Register SrcReg, Register SrcReg2, 4125 int64_t ImmMask, int64_t ImmValue, 4126 const MachineInstr &OI, bool *IsSwapped, 4127 int64_t *ImmDelta) const { 4128 switch (OI.getOpcode()) { 4129 case X86::CMP64rr: 4130 case X86::CMP32rr: 4131 case X86::CMP16rr: 4132 case X86::CMP8rr: 4133 case X86::SUB64rr: 4134 case X86::SUB32rr: 4135 case X86::SUB16rr: 4136 case X86::SUB8rr: { 4137 Register OISrcReg; 4138 Register OISrcReg2; 4139 int64_t OIMask; 4140 int64_t OIValue; 4141 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) || 4142 OIMask != ImmMask || OIValue != ImmValue) 4143 return false; 4144 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { 4145 *IsSwapped = false; 4146 return true; 4147 } 4148 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { 4149 *IsSwapped = true; 4150 return true; 4151 } 4152 return false; 4153 } 4154 case X86::CMP64ri32: 4155 case X86::CMP32ri: 4156 case X86::CMP16ri: 4157 case X86::CMP8ri: 4158 case X86::SUB64ri32: 4159 case X86::SUB32ri: 4160 case X86::SUB16ri: 4161 case X86::SUB8ri: 4162 case X86::TEST64rr: 4163 case X86::TEST32rr: 4164 case X86::TEST16rr: 4165 case X86::TEST8rr: { 4166 if (ImmMask != 0) { 4167 Register OISrcReg; 4168 Register OISrcReg2; 4169 int64_t OIMask; 4170 int64_t OIValue; 4171 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) && 4172 SrcReg == OISrcReg && ImmMask == OIMask) { 4173 if (OIValue == ImmValue) { 4174 *ImmDelta = 0; 4175 return true; 4176 } else if (static_cast<uint64_t>(ImmValue) == 4177 static_cast<uint64_t>(OIValue) - 1) { 4178 *ImmDelta = -1; 4179 return true; 4180 } else if (static_cast<uint64_t>(ImmValue) == 4181 static_cast<uint64_t>(OIValue) + 1) { 4182 *ImmDelta = 1; 4183 return true; 4184 } else { 4185 return false; 4186 } 4187 } 4188 } 4189 return FlagI.isIdenticalTo(OI); 4190 } 4191 default: 4192 return false; 4193 } 4194 } 4195 4196 /// Check whether the definition can be converted 4197 /// to remove a comparison against zero. 4198 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, 4199 bool &ClearsOverflowFlag) { 4200 NoSignFlag = false; 4201 ClearsOverflowFlag = false; 4202 4203 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and 4204 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during 4205 // Initial Exec to Local Exec relaxation. In these cases, we must not depend 4206 // on the EFLAGS modification of ADD actually happening in the final binary. 4207 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) { 4208 unsigned Flags = MI.getOperand(5).getTargetFlags(); 4209 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF || 4210 Flags == X86II::MO_GOTNTPOFF) 4211 return false; 4212 } 4213 4214 switch (MI.getOpcode()) { 4215 default: return false; 4216 4217 // The shift instructions only modify ZF if their shift count is non-zero. 4218 // N.B.: The processor truncates the shift count depending on the encoding. 4219 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 4220 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 4221 return getTruncatedShiftCount(MI, 2) != 0; 4222 4223 // Some left shift instructions can be turned into LEA instructions but only 4224 // if their flags aren't used. Avoid transforming such instructions. 4225 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 4226 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 4227 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 4228 return ShAmt != 0; 4229 } 4230 4231 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 4232 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 4233 return getTruncatedShiftCount(MI, 3) != 0; 4234 4235 case X86::SUB64ri32: case X86::SUB32ri: case X86::SUB16ri: 4236 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 4237 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 4238 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 4239 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 4240 case X86::ADD64ri32: case X86::ADD32ri: case X86::ADD16ri: 4241 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 4242 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 4243 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 4244 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 4245 case X86::ADC64ri32: case X86::ADC32ri: case X86::ADC16ri: 4246 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: 4247 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: 4248 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: 4249 case X86::SBB64ri32: case X86::SBB32ri: case X86::SBB16ri: 4250 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: 4251 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: 4252 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: 4253 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 4254 case X86::LZCNT16rr: case X86::LZCNT16rm: 4255 case X86::LZCNT32rr: case X86::LZCNT32rm: 4256 case X86::LZCNT64rr: case X86::LZCNT64rm: 4257 case X86::POPCNT16rr:case X86::POPCNT16rm: 4258 case X86::POPCNT32rr:case X86::POPCNT32rm: 4259 case X86::POPCNT64rr:case X86::POPCNT64rm: 4260 case X86::TZCNT16rr: case X86::TZCNT16rm: 4261 case X86::TZCNT32rr: case X86::TZCNT32rm: 4262 case X86::TZCNT64rr: case X86::TZCNT64rm: 4263 return true; 4264 case X86::AND64ri32: case X86::AND32ri: case X86::AND16ri: 4265 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 4266 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 4267 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 4268 case X86::XOR64ri32: case X86::XOR32ri: case X86::XOR16ri: 4269 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 4270 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 4271 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 4272 case X86::OR64ri32: case X86::OR32ri: case X86::OR16ri: 4273 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 4274 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 4275 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 4276 case X86::ANDN32rr: case X86::ANDN32rm: 4277 case X86::ANDN64rr: case X86::ANDN64rm: 4278 case X86::BLSI32rr: case X86::BLSI32rm: 4279 case X86::BLSI64rr: case X86::BLSI64rm: 4280 case X86::BLSMSK32rr: case X86::BLSMSK32rm: 4281 case X86::BLSMSK64rr: case X86::BLSMSK64rm: 4282 case X86::BLSR32rr: case X86::BLSR32rm: 4283 case X86::BLSR64rr: case X86::BLSR64rm: 4284 case X86::BLCFILL32rr: case X86::BLCFILL32rm: 4285 case X86::BLCFILL64rr: case X86::BLCFILL64rm: 4286 case X86::BLCI32rr: case X86::BLCI32rm: 4287 case X86::BLCI64rr: case X86::BLCI64rm: 4288 case X86::BLCIC32rr: case X86::BLCIC32rm: 4289 case X86::BLCIC64rr: case X86::BLCIC64rm: 4290 case X86::BLCMSK32rr: case X86::BLCMSK32rm: 4291 case X86::BLCMSK64rr: case X86::BLCMSK64rm: 4292 case X86::BLCS32rr: case X86::BLCS32rm: 4293 case X86::BLCS64rr: case X86::BLCS64rm: 4294 case X86::BLSFILL32rr: case X86::BLSFILL32rm: 4295 case X86::BLSFILL64rr: case X86::BLSFILL64rm: 4296 case X86::BLSIC32rr: case X86::BLSIC32rm: 4297 case X86::BLSIC64rr: case X86::BLSIC64rm: 4298 case X86::BZHI32rr: case X86::BZHI32rm: 4299 case X86::BZHI64rr: case X86::BZHI64rm: 4300 case X86::T1MSKC32rr: case X86::T1MSKC32rm: 4301 case X86::T1MSKC64rr: case X86::T1MSKC64rm: 4302 case X86::TZMSK32rr: case X86::TZMSK32rm: 4303 case X86::TZMSK64rr: case X86::TZMSK64rm: 4304 // These instructions clear the overflow flag just like TEST. 4305 // FIXME: These are not the only instructions in this switch that clear the 4306 // overflow flag. 4307 ClearsOverflowFlag = true; 4308 return true; 4309 case X86::BEXTR32rr: case X86::BEXTR64rr: 4310 case X86::BEXTR32rm: case X86::BEXTR64rm: 4311 case X86::BEXTRI32ri: case X86::BEXTRI32mi: 4312 case X86::BEXTRI64ri: case X86::BEXTRI64mi: 4313 // BEXTR doesn't update the sign flag so we can't use it. It does clear 4314 // the overflow flag, but that's not useful without the sign flag. 4315 NoSignFlag = true; 4316 return true; 4317 } 4318 } 4319 4320 /// Check whether the use can be converted to remove a comparison against zero. 4321 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { 4322 switch (MI.getOpcode()) { 4323 default: return X86::COND_INVALID; 4324 case X86::NEG8r: 4325 case X86::NEG16r: 4326 case X86::NEG32r: 4327 case X86::NEG64r: 4328 return X86::COND_AE; 4329 case X86::LZCNT16rr: 4330 case X86::LZCNT32rr: 4331 case X86::LZCNT64rr: 4332 return X86::COND_B; 4333 case X86::POPCNT16rr: 4334 case X86::POPCNT32rr: 4335 case X86::POPCNT64rr: 4336 return X86::COND_E; 4337 case X86::TZCNT16rr: 4338 case X86::TZCNT32rr: 4339 case X86::TZCNT64rr: 4340 return X86::COND_B; 4341 case X86::BSF16rr: 4342 case X86::BSF32rr: 4343 case X86::BSF64rr: 4344 case X86::BSR16rr: 4345 case X86::BSR32rr: 4346 case X86::BSR64rr: 4347 return X86::COND_E; 4348 case X86::BLSI32rr: 4349 case X86::BLSI64rr: 4350 return X86::COND_AE; 4351 case X86::BLSR32rr: 4352 case X86::BLSR64rr: 4353 case X86::BLSMSK32rr: 4354 case X86::BLSMSK64rr: 4355 return X86::COND_B; 4356 // TODO: TBM instructions. 4357 } 4358 } 4359 4360 /// Check if there exists an earlier instruction that 4361 /// operates on the same source operands and sets flags in the same way as 4362 /// Compare; remove Compare if possible. 4363 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 4364 Register SrcReg2, int64_t CmpMask, 4365 int64_t CmpValue, 4366 const MachineRegisterInfo *MRI) const { 4367 // Check whether we can replace SUB with CMP. 4368 switch (CmpInstr.getOpcode()) { 4369 default: break; 4370 case X86::SUB64ri32: 4371 case X86::SUB32ri: 4372 case X86::SUB16ri: 4373 case X86::SUB8ri: 4374 case X86::SUB64rm: 4375 case X86::SUB32rm: 4376 case X86::SUB16rm: 4377 case X86::SUB8rm: 4378 case X86::SUB64rr: 4379 case X86::SUB32rr: 4380 case X86::SUB16rr: 4381 case X86::SUB8rr: { 4382 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 4383 return false; 4384 // There is no use of the destination register, we can replace SUB with CMP. 4385 unsigned NewOpcode = 0; 4386 switch (CmpInstr.getOpcode()) { 4387 default: llvm_unreachable("Unreachable!"); 4388 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 4389 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 4390 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 4391 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 4392 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 4393 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 4394 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 4395 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 4396 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 4397 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 4398 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 4399 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 4400 } 4401 CmpInstr.setDesc(get(NewOpcode)); 4402 CmpInstr.removeOperand(0); 4403 // Mutating this instruction invalidates any debug data associated with it. 4404 CmpInstr.dropDebugNumber(); 4405 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 4406 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 4407 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 4408 return false; 4409 } 4410 } 4411 4412 // The following code tries to remove the comparison by re-using EFLAGS 4413 // from earlier instructions. 4414 4415 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 4416 4417 // Transformation currently requires SSA values. 4418 if (SrcReg2.isPhysical()) 4419 return false; 4420 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 4421 assert(SrcRegDef && "Must have a definition (SSA)"); 4422 4423 MachineInstr *MI = nullptr; 4424 MachineInstr *Sub = nullptr; 4425 MachineInstr *Movr0Inst = nullptr; 4426 bool NoSignFlag = false; 4427 bool ClearsOverflowFlag = false; 4428 bool ShouldUpdateCC = false; 4429 bool IsSwapped = false; 4430 X86::CondCode NewCC = X86::COND_INVALID; 4431 int64_t ImmDelta = 0; 4432 4433 // Search backward from CmpInstr for the next instruction defining EFLAGS. 4434 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4435 MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); 4436 MachineBasicBlock::reverse_iterator From = 4437 std::next(MachineBasicBlock::reverse_iterator(CmpInstr)); 4438 for (MachineBasicBlock *MBB = &CmpMBB;;) { 4439 for (MachineInstr &Inst : make_range(From, MBB->rend())) { 4440 // Try to use EFLAGS from the instruction defining %SrcReg. Example: 4441 // %eax = addl ... 4442 // ... // EFLAGS not changed 4443 // testl %eax, %eax // <-- can be removed 4444 if (&Inst == SrcRegDef) { 4445 if (IsCmpZero && 4446 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) { 4447 MI = &Inst; 4448 break; 4449 } 4450 4451 // Look back for the following pattern, in which case the 4452 // test16rr/test64rr instruction could be erased. 4453 // 4454 // Example for test16rr: 4455 // %reg = and32ri %in_reg, 5 4456 // ... // EFLAGS not changed. 4457 // %src_reg = copy %reg.sub_16bit:gr32 4458 // test16rr %src_reg, %src_reg, implicit-def $eflags 4459 // Example for test64rr: 4460 // %reg = and32ri %in_reg, 5 4461 // ... // EFLAGS not changed. 4462 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index 4463 // test64rr %src_reg, %src_reg, implicit-def $eflags 4464 MachineInstr *AndInstr = nullptr; 4465 if (IsCmpZero && 4466 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI, 4467 NoSignFlag, ClearsOverflowFlag)) { 4468 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); 4469 MI = AndInstr; 4470 break; 4471 } 4472 // Cannot find other candidates before definition of SrcReg. 4473 return false; 4474 } 4475 4476 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) { 4477 // Try to use EFLAGS produced by an instruction reading %SrcReg. 4478 // Example: 4479 // %eax = ... 4480 // ... 4481 // popcntl %eax 4482 // ... // EFLAGS not changed 4483 // testl %eax, %eax // <-- can be removed 4484 if (IsCmpZero) { 4485 NewCC = isUseDefConvertible(Inst); 4486 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() && 4487 Inst.getOperand(1).getReg() == SrcReg) { 4488 ShouldUpdateCC = true; 4489 MI = &Inst; 4490 break; 4491 } 4492 } 4493 4494 // Try to use EFLAGS from an instruction with similar flag results. 4495 // Example: 4496 // sub x, y or cmp x, y 4497 // ... // EFLAGS not changed 4498 // cmp x, y // <-- can be removed 4499 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, 4500 Inst, &IsSwapped, &ImmDelta)) { 4501 Sub = &Inst; 4502 break; 4503 } 4504 4505 // MOV32r0 is implemented with xor which clobbers condition code. It is 4506 // safe to move up, if the definition to EFLAGS is dead and earlier 4507 // instructions do not read or write EFLAGS. 4508 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && 4509 Inst.registerDefIsDead(X86::EFLAGS, TRI)) { 4510 Movr0Inst = &Inst; 4511 continue; 4512 } 4513 4514 // Cannot do anything for any other EFLAG changes. 4515 return false; 4516 } 4517 } 4518 4519 if (MI || Sub) 4520 break; 4521 4522 // Reached begin of basic block. Continue in predecessor if there is 4523 // exactly one. 4524 if (MBB->pred_size() != 1) 4525 return false; 4526 MBB = *MBB->pred_begin(); 4527 From = MBB->rbegin(); 4528 } 4529 4530 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 4531 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 4532 // If we are done with the basic block, we need to check whether EFLAGS is 4533 // live-out. 4534 bool FlagsMayLiveOut = true; 4535 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate; 4536 MachineBasicBlock::iterator AfterCmpInstr = 4537 std::next(MachineBasicBlock::iterator(CmpInstr)); 4538 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) { 4539 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 4540 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 4541 // We should check the usage if this instruction uses and updates EFLAGS. 4542 if (!UseEFLAGS && ModifyEFLAGS) { 4543 // It is safe to remove CmpInstr if EFLAGS is updated again. 4544 FlagsMayLiveOut = false; 4545 break; 4546 } 4547 if (!UseEFLAGS && !ModifyEFLAGS) 4548 continue; 4549 4550 // EFLAGS is used by this instruction. 4551 X86::CondCode OldCC = X86::getCondFromMI(Instr); 4552 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID) 4553 return false; 4554 4555 X86::CondCode ReplacementCC = X86::COND_INVALID; 4556 if (MI) { 4557 switch (OldCC) { 4558 default: break; 4559 case X86::COND_A: case X86::COND_AE: 4560 case X86::COND_B: case X86::COND_BE: 4561 // CF is used, we can't perform this optimization. 4562 return false; 4563 case X86::COND_G: case X86::COND_GE: 4564 case X86::COND_L: case X86::COND_LE: 4565 // If SF is used, but the instruction doesn't update the SF, then we 4566 // can't do the optimization. 4567 if (NoSignFlag) 4568 return false; 4569 [[fallthrough]]; 4570 case X86::COND_O: case X86::COND_NO: 4571 // If OF is used, the instruction needs to clear it like CmpZero does. 4572 if (!ClearsOverflowFlag) 4573 return false; 4574 break; 4575 case X86::COND_S: case X86::COND_NS: 4576 // If SF is used, but the instruction doesn't update the SF, then we 4577 // can't do the optimization. 4578 if (NoSignFlag) 4579 return false; 4580 break; 4581 } 4582 4583 // If we're updating the condition code check if we have to reverse the 4584 // condition. 4585 if (ShouldUpdateCC) 4586 switch (OldCC) { 4587 default: 4588 return false; 4589 case X86::COND_E: 4590 ReplacementCC = NewCC; 4591 break; 4592 case X86::COND_NE: 4593 ReplacementCC = GetOppositeBranchCondition(NewCC); 4594 break; 4595 } 4596 } else if (IsSwapped) { 4597 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 4598 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 4599 // We swap the condition code and synthesize the new opcode. 4600 ReplacementCC = getSwappedCondition(OldCC); 4601 if (ReplacementCC == X86::COND_INVALID) 4602 return false; 4603 ShouldUpdateCC = true; 4604 } else if (ImmDelta != 0) { 4605 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg)); 4606 // Shift amount for min/max constants to adjust for 8/16/32 instruction 4607 // sizes. 4608 switch (OldCC) { 4609 case X86::COND_L: // x <s (C + 1) --> x <=s C 4610 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 4611 return false; 4612 ReplacementCC = X86::COND_LE; 4613 break; 4614 case X86::COND_B: // x <u (C + 1) --> x <=u C 4615 if (ImmDelta != 1 || CmpValue == 0) 4616 return false; 4617 ReplacementCC = X86::COND_BE; 4618 break; 4619 case X86::COND_GE: // x >=s (C + 1) --> x >s C 4620 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 4621 return false; 4622 ReplacementCC = X86::COND_G; 4623 break; 4624 case X86::COND_AE: // x >=u (C + 1) --> x >u C 4625 if (ImmDelta != 1 || CmpValue == 0) 4626 return false; 4627 ReplacementCC = X86::COND_A; 4628 break; 4629 case X86::COND_G: // x >s (C - 1) --> x >=s C 4630 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 4631 return false; 4632 ReplacementCC = X86::COND_GE; 4633 break; 4634 case X86::COND_A: // x >u (C - 1) --> x >=u C 4635 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 4636 return false; 4637 ReplacementCC = X86::COND_AE; 4638 break; 4639 case X86::COND_LE: // x <=s (C - 1) --> x <s C 4640 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 4641 return false; 4642 ReplacementCC = X86::COND_L; 4643 break; 4644 case X86::COND_BE: // x <=u (C - 1) --> x <u C 4645 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 4646 return false; 4647 ReplacementCC = X86::COND_B; 4648 break; 4649 default: 4650 return false; 4651 } 4652 ShouldUpdateCC = true; 4653 } 4654 4655 if (ShouldUpdateCC && ReplacementCC != OldCC) { 4656 // Push the MachineInstr to OpsToUpdate. 4657 // If it is safe to remove CmpInstr, the condition code of these 4658 // instructions will be modified. 4659 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC)); 4660 } 4661 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 4662 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 4663 FlagsMayLiveOut = false; 4664 break; 4665 } 4666 } 4667 4668 // If we have to update users but EFLAGS is live-out abort, since we cannot 4669 // easily find all of the users. 4670 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) { 4671 for (MachineBasicBlock *Successor : CmpMBB.successors()) 4672 if (Successor->isLiveIn(X86::EFLAGS)) 4673 return false; 4674 } 4675 4676 // The instruction to be updated is either Sub or MI. 4677 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set"); 4678 Sub = MI != nullptr ? MI : Sub; 4679 MachineBasicBlock *SubBB = Sub->getParent(); 4680 // Move Movr0Inst to the appropriate place before Sub. 4681 if (Movr0Inst) { 4682 // Only move within the same block so we don't accidentally move to a 4683 // block with higher execution frequency. 4684 if (&CmpMBB != SubBB) 4685 return false; 4686 // Look backwards until we find a def that doesn't use the current EFLAGS. 4687 MachineBasicBlock::reverse_iterator InsertI = Sub, 4688 InsertE = Sub->getParent()->rend(); 4689 for (; InsertI != InsertE; ++InsertI) { 4690 MachineInstr *Instr = &*InsertI; 4691 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 4692 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 4693 Movr0Inst->getParent()->remove(Movr0Inst); 4694 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 4695 Movr0Inst); 4696 break; 4697 } 4698 } 4699 if (InsertI == InsertE) 4700 return false; 4701 } 4702 4703 // Make sure Sub instruction defines EFLAGS and mark the def live. 4704 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS); 4705 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 4706 FlagDef->setIsDead(false); 4707 4708 CmpInstr.eraseFromParent(); 4709 4710 // Modify the condition code of instructions in OpsToUpdate. 4711 for (auto &Op : OpsToUpdate) { 4712 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 4713 .setImm(Op.second); 4714 } 4715 // Add EFLAGS to block live-ins between CmpBB and block of flags producer. 4716 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; 4717 MBB = *MBB->pred_begin()) { 4718 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor"); 4719 if (!MBB->isLiveIn(X86::EFLAGS)) 4720 MBB->addLiveIn(X86::EFLAGS); 4721 } 4722 return true; 4723 } 4724 4725 /// Try to remove the load by folding it to a register 4726 /// operand at the use. We fold the load instructions if load defines a virtual 4727 /// register, the virtual register is used once in the same BB, and the 4728 /// instructions in-between do not load or store, and have no side effects. 4729 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 4730 const MachineRegisterInfo *MRI, 4731 Register &FoldAsLoadDefReg, 4732 MachineInstr *&DefMI) const { 4733 // Check whether we can move DefMI here. 4734 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 4735 assert(DefMI); 4736 bool SawStore = false; 4737 if (!DefMI->isSafeToMove(nullptr, SawStore)) 4738 return nullptr; 4739 4740 // Collect information about virtual register operands of MI. 4741 SmallVector<unsigned, 1> SrcOperandIds; 4742 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4743 MachineOperand &MO = MI.getOperand(i); 4744 if (!MO.isReg()) 4745 continue; 4746 Register Reg = MO.getReg(); 4747 if (Reg != FoldAsLoadDefReg) 4748 continue; 4749 // Do not fold if we have a subreg use or a def. 4750 if (MO.getSubReg() || MO.isDef()) 4751 return nullptr; 4752 SrcOperandIds.push_back(i); 4753 } 4754 if (SrcOperandIds.empty()) 4755 return nullptr; 4756 4757 // Check whether we can fold the def into SrcOperandId. 4758 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 4759 FoldAsLoadDefReg = 0; 4760 return FoldMI; 4761 } 4762 4763 return nullptr; 4764 } 4765 4766 /// Expand a single-def pseudo instruction to a two-addr 4767 /// instruction with two undef reads of the register being defined. 4768 /// This is used for mapping: 4769 /// %xmm4 = V_SET0 4770 /// to: 4771 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 4772 /// 4773 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 4774 const MCInstrDesc &Desc) { 4775 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4776 Register Reg = MIB.getReg(0); 4777 MIB->setDesc(Desc); 4778 4779 // MachineInstr::addOperand() will insert explicit operands before any 4780 // implicit operands. 4781 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4782 // But we don't trust that. 4783 assert(MIB.getReg(1) == Reg && 4784 MIB.getReg(2) == Reg && "Misplaced operand"); 4785 return true; 4786 } 4787 4788 /// Expand a single-def pseudo instruction to a two-addr 4789 /// instruction with two %k0 reads. 4790 /// This is used for mapping: 4791 /// %k4 = K_SET1 4792 /// to: 4793 /// %k4 = KXNORrr %k0, %k0 4794 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, 4795 Register Reg) { 4796 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4797 MIB->setDesc(Desc); 4798 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4799 return true; 4800 } 4801 4802 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 4803 bool MinusOne) { 4804 MachineBasicBlock &MBB = *MIB->getParent(); 4805 const DebugLoc &DL = MIB->getDebugLoc(); 4806 Register Reg = MIB.getReg(0); 4807 4808 // Insert the XOR. 4809 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 4810 .addReg(Reg, RegState::Undef) 4811 .addReg(Reg, RegState::Undef); 4812 4813 // Turn the pseudo into an INC or DEC. 4814 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 4815 MIB.addReg(Reg); 4816 4817 return true; 4818 } 4819 4820 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 4821 const TargetInstrInfo &TII, 4822 const X86Subtarget &Subtarget) { 4823 MachineBasicBlock &MBB = *MIB->getParent(); 4824 const DebugLoc &DL = MIB->getDebugLoc(); 4825 int64_t Imm = MIB->getOperand(1).getImm(); 4826 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 4827 MachineBasicBlock::iterator I = MIB.getInstr(); 4828 4829 int StackAdjustment; 4830 4831 if (Subtarget.is64Bit()) { 4832 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 4833 MIB->getOpcode() == X86::MOV32ImmSExti8); 4834 4835 // Can't use push/pop lowering if the function might write to the red zone. 4836 X86MachineFunctionInfo *X86FI = 4837 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 4838 if (X86FI->getUsesRedZone()) { 4839 MIB->setDesc(TII.get(MIB->getOpcode() == 4840 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); 4841 return true; 4842 } 4843 4844 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 4845 // widen the register if necessary. 4846 StackAdjustment = 8; 4847 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm); 4848 MIB->setDesc(TII.get(X86::POP64r)); 4849 MIB->getOperand(0) 4850 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); 4851 } else { 4852 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 4853 StackAdjustment = 4; 4854 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm); 4855 MIB->setDesc(TII.get(X86::POP32r)); 4856 } 4857 MIB->removeOperand(1); 4858 MIB->addImplicitDefUseOperands(*MBB.getParent()); 4859 4860 // Build CFI if necessary. 