xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision cd0c3137f8a21968ce147251633b8dbdde8829e7)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "x86-instr-info"
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
49 
50 static cl::opt<bool>
51     NoFusing("disable-spill-fusing",
52              cl::desc("Disable fusing of spill code into instructions"),
53              cl::Hidden);
54 static cl::opt<bool>
55 PrintFailedFusing("print-failed-fuse-candidates",
56                   cl::desc("Print instructions that the allocator wants to"
57                            " fuse, but the X86 backend currently can't"),
58                   cl::Hidden);
59 static cl::opt<bool>
60 ReMatPICStubLoad("remat-pic-stub-load",
61                  cl::desc("Re-materialize load from stub in PIC mode"),
62                  cl::init(false), cl::Hidden);
63 static cl::opt<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65                           cl::desc("Clearance between two register writes "
66                                    "for inserting XOR to avoid partial "
67                                    "register update"),
68                           cl::init(64), cl::Hidden);
69 static cl::opt<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71                   cl::desc("How many idle instructions we would like before "
72                            "certain undef register reads"),
73                   cl::init(128), cl::Hidden);
74 
75 
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
78 
79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                                : X86::ADJCALLSTACKDOWN32),
82                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                                : X86::ADJCALLSTACKUP32),
84                       X86::CATCHRET,
85                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86       Subtarget(STI), RI(STI.getTargetTriple()) {
87 }
88 
89 bool
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                     unsigned &SrcReg, unsigned &DstReg,
92                                     unsigned &SubIdx) const {
93   switch (MI.getOpcode()) {
94   default: break;
95   case X86::MOVSX16rr8:
96   case X86::MOVZX16rr8:
97   case X86::MOVSX32rr8:
98   case X86::MOVZX32rr8:
99   case X86::MOVSX64rr8:
100     if (!Subtarget.is64Bit())
101       // It's not always legal to reference the low 8-bit of the larger
102       // register in 32-bit mode.
103       return false;
104     LLVM_FALLTHROUGH;
105   case X86::MOVSX32rr16:
106   case X86::MOVZX32rr16:
107   case X86::MOVSX64rr16:
108   case X86::MOVSX64rr32: {
109     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110       // Be conservative.
111       return false;
112     SrcReg = MI.getOperand(1).getReg();
113     DstReg = MI.getOperand(0).getReg();
114     switch (MI.getOpcode()) {
115     default: llvm_unreachable("Unreachable!");
116     case X86::MOVSX16rr8:
117     case X86::MOVZX16rr8:
118     case X86::MOVSX32rr8:
119     case X86::MOVZX32rr8:
120     case X86::MOVSX64rr8:
121       SubIdx = X86::sub_8bit;
122       break;
123     case X86::MOVSX32rr16:
124     case X86::MOVZX32rr16:
125     case X86::MOVSX64rr16:
126       SubIdx = X86::sub_16bit;
127       break;
128     case X86::MOVSX64rr32:
129       SubIdx = X86::sub_32bit;
130       break;
131     }
132     return true;
133   }
134   }
135   return false;
136 }
137 
138 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139   const MachineFunction *MF = MI.getParent()->getParent();
140   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141 
142   if (isFrameInstr(MI)) {
143     unsigned StackAlign = TFI->getStackAlignment();
144     int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145     SPAdj -= getFrameAdjustment(MI);
146     if (!isFrameSetup(MI))
147       SPAdj = -SPAdj;
148     return SPAdj;
149   }
150 
151   // To know whether a call adjusts the stack, we need information
152   // that is bound to the following ADJCALLSTACKUP pseudo.
153   // Look for the next ADJCALLSTACKUP that follows the call.
154   if (MI.isCall()) {
155     const MachineBasicBlock *MBB = MI.getParent();
156     auto I = ++MachineBasicBlock::const_iterator(MI);
157     for (auto E = MBB->end(); I != E; ++I) {
158       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159           I->isCall())
160         break;
161     }
162 
163     // If we could not find a frame destroy opcode, then it has already
164     // been simplified, so we don't care.
165     if (I->getOpcode() != getCallFrameDestroyOpcode())
166       return 0;
167 
168     return -(I->getOperand(1).getImm());
169   }
170 
171   // Currently handle only PUSHes we can reasonably expect to see
172   // in call sequences
173   switch (MI.getOpcode()) {
174   default:
175     return 0;
176   case X86::PUSH32i8:
177   case X86::PUSH32r:
178   case X86::PUSH32rmm:
179   case X86::PUSH32rmr:
180   case X86::PUSHi32:
181     return 4;
182   case X86::PUSH64i8:
183   case X86::PUSH64r:
184   case X86::PUSH64rmm:
185   case X86::PUSH64rmr:
186   case X86::PUSH64i32:
187     return 8;
188   }
189 }
190 
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194                                   int &FrameIndex) const {
195   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198       MI.getOperand(Op + X86::AddrDisp).isImm() &&
199       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203     return true;
204   }
205   return false;
206 }
207 
208 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209   switch (Opcode) {
210   default:
211     return false;
212   case X86::MOV8rm:
213   case X86::KMOVBkm:
214     MemBytes = 1;
215     return true;
216   case X86::MOV16rm:
217   case X86::KMOVWkm:
218     MemBytes = 2;
219     return true;
220   case X86::MOV32rm:
221   case X86::MOVSSrm:
222   case X86::MOVSSrm_alt:
223   case X86::VMOVSSrm:
224   case X86::VMOVSSrm_alt:
225   case X86::VMOVSSZrm:
226   case X86::VMOVSSZrm_alt:
227   case X86::KMOVDkm:
228     MemBytes = 4;
229     return true;
230   case X86::MOV64rm:
231   case X86::LD_Fp64m:
232   case X86::MOVSDrm:
233   case X86::MOVSDrm_alt:
234   case X86::VMOVSDrm:
235   case X86::VMOVSDrm_alt:
236   case X86::VMOVSDZrm:
237   case X86::VMOVSDZrm_alt:
238   case X86::MMX_MOVD64rm:
239   case X86::MMX_MOVQ64rm:
240   case X86::KMOVQkm:
241     MemBytes = 8;
242     return true;
243   case X86::MOVAPSrm:
244   case X86::MOVUPSrm:
245   case X86::MOVAPDrm:
246   case X86::MOVUPDrm:
247   case X86::MOVDQArm:
248   case X86::MOVDQUrm:
249   case X86::VMOVAPSrm:
250   case X86::VMOVUPSrm:
251   case X86::VMOVAPDrm:
252   case X86::VMOVUPDrm:
253   case X86::VMOVDQArm:
254   case X86::VMOVDQUrm:
255   case X86::VMOVAPSZ128rm:
256   case X86::VMOVUPSZ128rm:
257   case X86::VMOVAPSZ128rm_NOVLX:
258   case X86::VMOVUPSZ128rm_NOVLX:
259   case X86::VMOVAPDZ128rm:
260   case X86::VMOVUPDZ128rm:
261   case X86::VMOVDQU8Z128rm:
262   case X86::VMOVDQU16Z128rm:
263   case X86::VMOVDQA32Z128rm:
264   case X86::VMOVDQU32Z128rm:
265   case X86::VMOVDQA64Z128rm:
266   case X86::VMOVDQU64Z128rm:
267     MemBytes = 16;
268     return true;
269   case X86::VMOVAPSYrm:
270   case X86::VMOVUPSYrm:
271   case X86::VMOVAPDYrm:
272   case X86::VMOVUPDYrm:
273   case X86::VMOVDQAYrm:
274   case X86::VMOVDQUYrm:
275   case X86::VMOVAPSZ256rm:
276   case X86::VMOVUPSZ256rm:
277   case X86::VMOVAPSZ256rm_NOVLX:
278   case X86::VMOVUPSZ256rm_NOVLX:
279   case X86::VMOVAPDZ256rm:
280   case X86::VMOVUPDZ256rm:
281   case X86::VMOVDQU8Z256rm:
282   case X86::VMOVDQU16Z256rm:
283   case X86::VMOVDQA32Z256rm:
284   case X86::VMOVDQU32Z256rm:
285   case X86::VMOVDQA64Z256rm:
286   case X86::VMOVDQU64Z256rm:
287     MemBytes = 32;
288     return true;
289   case X86::VMOVAPSZrm:
290   case X86::VMOVUPSZrm:
291   case X86::VMOVAPDZrm:
292   case X86::VMOVUPDZrm:
293   case X86::VMOVDQU8Zrm:
294   case X86::VMOVDQU16Zrm:
295   case X86::VMOVDQA32Zrm:
296   case X86::VMOVDQU32Zrm:
297   case X86::VMOVDQA64Zrm:
298   case X86::VMOVDQU64Zrm:
299     MemBytes = 64;
300     return true;
301   }
302 }
303 
304 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305   switch (Opcode) {
306   default:
307     return false;
308   case X86::MOV8mr:
309   case X86::KMOVBmk:
310     MemBytes = 1;
311     return true;
312   case X86::MOV16mr:
313   case X86::KMOVWmk:
314     MemBytes = 2;
315     return true;
316   case X86::MOV32mr:
317   case X86::MOVSSmr:
318   case X86::VMOVSSmr:
319   case X86::VMOVSSZmr:
320   case X86::KMOVDmk:
321     MemBytes = 4;
322     return true;
323   case X86::MOV64mr:
324   case X86::ST_FpP64m:
325   case X86::MOVSDmr:
326   case X86::VMOVSDmr:
327   case X86::VMOVSDZmr:
328   case X86::MMX_MOVD64mr:
329   case X86::MMX_MOVQ64mr:
330   case X86::MMX_MOVNTQmr:
331   case X86::KMOVQmk:
332     MemBytes = 8;
333     return true;
334   case X86::MOVAPSmr:
335   case X86::MOVUPSmr:
336   case X86::MOVAPDmr:
337   case X86::MOVUPDmr:
338   case X86::MOVDQAmr:
339   case X86::MOVDQUmr:
340   case X86::VMOVAPSmr:
341   case X86::VMOVUPSmr:
342   case X86::VMOVAPDmr:
343   case X86::VMOVUPDmr:
344   case X86::VMOVDQAmr:
345   case X86::VMOVDQUmr:
346   case X86::VMOVUPSZ128mr:
347   case X86::VMOVAPSZ128mr:
348   case X86::VMOVUPSZ128mr_NOVLX:
349   case X86::VMOVAPSZ128mr_NOVLX:
350   case X86::VMOVUPDZ128mr:
351   case X86::VMOVAPDZ128mr:
352   case X86::VMOVDQA32Z128mr:
353   case X86::VMOVDQU32Z128mr:
354   case X86::VMOVDQA64Z128mr:
355   case X86::VMOVDQU64Z128mr:
356   case X86::VMOVDQU8Z128mr:
357   case X86::VMOVDQU16Z128mr:
358     MemBytes = 16;
359     return true;
360   case X86::VMOVUPSYmr:
361   case X86::VMOVAPSYmr:
362   case X86::VMOVUPDYmr:
363   case X86::VMOVAPDYmr:
364   case X86::VMOVDQUYmr:
365   case X86::VMOVDQAYmr:
366   case X86::VMOVUPSZ256mr:
367   case X86::VMOVAPSZ256mr:
368   case X86::VMOVUPSZ256mr_NOVLX:
369   case X86::VMOVAPSZ256mr_NOVLX:
370   case X86::VMOVUPDZ256mr:
371   case X86::VMOVAPDZ256mr:
372   case X86::VMOVDQU8Z256mr:
373   case X86::VMOVDQU16Z256mr:
374   case X86::VMOVDQA32Z256mr:
375   case X86::VMOVDQU32Z256mr:
376   case X86::VMOVDQA64Z256mr:
377   case X86::VMOVDQU64Z256mr:
378     MemBytes = 32;
379     return true;
380   case X86::VMOVUPSZmr:
381   case X86::VMOVAPSZmr:
382   case X86::VMOVUPDZmr:
383   case X86::VMOVAPDZmr:
384   case X86::VMOVDQU8Zmr:
385   case X86::VMOVDQU16Zmr:
386   case X86::VMOVDQA32Zmr:
387   case X86::VMOVDQU32Zmr:
388   case X86::VMOVDQA64Zmr:
389   case X86::VMOVDQU64Zmr:
390     MemBytes = 64;
391     return true;
392   }
393   return false;
394 }
395 
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397                                            int &FrameIndex) const {
398   unsigned Dummy;
399   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400 }
401 
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403                                            int &FrameIndex,
404                                            unsigned &MemBytes) const {
405   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407       return MI.getOperand(0).getReg();
408   return 0;
409 }
410 
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412                                                  int &FrameIndex) const {
413   unsigned Dummy;
414   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415     unsigned Reg;
416     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417       return Reg;
418     // Check for post-frame index elimination operations
419     SmallVector<const MachineMemOperand *, 1> Accesses;
420     if (hasLoadFromStackSlot(MI, Accesses)) {
421       FrameIndex =
422           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423               ->getFrameIndex();
424       return 1;
425     }
426   }
427   return 0;
428 }
429 
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431                                           int &FrameIndex) const {
432   unsigned Dummy;
433   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434 }
435 
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437                                           int &FrameIndex,
438                                           unsigned &MemBytes) const {
439   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441         isFrameOperand(MI, 0, FrameIndex))
442       return MI.getOperand(X86::AddrNumOperands).getReg();
443   return 0;
444 }
445 
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447                                                 int &FrameIndex) const {
448   unsigned Dummy;
449   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450     unsigned Reg;
451     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452       return Reg;
453     // Check for post-frame index elimination operations
454     SmallVector<const MachineMemOperand *, 1> Accesses;
455     if (hasStoreToStackSlot(MI, Accesses)) {
456       FrameIndex =
457           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458               ->getFrameIndex();
459       return 1;
460     }
461   }
462   return 0;
463 }
464 
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467   // Don't waste compile time scanning use-def chains of physregs.
468   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
469     return false;
470   bool isPICBase = false;
471   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472          E = MRI.def_instr_end(); I != E; ++I) {
473     MachineInstr *DefMI = &*I;
474     if (DefMI->getOpcode() != X86::MOVPC32r)
475       return false;
476     assert(!isPICBase && "More than one PIC base?");
477     isPICBase = true;
478   }
479   return isPICBase;
480 }
481 
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483                                                      AliasAnalysis *AA) const {
484   switch (MI.getOpcode()) {
485   default: break;
486   case X86::MOV8rm:
487   case X86::MOV8rm_NOREX:
488   case X86::MOV16rm:
489   case X86::MOV32rm:
490   case X86::MOV64rm:
491   case X86::MOVSSrm:
492   case X86::MOVSSrm_alt:
493   case X86::MOVSDrm:
494   case X86::MOVSDrm_alt:
495   case X86::MOVAPSrm:
496   case X86::MOVUPSrm:
497   case X86::MOVAPDrm:
498   case X86::MOVUPDrm:
499   case X86::MOVDQArm:
500   case X86::MOVDQUrm:
501   case X86::VMOVSSrm:
502   case X86::VMOVSSrm_alt:
503   case X86::VMOVSDrm:
504   case X86::VMOVSDrm_alt:
505   case X86::VMOVAPSrm:
506   case X86::VMOVUPSrm:
507   case X86::VMOVAPDrm:
508   case X86::VMOVUPDrm:
509   case X86::VMOVDQArm:
510   case X86::VMOVDQUrm:
511   case X86::VMOVAPSYrm:
512   case X86::VMOVUPSYrm:
513   case X86::VMOVAPDYrm:
514   case X86::VMOVUPDYrm:
515   case X86::VMOVDQAYrm:
516   case X86::VMOVDQUYrm:
517   case X86::MMX_MOVD64rm:
518   case X86::MMX_MOVQ64rm:
519   // AVX-512
520   case X86::VMOVSSZrm:
521   case X86::VMOVSSZrm_alt:
522   case X86::VMOVSDZrm:
523   case X86::VMOVSDZrm_alt:
524   case X86::VMOVAPDZ128rm:
525   case X86::VMOVAPDZ256rm:
526   case X86::VMOVAPDZrm:
527   case X86::VMOVAPSZ128rm:
528   case X86::VMOVAPSZ256rm:
529   case X86::VMOVAPSZ128rm_NOVLX:
530   case X86::VMOVAPSZ256rm_NOVLX:
531   case X86::VMOVAPSZrm:
532   case X86::VMOVDQA32Z128rm:
533   case X86::VMOVDQA32Z256rm:
534   case X86::VMOVDQA32Zrm:
535   case X86::VMOVDQA64Z128rm:
536   case X86::VMOVDQA64Z256rm:
537   case X86::VMOVDQA64Zrm:
538   case X86::VMOVDQU16Z128rm:
539   case X86::VMOVDQU16Z256rm:
540   case X86::VMOVDQU16Zrm:
541   case X86::VMOVDQU32Z128rm:
542   case X86::VMOVDQU32Z256rm:
543   case X86::VMOVDQU32Zrm:
544   case X86::VMOVDQU64Z128rm:
545   case X86::VMOVDQU64Z256rm:
546   case X86::VMOVDQU64Zrm:
547   case X86::VMOVDQU8Z128rm:
548   case X86::VMOVDQU8Z256rm:
549   case X86::VMOVDQU8Zrm:
550   case X86::VMOVUPDZ128rm:
551   case X86::VMOVUPDZ256rm:
552   case X86::VMOVUPDZrm:
553   case X86::VMOVUPSZ128rm:
554   case X86::VMOVUPSZ256rm:
555   case X86::VMOVUPSZ128rm_NOVLX:
556   case X86::VMOVUPSZ256rm_NOVLX:
557   case X86::VMOVUPSZrm: {
558     // Loads from constant pools are trivially rematerializable.
559     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
560         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
561         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
562         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
563         MI.isDereferenceableInvariantLoad(AA)) {
564       unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
565       if (BaseReg == 0 || BaseReg == X86::RIP)
566         return true;
567       // Allow re-materialization of PIC load.
568       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
569         return false;
570       const MachineFunction &MF = *MI.getParent()->getParent();
571       const MachineRegisterInfo &MRI = MF.getRegInfo();
572       return regIsPICBase(BaseReg, MRI);
573     }
574     return false;
575   }
576 
577   case X86::LEA32r:
578   case X86::LEA64r: {
579     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
580         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
581         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
582         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
583       // lea fi#, lea GV, etc. are all rematerializable.
584       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
585         return true;
586       unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
587       if (BaseReg == 0)
588         return true;
589       // Allow re-materialization of lea PICBase + x.
590       const MachineFunction &MF = *MI.getParent()->getParent();
591       const MachineRegisterInfo &MRI = MF.getRegInfo();
592       return regIsPICBase(BaseReg, MRI);
593     }
594     return false;
595   }
596   }
597 
598   // All other instructions marked M_REMATERIALIZABLE are always trivially
599   // rematerializable.
600   return true;
601 }
602 
603 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
604                                  MachineBasicBlock::iterator I,
605                                  unsigned DestReg, unsigned SubIdx,
606                                  const MachineInstr &Orig,
607                                  const TargetRegisterInfo &TRI) const {
608   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
609   if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
610     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
611     // effects.
612     int Value;
613     switch (Orig.getOpcode()) {
614     case X86::MOV32r0:  Value = 0; break;
615     case X86::MOV32r1:  Value = 1; break;
616     case X86::MOV32r_1: Value = -1; break;
617     default:
618       llvm_unreachable("Unexpected instruction!");
619     }
620 
621     const DebugLoc &DL = Orig.getDebugLoc();
622     BuildMI(MBB, I, DL, get(X86::MOV32ri))
623         .add(Orig.getOperand(0))
624         .addImm(Value);
625   } else {
626     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
627     MBB.insert(I, MI);
628   }
629 
630   MachineInstr &NewMI = *std::prev(I);
631   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
632 }
633 
634 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
635 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
636   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
637     MachineOperand &MO = MI.getOperand(i);
638     if (MO.isReg() && MO.isDef() &&
639         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
640       return true;
641     }
642   }
643   return false;
644 }
645 
646 /// Check whether the shift count for a machine operand is non-zero.
647 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
648                                               unsigned ShiftAmtOperandIdx) {
649   // The shift count is six bits with the REX.W prefix and five bits without.
650   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
651   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
652   return Imm & ShiftCountMask;
653 }
654 
655 /// Check whether the given shift count is appropriate
656 /// can be represented by a LEA instruction.
657 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
658   // Left shift instructions can be transformed into load-effective-address
659   // instructions if we can encode them appropriately.
660   // A LEA instruction utilizes a SIB byte to encode its scale factor.
661   // The SIB.scale field is two bits wide which means that we can encode any
662   // shift amount less than 4.
663   return ShAmt < 4 && ShAmt > 0;
664 }
665 
666 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
667                                   unsigned Opc, bool AllowSP, unsigned &NewSrc,
668                                   bool &isKill, MachineOperand &ImplicitOp,
669                                   LiveVariables *LV) const {
670   MachineFunction &MF = *MI.getParent()->getParent();
671   const TargetRegisterClass *RC;
672   if (AllowSP) {
673     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
674   } else {
675     RC = Opc != X86::LEA32r ?
676       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
677   }
678   unsigned SrcReg = Src.getReg();
679 
680   // For both LEA64 and LEA32 the register already has essentially the right
681   // type (32-bit or 64-bit) we may just need to forbid SP.
682   if (Opc != X86::LEA64_32r) {
683     NewSrc = SrcReg;
684     isKill = Src.isKill();
685     assert(!Src.isUndef() && "Undef op doesn't need optimization");
686 
687     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
688         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
689       return false;
690 
691     return true;
692   }
693 
694   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
695   // another we need to add 64-bit registers to the final MI.
696   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
697     ImplicitOp = Src;
698     ImplicitOp.setImplicit();
699 
700     NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
701     isKill = Src.isKill();
702     assert(!Src.isUndef() && "Undef op doesn't need optimization");
703   } else {
704     // Virtual register of the wrong class, we have to create a temporary 64-bit
705     // vreg to feed into the LEA.
706     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
707     MachineInstr *Copy =
708         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
709             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
710             .add(Src);
711 
712     // Which is obviously going to be dead after we're done with it.
713     isKill = true;
714 
715     if (LV)
716       LV->replaceKillInstruction(SrcReg, MI, *Copy);
717   }
718 
719   // We've set all the parameters without issue.
720   return true;
721 }
722 
723 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
724     unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
725     LiveVariables *LV, bool Is8BitOp) const {
726   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
727   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
728   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
729               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
730          "Unexpected type for LEA transform");
731 
732   // TODO: For a 32-bit target, we need to adjust the LEA variables with
733   // something like this:
734   //   Opcode = X86::LEA32r;
735   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
736   //   OutRegLEA =
737   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
738   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
739   if (!Subtarget.is64Bit())
740     return nullptr;
741 
742   unsigned Opcode = X86::LEA64_32r;
743   unsigned InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
744   unsigned OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
745 
746   // Build and insert into an implicit UNDEF value. This is OK because
747   // we will be shifting and then extracting the lower 8/16-bits.
748   // This has the potential to cause partial register stall. e.g.
749   //   movw    (%rbp,%rcx,2), %dx
750   //   leal    -65(%rdx), %esi
751   // But testing has shown this *does* help performance in 64-bit mode (at
752   // least on modern x86 machines).
753   MachineBasicBlock::iterator MBBI = MI.getIterator();
754   unsigned Dest = MI.getOperand(0).getReg();
755   unsigned Src = MI.getOperand(1).getReg();
756   bool IsDead = MI.getOperand(0).isDead();
757   bool IsKill = MI.getOperand(1).isKill();
758   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
759   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
760   BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
761   MachineInstr *InsMI =
762       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
763           .addReg(InRegLEA, RegState::Define, SubReg)
764           .addReg(Src, getKillRegState(IsKill));
765 
766   MachineInstrBuilder MIB =
767       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
768   switch (MIOpc) {
769   default: llvm_unreachable("Unreachable!");
770   case X86::SHL8ri:
771   case X86::SHL16ri: {
772     unsigned ShAmt = MI.getOperand(2).getImm();
773     MIB.addReg(0).addImm(1ULL << ShAmt)
774        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
775     break;
776   }
777   case X86::INC8r:
778   case X86::INC16r:
779     addRegOffset(MIB, InRegLEA, true, 1);
780     break;
781   case X86::DEC8r:
782   case X86::DEC16r:
783     addRegOffset(MIB, InRegLEA, true, -1);
784     break;
785   case X86::ADD8ri:
786   case X86::ADD8ri_DB:
787   case X86::ADD16ri:
788   case X86::ADD16ri8:
789   case X86::ADD16ri_DB:
790   case X86::ADD16ri8_DB:
791     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
792     break;
793   case X86::ADD8rr:
794   case X86::ADD8rr_DB:
795   case X86::ADD16rr:
796   case X86::ADD16rr_DB: {
797     unsigned Src2 = MI.getOperand(2).getReg();
798     bool IsKill2 = MI.getOperand(2).isKill();
799     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
800     unsigned InRegLEA2 = 0;
801     MachineInstr *InsMI2 = nullptr;
802     if (Src == Src2) {
803       // ADD8rr/ADD16rr killed %reg1028, %reg1028
804       // just a single insert_subreg.
805       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
806     } else {
807       if (Subtarget.is64Bit())
808         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
809       else
810         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
811       // Build and insert into an implicit UNDEF value. This is OK because
812       // we will be shifting and then extracting the lower 8/16-bits.
813       BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
814       InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
815                    .addReg(InRegLEA2, RegState::Define, SubReg)
816                    .addReg(Src2, getKillRegState(IsKill2));
817       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
818     }
819     if (LV && IsKill2 && InsMI2)
820       LV->replaceKillInstruction(Src2, MI, *InsMI2);
821     break;
822   }
823   }
824 
825   MachineInstr *NewMI = MIB;
826   MachineInstr *ExtMI =
827       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
828           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
829           .addReg(OutRegLEA, RegState::Kill, SubReg);
830 
831   if (LV) {
832     // Update live variables.
833     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
834     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
835     if (IsKill)
836       LV->replaceKillInstruction(Src, MI, *InsMI);
837     if (IsDead)
838       LV->replaceKillInstruction(Dest, MI, *ExtMI);
839   }
840 
841   return ExtMI;
842 }
843 
844 /// This method must be implemented by targets that
845 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
846 /// may be able to convert a two-address instruction into a true
847 /// three-address instruction on demand.  This allows the X86 target (for
848 /// example) to convert ADD and SHL instructions into LEA instructions if they
849 /// would require register copies due to two-addressness.
850 ///
851 /// This method returns a null pointer if the transformation cannot be
852 /// performed, otherwise it returns the new instruction.
853 ///
854 MachineInstr *
855 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
856                                     MachineInstr &MI, LiveVariables *LV) const {
857   // The following opcodes also sets the condition code register(s). Only
858   // convert them to equivalent lea if the condition code register def's
859   // are dead!
860   if (hasLiveCondCodeDef(MI))
861     return nullptr;
862 
863   MachineFunction &MF = *MI.getParent()->getParent();
864   // All instructions input are two-addr instructions.  Get the known operands.
865   const MachineOperand &Dest = MI.getOperand(0);
866   const MachineOperand &Src = MI.getOperand(1);
867 
868   // Ideally, operations with undef should be folded before we get here, but we
869   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
870   // Without this, we have to forward undef state to new register operands to
871   // avoid machine verifier errors.
872   if (Src.isUndef())
873     return nullptr;
874   if (MI.getNumOperands() > 2)
875     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
876       return nullptr;
877 
878   MachineInstr *NewMI = nullptr;
879   bool Is64Bit = Subtarget.is64Bit();
880 
881   bool Is8BitOp = false;
882   unsigned MIOpc = MI.getOpcode();
883   switch (MIOpc) {
884   default: llvm_unreachable("Unreachable!");
885   case X86::SHL64ri: {
886     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
887     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
888     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
889 
890     // LEA can't handle RSP.
891     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
892         !MF.getRegInfo().constrainRegClass(Src.getReg(),
893                                            &X86::GR64_NOSPRegClass))
894       return nullptr;
895 
896     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
897                 .add(Dest)
898                 .addReg(0)
899                 .addImm(1ULL << ShAmt)
900                 .add(Src)
901                 .addImm(0)
902                 .addReg(0);
903     break;
904   }
905   case X86::SHL32ri: {
906     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
907     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
908     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
909 
910     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
911 
912     // LEA can't handle ESP.
913     bool isKill;
914     unsigned SrcReg;
915     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
916     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
917                         SrcReg, isKill, ImplicitOp, LV))
918       return nullptr;
919 
920     MachineInstrBuilder MIB =
921         BuildMI(MF, MI.getDebugLoc(), get(Opc))
922             .add(Dest)
923             .addReg(0)
924             .addImm(1ULL << ShAmt)
925             .addReg(SrcReg, getKillRegState(isKill))
926             .addImm(0)
927             .addReg(0);
928     if (ImplicitOp.getReg() != 0)
929       MIB.add(ImplicitOp);
930     NewMI = MIB;
931 
932     break;
933   }
934   case X86::SHL8ri:
935     Is8BitOp = true;
936     LLVM_FALLTHROUGH;
937   case X86::SHL16ri: {
938     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
939     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
940     if (!isTruncatedShiftCountForLEA(ShAmt))
941       return nullptr;
942     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
943   }
944   case X86::INC64r:
945   case X86::INC32r: {
946     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
947     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
948         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
949     bool isKill;
950     unsigned SrcReg;
951     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
952     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
953                         ImplicitOp, LV))
954       return nullptr;
955 
956     MachineInstrBuilder MIB =
957         BuildMI(MF, MI.getDebugLoc(), get(Opc))
958             .add(Dest)
959             .addReg(SrcReg, getKillRegState(isKill));
960     if (ImplicitOp.getReg() != 0)
961       MIB.add(ImplicitOp);
962 
963     NewMI = addOffset(MIB, 1);
964     break;
965   }
966   case X86::DEC64r:
967   case X86::DEC32r: {
968     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
969     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
970         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
971 
972     bool isKill;
973     unsigned SrcReg;
974     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
975     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
976                         ImplicitOp, LV))
977       return nullptr;
978 
979     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
980                                   .add(Dest)
981                                   .addReg(SrcReg, getKillRegState(isKill));
982     if (ImplicitOp.getReg() != 0)
983       MIB.add(ImplicitOp);
984 
985     NewMI = addOffset(MIB, -1);
986 
987     break;
988   }
989   case X86::DEC8r:
990   case X86::INC8r:
991     Is8BitOp = true;
992     LLVM_FALLTHROUGH;
993   case X86::DEC16r:
994   case X86::INC16r:
995     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
996   case X86::ADD64rr:
997   case X86::ADD64rr_DB:
998   case X86::ADD32rr:
999   case X86::ADD32rr_DB: {
1000     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1001     unsigned Opc;
1002     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1003       Opc = X86::LEA64r;
1004     else
1005       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1006 
1007     bool isKill;
1008     unsigned SrcReg;
1009     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1010     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1011                         SrcReg, isKill, ImplicitOp, LV))
1012       return nullptr;
1013 
1014     const MachineOperand &Src2 = MI.getOperand(2);
1015     bool isKill2;
1016     unsigned SrcReg2;
1017     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1018     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1019                         SrcReg2, isKill2, ImplicitOp2, LV))
1020       return nullptr;
1021 
1022     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1023     if (ImplicitOp.getReg() != 0)
1024       MIB.add(ImplicitOp);
1025     if (ImplicitOp2.getReg() != 0)
1026       MIB.add(ImplicitOp2);
1027 
1028     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1029     if (LV && Src2.isKill())
1030       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1031     break;
1032   }
1033   case X86::ADD8rr:
1034   case X86::ADD8rr_DB:
1035     Is8BitOp = true;
1036     LLVM_FALLTHROUGH;
1037   case X86::ADD16rr:
1038   case X86::ADD16rr_DB:
1039     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1040   case X86::ADD64ri32:
1041   case X86::ADD64ri8:
1042   case X86::ADD64ri32_DB:
1043   case X86::ADD64ri8_DB:
1044     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1045     NewMI = addOffset(
1046         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1047         MI.getOperand(2));
1048     break;
1049   case X86::ADD32ri:
1050   case X86::ADD32ri8:
1051   case X86::ADD32ri_DB:
1052   case X86::ADD32ri8_DB: {
1053     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1054     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1055 
1056     bool isKill;
1057     unsigned SrcReg;
1058     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1059     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1060                         SrcReg, isKill, ImplicitOp, LV))
1061       return nullptr;
1062 
1063     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1064                                   .add(Dest)
1065                                   .addReg(SrcReg, getKillRegState(isKill));
1066     if (ImplicitOp.getReg() != 0)
1067       MIB.add(ImplicitOp);
1068 
1069     NewMI = addOffset(MIB, MI.getOperand(2));
1070     break;
1071   }
1072   case X86::ADD8ri:
1073   case X86::ADD8ri_DB:
1074     Is8BitOp = true;
1075     LLVM_FALLTHROUGH;
1076   case X86::ADD16ri:
1077   case X86::ADD16ri8:
1078   case X86::ADD16ri_DB:
1079   case X86::ADD16ri8_DB:
1080     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1081   case X86::SUB8ri:
1082   case X86::SUB16ri8:
1083   case X86::SUB16ri:
1084     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1085     return nullptr;
1086   case X86::SUB32ri8:
1087   case X86::SUB32ri: {
1088     if (!MI.getOperand(2).isImm())
1089       return nullptr;
1090     int64_t Imm = MI.getOperand(2).getImm();
1091     if (!isInt<32>(-Imm))
1092       return nullptr;
1093 
1094     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1095     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1096 
1097     bool isKill;
1098     unsigned SrcReg;
1099     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1100     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1101                         SrcReg, isKill, ImplicitOp, LV))
1102       return nullptr;
1103 
1104     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1105                                   .add(Dest)
1106                                   .addReg(SrcReg, getKillRegState(isKill));
1107     if (ImplicitOp.getReg() != 0)
1108       MIB.add(ImplicitOp);
1109 
1110     NewMI = addOffset(MIB, -Imm);
1111     break;
1112   }
1113 
1114   case X86::SUB64ri8:
1115   case X86::SUB64ri32: {
1116     if (!MI.getOperand(2).isImm())
1117       return nullptr;
1118     int64_t Imm = MI.getOperand(2).getImm();
1119     if (!isInt<32>(-Imm))
1120       return nullptr;
1121 
1122     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1123 
1124     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1125                                       get(X86::LEA64r)).add(Dest).add(Src);
1126     NewMI = addOffset(MIB, -Imm);
1127     break;
1128   }
1129 
1130   case X86::VMOVDQU8Z128rmk:
1131   case X86::VMOVDQU8Z256rmk:
1132   case X86::VMOVDQU8Zrmk:
1133   case X86::VMOVDQU16Z128rmk:
1134   case X86::VMOVDQU16Z256rmk:
1135   case X86::VMOVDQU16Zrmk:
1136   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1137   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1138   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1139   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1140   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1141   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1142   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1143   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1144   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1145   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1146   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1147   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: {
1148     unsigned Opc;
1149     switch (MIOpc) {
1150     default: llvm_unreachable("Unreachable!");
1151     case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break;
1152     case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break;
1153     case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break;
1154     case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1155     case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1156     case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break;
1157     case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1158     case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1159     case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1160     case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1161     case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1162     case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1163     case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1164     case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1165     case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1166     case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1167     case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1168     case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1169     case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1170     case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1171     case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1172     case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1173     case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1174     case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1175     case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1176     case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1177     case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1178     case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1179     case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1180     case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1181     }
1182 
1183     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1184               .add(Dest)
1185               .add(MI.getOperand(2))
1186               .add(Src)
1187               .add(MI.getOperand(3))
1188               .add(MI.getOperand(4))
1189               .add(MI.getOperand(5))
1190               .add(MI.getOperand(6))
1191               .add(MI.getOperand(7));
1192     break;
1193   }
1194   case X86::VMOVDQU8Z128rrk:
1195   case X86::VMOVDQU8Z256rrk:
1196   case X86::VMOVDQU8Zrrk:
1197   case X86::VMOVDQU16Z128rrk:
1198   case X86::VMOVDQU16Z256rrk:
1199   case X86::VMOVDQU16Zrrk:
1200   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1201   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1202   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1203   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1204   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1205   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1206   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1207   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1208   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1209   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1210   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1211   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1212     unsigned Opc;
1213     switch (MIOpc) {
1214     default: llvm_unreachable("Unreachable!");
1215     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1216     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1217     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1218     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1219     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1220     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1221     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1222     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1223     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1224     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1225     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1226     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1227     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1228     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1229     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1230     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1231     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1232     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1233     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1234     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1235     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1236     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1237     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1238     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1239     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1240     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1241     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1242     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1243     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1244     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1245     }
1246 
1247     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1248               .add(Dest)
1249               .add(MI.getOperand(2))
1250               .add(Src)
1251               .add(MI.getOperand(3));
1252     break;
1253   }
1254   }
1255 
1256   if (!NewMI) return nullptr;
1257 
1258   if (LV) {  // Update live variables
1259     if (Src.isKill())
1260       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1261     if (Dest.isDead())
1262       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1263   }
1264 
1265   MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1266   return NewMI;
1267 }
1268 
1269 /// This determines which of three possible cases of a three source commute
1270 /// the source indexes correspond to taking into account any mask operands.
1271 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1272 /// possible.
1273 /// Case 0 - Possible to commute the first and second operands.
1274 /// Case 1 - Possible to commute the first and third operands.
1275 /// Case 2 - Possible to commute the second and third operands.
1276 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1277                                        unsigned SrcOpIdx2) {
1278   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1279   if (SrcOpIdx1 > SrcOpIdx2)
1280     std::swap(SrcOpIdx1, SrcOpIdx2);
1281 
1282   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1283   if (X86II::isKMasked(TSFlags)) {
1284     Op2++;
1285     Op3++;
1286   }
1287 
1288   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1289     return 0;
1290   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1291     return 1;
1292   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1293     return 2;
1294   llvm_unreachable("Unknown three src commute case.");
1295 }
1296 
1297 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1298     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1299     const X86InstrFMA3Group &FMA3Group) const {
1300 
1301   unsigned Opc = MI.getOpcode();
1302 
1303   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1304   // analysis. The commute optimization is legal only if all users of FMA*_Int
1305   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1306   // not implemented yet. So, just return 0 in that case.
1307   // When such analysis are available this place will be the right place for
1308   // calling it.
1309   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1310          "Intrinsic instructions can't commute operand 1");
1311 
1312   // Determine which case this commute is or if it can't be done.
1313   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1314                                          SrcOpIdx2);
1315   assert(Case < 3 && "Unexpected case number!");
1316 
1317   // Define the FMA forms mapping array that helps to map input FMA form
1318   // to output FMA form to preserve the operation semantics after
1319   // commuting the operands.
1320   const unsigned Form132Index = 0;
1321   const unsigned Form213Index = 1;
1322   const unsigned Form231Index = 2;
1323   static const unsigned FormMapping[][3] = {
1324     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1325     // FMA132 A, C, b; ==> FMA231 C, A, b;
1326     // FMA213 B, A, c; ==> FMA213 A, B, c;
1327     // FMA231 C, A, b; ==> FMA132 A, C, b;
1328     { Form231Index, Form213Index, Form132Index },
1329     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1330     // FMA132 A, c, B; ==> FMA132 B, c, A;
1331     // FMA213 B, a, C; ==> FMA231 C, a, B;
1332     // FMA231 C, a, B; ==> FMA213 B, a, C;
1333     { Form132Index, Form231Index, Form213Index },
1334     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1335     // FMA132 a, C, B; ==> FMA213 a, B, C;
1336     // FMA213 b, A, C; ==> FMA132 b, C, A;
1337     // FMA231 c, A, B; ==> FMA231 c, B, A;
1338     { Form213Index, Form132Index, Form231Index }
1339   };
1340 
1341   unsigned FMAForms[3];
1342   FMAForms[0] = FMA3Group.get132Opcode();
1343   FMAForms[1] = FMA3Group.get213Opcode();
1344   FMAForms[2] = FMA3Group.get231Opcode();
1345   unsigned FormIndex;
1346   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1347     if (Opc == FMAForms[FormIndex])
1348       break;
1349 
1350   // Everything is ready, just adjust the FMA opcode and return it.
1351   FormIndex = FormMapping[Case][FormIndex];
1352   return FMAForms[FormIndex];
1353 }
1354 
1355 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1356                              unsigned SrcOpIdx2) {
1357   // Determine which case this commute is or if it can't be done.
1358   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1359                                          SrcOpIdx2);
1360   assert(Case < 3 && "Unexpected case value!");
1361 
1362   // For each case we need to swap two pairs of bits in the final immediate.
1363   static const uint8_t SwapMasks[3][4] = {
1364     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1365     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1366     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1367   };
1368 
1369   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1370   // Clear out the bits we are swapping.
1371   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1372                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1373   // If the immediate had a bit of the pair set, then set the opposite bit.
1374   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1375   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1376   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1377   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1378   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1379 }
1380 
1381 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1382 // commuted.
1383 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1384 #define VPERM_CASES(Suffix) \
1385   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1386   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1387   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1388   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1389   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1390   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1391   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1392   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1393   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1394   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1395   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1396   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1397 
1398 #define VPERM_CASES_BROADCAST(Suffix) \
1399   VPERM_CASES(Suffix) \
1400   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1401   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1402   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1403   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1404   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1405   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1406 
1407   switch (Opcode) {
1408   default: return false;
1409   VPERM_CASES(B)
1410   VPERM_CASES_BROADCAST(D)
1411   VPERM_CASES_BROADCAST(PD)
1412   VPERM_CASES_BROADCAST(PS)
1413   VPERM_CASES_BROADCAST(Q)
1414   VPERM_CASES(W)
1415     return true;
1416   }
1417 #undef VPERM_CASES_BROADCAST
1418 #undef VPERM_CASES
1419 }
1420 
1421 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1422 // from the I opcode to the T opcode and vice versa.
1423 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1424 #define VPERM_CASES(Orig, New) \
1425   case X86::Orig##128rr:    return X86::New##128rr;   \
1426   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1427   case X86::Orig##128rm:    return X86::New##128rm;   \
1428   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1429   case X86::Orig##256rr:    return X86::New##256rr;   \
1430   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1431   case X86::Orig##256rm:    return X86::New##256rm;   \
1432   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1433   case X86::Orig##rr:       return X86::New##rr;      \
1434   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1435   case X86::Orig##rm:       return X86::New##rm;      \
1436   case X86::Orig##rmkz:     return X86::New##rmkz;
1437 
1438 #define VPERM_CASES_BROADCAST(Orig, New) \
1439   VPERM_CASES(Orig, New) \
1440   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1441   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1442   case X86::Orig##256rmb:   return X86::New##256rmb;   \
1443   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1444   case X86::Orig##rmb:      return X86::New##rmb;      \
1445   case X86::Orig##rmbkz:    return X86::New##rmbkz;
1446 
1447   switch (Opcode) {
1448   VPERM_CASES(VPERMI2B, VPERMT2B)
1449   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1450   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1451   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1452   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1453   VPERM_CASES(VPERMI2W, VPERMT2W)
1454   VPERM_CASES(VPERMT2B, VPERMI2B)
1455   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1456   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1457   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1458   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1459   VPERM_CASES(VPERMT2W, VPERMI2W)
1460   }
1461 
1462   llvm_unreachable("Unreachable!");
1463 #undef VPERM_CASES_BROADCAST
1464 #undef VPERM_CASES
1465 }
1466 
1467 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1468                                                    unsigned OpIdx1,
1469                                                    unsigned OpIdx2) const {
1470   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1471     if (NewMI)
1472       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1473     return MI;
1474   };
1475 
1476   switch (MI.getOpcode()) {
1477   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1478   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1479   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1480   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1481   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1482   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1483     unsigned Opc;
1484     unsigned Size;
1485     switch (MI.getOpcode()) {
1486     default: llvm_unreachable("Unreachable!");
1487     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1488     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1489     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1490     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1491     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1492     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1493     }
1494     unsigned Amt = MI.getOperand(3).getImm();
1495     auto &WorkingMI = cloneIfNew(MI);
1496     WorkingMI.setDesc(get(Opc));
1497     WorkingMI.getOperand(3).setImm(Size - Amt);
1498     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1499                                                    OpIdx1, OpIdx2);
1500   }
1501   case X86::PFSUBrr:
1502   case X86::PFSUBRrr: {
1503     // PFSUB  x, y: x = x - y
1504     // PFSUBR x, y: x = y - x
1505     unsigned Opc =
1506         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1507     auto &WorkingMI = cloneIfNew(MI);
1508     WorkingMI.setDesc(get(Opc));
1509     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1510                                                    OpIdx1, OpIdx2);
1511   }
1512   case X86::BLENDPDrri:
1513   case X86::BLENDPSrri:
1514   case X86::VBLENDPDrri:
1515   case X86::VBLENDPSrri:
1516     // If we're optimizing for size, try to use MOVSD/MOVSS.
1517     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1518       unsigned Mask, Opc;
1519       switch (MI.getOpcode()) {
1520       default: llvm_unreachable("Unreachable!");
1521       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1522       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1523       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1524       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1525       }
1526       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1527         auto &WorkingMI = cloneIfNew(MI);
1528         WorkingMI.setDesc(get(Opc));
1529         WorkingMI.RemoveOperand(3);
1530         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1531                                                        /*NewMI=*/false,
1532                                                        OpIdx1, OpIdx2);
1533       }
1534     }
1535     LLVM_FALLTHROUGH;
1536   case X86::PBLENDWrri:
1537   case X86::VBLENDPDYrri:
1538   case X86::VBLENDPSYrri:
1539   case X86::VPBLENDDrri:
1540   case X86::VPBLENDWrri:
1541   case X86::VPBLENDDYrri:
1542   case X86::VPBLENDWYrri:{
1543     int8_t Mask;
1544     switch (MI.getOpcode()) {
1545     default: llvm_unreachable("Unreachable!");
1546     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1547     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1548     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1549     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1550     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1551     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1552     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1553     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1554     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1555     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1556     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1557     }
1558     // Only the least significant bits of Imm are used.
1559     // Using int8_t to ensure it will be sign extended to the int64_t that
1560     // setImm takes in order to match isel behavior.
1561     int8_t Imm = MI.getOperand(3).getImm() & Mask;
1562     auto &WorkingMI = cloneIfNew(MI);
1563     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1564     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1565                                                    OpIdx1, OpIdx2);
1566   }
1567   case X86::INSERTPSrr:
1568   case X86::VINSERTPSrr:
1569   case X86::VINSERTPSZrr: {
1570     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1571     unsigned ZMask = Imm & 15;
1572     unsigned DstIdx = (Imm >> 4) & 3;
1573     unsigned SrcIdx = (Imm >> 6) & 3;
1574 
1575     // We can commute insertps if we zero 2 of the elements, the insertion is
1576     // "inline" and we don't override the insertion with a zero.
1577     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1578         countPopulation(ZMask) == 2) {
1579       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1580       assert(AltIdx < 4 && "Illegal insertion index");
1581       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1582       auto &WorkingMI = cloneIfNew(MI);
1583       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1584       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1585                                                      OpIdx1, OpIdx2);
1586     }
1587     return nullptr;
1588   }
1589   case X86::MOVSDrr:
1590   case X86::MOVSSrr:
1591   case X86::VMOVSDrr:
1592   case X86::VMOVSSrr:{
1593     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1594     if (Subtarget.hasSSE41()) {
1595       unsigned Mask, Opc;
1596       switch (MI.getOpcode()) {
1597       default: llvm_unreachable("Unreachable!");
1598       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1599       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1600       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1601       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1602       }
1603 
1604       auto &WorkingMI = cloneIfNew(MI);
1605       WorkingMI.setDesc(get(Opc));
1606       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1607       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1608                                                      OpIdx1, OpIdx2);
1609     }
1610 
1611     // Convert to SHUFPD.
1612     assert(MI.getOpcode() == X86::MOVSDrr &&
1613            "Can only commute MOVSDrr without SSE4.1");
1614 
1615     auto &WorkingMI = cloneIfNew(MI);
1616     WorkingMI.setDesc(get(X86::SHUFPDrri));
1617     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1618     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1619                                                    OpIdx1, OpIdx2);
1620   }
1621   case X86::SHUFPDrri: {
1622     // Commute to MOVSD.
1623     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1624     auto &WorkingMI = cloneIfNew(MI);
1625     WorkingMI.setDesc(get(X86::MOVSDrr));
1626     WorkingMI.RemoveOperand(3);
1627     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1628                                                    OpIdx1, OpIdx2);
1629   }
1630   case X86::PCLMULQDQrr:
1631   case X86::VPCLMULQDQrr:
1632   case X86::VPCLMULQDQYrr:
1633   case X86::VPCLMULQDQZrr:
1634   case X86::VPCLMULQDQZ128rr:
1635   case X86::VPCLMULQDQZ256rr: {
1636     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1637     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1638     unsigned Imm = MI.getOperand(3).getImm();
1639     unsigned Src1Hi = Imm & 0x01;
1640     unsigned Src2Hi = Imm & 0x10;
1641     auto &WorkingMI = cloneIfNew(MI);
1642     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1643     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1644                                                    OpIdx1, OpIdx2);
1645   }
1646   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1647   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1648   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1649   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1650   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1651   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1652   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1653   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1654   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1655   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1656   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1657   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1658   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1659   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1660   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1661   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1662   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1663   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1664   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1665   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1666   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1667   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1668   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1669   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1670     // Flip comparison mode immediate (if necessary).
1671     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1672     Imm = X86::getSwappedVPCMPImm(Imm);
1673     auto &WorkingMI = cloneIfNew(MI);
1674     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1675     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1676                                                    OpIdx1, OpIdx2);
1677   }
1678   case X86::VPCOMBri: case X86::VPCOMUBri:
1679   case X86::VPCOMDri: case X86::VPCOMUDri:
1680   case X86::VPCOMQri: case X86::VPCOMUQri:
1681   case X86::VPCOMWri: case X86::VPCOMUWri: {
1682     // Flip comparison mode immediate (if necessary).
1683     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1684     Imm = X86::getSwappedVPCOMImm(Imm);
1685     auto &WorkingMI = cloneIfNew(MI);
1686     WorkingMI.getOperand(3).setImm(Imm);
1687     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688                                                    OpIdx1, OpIdx2);
1689   }
1690   case X86::VPERM2F128rr:
1691   case X86::VPERM2I128rr: {
1692     // Flip permute source immediate.
1693     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1694     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1695     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1696     auto &WorkingMI = cloneIfNew(MI);
1697     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1698     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1699                                                    OpIdx1, OpIdx2);
1700   }
1701   case X86::MOVHLPSrr:
1702   case X86::UNPCKHPDrr:
1703   case X86::VMOVHLPSrr:
1704   case X86::VUNPCKHPDrr:
1705   case X86::VMOVHLPSZrr:
1706   case X86::VUNPCKHPDZ128rr: {
1707     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1708 
1709     unsigned Opc = MI.getOpcode();
1710     switch (Opc) {
1711     default: llvm_unreachable("Unreachable!");
1712     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1713     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1714     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1715     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1716     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1717     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1718     }
1719     auto &WorkingMI = cloneIfNew(MI);
1720     WorkingMI.setDesc(get(Opc));
1721     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1722                                                    OpIdx1, OpIdx2);
1723   }
1724   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1725     auto &WorkingMI = cloneIfNew(MI);
1726     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1727     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1728     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1729     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1730                                                    OpIdx1, OpIdx2);
1731   }
1732   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1733   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1734   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1735   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1736   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1737   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1738   case X86::VPTERNLOGDZrrik:
1739   case X86::VPTERNLOGDZ128rrik:
1740   case X86::VPTERNLOGDZ256rrik:
1741   case X86::VPTERNLOGQZrrik:
1742   case X86::VPTERNLOGQZ128rrik:
1743   case X86::VPTERNLOGQZ256rrik:
1744   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1745   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1746   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1747   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1748   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1749   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1750   case X86::VPTERNLOGDZ128rmbi:
1751   case X86::VPTERNLOGDZ256rmbi:
1752   case X86::VPTERNLOGDZrmbi:
1753   case X86::VPTERNLOGQZ128rmbi:
1754   case X86::VPTERNLOGQZ256rmbi:
1755   case X86::VPTERNLOGQZrmbi:
1756   case X86::VPTERNLOGDZ128rmbikz:
1757   case X86::VPTERNLOGDZ256rmbikz:
1758   case X86::VPTERNLOGDZrmbikz:
1759   case X86::VPTERNLOGQZ128rmbikz:
1760   case X86::VPTERNLOGQZ256rmbikz:
1761   case X86::VPTERNLOGQZrmbikz: {
1762     auto &WorkingMI = cloneIfNew(MI);
1763     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1764     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1765                                                    OpIdx1, OpIdx2);
1766   }
1767   default: {
1768     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1769       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1770       auto &WorkingMI = cloneIfNew(MI);
1771       WorkingMI.setDesc(get(Opc));
1772       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1773                                                      OpIdx1, OpIdx2);
1774     }
1775 
1776     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1777                                                       MI.getDesc().TSFlags);
1778     if (FMA3Group) {
1779       unsigned Opc =
1780         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1781       auto &WorkingMI = cloneIfNew(MI);
1782       WorkingMI.setDesc(get(Opc));
1783       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1784                                                      OpIdx1, OpIdx2);
1785     }
1786 
1787     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1788   }
1789   }
1790 }
1791 
1792 bool
1793 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1794                                             unsigned &SrcOpIdx1,
1795                                             unsigned &SrcOpIdx2,
1796                                             bool IsIntrinsic) const {
1797   uint64_t TSFlags = MI.getDesc().TSFlags;
1798 
1799   unsigned FirstCommutableVecOp = 1;
1800   unsigned LastCommutableVecOp = 3;
1801   unsigned KMaskOp = -1U;
1802   if (X86II::isKMasked(TSFlags)) {
1803     // For k-zero-masked operations it is Ok to commute the first vector
1804     // operand.
1805     // For regular k-masked operations a conservative choice is done as the
1806     // elements of the first vector operand, for which the corresponding bit
1807     // in the k-mask operand is set to 0, are copied to the result of the
1808     // instruction.
1809     // TODO/FIXME: The commute still may be legal if it is known that the
1810     // k-mask operand is set to either all ones or all zeroes.
1811     // It is also Ok to commute the 1st operand if all users of MI use only
1812     // the elements enabled by the k-mask operand. For example,
1813     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1814     //                                                     : v1[i];
1815     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1816     //                                  // Ok, to commute v1 in FMADD213PSZrk.
1817 
1818     // The k-mask operand has index = 2 for masked and zero-masked operations.
1819     KMaskOp = 2;
1820 
1821     // The operand with index = 1 is used as a source for those elements for
1822     // which the corresponding bit in the k-mask is set to 0.
1823     if (X86II::isKMergeMasked(TSFlags))
1824       FirstCommutableVecOp = 3;
1825 
1826     LastCommutableVecOp++;
1827   } else if (IsIntrinsic) {
1828     // Commuting the first operand of an intrinsic instruction isn't possible
1829     // unless we can prove that only the lowest element of the result is used.
1830     FirstCommutableVecOp = 2;
1831   }
1832 
1833   if (isMem(MI, LastCommutableVecOp))
1834     LastCommutableVecOp--;
1835 
1836   // Only the first RegOpsNum operands are commutable.
1837   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1838   // that the operand is not specified/fixed.
1839   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1840       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1841        SrcOpIdx1 == KMaskOp))
1842     return false;
1843   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1844       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1845        SrcOpIdx2 == KMaskOp))
1846     return false;
1847 
1848   // Look for two different register operands assumed to be commutable
1849   // regardless of the FMA opcode. The FMA opcode is adjusted later.
1850   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1851       SrcOpIdx2 == CommuteAnyOperandIndex) {
1852     unsigned CommutableOpIdx2 = SrcOpIdx2;
1853 
1854     // At least one of operands to be commuted is not specified and
1855     // this method is free to choose appropriate commutable operands.
1856     if (SrcOpIdx1 == SrcOpIdx2)
1857       // Both of operands are not fixed. By default set one of commutable
1858       // operands to the last register operand of the instruction.
1859       CommutableOpIdx2 = LastCommutableVecOp;
1860     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1861       // Only one of operands is not fixed.
1862       CommutableOpIdx2 = SrcOpIdx1;
1863 
1864     // CommutableOpIdx2 is well defined now. Let's choose another commutable
1865     // operand and assign its index to CommutableOpIdx1.
1866     unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1867 
1868     unsigned CommutableOpIdx1;
1869     for (CommutableOpIdx1 = LastCommutableVecOp;
1870          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1871       // Just ignore and skip the k-mask operand.
1872       if (CommutableOpIdx1 == KMaskOp)
1873         continue;
1874 
1875       // The commuted operands must have different registers.
1876       // Otherwise, the commute transformation does not change anything and
1877       // is useless then.
1878       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1879         break;
1880     }
1881 
1882     // No appropriate commutable operands were found.
1883     if (CommutableOpIdx1 < FirstCommutableVecOp)
1884       return false;
1885 
1886     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1887     // to return those values.
1888     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1889                               CommutableOpIdx1, CommutableOpIdx2))
1890       return false;
1891   }
1892 
1893   return true;
1894 }
1895 
1896 bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1897                                          unsigned &SrcOpIdx2) const {
1898   const MCInstrDesc &Desc = MI.getDesc();
1899   if (!Desc.isCommutable())
1900     return false;
1901 
1902   switch (MI.getOpcode()) {
1903   case X86::CMPSDrr:
1904   case X86::CMPSSrr:
1905   case X86::CMPPDrri:
1906   case X86::CMPPSrri:
1907   case X86::VCMPSDrr:
1908   case X86::VCMPSSrr:
1909   case X86::VCMPPDrri:
1910   case X86::VCMPPSrri:
1911   case X86::VCMPPDYrri:
1912   case X86::VCMPPSYrri:
1913   case X86::VCMPSDZrr:
1914   case X86::VCMPSSZrr:
1915   case X86::VCMPPDZrri:
1916   case X86::VCMPPSZrri:
1917   case X86::VCMPPDZ128rri:
1918   case X86::VCMPPSZ128rri:
1919   case X86::VCMPPDZ256rri:
1920   case X86::VCMPPSZ256rri:
1921   case X86::VCMPPDZrrik:
1922   case X86::VCMPPSZrrik:
1923   case X86::VCMPPDZ128rrik:
1924   case X86::VCMPPSZ128rrik:
1925   case X86::VCMPPDZ256rrik:
1926   case X86::VCMPPSZ256rrik: {
1927     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
1928 
1929     // Float comparison can be safely commuted for
1930     // Ordered/Unordered/Equal/NotEqual tests
1931     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
1932     switch (Imm) {
1933     case 0x00: // EQUAL
1934     case 0x03: // UNORDERED
1935     case 0x04: // NOT EQUAL
1936     case 0x07: // ORDERED
1937       // The indices of the commutable operands are 1 and 2 (or 2 and 3
1938       // when masked).
1939       // Assign them to the returned operand indices here.
1940       return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
1941                                   2 + OpOffset);
1942     }
1943     return false;
1944   }
1945   case X86::MOVSSrr:
1946     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
1947     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
1948     // AVX implies sse4.1.
1949     if (Subtarget.hasSSE41())
1950       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1951     return false;
1952   case X86::SHUFPDrri:
1953     // We can commute this to MOVSD.
1954     if (MI.getOperand(3).getImm() == 0x02)
1955       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1956     return false;
1957   case X86::MOVHLPSrr:
1958   case X86::UNPCKHPDrr:
1959   case X86::VMOVHLPSrr:
1960   case X86::VUNPCKHPDrr:
1961   case X86::VMOVHLPSZrr:
1962   case X86::VUNPCKHPDZ128rr:
1963     if (Subtarget.hasSSE2())
1964       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1965     return false;
1966   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1967   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1968   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1969   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1970   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1971   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1972   case X86::VPTERNLOGDZrrik:
1973   case X86::VPTERNLOGDZ128rrik:
1974   case X86::VPTERNLOGDZ256rrik:
1975   case X86::VPTERNLOGQZrrik:
1976   case X86::VPTERNLOGQZ128rrik:
1977   case X86::VPTERNLOGQZ256rrik:
1978   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1979   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1980   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1981   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1982   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1983   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1984   case X86::VPTERNLOGDZ128rmbi:
1985   case X86::VPTERNLOGDZ256rmbi:
1986   case X86::VPTERNLOGDZrmbi:
1987   case X86::VPTERNLOGQZ128rmbi:
1988   case X86::VPTERNLOGQZ256rmbi:
1989   case X86::VPTERNLOGQZrmbi:
1990   case X86::VPTERNLOGDZ128rmbikz:
1991   case X86::VPTERNLOGDZ256rmbikz:
1992   case X86::VPTERNLOGDZrmbikz:
1993   case X86::VPTERNLOGQZ128rmbikz:
1994   case X86::VPTERNLOGQZ256rmbikz:
1995   case X86::VPTERNLOGQZrmbikz:
1996     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1997   case X86::VPMADD52HUQZ128r:
1998   case X86::VPMADD52HUQZ128rk:
1999   case X86::VPMADD52HUQZ128rkz:
2000   case X86::VPMADD52HUQZ256r:
2001   case X86::VPMADD52HUQZ256rk:
2002   case X86::VPMADD52HUQZ256rkz:
2003   case X86::VPMADD52HUQZr:
2004   case X86::VPMADD52HUQZrk:
2005   case X86::VPMADD52HUQZrkz:
2006   case X86::VPMADD52LUQZ128r:
2007   case X86::VPMADD52LUQZ128rk:
2008   case X86::VPMADD52LUQZ128rkz:
2009   case X86::VPMADD52LUQZ256r:
2010   case X86::VPMADD52LUQZ256rk:
2011   case X86::VPMADD52LUQZ256rkz:
2012   case X86::VPMADD52LUQZr:
2013   case X86::VPMADD52LUQZrk:
2014   case X86::VPMADD52LUQZrkz: {
2015     unsigned CommutableOpIdx1 = 2;
2016     unsigned CommutableOpIdx2 = 3;
2017     if (X86II::isKMasked(Desc.TSFlags)) {
2018       // Skip the mask register.
2019       ++CommutableOpIdx1;
2020       ++CommutableOpIdx2;
2021     }
2022     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2023                               CommutableOpIdx1, CommutableOpIdx2))
2024       return false;
2025     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2026         !MI.getOperand(SrcOpIdx2).isReg())
2027       // No idea.
2028       return false;
2029     return true;
2030   }
2031 
2032   default:
2033     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2034                                                       MI.getDesc().TSFlags);
2035     if (FMA3Group)
2036       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2037                                            FMA3Group->isIntrinsic());
2038 
2039     // Handled masked instructions since we need to skip over the mask input
2040     // and the preserved input.
2041     if (X86II::isKMasked(Desc.TSFlags)) {
2042       // First assume that the first input is the mask operand and skip past it.
2043       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2044       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2045       // Check if the first input is tied. If there isn't one then we only
2046       // need to skip the mask operand which we did above.
2047       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2048                                              MCOI::TIED_TO) != -1)) {
2049         // If this is zero masking instruction with a tied operand, we need to
2050         // move the first index back to the first input since this must
2051         // be a 3 input instruction and we want the first two non-mask inputs.
2052         // Otherwise this is a 2 input instruction with a preserved input and
2053         // mask, so we need to move the indices to skip one more input.
2054         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2055           ++CommutableOpIdx1;
2056           ++CommutableOpIdx2;
2057         } else {
2058           --CommutableOpIdx1;
2059         }
2060       }
2061 
2062       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2063                                 CommutableOpIdx1, CommutableOpIdx2))
2064         return false;
2065 
2066       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2067           !MI.getOperand(SrcOpIdx2).isReg())
2068         // No idea.