4861 MachineFunction &MF = *MBB.getParent(); 4862 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 4863 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 4864 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 4865 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 4866 if (EmitCFI) { 4867 TFL->BuildCFI(MBB, I, DL, 4868 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 4869 TFL->BuildCFI(MBB, std::next(I), DL, 4870 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 4871 } 4872 4873 return true; 4874 } 4875 4876 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 4877 // code sequence is needed for other targets. 4878 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 4879 const TargetInstrInfo &TII) { 4880 MachineBasicBlock &MBB = *MIB->getParent(); 4881 const DebugLoc &DL = MIB->getDebugLoc(); 4882 Register Reg = MIB.getReg(0); 4883 const GlobalValue *GV = 4884 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 4885 auto Flags = MachineMemOperand::MOLoad | 4886 MachineMemOperand::MODereferenceable | 4887 MachineMemOperand::MOInvariant; 4888 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4889 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); 4890 MachineBasicBlock::iterator I = MIB.getInstr(); 4891 4892 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 4893 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 4894 .addMemOperand(MMO); 4895 MIB->setDebugLoc(DL); 4896 MIB->setDesc(TII.get(X86::MOV64rm)); 4897 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 4898 } 4899 4900 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 4901 MachineBasicBlock &MBB = *MIB->getParent(); 4902 MachineFunction &MF = *MBB.getParent(); 4903 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 4904 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 4905 unsigned XorOp = 4906 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 4907 MIB->setDesc(TII.get(XorOp)); 4908 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 4909 return true; 4910 } 4911 4912 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4913 // but not VLX. If it uses an extended register we need to use an instruction 4914 // that loads the lower 128/256-bit, but is available with only AVX512F. 4915 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 4916 const TargetRegisterInfo *TRI, 4917 const MCInstrDesc &LoadDesc, 4918 const MCInstrDesc &BroadcastDesc, 4919 unsigned SubIdx) { 4920 Register DestReg = MIB.getReg(0); 4921 // Check if DestReg is XMM16-31 or YMM16-31. 4922 if (TRI->getEncodingValue(DestReg) < 16) { 4923 // We can use a normal VEX encoded load. 4924 MIB->setDesc(LoadDesc); 4925 } else { 4926 // Use a 128/256-bit VBROADCAST instruction. 4927 MIB->setDesc(BroadcastDesc); 4928 // Change the destination to a 512-bit register. 4929 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 4930 MIB->getOperand(0).setReg(DestReg); 4931 } 4932 return true; 4933 } 4934 4935 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4936 // but not VLX. If it uses an extended register we need to use an instruction 4937 // that stores the lower 128/256-bit, but is available with only AVX512F. 4938 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 4939 const TargetRegisterInfo *TRI, 4940 const MCInstrDesc &StoreDesc, 4941 const MCInstrDesc &ExtractDesc, 4942 unsigned SubIdx) { 4943 Register SrcReg = MIB.getReg(X86::AddrNumOperands); 4944 // Check if DestReg is XMM16-31 or YMM16-31. 4945 if (TRI->getEncodingValue(SrcReg) < 16) { 4946 // We can use a normal VEX encoded store. 4947 MIB->setDesc(StoreDesc); 4948 } else { 4949 // Use a VEXTRACTF instruction. 4950 MIB->setDesc(ExtractDesc); 4951 // Change the destination to a 512-bit register. 4952 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 4953 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 4954 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 4955 } 4956 4957 return true; 4958 } 4959 4960 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 4961 MIB->setDesc(Desc); 4962 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 4963 // Temporarily remove the immediate so we can add another source register. 4964 MIB->removeOperand(2); 4965 // Add the register. Don't copy the kill flag if there is one. 4966 MIB.addReg(MIB.getReg(1), 4967 getUndefRegState(MIB->getOperand(1).isUndef())); 4968 // Add back the immediate. 4969 MIB.addImm(ShiftAmt); 4970 return true; 4971 } 4972 4973 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 4974 bool HasAVX = Subtarget.hasAVX(); 4975 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4976 switch (MI.getOpcode()) { 4977 case X86::MOV32r0: 4978 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 4979 case X86::MOV32r1: 4980 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 4981 case X86::MOV32r_1: 4982 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 4983 case X86::MOV32ImmSExti8: 4984 case X86::MOV64ImmSExti8: 4985 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 4986 case X86::SETB_C32r: 4987 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 4988 case X86::SETB_C64r: 4989 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 4990 case X86::MMX_SET0: 4991 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr)); 4992 case X86::V_SET0: 4993 case X86::FsFLD0SS: 4994 case X86::FsFLD0SD: 4995 case X86::FsFLD0SH: 4996 case X86::FsFLD0F128: 4997 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 4998 case X86::AVX_SET0: { 4999 assert(HasAVX && "AVX not supported"); 5000 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5001 Register SrcReg = MIB.getReg(0); 5002 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 5003 MIB->getOperand(0).setReg(XReg); 5004 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 5005 MIB.addReg(SrcReg, RegState::ImplicitDefine); 5006 return true; 5007 } 5008 case X86::AVX512_128_SET0: 5009 case X86::AVX512_FsFLD0SH: 5010 case X86::AVX512_FsFLD0SS: 5011 case X86::AVX512_FsFLD0SD: 5012 case X86::AVX512_FsFLD0F128: { 5013 bool HasVLX = Subtarget.hasVLX(); 5014 Register SrcReg = MIB.getReg(0); 5015 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5016 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 5017 return Expand2AddrUndef(MIB, 5018 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 5019 // Extended register without VLX. Use a larger XOR. 5020 SrcReg = 5021 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 5022 MIB->getOperand(0).setReg(SrcReg); 5023 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 5024 } 5025 case X86::AVX512_256_SET0: 5026 case X86::AVX512_512_SET0: { 5027 bool HasVLX = Subtarget.hasVLX(); 5028 Register SrcReg = MIB.getReg(0); 5029 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5030 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 5031 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 5032 MIB->getOperand(0).setReg(XReg); 5033 Expand2AddrUndef(MIB, 5034 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 5035 MIB.addReg(SrcReg, RegState::ImplicitDefine); 5036 return true; 5037 } 5038 if (MI.getOpcode() == X86::AVX512_256_SET0) { 5039 // No VLX so we must reference a zmm. 5040 unsigned ZReg = 5041 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 5042 MIB->getOperand(0).setReg(ZReg); 5043 } 5044 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 5045 } 5046 case X86::V_SETALLONES: 5047 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 5048 case X86::AVX2_SETALLONES: 5049 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 5050 case X86::AVX1_SETALLONES: { 5051 Register Reg = MIB.getReg(0); 5052 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 5053 MIB->setDesc(get(X86::VCMPPSYrri)); 5054 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 5055 return true; 5056 } 5057 case X86::AVX512_512_SETALLONES: { 5058 Register Reg = MIB.getReg(0); 5059 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 5060 // VPTERNLOGD needs 3 register inputs and an immediate. 5061 // 0xff will return 1s for any input. 5062 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) 5063 .addReg(Reg, RegState::Undef).addImm(0xff); 5064 return true; 5065 } 5066 case X86::AVX512_512_SEXT_MASK_32: 5067 case X86::AVX512_512_SEXT_MASK_64: { 5068 Register Reg = MIB.getReg(0); 5069 Register MaskReg = MIB.getReg(1); 5070 unsigned MaskState = getRegState(MIB->getOperand(1)); 5071 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? 5072 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; 5073 MI.removeOperand(1); 5074 MIB->setDesc(get(Opc)); 5075 // VPTERNLOG needs 3 register inputs and an immediate. 5076 // 0xff will return 1s for any input. 5077 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) 5078 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); 5079 return true; 5080 } 5081 case X86::VMOVAPSZ128rm_NOVLX: 5082 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 5083 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 5084 case X86::VMOVUPSZ128rm_NOVLX: 5085 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 5086 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 5087 case X86::VMOVAPSZ256rm_NOVLX: 5088 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 5089 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 5090 case X86::VMOVUPSZ256rm_NOVLX: 5091 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 5092 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 5093 case X86::VMOVAPSZ128mr_NOVLX: 5094 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 5095 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 5096 case X86::VMOVUPSZ128mr_NOVLX: 5097 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 5098 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 5099 case X86::VMOVAPSZ256mr_NOVLX: 5100 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 5101 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 5102 case X86::VMOVUPSZ256mr_NOVLX: 5103 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 5104 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 5105 case X86::MOV32ri64: { 5106 Register Reg = MIB.getReg(0); 5107 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 5108 MI.setDesc(get(X86::MOV32ri)); 5109 MIB->getOperand(0).setReg(Reg32); 5110 MIB.addReg(Reg, RegState::ImplicitDefine); 5111 return true; 5112 } 5113 5114 case X86::RDFLAGS32: 5115 case X86::RDFLAGS64: { 5116 unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64; 5117 MachineBasicBlock &MBB = *MIB->getParent(); 5118 5119 MachineInstr *NewMI = 5120 BuildMI(MBB, MI, MIB->getDebugLoc(), 5121 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32)) 5122 .getInstr(); 5123 5124 // Permit reads of the EFLAGS and DF registers without them being defined. 5125 // This intrinsic exists to read external processor state in flags, such as 5126 // the trap flag, interrupt flag, and direction flag, none of which are 5127 // modeled by the backend. 5128 assert(NewMI->getOperand(2).getReg() == X86::EFLAGS && 5129 "Unexpected register in operand! Should be EFLAGS."); 5130 NewMI->getOperand(2).setIsUndef(); 5131 assert(NewMI->getOperand(3).getReg() == X86::DF && 5132 "Unexpected register in operand! Should be DF."); 5133 NewMI->getOperand(3).setIsUndef(); 5134 5135 MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r)); 5136 return true; 5137 } 5138 5139 case X86::WRFLAGS32: 5140 case X86::WRFLAGS64: { 5141 unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64; 5142 MachineBasicBlock &MBB = *MIB->getParent(); 5143 5144 BuildMI(MBB, MI, MIB->getDebugLoc(), 5145 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 5146 .addReg(MI.getOperand(0).getReg()); 5147 BuildMI(MBB, MI, MIB->getDebugLoc(), 5148 get(Is64Bit ? X86::POPF64 : X86::POPF32)); 5149 MI.eraseFromParent(); 5150 return true; 5151 } 5152 5153 // KNL does not recognize dependency-breaking idioms for mask registers, 5154 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 5155 // Using %k0 as the undef input register is a performance heuristic based 5156 // on the assumption that %k0 is used less frequently than the other mask 5157 // registers, since it is not usable as a write mask. 5158 // FIXME: A more advanced approach would be to choose the best input mask 5159 // register based on context. 5160 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); 5161 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); 5162 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); 5163 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); 5164 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); 5165 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); 5166 case TargetOpcode::LOAD_STACK_GUARD: 5167 expandLoadStackGuard(MIB, *this); 5168 return true; 5169 case X86::XOR64_FP: 5170 case X86::XOR32_FP: 5171 return expandXorFP(MIB, *this); 5172 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 5173 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 5174 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 5175 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 5176 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; 5177 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; 5178 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; 5179 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; 5180 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; 5181 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; 5182 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; 5183 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; 5184 } 5185 return false; 5186 } 5187 5188 /// Return true for all instructions that only update 5189 /// the first 32 or 64-bits of the destination register and leave the rest 5190 /// unmodified. This can be used to avoid folding loads if the instructions 5191 /// only update part of the destination register, and the non-updated part is 5192 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 5193 /// instructions breaks the partial register dependency and it can improve 5194 /// performance. e.g.: 5195 /// 5196 /// movss (%rdi), %xmm0 5197 /// cvtss2sd %xmm0, %xmm0 5198 /// 5199 /// Instead of 5200 /// cvtss2sd (%rdi), %xmm0 5201 /// 5202 /// FIXME: This should be turned into a TSFlags. 5203 /// 5204 static bool hasPartialRegUpdate(unsigned Opcode, 5205 const X86Subtarget &Subtarget, 5206 bool ForLoadFold = false) { 5207 switch (Opcode) { 5208 case X86::CVTSI2SSrr: 5209 case X86::CVTSI2SSrm: 5210 case X86::CVTSI642SSrr: 5211 case X86::CVTSI642SSrm: 5212 case X86::CVTSI2SDrr: 5213 case X86::CVTSI2SDrm: 5214 case X86::CVTSI642SDrr: 5215 case X86::CVTSI642SDrm: 5216 // Load folding won't effect the undef register update since the input is 5217 // a GPR. 5218 return !ForLoadFold; 5219 case X86::CVTSD2SSrr: 5220 case X86::CVTSD2SSrm: 5221 case X86::CVTSS2SDrr: 5222 case X86::CVTSS2SDrm: 5223 case X86::MOVHPDrm: 5224 case X86::MOVHPSrm: 5225 case X86::MOVLPDrm: 5226 case X86::MOVLPSrm: 5227 case X86::RCPSSr: 5228 case X86::RCPSSm: 5229 case X86::RCPSSr_Int: 5230 case X86::RCPSSm_Int: 5231 case X86::ROUNDSDr: 5232 case X86::ROUNDSDm: 5233 case X86::ROUNDSSr: 5234 case X86::ROUNDSSm: 5235 case X86::RSQRTSSr: 5236 case X86::RSQRTSSm: 5237 case X86::RSQRTSSr_Int: 5238 case X86::RSQRTSSm_Int: 5239 case X86::SQRTSSr: 5240 case X86::SQRTSSm: 5241 case X86::SQRTSSr_Int: 5242 case X86::SQRTSSm_Int: 5243 case X86::SQRTSDr: 5244 case X86::SQRTSDm: 5245 case X86::SQRTSDr_Int: 5246 case X86::SQRTSDm_Int: 5247 return true; 5248 case X86::VFCMULCPHZ128rm: 5249 case X86::VFCMULCPHZ128rmb: 5250 case X86::VFCMULCPHZ128rmbkz: 5251 case X86::VFCMULCPHZ128rmkz: 5252 case X86::VFCMULCPHZ128rr: 5253 case X86::VFCMULCPHZ128rrkz: 5254 case X86::VFCMULCPHZ256rm: 5255 case X86::VFCMULCPHZ256rmb: 5256 case X86::VFCMULCPHZ256rmbkz: 5257 case X86::VFCMULCPHZ256rmkz: 5258 case X86::VFCMULCPHZ256rr: 5259 case X86::VFCMULCPHZ256rrkz: 5260 case X86::VFCMULCPHZrm: 5261 case X86::VFCMULCPHZrmb: 5262 case X86::VFCMULCPHZrmbkz: 5263 case X86::VFCMULCPHZrmkz: 5264 case X86::VFCMULCPHZrr: 5265 case X86::VFCMULCPHZrrb: 5266 case X86::VFCMULCPHZrrbkz: 5267 case X86::VFCMULCPHZrrkz: 5268 case X86::VFMULCPHZ128rm: 5269 case X86::VFMULCPHZ128rmb: 5270 case X86::VFMULCPHZ128rmbkz: 5271 case X86::VFMULCPHZ128rmkz: 5272 case X86::VFMULCPHZ128rr: 5273 case X86::VFMULCPHZ128rrkz: 5274 case X86::VFMULCPHZ256rm: 5275 case X86::VFMULCPHZ256rmb: 5276 case X86::VFMULCPHZ256rmbkz: 5277 case X86::VFMULCPHZ256rmkz: 5278 case X86::VFMULCPHZ256rr: 5279 case X86::VFMULCPHZ256rrkz: 5280 case X86::VFMULCPHZrm: 5281 case X86::VFMULCPHZrmb: 5282 case X86::VFMULCPHZrmbkz: 5283 case X86::VFMULCPHZrmkz: 5284 case X86::VFMULCPHZrr: 5285 case X86::VFMULCPHZrrb: 5286 case X86::VFMULCPHZrrbkz: 5287 case X86::VFMULCPHZrrkz: 5288 case X86::VFCMULCSHZrm: 5289 case X86::VFCMULCSHZrmkz: 5290 case X86::VFCMULCSHZrr: 5291 case X86::VFCMULCSHZrrb: 5292 case X86::VFCMULCSHZrrbkz: 5293 case X86::VFCMULCSHZrrkz: 5294 case X86::VFMULCSHZrm: 5295 case X86::VFMULCSHZrmkz: 5296 case X86::VFMULCSHZrr: 5297 case X86::VFMULCSHZrrb: 5298 case X86::VFMULCSHZrrbkz: 5299 case X86::VFMULCSHZrrkz: 5300 return Subtarget.hasMULCFalseDeps(); 5301 case X86::VPERMDYrm: 5302 case X86::VPERMDYrr: 5303 case X86::VPERMQYmi: 5304 case X86::VPERMQYri: 5305 case X86::VPERMPSYrm: 5306 case X86::VPERMPSYrr: 5307 case X86::VPERMPDYmi: 5308 case X86::VPERMPDYri: 5309 case X86::VPERMDZ256rm: 5310 case X86::VPERMDZ256rmb: 5311 case X86::VPERMDZ256rmbkz: 5312 case X86::VPERMDZ256rmkz: 5313 case X86::VPERMDZ256rr: 5314 case X86::VPERMDZ256rrkz: 5315 case X86::VPERMDZrm: 5316 case X86::VPERMDZrmb: 5317 case X86::VPERMDZrmbkz: 5318 case X86::VPERMDZrmkz: 5319 case X86::VPERMDZrr: 5320 case X86::VPERMDZrrkz: 5321 case X86::VPERMQZ256mbi: 5322 case X86::VPERMQZ256mbikz: 5323 case X86::VPERMQZ256mi: 5324 case X86::VPERMQZ256mikz: 5325 case X86::VPERMQZ256ri: 5326 case X86::VPERMQZ256rikz: 5327 case X86::VPERMQZ256rm: 5328 case X86::VPERMQZ256rmb: 5329 case X86::VPERMQZ256rmbkz: 5330 case X86::VPERMQZ256rmkz: 5331 case X86::VPERMQZ256rr: 5332 case X86::VPERMQZ256rrkz: 5333 case X86::VPERMQZmbi: 5334 case X86::VPERMQZmbikz: 5335 case X86::VPERMQZmi: 5336 case X86::VPERMQZmikz: 5337 case X86::VPERMQZri: 5338 case X86::VPERMQZrikz: 5339 case X86::VPERMQZrm: 5340 case X86::VPERMQZrmb: 5341 case X86::VPERMQZrmbkz: 5342 case X86::VPERMQZrmkz: 5343 case X86::VPERMQZrr: 5344 case X86::VPERMQZrrkz: 5345 case X86::VPERMPSZ256rm: 5346 case X86::VPERMPSZ256rmb: 5347 case X86::VPERMPSZ256rmbkz: 5348 case X86::VPERMPSZ256rmkz: 5349 case X86::VPERMPSZ256rr: 5350 case X86::VPERMPSZ256rrkz: 5351 case X86::VPERMPSZrm: 5352 case X86::VPERMPSZrmb: 5353 case X86::VPERMPSZrmbkz: 5354 case X86::VPERMPSZrmkz: 5355 case X86::VPERMPSZrr: 5356 case X86::VPERMPSZrrkz: 5357 case X86::VPERMPDZ256mbi: 5358 case X86::VPERMPDZ256mbikz: 5359 case X86::VPERMPDZ256mi: 5360 case X86::VPERMPDZ256mikz: 5361 case X86::VPERMPDZ256ri: 5362 case X86::VPERMPDZ256rikz: 5363 case X86::VPERMPDZ256rm: 5364 case X86::VPERMPDZ256rmb: 5365 case X86::VPERMPDZ256rmbkz: 5366 case X86::VPERMPDZ256rmkz: 5367 case X86::VPERMPDZ256rr: 5368 case X86::VPERMPDZ256rrkz: 5369 case X86::VPERMPDZmbi: 5370 case X86::VPERMPDZmbikz: 5371 case X86::VPERMPDZmi: 5372 case X86::VPERMPDZmikz: 5373 case X86::VPERMPDZri: 5374 case X86::VPERMPDZrikz: 5375 case X86::VPERMPDZrm: 5376 case X86::VPERMPDZrmb: 5377 case X86::VPERMPDZrmbkz: 5378 case X86::VPERMPDZrmkz: 5379 case X86::VPERMPDZrr: 5380 case X86::VPERMPDZrrkz: 5381 return Subtarget.hasPERMFalseDeps(); 5382 case X86::VRANGEPDZ128rmbi: 5383 case X86::VRANGEPDZ128rmbikz: 5384 case X86::VRANGEPDZ128rmi: 5385 case X86::VRANGEPDZ128rmikz: 5386 case X86::VRANGEPDZ128rri: 5387 case X86::VRANGEPDZ128rrikz: 5388 case X86::VRANGEPDZ256rmbi: 5389 case X86::VRANGEPDZ256rmbikz: 5390 case X86::VRANGEPDZ256rmi: 5391 case X86::VRANGEPDZ256rmikz: 5392 case X86::VRANGEPDZ256rri: 5393 case X86::VRANGEPDZ256rrikz: 5394 case X86::VRANGEPDZrmbi: 5395 case X86::VRANGEPDZrmbikz: 5396 case X86::VRANGEPDZrmi: 5397 case X86::VRANGEPDZrmikz: 5398 case X86::VRANGEPDZrri: 5399 case X86::VRANGEPDZrrib: 5400 case X86::VRANGEPDZrribkz: 5401 case X86::VRANGEPDZrrikz: 5402 case X86::VRANGEPSZ128rmbi: 5403 case X86::VRANGEPSZ128rmbikz: 5404 case X86::VRANGEPSZ128rmi: 5405 case X86::VRANGEPSZ128rmikz: 5406 case X86::VRANGEPSZ128rri: 5407 case X86::VRANGEPSZ128rrikz: 5408 case X86::VRANGEPSZ256rmbi: 5409 case X86::VRANGEPSZ256rmbikz: 5410 case X86::VRANGEPSZ256rmi: 5411 case X86::VRANGEPSZ256rmikz: 5412 case X86::VRANGEPSZ256rri: 5413 case X86::VRANGEPSZ256rrikz: 5414 case X86::VRANGEPSZrmbi: 5415 case X86::VRANGEPSZrmbikz: 5416 case X86::VRANGEPSZrmi: 5417 case X86::VRANGEPSZrmikz: 5418 case X86::VRANGEPSZrri: 5419 case X86::VRANGEPSZrrib: 5420 case X86::VRANGEPSZrribkz: 5421 case X86::VRANGEPSZrrikz: 5422 case X86::VRANGESDZrmi: 5423 case X86::VRANGESDZrmikz: 5424 case X86::VRANGESDZrri: 5425 case X86::VRANGESDZrrib: 5426 case X86::VRANGESDZrribkz: 5427 case X86::VRANGESDZrrikz: 5428 case X86::VRANGESSZrmi: 5429 case X86::VRANGESSZrmikz: 5430 case X86::VRANGESSZrri: 5431 case X86::VRANGESSZrrib: 5432 case X86::VRANGESSZrribkz: 5433 case X86::VRANGESSZrrikz: 5434 return Subtarget.hasRANGEFalseDeps(); 5435 case X86::VGETMANTSSZrmi: 5436 case X86::VGETMANTSSZrmikz: 5437 case X86::VGETMANTSSZrri: 5438 case X86::VGETMANTSSZrrib: 5439 case X86::VGETMANTSSZrribkz: 5440 case X86::VGETMANTSSZrrikz: 5441 case X86::VGETMANTSDZrmi: 5442 case X86::VGETMANTSDZrmikz: 5443 case X86::VGETMANTSDZrri: 5444 case X86::VGETMANTSDZrrib: 5445 case X86::VGETMANTSDZrribkz: 5446 case X86::VGETMANTSDZrrikz: 5447 case X86::VGETMANTSHZrmi: 5448 case X86::VGETMANTSHZrmikz: 5449 case X86::VGETMANTSHZrri: 5450 case X86::VGETMANTSHZrrib: 5451 case X86::VGETMANTSHZrribkz: 5452 case X86::VGETMANTSHZrrikz: 5453 case X86::VGETMANTPSZ128rmbi: 5454 case X86::VGETMANTPSZ128rmbikz: 5455 case X86::VGETMANTPSZ128rmi: 5456 case X86::VGETMANTPSZ128rmikz: 5457 case X86::VGETMANTPSZ256rmbi: 5458 case X86::VGETMANTPSZ256rmbikz: 5459 case X86::VGETMANTPSZ256rmi: 5460 case X86::VGETMANTPSZ256rmikz: 5461 case X86::VGETMANTPSZrmbi: 5462 case X86::VGETMANTPSZrmbikz: 5463 case X86::VGETMANTPSZrmi: 5464 case X86::VGETMANTPSZrmikz: 5465 case X86::VGETMANTPDZ128rmbi: 5466 case X86::VGETMANTPDZ128rmbikz: 5467 case X86::VGETMANTPDZ128rmi: 5468 case X86::VGETMANTPDZ128rmikz: 5469 case X86::VGETMANTPDZ256rmbi: 5470 case X86::VGETMANTPDZ256rmbikz: 5471 case X86::VGETMANTPDZ256rmi: 5472 case X86::VGETMANTPDZ256rmikz: 5473 case X86::VGETMANTPDZrmbi: 5474 case X86::VGETMANTPDZrmbikz: 5475 case X86::VGETMANTPDZrmi: 5476 case X86::VGETMANTPDZrmikz: 5477 return Subtarget.hasGETMANTFalseDeps(); 5478 case X86::VPMULLQZ128rm: 5479 case X86::VPMULLQZ128rmb: 5480 case X86::VPMULLQZ128rmbkz: 5481 case X86::VPMULLQZ128rmkz: 5482 case X86::VPMULLQZ128rr: 5483 case X86::VPMULLQZ128rrkz: 5484 case X86::VPMULLQZ256rm: 5485 case X86::VPMULLQZ256rmb: 5486 case X86::VPMULLQZ256rmbkz: 5487 case X86::VPMULLQZ256rmkz: 5488 case X86::VPMULLQZ256rr: 5489 case X86::VPMULLQZ256rrkz: 5490 case X86::VPMULLQZrm: 5491 case X86::VPMULLQZrmb: 5492 case X86::VPMULLQZrmbkz: 5493 case X86::VPMULLQZrmkz: 5494 case X86::VPMULLQZrr: 5495 case X86::VPMULLQZrrkz: 5496 return Subtarget.hasMULLQFalseDeps(); 5497 // GPR 5498 case X86::POPCNT32rm: 5499 case X86::POPCNT32rr: 5500 case X86::POPCNT64rm: 5501 case X86::POPCNT64rr: 5502 return Subtarget.hasPOPCNTFalseDeps(); 5503 case X86::LZCNT32rm: 5504 case X86::LZCNT32rr: 5505 case X86::LZCNT64rm: 5506 case X86::LZCNT64rr: 5507 case X86::TZCNT32rm: 5508 case X86::TZCNT32rr: 5509 case X86::TZCNT64rm: 5510 case X86::TZCNT64rr: 5511 return Subtarget.hasLZCNTFalseDeps(); 5512 } 5513 5514 return false; 5515 } 5516 5517 /// Inform the BreakFalseDeps pass how many idle 5518 /// instructions we would like before a partial register update. 5519 unsigned X86InstrInfo::getPartialRegUpdateClearance( 5520 const MachineInstr &MI, unsigned OpNum, 5521 const TargetRegisterInfo *TRI) const { 5522 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 5523 return 0; 5524 5525 // If MI is marked as reading Reg, the partial register update is wanted. 5526 const MachineOperand &MO = MI.getOperand(0); 5527 Register Reg = MO.getReg(); 5528 if (Reg.isVirtual()) { 5529 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 5530 return 0; 5531 } else { 5532 if (MI.readsRegister(Reg, TRI)) 5533 return 0; 5534 } 5535 5536 // If any instructions in the clearance range are reading Reg, insert a 5537 // dependency breaking instruction, which is inexpensive and is likely to 5538 // be hidden in other instruction's cycles. 5539 return PartialRegUpdateClearance; 5540 } 5541 5542 // Return true for any instruction the copies the high bits of the first source 5543 // operand into the unused high bits of the destination operand. 5544 // Also returns true for instructions that have two inputs where one may 5545 // be undef and we want it to use the same register as the other input. 5546 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, 5547 bool ForLoadFold = false) { 5548 // Set the OpNum parameter to the first source operand. 5549 switch (Opcode) { 5550 case X86::MMX_PUNPCKHBWrr: 5551 case X86::MMX_PUNPCKHWDrr: 5552 case X86::MMX_PUNPCKHDQrr: 5553 case X86::MMX_PUNPCKLBWrr: 5554 case X86::MMX_PUNPCKLWDrr: 5555 case X86::MMX_PUNPCKLDQrr: 5556 case X86::MOVHLPSrr: 5557 case X86::PACKSSWBrr: 5558 case X86::PACKUSWBrr: 5559 case X86::PACKSSDWrr: 5560 case X86::PACKUSDWrr: 5561 case X86::PUNPCKHBWrr: 5562 case X86::PUNPCKLBWrr: 5563 case X86::PUNPCKHWDrr: 5564 case X86::PUNPCKLWDrr: 5565 case X86::PUNPCKHDQrr: 5566 case X86::PUNPCKLDQrr: 5567 case X86::PUNPCKHQDQrr: 5568 case X86::PUNPCKLQDQrr: 5569 case X86::SHUFPDrri: 5570 case X86::SHUFPSrri: 5571 // These instructions are sometimes used with an undef first or second 5572 // source. Return true here so BreakFalseDeps will assign this source to the 5573 // same register as the first source to avoid a false dependency. 5574 // Operand 1 of these instructions is tied so they're separate from their 5575 // VEX counterparts. 