2069         return false;
2070       return true;
2071     }
2072 
2073     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2074   }
2075   return false;
2076 }
2077 
2078 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2079   switch (MI.getOpcode()) {
2080   default: return X86::COND_INVALID;
2081   case X86::JCC_1:
2082     return static_cast<X86::CondCode>(
2083         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2084   }
2085 }
2086 
2087 /// Return condition code of a SETCC opcode.
2088 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2089   switch (MI.getOpcode()) {
2090   default: return X86::COND_INVALID;
2091   case X86::SETCCr: case X86::SETCCm:
2092     return static_cast<X86::CondCode>(
2093         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2094   }
2095 }
2096 
2097 /// Return condition code of a CMov opcode.
2098 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2099   switch (MI.getOpcode()) {
2100   default: return X86::COND_INVALID;
2101   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2102   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2103     return static_cast<X86::CondCode>(
2104         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2105   }
2106 }
2107 
2108 /// Return the inverse of the specified condition,
2109 /// e.g. turning COND_E to COND_NE.
2110 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2111   switch (CC) {
2112   default: llvm_unreachable("Illegal condition code!");
2113   case X86::COND_E:  return X86::COND_NE;
2114   case X86::COND_NE: return X86::COND_E;
2115   case X86::COND_L:  return X86::COND_GE;
2116   case X86::COND_LE: return X86::COND_G;
2117   case X86::COND_G:  return X86::COND_LE;
2118   case X86::COND_GE: return X86::COND_L;
2119   case X86::COND_B:  return X86::COND_AE;
2120   case X86::COND_BE: return X86::COND_A;
2121   case X86::COND_A:  return X86::COND_BE;
2122   case X86::COND_AE: return X86::COND_B;
2123   case X86::COND_S:  return X86::COND_NS;
2124   case X86::COND_NS: return X86::COND_S;
2125   case X86::COND_P:  return X86::COND_NP;
2126   case X86::COND_NP: return X86::COND_P;
2127   case X86::COND_O:  return X86::COND_NO;
2128   case X86::COND_NO: return X86::COND_O;
2129   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2130   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2131   }
2132 }
2133 
2134 /// Assuming the flags are set by MI(a,b), return the condition code if we
2135 /// modify the instructions such that flags are set by MI(b,a).
2136 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2137   switch (CC) {
2138   default: return X86::COND_INVALID;
2139   case X86::COND_E:  return X86::COND_E;
2140   case X86::COND_NE: return X86::COND_NE;
2141   case X86::COND_L:  return X86::COND_G;
2142   case X86::COND_LE: return X86::COND_GE;
2143   case X86::COND_G:  return X86::COND_L;
2144   case X86::COND_GE: return X86::COND_LE;
2145   case X86::COND_B:  return X86::COND_A;
2146   case X86::COND_BE: return X86::COND_AE;
2147   case X86::COND_A:  return X86::COND_B;
2148   case X86::COND_AE: return X86::COND_BE;
2149   }
2150 }
2151 
2152 std::pair<X86::CondCode, bool>
2153 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2154   X86::CondCode CC = X86::COND_INVALID;
2155   bool NeedSwap = false;
2156   switch (Predicate) {
2157   default: break;
2158   // Floating-point Predicates
2159   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2160   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2161   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2162   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2163   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2164   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2165   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2166   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2167   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2168   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2169   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2170   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2171   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2172   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2173 
2174   // Integer Predicates
2175   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2176   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2177   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2178   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2179   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2180   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2181   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2182   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2183   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2184   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2185   }
2186 
2187   return std::make_pair(CC, NeedSwap);
2188 }
2189 
2190 /// Return a setcc opcode based on whether it has memory operand.
2191 unsigned X86::getSETOpc(bool HasMemoryOperand) {
2192   return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2193 }
2194 
2195 /// Return a cmov opcode for the given register size in bytes, and operand type.
2196 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2197   switch(RegBytes) {
2198   default: llvm_unreachable("Illegal register size!");
2199   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2200   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2201   case 8: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV64rr;
2202   }
2203 }
2204 
2205 /// Get the VPCMP immediate for the given condition.
2206 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2207   switch (CC) {
2208   default: llvm_unreachable("Unexpected SETCC condition");
2209   case ISD::SETNE:  return 4;
2210   case ISD::SETEQ:  return 0;
2211   case ISD::SETULT:
2212   case ISD::SETLT: return 1;
2213   case ISD::SETUGT:
2214   case ISD::SETGT: return 6;
2215   case ISD::SETUGE:
2216   case ISD::SETGE: return 5;
2217   case ISD::SETULE:
2218   case ISD::SETLE: return 2;
2219   }
2220 }
2221 
2222 /// Get the VPCMP immediate if the opcodes are swapped.
2223 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2224   switch (Imm) {
2225   default: llvm_unreachable("Unreachable!");
2226   case 0x01: Imm = 0x06; break; // LT  -> NLE
2227   case 0x02: Imm = 0x05; break; // LE  -> NLT
2228   case 0x05: Imm = 0x02; break; // NLT -> LE
2229   case 0x06: Imm = 0x01; break; // NLE -> LT
2230   case 0x00: // EQ
2231   case 0x03: // FALSE
2232   case 0x04: // NE
2233   case 0x07: // TRUE
2234     break;
2235   }
2236 
2237   return Imm;
2238 }
2239 
2240 /// Get the VPCOM immediate if the opcodes are swapped.
2241 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2242   switch (Imm) {
2243   default: llvm_unreachable("Unreachable!");
2244   case 0x00: Imm = 0x02; break; // LT -> GT
2245   case 0x01: Imm = 0x03; break; // LE -> GE
2246   case 0x02: Imm = 0x00; break; // GT -> LT
2247   case 0x03: Imm = 0x01; break; // GE -> LE
2248   case 0x04: // EQ
2249   case 0x05: // NE
2250   case 0x06: // FALSE
2251   case 0x07: // TRUE
2252     break;
2253   }
2254 
2255   return Imm;
2256 }
2257 
2258 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2259   if (!MI.isTerminator()) return false;
2260 
2261   // Conditional branch is a special case.
2262   if (MI.isBranch() && !MI.isBarrier())
2263     return true;
2264   if (!MI.isPredicable())
2265     return true;
2266   return !isPredicated(MI);
2267 }
2268 
2269 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2270   switch (MI.getOpcode()) {
2271   case X86::TCRETURNdi:
2272   case X86::TCRETURNri:
2273   case X86::TCRETURNmi:
2274   case X86::TCRETURNdi64:
2275   case X86::TCRETURNri64:
2276   case X86::TCRETURNmi64:
2277     return true;
2278   default:
2279     return false;
2280   }
2281 }
2282 
2283 bool X86InstrInfo::canMakeTailCallConditional(
2284     SmallVectorImpl<MachineOperand> &BranchCond,
2285     const MachineInstr &TailCall) const {
2286   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2287       TailCall.getOpcode() != X86::TCRETURNdi64) {
2288     // Only direct calls can be done with a conditional branch.
2289     return false;
2290   }
2291 
2292   const MachineFunction *MF = TailCall.getParent()->getParent();
2293   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2294     // Conditional tail calls confuse the Win64 unwinder.
2295     return false;
2296   }
2297 
2298   assert(BranchCond.size() == 1);
2299   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2300     // Can't make a conditional tail call with this condition.
2301     return false;
2302   }
2303 
2304   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2305   if (X86FI->getTCReturnAddrDelta() != 0 ||
2306       TailCall.getOperand(1).getImm() != 0) {
2307     // A conditional tail call cannot do any stack adjustment.
2308     return false;
2309   }
2310 
2311   return true;
2312 }
2313 
2314 void X86InstrInfo::replaceBranchWithTailCall(
2315     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2316     const MachineInstr &TailCall) const {
2317   assert(canMakeTailCallConditional(BranchCond, TailCall));
2318 
2319   MachineBasicBlock::iterator I = MBB.end();
2320   while (I != MBB.begin()) {
2321     --I;
2322     if (I->isDebugInstr())
2323       continue;
2324     if (!I->isBranch())
2325       assert(0 && "Can't find the branch to replace!");
2326 
2327     X86::CondCode CC = X86::getCondFromBranch(*I);
2328     assert(BranchCond.size() == 1);
2329     if (CC != BranchCond[0].getImm())
2330       continue;
2331 
2332     break;
2333   }
2334 
2335   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2336                                                          : X86::TCRETURNdi64cc;
2337 
2338   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2339   MIB->addOperand(TailCall.getOperand(0)); // Destination.
2340   MIB.addImm(0); // Stack offset (not used).
2341   MIB->addOperand(BranchCond[0]); // Condition.
2342   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2343 
2344   // Add implicit uses and defs of all live regs potentially clobbered by the
2345   // call. This way they still appear live across the call.
2346   LivePhysRegs LiveRegs(getRegisterInfo());
2347   LiveRegs.addLiveOuts(MBB);
2348   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2349   LiveRegs.stepForward(*MIB, Clobbers);
2350   for (const auto &C : Clobbers) {
2351     MIB.addReg(C.first, RegState::Implicit);
2352     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2353   }
2354 
2355   I->eraseFromParent();
2356 }
2357 
2358 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2359 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2360 // fallthrough MBB cannot be identified.
2361 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2362                                             MachineBasicBlock *TBB) {
2363   // Look for non-EHPad successors other than TBB. If we find exactly one, it
2364   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2365   // and fallthrough MBB. If we find more than one, we cannot identify the
2366   // fallthrough MBB and should return nullptr.
2367   MachineBasicBlock *FallthroughBB = nullptr;
2368   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2369     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2370       continue;
2371     // Return a nullptr if we found more than one fallthrough successor.
2372     if (FallthroughBB && FallthroughBB != TBB)
2373       return nullptr;
2374     FallthroughBB = *SI;
2375   }
2376   return FallthroughBB;
2377 }
2378 
2379 bool X86InstrInfo::AnalyzeBranchImpl(
2380     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2381     SmallVectorImpl<MachineOperand> &Cond,
2382     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2383 
2384   // Start from the bottom of the block and work up, examining the
2385   // terminator instructions.
2386   MachineBasicBlock::iterator I = MBB.end();
2387   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2388   while (I != MBB.begin()) {
2389     --I;
2390     if (I->isDebugInstr())
2391       continue;
2392 
2393     // Working from the bottom, when we see a non-terminator instruction, we're
2394     // done.
2395     if (!isUnpredicatedTerminator(*I))
2396       break;
2397 
2398     // A terminator that isn't a branch can't easily be handled by this
2399     // analysis.
2400     if (!I->isBranch())
2401       return true;
2402 
2403     // Handle unconditional branches.
2404     if (I->getOpcode() == X86::JMP_1) {
2405       UnCondBrIter = I;
2406 
2407       if (!AllowModify) {
2408         TBB = I->getOperand(0).getMBB();
2409         continue;
2410       }
2411 
2412       // If the block has any instructions after a JMP, delete them.
2413       while (std::next(I) != MBB.end())
2414         std::next(I)->eraseFromParent();
2415 
2416       Cond.clear();
2417       FBB = nullptr;
2418 
2419       // Delete the JMP if it's equivalent to a fall-through.
2420       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2421         TBB = nullptr;
2422         I->eraseFromParent();
2423         I = MBB.end();
2424         UnCondBrIter = MBB.end();
2425         continue;
2426       }
2427 
2428       // TBB is used to indicate the unconditional destination.
2429       TBB = I->getOperand(0).getMBB();
2430       continue;
2431     }
2432 
2433     // Handle conditional branches.
2434     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2435     if (BranchCode == X86::COND_INVALID)
2436       return true;  // Can't handle indirect branch.
2437 
2438     // In practice we should never have an undef eflags operand, if we do
2439     // abort here as we are not prepared to preserve the flag.
2440     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2441       return true;
2442 
2443     // Working from the bottom, handle the first conditional branch.
2444     if (Cond.empty()) {
2445       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2446       if (AllowModify && UnCondBrIter != MBB.end() &&
2447           MBB.isLayoutSuccessor(TargetBB)) {
2448         // If we can modify the code and it ends in something like:
2449         //
2450         //     jCC L1
2451         //     jmp L2
2452         //   L1:
2453         //     ...
2454         //   L2:
2455         //
2456         // Then we can change this to:
2457         //
2458         //     jnCC L2
2459         //   L1:
2460         //     ...
2461         //   L2:
2462         //
2463         // Which is a bit more efficient.
2464         // We conditionally jump to the fall-through block.
2465         BranchCode = GetOppositeBranchCondition(BranchCode);
2466         MachineBasicBlock::iterator OldInst = I;
2467 
2468         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2469           .addMBB(UnCondBrIter->getOperand(0).getMBB())
2470           .addImm(BranchCode);
2471         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2472           .addMBB(TargetBB);
2473 
2474         OldInst->eraseFromParent();
2475         UnCondBrIter->eraseFromParent();
2476 
2477         // Restart the analysis.
2478         UnCondBrIter = MBB.end();
2479         I = MBB.end();
2480         continue;
2481       }
2482 
2483       FBB = TBB;
2484       TBB = I->getOperand(0).getMBB();
2485       Cond.push_back(MachineOperand::CreateImm(BranchCode));
2486       CondBranches.push_back(&*I);
2487       continue;
2488     }
2489 
2490     // Handle subsequent conditional branches. Only handle the case where all
2491     // conditional branches branch to the same destination and their condition
2492     // opcodes fit one of the special multi-branch idioms.
2493     assert(Cond.size() == 1);
2494     assert(TBB);
2495 
2496     // If the conditions are the same, we can leave them alone.
2497     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2498     auto NewTBB = I->getOperand(0).getMBB();
2499     if (OldBranchCode == BranchCode && TBB == NewTBB)
2500       continue;
2501 
2502     // If they differ, see if they fit one of the known patterns. Theoretically,
2503     // we could handle more patterns here, but we shouldn't expect to see them
2504     // if instruction selection has done a reasonable job.
2505     if (TBB == NewTBB &&
2506                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2507                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2508       BranchCode = X86::COND_NE_OR_P;
2509     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2510                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2511       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2512         return true;
2513 
2514       // X86::COND_E_AND_NP usually has two different branch destinations.
2515       //
2516       // JP B1
2517       // JE B2
2518       // JMP B1
2519       // B1:
2520       // B2:
2521       //
2522       // Here this condition branches to B2 only if NP && E. It has another
2523       // equivalent form:
2524       //
2525       // JNE B1
2526       // JNP B2
2527       // JMP B1
2528       // B1:
2529       // B2:
2530       //
2531       // Similarly it branches to B2 only if E && NP. That is why this condition
2532       // is named with COND_E_AND_NP.
2533       BranchCode = X86::COND_E_AND_NP;
2534     } else
2535       return true;
2536 
2537     // Update the MachineOperand.
2538     Cond[0].setImm(BranchCode);
2539     CondBranches.push_back(&*I);
2540   }
2541 
2542   return false;
2543 }
2544 
2545 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2546                                  MachineBasicBlock *&TBB,
2547                                  MachineBasicBlock *&FBB,
2548                                  SmallVectorImpl<MachineOperand> &Cond,
2549                                  bool AllowModify) const {
2550   SmallVector<MachineInstr *, 4> CondBranches;
2551   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2552 }
2553 
2554 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2555                                           MachineBranchPredicate &MBP,
2556                                           bool AllowModify) const {
2557   using namespace std::placeholders;
2558 
2559   SmallVector<MachineOperand, 4> Cond;
2560   SmallVector<MachineInstr *, 4> CondBranches;
2561   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2562                         AllowModify))
2563     return true;
2564 
2565   if (Cond.size() != 1)
2566     return true;
2567 
2568   assert(MBP.TrueDest && "expected!");
2569 
2570   if (!MBP.FalseDest)
2571     MBP.FalseDest = MBB.getNextNode();
2572 
2573   const TargetRegisterInfo *TRI = &getRegisterInfo();
2574 
2575   MachineInstr *ConditionDef = nullptr;
2576   bool SingleUseCondition = true;
2577 
2578   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2579     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2580       ConditionDef = &*I;
2581       break;
2582     }
2583 
2584     if (I->readsRegister(X86::EFLAGS, TRI))
2585       SingleUseCondition = false;
2586   }
2587 
2588   if (!ConditionDef)
2589     return true;
2590 
2591   if (SingleUseCondition) {
2592     for (auto *Succ : MBB.successors())
2593       if (Succ->isLiveIn(X86::EFLAGS))
2594         SingleUseCondition = false;
2595   }
2596 
2597   MBP.ConditionDef = ConditionDef;
2598   MBP.SingleUseCondition = SingleUseCondition;
2599 
2600   // Currently we only recognize the simple pattern:
2601   //
2602   //   test %reg, %reg
2603   //   je %label
2604   //
2605   const unsigned TestOpcode =
2606       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2607 
2608   if (ConditionDef->getOpcode() == TestOpcode &&
2609       ConditionDef->getNumOperands() == 3 &&
2610       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2611       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2612     MBP.LHS = ConditionDef->getOperand(0);
2613     MBP.RHS = MachineOperand::CreateImm(0);
2614     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2615                         ? MachineBranchPredicate::PRED_NE
2616                         : MachineBranchPredicate::PRED_EQ;
2617     return false;
2618   }
2619 
2620   return true;
2621 }
2622 
2623 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2624                                     int *BytesRemoved) const {
2625   assert(!BytesRemoved && "code size not handled");
2626 
2627   MachineBasicBlock::iterator I = MBB.end();
2628   unsigned Count = 0;
2629 
2630   while (I != MBB.begin()) {
2631     --I;
2632     if (I->isDebugInstr())
2633       continue;
2634     if (I->getOpcode() != X86::JMP_1 &&
2635         X86::getCondFromBranch(*I) == X86::COND_INVALID)
2636       break;
2637     // Remove the branch.
2638     I->eraseFromParent();
2639     I = MBB.end();
2640     ++Count;
2641   }
2642 
2643   return Count;
2644 }
2645 
2646 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2647                                     MachineBasicBlock *TBB,
2648                                     MachineBasicBlock *FBB,
2649                                     ArrayRef<MachineOperand> Cond,
2650                                     const DebugLoc &DL,
2651                                     int *BytesAdded) const {
2652   // Shouldn't be a fall through.
2653   assert(TBB && "insertBranch must not be told to insert a fallthrough");
2654   assert((Cond.size() == 1 || Cond.size() == 0) &&
2655          "X86 branch conditions have one component!");
2656   assert(!BytesAdded && "code size not handled");
2657 
2658   if (Cond.empty()) {
2659     // Unconditional branch?
2660     assert(!FBB && "Unconditional branch with multiple successors!");
2661     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2662     return 1;
2663   }
2664 
2665   // If FBB is null, it is implied to be a fall-through block.
2666   bool FallThru = FBB == nullptr;
2667 
2668   // Conditional branch.
2669   unsigned Count = 0;
2670   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2671   switch (CC) {
2672   case X86::COND_NE_OR_P:
2673     // Synthesize NE_OR_P with two branches.
2674     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2675     ++Count;
2676     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2677     ++Count;
2678     break;
2679   case X86::COND_E_AND_NP:
2680     // Use the next block of MBB as FBB if it is null.
2681     if (FBB == nullptr) {
2682       FBB = getFallThroughMBB(&MBB, TBB);
2683       assert(FBB && "MBB cannot be the last block in function when the false "
2684                     "body is a fall-through.");
2685     }
2686     // Synthesize COND_E_AND_NP with two branches.
2687     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2688     ++Count;
2689     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2690     ++Count;
2691     break;
2692   default: {
2693     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2694     ++Count;
2695   }
2696   }
2697   if (!FallThru) {
2698     // Two-way Conditional branch. Insert the second branch.
2699     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2700     ++Count;
2701   }
2702   return Count;
2703 }
2704 
2705 bool X86InstrInfo::
2706 canInsertSelect(const MachineBasicBlock &MBB,
2707                 ArrayRef<MachineOperand> Cond,
2708                 unsigned TrueReg, unsigned FalseReg,
2709                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2710   // Not all subtargets have cmov instructions.
2711   if (!Subtarget.hasCMov())
2712     return false;
2713   if (Cond.size() != 1)
2714     return false;
2715   // We cannot do the composite conditions, at least not in SSA form.
2716   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2717     return false;
2718 
2719   // Check register classes.
2720   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2721   const TargetRegisterClass *RC =
2722     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2723   if (!RC)
2724     return false;
2725 
2726   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2727   if (X86::GR16RegClass.hasSubClassEq(RC) ||
2728       X86::GR32RegClass.hasSubClassEq(RC) ||
2729       X86::GR64RegClass.hasSubClassEq(RC)) {
2730     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2731     // Bridge. Probably Ivy Bridge as well.
2732     CondCycles = 2;
2733     TrueCycles = 2;
2734     FalseCycles = 2;
2735     return true;
2736   }
2737 
2738   // Can't do vectors.
2739   return false;
2740 }
2741 
2742 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2743                                 MachineBasicBlock::iterator I,
2744                                 const DebugLoc &DL, unsigned DstReg,
2745                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2746                                 unsigned FalseReg) const {
2747   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2748   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2749   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2750   assert(Cond.size() == 1 && "Invalid Cond array");
2751   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2752                                     false /*HasMemoryOperand*/);
2753   BuildMI(MBB, I, DL, get(Opc), DstReg)
2754       .addReg(FalseReg)
2755       .addReg(TrueReg)
2756       .addImm(Cond[0].getImm());
2757 }
2758 
2759 /// Test if the given register is a physical h register.
2760 static bool isHReg(unsigned Reg) {
2761   return X86::GR8_ABCD_HRegClass.contains(Reg);
2762 }
2763 
2764 // Try and copy between VR128/VR64 and GR64 registers.
2765 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2766                                         const X86Subtarget &Subtarget) {
2767   bool HasAVX = Subtarget.hasAVX();
2768   bool HasAVX512 = Subtarget.hasAVX512();
2769 
2770   // SrcReg(MaskReg) -> DestReg(GR64)
2771   // SrcReg(MaskReg) -> DestReg(GR32)
2772 
2773   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2774   if (X86::VK16RegClass.contains(SrcReg)) {
2775     if (X86::GR64RegClass.contains(DestReg)) {
2776       assert(Subtarget.hasBWI());
2777       return X86::KMOVQrk;
2778     }
2779     if (X86::GR32RegClass.contains(DestReg))
2780       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2781   }
2782 
2783   // SrcReg(GR64) -> DestReg(MaskReg)
2784   // SrcReg(GR32) -> DestReg(MaskReg)
2785 
2786   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2787   if (X86::VK16RegClass.contains(DestReg)) {
2788     if (X86::GR64RegClass.contains(SrcReg)) {
2789       assert(Subtarget.hasBWI());
2790       return X86::KMOVQkr;
2791     }
2792     if (X86::GR32RegClass.contains(SrcReg))
2793       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2794   }
2795 
2796 
2797   // SrcReg(VR128) -> DestReg(GR64)
2798   // SrcReg(VR64)  -> DestReg(GR64)
2799   // SrcReg(GR64)  -> DestReg(VR128)
2800   // SrcReg(GR64)  -> DestReg(VR64)
2801 
2802   if (X86::GR64RegClass.contains(DestReg)) {
2803     if (X86::VR128XRegClass.contains(SrcReg))
2804       // Copy from a VR128 register to a GR64 register.
2805       return HasAVX512 ? X86::VMOVPQIto64Zrr :
2806              HasAVX    ? X86::VMOVPQIto64rr  :
2807                          X86::MOVPQIto64rr;
2808     if (X86::VR64RegClass.contains(SrcReg))
2809       // Copy from a VR64 register to a GR64 register.
2810       return X86::MMX_MOVD64from64rr;
2811   } else if (X86::GR64RegClass.contains(SrcReg)) {
2812     // Copy from a GR64 register to a VR128 register.
2813     if (X86::VR128XRegClass.contains(DestReg))
2814       return HasAVX512 ? X86::VMOV64toPQIZrr :
2815              HasAVX    ? X86::VMOV64toPQIrr  :
2816                          X86::MOV64toPQIrr;
2817     // Copy from a GR64 register to a VR64 register.
2818     if (X86::VR64RegClass.contains(DestReg))
2819       return X86::MMX_MOVD64to64rr;
2820   }
2821 
2822   // SrcReg(VR128) -> DestReg(GR32)
2823   // SrcReg(GR32)  -> DestReg(VR128)
2824 
2825   if (X86::GR32RegClass.contains(DestReg) &&
2826       X86::VR128XRegClass.contains(SrcReg))
2827     // Copy from a VR128 register to a GR32 register.
2828     return HasAVX512 ? X86::VMOVPDI2DIZrr :
2829            HasAVX    ? X86::VMOVPDI2DIrr  :
2830                        X86::MOVPDI2DIrr;
2831 
2832   if (X86::VR128XRegClass.contains(DestReg) &&
2833       X86::GR32RegClass.contains(SrcReg))
2834     // Copy from a VR128 register to a VR128 register.
2835     return HasAVX512 ? X86::VMOVDI2PDIZrr :
2836            HasAVX    ? X86::VMOVDI2PDIrr  :
2837                        X86::MOVDI2PDIrr;
2838   return 0;
2839 }
2840 
2841 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2842                                MachineBasicBlock::iterator MI,
2843                                const DebugLoc &DL, unsigned DestReg,
2844                                unsigned SrcReg, bool KillSrc) const {
2845   // First deal with the normal symmetric copies.
2846   bool HasAVX = Subtarget.hasAVX();
2847   bool HasVLX = Subtarget.hasVLX();
2848   unsigned Opc = 0;
2849   if (X86::GR64RegClass.contains(DestReg, SrcReg))
2850     Opc = X86::MOV64rr;
2851   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2852     Opc = X86::MOV32rr;
2853   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2854     Opc = X86::MOV16rr;
2855   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2856     // Copying to or from a physical H register on x86-64 requires a NOREX
2857     // move.  Otherwise use a normal move.
2858     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2859         Subtarget.is64Bit()) {
2860       Opc = X86::MOV8rr_NOREX;
2861       // Both operands must be encodable without an REX prefix.
2862       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2863              "8-bit H register can not be copied outside GR8_NOREX");
2864     } else
2865       Opc = X86::MOV8rr;
2866   }
2867   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2868     Opc = X86::MMX_MOVQ64rr;
2869   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2870     if (HasVLX)
2871       Opc = X86::VMOVAPSZ128rr;
2872     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2873       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2874     else {
2875       // If this an extended register and we don't have VLX we need to use a
2876       // 512-bit move.
2877       Opc = X86::VMOVAPSZrr;
2878       const TargetRegisterInfo *TRI = &getRegisterInfo();
2879       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
2880                                          &X86::VR512RegClass);
2881       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
2882                                         &X86::VR512RegClass);
2883     }
2884   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
2885     if (HasVLX)
2886       Opc = X86::VMOVAPSZ256rr;
2887     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2888       Opc = X86::VMOVAPSYrr;
2889     else {
2890       // If this an extended register and we don't have VLX we need to use a
2891       // 512-bit move.
2892       Opc = X86::VMOVAPSZrr;
2893       const TargetRegisterInfo *TRI = &getRegisterInfo();
2894       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
2895                                          &X86::VR512RegClass);
2896       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
2897                                         &X86::VR512RegClass);
2898     }
2899   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
2900     Opc = X86::VMOVAPSZrr;
2901   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2902   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
2903     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
2904   if (!Opc)
2905     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
2906 
2907   if (Opc) {
2908     BuildMI(MBB, MI, DL, get(Opc), DestReg)
2909       .addReg(SrcReg, getKillRegState(KillSrc));
2910     return;
2911   }
2912 
2913   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
2914     // FIXME: We use a fatal error here because historically LLVM has tried
2915     // lower some of these physreg copies and we want to ensure we get
2916     // reasonable bug reports if someone encounters a case no other testing
2917     // found. This path should be removed after the LLVM 7 release.
2918     report_fatal_error("Unable to copy EFLAGS physical register!");
2919   }
2920 
2921   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
2922                     << RI.getName(DestReg) << '\n');
2923   report_fatal_error("Cannot emit physreg copy instruction");
2924 }
2925 
2926 bool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI,
2927                                    const MachineOperand *&Src,
2928                                    const MachineOperand *&Dest) const {
2929   if (MI.isMoveReg()) {
2930     Dest = &MI.getOperand(0);
2931     Src = &MI.getOperand(1);
2932     return true;
2933   }
2934   return false;
2935 }
2936 
2937 static unsigned getLoadStoreRegOpcode(unsigned Reg,
2938                                       const TargetRegisterClass *RC,
2939                                       bool isStackAligned,
2940                                       const X86Subtarget &STI,
2941                                       bool load) {
2942   bool HasAVX = STI.hasAVX();
2943   bool HasAVX512 = STI.hasAVX512();
2944   bool HasVLX = STI.hasVLX();
2945 
2946   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
2947   default:
2948     llvm_unreachable("Unknown spill size");
2949   case 1:
2950     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2951     if (STI.is64Bit())
2952       // Copying to or from a physical H register on x86-64 requires a NOREX
2953       // move.  Otherwise use a normal move.
2954       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2955         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2956     return load ? X86::MOV8rm : X86::MOV8mr;
2957   case 2:
2958     if (X86::VK16RegClass.hasSubClassEq(RC))
2959       return load ? X86::KMOVWkm : X86::KMOVWmk;
2960     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2961     return load ? X86::MOV16rm : X86::MOV16mr;
2962   case 4:
2963     if (X86::GR32RegClass.hasSubClassEq(RC))
2964       return load ? X86::MOV32rm : X86::MOV32mr;
2965     if (X86::FR32XRegClass.hasSubClassEq(RC))
2966       return load ?
2967         (HasAVX512 ? X86::VMOVSSZrm_alt :
2968          HasAVX    ? X86::VMOVSSrm_alt :
2969                      X86::MOVSSrm_alt) :
2970         (HasAVX512 ? X86::VMOVSSZmr :
2971          HasAVX    ? X86::VMOVSSmr :
2972                      X86::MOVSSmr);
2973     if (X86::RFP32RegClass.hasSubClassEq(RC))
2974       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2975     if (X86::VK32RegClass.hasSubClassEq(RC)) {
2976       assert(STI.hasBWI() && "KMOVD requires BWI");
2977       return load ? X86::KMOVDkm : X86::KMOVDmk;
2978     }
2979     // All of these mask pair classes have the same spill size, the same kind
2980     // of kmov instructions can be used with all of them.
2981     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
2982         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
2983         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
2984         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
2985         X86::VK16PAIRRegClass.hasSubClassEq(RC))
2986       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
2987     llvm_unreachable("Unknown 4-byte regclass");
2988   case 8:
2989     if (X86::GR64RegClass.hasSubClassEq(RC))
2990       return load ? X86::MOV64rm : X86::MOV64mr;
2991     if (X86::FR64XRegClass.hasSubClassEq(RC))
2992       return load ?
2993         (HasAVX512 ? X86::VMOVSDZrm_alt :
2994          HasAVX    ? X86::VMOVSDrm_alt :
2995                      X86::MOVSDrm_alt) :
2996         (HasAVX512 ? X86::VMOVSDZmr :
2997          HasAVX    ? X86::VMOVSDmr :
2998                      X86::MOVSDmr);
2999     if (X86::VR64RegClass.hasSubClassEq(RC))
3000       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3001     if (X86::RFP64RegClass.hasSubClassEq(RC))
3002       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3003     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3004       assert(STI.hasBWI() && "KMOVQ requires BWI");
3005       return load ? X86::KMOVQkm : X86::KMOVQmk;
3006     }
3007     llvm_unreachable("Unknown 8-byte regclass");
3008   case 10:
3009     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3010     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3011   case 16: {
3012     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3013       // If stack is realigned we can use aligned stores.
3014       if (isStackAligned)
3015         return load ?
3016           (HasVLX    ? X86::VMOVAPSZ128rm :
3017            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3018            HasAVX    ? X86::VMOVAPSrm :
3019                        X86::MOVAPSrm):
3020           (HasVLX    ? X86::VMOVAPSZ128mr :
3021            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3022            HasAVX    ? X86::VMOVAPSmr :
3023                        X86::MOVAPSmr);
3024       else
3025         return load ?
3026           (HasVLX    ? X86::VMOVUPSZ128rm :
3027            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3028            HasAVX    ? X86::VMOVUPSrm :
3029                        X86::MOVUPSrm):
3030           (HasVLX    ? X86::VMOVUPSZ128mr :
3031            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3032            HasAVX    ? X86::VMOVUPSmr :
3033                        X86::MOVUPSmr);
3034     }
3035     if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3036       if (STI.is64Bit())
3037         return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3038       else
3039         return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3040     }
3041     llvm_unreachable("Unknown 16-byte regclass");
3042   }
3043   case 32:
3044     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3045     // If stack is realigned we can use aligned stores.
3046     if (isStackAligned)
3047       return load ?
3048         (HasVLX    ? X86::VMOVAPSZ256rm :
3049          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3050                      X86::VMOVAPSYrm) :
3051         (HasVLX    ? X86::VMOVAPSZ256mr :
3052          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3053                      X86::VMOVAPSYmr);
3054     else
3055       return load ?
3056         (HasVLX    ? X86::VMOVUPSZ256rm :
3057          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3058                      X86::VMOVUPSYrm) :
3059         (HasVLX    ? X86::VMOVUPSZ256mr :
3060          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3061                      X86::VMOVUPSYmr);
3062   case 64:
3063     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3064     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3065     if (isStackAligned)
3066       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3067     else
3068       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3069   }
3070 }
3071 
3072 bool X86InstrInfo::getMemOperandWithOffset(
3073     const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3074     const TargetRegisterInfo *TRI) const {
3075   const MCInstrDesc &Desc = MemOp.getDesc();
3076   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3077   if (MemRefBegin < 0)
3078     return false;
3079 
3080   MemRefBegin += X86II::getOperandBias(Desc);
3081 
3082   BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3083   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3084     return false;
3085 
3086   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3087     return false;
3088 
3089   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3090       X86::NoRegister)
3091     return false;
3092 
3093   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3094 
3095   // Displacement can be symbolic
3096   if (!DispMO.isImm())
3097     return false;
3098 
3099   Offset = DispMO.getImm();
3100 
3101   assert(BaseOp->isReg() && "getMemOperandWithOffset only supports base "
3102                             "operands of type register.");
3103   return true;
3104 }
3105 
3106 static unsigned getStoreRegOpcode(unsigned SrcReg,
3107                                   const TargetRegisterClass *RC,
3108                                   bool isStackAligned,
3109                                   const X86Subtarget &STI) {
3110   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3111 }
3112 
3113 
3114 static unsigned getLoadRegOpcode(unsigned DestReg,
3115                                  const TargetRegisterClass *RC,
3116                                  bool isStackAligned,
3117                                  const X86Subtarget &STI) {
3118   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3119 }
3120 
3121 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3122                                        MachineBasicBlock::iterator MI,
3123                                        unsigned SrcReg, bool isKill, int FrameIdx,
3124                                        const TargetRegisterClass *RC,
3125                                        const TargetRegisterInfo *TRI) const {
3126   const MachineFunction &MF = *MBB.getParent();
3127   assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3128          "Stack slot too small for store");
3129   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3130   bool isAligned =
3131       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3132       RI.canRealignStack(MF);
3133   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3134   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3135     .addReg(SrcReg, getKillRegState(isKill));
3136 }
3137 
3138 void X86InstrInfo::storeRegToAddr(
3139     MachineFunction &MF, unsigned SrcReg, bool isKill,
3140     SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3141     ArrayRef<MachineMemOperand *> MMOs,
3142     SmallVectorImpl<MachineInstr *> &NewMIs) const {
3143   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3144   unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3145   bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3146   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3147   DebugLoc DL;
3148   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3149   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3150     MIB.add(Addr[i]);
3151   MIB.addReg(SrcReg, getKillRegState(isKill));
3152   MIB.setMemRefs(MMOs);
3153   NewMIs.push_back(MIB);
3154 }
3155 
3156 
3157 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3158                                         MachineBasicBlock::iterator MI,
3159                                         unsigned DestReg, int FrameIdx,
3160                                         const TargetRegisterClass *RC,
3161                                         const TargetRegisterInfo *TRI) const {
3162   const MachineFunction &MF = *MBB.getParent();
3163   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3164   bool isAligned =
3165       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3166       RI.canRealignStack(MF);
3167   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3168   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3169 }
3170 
3171 void X86InstrInfo::loadRegFromAddr(
3172     MachineFunction &MF, unsigned DestReg,
3173     SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3174     ArrayRef<MachineMemOperand *> MMOs,
3175     SmallVectorImpl<MachineInstr *> &NewMIs) const {
3176   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3177   unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3178   bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3179   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3180   DebugLoc DL;
3181   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3182   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3183     MIB.add(Addr[i]);
3184   MIB.setMemRefs(MMOs);
3185   NewMIs.push_back(MIB);
3186 }
3187 
3188 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3189                                   unsigned &SrcReg2, int &CmpMask,
3190                                   int &CmpValue) const {
3191   switch (MI.getOpcode()) {
3192   default: break;
3193   case X86::CMP64ri32:
3194   case X86::CMP64ri8:
3195   case X86::CMP32ri:
3196   case X86::CMP32ri8:
3197   case X86::CMP16ri:
3198   case X86::CMP16ri8:
3199   case X86::CMP8ri:
3200     SrcReg = MI.getOperand(0).getReg();
3201     SrcReg2 = 0;
3202     if (MI.getOperand(1).isImm()) {
3203       CmpMask = ~0;
3204       CmpValue = MI.getOperand(1).getImm();
3205     } else {
3206       CmpMask = CmpValue = 0;
3207     }
3208     return true;
3209   // A SUB can be used to perform comparison.
3210   case X86::SUB64rm:
3211   case X86::SUB32rm:
3212   case X86::SUB16rm:
3213   case X86::SUB8rm:
3214     SrcReg = MI.getOperand(1).getReg();
3215     SrcReg2 = 0;
3216     CmpMask = 0;
3217     CmpValue = 0;
3218     return true;
3219   case X86::SUB64rr:
3220   case X86::SUB32rr:
3221   case X86::SUB16rr:
3222   case X86::SUB8rr:
3223     SrcReg = MI.getOperand(1).getReg();
3224     SrcReg2 = MI.getOperand(2).getReg();
3225     CmpMask = 0;
3226     CmpValue = 0;
3227     return true;
3228   case X86::SUB64ri32:
3229   case X86::SUB64ri8:
3230   case X86::SUB32ri:
3231   case X86::SUB32ri8:
3232   case X86::SUB16ri:
3233   case X86::SUB16ri8:
3234   case X86::SUB8ri:
3235     SrcReg = MI.getOperand(1).getReg();
3236     SrcReg2 = 0;
3237     if (MI.getOperand(2).isImm()) {
3238       CmpMask = ~0;
3239       CmpValue = MI.getOperand(2).getImm();
3240     } else {
3241       CmpMask = CmpValue = 0;
3242     }
3243     return true;
3244   case X86::CMP64rr:
3245   case X86::CMP32rr:
3246   case X86::CMP16rr:
3247   case X86::CMP8rr:
3248     SrcReg = MI.getOperand(0).getReg();
3249     SrcReg2 = MI.getOperand(1).getReg();
3250     CmpMask = 0;
3251     CmpValue = 0;
3252     return true;
3253   case X86::TEST8rr:
3254   case X86::TEST16rr:
3255   case X86::TEST32rr:
3256   case X86::TEST64rr:
3257     SrcReg = MI.getOperand(0).getReg();
3258     if (MI.getOperand(1).getReg() != SrcReg)
3259       return false;
3260     // Compare against zero.
3261     SrcReg2 = 0;
3262     CmpMask = ~0;
3263     CmpValue = 0;
3264     return true;
3265   }
3266   return false;
3267 }
3268 
3269 /// Check whether the first instruction, whose only
3270 /// purpose is to update flags, can be made redundant.
3271 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3272 /// This function can be extended later on.
3273 /// SrcReg, SrcRegs: register operands for FlagI.
3274 /// ImmValue: immediate for FlagI if it takes an immediate.
3275 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3276                                         unsigned SrcReg, unsigned SrcReg2,
3277                                         int ImmMask, int ImmValue,
3278                                         const MachineInstr &OI) {
3279   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3280        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3281        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3282        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3283       ((OI.getOperand(1).getReg() == SrcReg &&
3284         OI.getOperand(2).getReg() == SrcReg2) ||
3285        (OI.getOperand(1).getReg() == SrcReg2 &&
3286         OI.getOperand(2).getReg() == SrcReg)))
3287     return true;
3288 
3289   if (ImmMask != 0 &&
3290       ((FlagI.getOpcode() == X86::CMP64ri32 &&
3291         OI.getOpcode() == X86::SUB64ri32) ||
3292        (FlagI.getOpcode() == X86::CMP64ri8 &&
3293         OI.getOpcode() == X86::SUB64ri8) ||
3294        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3295        (FlagI.getOpcode() == X86::CMP32ri8 &&
3296         OI.getOpcode() == X86::SUB32ri8) ||
3297        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3298        (FlagI.getOpcode() == X86::CMP16ri8 &&
3299         OI.getOpcode() == X86::SUB16ri8) ||
3300        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3301       OI.getOperand(1).getReg() == SrcReg &&
3302       OI.getOperand(2).getImm() == ImmValue)
3303     return true;
3304   return false;
3305 }
3306 
3307 /// Check whether the definition can be converted
3308 /// to remove a comparison against zero.
3309 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3310   NoSignFlag = false;
3311 
3312   switch (MI.getOpcode()) {
3313   default: return false;
3314 
3315   // The shift instructions only modify ZF if their shift count is non-zero.
3316   // N.B.: The processor truncates the shift count depending on the encoding.
3317   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3318   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3319      return getTruncatedShiftCount(MI, 2) != 0;
3320 
3321   // Some left shift instructions can be turned into LEA instructions but only
3322   // if their flags aren't used. Avoid transforming such instructions.
3323   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3324     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3325     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3326     return ShAmt != 0;
3327   }
3328 
3329   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3330   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3331      return getTruncatedShiftCount(MI, 3) != 0;
3332 
3333   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3334   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3335   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3336   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3337   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3338   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3339   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3340   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3341   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3342   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3343   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3344   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3345   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3346   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3347   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3348   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3349   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3350   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3351   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3352   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3353   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3354   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3355   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3356   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3357   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3358   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3359   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3360   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3361   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3362   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3363   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3364   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3365   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3366   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3367   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3368   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3369   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3370   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3371   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3372   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3373   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3374   case X86::ANDN32rr:  case X86::ANDN32rm:
3375   case X86::ANDN64rr:  case X86::ANDN64rm:
3376   case X86::BLSI32rr:  case X86::BLSI32rm:
3377   case X86::BLSI64rr:  case X86::BLSI64rm:
3378   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3379   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3380   case X86::BLSR32rr:  case X86::BLSR32rm:
3381   case X86::BLSR64rr:  case X86::BLSR64rm:
3382   case X86::BZHI32rr:  case X86::BZHI32rm:
3383   case X86::BZHI64rr:  case X86::BZHI64rm:
3384   case X86::LZCNT16rr: case X86::LZCNT16rm:
3385   case X86::LZCNT32rr: case X86::LZCNT32rm:
3386   case X86::LZCNT64rr: case X86::LZCNT64rm:
3387   case X86::POPCNT16rr:case X86::POPCNT16rm:
3388   case X86::POPCNT32rr:case X86::POPCNT32rm:
3389   case X86::POPCNT64rr:case X86::POPCNT64rm:
3390   case X86::TZCNT16rr: case X86::TZCNT16rm:
3391   case X86::TZCNT32rr: case X86::TZCNT32rm:
3392   case X86::TZCNT64rr: case X86::TZCNT64rm:
3393   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3394   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3395   case X86::BLCI32rr:    case X86::BLCI32rm:
3396   case X86::BLCI64rr:    case X86::BLCI64rm:
3397   case X86::BLCIC32rr:   case X86::BLCIC32rm:
3398   case X86::BLCIC64rr:   case X86::BLCIC64rm:
3399   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3400   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3401   case X86::BLCS32rr:    case X86::BLCS32rm:
3402   case X86::BLCS64rr:    case X86::BLCS64rm:
3403   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3404   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3405   case X86::BLSIC32rr:   case X86::BLSIC32rm:
3406   case X86::BLSIC64rr:   case X86::BLSIC64rm:
3407   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3408   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3409   case X86::TZMSK32rr:   case X86::TZMSK32rm:
3410   case X86::TZMSK64rr:   case X86::TZMSK64rm:
3411     return true;
3412   case X86::BEXTR32rr:   case X86::BEXTR64rr:
3413   case X86::BEXTR32rm:   case X86::BEXTR64rm:
3414   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3415   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3416     // BEXTR doesn't update the sign flag so we can't use it.
3417     NoSignFlag = true;
3418     return true;
3419   }
3420 }
3421 
3422 /// Check whether the use can be converted to remove a comparison against zero.
3423 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3424   switch (MI.getOpcode()) {
3425   default: return X86::COND_INVALID;
3426   case X86::NEG8r:
3427   case X86::NEG16r:
3428   case X86::NEG32r:
3429   case X86::NEG64r:
3430     return X86::COND_AE;
3431   case X86::LZCNT16rr:
3432   case X86::LZCNT32rr:
3433   case X86::LZCNT64rr:
3434     return X86::COND_B;
3435   case X86::POPCNT16rr:
3436   case X86::POPCNT32rr:
3437   case X86::POPCNT64rr:
3438     return X86::COND_E;
3439   case X86::TZCNT16rr:
3440   case X86::TZCNT32rr:
3441   case X86::TZCNT64rr:
3442     return X86::COND_B;
3443   case X86::BSF16rr:
3444   case X86::BSF32rr:
3445   case X86::BSF64rr:
3446   case X86::BSR16rr:
3447   case X86::BSR32rr:
3448   case X86::BSR64rr:
3449     return X86::COND_E;
3450   case X86::BLSI32rr:
3451   case X86::BLSI64rr:
3452     return X86::COND_AE;
3453   case X86::BLSR32rr:
3454   case X86::BLSR64rr:
3455   case X86::BLSMSK32rr:
3456   case X86::BLSMSK64rr:
3457     return X86::COND_B;
3458   // TODO: TBM instructions.
3459   }
3460 }
3461 
3462 /// Check if there exists an earlier instruction that
3463 /// operates on the same source operands and sets flags in the same way as
3464 /// Compare; remove Compare if possible.
3465 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3466                                         unsigned SrcReg2, int CmpMask,
3467                                         int CmpValue,
3468                                         const MachineRegisterInfo *MRI) const {
3469   // Check whether we can replace SUB with CMP.
3470   switch (CmpInstr.getOpcode()) {
3471   default: break;
3472   case X86::SUB64ri32:
3473   case X86::SUB64ri8:
3474   case X86::SUB32ri:
3475   case X86::SUB32ri8:
3476   case X86::SUB16ri:
3477   case X86::SUB16ri8:
3478   case X86::SUB8ri:
3479   case X86::SUB64rm:
3480   case X86::SUB32rm:
3481   case X86::SUB16rm:
3482   case X86::SUB8rm:
3483   case X86::SUB64rr:
3484   case X86::SUB32rr:
3485   case X86::SUB16rr:
3486   case X86::SUB8rr: {
3487     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3488       return false;
3489     // There is no use of the destination register, we can replace SUB with CMP.
3490     unsigned NewOpcode = 0;
3491     switch (CmpInstr.getOpcode()) {
3492     default: llvm_unreachable("Unreachable!");
3493     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3494     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3495     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3496     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3497     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3498     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3499     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3500     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3501     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3502     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3503     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3504     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3505     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3506     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3507     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3508     }
3509     CmpInstr.setDesc(get(NewOpcode));
3510     CmpInstr.RemoveOperand(0);
3511     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3512     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3513         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3514       return false;
3515   }
3516   }
3517 
3518   // Get the unique definition of SrcReg.
3519   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3520   if (!MI) return false;
3521 
3522   // CmpInstr is the first instruction of the BB.
3523   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3524 
3525   // If we are comparing against zero, check whether we can use MI to update
3526   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3527   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3528   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3529     return false;
3530 
3531   // If we have a use of the source register between the def and our compare
3532   // instruction we can eliminate the compare iff the use sets EFLAGS in the
3533   // right way.
3534   bool ShouldUpdateCC = false;
3535   bool NoSignFlag = false;
3536   X86::CondCode NewCC = X86::COND_INVALID;
3537   if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3538     // Scan forward from the use until we hit the use we're looking for or the
3539     // compare instruction.
3540     for (MachineBasicBlock::iterator J = MI;; ++J) {
3541       // Do we have a convertible instruction?
3542       NewCC = isUseDefConvertible(*J);
3543       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3544           J->getOperand(1).getReg() == SrcReg) {
3545         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3546         ShouldUpdateCC = true; // Update CC later on.
3547         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3548         // with the new def.
3549         Def = J;
3550         MI = &*Def;
3551         break;
3552       }
3553 
3554       if (J == I)
3555         return false;
3556     }
3557   }
3558 
3559   // We are searching for an earlier instruction that can make CmpInstr
3560   // redundant and that instruction will be saved in Sub.
3561   MachineInstr *Sub = nullptr;
3562   const TargetRegisterInfo *TRI = &getRegisterInfo();
3563 
3564   // We iterate backward, starting from the instruction before CmpInstr and
3565   // stop when reaching the definition of a source register or done with the BB.
3566   // RI points to the instruction before CmpInstr.
3567   // If the definition is in this basic block, RE points to the definition;
3568   // otherwise, RE is the rend of the basic block.
3569   MachineBasicBlock::reverse_iterator
3570       RI = ++I.getReverse(),
3571       RE = CmpInstr.getParent() == MI->getParent()
3572                ? Def.getReverse() /* points to MI */
3573                : CmpInstr.getParent()->rend();
3574   MachineInstr *Movr0Inst = nullptr;
3575   for (; RI != RE; ++RI) {
3576     MachineInstr &Instr = *RI;
3577     // Check whether CmpInstr can be made redundant by the current instruction.
3578     if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3579                                            CmpValue, Instr)) {
3580       Sub = &Instr;
3581       break;
3582     }
3583 
3584     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3585         Instr.readsRegister(X86::EFLAGS, TRI)) {
3586       // This instruction modifies or uses EFLAGS.
3587 
3588       // MOV32r0 etc. are implemented with xor which clobbers condition code.
3589       // They are safe to move up, if the definition to EFLAGS is dead and
3590       // earlier instructions do not read or write EFLAGS.
3591       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3592           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3593         Movr0Inst = &Instr;
3594         continue;
3595       }
3596 
3597       // We can't remove CmpInstr.
3598       return false;
3599     }
3600   }
3601 
3602   // Return false if no candidates exist.
3603   if (!IsCmpZero && !Sub)
3604     return false;
3605 
3606   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3607                     Sub->getOperand(2).getReg() == SrcReg);
3608 
3609   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3610   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3611   // If we are done with the basic block, we need to check whether EFLAGS is
3612   // live-out.
3613   bool IsSafe = false;
3614   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3615   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3616   for (++I; I != E; ++I) {
3617     const MachineInstr &Instr = *I;
3618     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3619     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3620     // We should check the usage if this instruction uses and updates EFLAGS.
3621     if (!UseEFLAGS && ModifyEFLAGS) {
3622       // It is safe to remove CmpInstr if EFLAGS is updated again.
3623       IsSafe = true;
3624       break;
3625     }
3626     if (!UseEFLAGS && !ModifyEFLAGS)
3627       continue;
3628 
3629     // EFLAGS is used by this instruction.
3630     X86::CondCode OldCC = X86::COND_INVALID;
3631     if (IsCmpZero || IsSwapped) {
3632       // We decode the condition code from opcode.
3633       if (Instr.isBranch())
3634         OldCC = X86::getCondFromBranch(Instr);
3635       else {
3636         OldCC = X86::getCondFromSETCC(Instr);
3637         if (OldCC == X86::COND_INVALID)
3638           OldCC = X86::getCondFromCMov(Instr);
3639       }
3640       if (OldCC == X86::COND_INVALID) return false;
3641     }
3642     X86::CondCode ReplacementCC = X86::COND_INVALID;
3643     if (IsCmpZero) {
3644       switch (OldCC) {
3645       default: break;
3646       case X86::COND_A: case X86::COND_AE:
3647       case X86::COND_B: case X86::COND_BE:
3648       case X86::COND_G: case X86::COND_GE:
3649       case X86::COND_L: case X86::COND_LE:
3650       case X86::COND_O: case X86::COND_NO:
3651         // CF and OF are used, we can't perform this optimization.
3652         return false;
3653       case X86::COND_S: case X86::COND_NS:
3654         // If SF is used, but the instruction doesn't update the SF, then we
3655         // can't do the optimization.
3656         if (NoSignFlag)
3657           return false;
3658         break;
3659       }
3660 
3661       // If we're updating the condition code check if we have to reverse the
3662       // condition.
3663       if (ShouldUpdateCC)
3664         switch (OldCC) {
3665         default:
3666           return false;
3667         case X86::COND_E:
3668           ReplacementCC = NewCC;
3669           break;
3670         case X86::COND_NE:
3671           ReplacementCC = GetOppositeBranchCondition(NewCC);
3672           break;
3673         }
3674     } else if (IsSwapped) {
3675       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3676       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3677       // We swap the condition code and synthesize the new opcode.
3678       ReplacementCC = getSwappedCondition(OldCC);
3679       if (ReplacementCC == X86::COND_INVALID) return false;
3680     }
3681 
3682     if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3683       // Push the MachineInstr to OpsToUpdate.
3684       // If it is safe to remove CmpInstr, the condition code of these
3685       // instructions will be modified.
3686       OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3687     }
3688     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3689       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3690       IsSafe = true;
3691       break;
3692     }
3693   }
3694 
3695   // If EFLAGS is not killed nor re-defined, we should check whether it is
3696   // live-out. If it is live-out, do not optimize.
3697   if ((IsCmpZero || IsSwapped) && !IsSafe) {
3698     MachineBasicBlock *MBB = CmpInstr.getParent();
3699     for (MachineBasicBlock *Successor : MBB->successors())
3700       if (Successor->isLiveIn(X86::EFLAGS))
3701         return false;
3702   }
3703 
3704   // The instruction to be updated is either Sub or MI.
3705   Sub = IsCmpZero ? MI : Sub;
3706   // Move Movr0Inst to the appropriate place before Sub.
3707   if (Movr0Inst) {
3708     // Look backwards until we find a def that doesn't use the current EFLAGS.
3709     Def = Sub;
3710     MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3711                                         InsertE = Sub->getParent()->rend();
3712     for (; InsertI != InsertE; ++InsertI) {
3713       MachineInstr *Instr = &*InsertI;
3714       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3715           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3716         Sub->getParent()->remove(Movr0Inst);
3717         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3718                                    Movr0Inst);
3719         break;
3720       }
3721     }
3722     if (InsertI == InsertE)
3723       return false;
3724   }
3725 
3726   // Make sure Sub instruction defines EFLAGS and mark the def live.
3727   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3728   assert(FlagDef && "Unable to locate a def EFLAGS operand");
3729   FlagDef->setIsDead(false);
3730 
3731   CmpInstr.eraseFromParent();
3732 
3733   // Modify the condition code of instructions in OpsToUpdate.
3734   for (auto &Op : OpsToUpdate) {
3735     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3736         .setImm(Op.second);
3737   }
3738   return true;
3739 }
3740 
3741 /// Try to remove the load by folding it to a register
3742 /// operand at the use. We fold the load instructions if load defines a virtual
3743 /// register, the virtual register is used once in the same BB, and the
3744 /// instructions in-between do not load or store, and have no side effects.
3745 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3746                                               const MachineRegisterInfo *MRI,
3747                                               unsigned &FoldAsLoadDefReg,
3748                                               MachineInstr *&DefMI) const {
3749   // Check whether we can move DefMI here.
3750   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3751   assert(DefMI);
3752   bool SawStore = false;
3753   if (!DefMI->isSafeToMove(nullptr, SawStore))
3754     return nullptr;
3755 
3756   // Collect information about virtual register operands of MI.
3757   SmallVector<unsigned, 1> SrcOperandIds;
3758   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3759     MachineOperand &MO = MI.getOperand(i);
3760     if (!MO.isReg())
3761       continue;
3762     unsigned Reg = MO.getReg();
3763     if (Reg != FoldAsLoadDefReg)
3764       continue;
3765     // Do not fold if we have a subreg use or a def.
3766     if (MO.getSubReg() || MO.isDef())
3767       return nullptr;
3768     SrcOperandIds.push_back(i);
3769   }
3770   if (SrcOperandIds.empty())
3771     return nullptr;
3772 
3773   // Check whether we can fold the def into SrcOperandId.
3774   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3775     FoldAsLoadDefReg = 0;
3776     return FoldMI;
3777   }
3778 
3779   return nullptr;
3780 }
3781 
3782 /// Expand a single-def pseudo instruction to a two-addr
3783 /// instruction with two undef reads of the register being defined.
3784 /// This is used for mapping:
3785 ///   %xmm4 = V_SET0
3786 /// to:
3787 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3788 ///
3789 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3790                              const MCInstrDesc &Desc) {
3791   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3792   unsigned Reg = MIB->getOperand(0).getReg();
3793   MIB->setDesc(Desc);
3794 
3795   // MachineInstr::addOperand() will insert explicit operands before any
3796   // implicit operands.
3797   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3798   // But we don't trust that.
3799   assert(MIB->getOperand(1).getReg() == Reg &&
3800          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3801   return true;
3802 }
3803 
3804 /// Expand a single-def pseudo instruction to a two-addr
3805 /// instruction with two %k0 reads.
3806 /// This is used for mapping:
3807 ///   %k4 = K_SET1
3808 /// to:
3809 ///   %k4 = KXNORrr %k0, %k0
3810 static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3811                             const MCInstrDesc &Desc, unsigned Reg) {
3812   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3813   MIB->setDesc(Desc);
3814   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3815   return true;
3816 }
3817 
3818 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3819                           bool MinusOne) {
3820   MachineBasicBlock &MBB = *MIB->getParent();
3821   DebugLoc DL = MIB->getDebugLoc();
3822   unsigned Reg = MIB->getOperand(0).getReg();
3823 
3824   // Insert the XOR.
3825   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3826       .addReg(Reg, RegState::Undef)
3827       .addReg(Reg, RegState::Undef);
3828 
3829   // Turn the pseudo into an INC or DEC.
3830   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3831   MIB.addReg(Reg);
3832 
3833   return true;
3834 }
3835 
3836 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3837                                const TargetInstrInfo &TII,
3838                                const X86Subtarget &Subtarget) {
3839   MachineBasicBlock &MBB = *MIB->getParent();
3840   DebugLoc DL = MIB->getDebugLoc();
3841   int64_t Imm = MIB->getOperand(1).getImm();
3842   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3843   MachineBasicBlock::iterator I = MIB.getInstr();
3844 
3845   int StackAdjustment;
3846 
3847   if (Subtarget.is64Bit()) {
3848     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3849            MIB->getOpcode() == X86::MOV32ImmSExti8);
3850 
3851     // Can't use push/pop lowering if the function might write to the red zone.
3852     X86MachineFunctionInfo *X86FI =
3853         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3854     if (X86FI->getUsesRedZone()) {
3855       MIB->setDesc(TII.get(MIB->getOpcode() ==
3856                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3857       return true;
3858     }
3859 
3860     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3861     // widen the register if necessary.
3862     StackAdjustment = 8;
3863     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3864     MIB->setDesc(TII.get(X86::POP64r));
3865     MIB->getOperand(0)
3866         .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3867   } else {
3868     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3869     StackAdjustment = 4;
3870     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3871     MIB->setDesc(TII.get(X86::POP32r));
3872   }
3873 
3874   // Build CFI if necessary.
3875   MachineFunction &MF = *MBB.getParent();
3876   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3877   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3878   bool NeedsDwarfCFI =
3879       !IsWin64Prologue &&
3880       (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
3881   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3882   if (EmitCFI) {
3883     TFL->BuildCFI(MBB, I, DL,
3884         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3885     TFL->BuildCFI(MBB, std::next(I), DL,
3886         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3887   }
3888 
3889   return true;
3890 }
3891 
3892 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3893 // code sequence is needed for other targets.
3894 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3895                                  const TargetInstrInfo &TII) {
3896   MachineBasicBlock &MBB = *MIB->getParent();
3897   DebugLoc DL = MIB->getDebugLoc();
3898   unsigned Reg = MIB->getOperand(0).getReg();
3899   const GlobalValue *GV =
3900       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3901   auto Flags = MachineMemOperand::MOLoad |
3902                MachineMemOperand::MODereferenceable |
3903                MachineMemOperand::MOInvariant;
3904   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3905       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3906   MachineBasicBlock::iterator I = MIB.getInstr();
3907 
3908   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3909       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3910       .addMemOperand(MMO);
3911   MIB->setDebugLoc(DL);
3912   MIB->setDesc(TII.get(X86::MOV64rm));
3913   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
3914 }
3915 
3916 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
3917   MachineBasicBlock &MBB = *MIB->getParent();
3918   MachineFunction &MF = *MBB.getParent();
3919   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
3920   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
3921   unsigned XorOp =
3922       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
3923   MIB->setDesc(TII.get(XorOp));
3924   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
3925   return true;
3926 }
3927 
3928 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3929 // but not VLX. If it uses an extended register we need to use an instruction
3930 // that loads the lower 128/256-bit, but is available with only AVX512F.
3931 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
3932                             const TargetRegisterInfo *TRI,
3933                             const MCInstrDesc &LoadDesc,
3934                             const MCInstrDesc &BroadcastDesc,
3935                             unsigned SubIdx) {
3936   unsigned DestReg = MIB->getOperand(0).getReg();
3937   // Check if DestReg is XMM16-31 or YMM16-31.
3938   if (TRI->getEncodingValue(DestReg) < 16) {
3939     // We can use a normal VEX encoded load.
3940     MIB->setDesc(LoadDesc);
3941   } else {
3942     // Use a 128/256-bit VBROADCAST instruction.
3943     MIB->setDesc(BroadcastDesc);
3944     // Change the destination to a 512-bit register.
3945     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
3946     MIB->getOperand(0).setReg(DestReg);
3947   }
3948   return true;
3949 }
3950 
3951 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3952 // but not VLX. If it uses an extended register we need to use an instruction
3953 // that stores the lower 128/256-bit, but is available with only AVX512F.
3954 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
3955                              const TargetRegisterInfo *TRI,
3956                              const MCInstrDesc &StoreDesc,
3957                              const MCInstrDesc &ExtractDesc,
3958                              unsigned SubIdx) {
3959   unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
3960   // Check if DestReg is XMM16-31 or YMM16-31.
3961   if (TRI->getEncodingValue(SrcReg) < 16) {
3962     // We can use a normal VEX encoded store.
3963     MIB->setDesc(StoreDesc);
3964   } else {
3965     // Use a VEXTRACTF instruction.
3966     MIB->setDesc(ExtractDesc);
3967     // Change the destination to a 512-bit register.
3968     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
3969     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
3970     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
3971   }
3972 
3973   return true;
3974 }
3975 
3976 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
3977   MIB->setDesc(Desc);
3978   int64_t ShiftAmt = MIB->getOperand(2).getImm();
3979   // Temporarily remove the immediate so we can add another source register.
3980   MIB->RemoveOperand(2);
3981   // Add the register. Don't copy the kill flag if there is one.
3982   MIB.addReg(MIB->getOperand(1).getReg(),
3983              getUndefRegState(MIB->getOperand(1).isUndef()));
3984   // Add back the immediate.