5576 return OpNum == 2 && !ForLoadFold; 5577 5578 case X86::VMOVLHPSrr: 5579 case X86::VMOVLHPSZrr: 5580 case X86::VPACKSSWBrr: 5581 case X86::VPACKUSWBrr: 5582 case X86::VPACKSSDWrr: 5583 case X86::VPACKUSDWrr: 5584 case X86::VPACKSSWBZ128rr: 5585 case X86::VPACKUSWBZ128rr: 5586 case X86::VPACKSSDWZ128rr: 5587 case X86::VPACKUSDWZ128rr: 5588 case X86::VPERM2F128rr: 5589 case X86::VPERM2I128rr: 5590 case X86::VSHUFF32X4Z256rri: 5591 case X86::VSHUFF32X4Zrri: 5592 case X86::VSHUFF64X2Z256rri: 5593 case X86::VSHUFF64X2Zrri: 5594 case X86::VSHUFI32X4Z256rri: 5595 case X86::VSHUFI32X4Zrri: 5596 case X86::VSHUFI64X2Z256rri: 5597 case X86::VSHUFI64X2Zrri: 5598 case X86::VPUNPCKHBWrr: 5599 case X86::VPUNPCKLBWrr: 5600 case X86::VPUNPCKHBWYrr: 5601 case X86::VPUNPCKLBWYrr: 5602 case X86::VPUNPCKHBWZ128rr: 5603 case X86::VPUNPCKLBWZ128rr: 5604 case X86::VPUNPCKHBWZ256rr: 5605 case X86::VPUNPCKLBWZ256rr: 5606 case X86::VPUNPCKHBWZrr: 5607 case X86::VPUNPCKLBWZrr: 5608 case X86::VPUNPCKHWDrr: 5609 case X86::VPUNPCKLWDrr: 5610 case X86::VPUNPCKHWDYrr: 5611 case X86::VPUNPCKLWDYrr: 5612 case X86::VPUNPCKHWDZ128rr: 5613 case X86::VPUNPCKLWDZ128rr: 5614 case X86::VPUNPCKHWDZ256rr: 5615 case X86::VPUNPCKLWDZ256rr: 5616 case X86::VPUNPCKHWDZrr: 5617 case X86::VPUNPCKLWDZrr: 5618 case X86::VPUNPCKHDQrr: 5619 case X86::VPUNPCKLDQrr: 5620 case X86::VPUNPCKHDQYrr: 5621 case X86::VPUNPCKLDQYrr: 5622 case X86::VPUNPCKHDQZ128rr: 5623 case X86::VPUNPCKLDQZ128rr: 5624 case X86::VPUNPCKHDQZ256rr: 5625 case X86::VPUNPCKLDQZ256rr: 5626 case X86::VPUNPCKHDQZrr: 5627 case X86::VPUNPCKLDQZrr: 5628 case X86::VPUNPCKHQDQrr: 5629 case X86::VPUNPCKLQDQrr: 5630 case X86::VPUNPCKHQDQYrr: 5631 case X86::VPUNPCKLQDQYrr: 5632 case X86::VPUNPCKHQDQZ128rr: 5633 case X86::VPUNPCKLQDQZ128rr: 5634 case X86::VPUNPCKHQDQZ256rr: 5635 case X86::VPUNPCKLQDQZ256rr: 5636 case X86::VPUNPCKHQDQZrr: 5637 case X86::VPUNPCKLQDQZrr: 5638 // These instructions are sometimes used with an undef first or second 5639 // source. Return true here so BreakFalseDeps will assign this source to the 5640 // same register as the first source to avoid a false dependency. 5641 return (OpNum == 1 || OpNum == 2) && !ForLoadFold; 5642 5643 case X86::VCVTSI2SSrr: 5644 case X86::VCVTSI2SSrm: 5645 case X86::VCVTSI2SSrr_Int: 5646 case X86::VCVTSI2SSrm_Int: 5647 case X86::VCVTSI642SSrr: 5648 case X86::VCVTSI642SSrm: 5649 case X86::VCVTSI642SSrr_Int: 5650 case X86::VCVTSI642SSrm_Int: 5651 case X86::VCVTSI2SDrr: 5652 case X86::VCVTSI2SDrm: 5653 case X86::VCVTSI2SDrr_Int: 5654 case X86::VCVTSI2SDrm_Int: 5655 case X86::VCVTSI642SDrr: 5656 case X86::VCVTSI642SDrm: 5657 case X86::VCVTSI642SDrr_Int: 5658 case X86::VCVTSI642SDrm_Int: 5659 // AVX-512 5660 case X86::VCVTSI2SSZrr: 5661 case X86::VCVTSI2SSZrm: 5662 case X86::VCVTSI2SSZrr_Int: 5663 case X86::VCVTSI2SSZrrb_Int: 5664 case X86::VCVTSI2SSZrm_Int: 5665 case X86::VCVTSI642SSZrr: 5666 case X86::VCVTSI642SSZrm: 5667 case X86::VCVTSI642SSZrr_Int: 5668 case X86::VCVTSI642SSZrrb_Int: 5669 case X86::VCVTSI642SSZrm_Int: 5670 case X86::VCVTSI2SDZrr: 5671 case X86::VCVTSI2SDZrm: 5672 case X86::VCVTSI2SDZrr_Int: 5673 case X86::VCVTSI2SDZrm_Int: 5674 case X86::VCVTSI642SDZrr: 5675 case X86::VCVTSI642SDZrm: 5676 case X86::VCVTSI642SDZrr_Int: 5677 case X86::VCVTSI642SDZrrb_Int: 5678 case X86::VCVTSI642SDZrm_Int: 5679 case X86::VCVTUSI2SSZrr: 5680 case X86::VCVTUSI2SSZrm: 5681 case X86::VCVTUSI2SSZrr_Int: 5682 case X86::VCVTUSI2SSZrrb_Int: 5683 case X86::VCVTUSI2SSZrm_Int: 5684 case X86::VCVTUSI642SSZrr: 5685 case X86::VCVTUSI642SSZrm: 5686 case X86::VCVTUSI642SSZrr_Int: 5687 case X86::VCVTUSI642SSZrrb_Int: 5688 case X86::VCVTUSI642SSZrm_Int: 5689 case X86::VCVTUSI2SDZrr: 5690 case X86::VCVTUSI2SDZrm: 5691 case X86::VCVTUSI2SDZrr_Int: 5692 case X86::VCVTUSI2SDZrm_Int: 5693 case X86::VCVTUSI642SDZrr: 5694 case X86::VCVTUSI642SDZrm: 5695 case X86::VCVTUSI642SDZrr_Int: 5696 case X86::VCVTUSI642SDZrrb_Int: 5697 case X86::VCVTUSI642SDZrm_Int: 5698 case X86::VCVTSI2SHZrr: 5699 case X86::VCVTSI2SHZrm: 5700 case X86::VCVTSI2SHZrr_Int: 5701 case X86::VCVTSI2SHZrrb_Int: 5702 case X86::VCVTSI2SHZrm_Int: 5703 case X86::VCVTSI642SHZrr: 5704 case X86::VCVTSI642SHZrm: 5705 case X86::VCVTSI642SHZrr_Int: 5706 case X86::VCVTSI642SHZrrb_Int: 5707 case X86::VCVTSI642SHZrm_Int: 5708 case X86::VCVTUSI2SHZrr: 5709 case X86::VCVTUSI2SHZrm: 5710 case X86::VCVTUSI2SHZrr_Int: 5711 case X86::VCVTUSI2SHZrrb_Int: 5712 case X86::VCVTUSI2SHZrm_Int: 5713 case X86::VCVTUSI642SHZrr: 5714 case X86::VCVTUSI642SHZrm: 5715 case X86::VCVTUSI642SHZrr_Int: 5716 case X86::VCVTUSI642SHZrrb_Int: 5717 case X86::VCVTUSI642SHZrm_Int: 5718 // Load folding won't effect the undef register update since the input is 5719 // a GPR. 5720 return OpNum == 1 && !ForLoadFold; 5721 case X86::VCVTSD2SSrr: 5722 case X86::VCVTSD2SSrm: 5723 case X86::VCVTSD2SSrr_Int: 5724 case X86::VCVTSD2SSrm_Int: 5725 case X86::VCVTSS2SDrr: 5726 case X86::VCVTSS2SDrm: 5727 case X86::VCVTSS2SDrr_Int: 5728 case X86::VCVTSS2SDrm_Int: 5729 case X86::VRCPSSr: 5730 case X86::VRCPSSr_Int: 5731 case X86::VRCPSSm: 5732 case X86::VRCPSSm_Int: 5733 case X86::VROUNDSDr: 5734 case X86::VROUNDSDm: 5735 case X86::VROUNDSDr_Int: 5736 case X86::VROUNDSDm_Int: 5737 case X86::VROUNDSSr: 5738 case X86::VROUNDSSm: 5739 case X86::VROUNDSSr_Int: 5740 case X86::VROUNDSSm_Int: 5741 case X86::VRSQRTSSr: 5742 case X86::VRSQRTSSr_Int: 5743 case X86::VRSQRTSSm: 5744 case X86::VRSQRTSSm_Int: 5745 case X86::VSQRTSSr: 5746 case X86::VSQRTSSr_Int: 5747 case X86::VSQRTSSm: 5748 case X86::VSQRTSSm_Int: 5749 case X86::VSQRTSDr: 5750 case X86::VSQRTSDr_Int: 5751 case X86::VSQRTSDm: 5752 case X86::VSQRTSDm_Int: 5753 // AVX-512 5754 case X86::VCVTSD2SSZrr: 5755 case X86::VCVTSD2SSZrr_Int: 5756 case X86::VCVTSD2SSZrrb_Int: 5757 case X86::VCVTSD2SSZrm: 5758 case X86::VCVTSD2SSZrm_Int: 5759 case X86::VCVTSS2SDZrr: 5760 case X86::VCVTSS2SDZrr_Int: 5761 case X86::VCVTSS2SDZrrb_Int: 5762 case X86::VCVTSS2SDZrm: 5763 case X86::VCVTSS2SDZrm_Int: 5764 case X86::VGETEXPSDZr: 5765 case X86::VGETEXPSDZrb: 5766 case X86::VGETEXPSDZm: 5767 case X86::VGETEXPSSZr: 5768 case X86::VGETEXPSSZrb: 5769 case X86::VGETEXPSSZm: 5770 case X86::VGETMANTSDZrri: 5771 case X86::VGETMANTSDZrrib: 5772 case X86::VGETMANTSDZrmi: 5773 case X86::VGETMANTSSZrri: 5774 case X86::VGETMANTSSZrrib: 5775 case X86::VGETMANTSSZrmi: 5776 case X86::VRNDSCALESDZr: 5777 case X86::VRNDSCALESDZr_Int: 5778 case X86::VRNDSCALESDZrb_Int: 5779 case X86::VRNDSCALESDZm: 5780 case X86::VRNDSCALESDZm_Int: 5781 case X86::VRNDSCALESSZr: 5782 case X86::VRNDSCALESSZr_Int: 5783 case X86::VRNDSCALESSZrb_Int: 5784 case X86::VRNDSCALESSZm: 5785 case X86::VRNDSCALESSZm_Int: 5786 case X86::VRCP14SDZrr: 5787 case X86::VRCP14SDZrm: 5788 case X86::VRCP14SSZrr: 5789 case X86::VRCP14SSZrm: 5790 case X86::VRCPSHZrr: 5791 case X86::VRCPSHZrm: 5792 case X86::VRSQRTSHZrr: 5793 case X86::VRSQRTSHZrm: 5794 case X86::VREDUCESHZrmi: 5795 case X86::VREDUCESHZrri: 5796 case X86::VREDUCESHZrrib: 5797 case X86::VGETEXPSHZr: 5798 case X86::VGETEXPSHZrb: 5799 case X86::VGETEXPSHZm: 5800 case X86::VGETMANTSHZrri: 5801 case X86::VGETMANTSHZrrib: 5802 case X86::VGETMANTSHZrmi: 5803 case X86::VRNDSCALESHZr: 5804 case X86::VRNDSCALESHZr_Int: 5805 case X86::VRNDSCALESHZrb_Int: 5806 case X86::VRNDSCALESHZm: 5807 case X86::VRNDSCALESHZm_Int: 5808 case X86::VSQRTSHZr: 5809 case X86::VSQRTSHZr_Int: 5810 case X86::VSQRTSHZrb_Int: 5811 case X86::VSQRTSHZm: 5812 case X86::VSQRTSHZm_Int: 5813 case X86::VRCP28SDZr: 5814 case X86::VRCP28SDZrb: 5815 case X86::VRCP28SDZm: 5816 case X86::VRCP28SSZr: 5817 case X86::VRCP28SSZrb: 5818 case X86::VRCP28SSZm: 5819 case X86::VREDUCESSZrmi: 5820 case X86::VREDUCESSZrri: 5821 case X86::VREDUCESSZrrib: 5822 case X86::VRSQRT14SDZrr: 5823 case X86::VRSQRT14SDZrm: 5824 case X86::VRSQRT14SSZrr: 5825 case X86::VRSQRT14SSZrm: 5826 case X86::VRSQRT28SDZr: 5827 case X86::VRSQRT28SDZrb: 5828 case X86::VRSQRT28SDZm: 5829 case X86::VRSQRT28SSZr: 5830 case X86::VRSQRT28SSZrb: 5831 case X86::VRSQRT28SSZm: 5832 case X86::VSQRTSSZr: 5833 case X86::VSQRTSSZr_Int: 5834 case X86::VSQRTSSZrb_Int: 5835 case X86::VSQRTSSZm: 5836 case X86::VSQRTSSZm_Int: 5837 case X86::VSQRTSDZr: 5838 case X86::VSQRTSDZr_Int: 5839 case X86::VSQRTSDZrb_Int: 5840 case X86::VSQRTSDZm: 5841 case X86::VSQRTSDZm_Int: 5842 case X86::VCVTSD2SHZrr: 5843 case X86::VCVTSD2SHZrr_Int: 5844 case X86::VCVTSD2SHZrrb_Int: 5845 case X86::VCVTSD2SHZrm: 5846 case X86::VCVTSD2SHZrm_Int: 5847 case X86::VCVTSS2SHZrr: 5848 case X86::VCVTSS2SHZrr_Int: 5849 case X86::VCVTSS2SHZrrb_Int: 5850 case X86::VCVTSS2SHZrm: 5851 case X86::VCVTSS2SHZrm_Int: 5852 case X86::VCVTSH2SDZrr: 5853 case X86::VCVTSH2SDZrr_Int: 5854 case X86::VCVTSH2SDZrrb_Int: 5855 case X86::VCVTSH2SDZrm: 5856 case X86::VCVTSH2SDZrm_Int: 5857 case X86::VCVTSH2SSZrr: 5858 case X86::VCVTSH2SSZrr_Int: 5859 case X86::VCVTSH2SSZrrb_Int: 5860 case X86::VCVTSH2SSZrm: 5861 case X86::VCVTSH2SSZrm_Int: 5862 return OpNum == 1; 5863 case X86::VMOVSSZrrk: 5864 case X86::VMOVSDZrrk: 5865 return OpNum == 3 && !ForLoadFold; 5866 case X86::VMOVSSZrrkz: 5867 case X86::VMOVSDZrrkz: 5868 return OpNum == 2 && !ForLoadFold; 5869 } 5870 5871 return false; 5872 } 5873 5874 /// Inform the BreakFalseDeps pass how many idle instructions we would like 5875 /// before certain undef register reads. 5876 /// 5877 /// This catches the VCVTSI2SD family of instructions: 5878 /// 5879 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 5880 /// 5881 /// We should to be careful *not* to catch VXOR idioms which are presumably 5882 /// handled specially in the pipeline: 5883 /// 5884 /// vxorps undef %xmm1, undef %xmm1, %xmm1 5885 /// 5886 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 5887 /// high bits that are passed-through are not live. 5888 unsigned 5889 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 5890 const TargetRegisterInfo *TRI) const { 5891 const MachineOperand &MO = MI.getOperand(OpNum); 5892 if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum)) 5893 return UndefRegClearance; 5894 5895 return 0; 5896 } 5897 5898 void X86InstrInfo::breakPartialRegDependency( 5899 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5900 Register Reg = MI.getOperand(OpNum).getReg(); 5901 // If MI kills this register, the false dependence is already broken. 5902 if (MI.killsRegister(Reg, TRI)) 5903 return; 5904 5905 if (X86::VR128RegClass.contains(Reg)) { 5906 // These instructions are all floating point domain, so xorps is the best 5907 // choice. 5908 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 5909 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 5910 .addReg(Reg, RegState::Undef) 5911 .addReg(Reg, RegState::Undef); 5912 MI.addRegisterKilled(Reg, TRI, true); 5913 } else if (X86::VR256RegClass.contains(Reg)) { 5914 // Use vxorps to clear the full ymm register. 5915 // It wants to read and write the xmm sub-register. 5916 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5917 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 5918 .addReg(XReg, RegState::Undef) 5919 .addReg(XReg, RegState::Undef) 5920 .addReg(Reg, RegState::ImplicitDefine); 5921 MI.addRegisterKilled(Reg, TRI, true); 5922 } else if (X86::VR128XRegClass.contains(Reg)) { 5923 // Only handle VLX targets. 5924 if (!Subtarget.hasVLX()) 5925 return; 5926 // Since vxorps requires AVX512DQ, vpxord should be the best choice. 5927 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg) 5928 .addReg(Reg, RegState::Undef) 5929 .addReg(Reg, RegState::Undef); 5930 MI.addRegisterKilled(Reg, TRI, true); 5931 } else if (X86::VR256XRegClass.contains(Reg) || 5932 X86::VR512RegClass.contains(Reg)) { 5933 // Only handle VLX targets. 5934 if (!Subtarget.hasVLX()) 5935 return; 5936 // Use vpxord to clear the full ymm/zmm register. 5937 // It wants to read and write the xmm sub-register. 5938 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5939 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg) 5940 .addReg(XReg, RegState::Undef) 5941 .addReg(XReg, RegState::Undef) 5942 .addReg(Reg, RegState::ImplicitDefine); 5943 MI.addRegisterKilled(Reg, TRI, true); 5944 } else if (X86::GR64RegClass.contains(Reg)) { 5945 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 5946 // as well. 5947 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); 5948 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 5949 .addReg(XReg, RegState::Undef) 5950 .addReg(XReg, RegState::Undef) 5951 .addReg(Reg, RegState::ImplicitDefine); 5952 MI.addRegisterKilled(Reg, TRI, true); 5953 } else if (X86::GR32RegClass.contains(Reg)) { 5954 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 5955 .addReg(Reg, RegState::Undef) 5956 .addReg(Reg, RegState::Undef); 5957 MI.addRegisterKilled(Reg, TRI, true); 5958 } 5959 } 5960 5961 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 5962 int PtrOffset = 0) { 5963 unsigned NumAddrOps = MOs.size(); 5964 5965 if (NumAddrOps < 4) { 5966 // FrameIndex only - add an immediate offset (whether its zero or not). 5967 for (unsigned i = 0; i != NumAddrOps; ++i) 5968 MIB.add(MOs[i]); 5969 addOffset(MIB, PtrOffset); 5970 } else { 5971 // General Memory Addressing - we need to add any offset to an existing 5972 // offset. 5973 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 5974 for (unsigned i = 0; i != NumAddrOps; ++i) { 5975 const MachineOperand &MO = MOs[i]; 5976 if (i == 3 && PtrOffset != 0) { 5977 MIB.addDisp(MO, PtrOffset); 5978 } else { 5979 MIB.add(MO); 5980 } 5981 } 5982 } 5983 } 5984 5985 static void updateOperandRegConstraints(MachineFunction &MF, 5986 MachineInstr &NewMI, 5987 const TargetInstrInfo &TII) { 5988 MachineRegisterInfo &MRI = MF.getRegInfo(); 5989 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 5990 5991 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 5992 MachineOperand &MO = NewMI.getOperand(Idx); 5993 // We only need to update constraints on virtual register operands. 5994 if (!MO.isReg()) 5995 continue; 5996 Register Reg = MO.getReg(); 5997 if (!Reg.isVirtual()) 5998 continue; 5999 6000 auto *NewRC = MRI.constrainRegClass( 6001 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 6002 if (!NewRC) { 6003 LLVM_DEBUG( 6004 dbgs() << "WARNING: Unable to update register constraint for operand " 6005 << Idx << " of instruction:\n"; 6006 NewMI.dump(); dbgs() << "\n"); 6007 } 6008 } 6009 } 6010 6011 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 6012 ArrayRef<MachineOperand> MOs, 6013 MachineBasicBlock::iterator InsertPt, 6014 MachineInstr &MI, 6015 const TargetInstrInfo &TII) { 6016 // Create the base instruction with the memory operand as the first part. 6017 // Omit the implicit operands, something BuildMI can't do. 6018 MachineInstr *NewMI = 6019 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 6020 MachineInstrBuilder MIB(MF, NewMI); 6021 addOperands(MIB, MOs); 6022 6023 // Loop over the rest of the ri operands, converting them over. 6024 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 6025 for (unsigned i = 0; i != NumOps; ++i) { 6026 MachineOperand &MO = MI.getOperand(i + 2); 6027 MIB.add(MO); 6028 } 6029 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2)) 6030 MIB.add(MO); 6031 6032 updateOperandRegConstraints(MF, *NewMI, TII); 6033 6034 MachineBasicBlock *MBB = InsertPt->getParent(); 6035 MBB->insert(InsertPt, NewMI); 6036 6037 return MIB; 6038 } 6039 6040 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 6041 unsigned OpNo, ArrayRef<MachineOperand> MOs, 6042 MachineBasicBlock::iterator InsertPt, 6043 MachineInstr &MI, const TargetInstrInfo &TII, 6044 int PtrOffset = 0) { 6045 // Omit the implicit operands, something BuildMI can't do. 6046 MachineInstr *NewMI = 6047 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 6048 MachineInstrBuilder MIB(MF, NewMI); 6049 6050 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 6051 MachineOperand &MO = MI.getOperand(i); 6052 if (i == OpNo) { 6053 assert(MO.isReg() && "Expected to fold into reg operand!"); 6054 addOperands(MIB, MOs, PtrOffset); 6055 } else { 6056 MIB.add(MO); 6057 } 6058 } 6059 6060 updateOperandRegConstraints(MF, *NewMI, TII); 6061 6062 // Copy the NoFPExcept flag from the instruction we're fusing. 6063 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 6064 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); 6065 6066 MachineBasicBlock *MBB = InsertPt->getParent(); 6067 MBB->insert(InsertPt, NewMI); 6068 6069 return MIB; 6070 } 6071 6072 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 6073 ArrayRef<MachineOperand> MOs, 6074 MachineBasicBlock::iterator InsertPt, 6075 MachineInstr &MI) { 6076 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 6077 MI.getDebugLoc(), TII.get(Opcode)); 6078 addOperands(MIB, MOs); 6079 return MIB.addImm(0); 6080 } 6081 6082 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 6083 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 6084 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 6085 unsigned Size, Align Alignment) const { 6086 switch (MI.getOpcode()) { 6087 case X86::INSERTPSrr: 6088 case X86::VINSERTPSrr: 6089 case X86::VINSERTPSZrr: 6090 // Attempt to convert the load of inserted vector into a fold load 6091 // of a single float. 6092 if (OpNum == 2) { 6093 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 6094 unsigned ZMask = Imm & 15; 6095 unsigned DstIdx = (Imm >> 4) & 3; 6096 unsigned SrcIdx = (Imm >> 6) & 3; 6097 6098 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6099 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 6100 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 6101 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) { 6102 int PtrOffset = SrcIdx * 4; 6103 unsigned NewImm = (DstIdx << 4) | ZMask; 6104 unsigned NewOpCode = 6105 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : 6106 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : 6107 X86::INSERTPSrm; 6108 MachineInstr *NewMI = 6109 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 6110 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 6111 return NewMI; 6112 } 6113 } 6114 break; 6115 case X86::MOVHLPSrr: 6116 case X86::VMOVHLPSrr: 6117 case X86::VMOVHLPSZrr: 6118 // Move the upper 64-bits of the second operand to the lower 64-bits. 6119 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 6120 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 6121 if (OpNum == 2) { 6122 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6123 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 6124 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 6125 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { 6126 unsigned NewOpCode = 6127 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : 6128 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : 6129 X86::MOVLPSrm; 6130 MachineInstr *NewMI = 6131 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 6132 return NewMI; 6133 } 6134 } 6135 break; 6136 case X86::UNPCKLPDrr: 6137 // If we won't be able to fold this to the memory form of UNPCKL, use 6138 // MOVHPD instead. Done as custom because we can't have this in the load 6139 // table twice. 6140 if (OpNum == 2) { 6141 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6142 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 6143 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 6144 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { 6145 MachineInstr *NewMI = 6146 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 6147 return NewMI; 6148 } 6149 } 6150 break; 6151 } 6152 6153 return nullptr; 6154 } 6155 6156 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 6157 MachineInstr &MI) { 6158 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) || 6159 !MI.getOperand(1).isReg()) 6160 return false; 6161 6162 // The are two cases we need to handle depending on where in the pipeline 6163 // the folding attempt is being made. 6164 // -Register has the undef flag set. 6165 // -Register is produced by the IMPLICIT_DEF instruction. 6166 6167 if (MI.getOperand(1).isUndef()) 6168 return true; 6169 6170 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6171 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 6172 return VRegDef && VRegDef->isImplicitDef(); 6173 } 6174 6175 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6176 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 6177 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 6178 unsigned Size, Align Alignment, bool AllowCommute) const { 6179 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 6180 bool isTwoAddrFold = false; 6181 6182 // For CPUs that favor the register form of a call or push, 6183 // do not fold loads into calls or pushes, unless optimizing for size 6184 // aggressively. 6185 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 6186 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || 6187 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || 6188 MI.getOpcode() == X86::PUSH64r)) 6189 return nullptr; 6190 6191 // Avoid partial and undef register update stalls unless optimizing for size. 6192 if (!MF.getFunction().hasOptSize() && 6193 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6194 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6195 return nullptr; 6196 6197 unsigned NumOps = MI.getDesc().getNumOperands(); 6198 bool isTwoAddr = 6199 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 6200 6201 // FIXME: AsmPrinter doesn't know how to handle 6202 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 6203 if (MI.getOpcode() == X86::ADD32ri && 6204 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 6205 return nullptr; 6206 6207 // GOTTPOFF relocation loads can only be folded into add instructions. 6208 // FIXME: Need to exclude other relocations that only support specific 6209 // instructions. 6210 if (MOs.size() == X86::AddrNumOperands && 6211 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 6212 MI.getOpcode() != X86::ADD64rr) 6213 return nullptr; 6214 6215 // Don't fold loads into indirect calls that need a KCFI check as we'll 6216 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway. 6217 if (MI.isCall() && MI.getCFIType()) 6218 return nullptr; 6219 6220 MachineInstr *NewMI = nullptr; 6221 6222 // Attempt to fold any custom cases we have. 6223 if (MachineInstr *CustomMI = foldMemoryOperandCustom( 6224 MF, MI, OpNum, MOs, InsertPt, Size, Alignment)) 6225 return CustomMI; 6226 6227 const X86MemoryFoldTableEntry *I = nullptr; 6228 6229 // Folding a memory location into the two-address part of a two-address 6230 // instruction is different than folding it other places. It requires 6231 // replacing the *two* registers with the memory location. 6232 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && 6233 MI.getOperand(1).isReg() && 6234 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 6235 I = lookupTwoAddrFoldTable(MI.getOpcode()); 6236 isTwoAddrFold = true; 6237 } else { 6238 if (OpNum == 0) { 6239 if (MI.getOpcode() == X86::MOV32r0) { 6240 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 6241 if (NewMI) 6242 return NewMI; 6243 } 6244 } 6245 6246 I = lookupFoldTable(MI.getOpcode(), OpNum); 6247 } 6248 6249 if (I != nullptr) { 6250 unsigned Opcode = I->DstOp; 6251 bool FoldedLoad = 6252 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0; 6253 bool FoldedStore = 6254 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE); 6255 if (Alignment < Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT))) 6256 return nullptr; 6257 bool NarrowToMOV32rm = false; 6258 if (Size) { 6259 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6260 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, 6261 &RI, MF); 6262 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 6263 // Check if it's safe to fold the load. If the size of the object is 6264 // narrower than the load width, then it's not. 6265 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 6266 if (FoldedLoad && Size < RCSize) { 6267 // If this is a 64-bit load, but the spill slot is 32, then we can do 6268 // a 32-bit load which is implicitly zero-extended. This likely is 6269 // due to live interval analysis remat'ing a load from stack slot. 6270 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 6271 return nullptr; 6272 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 6273 return nullptr; 6274 Opcode = X86::MOV32rm; 6275 NarrowToMOV32rm = true; 6276 } 6277 // For stores, make sure the size of the object is equal to the size of 6278 // the store. If the object is larger, the extra bits would be garbage. If 6279 // the object is smaller we might overwrite another object or fault. 6280 if (FoldedStore && Size != RCSize) 6281 return nullptr; 6282 } 6283 6284 if (isTwoAddrFold) 6285 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 6286 else 6287 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 6288 6289 if (NarrowToMOV32rm) { 6290 // If this is the special case where we use a MOV32rm to load a 32-bit 6291 // value and zero-extend the top bits. Change the destination register 6292 // to a 32-bit one. 6293 Register DstReg = NewMI->getOperand(0).getReg(); 6294 if (DstReg.isPhysical()) 6295 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 6296 else 6297 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 6298 } 6299 return NewMI; 6300 } 6301 6302 // If the instruction and target operand are commutable, commute the 6303 // instruction and try again. 6304 if (AllowCommute) { 6305 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 6306 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 6307 bool HasDef = MI.getDesc().getNumDefs(); 6308 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 6309 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); 6310 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); 6311 bool Tied1 = 6312 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 6313 bool Tied2 = 6314 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 6315 6316 // If either of the commutable operands are tied to the destination 6317 // then we can not commute + fold. 6318 if ((HasDef && Reg0 == Reg1 && Tied1) || 6319 (HasDef && Reg0 == Reg2 && Tied2)) 6320 return nullptr; 6321 6322 MachineInstr *CommutedMI = 6323 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 6324 if (!CommutedMI) { 6325 // Unable to commute. 6326 return nullptr; 6327 } 6328 if (CommutedMI != &MI) { 6329 // New instruction. We can't fold from this. 6330 CommutedMI->eraseFromParent(); 6331 return nullptr; 6332 } 6333 6334 // Attempt to fold with the commuted version of the instruction. 6335 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, 6336 Alignment, /*AllowCommute=*/false); 6337 if (NewMI) 6338 return NewMI; 6339 6340 // Folding failed again - undo the commute before returning. 6341 MachineInstr *UncommutedMI = 6342 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 6343 if (!UncommutedMI) { 6344 // Unable to commute. 6345 return nullptr; 6346 } 6347 if (UncommutedMI != &MI) { 6348 // New instruction. It doesn't need to be kept. 6349 UncommutedMI->eraseFromParent(); 6350 return nullptr; 6351 } 6352 6353 // Return here to prevent duplicate fuse failure report. 6354 return nullptr; 6355 } 6356 } 6357 6358 // No fusion 6359 if (PrintFailedFusing && !MI.isCopy()) 6360 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; 6361 return nullptr; 6362 } 6363 6364 MachineInstr * 6365 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 6366 ArrayRef<unsigned> Ops, 6367 MachineBasicBlock::iterator InsertPt, 6368 int FrameIndex, LiveIntervals *LIS, 6369 VirtRegMap *VRM) const { 6370 // Check switch flag 6371 if (NoFusing) 6372 return nullptr; 6373 6374 // Avoid partial and undef register update stalls unless optimizing for size. 6375 if (!MF.getFunction().hasOptSize() && 6376 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6377 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6378 return nullptr; 6379 6380 // Don't fold subreg spills, or reloads that use a high subreg. 6381 for (auto Op : Ops) { 6382 MachineOperand &MO = MI.getOperand(Op); 6383 auto SubReg = MO.getSubReg(); 6384 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 6385 return nullptr; 6386 } 6387 6388 const MachineFrameInfo &MFI = MF.getFrameInfo(); 6389 unsigned Size = MFI.getObjectSize(FrameIndex); 6390 Align Alignment = MFI.getObjectAlign(FrameIndex); 6391 // If the function stack isn't realigned we don't want to fold instructions 6392 // that need increased alignment. 6393 if (!RI.hasStackRealignment(MF)) 6394 Alignment = 6395 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); 6396 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6397 unsigned NewOpc = 0; 6398 unsigned RCSize = 0; 6399 switch (MI.getOpcode()) { 6400 default: return nullptr; 6401 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 6402 case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break; 6403 case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break; 6404 case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break; 6405 } 6406 // Check if it's safe to fold the load. If the size of the object is 6407 // narrower than the load width, then it's not. 6408 if (Size < RCSize) 6409 return nullptr; 6410 // Change to CMPXXri r, 0 first. 6411 MI.setDesc(get(NewOpc)); 6412 MI.getOperand(1).ChangeToImmediate(0); 6413 } else if (Ops.size() != 1) 6414 return nullptr; 6415 6416 return foldMemoryOperandImpl(MF, MI, Ops[0], 6417 MachineOperand::CreateFI(FrameIndex), InsertPt, 6418 Size, Alignment, /*AllowCommute=*/true); 6419 } 6420 6421 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 6422 /// because the latter uses contents that wouldn't be defined in the folded 6423 /// version. For instance, this transformation isn't legal: 6424 /// movss (%rdi), %xmm0 6425 /// addps %xmm0, %xmm0 6426 /// -> 6427 /// addps (%rdi), %xmm0 6428 /// 6429 /// But this one is: 6430 /// movss (%rdi), %xmm0 6431 /// addss %xmm0, %xmm0 6432 /// -> 6433 /// addss (%rdi), %xmm0 6434 /// 6435 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 6436 const MachineInstr &UserMI, 6437 const MachineFunction &MF) { 6438 unsigned Opc = LoadMI.getOpcode(); 6439 unsigned UserOpc = UserMI.getOpcode(); 6440 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6441 const TargetRegisterClass *RC = 6442 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 6443 unsigned RegSize = TRI.getRegSizeInBits(*RC); 6444 6445 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 6446 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 6447 Opc == X86::VMOVSSZrm_alt) && 6448 RegSize > 32) { 6449 // These instructions only load 32 bits, we can't fold them if the 6450 // destination register is wider than 32 bits (4 bytes), and its user 6451 // instruction isn't scalar (SS). 6452 switch (UserOpc) { 6453 case X86::CVTSS2SDrr_Int: 6454 case X86::VCVTSS2SDrr_Int: 6455 case X86::VCVTSS2SDZrr_Int: 6456 case X86::VCVTSS2SDZrr_Intk: 6457 case X86::VCVTSS2SDZrr_Intkz: 6458 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int: 6459 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int: 6460 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int: 6461 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int: 6462 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int: 6463 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int: 6464 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int: 6465 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int: 6466 case X86::RCPSSr_Int: case X86::VRCPSSr_Int: 6467 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int: 6468 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int: 6469 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int: 6470 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int: 6471 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: 6472 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: 6473 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: 6474 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: 6475 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: 6476 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: 6477 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int: 6478 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: 6479 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: 6480 case X86::VCMPSSZrr_Intk: 6481 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: 6482 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: 6483 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: 6484 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: 6485 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: 6486 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: 6487 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: 6488 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: 6489 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: 6490 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: 6491 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: 6492 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: 6493 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: 6494 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: 6495 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: 6496 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: 6497 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: 6498 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: 6499 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: 6500 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: 6501 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: 6502 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: 6503 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: 6504 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: 6505 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: 6506 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: 6507 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: 6508 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: 6509 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: 6510 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: 6511 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: 6512 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: 6513 case X86::VFIXUPIMMSSZrri: 6514 case X86::VFIXUPIMMSSZrrik: 6515 case X86::VFIXUPIMMSSZrrikz: 6516 case X86::VFPCLASSSSZrr: 6517 case X86::VFPCLASSSSZrrk: 6518 case X86::VGETEXPSSZr: 6519 case X86::VGETEXPSSZrk: 6520 case X86::VGETEXPSSZrkz: 6521 case X86::VGETMANTSSZrri: 6522 case X86::VGETMANTSSZrrik: 6523 case X86::VGETMANTSSZrrikz: 6524 case X86::VRANGESSZrri: 6525 case X86::VRANGESSZrrik: 6526 case X86::VRANGESSZrrikz: 6527 case X86::VRCP14SSZrr: 6528 case X86::VRCP14SSZrrk: 6529 case X86::VRCP14SSZrrkz: 6530 case X86::VRCP28SSZr: 6531 case X86::VRCP28SSZrk: 6532 case X86::VRCP28SSZrkz: 6533 case X86::VREDUCESSZrri: 6534 case X86::VREDUCESSZrrik: 6535 case X86::VREDUCESSZrrikz: 6536 case X86::VRNDSCALESSZr_Int: 6537 case X86::VRNDSCALESSZr_Intk: 6538 case X86::VRNDSCALESSZr_Intkz: 6539 case X86::VRSQRT14SSZrr: 6540 case X86::VRSQRT14SSZrrk: 6541 case X86::VRSQRT14SSZrrkz: 6542 case X86::VRSQRT28SSZr: 6543 case X86::VRSQRT28SSZrk: 6544 case X86::VRSQRT28SSZrkz: 6545 case X86::VSCALEFSSZrr: 6546 case X86::VSCALEFSSZrrk: 6547 case X86::VSCALEFSSZrrkz: 6548 return false; 6549 default: 6550 return true; 6551 } 6552 } 6553 6554 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 6555 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 6556 Opc == X86::VMOVSDZrm_alt) && 6557 RegSize > 64) { 6558 // These instructions only load 64 bits, we can't fold them if the 6559 // destination register is wider than 64 bits (8 bytes), and its user 6560 // instruction isn't scalar (SD). 6561 switch (UserOpc) { 6562 case X86::CVTSD2SSrr_Int: 6563 case X86::VCVTSD2SSrr_Int: 6564 case X86::VCVTSD2SSZrr_Int: 6565 case X86::VCVTSD2SSZrr_Intk: 6566 case X86::VCVTSD2SSZrr_Intkz: 6567 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int: 6568 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int: 6569 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int: 6570 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int: 6571 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int: 6572 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int: 6573 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int: 6574 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int: 6575 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int: 6576 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int: 6577 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int: 6578 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: 6579 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: 6580 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: 6581 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: 6582 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: 6583 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: 6584 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int: 6585 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: 6586 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: 6587 case X86::VCMPSDZrr_Intk: 6588 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: 6589 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: 6590 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: 6591 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: 6592 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: 6593 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: 6594 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: 6595 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: 6596 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: 6597 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: 6598 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: 6599 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: 6600 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: 6601 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: 6602 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: 6603 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: 6604 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: 6605 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: 6606 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: 6607 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: 6608 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: 6609 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: 6610 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: 6611 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: 6612 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: 6613 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: 6614 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: 6615 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: 6616 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: 6617 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: 6618 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: 6619 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: 6620 case X86::VFIXUPIMMSDZrri: 6621 case X86::VFIXUPIMMSDZrrik: 6622 case X86::VFIXUPIMMSDZrrikz: 6623 case X86::VFPCLASSSDZrr: 6624 case X86::VFPCLASSSDZrrk: 6625 case X86::VGETEXPSDZr: 6626 case X86::VGETEXPSDZrk: 6627 case X86::VGETEXPSDZrkz: 6628 case X86::VGETMANTSDZrri: 6629 case X86::VGETMANTSDZrrik: 6630 case X86::VGETMANTSDZrrikz: 6631 case X86::VRANGESDZrri: 6632 case X86::VRANGESDZrrik: 6633 case X86::VRANGESDZrrikz: 6634 case X86::VRCP14SDZrr: 6635 case X86::VRCP14SDZrrk: 6636 case X86::VRCP14SDZrrkz: 6637 case X86::VRCP28SDZr: 6638 case X86::VRCP28SDZrk: 6639 case X86::VRCP28SDZrkz: 6640 case X86::VREDUCESDZrri: 6641 case X86::VREDUCESDZrrik: 6642 case X86::VREDUCESDZrrikz: 6643 case X86::VRNDSCALESDZr_Int: 6644 case X86::VRNDSCALESDZr_Intk: 6645 case X86::VRNDSCALESDZr_Intkz: 6646 case X86::VRSQRT14SDZrr: 6647 case X86::VRSQRT14SDZrrk: 6648 case X86::VRSQRT14SDZrrkz: 6649 case X86::VRSQRT28SDZr: 6650 case X86::VRSQRT28SDZrk: 6651 case X86::VRSQRT28SDZrkz: 6652 case X86::VSCALEFSDZrr: 6653 case X86::VSCALEFSDZrrk: 6654 case X86::VSCALEFSDZrrkz: 6655 return false; 6656 default: 6657 return true; 6658 } 6659 } 6660 6661 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { 6662 // These instructions only load 16 bits, we can't fold them if the 6663 // destination register is wider than 16 bits (2 bytes), and its user 6664 // instruction isn't scalar (SH). 6665 switch (UserOpc) { 6666 case X86::VADDSHZrr_Int: 6667 case X86::VCMPSHZrr_Int: 6668 case X86::VDIVSHZrr_Int: 6669 case X86::VMAXSHZrr_Int: 6670 case X86::VMINSHZrr_Int: 6671 case X86::VMULSHZrr_Int: 6672 case X86::VSUBSHZrr_Int: 6673 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz: 6674 case X86::VCMPSHZrr_Intk: 6675 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz: 6676 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz: 6677 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz: 6678 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz: 6679 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz: 6680 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int: 6681 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int: 6682 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int: 6683 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int: 6684 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int: 6685 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int: 6686 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk: 6687 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk: 6688 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk: 6689 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk: 6690 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk: 6691 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk: 6692 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz: 6693 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz: 6694 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz: 6695 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz: 6696 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz: 6697 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz: 6698 return false; 6699 default: 6700 return true; 6701 } 6702 } 6703 6704 return false; 6705 } 6706 6707 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6708 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 6709 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 6710 LiveIntervals *LIS) const { 6711 6712 // TODO: Support the case where LoadMI loads a wide register, but MI 6713 // only uses a subreg. 6714 for (auto Op : Ops) { 6715 if (MI.getOperand(Op).getSubReg()) 6716 return nullptr; 6717 } 6718 6719 // If loading from a FrameIndex, fold directly from the FrameIndex. 6720 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 6721 int FrameIndex; 6722 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 6723 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6724 return nullptr; 6725 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 6726 } 6727 6728 // Check switch flag 6729 if (NoFusing) return nullptr; 6730 6731 // Avoid partial and undef register update stalls unless optimizing for size. 6732 if (!MF.getFunction().hasOptSize() && 6733 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6734 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6735 return nullptr; 6736 6737 // Determine the alignment of the load. 6738 Align Alignment; 6739 if (LoadMI.hasOneMemOperand()) 6740 Alignment = (*LoadMI.memoperands_begin())->getAlign(); 6741 else 6742 switch (LoadMI.getOpcode()) { 6743 case X86::AVX512_512_SET0: 6744 case X86::AVX512_512_SETALLONES: 6745 Alignment = Align(64); 6746 break; 6747 case X86::AVX2_SETALLONES: 6748 case X86::AVX1_SETALLONES: 6749 case X86::AVX_SET0: 6750 case X86::AVX512_256_SET0: 6751 Alignment = Align(32); 6752 break; 6753 case X86::V_SET0: 6754 case X86::V_SETALLONES: 6755 case X86::AVX512_128_SET0: 6756 case X86::FsFLD0F128: 6757 case X86::AVX512_FsFLD0F128: 6758 Alignment = Align(16); 6759 break; 6760 case X86::MMX_SET0: 6761 case X86::FsFLD0SD: 6762 case X86::AVX512_FsFLD0SD: 6763 Alignment = Align(8); 6764 break; 6765 case X86::FsFLD0SS: 6766 case X86::AVX512_FsFLD0SS: 6767 Alignment = Align(4); 6768 break; 6769 case X86::FsFLD0SH: 6770 case X86::AVX512_FsFLD0SH: 6771 Alignment = Align(2); 6772 break; 6773 default: 6774 return nullptr; 6775 } 6776 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6777 unsigned NewOpc = 0; 6778 switch (MI.getOpcode()) { 6779 default: return nullptr; 6780 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 6781 case X86::TEST16rr: NewOpc = X86::CMP16ri; break; 6782 case X86::TEST32rr: NewOpc = X86::CMP32ri; break; 6783 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break; 6784 } 6785 // Change to CMPXXri r, 0 first. 6786 MI.setDesc(get(NewOpc)); 6787 MI.getOperand(1).ChangeToImmediate(0); 6788 } else if (Ops.size() != 1) 6789 return nullptr; 6790 6791 // Make sure the subregisters match. 6792 // Otherwise we risk changing the size of the load. 6793 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 6794 return nullptr; 6795 6796 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 6797 switch (LoadMI.getOpcode()) { 6798 case X86::MMX_SET0: 6799 case X86::V_SET0: 6800 case X86::V_SETALLONES: 6801 case X86::AVX2_SETALLONES: 6802 case X86::AVX1_SETALLONES: 6803 case X86::AVX_SET0: 6804 case X86::AVX512_128_SET0: 6805 case X86::AVX512_256_SET0: 6806 case X86::AVX512_512_SET0: 6807 case X86::AVX512_512_SETALLONES: 6808 case X86::FsFLD0SH: 6809 case X86::AVX512_FsFLD0SH: 6810 case X86::FsFLD0SD: 6811 case X86::AVX512_FsFLD0SD: 6812 case X86::FsFLD0SS: 6813 case X86::AVX512_FsFLD0SS: 6814 case X86::FsFLD0F128: 6815 case X86::AVX512_FsFLD0F128: { 6816 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 6817 // Create a constant-pool entry and operands to load from it. 6818 6819 // Medium and large mode can't fold loads this way. 6820 if (MF.getTarget().getCodeModel() != CodeModel::Small && 6821 MF.getTarget().getCodeModel() != CodeModel::Kernel) 6822 return nullptr; 6823 6824 // x86-32 PIC requires a PIC base register for constant pools. 6825 unsigned PICBase = 0; 6826 // Since we're using Small or Kernel code model, we can always use 6827 // RIP-relative addressing for a smaller encoding. 6828 if (Subtarget.is64Bit()) { 6829 PICBase = X86::RIP; 6830 } else if (MF.getTarget().isPositionIndependent()) { 6831 // FIXME: PICBase = getGlobalBaseReg(&MF); 6832 // This doesn't work for several reasons. 6833 // 1. GlobalBaseReg may have been spilled. 6834 // 2. It may not be live at MI. 6835 return nullptr; 6836 } 6837 6838 // Create a constant-pool entry. 6839 MachineConstantPool &MCP = *MF.getConstantPool(); 6840 Type *Ty; 6841 unsigned Opc = LoadMI.getOpcode(); 6842 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) 6843 Ty = Type::getFloatTy(MF.getFunction().getContext()); 6844 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) 6845 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 6846 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128) 6847 Ty = Type::getFP128Ty(MF.getFunction().getContext()); 6848 else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH) 6849 Ty = Type::getHalfTy(MF.getFunction().getContext()); 6850 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) 6851 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6852 16); 6853 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || 6854 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) 6855 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6856 8); 6857 else if (Opc == X86::MMX_SET0) 6858 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6859 2); 6860 else 6861 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6862 4); 6863 6864 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || 6865 Opc == X86::AVX512_512_SETALLONES || 6866 Opc == X86::AVX1_SETALLONES); 6867 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 6868 Constant::getNullValue(Ty); 6869 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 6870 6871 // Create operands to load from the constant pool entry. 6872 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 6873 MOs.push_back(MachineOperand::CreateImm(1)); 6874 MOs.push_back(MachineOperand::CreateReg(0, false)); 6875 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 6876 MOs.push_back(MachineOperand::CreateReg(0, false)); 6877 break; 6878 } 6879 default: { 6880 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6881 return nullptr; 6882 6883 // Folding a normal load. Just copy the load's address operands. 6884 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 6885 LoadMI.operands_begin() + NumOps); 6886 break; 6887 } 6888 } 6889 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 6890 /*Size=*/0, Alignment, /*AllowCommute=*/true); 6891 } 6892 6893 static SmallVector<MachineMemOperand *, 2> 6894 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6895 SmallVector<MachineMemOperand *, 2> LoadMMOs; 6896 6897 for (MachineMemOperand *MMO : MMOs) { 6898 if (!MMO->isLoad()) 6899 continue; 6900 6901 if (!MMO->isStore()) { 6902 // Reuse the MMO. 6903 LoadMMOs.push_back(MMO); 6904 } else { 6905 // Clone the MMO and unset the store flag. 6906 LoadMMOs.push_back(MF.getMachineMemOperand( 6907 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 6908 } 6909 } 6910 6911 return LoadMMOs; 6912 } 6913 6914 static SmallVector<MachineMemOperand *, 2> 6915 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6916 SmallVector<MachineMemOperand *, 2> StoreMMOs; 6917 6918 for (MachineMemOperand *MMO : MMOs) { 6919 if (!MMO->isStore()) 6920 continue; 6921 6922 if (!MMO->isLoad()) { 6923 // Reuse the MMO. 6924 StoreMMOs.push_back(MMO); 6925 } else { 6926 // Clone the MMO and unset the load flag. 6927 StoreMMOs.push_back(MF.getMachineMemOperand( 6928 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 6929 } 6930 } 6931 6932 return StoreMMOs; 6933 } 6934 6935 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I, 6936 const TargetRegisterClass *RC, 6937 const X86Subtarget &STI) { 6938 assert(STI.hasAVX512() && "Expected at least AVX512!"); 6939 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); 6940 assert((SpillSize == 64 || STI.hasVLX()) && 6941 "Can't broadcast less than 64 bytes without AVX512VL!"); 6942 6943 switch (I->Flags & TB_BCAST_MASK) { 6944 default: llvm_unreachable("Unexpected broadcast type!"); 6945 case TB_BCAST_D: 6946 switch (SpillSize) { 6947 default: llvm_unreachable("Unknown spill size"); 6948 case 16: return X86::VPBROADCASTDZ128rm; 6949 case 32: return X86::VPBROADCASTDZ256rm; 6950 case 64: return X86::VPBROADCASTDZrm; 6951 } 6952 break; 6953 case TB_BCAST_Q: 6954 switch (SpillSize) { 6955 default: llvm_unreachable("Unknown spill size"); 6956 case 16: return X86::VPBROADCASTQZ128rm; 6957 case 32: return X86::VPBROADCASTQZ256rm; 6958 case 64: return X86::VPBROADCASTQZrm; 6959 } 6960 break; 6961 case TB_BCAST_SS: 6962 switch (SpillSize) { 6963 default: llvm_unreachable("Unknown spill size"); 6964 case 16: return X86::VBROADCASTSSZ128rm; 6965 case 32: return X86::VBROADCASTSSZ256rm; 6966 case 64: return X86::VBROADCASTSSZrm; 6967 } 6968 break; 6969 case TB_BCAST_SD: 6970 switch (SpillSize) { 6971 default: llvm_unreachable("Unknown spill size"); 6972 case 16: return X86::VMOVDDUPZ128rm; 6973 case 32: return X86::VBROADCASTSDZ256rm; 6974 case 64: return X86::VBROADCASTSDZrm; 6975 } 6976 break; 6977 } 6978 } 6979 6980 bool X86InstrInfo::unfoldMemoryOperand( 6981 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 6982 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 6983 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 6984 if (I == nullptr) 6985 return false; 6986 unsigned Opc = I->DstOp; 6987 unsigned Index = I->Flags & TB_INDEX_MASK; 6988 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6989 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6990 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6991 if (UnfoldLoad && !FoldedLoad) 6992 return false; 6993 UnfoldLoad &= FoldedLoad; 6994 if (UnfoldStore && !FoldedStore) 6995 return false; 6996 UnfoldStore &= FoldedStore; 6997 6998 const MCInstrDesc &MCID = get(Opc); 6999 7000 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 7001 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7002 // TODO: Check if 32-byte or greater accesses are slow too? 7003 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 7004 Subtarget.isUnalignedMem16Slow()) 7005 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 7006 // conservatively assume the address is unaligned. That's bad for 7007 // performance. 7008 return false; 7009 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 7010 SmallVector<MachineOperand,2> BeforeOps; 7011 SmallVector<MachineOperand,2> AfterOps; 7012 SmallVector<MachineOperand,4> ImpOps; 7013 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 7014 MachineOperand &Op = MI.getOperand(i); 7015 if (i >= Index && i < Index + X86::AddrNumOperands) 7016 AddrOps.push_back(Op); 7017 else if (Op.isReg() && Op.isImplicit()) 7018 ImpOps.push_back(Op); 7019 else if (i < Index) 7020 BeforeOps.push_back(Op); 7021 else if (i > Index) 7022 AfterOps.push_back(Op); 7023 } 7024 7025 // Emit the load or broadcast instruction. 7026 if (UnfoldLoad) { 7027 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 7028 7029 unsigned Opc; 7030 if (FoldedBCast) { 7031 Opc = getBroadcastOpcode(I, RC, Subtarget); 7032 } else { 7033 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 7034 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7035 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); 7036 } 7037 7038 DebugLoc DL; 7039 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); 7040 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 7041 MIB.add(AddrOps[i]); 7042 MIB.setMemRefs(MMOs); 7043 NewMIs.push_back(MIB); 7044 7045 if (UnfoldStore) { 7046 // Address operands cannot be marked isKill. 