3985   MIB.addImm(ShiftAmt);
3986   return true;
3987 }
3988 
3989 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3990   bool HasAVX = Subtarget.hasAVX();
3991   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
3992   switch (MI.getOpcode()) {
3993   case X86::MOV32r0:
3994     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
3995   case X86::MOV32r1:
3996     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
3997   case X86::MOV32r_1:
3998     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
3999   case X86::MOV32ImmSExti8:
4000   case X86::MOV64ImmSExti8:
4001     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4002   case X86::SETB_C8r:
4003     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4004   case X86::SETB_C16r:
4005     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4006   case X86::SETB_C32r:
4007     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4008   case X86::SETB_C64r:
4009     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4010   case X86::MMX_SET0:
4011     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4012   case X86::V_SET0:
4013   case X86::FsFLD0SS:
4014   case X86::FsFLD0SD:
4015     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4016   case X86::AVX_SET0: {
4017     assert(HasAVX && "AVX not supported");
4018     const TargetRegisterInfo *TRI = &getRegisterInfo();
4019     unsigned SrcReg = MIB->getOperand(0).getReg();
4020     unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4021     MIB->getOperand(0).setReg(XReg);
4022     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4023     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4024     return true;
4025   }
4026   case X86::AVX512_128_SET0:
4027   case X86::AVX512_FsFLD0SS:
4028   case X86::AVX512_FsFLD0SD: {
4029     bool HasVLX = Subtarget.hasVLX();
4030     unsigned SrcReg = MIB->getOperand(0).getReg();
4031     const TargetRegisterInfo *TRI = &getRegisterInfo();
4032     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4033       return Expand2AddrUndef(MIB,
4034                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4035     // Extended register without VLX. Use a larger XOR.
4036     SrcReg =
4037         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4038     MIB->getOperand(0).setReg(SrcReg);
4039     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4040   }
4041   case X86::AVX512_256_SET0:
4042   case X86::AVX512_512_SET0: {
4043     bool HasVLX = Subtarget.hasVLX();
4044     unsigned SrcReg = MIB->getOperand(0).getReg();
4045     const TargetRegisterInfo *TRI = &getRegisterInfo();
4046     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4047       unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4048       MIB->getOperand(0).setReg(XReg);
4049       Expand2AddrUndef(MIB,
4050                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4051       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4052       return true;
4053     }
4054     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4055       // No VLX so we must reference a zmm.
4056       unsigned ZReg =
4057         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4058       MIB->getOperand(0).setReg(ZReg);
4059     }
4060     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4061   }
4062   case X86::V_SETALLONES:
4063     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4064   case X86::AVX2_SETALLONES:
4065     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4066   case X86::AVX1_SETALLONES: {
4067     unsigned Reg = MIB->getOperand(0).getReg();
4068     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4069     MIB->setDesc(get(X86::VCMPPSYrri));
4070     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4071     return true;
4072   }
4073   case X86::AVX512_512_SETALLONES: {
4074     unsigned Reg = MIB->getOperand(0).getReg();
4075     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4076     // VPTERNLOGD needs 3 register inputs and an immediate.
4077     // 0xff will return 1s for any input.
4078     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4079        .addReg(Reg, RegState::Undef).addImm(0xff);
4080     return true;
4081   }
4082   case X86::AVX512_512_SEXT_MASK_32:
4083   case X86::AVX512_512_SEXT_MASK_64: {
4084     unsigned Reg = MIB->getOperand(0).getReg();
4085     unsigned MaskReg = MIB->getOperand(1).getReg();
4086     unsigned MaskState = getRegState(MIB->getOperand(1));
4087     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4088                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4089     MI.RemoveOperand(1);
4090     MIB->setDesc(get(Opc));
4091     // VPTERNLOG needs 3 register inputs and an immediate.
4092     // 0xff will return 1s for any input.
4093     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4094        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4095     return true;
4096   }
4097   case X86::VMOVAPSZ128rm_NOVLX:
4098     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4099                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4100   case X86::VMOVUPSZ128rm_NOVLX:
4101     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4102                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4103   case X86::VMOVAPSZ256rm_NOVLX:
4104     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4105                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4106   case X86::VMOVUPSZ256rm_NOVLX:
4107     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4108                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4109   case X86::VMOVAPSZ128mr_NOVLX:
4110     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4111                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4112   case X86::VMOVUPSZ128mr_NOVLX:
4113     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4114                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4115   case X86::VMOVAPSZ256mr_NOVLX:
4116     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4117                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4118   case X86::VMOVUPSZ256mr_NOVLX:
4119     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4120                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4121   case X86::MOV32ri64: {
4122     unsigned Reg = MIB->getOperand(0).getReg();
4123     unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4124     MI.setDesc(get(X86::MOV32ri));
4125     MIB->getOperand(0).setReg(Reg32);
4126     MIB.addReg(Reg, RegState::ImplicitDefine);
4127     return true;
4128   }
4129 
4130   // KNL does not recognize dependency-breaking idioms for mask registers,
4131   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4132   // Using %k0 as the undef input register is a performance heuristic based
4133   // on the assumption that %k0 is used less frequently than the other mask
4134   // registers, since it is not usable as a write mask.
4135   // FIXME: A more advanced approach would be to choose the best input mask
4136   // register based on context.
4137   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4138   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4139   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4140   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4141   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4142   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4143   case TargetOpcode::LOAD_STACK_GUARD:
4144     expandLoadStackGuard(MIB, *this);
4145     return true;
4146   case X86::XOR64_FP:
4147   case X86::XOR32_FP:
4148     return expandXorFP(MIB, *this);
4149   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4150   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4151   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4152   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4153   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4154   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4155   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4156   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4157   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4158   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4159   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4160   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4161   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4162   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4163   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4164   }
4165   return false;
4166 }
4167 
4168 /// Return true for all instructions that only update
4169 /// the first 32 or 64-bits of the destination register and leave the rest
4170 /// unmodified. This can be used to avoid folding loads if the instructions
4171 /// only update part of the destination register, and the non-updated part is
4172 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4173 /// instructions breaks the partial register dependency and it can improve
4174 /// performance. e.g.:
4175 ///
4176 ///   movss (%rdi), %xmm0
4177 ///   cvtss2sd %xmm0, %xmm0
4178 ///
4179 /// Instead of
4180 ///   cvtss2sd (%rdi), %xmm0
4181 ///
4182 /// FIXME: This should be turned into a TSFlags.
4183 ///
4184 static bool hasPartialRegUpdate(unsigned Opcode,
4185                                 const X86Subtarget &Subtarget,
4186                                 bool ForLoadFold = false) {
4187   switch (Opcode) {
4188   case X86::CVTSI2SSrr:
4189   case X86::CVTSI2SSrm:
4190   case X86::CVTSI642SSrr:
4191   case X86::CVTSI642SSrm:
4192   case X86::CVTSI2SDrr:
4193   case X86::CVTSI2SDrm:
4194   case X86::CVTSI642SDrr:
4195   case X86::CVTSI642SDrm:
4196     // Load folding won't effect the undef register update since the input is
4197     // a GPR.
4198     return !ForLoadFold;
4199   case X86::CVTSD2SSrr:
4200   case X86::CVTSD2SSrm:
4201   case X86::CVTSS2SDrr:
4202   case X86::CVTSS2SDrm:
4203   case X86::MOVHPDrm:
4204   case X86::MOVHPSrm:
4205   case X86::MOVLPDrm:
4206   case X86::MOVLPSrm:
4207   case X86::RCPSSr:
4208   case X86::RCPSSm:
4209   case X86::RCPSSr_Int:
4210   case X86::RCPSSm_Int:
4211   case X86::ROUNDSDr:
4212   case X86::ROUNDSDm:
4213   case X86::ROUNDSSr:
4214   case X86::ROUNDSSm:
4215   case X86::RSQRTSSr:
4216   case X86::RSQRTSSm:
4217   case X86::RSQRTSSr_Int:
4218   case X86::RSQRTSSm_Int:
4219   case X86::SQRTSSr:
4220   case X86::SQRTSSm:
4221   case X86::SQRTSSr_Int:
4222   case X86::SQRTSSm_Int:
4223   case X86::SQRTSDr:
4224   case X86::SQRTSDm:
4225   case X86::SQRTSDr_Int:
4226   case X86::SQRTSDm_Int:
4227     return true;
4228   // GPR
4229   case X86::POPCNT32rm:
4230   case X86::POPCNT32rr:
4231   case X86::POPCNT64rm:
4232   case X86::POPCNT64rr:
4233     return Subtarget.hasPOPCNTFalseDeps();
4234   case X86::LZCNT32rm:
4235   case X86::LZCNT32rr:
4236   case X86::LZCNT64rm:
4237   case X86::LZCNT64rr:
4238   case X86::TZCNT32rm:
4239   case X86::TZCNT32rr:
4240   case X86::TZCNT64rm:
4241   case X86::TZCNT64rr:
4242     return Subtarget.hasLZCNTFalseDeps();
4243   }
4244 
4245   return false;
4246 }
4247 
4248 /// Inform the BreakFalseDeps pass how many idle
4249 /// instructions we would like before a partial register update.
4250 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4251     const MachineInstr &MI, unsigned OpNum,
4252     const TargetRegisterInfo *TRI) const {
4253   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4254     return 0;
4255 
4256   // If MI is marked as reading Reg, the partial register update is wanted.
4257   const MachineOperand &MO = MI.getOperand(0);
4258   unsigned Reg = MO.getReg();
4259   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4260     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4261       return 0;
4262   } else {
4263     if (MI.readsRegister(Reg, TRI))
4264       return 0;
4265   }
4266 
4267   // If any instructions in the clearance range are reading Reg, insert a
4268   // dependency breaking instruction, which is inexpensive and is likely to
4269   // be hidden in other instruction's cycles.
4270   return PartialRegUpdateClearance;
4271 }
4272 
4273 // Return true for any instruction the copies the high bits of the first source
4274 // operand into the unused high bits of the destination operand.
4275 static bool hasUndefRegUpdate(unsigned Opcode, bool ForLoadFold = false) {
4276   switch (Opcode) {
4277   case X86::VCVTSI2SSrr:
4278   case X86::VCVTSI2SSrm:
4279   case X86::VCVTSI2SSrr_Int:
4280   case X86::VCVTSI2SSrm_Int:
4281   case X86::VCVTSI642SSrr:
4282   case X86::VCVTSI642SSrm:
4283   case X86::VCVTSI642SSrr_Int:
4284   case X86::VCVTSI642SSrm_Int:
4285   case X86::VCVTSI2SDrr:
4286   case X86::VCVTSI2SDrm:
4287   case X86::VCVTSI2SDrr_Int:
4288   case X86::VCVTSI2SDrm_Int:
4289   case X86::VCVTSI642SDrr:
4290   case X86::VCVTSI642SDrm:
4291   case X86::VCVTSI642SDrr_Int:
4292   case X86::VCVTSI642SDrm_Int:
4293   // AVX-512
4294   case X86::VCVTSI2SSZrr:
4295   case X86::VCVTSI2SSZrm:
4296   case X86::VCVTSI2SSZrr_Int:
4297   case X86::VCVTSI2SSZrrb_Int:
4298   case X86::VCVTSI2SSZrm_Int:
4299   case X86::VCVTSI642SSZrr:
4300   case X86::VCVTSI642SSZrm:
4301   case X86::VCVTSI642SSZrr_Int:
4302   case X86::VCVTSI642SSZrrb_Int:
4303   case X86::VCVTSI642SSZrm_Int:
4304   case X86::VCVTSI2SDZrr:
4305   case X86::VCVTSI2SDZrm:
4306   case X86::VCVTSI2SDZrr_Int:
4307   case X86::VCVTSI2SDZrm_Int:
4308   case X86::VCVTSI642SDZrr:
4309   case X86::VCVTSI642SDZrm:
4310   case X86::VCVTSI642SDZrr_Int:
4311   case X86::VCVTSI642SDZrrb_Int:
4312   case X86::VCVTSI642SDZrm_Int:
4313   case X86::VCVTUSI2SSZrr:
4314   case X86::VCVTUSI2SSZrm:
4315   case X86::VCVTUSI2SSZrr_Int:
4316   case X86::VCVTUSI2SSZrrb_Int:
4317   case X86::VCVTUSI2SSZrm_Int:
4318   case X86::VCVTUSI642SSZrr:
4319   case X86::VCVTUSI642SSZrm:
4320   case X86::VCVTUSI642SSZrr_Int:
4321   case X86::VCVTUSI642SSZrrb_Int:
4322   case X86::VCVTUSI642SSZrm_Int:
4323   case X86::VCVTUSI2SDZrr:
4324   case X86::VCVTUSI2SDZrm:
4325   case X86::VCVTUSI2SDZrr_Int:
4326   case X86::VCVTUSI2SDZrm_Int:
4327   case X86::VCVTUSI642SDZrr:
4328   case X86::VCVTUSI642SDZrm:
4329   case X86::VCVTUSI642SDZrr_Int:
4330   case X86::VCVTUSI642SDZrrb_Int:
4331   case X86::VCVTUSI642SDZrm_Int:
4332     // Load folding won't effect the undef register update since the input is
4333     // a GPR.
4334     return !ForLoadFold;
4335   case X86::VCVTSD2SSrr:
4336   case X86::VCVTSD2SSrm:
4337   case X86::VCVTSD2SSrr_Int:
4338   case X86::VCVTSD2SSrm_Int:
4339   case X86::VCVTSS2SDrr:
4340   case X86::VCVTSS2SDrm:
4341   case X86::VCVTSS2SDrr_Int:
4342   case X86::VCVTSS2SDrm_Int:
4343   case X86::VRCPSSr:
4344   case X86::VRCPSSr_Int:
4345   case X86::VRCPSSm:
4346   case X86::VRCPSSm_Int:
4347   case X86::VROUNDSDr:
4348   case X86::VROUNDSDm:
4349   case X86::VROUNDSDr_Int:
4350   case X86::VROUNDSDm_Int:
4351   case X86::VROUNDSSr:
4352   case X86::VROUNDSSm:
4353   case X86::VROUNDSSr_Int:
4354   case X86::VROUNDSSm_Int:
4355   case X86::VRSQRTSSr:
4356   case X86::VRSQRTSSr_Int:
4357   case X86::VRSQRTSSm:
4358   case X86::VRSQRTSSm_Int:
4359   case X86::VSQRTSSr:
4360   case X86::VSQRTSSr_Int:
4361   case X86::VSQRTSSm:
4362   case X86::VSQRTSSm_Int:
4363   case X86::VSQRTSDr:
4364   case X86::VSQRTSDr_Int:
4365   case X86::VSQRTSDm:
4366   case X86::VSQRTSDm_Int:
4367   // AVX-512
4368   case X86::VCVTSD2SSZrr:
4369   case X86::VCVTSD2SSZrr_Int:
4370   case X86::VCVTSD2SSZrrb_Int:
4371   case X86::VCVTSD2SSZrm:
4372   case X86::VCVTSD2SSZrm_Int:
4373   case X86::VCVTSS2SDZrr:
4374   case X86::VCVTSS2SDZrr_Int:
4375   case X86::VCVTSS2SDZrrb_Int:
4376   case X86::VCVTSS2SDZrm:
4377   case X86::VCVTSS2SDZrm_Int:
4378   case X86::VGETEXPSDZr:
4379   case X86::VGETEXPSDZrb:
4380   case X86::VGETEXPSDZm:
4381   case X86::VGETEXPSSZr:
4382   case X86::VGETEXPSSZrb:
4383   case X86::VGETEXPSSZm:
4384   case X86::VGETMANTSDZrri:
4385   case X86::VGETMANTSDZrrib:
4386   case X86::VGETMANTSDZrmi:
4387   case X86::VGETMANTSSZrri:
4388   case X86::VGETMANTSSZrrib:
4389   case X86::VGETMANTSSZrmi:
4390   case X86::VRNDSCALESDZr:
4391   case X86::VRNDSCALESDZr_Int:
4392   case X86::VRNDSCALESDZrb_Int:
4393   case X86::VRNDSCALESDZm:
4394   case X86::VRNDSCALESDZm_Int:
4395   case X86::VRNDSCALESSZr:
4396   case X86::VRNDSCALESSZr_Int:
4397   case X86::VRNDSCALESSZrb_Int:
4398   case X86::VRNDSCALESSZm:
4399   case X86::VRNDSCALESSZm_Int:
4400   case X86::VRCP14SDZrr:
4401   case X86::VRCP14SDZrm:
4402   case X86::VRCP14SSZrr:
4403   case X86::VRCP14SSZrm:
4404   case X86::VRCP28SDZr:
4405   case X86::VRCP28SDZrb:
4406   case X86::VRCP28SDZm:
4407   case X86::VRCP28SSZr:
4408   case X86::VRCP28SSZrb:
4409   case X86::VRCP28SSZm:
4410   case X86::VREDUCESSZrmi:
4411   case X86::VREDUCESSZrri:
4412   case X86::VREDUCESSZrrib:
4413   case X86::VRSQRT14SDZrr:
4414   case X86::VRSQRT14SDZrm:
4415   case X86::VRSQRT14SSZrr:
4416   case X86::VRSQRT14SSZrm:
4417   case X86::VRSQRT28SDZr:
4418   case X86::VRSQRT28SDZrb:
4419   case X86::VRSQRT28SDZm:
4420   case X86::VRSQRT28SSZr:
4421   case X86::VRSQRT28SSZrb:
4422   case X86::VRSQRT28SSZm:
4423   case X86::VSQRTSSZr:
4424   case X86::VSQRTSSZr_Int:
4425   case X86::VSQRTSSZrb_Int:
4426   case X86::VSQRTSSZm:
4427   case X86::VSQRTSSZm_Int:
4428   case X86::VSQRTSDZr:
4429   case X86::VSQRTSDZr_Int:
4430   case X86::VSQRTSDZrb_Int:
4431   case X86::VSQRTSDZm:
4432   case X86::VSQRTSDZm_Int:
4433     return true;
4434   }
4435 
4436   return false;
4437 }
4438 
4439 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4440 /// before certain undef register reads.
4441 ///
4442 /// This catches the VCVTSI2SD family of instructions:
4443 ///
4444 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4445 ///
4446 /// We should to be careful *not* to catch VXOR idioms which are presumably
4447 /// handled specially in the pipeline:
4448 ///
4449 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4450 ///
4451 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4452 /// high bits that are passed-through are not live.
4453 unsigned
4454 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4455                                    const TargetRegisterInfo *TRI) const {
4456   if (!hasUndefRegUpdate(MI.getOpcode()))
4457     return 0;
4458 
4459   // Set the OpNum parameter to the first source operand.
4460   OpNum = 1;
4461 
4462   const MachineOperand &MO = MI.getOperand(OpNum);
4463   if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4464     return UndefRegClearance;
4465   }
4466   return 0;
4467 }
4468 
4469 void X86InstrInfo::breakPartialRegDependency(
4470     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4471   unsigned Reg = MI.getOperand(OpNum).getReg();
4472   // If MI kills this register, the false dependence is already broken.
4473   if (MI.killsRegister(Reg, TRI))
4474     return;
4475 
4476   if (X86::VR128RegClass.contains(Reg)) {
4477     // These instructions are all floating point domain, so xorps is the best
4478     // choice.
4479     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4480     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4481         .addReg(Reg, RegState::Undef)
4482         .addReg(Reg, RegState::Undef);
4483     MI.addRegisterKilled(Reg, TRI, true);
4484   } else if (X86::VR256RegClass.contains(Reg)) {
4485     // Use vxorps to clear the full ymm register.
4486     // It wants to read and write the xmm sub-register.
4487     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4488     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4489         .addReg(XReg, RegState::Undef)
4490         .addReg(XReg, RegState::Undef)
4491         .addReg(Reg, RegState::ImplicitDefine);
4492     MI.addRegisterKilled(Reg, TRI, true);
4493   } else if (X86::GR64RegClass.contains(Reg)) {
4494     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4495     // as well.
4496     unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4497     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4498         .addReg(XReg, RegState::Undef)
4499         .addReg(XReg, RegState::Undef)
4500         .addReg(Reg, RegState::ImplicitDefine);
4501     MI.addRegisterKilled(Reg, TRI, true);
4502   } else if (X86::GR32RegClass.contains(Reg)) {
4503     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4504         .addReg(Reg, RegState::Undef)
4505         .addReg(Reg, RegState::Undef);
4506     MI.addRegisterKilled(Reg, TRI, true);
4507   }
4508 }
4509 
4510 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4511                         int PtrOffset = 0) {
4512   unsigned NumAddrOps = MOs.size();
4513 
4514   if (NumAddrOps < 4) {
4515     // FrameIndex only - add an immediate offset (whether its zero or not).
4516     for (unsigned i = 0; i != NumAddrOps; ++i)
4517       MIB.add(MOs[i]);
4518     addOffset(MIB, PtrOffset);
4519   } else {
4520     // General Memory Addressing - we need to add any offset to an existing
4521     // offset.
4522     assert(MOs.size() == 5 && "Unexpected memory operand list length");
4523     for (unsigned i = 0; i != NumAddrOps; ++i) {
4524       const MachineOperand &MO = MOs[i];
4525       if (i == 3 && PtrOffset != 0) {
4526         MIB.addDisp(MO, PtrOffset);
4527       } else {
4528         MIB.add(MO);
4529       }
4530     }
4531   }
4532 }
4533 
4534 static void updateOperandRegConstraints(MachineFunction &MF,
4535                                         MachineInstr &NewMI,
4536                                         const TargetInstrInfo &TII) {
4537   MachineRegisterInfo &MRI = MF.getRegInfo();
4538   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4539 
4540   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4541     MachineOperand &MO = NewMI.getOperand(Idx);
4542     // We only need to update constraints on virtual register operands.
4543     if (!MO.isReg())
4544       continue;
4545     unsigned Reg = MO.getReg();
4546     if (!TRI.isVirtualRegister(Reg))
4547       continue;
4548 
4549     auto *NewRC = MRI.constrainRegClass(
4550         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4551     if (!NewRC) {
4552       LLVM_DEBUG(
4553           dbgs() << "WARNING: Unable to update register constraint for operand "
4554                  << Idx << " of instruction:\n";
4555           NewMI.dump(); dbgs() << "\n");
4556     }
4557   }
4558 }
4559 
4560 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4561                                      ArrayRef<MachineOperand> MOs,
4562                                      MachineBasicBlock::iterator InsertPt,
4563                                      MachineInstr &MI,
4564                                      const TargetInstrInfo &TII) {
4565   // Create the base instruction with the memory operand as the first part.
4566   // Omit the implicit operands, something BuildMI can't do.
4567   MachineInstr *NewMI =
4568       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4569   MachineInstrBuilder MIB(MF, NewMI);
4570   addOperands(MIB, MOs);
4571 
4572   // Loop over the rest of the ri operands, converting them over.
4573   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4574   for (unsigned i = 0; i != NumOps; ++i) {
4575     MachineOperand &MO = MI.getOperand(i + 2);
4576     MIB.add(MO);
4577   }
4578   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4579     MachineOperand &MO = MI.getOperand(i);
4580     MIB.add(MO);
4581   }
4582 
4583   updateOperandRegConstraints(MF, *NewMI, TII);
4584 
4585   MachineBasicBlock *MBB = InsertPt->getParent();
4586   MBB->insert(InsertPt, NewMI);
4587 
4588   return MIB;
4589 }
4590 
4591 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4592                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
4593                               MachineBasicBlock::iterator InsertPt,
4594                               MachineInstr &MI, const TargetInstrInfo &TII,
4595                               int PtrOffset = 0) {
4596   // Omit the implicit operands, something BuildMI can't do.
4597   MachineInstr *NewMI =
4598       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4599   MachineInstrBuilder MIB(MF, NewMI);
4600 
4601   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4602     MachineOperand &MO = MI.getOperand(i);
4603     if (i == OpNo) {
4604       assert(MO.isReg() && "Expected to fold into reg operand!");
4605       addOperands(MIB, MOs, PtrOffset);
4606     } else {
4607       MIB.add(MO);
4608     }
4609   }
4610 
4611   updateOperandRegConstraints(MF, *NewMI, TII);
4612 
4613   MachineBasicBlock *MBB = InsertPt->getParent();
4614   MBB->insert(InsertPt, NewMI);
4615 
4616   return MIB;
4617 }
4618 
4619 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4620                                 ArrayRef<MachineOperand> MOs,
4621                                 MachineBasicBlock::iterator InsertPt,
4622                                 MachineInstr &MI) {
4623   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4624                                     MI.getDebugLoc(), TII.get(Opcode));
4625   addOperands(MIB, MOs);
4626   return MIB.addImm(0);
4627 }
4628 
4629 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4630     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4631     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4632     unsigned Size, unsigned Align) const {
4633   switch (MI.getOpcode()) {
4634   case X86::INSERTPSrr:
4635   case X86::VINSERTPSrr:
4636   case X86::VINSERTPSZrr:
4637     // Attempt to convert the load of inserted vector into a fold load
4638     // of a single float.
4639     if (OpNum == 2) {
4640       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4641       unsigned ZMask = Imm & 15;
4642       unsigned DstIdx = (Imm >> 4) & 3;
4643       unsigned SrcIdx = (Imm >> 6) & 3;
4644 
4645       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4646       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4647       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4648       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4649         int PtrOffset = SrcIdx * 4;
4650         unsigned NewImm = (DstIdx << 4) | ZMask;
4651         unsigned NewOpCode =
4652             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4653             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4654                                                     X86::INSERTPSrm;
4655         MachineInstr *NewMI =
4656             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4657         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4658         return NewMI;
4659       }
4660     }
4661     break;
4662   case X86::MOVHLPSrr:
4663   case X86::VMOVHLPSrr:
4664   case X86::VMOVHLPSZrr:
4665     // Move the upper 64-bits of the second operand to the lower 64-bits.
4666     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4667     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4668     if (OpNum == 2) {
4669       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4670       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4671       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4672       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4673         unsigned NewOpCode =
4674             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4675             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4676                                                    X86::MOVLPSrm;
4677         MachineInstr *NewMI =
4678             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4679         return NewMI;
4680       }
4681     }
4682     break;
4683   case X86::UNPCKLPDrr:
4684     // If we won't be able to fold this to the memory form of UNPCKL, use
4685     // MOVHPD instead. Done as custom because we can't have this in the load
4686     // table twice.
4687     if (OpNum == 2) {
4688       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4689       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4690       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4691       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4692         MachineInstr *NewMI =
4693             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4694         return NewMI;
4695       }
4696     }
4697     break;
4698   }
4699 
4700   return nullptr;
4701 }
4702 
4703 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4704                                                MachineInstr &MI) {
4705   if (!hasUndefRegUpdate(MI.getOpcode(), /*ForLoadFold*/true) ||
4706       !MI.getOperand(1).isReg())
4707     return false;
4708 
4709   // The are two cases we need to handle depending on where in the pipeline
4710   // the folding attempt is being made.
4711   // -Register has the undef flag set.
4712   // -Register is produced by the IMPLICIT_DEF instruction.
4713 
4714   if (MI.getOperand(1).isUndef())
4715     return true;
4716 
4717   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4718   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4719   return VRegDef && VRegDef->isImplicitDef();
4720 }
4721 
4722 
4723 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4724     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4725     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4726     unsigned Size, unsigned Align, bool AllowCommute) const {
4727   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4728   bool isTwoAddrFold = false;
4729 
4730   // For CPUs that favor the register form of a call or push,
4731   // do not fold loads into calls or pushes, unless optimizing for size
4732   // aggressively.
4733   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4734       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4735        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4736        MI.getOpcode() == X86::PUSH64r))
4737     return nullptr;
4738 
4739   // Avoid partial and undef register update stalls unless optimizing for size.
4740   if (!MF.getFunction().hasOptSize() &&
4741       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4742        shouldPreventUndefRegUpdateMemFold(MF, MI)))
4743     return nullptr;
4744 
4745   unsigned NumOps = MI.getDesc().getNumOperands();
4746   bool isTwoAddr =
4747       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4748 
4749   // FIXME: AsmPrinter doesn't know how to handle
4750   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4751   if (MI.getOpcode() == X86::ADD32ri &&
4752       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4753     return nullptr;
4754 
4755   // GOTTPOFF relocation loads can only be folded into add instructions.
4756   // FIXME: Need to exclude other relocations that only support specific
4757   // instructions.
4758   if (MOs.size() == X86::AddrNumOperands &&
4759       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4760       MI.getOpcode() != X86::ADD64rr)
4761     return nullptr;
4762 
4763   MachineInstr *NewMI = nullptr;
4764 
4765   // Attempt to fold any custom cases we have.
4766   if (MachineInstr *CustomMI =
4767           foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4768     return CustomMI;
4769 
4770   const X86MemoryFoldTableEntry *I = nullptr;
4771 
4772   // Folding a memory location into the two-address part of a two-address
4773   // instruction is different than folding it other places.  It requires
4774   // replacing the *two* registers with the memory location.
4775   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4776       MI.getOperand(1).isReg() &&
4777       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4778     I = lookupTwoAddrFoldTable(MI.getOpcode());
4779     isTwoAddrFold = true;
4780   } else {
4781     if (OpNum == 0) {
4782       if (MI.getOpcode() == X86::MOV32r0) {
4783         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4784         if (NewMI)
4785           return NewMI;
4786       }
4787     }
4788 
4789     I = lookupFoldTable(MI.getOpcode(), OpNum);
4790   }
4791 
4792   if (I != nullptr) {
4793     unsigned Opcode = I->DstOp;
4794     unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4795     if (Align < MinAlign)
4796       return nullptr;
4797     bool NarrowToMOV32rm = false;
4798     if (Size) {
4799       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4800       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4801                                                   &RI, MF);
4802       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4803       if (Size < RCSize) {
4804         // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4805         // Check if it's safe to fold the load. If the size of the object is
4806         // narrower than the load width, then it's not.
4807         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4808           return nullptr;
4809         // If this is a 64-bit load, but the spill slot is 32, then we can do
4810         // a 32-bit load which is implicitly zero-extended. This likely is
4811         // due to live interval analysis remat'ing a load from stack slot.
4812         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4813           return nullptr;
4814         Opcode = X86::MOV32rm;
4815         NarrowToMOV32rm = true;
4816       }
4817     }
4818 
4819     if (isTwoAddrFold)
4820       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4821     else
4822       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4823 
4824     if (NarrowToMOV32rm) {
4825       // If this is the special case where we use a MOV32rm to load a 32-bit
4826       // value and zero-extend the top bits. Change the destination register
4827       // to a 32-bit one.
4828       unsigned DstReg = NewMI->getOperand(0).getReg();
4829       if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4830         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4831       else
4832         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4833     }
4834     return NewMI;
4835   }
4836 
4837   // If the instruction and target operand are commutable, commute the
4838   // instruction and try again.
4839   if (AllowCommute) {
4840     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4841     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4842       bool HasDef = MI.getDesc().getNumDefs();
4843       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4844       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4845       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4846       bool Tied1 =
4847           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4848       bool Tied2 =
4849           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4850 
4851       // If either of the commutable operands are tied to the destination
4852       // then we can not commute + fold.
4853       if ((HasDef && Reg0 == Reg1 && Tied1) ||
4854           (HasDef && Reg0 == Reg2 && Tied2))
4855         return nullptr;
4856 
4857       MachineInstr *CommutedMI =
4858           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4859       if (!CommutedMI) {
4860         // Unable to commute.
4861         return nullptr;
4862       }
4863       if (CommutedMI != &MI) {
4864         // New instruction. We can't fold from this.
4865         CommutedMI->eraseFromParent();
4866         return nullptr;
4867       }
4868 
4869       // Attempt to fold with the commuted version of the instruction.
4870       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4871                                     Size, Align, /*AllowCommute=*/false);
4872       if (NewMI)
4873         return NewMI;
4874 
4875       // Folding failed again - undo the commute before returning.
4876       MachineInstr *UncommutedMI =
4877           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4878       if (!UncommutedMI) {
4879         // Unable to commute.