7047 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 7048 MachineOperand &MO = NewMIs[0]->getOperand(i); 7049 if (MO.isReg()) 7050 MO.setIsKill(false); 7051 } 7052 } 7053 } 7054 7055 // Emit the data processing instruction. 7056 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 7057 MachineInstrBuilder MIB(MF, DataMI); 7058 7059 if (FoldedStore) 7060 MIB.addReg(Reg, RegState::Define); 7061 for (MachineOperand &BeforeOp : BeforeOps) 7062 MIB.add(BeforeOp); 7063 if (FoldedLoad) 7064 MIB.addReg(Reg); 7065 for (MachineOperand &AfterOp : AfterOps) 7066 MIB.add(AfterOp); 7067 for (MachineOperand &ImpOp : ImpOps) { 7068 MIB.addReg(ImpOp.getReg(), 7069 getDefRegState(ImpOp.isDef()) | 7070 RegState::Implicit | 7071 getKillRegState(ImpOp.isKill()) | 7072 getDeadRegState(ImpOp.isDead()) | 7073 getUndefRegState(ImpOp.isUndef())); 7074 } 7075 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 7076 switch (DataMI->getOpcode()) { 7077 default: break; 7078 case X86::CMP64ri32: 7079 case X86::CMP32ri: 7080 case X86::CMP16ri: 7081 case X86::CMP8ri: { 7082 MachineOperand &MO0 = DataMI->getOperand(0); 7083 MachineOperand &MO1 = DataMI->getOperand(1); 7084 if (MO1.isImm() && MO1.getImm() == 0) { 7085 unsigned NewOpc; 7086 switch (DataMI->getOpcode()) { 7087 default: llvm_unreachable("Unreachable!"); 7088 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 7089 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 7090 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 7091 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 7092 } 7093 DataMI->setDesc(get(NewOpc)); 7094 MO1.ChangeToRegister(MO0.getReg(), false); 7095 } 7096 } 7097 } 7098 NewMIs.push_back(DataMI); 7099 7100 // Emit the store instruction. 7101 if (UnfoldStore) { 7102 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 7103 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 7104 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); 7105 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7106 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); 7107 DebugLoc DL; 7108 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 7109 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 7110 MIB.add(AddrOps[i]); 7111 MIB.addReg(Reg, RegState::Kill); 7112 MIB.setMemRefs(MMOs); 7113 NewMIs.push_back(MIB); 7114 } 7115 7116 return true; 7117 } 7118 7119 bool 7120 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 7121 SmallVectorImpl<SDNode*> &NewNodes) const { 7122 if (!N->isMachineOpcode()) 7123 return false; 7124 7125 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 7126 if (I == nullptr) 7127 return false; 7128 unsigned Opc = I->DstOp; 7129 unsigned Index = I->Flags & TB_INDEX_MASK; 7130 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 7131 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 7132 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 7133 const MCInstrDesc &MCID = get(Opc); 7134 MachineFunction &MF = DAG.getMachineFunction(); 7135 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7136 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 7137 unsigned NumDefs = MCID.NumDefs; 7138 std::vector<SDValue> AddrOps; 7139 std::vector<SDValue> BeforeOps; 7140 std::vector<SDValue> AfterOps; 7141 SDLoc dl(N); 7142 unsigned NumOps = N->getNumOperands(); 7143 for (unsigned i = 0; i != NumOps-1; ++i) { 7144 SDValue Op = N->getOperand(i); 7145 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 7146 AddrOps.push_back(Op); 7147 else if (i < Index-NumDefs) 7148 BeforeOps.push_back(Op); 7149 else if (i > Index-NumDefs) 7150 AfterOps.push_back(Op); 7151 } 7152 SDValue Chain = N->getOperand(NumOps-1); 7153 AddrOps.push_back(Chain); 7154 7155 // Emit the load instruction. 7156 SDNode *Load = nullptr; 7157 if (FoldedLoad) { 7158 EVT VT = *TRI.legalclasstypes_begin(*RC); 7159 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 7160 if (MMOs.empty() && RC == &X86::VR128RegClass && 7161 Subtarget.isUnalignedMem16Slow()) 7162 // Do not introduce a slow unaligned load. 7163 return false; 7164 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 7165 // memory access is slow above. 7166 7167 unsigned Opc; 7168 if (FoldedBCast) { 7169 Opc = getBroadcastOpcode(I, RC, Subtarget); 7170 } else { 7171 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 7172 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7173 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); 7174 } 7175 7176 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); 7177 NewNodes.push_back(Load); 7178 7179 // Preserve memory reference information. 7180 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 7181 } 7182 7183 // Emit the data processing instruction. 7184 std::vector<EVT> VTs; 7185 const TargetRegisterClass *DstRC = nullptr; 7186 if (MCID.getNumDefs() > 0) { 7187 DstRC = getRegClass(MCID, 0, &RI, MF); 7188 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 7189 } 7190 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 7191 EVT VT = N->getValueType(i); 7192 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 7193 VTs.push_back(VT); 7194 } 7195 if (Load) 7196 BeforeOps.push_back(SDValue(Load, 0)); 7197 llvm::append_range(BeforeOps, AfterOps); 7198 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 7199 switch (Opc) { 7200 default: break; 7201 case X86::CMP64ri32: 7202 case X86::CMP32ri: 7203 case X86::CMP16ri: 7204 case X86::CMP8ri: 7205 if (isNullConstant(BeforeOps[1])) { 7206 switch (Opc) { 7207 default: llvm_unreachable("Unreachable!"); 7208 case X86::CMP64ri32: Opc = X86::TEST64rr; break; 7209 case X86::CMP32ri: Opc = X86::TEST32rr; break; 7210 case X86::CMP16ri: Opc = X86::TEST16rr; break; 7211 case X86::CMP8ri: Opc = X86::TEST8rr; break; 7212 } 7213 BeforeOps[1] = BeforeOps[0]; 7214 } 7215 } 7216 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 7217 NewNodes.push_back(NewNode); 7218 7219 // Emit the store instruction. 7220 if (FoldedStore) { 7221 AddrOps.pop_back(); 7222 AddrOps.push_back(SDValue(NewNode, 0)); 7223 AddrOps.push_back(Chain); 7224 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 7225 if (MMOs.empty() && RC == &X86::VR128RegClass && 7226 Subtarget.isUnalignedMem16Slow()) 7227 // Do not introduce a slow unaligned store. 7228 return false; 7229 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 7230 // memory access is slow above. 7231 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 7232 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7233 SDNode *Store = 7234 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 7235 dl, MVT::Other, AddrOps); 7236 NewNodes.push_back(Store); 7237 7238 // Preserve memory reference information. 7239 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 7240 } 7241 7242 return true; 7243 } 7244 7245 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 7246 bool UnfoldLoad, bool UnfoldStore, 7247 unsigned *LoadRegIndex) const { 7248 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); 7249 if (I == nullptr) 7250 return 0; 7251 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 7252 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 7253 if (UnfoldLoad && !FoldedLoad) 7254 return 0; 7255 if (UnfoldStore && !FoldedStore) 7256 return 0; 7257 if (LoadRegIndex) 7258 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 7259 return I->DstOp; 7260 } 7261 7262 bool 7263 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 7264 int64_t &Offset1, int64_t &Offset2) const { 7265 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 7266 return false; 7267 unsigned Opc1 = Load1->getMachineOpcode(); 7268 unsigned Opc2 = Load2->getMachineOpcode(); 7269 switch (Opc1) { 7270 default: return false; 7271 case X86::MOV8rm: 7272 case X86::MOV16rm: 7273 case X86::MOV32rm: 7274 case X86::MOV64rm: 7275 case X86::LD_Fp32m: 7276 case X86::LD_Fp64m: 7277 case X86::LD_Fp80m: 7278 case X86::MOVSSrm: 7279 case X86::MOVSSrm_alt: 7280 case X86::MOVSDrm: 7281 case X86::MOVSDrm_alt: 7282 case X86::MMX_MOVD64rm: 7283 case X86::MMX_MOVQ64rm: 7284 case X86::MOVAPSrm: 7285 case X86::MOVUPSrm: 7286 case X86::MOVAPDrm: 7287 case X86::MOVUPDrm: 7288 case X86::MOVDQArm: 7289 case X86::MOVDQUrm: 7290 // AVX load instructions 7291 case X86::VMOVSSrm: 7292 case X86::VMOVSSrm_alt: 7293 case X86::VMOVSDrm: 7294 case X86::VMOVSDrm_alt: 7295 case X86::VMOVAPSrm: 7296 case X86::VMOVUPSrm: 7297 case X86::VMOVAPDrm: 7298 case X86::VMOVUPDrm: 7299 case X86::VMOVDQArm: 7300 case X86::VMOVDQUrm: 7301 case X86::VMOVAPSYrm: 7302 case X86::VMOVUPSYrm: 7303 case X86::VMOVAPDYrm: 7304 case X86::VMOVUPDYrm: 7305 case X86::VMOVDQAYrm: 7306 case X86::VMOVDQUYrm: 7307 // AVX512 load instructions 7308 case X86::VMOVSSZrm: 7309 case X86::VMOVSSZrm_alt: 7310 case X86::VMOVSDZrm: 7311 case X86::VMOVSDZrm_alt: 7312 case X86::VMOVAPSZ128rm: 7313 case X86::VMOVUPSZ128rm: 7314 case X86::VMOVAPSZ128rm_NOVLX: 7315 case X86::VMOVUPSZ128rm_NOVLX: 7316 case X86::VMOVAPDZ128rm: 7317 case X86::VMOVUPDZ128rm: 7318 case X86::VMOVDQU8Z128rm: 7319 case X86::VMOVDQU16Z128rm: 7320 case X86::VMOVDQA32Z128rm: 7321 case X86::VMOVDQU32Z128rm: 7322 case X86::VMOVDQA64Z128rm: 7323 case X86::VMOVDQU64Z128rm: 7324 case X86::VMOVAPSZ256rm: 7325 case X86::VMOVUPSZ256rm: 7326 case X86::VMOVAPSZ256rm_NOVLX: 7327 case X86::VMOVUPSZ256rm_NOVLX: 7328 case X86::VMOVAPDZ256rm: 7329 case X86::VMOVUPDZ256rm: 7330 case X86::VMOVDQU8Z256rm: 7331 case X86::VMOVDQU16Z256rm: 7332 case X86::VMOVDQA32Z256rm: 7333 case X86::VMOVDQU32Z256rm: 7334 case X86::VMOVDQA64Z256rm: 7335 case X86::VMOVDQU64Z256rm: 7336 case X86::VMOVAPSZrm: 7337 case X86::VMOVUPSZrm: 7338 case X86::VMOVAPDZrm: 7339 case X86::VMOVUPDZrm: 7340 case X86::VMOVDQU8Zrm: 7341 case X86::VMOVDQU16Zrm: 7342 case X86::VMOVDQA32Zrm: 7343 case X86::VMOVDQU32Zrm: 7344 case X86::VMOVDQA64Zrm: 7345 case X86::VMOVDQU64Zrm: 7346 case X86::KMOVBkm: 7347 case X86::KMOVWkm: 7348 case X86::KMOVDkm: 7349 case X86::KMOVQkm: 7350 break; 7351 } 7352 switch (Opc2) { 7353 default: return false; 7354 case X86::MOV8rm: 7355 case X86::MOV16rm: 7356 case X86::MOV32rm: 7357 case X86::MOV64rm: 7358 case X86::LD_Fp32m: 7359 case X86::LD_Fp64m: 7360 case X86::LD_Fp80m: 7361 case X86::MOVSSrm: 7362 case X86::MOVSSrm_alt: 7363 case X86::MOVSDrm: 7364 case X86::MOVSDrm_alt: 7365 case X86::MMX_MOVD64rm: 7366 case X86::MMX_MOVQ64rm: 7367 case X86::MOVAPSrm: 7368 case X86::MOVUPSrm: 7369 case X86::MOVAPDrm: 7370 case X86::MOVUPDrm: 7371 case X86::MOVDQArm: 7372 case X86::MOVDQUrm: 7373 // AVX load instructions 7374 case X86::VMOVSSrm: 7375 case X86::VMOVSSrm_alt: 7376 case X86::VMOVSDrm: 7377 case X86::VMOVSDrm_alt: 7378 case X86::VMOVAPSrm: 7379 case X86::VMOVUPSrm: 7380 case X86::VMOVAPDrm: 7381 case X86::VMOVUPDrm: 7382 case X86::VMOVDQArm: 7383 case X86::VMOVDQUrm: 7384 case X86::VMOVAPSYrm: 7385 case X86::VMOVUPSYrm: 7386 case X86::VMOVAPDYrm: 7387 case X86::VMOVUPDYrm: 7388 case X86::VMOVDQAYrm: 7389 case X86::VMOVDQUYrm: 7390 // AVX512 load instructions 7391 case X86::VMOVSSZrm: 7392 case X86::VMOVSSZrm_alt: 7393 case X86::VMOVSDZrm: 7394 case X86::VMOVSDZrm_alt: 7395 case X86::VMOVAPSZ128rm: 7396 case X86::VMOVUPSZ128rm: 7397 case X86::VMOVAPSZ128rm_NOVLX: 7398 case X86::VMOVUPSZ128rm_NOVLX: 7399 case X86::VMOVAPDZ128rm: 7400 case X86::VMOVUPDZ128rm: 7401 case X86::VMOVDQU8Z128rm: 7402 case X86::VMOVDQU16Z128rm: 7403 case X86::VMOVDQA32Z128rm: 7404 case X86::VMOVDQU32Z128rm: 7405 case X86::VMOVDQA64Z128rm: 7406 case X86::VMOVDQU64Z128rm: 7407 case X86::VMOVAPSZ256rm: 7408 case X86::VMOVUPSZ256rm: 7409 case X86::VMOVAPSZ256rm_NOVLX: 7410 case X86::VMOVUPSZ256rm_NOVLX: 7411 case X86::VMOVAPDZ256rm: 7412 case X86::VMOVUPDZ256rm: 7413 case X86::VMOVDQU8Z256rm: 7414 case X86::VMOVDQU16Z256rm: 7415 case X86::VMOVDQA32Z256rm: 7416 case X86::VMOVDQU32Z256rm: 7417 case X86::VMOVDQA64Z256rm: 7418 case X86::VMOVDQU64Z256rm: 7419 case X86::VMOVAPSZrm: 7420 case X86::VMOVUPSZrm: 7421 case X86::VMOVAPDZrm: 7422 case X86::VMOVUPDZrm: 7423 case X86::VMOVDQU8Zrm: 7424 case X86::VMOVDQU16Zrm: 7425 case X86::VMOVDQA32Zrm: 7426 case X86::VMOVDQU32Zrm: 7427 case X86::VMOVDQA64Zrm: 7428 case X86::VMOVDQU64Zrm: 7429 case X86::KMOVBkm: 7430 case X86::KMOVWkm: 7431 case X86::KMOVDkm: 7432 case X86::KMOVQkm: 7433 break; 7434 } 7435 7436 // Lambda to check if both the loads have the same value for an operand index. 7437 auto HasSameOp = [&](int I) { 7438 return Load1->getOperand(I) == Load2->getOperand(I); 7439 }; 7440 7441 // All operands except the displacement should match. 7442 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 7443 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 7444 return false; 7445 7446 // Chain Operand must be the same. 7447 if (!HasSameOp(5)) 7448 return false; 7449 7450 // Now let's examine if the displacements are constants. 7451 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 7452 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 7453 if (!Disp1 || !Disp2) 7454 return false; 7455 7456 Offset1 = Disp1->getSExtValue(); 7457 Offset2 = Disp2->getSExtValue(); 7458 return true; 7459 } 7460 7461 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 7462 int64_t Offset1, int64_t Offset2, 7463 unsigned NumLoads) const { 7464 assert(Offset2 > Offset1); 7465 if ((Offset2 - Offset1) / 8 > 64) 7466 return false; 7467 7468 unsigned Opc1 = Load1->getMachineOpcode(); 7469 unsigned Opc2 = Load2->getMachineOpcode(); 7470 if (Opc1 != Opc2) 7471 return false; // FIXME: overly conservative? 7472 7473 switch (Opc1) { 7474 default: break; 7475 case X86::LD_Fp32m: 7476 case X86::LD_Fp64m: 7477 case X86::LD_Fp80m: 7478 case X86::MMX_MOVD64rm: 7479 case X86::MMX_MOVQ64rm: 7480 return false; 7481 } 7482 7483 EVT VT = Load1->getValueType(0); 7484 switch (VT.getSimpleVT().SimpleTy) { 7485 default: 7486 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 7487 // have 16 of them to play with. 7488 if (Subtarget.is64Bit()) { 7489 if (NumLoads >= 3) 7490 return false; 7491 } else if (NumLoads) { 7492 return false; 7493 } 7494 break; 7495 case MVT::i8: 7496 case MVT::i16: 7497 case MVT::i32: 7498 case MVT::i64: 7499 case MVT::f32: 7500 case MVT::f64: 7501 if (NumLoads) 7502 return false; 7503 break; 7504 } 7505 7506 return true; 7507 } 7508 7509 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, 7510 const MachineBasicBlock *MBB, 7511 const MachineFunction &MF) const { 7512 7513 // ENDBR instructions should not be scheduled around. 7514 unsigned Opcode = MI.getOpcode(); 7515 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || 7516 Opcode == X86::PLDTILECFGV) 7517 return true; 7518 7519 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 7520 } 7521 7522 bool X86InstrInfo:: 7523 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 7524 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 7525 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 7526 Cond[0].setImm(GetOppositeBranchCondition(CC)); 7527 return false; 7528 } 7529 7530 bool X86InstrInfo:: 7531 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 7532 // FIXME: Return false for x87 stack register classes for now. We can't 7533 // allow any loads of these registers before FpGet_ST0_80. 7534 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 7535 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 7536 RC == &X86::RFP80RegClass); 7537 } 7538 7539 /// Return a virtual register initialized with the 7540 /// the global base register value. Output instructions required to 7541 /// initialize the register in the function entry block, if necessary. 7542 /// 7543 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 7544 /// 7545 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 7546 assert((!Subtarget.is64Bit() || 7547 MF->getTarget().getCodeModel() == CodeModel::Medium || 7548 MF->getTarget().getCodeModel() == CodeModel::Large) && 7549 "X86-64 PIC uses RIP relative addressing"); 7550 7551 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 7552 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 7553 if (GlobalBaseReg != 0) 7554 return GlobalBaseReg; 7555 7556 // Create the register. The code to initialize it is inserted 7557 // later, by the CGBR pass (below). 7558 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 7559 GlobalBaseReg = RegInfo.createVirtualRegister( 7560 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 7561 X86FI->setGlobalBaseReg(GlobalBaseReg); 7562 return GlobalBaseReg; 7563 } 7564 7565 // These are the replaceable SSE instructions. Some of these have Int variants 7566 // that we don't include here. We don't want to replace instructions selected 7567 // by intrinsics. 7568 static const uint16_t ReplaceableInstrs[][3] = { 7569 //PackedSingle PackedDouble PackedInt 7570 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 7571 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 7572 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 7573 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 7574 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 7575 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 7576 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, 7577 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, 7578 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, 7579 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm }, 7580 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, 7581 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm }, 7582 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 7583 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 7584 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 7585 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 7586 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 7587 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 7588 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 7589 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 7590 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 7591 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, 7592 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, 7593 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, 7594 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, 7595 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, 7596 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, 7597 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, 7598 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, 7599 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, 7600 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, 7601 // AVX 128-bit support 7602 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 7603 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 7604 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 7605 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 7606 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 7607 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 7608 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, 7609 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, 7610 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, 7611 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm }, 7612 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, 7613 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm }, 7614 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 7615 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 7616 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 7617 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 7618 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 7619 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 7620 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 7621 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 7622 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 7623 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, 7624 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, 7625 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, 7626 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, 7627 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, 7628 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, 7629 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, 7630 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, 7631 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, 7632 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, 7633 // AVX 256-bit support 7634 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 7635 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 7636 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 7637 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 7638 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 7639 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 7640 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, 7641 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, 7642 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, 7643 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, 7644 // AVX512 support 7645 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, 7646 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, 7647 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, 7648 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, 7649 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, 7650 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, 7651 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, 7652 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm }, 7653 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, 7654 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm }, 7655 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr }, 7656 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm }, 7657 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr }, 7658 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm }, 7659 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr }, 7660 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm }, 7661 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr }, 7662 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm }, 7663 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr }, 7664 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm }, 7665 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr }, 7666 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm }, 7667 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, 7668 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, 7669 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, 7670 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, 7671 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, 7672 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, 7673 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, 7674 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, 7675 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, 7676 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, 7677 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, 7678 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, 7679 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, 7680 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, 7681 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, 7682 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, 7683 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, 7684 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, 7685 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, 7686 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, 7687 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, 7688 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, 7689 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, 7690 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, 7691 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, 7692 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, 7693 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, 7694 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, 7695 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, 7696 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, 7697 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, 7698 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, 7699 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, 7700 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, 7701 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, 7702 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, 7703 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, 7704 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, 7705 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, 7706 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, 7707 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, 7708 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, 7709 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, 7710 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, 7711 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, 7712 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, 7713 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, 7714 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, 7715 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, 7716 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, 7717 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, 7718 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, 7719 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, 7720 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, 7721 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, 7722 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, 7723 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, 7724 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, 7725 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, 7726 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, 7727 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, 7728 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, 7729 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, 7730 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, 7731 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, 7732 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, 7733 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, 7734 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, 7735 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, 7736 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, 7737 }; 7738 7739 static const uint16_t ReplaceableInstrsAVX2[][3] = { 7740 //PackedSingle PackedDouble PackedInt 7741 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 7742 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 7743 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 7744 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 7745 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 7746 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 7747 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 7748 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 7749 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 7750 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 7751 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 7752 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 7753 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm}, 7754 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr}, 7755 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 7756 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 7757 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 7758 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, 7759 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, 7760 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, 7761 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, 7762 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, 7763 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, 7764 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, 7765 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, 7766 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, 7767 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, 7768 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, 7769 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, 7770 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, 7771 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, 7772 }; 7773 7774 static const uint16_t ReplaceableInstrsFP[][3] = { 7775 //PackedSingle PackedDouble 7776 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END }, 7777 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END }, 7778 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END }, 7779 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END }, 7780 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END }, 7781 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END }, 7782 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END }, 7783 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END }, 7784 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END }, 7785 }; 7786 7787 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { 7788 //PackedSingle PackedDouble PackedInt 7789 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 7790 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 7791 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 7792 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 7793 }; 7794 7795 static const uint16_t ReplaceableInstrsAVX512[][4] = { 7796 // Two integer columns for 64-bit and 32-bit elements. 7797 //PackedSingle PackedDouble PackedInt PackedInt 7798 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, 7799 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, 7800 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, 7801 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, 7802 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, 7803 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, 7804 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, 7805 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, 7806 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, 7807 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, 7808 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, 7809 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, 7810 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, 7811 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, 7812 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, 7813 }; 7814 7815 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { 7816 // Two integer columns for 64-bit and 32-bit elements. 7817 //PackedSingle PackedDouble PackedInt PackedInt 7818 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7819 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7820 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7821 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7822 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7823 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7824 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7825 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7826 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7827 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7828 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7829 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7830 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7831 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7832 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7833 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7834 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, 7835 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, 7836 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, 7837 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, 7838 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, 7839 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, 7840 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, 7841 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, 7842 }; 7843 7844 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { 7845 // Two integer columns for 64-bit and 32-bit elements. 7846 //PackedSingle PackedDouble 7847 //PackedInt PackedInt 7848 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, 7849 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, 7850 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, 7851 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, 7852 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, 7853 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, 7854 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, 7855 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, 7856 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, 7857 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, 7858 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, 7859 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, 7860 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, 7861 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, 7862 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, 7863 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, 7864 { X86::VORPSZ128rmk, X86::VORPDZ128rmk, 7865 X86::VPORQZ128rmk, X86::VPORDZ128rmk }, 7866 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, 7867 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, 7868 { X86::VORPSZ128rrk, X86::VORPDZ128rrk, 7869 X86::VPORQZ128rrk, X86::VPORDZ128rrk }, 7870 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, 7871 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, 7872 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, 7873 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, 7874 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, 7875 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, 7876 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, 7877 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, 7878 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, 7879 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, 7880 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, 7881 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, 7882 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, 7883 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, 7884 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, 7885 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, 7886 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, 7887 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, 7888 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, 7889 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, 7890 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, 7891 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, 7892 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, 7893 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, 7894 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, 7895 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, 7896 { X86::VORPSZ256rmk, X86::VORPDZ256rmk, 7897 X86::VPORQZ256rmk, X86::VPORDZ256rmk }, 7898 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, 7899 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, 7900 { X86::VORPSZ256rrk, X86::VORPDZ256rrk, 7901 X86::VPORQZ256rrk, X86::VPORDZ256rrk }, 7902 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, 7903 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, 7904 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, 7905 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, 7906 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, 7907 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, 7908 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, 7909 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, 7910 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, 7911 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, 7912 { X86::VANDNPSZrmk, X86::VANDNPDZrmk, 7913 X86::VPANDNQZrmk, X86::VPANDNDZrmk }, 7914 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, 7915 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, 7916 { X86::VANDNPSZrrk, X86::VANDNPDZrrk, 7917 X86::VPANDNQZrrk, X86::VPANDNDZrrk }, 7918 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, 7919 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, 7920 { X86::VANDPSZrmk, X86::VANDPDZrmk, 7921 X86::VPANDQZrmk, X86::VPANDDZrmk }, 7922 { X86::VANDPSZrmkz, X86::VANDPDZrmkz, 7923 X86::VPANDQZrmkz, X86::VPANDDZrmkz }, 7924 { X86::VANDPSZrrk, X86::VANDPDZrrk, 7925 X86::VPANDQZrrk, X86::VPANDDZrrk }, 7926 { X86::VANDPSZrrkz, X86::VANDPDZrrkz, 7927 X86::VPANDQZrrkz, X86::VPANDDZrrkz }, 7928 { X86::VORPSZrmk, X86::VORPDZrmk, 7929 X86::VPORQZrmk, X86::VPORDZrmk }, 7930 { X86::VORPSZrmkz, X86::VORPDZrmkz, 7931 X86::VPORQZrmkz, X86::VPORDZrmkz }, 7932 { X86::VORPSZrrk, X86::VORPDZrrk, 7933 X86::VPORQZrrk, X86::VPORDZrrk }, 7934 { X86::VORPSZrrkz, X86::VORPDZrrkz, 7935 X86::VPORQZrrkz, X86::VPORDZrrkz }, 7936 { X86::VXORPSZrmk, X86::VXORPDZrmk, 7937 X86::VPXORQZrmk, X86::VPXORDZrmk }, 7938 { X86::VXORPSZrmkz, X86::VXORPDZrmkz, 7939 X86::VPXORQZrmkz, X86::VPXORDZrmkz }, 7940 { X86::VXORPSZrrk, X86::VXORPDZrrk, 7941 X86::VPXORQZrrk, X86::VPXORDZrrk }, 7942 { X86::VXORPSZrrkz, X86::VXORPDZrrkz, 7943 X86::VPXORQZrrkz, X86::VPXORDZrrkz }, 7944 // Broadcast loads can be handled the same as masked operations to avoid 7945 // changing element size. 7946 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, 7947 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, 7948 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, 7949 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, 7950 { X86::VORPSZ128rmb, X86::VORPDZ128rmb, 7951 X86::VPORQZ128rmb, X86::VPORDZ128rmb }, 7952 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, 7953 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, 7954 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, 7955 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, 7956 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, 7957 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, 7958 { X86::VORPSZ256rmb, X86::VORPDZ256rmb, 7959 X86::VPORQZ256rmb, X86::VPORDZ256rmb }, 7960 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, 7961 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, 7962 { X86::VANDNPSZrmb, X86::VANDNPDZrmb, 7963 X86::VPANDNQZrmb, X86::VPANDNDZrmb }, 7964 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7965 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7966 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7967 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7968 { X86::VORPSZrmb, X86::VORPDZrmb, 7969 X86::VPORQZrmb, X86::VPORDZrmb }, 7970 { X86::VXORPSZrmb, X86::VXORPDZrmb, 7971 X86::VPXORQZrmb, X86::VPXORDZrmb }, 7972 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, 7973 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, 7974 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, 7975 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, 7976 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, 7977 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, 7978 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, 7979 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, 7980 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, 7981 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, 7982 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, 7983 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, 7984 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, 7985 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, 7986 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, 7987 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, 7988 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, 7989 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, 7990 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7991 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7992 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7993 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7994 { X86::VORPSZrmbk, X86::VORPDZrmbk, 7995 X86::VPORQZrmbk, X86::VPORDZrmbk }, 7996 { X86::VXORPSZrmbk, X86::VXORPDZrmbk, 7997 X86::VPXORQZrmbk, X86::VPXORDZrmbk }, 7998 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, 7999 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, 8000 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, 8001 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, 8002 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, 8003 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, 8004 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, 8005 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, 8006 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, 8007 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, 8008 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, 8009 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, 8010 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, 8011 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, 8012 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, 8013 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, 8014 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, 8015 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, 8016 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 8017 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 8018 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 8019 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 8020 { X86::VORPSZrmbkz, X86::VORPDZrmbkz, 8021 X86::VPORQZrmbkz, X86::VPORDZrmbkz }, 8022 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, 8023 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, 8024 }; 8025 8026 // NOTE: These should only be used by the custom domain methods. 8027 static const uint16_t ReplaceableBlendInstrs[][3] = { 8028 //PackedSingle PackedDouble PackedInt 8029 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, 8030 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, 8031 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, 8032 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, 8033 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, 8034 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, 8035 }; 8036 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = { 8037 //PackedSingle PackedDouble PackedInt 8038 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, 8039 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, 8040 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, 8041 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, 8042 }; 8043 8044 // Special table for changing EVEX logic instructions to VEX. 8045 // TODO: Should we run EVEX->VEX earlier? 8046 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { 8047 // Two integer columns for 64-bit and 32-bit elements. 8048 //PackedSingle PackedDouble PackedInt PackedInt 8049 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 8050 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 8051 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 8052 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 8053 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 8054 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 8055 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 8056 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 8057 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 8058 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 8059 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 8060 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 8061 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 8062 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 8063 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 8064 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 8065 }; 8066 8067 // FIXME: Some shuffle and unpack instructions have equivalents in different 8068 // domains, but they require a bit more work than just switching opcodes. 8069 8070 static const uint16_t *lookup(unsigned opcode, unsigned domain, 8071 ArrayRef<uint16_t[3]> Table) { 8072 for (const uint16_t (&Row)[3] : Table) 8073 if (Row[domain-1] == opcode) 8074 return Row; 8075 return nullptr; 8076 } 8077 8078 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 8079 ArrayRef<uint16_t[4]> Table) { 8080 // If this is the integer domain make sure to check both integer columns. 8081 for (const uint16_t (&Row)[4] : Table) 8082 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) 8083 return Row; 8084 return nullptr; 8085 } 8086 8087 // Helper to attempt to widen/narrow blend masks. 8088 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 8089 unsigned NewWidth, unsigned *pNewMask = nullptr) { 8090 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 8091 "Illegal blend mask scale"); 8092 unsigned NewMask = 0; 8093 8094 if ((OldWidth % NewWidth) == 0) { 8095 unsigned Scale = OldWidth / NewWidth; 8096 unsigned SubMask = (1u << Scale) - 1; 8097 for (unsigned i = 0; i != NewWidth; ++i) { 8098 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 8099 if (Sub == SubMask) 8100 NewMask |= (1u << i); 8101 else if (Sub != 0x0) 8102 return false; 8103 } 8104 } else { 8105 unsigned Scale = NewWidth / OldWidth; 8106 unsigned SubMask = (1u << Scale) - 1; 8107 for (unsigned i = 0; i != OldWidth; ++i) { 8108 if (OldMask & (1 << i)) { 8109 NewMask |= (SubMask << (i * Scale)); 8110 } 8111 } 8112 } 8113 8114 if (pNewMask) 8115 *pNewMask = NewMask; 8116 return true; 8117 } 8118 8119 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 8120 unsigned Opcode = MI.getOpcode(); 8121 unsigned NumOperands = MI.getDesc().getNumOperands(); 8122 8123 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 8124 uint16_t validDomains = 0; 8125 if (MI.getOperand(NumOperands - 1).isImm()) { 8126 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 8127 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 8128 validDomains |= 0x2; // PackedSingle 8129 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 8130 validDomains |= 0x4; // PackedDouble 8131 if (!Is256 || Subtarget.hasAVX2()) 8132 validDomains |= 0x8; // PackedInt 8133 } 8134 return validDomains; 8135 }; 8136 8137 switch (Opcode) { 8138 case X86::BLENDPDrmi: 8139 case X86::BLENDPDrri: 8140 case X86::VBLENDPDrmi: 8141 case X86::VBLENDPDrri: 8142 return GetBlendDomains(2, false); 8143 case X86::VBLENDPDYrmi: 8144 case X86::VBLENDPDYrri: 8145 return GetBlendDomains(4, true); 8146 case X86::BLENDPSrmi: 8147 case X86::BLENDPSrri: 8148 case X86::VBLENDPSrmi: 8149 case X86::VBLENDPSrri: 8150 case X86::VPBLENDDrmi: 8151 case X86::VPBLENDDrri: 8152 return GetBlendDomains(4, false); 8153 case X86::VBLENDPSYrmi: 8154 case X86::VBLENDPSYrri: 8155 case X86::VPBLENDDYrmi: 8156 case X86::VPBLENDDYrri: 8157 return GetBlendDomains(8, true); 8158 case X86::PBLENDWrmi: 8159 case X86::PBLENDWrri: 8160 case X86::VPBLENDWrmi: 8161 case X86::VPBLENDWrri: 8162 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 8163 case X86::VPBLENDWYrmi: 8164 case X86::VPBLENDWYrri: 8165 return GetBlendDomains(8, false); 8166 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 8167 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 8168 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 8169 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 8170 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 8171 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 8172 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 8173 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 8174 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 8175 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 8176 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 8177 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 8178 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 8179 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 8180 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 8181 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: 8182 // If we don't have DQI see if we can still switch from an EVEX integer 8183 // instruction to a VEX floating point instruction. 8184 if (Subtarget.hasDQI()) 8185 return 0; 8186 8187 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 8188 return 0; 8189 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 8190 return 0; 8191 // Register forms will have 3 operands. Memory form will have more. 8192 if (NumOperands == 3 && 8193 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 8194 return 0; 8195 8196 // All domains are valid. 8197 return 0xe; 8198 case X86::MOVHLPSrr: 8199 // We can swap domains when both inputs are the same register. 8200 // FIXME: This doesn't catch all the cases we would like. If the input 8201 // register isn't KILLed by the instruction, the two address instruction 8202 // pass puts a COPY on one input. The other input uses the original 8203 // register. This prevents the same physical register from being used by 8204 // both inputs. 8205 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 8206 MI.getOperand(0).getSubReg() == 0 && 8207 MI.getOperand(1).getSubReg() == 0 && 8208 MI.getOperand(2).getSubReg() == 0) 8209 return 0x6; 8210 return 0; 8211 case X86::SHUFPDrri: 8212 return 0x6; 8213 } 8214 return 0; 8215 } 8216 8217 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 8218 unsigned Domain) const { 8219 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 8220 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8221 assert(dom && "Not an SSE instruction"); 8222 8223 unsigned Opcode = MI.getOpcode(); 8224 unsigned NumOperands = MI.getDesc().getNumOperands(); 8225 8226 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 8227 if (MI.getOperand(NumOperands - 1).isImm()) { 8228 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 8229 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 8230 unsigned NewImm = Imm; 8231 8232 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 8233 if (!table) 8234 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 8235 8236 if (Domain == 1) { // PackedSingle 8237 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 8238 } else if (Domain == 2) { // PackedDouble 8239 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 8240 } else if (Domain == 3) { // PackedInt 8241 if (Subtarget.hasAVX2()) { 8242 // If we are already VPBLENDW use that, else use VPBLENDD. 8243 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 8244 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 8245 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 8246 } 8247 } else { 8248 assert(!Is256 && "128-bit vector expected"); 8249 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 8250 } 8251 } 8252 8253 assert(table && table[Domain - 1] && "Unknown domain op"); 8254 MI.setDesc(get(table[Domain - 1])); 8255 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 8256 } 8257 return true; 8258 }; 8259 8260 switch (Opcode) { 8261 case X86::BLENDPDrmi: 8262 case X86::BLENDPDrri: 8263 case X86::VBLENDPDrmi: 8264 case X86::VBLENDPDrri: 8265 return SetBlendDomain(2, false); 8266 case X86::VBLENDPDYrmi: 8267 case X86::VBLENDPDYrri: 8268 return SetBlendDomain(4, true); 8269 case X86::BLENDPSrmi: 8270 case X86::BLENDPSrri: 8271 case X86::VBLENDPSrmi: 8272 case X86::VBLENDPSrri: 8273 case X86::VPBLENDDrmi: 8274 case X86::VPBLENDDrri: 8275 return SetBlendDomain(4, false); 8276 case X86::VBLENDPSYrmi: 8277 case X86::VBLENDPSYrri: 8278 case X86::VPBLENDDYrmi: 8279 case X86::VPBLENDDYrri: 8280 return SetBlendDomain(8, true); 8281 case X86::PBLENDWrmi: 8282 case X86::PBLENDWrri: 8283 case X86::VPBLENDWrmi: 8284 case X86::VPBLENDWrri: 8285 return SetBlendDomain(8, false); 8286 case X86::VPBLENDWYrmi: 8287 case X86::VPBLENDWYrri: 8288 return SetBlendDomain(16, true); 8289 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 8290 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 8291 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 8292 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 8293 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 8294 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 8295 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 8296 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 8297 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 8298 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 8299 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 8300 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 8301 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 8302 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 8303 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 8304 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { 8305 // Without DQI, convert EVEX instructions to VEX instructions. 