4880         return nullptr;
4881       }
4882       if (UncommutedMI != &MI) {
4883         // New instruction. It doesn't need to be kept.
4884         UncommutedMI->eraseFromParent();
4885         return nullptr;
4886       }
4887 
4888       // Return here to prevent duplicate fuse failure report.
4889       return nullptr;
4890     }
4891   }
4892 
4893   // No fusion
4894   if (PrintFailedFusing && !MI.isCopy())
4895     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4896   return nullptr;
4897 }
4898 
4899 MachineInstr *
4900 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
4901                                     ArrayRef<unsigned> Ops,
4902                                     MachineBasicBlock::iterator InsertPt,
4903                                     int FrameIndex, LiveIntervals *LIS,
4904                                     VirtRegMap *VRM) const {
4905   // Check switch flag
4906   if (NoFusing)
4907     return nullptr;
4908 
4909   // Avoid partial and undef register update stalls unless optimizing for size.
4910   if (!MF.getFunction().hasOptSize() &&
4911       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4912        shouldPreventUndefRegUpdateMemFold(MF, MI)))
4913     return nullptr;
4914 
4915   // Don't fold subreg spills, or reloads that use a high subreg.
4916   for (auto Op : Ops) {
4917     MachineOperand &MO = MI.getOperand(Op);
4918     auto SubReg = MO.getSubReg();
4919     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
4920       return nullptr;
4921   }
4922 
4923   const MachineFrameInfo &MFI = MF.getFrameInfo();
4924   unsigned Size = MFI.getObjectSize(FrameIndex);
4925   unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
4926   // If the function stack isn't realigned we don't want to fold instructions
4927   // that need increased alignment.
4928   if (!RI.needsStackRealignment(MF))
4929     Alignment =
4930         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
4931   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4932     unsigned NewOpc = 0;
4933     unsigned RCSize = 0;
4934     switch (MI.getOpcode()) {
4935     default: return nullptr;
4936     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
4937     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4938     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4939     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4940     }
4941     // Check if it's safe to fold the load. If the size of the object is
4942     // narrower than the load width, then it's not.
4943     if (Size < RCSize)
4944       return nullptr;
4945     // Change to CMPXXri r, 0 first.
4946     MI.setDesc(get(NewOpc));
4947     MI.getOperand(1).ChangeToImmediate(0);
4948   } else if (Ops.size() != 1)
4949     return nullptr;
4950 
4951   return foldMemoryOperandImpl(MF, MI, Ops[0],
4952                                MachineOperand::CreateFI(FrameIndex), InsertPt,
4953                                Size, Alignment, /*AllowCommute=*/true);
4954 }
4955 
4956 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4957 /// because the latter uses contents that wouldn't be defined in the folded
4958 /// version.  For instance, this transformation isn't legal:
4959 ///   movss (%rdi), %xmm0
4960 ///   addps %xmm0, %xmm0
4961 /// ->
4962 ///   addps (%rdi), %xmm0
4963 ///
4964 /// But this one is:
4965 ///   movss (%rdi), %xmm0
4966 ///   addss %xmm0, %xmm0
4967 /// ->
4968 ///   addss (%rdi), %xmm0
4969 ///
4970 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
4971                                              const MachineInstr &UserMI,
4972                                              const MachineFunction &MF) {
4973   unsigned Opc = LoadMI.getOpcode();
4974   unsigned UserOpc = UserMI.getOpcode();
4975   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4976   const TargetRegisterClass *RC =
4977       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
4978   unsigned RegSize = TRI.getRegSizeInBits(*RC);
4979 
4980   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
4981        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
4982        Opc == X86::VMOVSSZrm_alt) &&
4983       RegSize > 32) {
4984     // These instructions only load 32 bits, we can't fold them if the
4985     // destination register is wider than 32 bits (4 bytes), and its user
4986     // instruction isn't scalar (SS).
4987     switch (UserOpc) {
4988     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
4989     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
4990     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
4991     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
4992     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
4993     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
4994     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
4995     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
4996     case X86::VCMPSSZrr_Intk:
4997     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
4998     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
4999     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5000     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5001     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5002     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5003     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5004     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5005     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5006     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5007     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5008     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5009     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5010     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5011     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5012     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5013     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5014     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5015     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5016     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5017     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5018     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5019     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5020     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5021     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5022     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5023     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5024     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5025     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5026     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5027     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5028       return false;
5029     default:
5030       return true;
5031     }
5032   }
5033 
5034   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5035        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5036        Opc == X86::VMOVSDZrm_alt) &&
5037       RegSize > 64) {
5038     // These instructions only load 64 bits, we can't fold them if the
5039     // destination register is wider than 64 bits (8 bytes), and its user
5040     // instruction isn't scalar (SD).
5041     switch (UserOpc) {
5042     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5043     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5044     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5045     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5046     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5047     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5048     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5049     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5050     case X86::VCMPSDZrr_Intk:
5051     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5052     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5053     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5054     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5055     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5056     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5057     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5058     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5059     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5060     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5061     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5062     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5063     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5064     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5065     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5066     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5067     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5068     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5069     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5070     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5071     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5072     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5073     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5074     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5075     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5076     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5077     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5078     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5079     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5080     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5081     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5082       return false;
5083     default:
5084       return true;
5085     }
5086   }
5087 
5088   return false;
5089 }
5090 
5091 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5092     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5093     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5094     LiveIntervals *LIS) const {
5095 
5096   // TODO: Support the case where LoadMI loads a wide register, but MI
5097   // only uses a subreg.
5098   for (auto Op : Ops) {
5099     if (MI.getOperand(Op).getSubReg())
5100       return nullptr;
5101   }
5102 
5103   // If loading from a FrameIndex, fold directly from the FrameIndex.
5104   unsigned NumOps = LoadMI.getDesc().getNumOperands();
5105   int FrameIndex;
5106   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5107     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5108       return nullptr;
5109     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5110   }
5111 
5112   // Check switch flag
5113   if (NoFusing) return nullptr;
5114 
5115   // Avoid partial and undef register update stalls unless optimizing for size.
5116   if (!MF.getFunction().hasOptSize() &&
5117       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5118        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5119     return nullptr;
5120 
5121   // Determine the alignment of the load.
5122   unsigned Alignment = 0;
5123   if (LoadMI.hasOneMemOperand())
5124     Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5125   else
5126     switch (LoadMI.getOpcode()) {
5127     case X86::AVX512_512_SET0:
5128     case X86::AVX512_512_SETALLONES:
5129       Alignment = 64;
5130       break;
5131     case X86::AVX2_SETALLONES:
5132     case X86::AVX1_SETALLONES:
5133     case X86::AVX_SET0:
5134     case X86::AVX512_256_SET0:
5135       Alignment = 32;
5136       break;
5137     case X86::V_SET0:
5138     case X86::V_SETALLONES:
5139     case X86::AVX512_128_SET0:
5140       Alignment = 16;
5141       break;
5142     case X86::MMX_SET0:
5143     case X86::FsFLD0SD:
5144     case X86::AVX512_FsFLD0SD:
5145       Alignment = 8;
5146       break;
5147     case X86::FsFLD0SS:
5148     case X86::AVX512_FsFLD0SS:
5149       Alignment = 4;
5150       break;
5151     default:
5152       return nullptr;
5153     }
5154   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5155     unsigned NewOpc = 0;
5156     switch (MI.getOpcode()) {
5157     default: return nullptr;
5158     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5159     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5160     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5161     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5162     }
5163     // Change to CMPXXri r, 0 first.
5164     MI.setDesc(get(NewOpc));
5165     MI.getOperand(1).ChangeToImmediate(0);
5166   } else if (Ops.size() != 1)
5167     return nullptr;
5168 
5169   // Make sure the subregisters match.
5170   // Otherwise we risk changing the size of the load.
5171   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5172     return nullptr;
5173 
5174   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5175   switch (LoadMI.getOpcode()) {
5176   case X86::MMX_SET0:
5177   case X86::V_SET0:
5178   case X86::V_SETALLONES:
5179   case X86::AVX2_SETALLONES:
5180   case X86::AVX1_SETALLONES:
5181   case X86::AVX_SET0:
5182   case X86::AVX512_128_SET0:
5183   case X86::AVX512_256_SET0:
5184   case X86::AVX512_512_SET0:
5185   case X86::AVX512_512_SETALLONES:
5186   case X86::FsFLD0SD:
5187   case X86::AVX512_FsFLD0SD:
5188   case X86::FsFLD0SS:
5189   case X86::AVX512_FsFLD0SS: {
5190     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5191     // Create a constant-pool entry and operands to load from it.
5192 
5193     // Medium and large mode can't fold loads this way.
5194     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5195         MF.getTarget().getCodeModel() != CodeModel::Kernel)
5196       return nullptr;
5197 
5198     // x86-32 PIC requires a PIC base register for constant pools.
5199     unsigned PICBase = 0;
5200     if (MF.getTarget().isPositionIndependent()) {
5201       if (Subtarget.is64Bit())
5202         PICBase = X86::RIP;
5203       else
5204         // FIXME: PICBase = getGlobalBaseReg(&MF);
5205         // This doesn't work for several reasons.
5206         // 1. GlobalBaseReg may have been spilled.
5207         // 2. It may not be live at MI.
5208         return nullptr;
5209     }
5210 
5211     // Create a constant-pool entry.
5212     MachineConstantPool &MCP = *MF.getConstantPool();
5213     Type *Ty;
5214     unsigned Opc = LoadMI.getOpcode();
5215     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5216       Ty = Type::getFloatTy(MF.getFunction().getContext());
5217     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5218       Ty = Type::getDoubleTy(MF.getFunction().getContext());
5219     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5220       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5221     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5222              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5223       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5224     else if (Opc == X86::MMX_SET0)
5225       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5226     else
5227       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5228 
5229     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5230                       Opc == X86::AVX512_512_SETALLONES ||
5231                       Opc == X86::AVX1_SETALLONES);
5232     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5233                                     Constant::getNullValue(Ty);
5234     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5235 
5236     // Create operands to load from the constant pool entry.
5237     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5238     MOs.push_back(MachineOperand::CreateImm(1));
5239     MOs.push_back(MachineOperand::CreateReg(0, false));
5240     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5241     MOs.push_back(MachineOperand::CreateReg(0, false));
5242     break;
5243   }
5244   default: {
5245     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5246       return nullptr;
5247 
5248     // Folding a normal load. Just copy the load's address operands.
5249     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5250                LoadMI.operands_begin() + NumOps);
5251     break;
5252   }
5253   }
5254   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5255                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
5256 }
5257 
5258 static SmallVector<MachineMemOperand *, 2>
5259 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5260   SmallVector<MachineMemOperand *, 2> LoadMMOs;
5261 
5262   for (MachineMemOperand *MMO : MMOs) {
5263     if (!MMO->isLoad())
5264       continue;
5265 
5266     if (!MMO->isStore()) {
5267       // Reuse the MMO.
5268       LoadMMOs.push_back(MMO);
5269     } else {
5270       // Clone the MMO and unset the store flag.
5271       LoadMMOs.push_back(MF.getMachineMemOperand(
5272           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5273     }
5274   }
5275 
5276   return LoadMMOs;
5277 }
5278 
5279 static SmallVector<MachineMemOperand *, 2>
5280 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5281   SmallVector<MachineMemOperand *, 2> StoreMMOs;
5282 
5283   for (MachineMemOperand *MMO : MMOs) {
5284     if (!MMO->isStore())
5285       continue;
5286 
5287     if (!MMO->isLoad()) {
5288       // Reuse the MMO.
5289       StoreMMOs.push_back(MMO);
5290     } else {
5291       // Clone the MMO and unset the load flag.
5292       StoreMMOs.push_back(MF.getMachineMemOperand(
5293           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5294     }
5295   }
5296 
5297   return StoreMMOs;
5298 }
5299 
5300 bool X86InstrInfo::unfoldMemoryOperand(
5301     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5302     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5303   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5304   if (I == nullptr)
5305     return false;
5306   unsigned Opc = I->DstOp;
5307   unsigned Index = I->Flags & TB_INDEX_MASK;
5308   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5309   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5310   if (UnfoldLoad && !FoldedLoad)
5311     return false;
5312   UnfoldLoad &= FoldedLoad;
5313   if (UnfoldStore && !FoldedStore)
5314     return false;
5315   UnfoldStore &= FoldedStore;
5316 
5317   const MCInstrDesc &MCID = get(Opc);
5318   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5319   // TODO: Check if 32-byte or greater accesses are slow too?
5320   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5321       Subtarget.isUnalignedMem16Slow())
5322     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5323     // conservatively assume the address is unaligned. That's bad for
5324     // performance.
5325     return false;
5326   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5327   SmallVector<MachineOperand,2> BeforeOps;
5328   SmallVector<MachineOperand,2> AfterOps;
5329   SmallVector<MachineOperand,4> ImpOps;
5330   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5331     MachineOperand &Op = MI.getOperand(i);
5332     if (i >= Index && i < Index + X86::AddrNumOperands)
5333       AddrOps.push_back(Op);
5334     else if (Op.isReg() && Op.isImplicit())
5335       ImpOps.push_back(Op);
5336     else if (i < Index)
5337       BeforeOps.push_back(Op);
5338     else if (i > Index)
5339       AfterOps.push_back(Op);
5340   }
5341 
5342   // Emit the load instruction.
5343   if (UnfoldLoad) {
5344     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5345     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs);
5346     if (UnfoldStore) {
5347       // Address operands cannot be marked isKill.
5348       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5349         MachineOperand &MO = NewMIs[0]->getOperand(i);
5350         if (MO.isReg())
5351           MO.setIsKill(false);
5352       }
5353     }
5354   }
5355 
5356   // Emit the data processing instruction.
5357   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5358   MachineInstrBuilder MIB(MF, DataMI);
5359 
5360   if (FoldedStore)
5361     MIB.addReg(Reg, RegState::Define);
5362   for (MachineOperand &BeforeOp : BeforeOps)
5363     MIB.add(BeforeOp);
5364   if (FoldedLoad)
5365     MIB.addReg(Reg);
5366   for (MachineOperand &AfterOp : AfterOps)
5367     MIB.add(AfterOp);
5368   for (MachineOperand &ImpOp : ImpOps) {
5369     MIB.addReg(ImpOp.getReg(),
5370                getDefRegState(ImpOp.isDef()) |
5371                RegState::Implicit |
5372                getKillRegState(ImpOp.isKill()) |
5373                getDeadRegState(ImpOp.isDead()) |
5374                getUndefRegState(ImpOp.isUndef()));
5375   }
5376   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5377   switch (DataMI->getOpcode()) {
5378   default: break;
5379   case X86::CMP64ri32:
5380   case X86::CMP64ri8:
5381   case X86::CMP32ri:
5382   case X86::CMP32ri8:
5383   case X86::CMP16ri:
5384   case X86::CMP16ri8:
5385   case X86::CMP8ri: {
5386     MachineOperand &MO0 = DataMI->getOperand(0);
5387     MachineOperand &MO1 = DataMI->getOperand(1);
5388     if (MO1.getImm() == 0) {
5389       unsigned NewOpc;
5390       switch (DataMI->getOpcode()) {
5391       default: llvm_unreachable("Unreachable!");
5392       case X86::CMP64ri8:
5393       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5394       case X86::CMP32ri8:
5395       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5396       case X86::CMP16ri8:
5397       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5398       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5399       }
5400       DataMI->setDesc(get(NewOpc));
5401       MO1.ChangeToRegister(MO0.getReg(), false);
5402     }
5403   }
5404   }
5405   NewMIs.push_back(DataMI);
5406 
5407   // Emit the store instruction.
5408   if (UnfoldStore) {
5409     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5410     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5411     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs);
5412   }
5413 
5414   return true;
5415 }
5416 
5417 bool
5418 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5419                                   SmallVectorImpl<SDNode*> &NewNodes) const {
5420   if (!N->isMachineOpcode())
5421     return false;
5422 
5423   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5424   if (I == nullptr)
5425     return false;
5426   unsigned Opc = I->DstOp;
5427   unsigned Index = I->Flags & TB_INDEX_MASK;
5428   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5429   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5430   const MCInstrDesc &MCID = get(Opc);
5431   MachineFunction &MF = DAG.getMachineFunction();
5432   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5433   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5434   unsigned NumDefs = MCID.NumDefs;
5435   std::vector<SDValue> AddrOps;
5436   std::vector<SDValue> BeforeOps;
5437   std::vector<SDValue> AfterOps;
5438   SDLoc dl(N);
5439   unsigned NumOps = N->getNumOperands();
5440   for (unsigned i = 0; i != NumOps-1; ++i) {
5441     SDValue Op = N->getOperand(i);
5442     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5443       AddrOps.push_back(Op);
5444     else if (i < Index-NumDefs)
5445       BeforeOps.push_back(Op);
5446     else if (i > Index-NumDefs)
5447       AfterOps.push_back(Op);
5448   }
5449   SDValue Chain = N->getOperand(NumOps-1);
5450   AddrOps.push_back(Chain);
5451 
5452   // Emit the load instruction.
5453   SDNode *Load = nullptr;
5454   if (FoldedLoad) {
5455     EVT VT = *TRI.legalclasstypes_begin(*RC);
5456     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5457     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5458         Subtarget.isUnalignedMem16Slow())
5459       // Do not introduce a slow unaligned load.
5460       return false;
5461     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5462     // memory access is slow above.
5463     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5464     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5465     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5466                               VT, MVT::Other, AddrOps);
5467     NewNodes.push_back(Load);
5468 
5469     // Preserve memory reference information.
5470     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5471   }
5472 
5473   // Emit the data processing instruction.
5474   std::vector<EVT> VTs;
5475   const TargetRegisterClass *DstRC = nullptr;
5476   if (MCID.getNumDefs() > 0) {
5477     DstRC = getRegClass(MCID, 0, &RI, MF);
5478     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5479   }
5480   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5481     EVT VT = N->getValueType(i);
5482     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5483       VTs.push_back(VT);
5484   }
5485   if (Load)
5486     BeforeOps.push_back(SDValue(Load, 0));
5487   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5488   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5489   switch (Opc) {
5490     default: break;
5491     case X86::CMP64ri32:
5492     case X86::CMP64ri8:
5493     case X86::CMP32ri:
5494     case X86::CMP32ri8:
5495     case X86::CMP16ri:
5496     case X86::CMP16ri8:
5497     case X86::CMP8ri:
5498       if (isNullConstant(BeforeOps[1])) {
5499         switch (Opc) {
5500           default: llvm_unreachable("Unreachable!");
5501           case X86::CMP64ri8:
5502           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5503           case X86::CMP32ri8:
5504           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5505           case X86::CMP16ri8:
5506           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5507           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5508         }
5509         BeforeOps[1] = BeforeOps[0];
5510       }
5511   }
5512   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5513   NewNodes.push_back(NewNode);
5514 
5515   // Emit the store instruction.
5516   if (FoldedStore) {
5517     AddrOps.pop_back();
5518     AddrOps.push_back(SDValue(NewNode, 0));
5519     AddrOps.push_back(Chain);
5520     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5521     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5522         Subtarget.isUnalignedMem16Slow())
5523       // Do not introduce a slow unaligned store.
5524       return false;
5525     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5526     // memory access is slow above.
5527     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5528     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5529     SDNode *Store =
5530         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5531                            dl, MVT::Other, AddrOps);
5532     NewNodes.push_back(Store);
5533 
5534     // Preserve memory reference information.
5535     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5536   }
5537 
5538   return true;
5539 }
5540 
5541 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5542                                       bool UnfoldLoad, bool UnfoldStore,
5543                                       unsigned *LoadRegIndex) const {
5544   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5545   if (I == nullptr)
5546     return 0;
5547   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5548   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5549   if (UnfoldLoad && !FoldedLoad)
5550     return 0;
5551   if (UnfoldStore && !FoldedStore)
5552     return 0;
5553   if (LoadRegIndex)
5554     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5555   return I->DstOp;
5556 }
5557 
5558 bool
5559 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5560                                      int64_t &Offset1, int64_t &Offset2) const {
5561   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5562     return false;
5563   unsigned Opc1 = Load1->getMachineOpcode();
5564   unsigned Opc2 = Load2->getMachineOpcode();
5565   switch (Opc1) {
5566   default: return false;
5567   case X86::MOV8rm:
5568   case X86::MOV16rm:
5569   case X86::MOV32rm:
5570   case X86::MOV64rm:
5571   case X86::LD_Fp32m:
5572   case X86::LD_Fp64m:
5573   case X86::LD_Fp80m:
5574   case X86::MOVSSrm:
5575   case X86::MOVSSrm_alt:
5576   case X86::MOVSDrm:
5577   case X86::MOVSDrm_alt:
5578   case X86::MMX_MOVD64rm:
5579   case X86::MMX_MOVQ64rm:
5580   case X86::MOVAPSrm:
5581   case X86::MOVUPSrm:
5582   case X86::MOVAPDrm:
5583   case X86::MOVUPDrm:
5584   case X86::MOVDQArm:
5585   case X86::MOVDQUrm:
5586   // AVX load instructions
5587   case X86::VMOVSSrm:
5588   case X86::VMOVSSrm_alt:
5589   case X86::VMOVSDrm:
5590   case X86::VMOVSDrm_alt:
5591   case X86::VMOVAPSrm:
5592   case X86::VMOVUPSrm:
5593   case X86::VMOVAPDrm:
5594   case X86::VMOVUPDrm:
5595   case X86::VMOVDQArm:
5596   case X86::VMOVDQUrm:
5597   case X86::VMOVAPSYrm:
5598   case X86::VMOVUPSYrm:
5599   case X86::VMOVAPDYrm:
5600   case X86::VMOVUPDYrm:
5601   case X86::VMOVDQAYrm:
5602   case X86::VMOVDQUYrm:
5603   // AVX512 load instructions
5604   case X86::VMOVSSZrm:
5605   case X86::VMOVSSZrm_alt:
5606   case X86::VMOVSDZrm:
5607   case X86::VMOVSDZrm_alt:
5608   case X86::VMOVAPSZ128rm:
5609   case X86::VMOVUPSZ128rm:
5610   case X86::VMOVAPSZ128rm_NOVLX:
5611   case X86::VMOVUPSZ128rm_NOVLX:
5612   case X86::VMOVAPDZ128rm:
5613   case X86::VMOVUPDZ128rm:
5614   case X86::VMOVDQU8Z128rm:
5615   case X86::VMOVDQU16Z128rm:
5616   case X86::VMOVDQA32Z128rm:
5617   case X86::VMOVDQU32Z128rm:
5618   case X86::VMOVDQA64Z128rm:
5619   case X86::VMOVDQU64Z128rm:
5620   case X86::VMOVAPSZ256rm:
5621   case X86::VMOVUPSZ256rm:
5622   case X86::VMOVAPSZ256rm_NOVLX:
5623   case X86::VMOVUPSZ256rm_NOVLX:
5624   case X86::VMOVAPDZ256rm:
5625   case X86::VMOVUPDZ256rm:
5626   case X86::VMOVDQU8Z256rm:
5627   case X86::VMOVDQU16Z256rm:
5628   case X86::VMOVDQA32Z256rm:
5629   case X86::VMOVDQU32Z256rm:
5630   case X86::VMOVDQA64Z256rm:
5631   case X86::VMOVDQU64Z256rm:
5632   case X86::VMOVAPSZrm:
5633   case X86::VMOVUPSZrm:
5634   case X86::VMOVAPDZrm:
5635   case X86::VMOVUPDZrm:
5636   case X86::VMOVDQU8Zrm:
5637   case X86::VMOVDQU16Zrm:
5638   case X86::VMOVDQA32Zrm:
5639   case X86::VMOVDQU32Zrm:
5640   case X86::VMOVDQA64Zrm:
5641   case X86::VMOVDQU64Zrm:
5642   case X86::KMOVBkm:
5643   case X86::KMOVWkm:
5644   case X86::KMOVDkm:
5645   case X86::KMOVQkm:
5646     break;
5647   }
5648   switch (Opc2) {
5649   default: return false;
5650   case X86::MOV8rm:
5651   case X86::MOV16rm:
5652   case X86::MOV32rm:
5653   case X86::MOV64rm:
5654   case X86::LD_Fp32m:
5655   case X86::LD_Fp64m:
5656   case X86::LD_Fp80m:
5657   case X86::MOVSSrm:
5658   case X86::MOVSSrm_alt:
5659   case X86::MOVSDrm:
5660   case X86::MOVSDrm_alt:
5661   case X86::MMX_MOVD64rm:
5662   case X86::MMX_MOVQ64rm:
5663   case X86::MOVAPSrm:
5664   case X86::MOVUPSrm:
5665   case X86::MOVAPDrm:
5666   case X86::MOVUPDrm:
5667   case X86::MOVDQArm:
5668   case X86::MOVDQUrm:
5669   // AVX load instructions
5670   case X86::VMOVSSrm:
5671   case X86::VMOVSSrm_alt:
5672   case X86::VMOVSDrm:
5673   case X86::VMOVSDrm_alt:
5674   case X86::VMOVAPSrm:
5675   case X86::VMOVUPSrm:
5676   case X86::VMOVAPDrm:
5677   case X86::VMOVUPDrm:
5678   case X86::VMOVDQArm:
5679   case X86::VMOVDQUrm:
5680   case X86::VMOVAPSYrm:
5681   case X86::VMOVUPSYrm:
5682   case X86::VMOVAPDYrm:
5683   case X86::VMOVUPDYrm:
5684   case X86::VMOVDQAYrm:
5685   case X86::VMOVDQUYrm:
5686   // AVX512 load instructions
5687   case X86::VMOVSSZrm:
5688   case X86::VMOVSSZrm_alt:
5689   case X86::VMOVSDZrm:
5690   case X86::VMOVSDZrm_alt:
5691   case X86::VMOVAPSZ128rm:
5692   case X86::VMOVUPSZ128rm:
5693   case X86::VMOVAPSZ128rm_NOVLX:
5694   case X86::VMOVUPSZ128rm_NOVLX:
5695   case X86::VMOVAPDZ128rm:
5696   case X86::VMOVUPDZ128rm:
5697   case X86::VMOVDQU8Z128rm:
5698   case X86::VMOVDQU16Z128rm:
5699   case X86::VMOVDQA32Z128rm:
5700   case X86::VMOVDQU32Z128rm:
5701   case X86::VMOVDQA64Z128rm:
5702   case X86::VMOVDQU64Z128rm:
5703   case X86::VMOVAPSZ256rm:
5704   case X86::VMOVUPSZ256rm:
5705   case X86::VMOVAPSZ256rm_NOVLX:
5706   case X86::VMOVUPSZ256rm_NOVLX:
5707   case X86::VMOVAPDZ256rm:
5708   case X86::VMOVUPDZ256rm:
5709   case X86::VMOVDQU8Z256rm:
5710   case X86::VMOVDQU16Z256rm:
5711   case X86::VMOVDQA32Z256rm:
5712   case X86::VMOVDQU32Z256rm:
5713   case X86::VMOVDQA64Z256rm:
5714   case X86::VMOVDQU64Z256rm:
5715   case X86::VMOVAPSZrm:
5716   case X86::VMOVUPSZrm:
5717   case X86::VMOVAPDZrm:
5718   case X86::VMOVUPDZrm:
5719   case X86::VMOVDQU8Zrm:
5720   case X86::VMOVDQU16Zrm:
5721   case X86::VMOVDQA32Zrm:
5722   case X86::VMOVDQU32Zrm:
5723   case X86::VMOVDQA64Zrm:
5724   case X86::VMOVDQU64Zrm:
5725   case X86::KMOVBkm:
5726   case X86::KMOVWkm:
5727   case X86::KMOVDkm:
5728   case X86::KMOVQkm:
5729     break;
5730   }
5731 
5732   // Lambda to check if both the loads have the same value for an operand index.
5733   auto HasSameOp = [&](int I) {
5734     return Load1->getOperand(I) == Load2->getOperand(I);
5735   };
5736 
5737   // All operands except the displacement should match.
5738   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5739       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5740     return false;
5741 
5742   // Chain Operand must be the same.
5743   if (!HasSameOp(5))
5744     return false;
5745 
5746   // Now let's examine if the displacements are constants.
5747   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5748   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5749   if (!Disp1 || !Disp2)
5750     return false;
5751 
5752   Offset1 = Disp1->getSExtValue();
5753   Offset2 = Disp2->getSExtValue();
5754   return true;
5755 }
5756 
5757 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5758                                            int64_t Offset1, int64_t Offset2,
5759                                            unsigned NumLoads) const {
5760   assert(Offset2 > Offset1);
5761   if ((Offset2 - Offset1) / 8 > 64)
5762     return false;
5763 
5764   unsigned Opc1 = Load1->getMachineOpcode();
5765   unsigned Opc2 = Load2->getMachineOpcode();
5766   if (Opc1 != Opc2)
5767     return false;  // FIXME: overly conservative?
5768 
5769   switch (Opc1) {
5770   default: break;
5771   case X86::LD_Fp32m:
5772   case X86::LD_Fp64m:
5773   case X86::LD_Fp80m:
5774   case X86::MMX_MOVD64rm:
5775   case X86::MMX_MOVQ64rm:
5776     return false;
5777   }
5778 
5779   EVT VT = Load1->getValueType(0);
5780   switch (VT.getSimpleVT().SimpleTy) {
5781   default:
5782     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5783     // have 16 of them to play with.
5784     if (Subtarget.is64Bit()) {
5785       if (NumLoads >= 3)
5786         return false;
5787     } else if (NumLoads) {
5788       return false;
5789     }
5790     break;
5791   case MVT::i8:
5792   case MVT::i16:
5793   case MVT::i32:
5794   case MVT::i64:
5795   case MVT::f32:
5796   case MVT::f64:
5797     if (NumLoads)
5798       return false;
5799     break;
5800   }
5801 
5802   return true;
5803 }
5804 
5805 bool X86InstrInfo::
5806 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5807   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5808   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5809   Cond[0].setImm(GetOppositeBranchCondition(CC));
5810   return false;
5811 }
5812 
5813 bool X86InstrInfo::
5814 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5815   // FIXME: Return false for x87 stack register classes for now. We can't
5816   // allow any loads of these registers before FpGet_ST0_80.
5817   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5818            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5819            RC == &X86::RFP80RegClass);
5820 }
5821 
5822 /// Return a virtual register initialized with the
5823 /// the global base register value. Output instructions required to
5824 /// initialize the register in the function entry block, if necessary.
5825 ///
5826 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5827 ///
5828 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5829   assert((!Subtarget.is64Bit() ||
5830           MF->getTarget().getCodeModel() == CodeModel::Medium ||
5831           MF->getTarget().getCodeModel() == CodeModel::Large) &&
5832          "X86-64 PIC uses RIP relative addressing");
5833 
5834   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5835   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5836   if (GlobalBaseReg != 0)
5837     return GlobalBaseReg;
5838 
5839   // Create the register. The code to initialize it is inserted
5840   // later, by the CGBR pass (below).
5841   MachineRegisterInfo &RegInfo = MF->getRegInfo();
5842   GlobalBaseReg = RegInfo.createVirtualRegister(
5843       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5844   X86FI->setGlobalBaseReg(GlobalBaseReg);
5845   return GlobalBaseReg;
5846 }
5847 
5848 // These are the replaceable SSE instructions. Some of these have Int variants
5849 // that we don't include here. We don't want to replace instructions selected
5850 // by intrinsics.