8306 if (Subtarget.hasDQI()) 8307 return false; 8308 8309 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, 8310 ReplaceableCustomAVX512LogicInstrs); 8311 assert(table && "Instruction not found in table?"); 8312 // Don't change integer Q instructions to D instructions and 8313 // use D intructions if we started with a PS instruction. 8314 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8315 Domain = 4; 8316 MI.setDesc(get(table[Domain - 1])); 8317 return true; 8318 } 8319 case X86::UNPCKHPDrr: 8320 case X86::MOVHLPSrr: 8321 // We just need to commute the instruction which will switch the domains. 8322 if (Domain != dom && Domain != 3 && 8323 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 8324 MI.getOperand(0).getSubReg() == 0 && 8325 MI.getOperand(1).getSubReg() == 0 && 8326 MI.getOperand(2).getSubReg() == 0) { 8327 commuteInstruction(MI, false); 8328 return true; 8329 } 8330 // We must always return true for MOVHLPSrr. 8331 if (Opcode == X86::MOVHLPSrr) 8332 return true; 8333 break; 8334 case X86::SHUFPDrri: { 8335 if (Domain == 1) { 8336 unsigned Imm = MI.getOperand(3).getImm(); 8337 unsigned NewImm = 0x44; 8338 if (Imm & 1) NewImm |= 0x0a; 8339 if (Imm & 2) NewImm |= 0xa0; 8340 MI.getOperand(3).setImm(NewImm); 8341 MI.setDesc(get(X86::SHUFPSrri)); 8342 } 8343 return true; 8344 } 8345 } 8346 return false; 8347 } 8348 8349 std::pair<uint16_t, uint16_t> 8350 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 8351 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8352 unsigned opcode = MI.getOpcode(); 8353 uint16_t validDomains = 0; 8354 if (domain) { 8355 // Attempt to match for custom instructions. 8356 validDomains = getExecutionDomainCustom(MI); 8357 if (validDomains) 8358 return std::make_pair(domain, validDomains); 8359 8360 if (lookup(opcode, domain, ReplaceableInstrs)) { 8361 validDomains = 0xe; 8362 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 8363 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 8364 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 8365 validDomains = 0x6; 8366 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 8367 // Insert/extract instructions should only effect domain if AVX2 8368 // is enabled. 8369 if (!Subtarget.hasAVX2()) 8370 return std::make_pair(0, 0); 8371 validDomains = 0xe; 8372 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 8373 validDomains = 0xe; 8374 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, 8375 ReplaceableInstrsAVX512DQ)) { 8376 validDomains = 0xe; 8377 } else if (Subtarget.hasDQI()) { 8378 if (const uint16_t *table = lookupAVX512(opcode, domain, 8379 ReplaceableInstrsAVX512DQMasked)) { 8380 if (domain == 1 || (domain == 3 && table[3] == opcode)) 8381 validDomains = 0xa; 8382 else 8383 validDomains = 0xc; 8384 } 8385 } 8386 } 8387 return std::make_pair(domain, validDomains); 8388 } 8389 8390 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 8391 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 8392 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8393 assert(dom && "Not an SSE instruction"); 8394 8395 // Attempt to match for custom instructions. 8396 if (setExecutionDomainCustom(MI, Domain)) 8397 return; 8398 8399 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 8400 if (!table) { // try the other table 8401 assert((Subtarget.hasAVX2() || Domain < 3) && 8402 "256-bit vector operations only available in AVX2"); 8403 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 8404 } 8405 if (!table) { // try the FP table 8406 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 8407 assert((!table || Domain < 3) && 8408 "Can only select PackedSingle or PackedDouble"); 8409 } 8410 if (!table) { // try the other table 8411 assert(Subtarget.hasAVX2() && 8412 "256-bit insert/extract only available in AVX2"); 8413 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 8414 } 8415 if (!table) { // try the AVX512 table 8416 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 8417 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 8418 // Don't change integer Q instructions to D instructions. 8419 if (table && Domain == 3 && table[3] == MI.getOpcode()) 8420 Domain = 4; 8421 } 8422 if (!table) { // try the AVX512DQ table 8423 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 8424 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 8425 // Don't change integer Q instructions to D instructions and 8426 // use D instructions if we started with a PS instruction. 8427 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8428 Domain = 4; 8429 } 8430 if (!table) { // try the AVX512DQMasked table 8431 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 8432 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 8433 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8434 Domain = 4; 8435 } 8436 assert(table && "Cannot change domain"); 8437 MI.setDesc(get(table[Domain - 1])); 8438 } 8439 8440 /// Return the noop instruction to use for a noop. 8441 MCInst X86InstrInfo::getNop() const { 8442 MCInst Nop; 8443 Nop.setOpcode(X86::NOOP); 8444 return Nop; 8445 } 8446 8447 bool X86InstrInfo::isHighLatencyDef(int opc) const { 8448 switch (opc) { 8449 default: return false; 8450 case X86::DIVPDrm: 8451 case X86::DIVPDrr: 8452 case X86::DIVPSrm: 8453 case X86::DIVPSrr: 8454 case X86::DIVSDrm: 8455 case X86::DIVSDrm_Int: 8456 case X86::DIVSDrr: 8457 case X86::DIVSDrr_Int: 8458 case X86::DIVSSrm: 8459 case X86::DIVSSrm_Int: 8460 case X86::DIVSSrr: 8461 case X86::DIVSSrr_Int: 8462 case X86::SQRTPDm: 8463 case X86::SQRTPDr: 8464 case X86::SQRTPSm: 8465 case X86::SQRTPSr: 8466 case X86::SQRTSDm: 8467 case X86::SQRTSDm_Int: 8468 case X86::SQRTSDr: 8469 case X86::SQRTSDr_Int: 8470 case X86::SQRTSSm: 8471 case X86::SQRTSSm_Int: 8472 case X86::SQRTSSr: 8473 case X86::SQRTSSr_Int: 8474 // AVX instructions with high latency 8475 case X86::VDIVPDrm: 8476 case X86::VDIVPDrr: 8477 case X86::VDIVPDYrm: 8478 case X86::VDIVPDYrr: 8479 case X86::VDIVPSrm: 8480 case X86::VDIVPSrr: 8481 case X86::VDIVPSYrm: 8482 case X86::VDIVPSYrr: 8483 case X86::VDIVSDrm: 8484 case X86::VDIVSDrm_Int: 8485 case X86::VDIVSDrr: 8486 case X86::VDIVSDrr_Int: 8487 case X86::VDIVSSrm: 8488 case X86::VDIVSSrm_Int: 8489 case X86::VDIVSSrr: 8490 case X86::VDIVSSrr_Int: 8491 case X86::VSQRTPDm: 8492 case X86::VSQRTPDr: 8493 case X86::VSQRTPDYm: 8494 case X86::VSQRTPDYr: 8495 case X86::VSQRTPSm: 8496 case X86::VSQRTPSr: 8497 case X86::VSQRTPSYm: 8498 case X86::VSQRTPSYr: 8499 case X86::VSQRTSDm: 8500 case X86::VSQRTSDm_Int: 8501 case X86::VSQRTSDr: 8502 case X86::VSQRTSDr_Int: 8503 case X86::VSQRTSSm: 8504 case X86::VSQRTSSm_Int: 8505 case X86::VSQRTSSr: 8506 case X86::VSQRTSSr_Int: 8507 // AVX512 instructions with high latency 8508 case X86::VDIVPDZ128rm: 8509 case X86::VDIVPDZ128rmb: 8510 case X86::VDIVPDZ128rmbk: 8511 case X86::VDIVPDZ128rmbkz: 8512 case X86::VDIVPDZ128rmk: 8513 case X86::VDIVPDZ128rmkz: 8514 case X86::VDIVPDZ128rr: 8515 case X86::VDIVPDZ128rrk: 8516 case X86::VDIVPDZ128rrkz: 8517 case X86::VDIVPDZ256rm: 8518 case X86::VDIVPDZ256rmb: 8519 case X86::VDIVPDZ256rmbk: 8520 case X86::VDIVPDZ256rmbkz: 8521 case X86::VDIVPDZ256rmk: 8522 case X86::VDIVPDZ256rmkz: 8523 case X86::VDIVPDZ256rr: 8524 case X86::VDIVPDZ256rrk: 8525 case X86::VDIVPDZ256rrkz: 8526 case X86::VDIVPDZrrb: 8527 case X86::VDIVPDZrrbk: 8528 case X86::VDIVPDZrrbkz: 8529 case X86::VDIVPDZrm: 8530 case X86::VDIVPDZrmb: 8531 case X86::VDIVPDZrmbk: 8532 case X86::VDIVPDZrmbkz: 8533 case X86::VDIVPDZrmk: 8534 case X86::VDIVPDZrmkz: 8535 case X86::VDIVPDZrr: 8536 case X86::VDIVPDZrrk: 8537 case X86::VDIVPDZrrkz: 8538 case X86::VDIVPSZ128rm: 8539 case X86::VDIVPSZ128rmb: 8540 case X86::VDIVPSZ128rmbk: 8541 case X86::VDIVPSZ128rmbkz: 8542 case X86::VDIVPSZ128rmk: 8543 case X86::VDIVPSZ128rmkz: 8544 case X86::VDIVPSZ128rr: 8545 case X86::VDIVPSZ128rrk: 8546 case X86::VDIVPSZ128rrkz: 8547 case X86::VDIVPSZ256rm: 8548 case X86::VDIVPSZ256rmb: 8549 case X86::VDIVPSZ256rmbk: 8550 case X86::VDIVPSZ256rmbkz: 8551 case X86::VDIVPSZ256rmk: 8552 case X86::VDIVPSZ256rmkz: 8553 case X86::VDIVPSZ256rr: 8554 case X86::VDIVPSZ256rrk: 8555 case X86::VDIVPSZ256rrkz: 8556 case X86::VDIVPSZrrb: 8557 case X86::VDIVPSZrrbk: 8558 case X86::VDIVPSZrrbkz: 8559 case X86::VDIVPSZrm: 8560 case X86::VDIVPSZrmb: 8561 case X86::VDIVPSZrmbk: 8562 case X86::VDIVPSZrmbkz: 8563 case X86::VDIVPSZrmk: 8564 case X86::VDIVPSZrmkz: 8565 case X86::VDIVPSZrr: 8566 case X86::VDIVPSZrrk: 8567 case X86::VDIVPSZrrkz: 8568 case X86::VDIVSDZrm: 8569 case X86::VDIVSDZrr: 8570 case X86::VDIVSDZrm_Int: 8571 case X86::VDIVSDZrm_Intk: 8572 case X86::VDIVSDZrm_Intkz: 8573 case X86::VDIVSDZrr_Int: 8574 case X86::VDIVSDZrr_Intk: 8575 case X86::VDIVSDZrr_Intkz: 8576 case X86::VDIVSDZrrb_Int: 8577 case X86::VDIVSDZrrb_Intk: 8578 case X86::VDIVSDZrrb_Intkz: 8579 case X86::VDIVSSZrm: 8580 case X86::VDIVSSZrr: 8581 case X86::VDIVSSZrm_Int: 8582 case X86::VDIVSSZrm_Intk: 8583 case X86::VDIVSSZrm_Intkz: 8584 case X86::VDIVSSZrr_Int: 8585 case X86::VDIVSSZrr_Intk: 8586 case X86::VDIVSSZrr_Intkz: 8587 case X86::VDIVSSZrrb_Int: 8588 case X86::VDIVSSZrrb_Intk: 8589 case X86::VDIVSSZrrb_Intkz: 8590 case X86::VSQRTPDZ128m: 8591 case X86::VSQRTPDZ128mb: 8592 case X86::VSQRTPDZ128mbk: 8593 case X86::VSQRTPDZ128mbkz: 8594 case X86::VSQRTPDZ128mk: 8595 case X86::VSQRTPDZ128mkz: 8596 case X86::VSQRTPDZ128r: 8597 case X86::VSQRTPDZ128rk: 8598 case X86::VSQRTPDZ128rkz: 8599 case X86::VSQRTPDZ256m: 8600 case X86::VSQRTPDZ256mb: 8601 case X86::VSQRTPDZ256mbk: 8602 case X86::VSQRTPDZ256mbkz: 8603 case X86::VSQRTPDZ256mk: 8604 case X86::VSQRTPDZ256mkz: 8605 case X86::VSQRTPDZ256r: 8606 case X86::VSQRTPDZ256rk: 8607 case X86::VSQRTPDZ256rkz: 8608 case X86::VSQRTPDZm: 8609 case X86::VSQRTPDZmb: 8610 case X86::VSQRTPDZmbk: 8611 case X86::VSQRTPDZmbkz: 8612 case X86::VSQRTPDZmk: 8613 case X86::VSQRTPDZmkz: 8614 case X86::VSQRTPDZr: 8615 case X86::VSQRTPDZrb: 8616 case X86::VSQRTPDZrbk: 8617 case X86::VSQRTPDZrbkz: 8618 case X86::VSQRTPDZrk: 8619 case X86::VSQRTPDZrkz: 8620 case X86::VSQRTPSZ128m: 8621 case X86::VSQRTPSZ128mb: 8622 case X86::VSQRTPSZ128mbk: 8623 case X86::VSQRTPSZ128mbkz: 8624 case X86::VSQRTPSZ128mk: 8625 case X86::VSQRTPSZ128mkz: 8626 case X86::VSQRTPSZ128r: 8627 case X86::VSQRTPSZ128rk: 8628 case X86::VSQRTPSZ128rkz: 8629 case X86::VSQRTPSZ256m: 8630 case X86::VSQRTPSZ256mb: 8631 case X86::VSQRTPSZ256mbk: 8632 case X86::VSQRTPSZ256mbkz: 8633 case X86::VSQRTPSZ256mk: 8634 case X86::VSQRTPSZ256mkz: 8635 case X86::VSQRTPSZ256r: 8636 case X86::VSQRTPSZ256rk: 8637 case X86::VSQRTPSZ256rkz: 8638 case X86::VSQRTPSZm: 8639 case X86::VSQRTPSZmb: 8640 case X86::VSQRTPSZmbk: 8641 case X86::VSQRTPSZmbkz: 8642 case X86::VSQRTPSZmk: 8643 case X86::VSQRTPSZmkz: 8644 case X86::VSQRTPSZr: 8645 case X86::VSQRTPSZrb: 8646 case X86::VSQRTPSZrbk: 8647 case X86::VSQRTPSZrbkz: 8648 case X86::VSQRTPSZrk: 8649 case X86::VSQRTPSZrkz: 8650 case X86::VSQRTSDZm: 8651 case X86::VSQRTSDZm_Int: 8652 case X86::VSQRTSDZm_Intk: 8653 case X86::VSQRTSDZm_Intkz: 8654 case X86::VSQRTSDZr: 8655 case X86::VSQRTSDZr_Int: 8656 case X86::VSQRTSDZr_Intk: 8657 case X86::VSQRTSDZr_Intkz: 8658 case X86::VSQRTSDZrb_Int: 8659 case X86::VSQRTSDZrb_Intk: 8660 case X86::VSQRTSDZrb_Intkz: 8661 case X86::VSQRTSSZm: 8662 case X86::VSQRTSSZm_Int: 8663 case X86::VSQRTSSZm_Intk: 8664 case X86::VSQRTSSZm_Intkz: 8665 case X86::VSQRTSSZr: 8666 case X86::VSQRTSSZr_Int: 8667 case X86::VSQRTSSZr_Intk: 8668 case X86::VSQRTSSZr_Intkz: 8669 case X86::VSQRTSSZrb_Int: 8670 case X86::VSQRTSSZrb_Intk: 8671 case X86::VSQRTSSZrb_Intkz: 8672 8673 case X86::VGATHERDPDYrm: 8674 case X86::VGATHERDPDZ128rm: 8675 case X86::VGATHERDPDZ256rm: 8676 case X86::VGATHERDPDZrm: 8677 case X86::VGATHERDPDrm: 8678 case X86::VGATHERDPSYrm: 8679 case X86::VGATHERDPSZ128rm: 8680 case X86::VGATHERDPSZ256rm: 8681 case X86::VGATHERDPSZrm: 8682 case X86::VGATHERDPSrm: 8683 case X86::VGATHERPF0DPDm: 8684 case X86::VGATHERPF0DPSm: 8685 case X86::VGATHERPF0QPDm: 8686 case X86::VGATHERPF0QPSm: 8687 case X86::VGATHERPF1DPDm: 8688 case X86::VGATHERPF1DPSm: 8689 case X86::VGATHERPF1QPDm: 8690 case X86::VGATHERPF1QPSm: 8691 case X86::VGATHERQPDYrm: 8692 case X86::VGATHERQPDZ128rm: 8693 case X86::VGATHERQPDZ256rm: 8694 case X86::VGATHERQPDZrm: 8695 case X86::VGATHERQPDrm: 8696 case X86::VGATHERQPSYrm: 8697 case X86::VGATHERQPSZ128rm: 8698 case X86::VGATHERQPSZ256rm: 8699 case X86::VGATHERQPSZrm: 8700 case X86::VGATHERQPSrm: 8701 case X86::VPGATHERDDYrm: 8702 case X86::VPGATHERDDZ128rm: 8703 case X86::VPGATHERDDZ256rm: 8704 case X86::VPGATHERDDZrm: 8705 case X86::VPGATHERDDrm: 8706 case X86::VPGATHERDQYrm: 8707 case X86::VPGATHERDQZ128rm: 8708 case X86::VPGATHERDQZ256rm: 8709 case X86::VPGATHERDQZrm: 8710 case X86::VPGATHERDQrm: 8711 case X86::VPGATHERQDYrm: 8712 case X86::VPGATHERQDZ128rm: 8713 case X86::VPGATHERQDZ256rm: 8714 case X86::VPGATHERQDZrm: 8715 case X86::VPGATHERQDrm: 8716 case X86::VPGATHERQQYrm: 8717 case X86::VPGATHERQQZ128rm: 8718 case X86::VPGATHERQQZ256rm: 8719 case X86::VPGATHERQQZrm: 8720 case X86::VPGATHERQQrm: 8721 case X86::VSCATTERDPDZ128mr: 8722 case X86::VSCATTERDPDZ256mr: 8723 case X86::VSCATTERDPDZmr: 8724 case X86::VSCATTERDPSZ128mr: 8725 case X86::VSCATTERDPSZ256mr: 8726 case X86::VSCATTERDPSZmr: 8727 case X86::VSCATTERPF0DPDm: 8728 case X86::VSCATTERPF0DPSm: 8729 case X86::VSCATTERPF0QPDm: 8730 case X86::VSCATTERPF0QPSm: 8731 case X86::VSCATTERPF1DPDm: 8732 case X86::VSCATTERPF1DPSm: 8733 case X86::VSCATTERPF1QPDm: 8734 case X86::VSCATTERPF1QPSm: 8735 case X86::VSCATTERQPDZ128mr: 8736 case X86::VSCATTERQPDZ256mr: 8737 case X86::VSCATTERQPDZmr: 8738 case X86::VSCATTERQPSZ128mr: 8739 case X86::VSCATTERQPSZ256mr: 8740 case X86::VSCATTERQPSZmr: 8741 case X86::VPSCATTERDDZ128mr: 8742 case X86::VPSCATTERDDZ256mr: 8743 case X86::VPSCATTERDDZmr: 8744 case X86::VPSCATTERDQZ128mr: 8745 case X86::VPSCATTERDQZ256mr: 8746 case X86::VPSCATTERDQZmr: 8747 case X86::VPSCATTERQDZ128mr: 8748 case X86::VPSCATTERQDZ256mr: 8749 case X86::VPSCATTERQDZmr: 8750 case X86::VPSCATTERQQZ128mr: 8751 case X86::VPSCATTERQQZ256mr: 8752 case X86::VPSCATTERQQZmr: 8753 return true; 8754 } 8755 } 8756 8757 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 8758 const MachineRegisterInfo *MRI, 8759 const MachineInstr &DefMI, 8760 unsigned DefIdx, 8761 const MachineInstr &UseMI, 8762 unsigned UseIdx) const { 8763 return isHighLatencyDef(DefMI.getOpcode()); 8764 } 8765 8766 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 8767 const MachineBasicBlock *MBB) const { 8768 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && 8769 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); 8770 8771 // Integer binary math/logic instructions have a third source operand: 8772 // the EFLAGS register. That operand must be both defined here and never 8773 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 8774 // not change anything because rearranging the operands could affect other 8775 // instructions that depend on the exact status flags (zero, sign, etc.) 8776 // that are set by using these particular operands with this operation. 8777 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS); 8778 assert((Inst.getNumDefs() == 1 || FlagDef) && 8779 "Implicit def isn't flags?"); 8780 if (FlagDef && !FlagDef->isDead()) 8781 return false; 8782 8783 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 8784 } 8785 8786 // TODO: There are many more machine instruction opcodes to match: 8787 // 1. Other data types (integer, vectors) 8788 // 2. Other math / logic operations (xor, or) 8789 // 3. Other forms of the same operation (intrinsics and other variants) 8790 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 8791 bool Invert) const { 8792 if (Invert) 8793 return false; 8794 switch (Inst.getOpcode()) { 8795 case X86::ADD8rr: 8796 case X86::ADD16rr: 8797 case X86::ADD32rr: 8798 case X86::ADD64rr: 8799 case X86::AND8rr: 8800 case X86::AND16rr: 8801 case X86::AND32rr: 8802 case X86::AND64rr: 8803 case X86::OR8rr: 8804 case X86::OR16rr: 8805 case X86::OR32rr: 8806 case X86::OR64rr: 8807 case X86::XOR8rr: 8808 case X86::XOR16rr: 8809 case X86::XOR32rr: 8810 case X86::XOR64rr: 8811 case X86::IMUL16rr: 8812 case X86::IMUL32rr: 8813 case X86::IMUL64rr: 8814 case X86::PANDrr: 8815 case X86::PORrr: 8816 case X86::PXORrr: 8817 case X86::ANDPDrr: 8818 case X86::ANDPSrr: 8819 case X86::ORPDrr: 8820 case X86::ORPSrr: 8821 case X86::XORPDrr: 8822 case X86::XORPSrr: 8823 case X86::PADDBrr: 8824 case X86::PADDWrr: 8825 case X86::PADDDrr: 8826 case X86::PADDQrr: 8827 case X86::PMULLWrr: 8828 case X86::PMULLDrr: 8829 case X86::PMAXSBrr: 8830 case X86::PMAXSDrr: 8831 case X86::PMAXSWrr: 8832 case X86::PMAXUBrr: 8833 case X86::PMAXUDrr: 8834 case X86::PMAXUWrr: 8835 case X86::PMINSBrr: 8836 case X86::PMINSDrr: 8837 case X86::PMINSWrr: 8838 case X86::PMINUBrr: 8839 case X86::PMINUDrr: 8840 case X86::PMINUWrr: 8841 case X86::VPANDrr: 8842 case X86::VPANDYrr: 8843 case X86::VPANDDZ128rr: 8844 case X86::VPANDDZ256rr: 8845 case X86::VPANDDZrr: 8846 case X86::VPANDQZ128rr: 8847 case X86::VPANDQZ256rr: 8848 case X86::VPANDQZrr: 8849 case X86::VPORrr: 8850 case X86::VPORYrr: 8851 case X86::VPORDZ128rr: 8852 case X86::VPORDZ256rr: 8853 case X86::VPORDZrr: 8854 case X86::VPORQZ128rr: 8855 case X86::VPORQZ256rr: 8856 case X86::VPORQZrr: 8857 case X86::VPXORrr: 8858 case X86::VPXORYrr: 8859 case X86::VPXORDZ128rr: 8860 case X86::VPXORDZ256rr: 8861 case X86::VPXORDZrr: 8862 case X86::VPXORQZ128rr: 8863 case X86::VPXORQZ256rr: 8864 case X86::VPXORQZrr: 8865 case X86::VANDPDrr: 8866 case X86::VANDPSrr: 8867 case X86::VANDPDYrr: 8868 case X86::VANDPSYrr: 8869 case X86::VANDPDZ128rr: 8870 case X86::VANDPSZ128rr: 8871 case X86::VANDPDZ256rr: 8872 case X86::VANDPSZ256rr: 8873 case X86::VANDPDZrr: 8874 case X86::VANDPSZrr: 8875 case X86::VORPDrr: 8876 case X86::VORPSrr: 8877 case X86::VORPDYrr: 8878 case X86::VORPSYrr: 8879 case X86::VORPDZ128rr: 8880 case X86::VORPSZ128rr: 8881 case X86::VORPDZ256rr: 8882 case X86::VORPSZ256rr: 8883 case X86::VORPDZrr: 8884 case X86::VORPSZrr: 8885 case X86::VXORPDrr: 8886 case X86::VXORPSrr: 8887 case X86::VXORPDYrr: 8888 case X86::VXORPSYrr: 8889 case X86::VXORPDZ128rr: 8890 case X86::VXORPSZ128rr: 8891 case X86::VXORPDZ256rr: 8892 case X86::VXORPSZ256rr: 8893 case X86::VXORPDZrr: 8894 case X86::VXORPSZrr: 8895 case X86::KADDBrr: 8896 case X86::KADDWrr: 8897 case X86::KADDDrr: 8898 case X86::KADDQrr: 8899 case X86::KANDBrr: 8900 case X86::KANDWrr: 8901 case X86::KANDDrr: 8902 case X86::KANDQrr: 8903 case X86::KORBrr: 8904 case X86::KORWrr: 8905 case X86::KORDrr: 8906 case X86::KORQrr: 8907 case X86::KXORBrr: 8908 case X86::KXORWrr: 8909 case X86::KXORDrr: 8910 case X86::KXORQrr: 8911 case X86::VPADDBrr: 8912 case X86::VPADDWrr: 8913 case X86::VPADDDrr: 8914 case X86::VPADDQrr: 8915 case X86::VPADDBYrr: 8916 case X86::VPADDWYrr: 8917 case X86::VPADDDYrr: 8918 case X86::VPADDQYrr: 8919 case X86::VPADDBZ128rr: 8920 case X86::VPADDWZ128rr: 8921 case X86::VPADDDZ128rr: 8922 case X86::VPADDQZ128rr: 8923 case X86::VPADDBZ256rr: 8924 case X86::VPADDWZ256rr: 8925 case X86::VPADDDZ256rr: 8926 case X86::VPADDQZ256rr: 8927 case X86::VPADDBZrr: 8928 case X86::VPADDWZrr: 8929 case X86::VPADDDZrr: 8930 case X86::VPADDQZrr: 8931 case X86::VPMULLWrr: 8932 case X86::VPMULLWYrr: 8933 case X86::VPMULLWZ128rr: 8934 case X86::VPMULLWZ256rr: 8935 case X86::VPMULLWZrr: 8936 case X86::VPMULLDrr: 8937 case X86::VPMULLDYrr: 8938 case X86::VPMULLDZ128rr: 8939 case X86::VPMULLDZ256rr: 8940 case X86::VPMULLDZrr: 8941 case X86::VPMULLQZ128rr: 8942 case X86::VPMULLQZ256rr: 8943 case X86::VPMULLQZrr: 8944 case X86::VPMAXSBrr: 8945 case X86::VPMAXSBYrr: 8946 case X86::VPMAXSBZ128rr: 8947 case X86::VPMAXSBZ256rr: 8948 case X86::VPMAXSBZrr: 8949 case X86::VPMAXSDrr: 8950 case X86::VPMAXSDYrr: 8951 case X86::VPMAXSDZ128rr: 8952 case X86::VPMAXSDZ256rr: 8953 case X86::VPMAXSDZrr: 8954 case X86::VPMAXSQZ128rr: 8955 case X86::VPMAXSQZ256rr: 8956 case X86::VPMAXSQZrr: 8957 case X86::VPMAXSWrr: 8958 case X86::VPMAXSWYrr: 8959 case X86::VPMAXSWZ128rr: 8960 case X86::VPMAXSWZ256rr: 8961 case X86::VPMAXSWZrr: 8962 case X86::VPMAXUBrr: 8963 case X86::VPMAXUBYrr: 8964 case X86::VPMAXUBZ128rr: 8965 case X86::VPMAXUBZ256rr: 8966 case X86::VPMAXUBZrr: 8967 case X86::VPMAXUDrr: 8968 case X86::VPMAXUDYrr: 8969 case X86::VPMAXUDZ128rr: 8970 case X86::VPMAXUDZ256rr: 8971 case X86::VPMAXUDZrr: 8972 case X86::VPMAXUQZ128rr: 8973 case X86::VPMAXUQZ256rr: 8974 case X86::VPMAXUQZrr: 8975 case X86::VPMAXUWrr: 8976 case X86::VPMAXUWYrr: 8977 case X86::VPMAXUWZ128rr: 8978 case X86::VPMAXUWZ256rr: 8979 case X86::VPMAXUWZrr: 8980 case X86::VPMINSBrr: 8981 case X86::VPMINSBYrr: 8982 case X86::VPMINSBZ128rr: 8983 case X86::VPMINSBZ256rr: 8984 case X86::VPMINSBZrr: 8985 case X86::VPMINSDrr: 8986 case X86::VPMINSDYrr: 8987 case X86::VPMINSDZ128rr: 8988 case X86::VPMINSDZ256rr: 8989 case X86::VPMINSDZrr: 8990 case X86::VPMINSQZ128rr: 8991 case X86::VPMINSQZ256rr: 8992 case X86::VPMINSQZrr: 8993 case X86::VPMINSWrr: 8994 case X86::VPMINSWYrr: 8995 case X86::VPMINSWZ128rr: 8996 case X86::VPMINSWZ256rr: 8997 case X86::VPMINSWZrr: 8998 case X86::VPMINUBrr: 8999 case X86::VPMINUBYrr: 9000 case X86::VPMINUBZ128rr: 9001 case X86::VPMINUBZ256rr: 9002 case X86::VPMINUBZrr: 9003 case X86::VPMINUDrr: 9004 case X86::VPMINUDYrr: 9005 case X86::VPMINUDZ128rr: 9006 case X86::VPMINUDZ256rr: 9007 case X86::VPMINUDZrr: 9008 case X86::VPMINUQZ128rr: 9009 case X86::VPMINUQZ256rr: 9010 case X86::VPMINUQZrr: 9011 case X86::VPMINUWrr: 9012 case X86::VPMINUWYrr: 9013 case X86::VPMINUWZ128rr: 9014 case X86::VPMINUWZ256rr: 9015 case X86::VPMINUWZrr: 9016 // Normal min/max instructions are not commutative because of NaN and signed 9017 // zero semantics, but these are. Thus, there's no need to check for global 9018 // relaxed math; the instructions themselves have the properties we need. 9019 case X86::MAXCPDrr: 9020 case X86::MAXCPSrr: 9021 case X86::MAXCSDrr: 9022 case X86::MAXCSSrr: 9023 case X86::MINCPDrr: 9024 case X86::MINCPSrr: 9025 case X86::MINCSDrr: 9026 case X86::MINCSSrr: 9027 case X86::VMAXCPDrr: 9028 case X86::VMAXCPSrr: 9029 case X86::VMAXCPDYrr: 9030 case X86::VMAXCPSYrr: 9031 case X86::VMAXCPDZ128rr: 9032 case X86::VMAXCPSZ128rr: 9033 case X86::VMAXCPDZ256rr: 9034 case X86::VMAXCPSZ256rr: 9035 case X86::VMAXCPDZrr: 9036 case X86::VMAXCPSZrr: 9037 case X86::VMAXCSDrr: 9038 case X86::VMAXCSSrr: 9039 case X86::VMAXCSDZrr: 9040 case X86::VMAXCSSZrr: 9041 case X86::VMINCPDrr: 9042 case X86::VMINCPSrr: 9043 case X86::VMINCPDYrr: 9044 case X86::VMINCPSYrr: 9045 case X86::VMINCPDZ128rr: 9046 case X86::VMINCPSZ128rr: 9047 case X86::VMINCPDZ256rr: 9048 case X86::VMINCPSZ256rr: 9049 case X86::VMINCPDZrr: 9050 case X86::VMINCPSZrr: 9051 case X86::VMINCSDrr: 9052 case X86::VMINCSSrr: 9053 case X86::VMINCSDZrr: 9054 case X86::VMINCSSZrr: 9055 case X86::VMAXCPHZ128rr: 9056 case X86::VMAXCPHZ256rr: 9057 case X86::VMAXCPHZrr: 9058 case X86::VMAXCSHZrr: 9059 case X86::VMINCPHZ128rr: 9060 case X86::VMINCPHZ256rr: 9061 case X86::VMINCPHZrr: 9062 case X86::VMINCSHZrr: 9063 return true; 9064 case X86::ADDPDrr: 9065 case X86::ADDPSrr: 9066 case X86::ADDSDrr: 9067 case X86::ADDSSrr: 9068 case X86::MULPDrr: 9069 case X86::MULPSrr: 9070 case X86::MULSDrr: 9071 case X86::MULSSrr: 9072 case X86::VADDPDrr: 9073 case X86::VADDPSrr: 9074 case X86::VADDPDYrr: 9075 case X86::VADDPSYrr: 9076 case X86::VADDPDZ128rr: 9077 case X86::VADDPSZ128rr: 9078 case X86::VADDPDZ256rr: 9079 case X86::VADDPSZ256rr: 9080 case X86::VADDPDZrr: 9081 case X86::VADDPSZrr: 9082 case X86::VADDSDrr: 9083 case X86::VADDSSrr: 9084 case X86::VADDSDZrr: 9085 case X86::VADDSSZrr: 9086 case X86::VMULPDrr: 9087 case X86::VMULPSrr: 9088 case X86::VMULPDYrr: 9089 case X86::VMULPSYrr: 9090 case X86::VMULPDZ128rr: 9091 case X86::VMULPSZ128rr: 9092 case X86::VMULPDZ256rr: 9093 case X86::VMULPSZ256rr: 9094 case X86::VMULPDZrr: 9095 case X86::VMULPSZrr: 9096 case X86::VMULSDrr: 9097 case X86::VMULSSrr: 9098 case X86::VMULSDZrr: 9099 case X86::VMULSSZrr: 9100 case X86::VADDPHZ128rr: 9101 case X86::VADDPHZ256rr: 9102 case X86::VADDPHZrr: 9103 case X86::VADDSHZrr: 9104 case X86::VMULPHZ128rr: 9105 case X86::VMULPHZ256rr: 9106 case X86::VMULPHZrr: 9107 case X86::VMULSHZrr: 9108 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 9109 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 9110 default: 9111 return false; 9112 } 9113 } 9114 9115 /// If \p DescribedReg overlaps with the MOVrr instruction's destination 9116 /// register then, if possible, describe the value in terms of the source 9117 /// register. 9118 static std::optional<ParamLoadedValue> 9119 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, 9120 const TargetRegisterInfo *TRI) { 9121 Register DestReg = MI.getOperand(0).getReg(); 9122 Register SrcReg = MI.getOperand(1).getReg(); 9123 9124 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 9125 9126 // If the described register is the destination, just return the source. 9127 if (DestReg == DescribedReg) 9128 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 9129 9130 // If the described register is a sub-register of the destination register, 9131 // then pick out the source register's corresponding sub-register. 9132 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { 9133 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); 9134 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 9135 } 9136 9137 // The remaining case to consider is when the described register is a 9138 // super-register of the destination register. MOV8rr and MOV16rr does not 9139 // write to any of the other bytes in the register, meaning that we'd have to 9140 // describe the value using a combination of the source register and the 9141 // non-overlapping bits in the described register, which is not currently 9142 // possible. 9143 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || 9144 !TRI->isSuperRegister(DestReg, DescribedReg)) 9145 return std::nullopt; 9146 9147 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); 9148 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 9149 } 9150 9151 std::optional<ParamLoadedValue> 9152 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 9153 const MachineOperand *Op = nullptr; 9154 DIExpression *Expr = nullptr; 9155 9156 const TargetRegisterInfo *TRI = &getRegisterInfo(); 9157 9158 switch (MI.getOpcode()) { 9159 case X86::LEA32r: 9160 case X86::LEA64r: 9161 case X86::LEA64_32r: { 9162 // We may need to describe a 64-bit parameter with a 32-bit LEA. 9163 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9164 return std::nullopt; 9165 9166 // Operand 4 could be global address. For now we do not support 9167 // such situation. 9168 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) 9169 return std::nullopt; 9170 9171 const MachineOperand &Op1 = MI.getOperand(1); 9172 const MachineOperand &Op2 = MI.getOperand(3); 9173 assert(Op2.isReg() && 9174 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical())); 9175 9176 // Omit situations like: 9177 // %rsi = lea %rsi, 4, ... 9178 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || 9179 Op2.getReg() == MI.getOperand(0).getReg()) 9180 return std::nullopt; 9181 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && 9182 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || 9183 (Op2.getReg() != X86::NoRegister && 9184 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) 9185 return std::nullopt; 9186 9187 int64_t Coef = MI.getOperand(2).getImm(); 9188 int64_t Offset = MI.getOperand(4).getImm(); 9189 SmallVector<uint64_t, 8> Ops; 9190 9191 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { 9192 Op = &Op1; 9193 } else if (Op1.isFI()) 9194 Op = &Op1; 9195 9196 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { 9197 Ops.push_back(dwarf::DW_OP_constu); 9198 Ops.push_back(Coef + 1); 9199 Ops.push_back(dwarf::DW_OP_mul); 9200 } else { 9201 if (Op && Op2.getReg() != X86::NoRegister) { 9202 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); 9203 if (dwarfReg < 0) 9204 return std::nullopt; 9205 else if (dwarfReg < 32) { 9206 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); 9207 Ops.push_back(0); 9208 } else { 9209 Ops.push_back(dwarf::DW_OP_bregx); 9210 Ops.push_back(dwarfReg); 9211 Ops.push_back(0); 9212 } 9213 } else if (!Op) { 9214 assert(Op2.getReg() != X86::NoRegister); 9215 Op = &Op2; 9216 } 9217 9218 if (Coef > 1) { 9219 assert(Op2.getReg() != X86::NoRegister); 9220 Ops.push_back(dwarf::DW_OP_constu); 9221 Ops.push_back(Coef); 9222 Ops.push_back(dwarf::DW_OP_mul); 9223 } 9224 9225 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && 9226 Op2.getReg() != X86::NoRegister) { 9227 Ops.push_back(dwarf::DW_OP_plus); 9228 } 9229 } 9230 9231 DIExpression::appendOffset(Ops, Offset); 9232 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); 9233 9234 return ParamLoadedValue(*Op, Expr); 9235 } 9236 case X86::MOV8ri: 9237 case X86::MOV16ri: 9238 // TODO: Handle MOV8ri and MOV16ri. 9239 return std::nullopt; 9240 case X86::MOV32ri: 9241 case X86::MOV64ri: 9242 case X86::MOV64ri32: 9243 // MOV32ri may be used for producing zero-extended 32-bit immediates in 9244 // 64-bit parameters, so we need to consider super-registers. 9245 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9246 return std::nullopt; 9247 return ParamLoadedValue(MI.getOperand(1), Expr); 9248 case X86::MOV8rr: 9249 case X86::MOV16rr: 9250 case X86::MOV32rr: 9251 case X86::MOV64rr: 9252 return describeMOVrrLoadedValue(MI, Reg, TRI); 9253 case X86::XOR32rr: { 9254 // 64-bit parameters are zero-materialized using XOR32rr, so also consider 9255 // super-registers. 9256 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9257 return std::nullopt; 9258 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 9259 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); 9260 return std::nullopt; 9261 } 9262 case X86::MOVSX64rr32: { 9263 // We may need to describe the lower 32 bits of the MOVSX; for example, in 9264 // cases like this: 9265 // 9266 // $ebx = [...] 9267 // $rdi = MOVSX64rr32 $ebx 9268 // $esi = MOV32rr $edi 9269 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) 9270 return std::nullopt; 9271 9272 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 9273 9274 // If the described register is the destination register we need to 9275 // sign-extend the source register from 32 bits. The other case we handle 9276 // is when the described register is the 32-bit sub-register of the 9277 // destination register, in case we just need to return the source 9278 // register. 9279 if (Reg == MI.getOperand(0).getReg()) 9280 Expr = DIExpression::appendExt(Expr, 32, 64, true); 9281 else 9282 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && 9283 "Unhandled sub-register case for MOVSX64rr32"); 9284 9285 return ParamLoadedValue(MI.getOperand(1), Expr); 9286 } 9287 default: 9288 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); 9289 return TargetInstrInfo::describeLoadedValue(MI, Reg); 9290 } 9291 } 9292 9293 /// This is an architecture-specific helper function of reassociateOps. 9294 /// Set special operand attributes for new instructions after reassociation. 9295 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 9296 MachineInstr &OldMI2, 9297 MachineInstr &NewMI1, 9298 MachineInstr &NewMI2) const { 9299 // Propagate FP flags from the original instructions. 9300 // But clear poison-generating flags because those may not be valid now. 9301 // TODO: There should be a helper function for copying only fast-math-flags. 9302 uint32_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 9303 NewMI1.setFlags(IntersectedFlags); 9304 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 9305 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 9306 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 9307 9308 NewMI2.setFlags(IntersectedFlags); 9309 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 9310 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 9311 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 9312 9313 // Integer instructions may define an implicit EFLAGS dest register operand. 9314 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS); 9315 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS); 9316 9317 assert(!OldFlagDef1 == !OldFlagDef2 && 9318 "Unexpected instruction type for reassociation"); 9319 9320 if (!OldFlagDef1 || !OldFlagDef2) 9321 return; 9322 9323 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && 9324 "Must have dead EFLAGS operand in reassociable instruction"); 9325 9326 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS); 9327 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS); 9328 9329 assert(NewFlagDef1 && NewFlagDef2 && 9330 "Unexpected operand in reassociable instruction"); 9331 9332 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 9333 // of this pass or other passes. The EFLAGS operands must be dead in these new 9334 // instructions because the EFLAGS operands in the original instructions must 9335 // be dead in order for reassociation to occur. 9336 NewFlagDef1->setIsDead(); 9337 NewFlagDef2->setIsDead(); 9338 } 9339 9340 std::pair<unsigned, unsigned> 9341 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 9342 return std::make_pair(TF, 0u); 9343 } 9344 9345 ArrayRef<std::pair<unsigned, const char *>> 9346 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 9347 using namespace X86II; 9348 static const std::pair<unsigned, const char *> TargetFlags[] = { 9349 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 9350 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 9351 {MO_GOT, "x86-got"}, 9352 {MO_GOTOFF, "x86-gotoff"}, 9353 {MO_GOTPCREL, "x86-gotpcrel"}, 9354 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"}, 9355 {MO_PLT, "x86-plt"}, 9356 {MO_TLSGD, "x86-tlsgd"}, 9357 {MO_TLSLD, "x86-tlsld"}, 9358 {MO_TLSLDM, "x86-tlsldm"}, 9359 {MO_GOTTPOFF, "x86-gottpoff"}, 9360 {MO_INDNTPOFF, "x86-indntpoff"}, 9361 {MO_TPOFF, "x86-tpoff"}, 9362 {MO_DTPOFF, "x86-dtpoff"}, 9363 {MO_NTPOFF, "x86-ntpoff"}, 9364 {MO_GOTNTPOFF, "x86-gotntpoff"}, 9365 {MO_DLLIMPORT, "x86-dllimport"}, 9366 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 9367 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 9368 {MO_TLVP, "x86-tlvp"}, 9369 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 9370 {MO_SECREL, "x86-secrel"}, 9371 {MO_COFFSTUB, "x86-coffstub"}}; 9372 return ArrayRef(TargetFlags); 9373 } 9374 9375 namespace { 9376 /// Create Global Base Reg pass. This initializes the PIC 9377 /// global base register for x86-32. 9378 struct CGBR : public MachineFunctionPass { 9379 static char ID; 9380 CGBR() : MachineFunctionPass(ID) {} 9381 9382 bool runOnMachineFunction(MachineFunction &MF) override { 9383 const X86TargetMachine *TM = 9384 static_cast<const X86TargetMachine *>(&MF.getTarget()); 9385 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 9386 9387 // Don't do anything in the 64-bit small and kernel code models. They use 9388 // RIP-relative addressing for everything. 9389 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || 9390 TM->getCodeModel() == CodeModel::Kernel)) 9391 return false; 9392 9393 // Only emit a global base reg in PIC mode. 9394 if (!TM->isPositionIndependent()) 9395 return false; 9396 9397 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 9398 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 9399 9400 // If we didn't need a GlobalBaseReg, don't insert code. 9401 if (GlobalBaseReg == 0) 9402 return false; 9403 9404 // Insert the set of GlobalBaseReg into the first MBB of the function 9405 MachineBasicBlock &FirstMBB = MF.front(); 9406 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 9407 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 9408 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9409 const X86InstrInfo *TII = STI.getInstrInfo(); 9410 9411 Register PC; 9412 if (STI.isPICStyleGOT()) 9413 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 9414 else 9415 PC = GlobalBaseReg; 9416 9417 if (STI.is64Bit()) { 9418 if (TM->getCodeModel() == CodeModel::Medium) { 9419 // In the medium code model, use a RIP-relative LEA to materialize the 9420 // GOT. 9421 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 9422 .addReg(X86::RIP) 9423 .addImm(0) 9424 .addReg(0) 9425 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 9426 .addReg(0); 9427 } else if (TM->getCodeModel() == CodeModel::Large) { 9428 // In the large code model, we are aiming for this code, though the 9429 // register allocation may vary: 9430 // leaq .LN$pb(%rip), %rax 9431 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 9432 // addq %rcx, %rax 9433 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 9434 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 9435 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 9436 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 9437 .addReg(X86::RIP) 9438 .addImm(0) 9439 .addReg(0) 9440 .addSym(MF.getPICBaseSymbol()) 9441 .addReg(0); 9442 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 9443 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 9444 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 9445 X86II::MO_PIC_BASE_OFFSET); 9446 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 9447 .addReg(PBReg, RegState::Kill) 9448 .addReg(GOTReg, RegState::Kill); 9449 } else { 9450 llvm_unreachable("unexpected code model"); 9451 } 9452 } else { 9453 // Operand of MovePCtoStack is completely ignored by asm printer. It's 9454 // only used in JIT code emission as displacement to pc. 9455 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 9456 9457 // If we're using vanilla 'GOT' PIC style, we should use relative 9458 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 9459 if (STI.isPICStyleGOT()) { 9460 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 9461 // %some_register 9462 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 9463 .addReg(PC) 9464 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 9465 X86II::MO_GOT_ABSOLUTE_ADDRESS); 9466 } 9467 } 9468 9469 return true; 9470 } 9471 9472 StringRef getPassName() const override { 9473 return "X86 PIC Global Base Reg Initialization"; 9474 } 9475 9476 void getAnalysisUsage(AnalysisUsage &AU) const override { 9477 AU.setPreservesCFG(); 9478 MachineFunctionPass::getAnalysisUsage(AU); 9479 } 9480 }; 9481 } // namespace 9482 9483 char CGBR::ID = 0; 9484 FunctionPass* 9485 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 9486 9487 namespace { 9488 struct LDTLSCleanup : public MachineFunctionPass { 9489 static char ID; 9490 LDTLSCleanup() : MachineFunctionPass(ID) {} 9491 9492 bool runOnMachineFunction(MachineFunction &MF) override { 9493 if (skipFunction(MF.getFunction())) 9494 return false; 9495 9496 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 9497 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 9498 // No point folding accesses if there isn't at least two. 9499 return false; 9500 } 9501 9502 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 9503 return VisitNode(DT->getRootNode(), 0); 9504 } 9505 9506 // Visit the dominator subtree rooted at Node in pre-order. 9507 // If TLSBaseAddrReg is non-null, then use that to replace any 9508 // TLS_base_addr instructions. Otherwise, create the register 9509 // when the first such instruction is seen, and then use it 9510 // as we encounter more instructions. 9511 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 9512 MachineBasicBlock *BB = Node->getBlock(); 9513 bool Changed = false; 9514 9515 // Traverse the current block. 9516 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 9517 ++I) { 9518 switch (I->getOpcode()) { 9519 case X86::TLS_base_addr32: 9520 case X86::TLS_base_addr64: 9521 if (TLSBaseAddrReg) 9522 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 9523 else 9524 I = SetRegister(*I, &TLSBaseAddrReg); 9525 Changed = true; 9526 break; 9527 default: 9528 break; 9529 } 9530 } 9531 9532 // Visit the children of this block in the dominator tree. 9533 for (auto &I : *Node) { 9534 Changed |= VisitNode(I, TLSBaseAddrReg); 9535 } 9536 9537 return Changed; 9538 } 9539 9540 // Replace the TLS_base_addr instruction I with a copy from 9541 // TLSBaseAddrReg, returning the new instruction. 9542 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 9543 unsigned TLSBaseAddrReg) { 9544 MachineFunction *MF = I.getParent()->getParent(); 9545 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 9546 const bool is64Bit = STI.is64Bit(); 9547 const X86InstrInfo *TII = STI.getInstrInfo(); 9548 9549 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 9550 MachineInstr *Copy = 9551 BuildMI(*I.getParent(), I, I.getDebugLoc(), 9552 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 9553 .addReg(TLSBaseAddrReg); 9554 9555 // Erase the TLS_base_addr instruction. 9556 I.eraseFromParent(); 9557 9558 return Copy; 9559 } 9560 9561 // Create a virtual register in *TLSBaseAddrReg, and populate it by 9562 // inserting a copy instruction after I. Returns the new instruction. 9563 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 9564 MachineFunction *MF = I.getParent()->getParent(); 9565 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 9566 const bool is64Bit = STI.is64Bit(); 9567 const X86InstrInfo *TII = STI.getInstrInfo(); 9568 9569 // Create a virtual register for the TLS base address. 9570 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 9571 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 9572 ? &X86::GR64RegClass 9573 : &X86::GR32RegClass); 9574 9575 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 9576 MachineInstr *Next = I.getNextNode(); 9577 MachineInstr *Copy = 9578 BuildMI(*I.getParent(), Next, I.getDebugLoc(), 9579 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 9580 .addReg(is64Bit ? X86::RAX : X86::EAX); 9581 9582 return Copy; 9583 } 9584 9585 StringRef getPassName() const override { 9586 return "Local Dynamic TLS Access Clean-up"; 9587 } 9588 9589 void getAnalysisUsage(AnalysisUsage &AU) const override { 9590 AU.setPreservesCFG(); 9591 AU.addRequired<MachineDominatorTree>(); 9592 MachineFunctionPass::getAnalysisUsage(AU); 9593 } 9594 }; 9595 } 9596 9597 char LDTLSCleanup::ID = 0; 9598 FunctionPass* 9599 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 9600 9601 /// Constants defining how certain sequences should be outlined. 9602 /// 9603 /// \p MachineOutlinerDefault implies that the function is called with a call 9604 /// instruction, and a return must be emitted for the outlined function frame. 9605 /// 9606 /// That is, 9607 /// 9608 /// I1 OUTLINED_FUNCTION: 9609 /// I2 --> call OUTLINED_FUNCTION I1 9610 /// I3 I2 9611 /// I3 9612 /// ret 9613 /// 9614 /// * Call construction overhead: 1 (call instruction) 9615 /// * Frame construction overhead: 1 (return instruction) 9616 /// 9617 /// \p MachineOutlinerTailCall implies that the function is being tail called. 9618 /// A jump is emitted instead of a call, and the return is already present in 9619 /// the outlined sequence. That is, 9620 /// 9621 /// I1 OUTLINED_FUNCTION: 9622 /// I2 --> jmp OUTLINED_FUNCTION I1 9623 /// ret I2 9624 /// ret 9625 /// 9626 /// * Call construction overhead: 1 (jump instruction) 9627 /// * Frame construction overhead: 0 (don't need to return) 9628 /// 9629 enum MachineOutlinerClass { 9630 MachineOutlinerDefault, 9631 MachineOutlinerTailCall 9632 }; 9633 9634 std::optional<outliner::OutlinedFunction> 9635 X86InstrInfo::getOutliningCandidateInfo( 9636 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 9637 unsigned SequenceSize = 9638 std::accumulate(RepeatedSequenceLocs[0].front(), 9639 std::next(RepeatedSequenceLocs[0].back()), 0, 9640 [](unsigned Sum, const MachineInstr &MI) { 9641 // FIXME: x86 doesn't implement getInstSizeInBytes, so 9642 // we can't tell the cost. Just assume each instruction 9643 // is one byte. 9644 if (MI.isDebugInstr() || MI.isKill()) 9645 return Sum; 9646 return Sum + 1; 9647 }); 9648 9649 // We check to see if CFI Instructions are present, and if they are 9650 // we find the number of CFI Instructions in the candidates. 9651 unsigned CFICount = 0; 9652 for (auto &I : make_range(RepeatedSequenceLocs[0].front(), 9653 std::next(RepeatedSequenceLocs[0].back()))) { 9654 if (I.isCFIInstruction()) 9655 CFICount++; 9656 } 9657 9658 // We compare the number of found CFI Instructions to the number of CFI 9659 // instructions in the parent function for each candidate. We must check this 9660 // since if we outline one of the CFI instructions in a function, we have to 9661 // outline them all for correctness. If we do not, the address offsets will be 9662 // incorrect between the two sections of the program. 9663 for (outliner::Candidate &C : RepeatedSequenceLocs) { 9664 std::vector<MCCFIInstruction> CFIInstructions = 9665 C.getMF()->getFrameInstructions(); 9666 9667 if (CFICount > 0 && CFICount != CFIInstructions.size()) 9668 return std::nullopt; 9669 } 9670 9671 // FIXME: Use real size in bytes for call and ret instructions. 9672 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 9673 for (outliner::Candidate &C : RepeatedSequenceLocs) 9674 C.setCallInfo(MachineOutlinerTailCall, 1); 9675 9676 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 9677 0, // Number of bytes to emit frame. 9678 MachineOutlinerTailCall // Type of frame. 9679 ); 9680 } 9681 9682 if (CFICount > 0) 9683 return std::nullopt; 9684 9685 for (outliner::Candidate &C : RepeatedSequenceLocs) 9686 C.setCallInfo(MachineOutlinerDefault, 1); 9687 9688 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, 9689 MachineOutlinerDefault); 9690 } 9691 9692 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, 9693 bool OutlineFromLinkOnceODRs) const { 9694 const Function &F = MF.getFunction(); 9695 9696 // Does the function use a red zone? If it does, then we can't risk messing 9697 // with the stack. 9698 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 9699 // It could have a red zone. If it does, then we don't want to touch it. 9700 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 9701 if (!X86FI || X86FI->getUsesRedZone()) 9702 return false; 9703 } 9704 9705 // If we *don't* want to outline from things that could potentially be deduped 9706 // then return false. 9707 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 9708 return false; 9709 9710 // This function is viable for outlining, so return true. 9711 return true; 9712 } 9713 9714 outliner::InstrType 9715 X86InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 9716 MachineInstr &MI = *MIT; 9717 9718 // Is this a terminator for a basic block? 9719 if (MI.isTerminator()) 9720 // TargetInstrInfo::getOutliningType has already filtered out anything 9721 // that would break this, so we can allow it here. 9722 return outliner::InstrType::Legal; 9723 9724 // Don't outline anything that modifies or reads from the stack pointer. 9725 // 9726 // FIXME: There are instructions which are being manually built without 9727 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 9728 // able to remove the extra checks once those are fixed up. For example, 9729 // sometimes we might get something like %rax = POP64r 1. This won't be 9730 // caught by modifiesRegister or readsRegister even though the instruction 9731 // really ought to be formed so that modifiesRegister/readsRegister would 9732 // catch it. 9733 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 9734 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 9735 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 9736 return outliner::InstrType::Illegal; 9737 9738 // Outlined calls change the instruction pointer, so don't read from it. 9739 if (MI.readsRegister(X86::RIP, &RI) || 9740 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 9741 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 9742 return outliner::InstrType::Illegal; 9743 9744 // Don't outline CFI instructions. 9745 if (MI.isCFIInstruction()) 9746 return outliner::InstrType::Illegal; 9747 9748 return outliner::InstrType::Legal; 9749 } 9750 9751 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, 9752 MachineFunction &MF, 9753 const outliner::OutlinedFunction &OF) 9754 const { 9755 // If we're a tail call, we already have a return, so don't do anything. 9756 if (OF.FrameConstructionID == MachineOutlinerTailCall) 9757 return; 9758 9759 // We're a normal call, so our sequence doesn't have a return instruction. 9760 // Add it in. 9761 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64)); 9762 MBB.insert(MBB.end(), retq); 9763 } 9764 9765 MachineBasicBlock::iterator 9766 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 9767 MachineBasicBlock::iterator &It, 9768 MachineFunction &MF, 9769 outliner::Candidate &C) const { 9770 // Is it a tail call? 9771 if (C.CallConstructionID == MachineOutlinerTailCall) { 9772 // Yes, just insert a JMP. 9773 It = MBB.insert(It, 9774 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 9775 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9776 } else { 9777 // No, insert a call. 9778 It = MBB.insert(It, 9779 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 9780 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9781 } 9782 9783 return It; 9784 } 9785 9786 bool X86InstrInfo::getMachineCombinerPatterns( 9787 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 9788 bool DoRegPressureReduce) const { 9789 unsigned Opc = Root.getOpcode(); 9790 switch (Opc) { 9791 default: 9792 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 9793 DoRegPressureReduce); 9794 case X86::VPDPWSSDrr: 9795 case X86::VPDPWSSDrm: 9796 case X86::VPDPWSSDYrr: 9797 case X86::VPDPWSSDYrm: { 9798 Patterns.push_back(MachineCombinerPattern::DPWSSD); 9799 return true; 9800 } 9801 case X86::VPDPWSSDZ128r: 9802 case X86::VPDPWSSDZ128m: 9803 case X86::VPDPWSSDZ256r: 9804 case X86::VPDPWSSDZ256m: 9805 case X86::VPDPWSSDZr: 9806 case X86::VPDPWSSDZm: { 9807 if (Subtarget.hasBWI()) 9808 Patterns.push_back(MachineCombinerPattern::DPWSSD); 9809 return true; 9810 } 9811 } 9812 } 9813 9814 static void 9815 genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, 9816 SmallVectorImpl<MachineInstr *> &InsInstrs, 9817 SmallVectorImpl<MachineInstr *> &DelInstrs, 9818 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) { 9819 MachineFunction *MF = Root.getMF(); 9820 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 9821 9822 unsigned Opc = Root.getOpcode(); 9823 unsigned AddOpc = 0; 9824 unsigned MaddOpc = 0; 9825 switch (Opc) { 9826 default: 9827 assert(false && "It should not reach here"); 9828 break; 9829 // vpdpwssd xmm2,xmm3,xmm1 9830 // --> 9831 // vpmaddwd xmm3,xmm3,xmm1 9832 // vpaddd xmm2,xmm2,xmm3 9833 case X86::VPDPWSSDrr: 9834 MaddOpc = X86::VPMADDWDrr; 9835 AddOpc = X86::VPADDDrr; 9836 break; 9837 case X86::VPDPWSSDrm: 9838 MaddOpc = X86::VPMADDWDrm; 9839 AddOpc = X86::VPADDDrr; 9840 break; 9841 case X86::VPDPWSSDZ128r: 9842 MaddOpc = X86::VPMADDWDZ128rr; 9843 AddOpc = X86::VPADDDZ128rr; 9844 break; 9845 case X86::VPDPWSSDZ128m: 9846 MaddOpc = X86::VPMADDWDZ128rm; 9847 AddOpc = X86::VPADDDZ128rr; 9848 break; 9849 // vpdpwssd ymm2,ymm3,ymm1 9850 // --> 9851 // vpmaddwd ymm3,ymm3,ymm1 9852 // vpaddd ymm2,ymm2,ymm3 9853 case X86::VPDPWSSDYrr: 9854 MaddOpc = X86::VPMADDWDYrr; 9855 AddOpc = X86::VPADDDYrr; 9856 break; 9857 case X86::VPDPWSSDYrm: 9858 MaddOpc = X86::VPMADDWDYrm; 9859 AddOpc = X86::VPADDDYrr; 9860 break; 9861 case X86::VPDPWSSDZ256r: 9862 MaddOpc = X86::VPMADDWDZ256rr; 9863 AddOpc = X86::VPADDDZ256rr; 9864 break; 9865 case X86::VPDPWSSDZ256m: 9866 MaddOpc = X86::VPMADDWDZ256rm; 9867 AddOpc = X86::VPADDDZ256rr; 9868 break; 9869 // vpdpwssd zmm2,zmm3,zmm1 9870 // --> 9871 // vpmaddwd zmm3,zmm3,zmm1 9872 // vpaddd zmm2,zmm2,zmm3 9873 case X86::VPDPWSSDZr: 9874 MaddOpc = X86::VPMADDWDZrr; 9875 AddOpc = X86::VPADDDZrr; 9876 break; 9877 case X86::VPDPWSSDZm: 9878 MaddOpc = X86::VPMADDWDZrm; 9879 AddOpc = X86::VPADDDZrr; 9880 break; 9881 } 9882 // Create vpmaddwd. 9883 const TargetRegisterClass *RC = 9884 RegInfo.getRegClass(Root.getOperand(0).getReg()); 9885 Register NewReg = RegInfo.createVirtualRegister(RC); 9886 MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root); 9887 Madd->setDesc(TII.get(MaddOpc)); 9888 Madd->untieRegOperand(1); 9889 Madd->removeOperand(1); 9890 Madd->getOperand(0).setReg(NewReg); 9891 InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0)); 9892 // Create vpaddd. 9893 Register DstReg = Root.getOperand(0).getReg(); 9894 bool IsKill = Root.getOperand(1).isKill(); 9895 MachineInstr *Add = 9896 BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg) 9897 .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill)) 9898 .addReg(Madd->getOperand(0).getReg(), getKillRegState(true)); 9899 InsInstrs.push_back(Madd); 9900 InsInstrs.push_back(Add); 9901 DelInstrs.push_back(&Root); 9902 } 9903 9904 void X86InstrInfo::genAlternativeCodeSequence( 9905 MachineInstr &Root, MachineCombinerPattern Pattern, 9906 SmallVectorImpl<MachineInstr *> &InsInstrs, 9907 SmallVectorImpl<MachineInstr *> &DelInstrs, 9908 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 9909 switch (Pattern) { 9910 default: 9911 // Reassociate instructions. 9912 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 9913 DelInstrs, InstrIdxForVirtReg); 9914 return; 9915 case MachineCombinerPattern::DPWSSD: 9916 genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs, 9917 InstrIdxForVirtReg); 9918 return; 9919 } 9920 } 9921 9922 #define GET_INSTRINFO_HELPERS 9923 #include "X86GenInstrInfo.inc" 9924