5851 static const uint16_t ReplaceableInstrs[][3] = {
5852   //PackedSingle     PackedDouble    PackedInt
5853   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5854   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5855   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5856   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5857   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5858   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
5859   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
5860   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
5861   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
5862   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
5863   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
5864   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
5865   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5866   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5867   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5868   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5869   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5870   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5871   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5872   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5873   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5874   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5875   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5876   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5877   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5878   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5879   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5880   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5881   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5882   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5883   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5884   // AVX 128-bit support
5885   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5886   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5887   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5888   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5889   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5890   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
5891   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
5892   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
5893   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
5894   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
5895   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
5896   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
5897   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5898   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5899   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5900   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5901   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5902   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5903   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5904   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5905   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5906   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5907   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5908   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5909   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5910   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5911   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5912   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5913   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5914   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5915   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5916   // AVX 256-bit support
5917   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5918   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5919   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5920   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5921   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5922   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
5923   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
5924   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
5925   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
5926   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
5927   // AVX512 support
5928   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
5929   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5930   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5931   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
5932   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
5933   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
5934   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
5935   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
5936   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
5937   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
5938   { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5939   { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5940   { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5941   { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5942   { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
5943   { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
5944   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
5945   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
5946   { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5947   { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5948   { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
5949   { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
5950   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
5951   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
5952   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
5953   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
5954   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
5955   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
5956   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
5957   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
5958   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
5959   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
5960   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
5961   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
5962   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
5963   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
5964   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
5965   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
5966   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
5967   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
5968   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
5969   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
5970   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
5971   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
5972   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
5973   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
5974   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
5975   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
5976   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
5977   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
5978   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
5979   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
5980   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
5981   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
5982   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
5983   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
5984   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
5985   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
5986   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
5987   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
5988   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
5989   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
5990   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
5991   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
5992   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
5993   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
5994   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
5995   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
5996   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
5997   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
5998   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
5999   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6000   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6001   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6002   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6003   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6004   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6005   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6006   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6007   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6008   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6009   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6010   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6011   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6012   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6013   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6014   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6015   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6016   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6017   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6018   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6019   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6020 };
6021 
6022 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6023   //PackedSingle       PackedDouble       PackedInt
6024   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6025   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6026   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6027   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6028   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6029   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6030   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6031   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6032   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6033   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6034   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6035   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6036   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6037   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6038   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6039   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6040   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6041   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6042   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6043   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6044   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6045   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6046   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6047   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6048   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6049   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6050   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6051   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6052   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6053   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6054   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6055 };
6056 
6057 static const uint16_t ReplaceableInstrsFP[][3] = {
6058   //PackedSingle         PackedDouble
6059   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6060   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6061   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6062   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6063   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6064   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6065   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6066   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6067   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6068 };
6069 
6070 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6071   //PackedSingle       PackedDouble       PackedInt
6072   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6073   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6074   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6075   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6076 };
6077 
6078 static const uint16_t ReplaceableInstrsAVX512[][4] = {
6079   // Two integer columns for 64-bit and 32-bit elements.
6080   //PackedSingle        PackedDouble        PackedInt             PackedInt
6081   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6082   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6083   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6084   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6085   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6086   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6087   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6088   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6089   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6090   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6091   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6092   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6093   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6094   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6095   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6096 };
6097 
6098 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6099   // Two integer columns for 64-bit and 32-bit elements.
6100   //PackedSingle        PackedDouble        PackedInt           PackedInt
6101   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6102   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6103   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6104   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6105   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6106   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6107   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6108   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6109   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6110   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6111   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6112   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6113   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6114   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6115   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6116   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6117   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6118   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6119   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6120   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6121   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6122   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6123   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6124   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6125 };
6126 
6127 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6128   // Two integer columns for 64-bit and 32-bit elements.
6129   //PackedSingle          PackedDouble
6130   //PackedInt             PackedInt
6131   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6132     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6133   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6134     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6135   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6136     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6137   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6138     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6139   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6140     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6141   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6142     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6143   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6144     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6145   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6146     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6147   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6148     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6149   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6150     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6151   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6152     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6153   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6154     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6155   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6156     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6157   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6158     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6159   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6160     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6161   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6162     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6163   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6164     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6165   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6166     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6167   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6168     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6169   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6170     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6171   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6172     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6173   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6174     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6175   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6176     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6177   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6178     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6179   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6180     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6181   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6182     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6183   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6184     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6185   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6186     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6187   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6188     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6189   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6190     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6191   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6192     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6193   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6194     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6195   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6196     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6197   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6198     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6199   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6200     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6201   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6202     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6203   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6204     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6205   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6206     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6207   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6208     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6209   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6210     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6211   { X86::VORPSZrmk,       X86::VORPDZrmk,
6212     X86::VPORQZrmk,       X86::VPORDZrmk       },
6213   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6214     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6215   { X86::VORPSZrrk,       X86::VORPDZrrk,
6216     X86::VPORQZrrk,       X86::VPORDZrrk       },
6217   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6218     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6219   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6220     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6221   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6222     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6223   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6224     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6225   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6226     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6227   // Broadcast loads can be handled the same as masked operations to avoid
6228   // changing element size.
6229   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6230     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6231   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6232     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6233   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6234     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6235   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6236     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6237   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6238     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6239   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6240     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6241   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6242     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6243   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6244     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6245   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6246     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6247   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6248     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6249   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6250     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6251   { X86::VORPSZrmb,       X86::VORPDZrmb,
6252     X86::VPORQZrmb,       X86::VPORDZrmb       },
6253   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6254     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6255   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6256     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6257   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6258     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6259   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6260     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6261   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6262     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6263   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6264     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6265   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6266     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6267   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6268     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6269   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6270     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6271   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6272     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6273   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6274     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6275   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6276     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6277   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6278     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6279   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6280     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6281   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6282     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6283   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6284     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6285   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6286     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6287   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6288     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6289   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6290     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6291   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6292     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6293   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6294     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6295   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6296     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6297   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6298     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6299   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6300     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6301   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6302     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6303   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6304     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6305   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6306     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6307 };
6308 
6309 // NOTE: These should only be used by the custom domain methods.
6310 static const uint16_t ReplaceableBlendInstrs[][3] = {
6311   //PackedSingle             PackedDouble             PackedInt
6312   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6313   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6314   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6315   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6316   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6317   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6318 };
6319 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6320   //PackedSingle             PackedDouble             PackedInt
6321   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6322   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6323   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6324   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6325 };
6326 
6327 // Special table for changing EVEX logic instructions to VEX.
6328 // TODO: Should we run EVEX->VEX earlier?
6329 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6330   // Two integer columns for 64-bit and 32-bit elements.
6331   //PackedSingle     PackedDouble     PackedInt           PackedInt
6332   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6333   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6334   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6335   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6336   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6337   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6338   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6339   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6340   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6341   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6342   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6343   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6344   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6345   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6346   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6347   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6348 };
6349 
6350 // FIXME: Some shuffle and unpack instructions have equivalents in different
6351 // domains, but they require a bit more work than just switching opcodes.
6352 
6353 static const uint16_t *lookup(unsigned opcode, unsigned domain,
6354                               ArrayRef<uint16_t[3]> Table) {
6355   for (const uint16_t (&Row)[3] : Table)
6356     if (Row[domain-1] == opcode)
6357       return Row;
6358   return nullptr;
6359 }
6360 
6361 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6362                                     ArrayRef<uint16_t[4]> Table) {
6363   // If this is the integer domain make sure to check both integer columns.
6364   for (const uint16_t (&Row)[4] : Table)
6365     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6366       return Row;
6367   return nullptr;
6368 }
6369 
6370 // Helper to attempt to widen/narrow blend masks.
6371 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6372                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
6373   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6374          "Illegal blend mask scale");
6375   unsigned NewMask = 0;
6376 
6377   if ((OldWidth % NewWidth) == 0) {
6378     unsigned Scale = OldWidth / NewWidth;
6379     unsigned SubMask = (1u << Scale) - 1;
6380     for (unsigned i = 0; i != NewWidth; ++i) {
6381       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6382       if (Sub == SubMask)
6383         NewMask |= (1u << i);
6384       else if (Sub != 0x0)
6385         return false;
6386     }
6387   } else {
6388     unsigned Scale = NewWidth / OldWidth;
6389     unsigned SubMask = (1u << Scale) - 1;
6390     for (unsigned i = 0; i != OldWidth; ++i) {
6391       if (OldMask & (1 << i)) {
6392         NewMask |= (SubMask << (i * Scale));
6393       }
6394     }
6395   }
6396 
6397   if (pNewMask)
6398     *pNewMask = NewMask;
6399   return true;
6400 }
6401 
6402 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6403   unsigned Opcode = MI.getOpcode();
6404   unsigned NumOperands = MI.getDesc().getNumOperands();
6405 
6406   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6407     uint16_t validDomains = 0;
6408     if (MI.getOperand(NumOperands - 1).isImm()) {
6409       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6410       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6411         validDomains |= 0x2; // PackedSingle
6412       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6413         validDomains |= 0x4; // PackedDouble
6414       if (!Is256 || Subtarget.hasAVX2())
6415         validDomains |= 0x8; // PackedInt
6416     }
6417     return validDomains;
6418   };
6419 
6420   switch (Opcode) {
6421   case X86::BLENDPDrmi:
6422   case X86::BLENDPDrri:
6423   case X86::VBLENDPDrmi:
6424   case X86::VBLENDPDrri:
6425     return GetBlendDomains(2, false);
6426   case X86::VBLENDPDYrmi:
6427   case X86::VBLENDPDYrri:
6428     return GetBlendDomains(4, true);
6429   case X86::BLENDPSrmi:
6430   case X86::BLENDPSrri:
6431   case X86::VBLENDPSrmi:
6432   case X86::VBLENDPSrri:
6433   case X86::VPBLENDDrmi:
6434   case X86::VPBLENDDrri:
6435     return GetBlendDomains(4, false);
6436   case X86::VBLENDPSYrmi:
6437   case X86::VBLENDPSYrri:
6438   case X86::VPBLENDDYrmi:
6439   case X86::VPBLENDDYrri:
6440     return GetBlendDomains(8, true);
6441   case X86::PBLENDWrmi:
6442   case X86::PBLENDWrri:
6443   case X86::VPBLENDWrmi:
6444   case X86::VPBLENDWrri:
6445   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6446   case X86::VPBLENDWYrmi:
6447   case X86::VPBLENDWYrri:
6448     return GetBlendDomains(8, false);
6449   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6450   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6451   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6452   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6453   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6454   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6455   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6456   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6457   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6458   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6459   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6460   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6461   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6462   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6463   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6464   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6465     // If we don't have DQI see if we can still switch from an EVEX integer
6466     // instruction to a VEX floating point instruction.
6467     if (Subtarget.hasDQI())
6468       return 0;
6469 
6470     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6471       return 0;
6472     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6473       return 0;
6474     // Register forms will have 3 operands. Memory form will have more.
6475     if (NumOperands == 3 &&
6476         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6477       return 0;
6478 
6479     // All domains are valid.
6480     return 0xe;
6481   case X86::MOVHLPSrr:
6482     // We can swap domains when both inputs are the same register.
6483     // FIXME: This doesn't catch all the cases we would like. If the input
6484     // register isn't KILLed by the instruction, the two address instruction
6485     // pass puts a COPY on one input. The other input uses the original
6486     // register. This prevents the same physical register from being used by
6487     // both inputs.
6488     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6489         MI.getOperand(0).getSubReg() == 0 &&
6490         MI.getOperand(1).getSubReg() == 0 &&
6491         MI.getOperand(2).getSubReg() == 0)
6492       return 0x6;
6493     return 0;
6494   case X86::SHUFPDrri:
6495     return 0x6;
6496   }
6497   return 0;
6498 }
6499 
6500 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6501                                             unsigned Domain) const {
6502   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6503   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6504   assert(dom && "Not an SSE instruction");
6505 
6506   unsigned Opcode = MI.getOpcode();
6507   unsigned NumOperands = MI.getDesc().getNumOperands();
6508 
6509   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6510     if (MI.getOperand(NumOperands - 1).isImm()) {
6511       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6512       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6513       unsigned NewImm = Imm;
6514 
6515       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6516       if (!table)
6517         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6518 
6519       if (Domain == 1) { // PackedSingle
6520         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6521       } else if (Domain == 2) { // PackedDouble
6522         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6523       } else if (Domain == 3) { // PackedInt
6524         if (Subtarget.hasAVX2()) {
6525           // If we are already VPBLENDW use that, else use VPBLENDD.
6526           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6527             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6528             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6529           }
6530         } else {
6531           assert(!Is256 && "128-bit vector expected");
6532           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6533         }
6534       }
6535 
6536       assert(table && table[Domain - 1] && "Unknown domain op");
6537       MI.setDesc(get(table[Domain - 1]));
6538       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6539     }
6540     return true;
6541   };
6542 
6543   switch (Opcode) {
6544   case X86::BLENDPDrmi:
6545   case X86::BLENDPDrri:
6546   case X86::VBLENDPDrmi:
6547   case X86::VBLENDPDrri:
6548     return SetBlendDomain(2, false);
6549   case X86::VBLENDPDYrmi:
6550   case X86::VBLENDPDYrri:
6551     return SetBlendDomain(4, true);
6552   case X86::BLENDPSrmi:
6553   case X86::BLENDPSrri:
6554   case X86::VBLENDPSrmi:
6555   case X86::VBLENDPSrri:
6556   case X86::VPBLENDDrmi:
6557   case X86::VPBLENDDrri:
6558     return SetBlendDomain(4, false);
6559   case X86::VBLENDPSYrmi:
6560   case X86::VBLENDPSYrri:
6561   case X86::VPBLENDDYrmi:
6562   case X86::VPBLENDDYrri:
6563     return SetBlendDomain(8, true);
6564   case X86::PBLENDWrmi:
6565   case X86::PBLENDWrri:
6566   case X86::VPBLENDWrmi:
6567   case X86::VPBLENDWrri:
6568     return SetBlendDomain(8, false);
6569   case X86::VPBLENDWYrmi:
6570   case X86::VPBLENDWYrri:
6571     return SetBlendDomain(16, true);
6572   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6573   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6574   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6575   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6576   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6577   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6578   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6579   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6580   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6581   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6582   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6583   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6584   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6585   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6586   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6587   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6588     // Without DQI, convert EVEX instructions to VEX instructions.
6589     if (Subtarget.hasDQI())
6590       return false;
6591 
6592     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6593                                          ReplaceableCustomAVX512LogicInstrs);
6594     assert(table && "Instruction not found in table?");
6595     // Don't change integer Q instructions to D instructions and
6596     // use D intructions if we started with a PS instruction.
6597     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6598       Domain = 4;
6599     MI.setDesc(get(table[Domain - 1]));
6600     return true;
6601   }
6602   case X86::UNPCKHPDrr:
6603   case X86::MOVHLPSrr:
6604     // We just need to commute the instruction which will switch the domains.
6605     if (Domain != dom && Domain != 3 &&
6606         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6607         MI.getOperand(0).getSubReg() == 0 &&
6608         MI.getOperand(1).getSubReg() == 0 &&
6609         MI.getOperand(2).getSubReg() == 0) {
6610       commuteInstruction(MI, false);
6611       return true;
6612     }
6613     // We must always return true for MOVHLPSrr.
6614     if (Opcode == X86::MOVHLPSrr)
6615       return true;
6616     break;
6617   case X86::SHUFPDrri: {
6618     if (Domain == 1) {
6619       unsigned Imm = MI.getOperand(3).getImm();
6620       unsigned NewImm = 0x44;
6621       if (Imm & 1) NewImm |= 0x0a;
6622       if (Imm & 2) NewImm |= 0xa0;
6623       MI.getOperand(3).setImm(NewImm);
6624       MI.setDesc(get(X86::SHUFPSrri));
6625     }
6626     return true;
6627   }
6628   }
6629   return false;
6630 }
6631 
6632 std::pair<uint16_t, uint16_t>
6633 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6634   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6635   unsigned opcode = MI.getOpcode();
6636   uint16_t validDomains = 0;
6637   if (domain) {
6638     // Attempt to match for custom instructions.
6639     validDomains = getExecutionDomainCustom(MI);
6640     if (validDomains)
6641       return std::make_pair(domain, validDomains);
6642 
6643     if (lookup(opcode, domain, ReplaceableInstrs)) {
6644       validDomains = 0xe;
6645     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6646       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6647     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6648       validDomains = 0x6;
6649     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6650       // Insert/extract instructions should only effect domain if AVX2
6651       // is enabled.
6652       if (!Subtarget.hasAVX2())
6653         return std::make_pair(0, 0);
6654       validDomains = 0xe;
6655     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6656       validDomains = 0xe;
6657     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6658                                                   ReplaceableInstrsAVX512DQ)) {
6659       validDomains = 0xe;
6660     } else if (Subtarget.hasDQI()) {
6661       if (const uint16_t *table = lookupAVX512(opcode, domain,
6662                                              ReplaceableInstrsAVX512DQMasked)) {
6663         if (domain == 1 || (domain == 3 && table[3] == opcode))
6664           validDomains = 0xa;
6665         else
6666           validDomains = 0xc;
6667       }
6668     }
6669   }
6670   return std::make_pair(domain, validDomains);
6671 }
6672 
6673 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6674   assert(Domain>0 && Domain<4 && "Invalid execution domain");
6675   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6676   assert(dom && "Not an SSE instruction");
6677 
6678   // Attempt to match for custom instructions.
6679   if (setExecutionDomainCustom(MI, Domain))
6680     return;
6681 
6682   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6683   if (!table) { // try the other table
6684     assert((Subtarget.hasAVX2() || Domain < 3) &&
6685            "256-bit vector operations only available in AVX2");
6686     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6687   }
6688   if (!table) { // try the FP table
6689     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6690     assert((!table || Domain < 3) &&
6691            "Can only select PackedSingle or PackedDouble");
6692   }
6693   if (!table) { // try the other table
6694     assert(Subtarget.hasAVX2() &&
6695            "256-bit insert/extract only available in AVX2");
6696     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6697   }
6698   if (!table) { // try the AVX512 table
6699     assert(Subtarget.hasAVX512() && "Requires AVX-512");
6700     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6701     // Don't change integer Q instructions to D instructions.
6702     if (table && Domain == 3 && table[3] == MI.getOpcode())
6703       Domain = 4;
6704   }
6705   if (!table) { // try the AVX512DQ table
6706     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6707     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6708     // Don't change integer Q instructions to D instructions and
6709     // use D intructions if we started with a PS instruction.
6710     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6711       Domain = 4;
6712   }
6713   if (!table) { // try the AVX512DQMasked table
6714     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6715     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6716     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6717       Domain = 4;
6718   }
6719   assert(table && "Cannot change domain");
6720   MI.setDesc(get(table[Domain - 1]));
6721 }
6722 
6723 /// Return the noop instruction to use for a noop.
6724 void X86InstrInfo::getNoop(MCInst &NopInst) const {
6725   NopInst.setOpcode(X86::NOOP);
6726 }
6727 
6728 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6729   switch (opc) {
6730   default: return false;
6731   case X86::DIVPDrm:
6732   case X86::DIVPDrr:
6733   case X86::DIVPSrm:
6734   case X86::DIVPSrr:
6735   case X86::DIVSDrm:
6736   case X86::DIVSDrm_Int:
6737   case X86::DIVSDrr:
6738   case X86::DIVSDrr_Int:
6739   case X86::DIVSSrm:
6740   case X86::DIVSSrm_Int:
6741   case X86::DIVSSrr:
6742   case X86::DIVSSrr_Int:
6743   case X86::SQRTPDm:
6744   case X86::SQRTPDr:
6745   case X86::SQRTPSm:
6746   case X86::SQRTPSr:
6747   case X86::SQRTSDm:
6748   case X86::SQRTSDm_Int:
6749   case X86::SQRTSDr:
6750   case X86::SQRTSDr_Int:
6751   case X86::SQRTSSm:
6752   case X86::SQRTSSm_Int:
6753   case X86::SQRTSSr:
6754   case X86::SQRTSSr_Int:
6755   // AVX instructions with high latency
6756   case X86::VDIVPDrm:
6757   case X86::VDIVPDrr:
6758   case X86::VDIVPDYrm:
6759   case X86::VDIVPDYrr:
6760   case X86::VDIVPSrm:
6761   case X86::VDIVPSrr:
6762   case X86::VDIVPSYrm:
6763   case X86::VDIVPSYrr:
6764   case X86::VDIVSDrm:
6765   case X86::VDIVSDrm_Int:
6766   case X86::VDIVSDrr:
6767   case X86::VDIVSDrr_Int:
6768   case X86::VDIVSSrm:
6769   case X86::VDIVSSrm_Int:
6770   case X86::VDIVSSrr:
6771   case X86::VDIVSSrr_Int:
6772   case X86::VSQRTPDm:
6773   case X86::VSQRTPDr:
6774   case X86::VSQRTPDYm:
6775   case X86::VSQRTPDYr:
6776   case X86::VSQRTPSm:
6777   case X86::VSQRTPSr:
6778   case X86::VSQRTPSYm:
6779   case X86::VSQRTPSYr:
6780   case X86::VSQRTSDm:
6781   case X86::VSQRTSDm_Int:
6782   case X86::VSQRTSDr:
6783   case X86::VSQRTSDr_Int:
6784   case X86::VSQRTSSm:
6785   case X86::VSQRTSSm_Int:
6786   case X86::VSQRTSSr:
6787   case X86::VSQRTSSr_Int:
6788   // AVX512 instructions with high latency
6789   case X86::VDIVPDZ128rm:
6790   case X86::VDIVPDZ128rmb:
6791   case X86::VDIVPDZ128rmbk:
6792   case X86::VDIVPDZ128rmbkz:
6793   case X86::VDIVPDZ128rmk:
6794   case X86::VDIVPDZ128rmkz:
6795   case X86::VDIVPDZ128rr:
6796   case X86::VDIVPDZ128rrk:
6797   case X86::VDIVPDZ128rrkz:
6798   case X86::VDIVPDZ256rm:
6799   case X86::VDIVPDZ256rmb:
6800   case X86::VDIVPDZ256rmbk:
6801   case X86::VDIVPDZ256rmbkz:
6802   case X86::VDIVPDZ256rmk:
6803   case X86::VDIVPDZ256rmkz:
6804   case X86::VDIVPDZ256rr:
6805   case X86::VDIVPDZ256rrk:
6806   case X86::VDIVPDZ256rrkz:
6807   case X86::VDIVPDZrrb:
6808   case X86::VDIVPDZrrbk:
6809   case X86::VDIVPDZrrbkz:
6810   case X86::VDIVPDZrm:
6811   case X86::VDIVPDZrmb:
6812   case X86::VDIVPDZrmbk:
6813   case X86::VDIVPDZrmbkz:
6814   case X86::VDIVPDZrmk:
6815   case X86::VDIVPDZrmkz:
6816   case X86::VDIVPDZrr:
6817   case X86::VDIVPDZrrk:
6818   case X86::VDIVPDZrrkz:
6819   case X86::VDIVPSZ128rm:
6820   case X86::VDIVPSZ128rmb:
6821   case X86::VDIVPSZ128rmbk:
6822   case X86::VDIVPSZ128rmbkz:
6823   case X86::VDIVPSZ128rmk:
6824   case X86::VDIVPSZ128rmkz:
6825   case X86::VDIVPSZ128rr:
6826   case X86::VDIVPSZ128rrk:
6827   case X86::VDIVPSZ128rrkz:
6828   case X86::VDIVPSZ256rm:
6829   case X86::VDIVPSZ256rmb:
6830   case X86::VDIVPSZ256rmbk:
6831   case X86::VDIVPSZ256rmbkz:
6832   case X86::VDIVPSZ256rmk:
6833   case X86::VDIVPSZ256rmkz:
6834   case X86::VDIVPSZ256rr:
6835   case X86::VDIVPSZ256rrk:
6836   case X86::VDIVPSZ256rrkz:
6837   case X86::VDIVPSZrrb:
6838   case X86::VDIVPSZrrbk:
6839   case X86::VDIVPSZrrbkz:
6840   case X86::VDIVPSZrm:
6841   case X86::VDIVPSZrmb:
6842   case X86::VDIVPSZrmbk:
6843   case X86::VDIVPSZrmbkz:
6844   case X86::VDIVPSZrmk:
6845   case X86::VDIVPSZrmkz:
6846   case X86::VDIVPSZrr:
6847   case X86::VDIVPSZrrk:
6848   case X86::VDIVPSZrrkz:
6849   case X86::VDIVSDZrm:
6850   case X86::VDIVSDZrr:
6851   case X86::VDIVSDZrm_Int:
6852   case X86::VDIVSDZrm_Intk:
6853   case X86::VDIVSDZrm_Intkz:
6854   case X86::VDIVSDZrr_Int:
6855   case X86::VDIVSDZrr_Intk:
6856   case X86::VDIVSDZrr_Intkz:
6857   case X86::VDIVSDZrrb_Int:
6858   case X86::VDIVSDZrrb_Intk:
6859   case X86::VDIVSDZrrb_Intkz:
6860   case X86::VDIVSSZrm:
6861   case X86::VDIVSSZrr:
6862   case X86::VDIVSSZrm_Int:
6863   case X86::VDIVSSZrm_Intk:
6864   case X86::VDIVSSZrm_Intkz:
6865   case X86::VDIVSSZrr_Int:
6866   case X86::VDIVSSZrr_Intk:
6867   case X86::VDIVSSZrr_Intkz:
6868   case X86::VDIVSSZrrb_Int:
6869   case X86::VDIVSSZrrb_Intk:
6870   case X86::VDIVSSZrrb_Intkz:
6871   case X86::VSQRTPDZ128m:
6872   case X86::VSQRTPDZ128mb:
6873   case X86::VSQRTPDZ128mbk:
6874   case X86::VSQRTPDZ128mbkz:
6875   case X86::VSQRTPDZ128mk:
6876   case X86::VSQRTPDZ128mkz:
6877   case X86::VSQRTPDZ128r:
6878   case X86::VSQRTPDZ128rk:
6879   case X86::VSQRTPDZ128rkz:
6880   case X86::VSQRTPDZ256m:
6881   case X86::VSQRTPDZ256mb:
6882   case X86::VSQRTPDZ256mbk:
6883   case X86::VSQRTPDZ256mbkz:
6884   case X86::VSQRTPDZ256mk:
6885   case X86::VSQRTPDZ256mkz:
6886   case X86::VSQRTPDZ256r:
6887   case X86::VSQRTPDZ256rk:
6888   case X86::VSQRTPDZ256rkz:
6889   case X86::VSQRTPDZm:
6890   case X86::VSQRTPDZmb:
6891   case X86::VSQRTPDZmbk:
6892   case X86::VSQRTPDZmbkz:
6893   case X86::VSQRTPDZmk:
6894   case X86::VSQRTPDZmkz:
6895   case X86::VSQRTPDZr:
6896   case X86::VSQRTPDZrb:
6897   case X86::VSQRTPDZrbk:
6898   case X86::VSQRTPDZrbkz:
6899   case X86::VSQRTPDZrk:
6900   case X86::VSQRTPDZrkz:
6901   case X86::VSQRTPSZ128m:
6902   case X86::VSQRTPSZ128mb:
6903   case X86::VSQRTPSZ128mbk:
6904   case X86::VSQRTPSZ128mbkz:
6905   case X86::VSQRTPSZ128mk:
6906   case X86::VSQRTPSZ128mkz:
6907   case X86::VSQRTPSZ128r:
6908   case X86::VSQRTPSZ128rk:
6909   case X86::VSQRTPSZ128rkz:
6910   case X86::VSQRTPSZ256m:
6911   case X86::VSQRTPSZ256mb:
6912   case X86::VSQRTPSZ256mbk:
6913   case X86::VSQRTPSZ256mbkz:
6914   case X86::VSQRTPSZ256mk:
6915   case X86::VSQRTPSZ256mkz:
6916   case X86::VSQRTPSZ256r:
6917   case X86::VSQRTPSZ256rk:
6918   case X86::VSQRTPSZ256rkz:
6919   case X86::VSQRTPSZm:
6920   case X86::VSQRTPSZmb:
6921   case X86::VSQRTPSZmbk:
6922   case X86::VSQRTPSZmbkz:
6923   case X86::VSQRTPSZmk:
6924   case X86::VSQRTPSZmkz:
6925   case X86::VSQRTPSZr:
6926   case X86::VSQRTPSZrb:
6927   case X86::VSQRTPSZrbk:
6928   case X86::VSQRTPSZrbkz:
6929   case X86::VSQRTPSZrk:
6930   case X86::VSQRTPSZrkz:
6931   case X86::VSQRTSDZm:
6932   case X86::VSQRTSDZm_Int:
6933   case X86::VSQRTSDZm_Intk:
6934   case X86::VSQRTSDZm_Intkz:
6935   case X86::VSQRTSDZr:
6936   case X86::VSQRTSDZr_Int:
6937   case X86::VSQRTSDZr_Intk:
6938   case X86::VSQRTSDZr_Intkz:
6939   case X86::VSQRTSDZrb_Int:
6940   case X86::VSQRTSDZrb_Intk:
6941   case X86::VSQRTSDZrb_Intkz:
6942   case X86::VSQRTSSZm:
6943   case X86::VSQRTSSZm_Int:
6944   case X86::VSQRTSSZm_Intk:
6945   case X86::VSQRTSSZm_Intkz:
6946   case X86::VSQRTSSZr:
6947   case X86::VSQRTSSZr_Int:
6948   case X86::VSQRTSSZr_Intk:
6949   case X86::VSQRTSSZr_Intkz:
6950   case X86::VSQRTSSZrb_Int:
6951   case X86::VSQRTSSZrb_Intk:
6952   case X86::VSQRTSSZrb_Intkz:
6953 
6954   case X86::VGATHERDPDYrm:
6955   case X86::VGATHERDPDZ128rm:
6956   case X86::VGATHERDPDZ256rm:
6957   case X86::VGATHERDPDZrm:
6958   case X86::VGATHERDPDrm:
6959   case X86::VGATHERDPSYrm:
6960   case X86::VGATHERDPSZ128rm:
6961   case X86::VGATHERDPSZ256rm:
6962   case X86::VGATHERDPSZrm:
6963   case X86::VGATHERDPSrm:
6964   case X86::VGATHERPF0DPDm:
6965   case X86::VGATHERPF0DPSm:
6966   case X86::VGATHERPF0QPDm:
6967   case X86::VGATHERPF0QPSm:
6968   case X86::VGATHERPF1DPDm:
6969   case X86::VGATHERPF1DPSm:
6970   case X86::VGATHERPF1QPDm:
6971   case X86::VGATHERPF1QPSm:
6972   case X86::VGATHERQPDYrm:
6973   case X86::VGATHERQPDZ128rm:
6974   case X86::VGATHERQPDZ256rm:
6975   case X86::VGATHERQPDZrm:
6976   case X86::VGATHERQPDrm:
6977   case X86::VGATHERQPSYrm:
6978   case X86::VGATHERQPSZ128rm:
6979   case X86::VGATHERQPSZ256rm:
6980   case X86::VGATHERQPSZrm:
6981   case X86::VGATHERQPSrm:
6982   case X86::VPGATHERDDYrm:
6983   case X86::VPGATHERDDZ128rm:
6984   case X86::VPGATHERDDZ256rm:
6985   case X86::VPGATHERDDZrm:
6986   case X86::VPGATHERDDrm:
6987   case X86::VPGATHERDQYrm:
6988   case X86::VPGATHERDQZ128rm:
6989   case X86::VPGATHERDQZ256rm:
6990   case X86::VPGATHERDQZrm:
6991   case X86::VPGATHERDQrm:
6992   case X86::VPGATHERQDYrm:
6993   case X86::VPGATHERQDZ128rm:
6994   case X86::VPGATHERQDZ256rm:
6995   case X86::VPGATHERQDZrm:
6996   case X86::VPGATHERQDrm:
6997   case X86::VPGATHERQQYrm:
6998   case X86::VPGATHERQQZ128rm:
6999   case X86::VPGATHERQQZ256rm:
7000   case X86::VPGATHERQQZrm:
7001   case X86::VPGATHERQQrm:
7002   case X86::VSCATTERDPDZ128mr:
7003   case X86::VSCATTERDPDZ256mr:
7004   case X86::VSCATTERDPDZmr:
7005   case X86::VSCATTERDPSZ128mr:
7006   case X86::VSCATTERDPSZ256mr:
7007   case X86::VSCATTERDPSZmr:
7008   case X86::VSCATTERPF0DPDm:
7009   case X86::VSCATTERPF0DPSm:
7010   case X86::VSCATTERPF0QPDm:
7011   case X86::VSCATTERPF0QPSm:
7012   case X86::VSCATTERPF1DPDm:
7013   case X86::VSCATTERPF1DPSm:
7014   case X86::VSCATTERPF1QPDm:
7015   case X86::VSCATTERPF1QPSm:
7016   case X86::VSCATTERQPDZ128mr:
7017   case X86::VSCATTERQPDZ256mr:
7018   case X86::VSCATTERQPDZmr:
7019   case X86::VSCATTERQPSZ128mr:
7020   case X86::VSCATTERQPSZ256mr:
7021   case X86::VSCATTERQPSZmr:
7022   case X86::VPSCATTERDDZ128mr:
7023   case X86::VPSCATTERDDZ256mr:
7024   case X86::VPSCATTERDDZmr:
7025   case X86::VPSCATTERDQZ128mr:
7026   case X86::VPSCATTERDQZ256mr:
7027   case X86::VPSCATTERDQZmr:
7028   case X86::VPSCATTERQDZ128mr:
7029   case X86::VPSCATTERQDZ256mr:
7030   case X86::VPSCATTERQDZmr:
7031   case X86::VPSCATTERQQZ128mr:
7032   case X86::VPSCATTERQQZ256mr:
7033   case X86::VPSCATTERQQZmr:
7034     return true;
7035   }
7036 }
7037 
7038 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7039                                          const MachineRegisterInfo *MRI,
7040                                          const MachineInstr &DefMI,
7041                                          unsigned DefIdx,
7042                                          const MachineInstr &UseMI,
7043                                          unsigned UseIdx) const {
7044   return isHighLatencyDef(DefMI.getOpcode());
7045 }
7046 
7047 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7048                                            const MachineBasicBlock *MBB) const {
7049   assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
7050          "Reassociation needs binary operators");
7051 
7052   // Integer binary math/logic instructions have a third source operand:
7053   // the EFLAGS register. That operand must be both defined here and never
7054   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7055   // not change anything because rearranging the operands could affect other
7056   // instructions that depend on the exact status flags (zero, sign, etc.)
7057   // that are set by using these particular operands with this operation.
7058   if (Inst.getNumOperands() == 4) {
7059     assert(Inst.getOperand(3).isReg() &&
7060            Inst.getOperand(3).getReg() == X86::EFLAGS &&
7061            "Unexpected operand in reassociable instruction");
7062     if (!Inst.getOperand(3).isDead())
7063       return false;
7064   }
7065 
7066   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7067 }
7068 
7069 // TODO: There are many more machine instruction opcodes to match:
7070 //       1. Other data types (integer, vectors)
7071 //       2. Other math / logic operations (xor, or)
7072 //       3. Other forms of the same operation (intrinsics and other variants)
7073 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7074   switch (Inst.getOpcode()) {
7075   case X86::AND8rr:
7076   case X86::AND16rr:
7077   case X86::AND32rr:
7078   case X86::AND64rr:
7079   case X86::OR8rr:
7080   case X86::OR16rr:
7081   case X86::OR32rr:
7082   case X86::OR64rr:
7083   case X86::XOR8rr:
7084   case X86::XOR16rr:
7085   case X86::XOR32rr:
7086   case X86::XOR64rr:
7087   case X86::IMUL16rr:
7088   case X86::IMUL32rr:
7089   case X86::IMUL64rr:
7090   case X86::PANDrr:
7091   case X86::PORrr:
7092   case X86::PXORrr:
7093   case X86::ANDPDrr:
7094   case X86::ANDPSrr:
7095   case X86::ORPDrr:
7096   case X86::ORPSrr:
7097   case X86::XORPDrr:
7098   case X86::XORPSrr:
7099   case X86::PADDBrr:
7100   case X86::PADDWrr:
7101   case X86::PADDDrr:
7102   case X86::PADDQrr:
7103   case X86::PMULLWrr:
7104   case X86::PMULLDrr:
7105   case X86::PMAXSBrr:
7106   case X86::PMAXSDrr:
7107   case X86::PMAXSWrr:
7108   case X86::PMAXUBrr:
7109   case X86::PMAXUDrr:
7110   case X86::PMAXUWrr:
7111   case X86::PMINSBrr:
7112   case X86::PMINSDrr:
7113   case X86::PMINSWrr:
7114   case X86::PMINUBrr:
7115   case X86::PMINUDrr:
7116   case X86::PMINUWrr:
7117   case X86::VPANDrr:
7118   case X86::VPANDYrr:
7119   case X86::VPANDDZ128rr:
7120   case X86::VPANDDZ256rr:
7121   case X86::VPANDDZrr:
7122   case X86::VPANDQZ128rr:
7123   case X86::VPANDQZ256rr:
7124   case X86::VPANDQZrr:
7125   case X86::VPORrr:
7126   case X86::VPORYrr:
7127   case X86::VPORDZ128rr:
7128   case X86::VPORDZ256rr:
7129   case X86::VPORDZrr:
7130   case X86::VPORQZ128rr:
7131   case X86::VPORQZ256rr:
7132   case X86::VPORQZrr:
7133   case X86::VPXORrr:
7134   case X86::VPXORYrr:
7135   case X86::VPXORDZ128rr:
7136   case X86::VPXORDZ256rr:
7137   case X86::VPXORDZrr:
7138   case X86::VPXORQZ128rr:
7139   case X86::VPXORQZ256rr:
7140   case X86::VPXORQZrr:
7141   case X86::VANDPDrr:
7142   case X86::VANDPSrr:
7143   case X86::VANDPDYrr:
7144   case X86::VANDPSYrr:
7145   case X86::VANDPDZ128rr:
7146   case X86::VANDPSZ128rr:
7147   case X86::VANDPDZ256rr:
7148   case X86::VANDPSZ256rr:
7149   case X86::VANDPDZrr:
7150   case X86::VANDPSZrr:
7151   case X86::VORPDrr:
7152   case X86::VORPSrr:
7153   case X86::VORPDYrr:
7154   case X86::VORPSYrr:
7155   case X86::VORPDZ128rr:
7156   case X86::VORPSZ128rr:
7157   case X86::VORPDZ256rr:
7158   case X86::VORPSZ256rr:
7159   case X86::VORPDZrr:
7160   case X86::VORPSZrr:
7161   case X86::VXORPDrr:
7162   case X86::VXORPSrr:
7163   case X86::VXORPDYrr:
7164   case X86::VXORPSYrr:
7165   case X86::VXORPDZ128rr:
7166   case X86::VXORPSZ128rr:
7167   case X86::VXORPDZ256rr:
7168   case X86::VXORPSZ256rr:
7169   case X86::VXORPDZrr:
7170   case X86::VXORPSZrr:
7171   case X86::KADDBrr:
7172   case X86::KADDWrr:
7173   case X86::KADDDrr:
7174   case X86::KADDQrr:
7175   case X86::KANDBrr:
7176   case X86::KANDWrr:
7177   case X86::KANDDrr:
7178   case X86::KANDQrr:
7179   case X86::KORBrr:
7180   case X86::KORWrr:
7181   case X86::KORDrr:
7182   case X86::KORQrr:
7183   case X86::KXORBrr:
7184   case X86::KXORWrr:
7185   case X86::KXORDrr:
7186   case X86::KXORQrr:
7187   case X86::VPADDBrr:
7188   case X86::VPADDWrr:
7189   case X86::VPADDDrr:
7190   case X86::VPADDQrr:
7191   case X86::VPADDBYrr:
7192   case X86::VPADDWYrr:
7193   case X86::VPADDDYrr:
7194   case X86::VPADDQYrr:
7195   case X86::VPADDBZ128rr:
7196   case X86::VPADDWZ128rr:
7197   case X86::VPADDDZ128rr:
7198   case X86::VPADDQZ128rr:
7199   case X86::VPADDBZ256rr:
7200   case X86::VPADDWZ256rr:
7201   case X86::VPADDDZ256rr:
7202   case X86::VPADDQZ256rr:
7203   case X86::VPADDBZrr:
7204   case X86::VPADDWZrr:
7205   case X86::VPADDDZrr:
7206   case X86::VPADDQZrr:
7207   case X86::VPMULLWrr:
7208   case X86::VPMULLWYrr:
7209   case X86::VPMULLWZ128rr:
7210   case X86::VPMULLWZ256rr:
7211   case X86::VPMULLWZrr:
7212   case X86::VPMULLDrr:
7213   case X86::VPMULLDYrr:
7214   case X86::VPMULLDZ128rr:
7215   case X86::VPMULLDZ256rr:
7216   case X86::VPMULLDZrr:
7217   case X86::VPMULLQZ128rr:
7218   case X86::VPMULLQZ256rr:
7219   case X86::VPMULLQZrr:
7220   case X86::VPMAXSBrr:
7221   case X86::VPMAXSBYrr:
7222   case X86::VPMAXSBZ128rr:
7223   case X86::VPMAXSBZ256rr:
7224   case X86::VPMAXSBZrr:
7225   case X86::VPMAXSDrr:
7226   case X86::VPMAXSDYrr:
7227   case X86::VPMAXSDZ128rr:
7228   case X86::VPMAXSDZ256rr:
7229   case X86::VPMAXSDZrr:
7230   case X86::VPMAXSQZ128rr:
7231   case X86::VPMAXSQZ256rr:
7232   case X86::VPMAXSQZrr:
7233   case X86::VPMAXSWrr:
7234   case X86::VPMAXSWYrr:
7235   case X86::VPMAXSWZ128rr:
7236   case X86::VPMAXSWZ256rr:
7237   case X86::VPMAXSWZrr:
7238   case X86::VPMAXUBrr:
7239   case X86::VPMAXUBYrr:
7240   case X86::VPMAXUBZ128rr:
7241   case X86::VPMAXUBZ256rr:
7242   case X86::VPMAXUBZrr:
7243   case X86::VPMAXUDrr:
7244   case X86::VPMAXUDYrr:
7245   case X86::VPMAXUDZ128rr:
7246   case X86::VPMAXUDZ256rr:
7247   case X86::VPMAXUDZrr:
7248   case X86::VPMAXUQZ128rr:
7249   case X86::VPMAXUQZ256rr:
7250   case X86::VPMAXUQZrr:
7251   case X86::VPMAXUWrr:
7252   case X86::VPMAXUWYrr:
7253   case X86::VPMAXUWZ128rr:
7254   case X86::VPMAXUWZ256rr:
7255   case X86::VPMAXUWZrr:
7256   case X86::VPMINSBrr:
7257   case X86::VPMINSBYrr:
7258   case X86::VPMINSBZ128rr:
7259   case X86::VPMINSBZ256rr:
7260   case X86::VPMINSBZrr:
7261   case X86::VPMINSDrr:
7262   case X86::VPMINSDYrr:
7263   case X86::VPMINSDZ128rr:
7264   case X86::VPMINSDZ256rr:
7265   case X86::VPMINSDZrr:
7266   case X86::VPMINSQZ128rr:
7267   case X86::VPMINSQZ256rr:
7268   case X86::VPMINSQZrr:
7269   case X86::VPMINSWrr:
7270   case X86::VPMINSWYrr:
7271   case X86::VPMINSWZ128rr:
7272   case X86::VPMINSWZ256rr:
7273   case X86::VPMINSWZrr:
7274   case X86::VPMINUBrr:
7275   case X86::VPMINUBYrr:
7276   case X86::VPMINUBZ128rr:
7277   case X86::VPMINUBZ256rr:
7278   case X86::VPMINUBZrr:
7279   case X86::VPMINUDrr:
7280   case X86::VPMINUDYrr:
7281   case X86::VPMINUDZ128rr:
7282   case X86::VPMINUDZ256rr:
7283   case X86::VPMINUDZrr:
7284   case X86::VPMINUQZ128rr:
7285   case X86::VPMINUQZ256rr:
7286   case X86::VPMINUQZrr:
7287   case X86::VPMINUWrr:
7288   case X86::VPMINUWYrr:
7289   case X86::VPMINUWZ128rr:
7290   case X86::VPMINUWZ256rr:
7291   case X86::VPMINUWZrr:
7292   // Normal min/max instructions are not commutative because of NaN and signed
7293   // zero semantics, but these are. Thus, there's no need to check for global
7294   // relaxed math; the instructions themselves have the properties we need.
7295   case X86::MAXCPDrr:
7296   case X86::MAXCPSrr:
7297   case X86::MAXCSDrr:
7298   case X86::MAXCSSrr:
7299   case X86::MINCPDrr:
7300   case X86::MINCPSrr:
7301   case X86::MINCSDrr:
7302   case X86::MINCSSrr:
7303   case X86::VMAXCPDrr:
7304   case X86::VMAXCPSrr:
7305   case X86::VMAXCPDYrr:
7306   case X86::VMAXCPSYrr:
7307   case X86::VMAXCPDZ128rr:
7308   case X86::VMAXCPSZ128rr:
7309   case X86::VMAXCPDZ256rr:
7310   case X86::VMAXCPSZ256rr:
7311   case X86::VMAXCPDZrr:
7312   case X86::VMAXCPSZrr:
7313   case X86::VMAXCSDrr:
7314   case X86::VMAXCSSrr:
7315   case X86::VMAXCSDZrr:
7316   case X86::VMAXCSSZrr:
7317   case X86::VMINCPDrr:
7318   case X86::VMINCPSrr:
7319   case X86::VMINCPDYrr:
7320   case X86::VMINCPSYrr:
7321   case X86::VMINCPDZ128rr:
7322   case X86::VMINCPSZ128rr:
7323   case X86::VMINCPDZ256rr:
7324   case X86::VMINCPSZ256rr:
7325   case X86::VMINCPDZrr:
7326   case X86::VMINCPSZrr:
7327   case X86::VMINCSDrr:
7328   case X86::VMINCSSrr:
7329   case X86::VMINCSDZrr:
7330   case X86::VMINCSSZrr:
7331     return true;
7332   case X86::ADDPDrr:
7333   case X86::ADDPSrr:
7334   case X86::ADDSDrr:
7335   case X86::ADDSSrr:
7336   case X86::MULPDrr:
7337   case X86::MULPSrr:
7338   case X86::MULSDrr:
7339   case X86::MULSSrr:
7340   case X86::VADDPDrr:
7341   case X86::VADDPSrr:
7342   case X86::VADDPDYrr:
7343   case X86::VADDPSYrr:
7344   case X86::VADDPDZ128rr:
7345   case X86::VADDPSZ128rr:
7346   case X86::VADDPDZ256rr:
7347   case X86::VADDPSZ256rr:
7348   case X86::VADDPDZrr:
7349   case X86::VADDPSZrr:
7350   case X86::VADDSDrr:
7351   case X86::VADDSSrr:
7352   case X86::VADDSDZrr:
7353   case X86::VADDSSZrr:
7354   case X86::VMULPDrr:
7355   case X86::VMULPSrr:
7356   case X86::VMULPDYrr:
7357   case X86::VMULPSYrr:
7358   case X86::VMULPDZ128rr:
7359   case X86::VMULPSZ128rr:
7360   case X86::VMULPDZ256rr:
7361   case X86::VMULPSZ256rr:
7362   case X86::VMULPDZrr:
7363   case X86::VMULPSZrr:
7364   case X86::VMULSDrr:
7365   case X86::VMULSSrr:
7366   case X86::VMULSDZrr:
7367   case X86::VMULSSZrr:
7368     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7369   default:
7370     return false;
7371   }
7372 }
7373 
7374 /// This is an architecture-specific helper function of reassociateOps.
7375 /// Set special operand attributes for new instructions after reassociation.
7376 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7377                                          MachineInstr &OldMI2,
7378                                          MachineInstr &NewMI1,
7379                                          MachineInstr &NewMI2) const {
7380   // Integer instructions define an implicit EFLAGS source register operand as
7381   // the third source (fourth total) operand.
7382   if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7383     return;
7384 
7385   assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7386          "Unexpected instruction type for reassociation");
7387 
7388   MachineOperand &OldOp1 = OldMI1.getOperand(3);
7389   MachineOperand &OldOp2 = OldMI2.getOperand(3);
7390   MachineOperand &NewOp1 = NewMI1.getOperand(3);
7391   MachineOperand &NewOp2 = NewMI2.getOperand(3);
7392 
7393   assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7394          "Must have dead EFLAGS operand in reassociable instruction");
7395   assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7396          "Must have dead EFLAGS operand in reassociable instruction");
7397 
7398   (void)OldOp1;
7399   (void)OldOp2;
7400 
7401   assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7402          "Unexpected operand in reassociable instruction");
7403   assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7404          "Unexpected operand in reassociable instruction");
7405 
7406   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7407   // of this pass or other passes. The EFLAGS operands must be dead in these new
7408   // instructions because the EFLAGS operands in the original instructions must
7409   // be dead in order for reassociation to occur.
7410   NewOp1.setIsDead();
7411   NewOp2.setIsDead();
7412 }
7413 
7414 std::pair<unsigned, unsigned>
7415 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7416   return std::make_pair(TF, 0u);
7417 }
7418 
7419 ArrayRef<std::pair<unsigned, const char *>>
7420 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7421   using namespace X86II;
7422   static const std::pair<unsigned, const char *> TargetFlags[] = {
7423       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7424       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7425       {MO_GOT, "x86-got"},
7426       {MO_GOTOFF, "x86-gotoff"},
7427       {MO_GOTPCREL, "x86-gotpcrel"},
7428       {MO_PLT, "x86-plt"},
7429       {MO_TLSGD, "x86-tlsgd"},
7430       {MO_TLSLD, "x86-tlsld"},
7431       {MO_TLSLDM, "x86-tlsldm"},
7432       {MO_GOTTPOFF, "x86-gottpoff"},
7433       {MO_INDNTPOFF, "x86-indntpoff"},
7434       {MO_TPOFF, "x86-tpoff"},
7435       {MO_DTPOFF, "x86-dtpoff"},
7436       {MO_NTPOFF, "x86-ntpoff"},
7437       {MO_GOTNTPOFF, "x86-gotntpoff"},
7438       {MO_DLLIMPORT, "x86-dllimport"},
7439       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7440       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7441       {MO_TLVP, "x86-tlvp"},
7442       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7443       {MO_SECREL, "x86-secrel"},
7444       {MO_COFFSTUB, "x86-coffstub"}};
7445   return makeArrayRef(TargetFlags);
7446 }
7447 
7448 namespace {
7449   /// Create Global Base Reg pass. This initializes the PIC
7450   /// global base register for x86-32.
7451   struct CGBR : public MachineFunctionPass {
7452     static char ID;
7453     CGBR() : MachineFunctionPass(ID) {}
7454 
7455     bool runOnMachineFunction(MachineFunction &MF) override {
7456       const X86TargetMachine *TM =
7457         static_cast<const X86TargetMachine *>(&MF.getTarget());
7458       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7459 
7460       // Don't do anything in the 64-bit small and kernel code models. They use
7461       // RIP-relative addressing for everything.
7462       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7463                             TM->getCodeModel() == CodeModel::Kernel))
7464         return false;
7465 
7466       // Only emit a global base reg in PIC mode.
7467       if (!TM->isPositionIndependent())
7468         return false;
7469 
7470       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7471       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7472 
7473       // If we didn't need a GlobalBaseReg, don't insert code.
7474       if (GlobalBaseReg == 0)
7475         return false;
7476 
7477       // Insert the set of GlobalBaseReg into the first MBB of the function
7478       MachineBasicBlock &FirstMBB = MF.front();
7479       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7480       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7481       MachineRegisterInfo &RegInfo = MF.getRegInfo();
7482       const X86InstrInfo *TII = STI.getInstrInfo();
7483 
7484       unsigned PC;
7485       if (STI.isPICStyleGOT())
7486         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7487       else
7488         PC = GlobalBaseReg;
7489 
7490       if (STI.is64Bit()) {
7491         if (TM->getCodeModel() == CodeModel::Medium) {
7492           // In the medium code model, use a RIP-relative LEA to materialize the
7493           // GOT.
7494           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7495               .addReg(X86::RIP)
7496               .addImm(0)
7497               .addReg(0)
7498               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7499               .addReg(0);
7500         } else if (TM->getCodeModel() == CodeModel::Large) {
7501           // In the large code model, we are aiming for this code, though the
7502           // register allocation may vary:
7503           //   leaq .LN$pb(%rip), %rax
7504           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7505           //   addq %rcx, %rax
7506           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7507           unsigned PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7508           unsigned GOTReg =
7509               RegInfo.createVirtualRegister(&X86::GR64RegClass);
7510           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7511               .addReg(X86::RIP)
7512               .addImm(0)
7513               .addReg(0)
7514               .addSym(MF.getPICBaseSymbol())
7515               .addReg(0);
7516           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7517           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7518               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7519                                  X86II::MO_PIC_BASE_OFFSET);
7520           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7521               .addReg(PBReg, RegState::Kill)
7522               .addReg(GOTReg, RegState::Kill);
7523         } else {
7524           llvm_unreachable("unexpected code model");
7525         }
7526       } else {
7527         // Operand of MovePCtoStack is completely ignored by asm printer. It's
7528         // only used in JIT code emission as displacement to pc.
7529         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7530 
7531         // If we're using vanilla 'GOT' PIC style, we should use relative
7532         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7533         if (STI.isPICStyleGOT()) {
7534           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7535           // %some_register
7536           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7537               .addReg(PC)
7538               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7539                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
7540         }
7541       }
7542 
7543       return true;
7544     }
7545 
7546     StringRef getPassName() const override {
7547       return "X86 PIC Global Base Reg Initialization";
7548     }
7549 
7550     void getAnalysisUsage(AnalysisUsage &AU) const override {
7551       AU.setPreservesCFG();
7552       MachineFunctionPass::getAnalysisUsage(AU);
7553     }
7554   };
7555 }
7556 
7557 char CGBR::ID = 0;
7558 FunctionPass*
7559 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7560 
7561 namespace {
7562   struct LDTLSCleanup : public MachineFunctionPass {
7563     static char ID;
7564     LDTLSCleanup() : MachineFunctionPass(ID) {}
7565 
7566     bool runOnMachineFunction(MachineFunction &MF) override {
7567       if (skipFunction(MF.getFunction()))
7568         return false;
7569 
7570       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7571       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7572         // No point folding accesses if there isn't at least two.
7573         return false;
7574       }
7575 
7576       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7577       return VisitNode(DT->getRootNode(), 0);
7578     }
7579 
7580     // Visit the dominator subtree rooted at Node in pre-order.
7581     // If TLSBaseAddrReg is non-null, then use that to replace any
7582     // TLS_base_addr instructions. Otherwise, create the register
7583     // when the first such instruction is seen, and then use it
7584     // as we encounter more instructions.
7585     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7586       MachineBasicBlock *BB = Node->getBlock();
7587       bool Changed = false;
7588 
7589       // Traverse the current block.
7590       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7591            ++I) {
7592         switch (I->getOpcode()) {
7593           case X86::TLS_base_addr32:
7594           case X86::TLS_base_addr64:
7595             if (TLSBaseAddrReg)
7596               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7597             else
7598               I = SetRegister(*I, &TLSBaseAddrReg);
7599             Changed = true;
7600             break;
7601           default:
7602             break;
7603         }
7604       }
7605 
7606       // Visit the children of this block in the dominator tree.
7607       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7608            I != E; ++I) {
7609         Changed |= VisitNode(*I, TLSBaseAddrReg);
7610       }
7611 
7612       return Changed;
7613     }
7614 
7615     // Replace the TLS_base_addr instruction I with a copy from
7616     // TLSBaseAddrReg, returning the new instruction.
7617     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7618                                          unsigned TLSBaseAddrReg) {
7619       MachineFunction *MF = I.getParent()->getParent();
7620       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7621       const bool is64Bit = STI.is64Bit();
7622       const X86InstrInfo *TII = STI.getInstrInfo();
7623 
7624       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7625       MachineInstr *Copy =
7626           BuildMI(*I.getParent(), I, I.getDebugLoc(),
7627                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7628               .addReg(TLSBaseAddrReg);
7629 
7630       // Erase the TLS_base_addr instruction.
7631       I.eraseFromParent();
7632 
7633       return Copy;
7634     }
7635 
7636     // Create a virtual register in *TLSBaseAddrReg, and populate it by
7637     // inserting a copy instruction after I. Returns the new instruction.
7638     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7639       MachineFunction *MF = I.getParent()->getParent();
7640       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7641       const bool is64Bit = STI.is64Bit();
7642       const X86InstrInfo *TII = STI.getInstrInfo();
7643 
7644       // Create a virtual register for the TLS base address.
7645       MachineRegisterInfo &RegInfo = MF->getRegInfo();
7646       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7647                                                       ? &X86::GR64RegClass
7648                                                       : &X86::GR32RegClass);
7649 
7650       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7651       MachineInstr *Next = I.getNextNode();
7652       MachineInstr *Copy =
7653           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7654                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7655               .addReg(is64Bit ? X86::RAX : X86::EAX);
7656 
7657       return Copy;
7658     }
7659 
7660     StringRef getPassName() const override {
7661       return "Local Dynamic TLS Access Clean-up";
7662     }
7663 
7664     void getAnalysisUsage(AnalysisUsage &AU) const override {
7665       AU.setPreservesCFG();
7666       AU.addRequired<MachineDominatorTree>();
7667       MachineFunctionPass::getAnalysisUsage(AU);
7668     }
7669   };
7670 }
7671 
7672 char LDTLSCleanup::ID = 0;
7673 FunctionPass*
7674 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7675 
7676 /// Constants defining how certain sequences should be outlined.
7677 ///
7678 /// \p MachineOutlinerDefault implies that the function is called with a call
7679 /// instruction, and a return must be emitted for the outlined function frame.
7680 ///
7681 /// That is,
7682 ///
7683 /// I1                                 OUTLINED_FUNCTION:
7684 /// I2 --> call OUTLINED_FUNCTION       I1
7685 /// I3                                  I2
7686 ///                                     I3
7687 ///                                     ret
7688 ///
7689 /// * Call construction overhead: 1 (call instruction)
7690 /// * Frame construction overhead: 1 (return instruction)
7691 ///
7692 /// \p MachineOutlinerTailCall implies that the function is being tail called.
7693 /// A jump is emitted instead of a call, and the return is already present in
7694 /// the outlined sequence. That is,
7695 ///
7696 /// I1                                 OUTLINED_FUNCTION:
7697 /// I2 --> jmp OUTLINED_FUNCTION       I1
7698 /// ret                                I2
7699 ///                                    ret
7700 ///
7701 /// * Call construction overhead: 1 (jump instruction)
7702 /// * Frame construction overhead: 0 (don't need to return)
7703 ///
7704 enum MachineOutlinerClass {
7705   MachineOutlinerDefault,
7706   MachineOutlinerTailCall
7707 };
7708 
7709 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7710     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7711   unsigned SequenceSize =
7712       std::accumulate(RepeatedSequenceLocs[0].front(),
7713                       std::next(RepeatedSequenceLocs[0].back()), 0,
7714                       [](unsigned Sum, const MachineInstr &MI) {
7715                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
7716                         // we can't tell the cost.  Just assume each instruction
7717                         // is one byte.
7718                         if (MI.isDebugInstr() || MI.isKill())
7719                           return Sum;
7720                         return Sum + 1;
7721                       });
7722 
7723   // FIXME: Use real size in bytes for call and ret instructions.
7724   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7725     for (outliner::Candidate &C : RepeatedSequenceLocs)
7726       C.setCallInfo(MachineOutlinerTailCall, 1);
7727 
7728     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7729                                       0, // Number of bytes to emit frame.
7730                                       MachineOutlinerTailCall // Type of frame.
7731     );
7732   }
7733 
7734   for (outliner::Candidate &C : RepeatedSequenceLocs)
7735     C.setCallInfo(MachineOutlinerDefault, 1);
7736 
7737   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7738                                     MachineOutlinerDefault);
7739 }
7740 
7741 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7742                                            bool OutlineFromLinkOnceODRs) const {
7743   const Function &F = MF.getFunction();
7744 
7745   // Does the function use a red zone? If it does, then we can't risk messing
7746   // with the stack.
7747   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
7748     // It could have a red zone. If it does, then we don't want to touch it.
7749     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7750     if (!X86FI || X86FI->getUsesRedZone())
7751       return false;
7752   }
7753 
7754   // If we *don't* want to outline from things that could potentially be deduped
7755   // then return false.
7756   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7757       return false;
7758 
7759   // This function is viable for outlining, so return true.
7760   return true;
7761 }
7762 
7763 outliner::InstrType
7764 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
7765   MachineInstr &MI = *MIT;
7766   // Don't allow debug values to impact outlining type.
7767   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7768     return outliner::InstrType::Invisible;
7769 
7770   // At this point, KILL instructions don't really tell us much so we can go
7771   // ahead and skip over them.
7772   if (MI.isKill())
7773     return outliner::InstrType::Invisible;
7774 
7775   // Is this a tail call? If yes, we can outline as a tail call.
7776   if (isTailCall(MI))
7777     return outliner::InstrType::Legal;
7778 
7779   // Is this the terminator of a basic block?
7780   if (MI.isTerminator() || MI.isReturn()) {
7781 
7782     // Does its parent have any successors in its MachineFunction?
7783     if (MI.getParent()->succ_empty())
7784       return outliner::InstrType::Legal;
7785 
7786     // It does, so we can't tail call it.
7787     return outliner::InstrType::Illegal;
7788   }
7789 
7790   // Don't outline anything that modifies or reads from the stack pointer.
7791   //
7792   // FIXME: There are instructions which are being manually built without
7793   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7794   // able to remove the extra checks once those are fixed up. For example,
7795   // sometimes we might get something like %rax = POP64r 1. This won't be
7796   // caught by modifiesRegister or readsRegister even though the instruction
7797   // really ought to be formed so that modifiesRegister/readsRegister would
7798   // catch it.
7799   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7800       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7801       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7802     return outliner::InstrType::Illegal;
7803 
7804   // Outlined calls change the instruction pointer, so don't read from it.
7805   if (MI.readsRegister(X86::RIP, &RI) ||
7806       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7807       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7808     return outliner::InstrType::Illegal;
7809 
7810   // Positions can't safely be outlined.
7811   if (MI.isPosition())
7812     return outliner::InstrType::Illegal;
7813 
7814   // Make sure none of the operands of this instruction do anything tricky.
7815   for (const MachineOperand &MOP : MI.operands())
7816     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7817         MOP.isTargetIndex())
7818       return outliner::InstrType::Illegal;
7819 
7820   return outliner::InstrType::Legal;
7821 }
7822 
7823 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7824                                           MachineFunction &MF,
7825                                           const outliner::OutlinedFunction &OF)
7826                                           const {
7827   // If we're a tail call, we already have a return, so don't do anything.
7828   if (OF.FrameConstructionID == MachineOutlinerTailCall)
7829     return;
7830 
7831   // We're a normal call, so our sequence doesn't have a return instruction.
7832   // Add it in.
7833   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7834   MBB.insert(MBB.end(), retq);
7835 }
7836 
7837 MachineBasicBlock::iterator
7838 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7839                                  MachineBasicBlock::iterator &It,
7840                                  MachineFunction &MF,
7841                                  const outliner::Candidate &C) const {
7842   // Is it a tail call?
7843   if (C.CallConstructionID == MachineOutlinerTailCall) {
7844     // Yes, just insert a JMP.
7845     It = MBB.insert(It,
7846                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7847                       .addGlobalAddress(M.getNamedValue(MF.getName())));
7848   } else {
7849     // No, insert a call.
7850     It = MBB.insert(It,
7851                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7852                       .addGlobalAddress(M.getNamedValue(MF.getName())));
7853   }
7854 
7855   return It;
7856 }
7857 
7858 #define GET_INSTRINFO_HELPERS
7859 #include "X86GenInstrInfo.inc"
7860