xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineCombinerPattern.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/StackMaps.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <optional>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-instr-info"
53 
54 #define GET_INSTRINFO_CTOR_DTOR
55 #include "X86GenInstrInfo.inc"
56 
57 static cl::opt<bool>
58     NoFusing("disable-spill-fusing",
59              cl::desc("Disable fusing of spill code into instructions"),
60              cl::Hidden);
61 static cl::opt<bool>
62     PrintFailedFusing("print-failed-fuse-candidates",
63                       cl::desc("Print instructions that the allocator wants to"
64                                " fuse, but the X86 backend currently can't"),
65                       cl::Hidden);
66 static cl::opt<bool>
67     ReMatPICStubLoad("remat-pic-stub-load",
68                      cl::desc("Re-materialize load from stub in PIC mode"),
69                      cl::init(false), cl::Hidden);
70 static cl::opt<unsigned>
71     PartialRegUpdateClearance("partial-reg-update-clearance",
72                               cl::desc("Clearance between two register writes "
73                                        "for inserting XOR to avoid partial "
74                                        "register update"),
75                               cl::init(64), cl::Hidden);
76 static cl::opt<unsigned> UndefRegClearance(
77     "undef-reg-clearance",
78     cl::desc("How many idle instructions we would like before "
79              "certain undef register reads"),
80     cl::init(128), cl::Hidden);
81 
82 // Pin the vtable to this file.
83 void X86InstrInfo::anchor() {}
84 
85 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
86     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
87                                                : X86::ADJCALLSTACKDOWN32),
88                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
89                                                : X86::ADJCALLSTACKUP32),
90                       X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)),
91       Subtarget(STI), RI(STI.getTargetTriple()) {}
92 
93 const TargetRegisterClass *
94 X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
95                           const TargetRegisterInfo *TRI,
96                           const MachineFunction &MF) const {
97   auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF);
98   // If the target does not have egpr, then r16-r31 will be resereved for all
99   // instructions.
100   if (!RC || !Subtarget.hasEGPR())
101     return RC;
102 
103   if (X86II::canUseApxExtendedReg(MCID))
104     return RC;
105 
106   switch (RC->getID()) {
107   default:
108     return RC;
109   case X86::GR8RegClassID:
110     return &X86::GR8_NOREX2RegClass;
111   case X86::GR16RegClassID:
112     return &X86::GR16_NOREX2RegClass;
113   case X86::GR32RegClassID:
114     return &X86::GR32_NOREX2RegClass;
115   case X86::GR64RegClassID:
116     return &X86::GR64_NOREX2RegClass;
117   case X86::GR32_NOSPRegClassID:
118     return &X86::GR32_NOREX2_NOSPRegClass;
119   case X86::GR64_NOSPRegClassID:
120     return &X86::GR64_NOREX2_NOSPRegClass;
121   }
122 }
123 
124 bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
125                                          Register &SrcReg, Register &DstReg,
126                                          unsigned &SubIdx) const {
127   switch (MI.getOpcode()) {
128   default:
129     break;
130   case X86::MOVSX16rr8:
131   case X86::MOVZX16rr8:
132   case X86::MOVSX32rr8:
133   case X86::MOVZX32rr8:
134   case X86::MOVSX64rr8:
135     if (!Subtarget.is64Bit())
136       // It's not always legal to reference the low 8-bit of the larger
137       // register in 32-bit mode.
138       return false;
139     [[fallthrough]];
140   case X86::MOVSX32rr16:
141   case X86::MOVZX32rr16:
142   case X86::MOVSX64rr16:
143   case X86::MOVSX64rr32: {
144     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
145       // Be conservative.
146       return false;
147     SrcReg = MI.getOperand(1).getReg();
148     DstReg = MI.getOperand(0).getReg();
149     switch (MI.getOpcode()) {
150     default:
151       llvm_unreachable("Unreachable!");
152     case X86::MOVSX16rr8:
153     case X86::MOVZX16rr8:
154     case X86::MOVSX32rr8:
155     case X86::MOVZX32rr8:
156     case X86::MOVSX64rr8:
157       SubIdx = X86::sub_8bit;
158       break;
159     case X86::MOVSX32rr16:
160     case X86::MOVZX32rr16:
161     case X86::MOVSX64rr16:
162       SubIdx = X86::sub_16bit;
163       break;
164     case X86::MOVSX64rr32:
165       SubIdx = X86::sub_32bit;
166       break;
167     }
168     return true;
169   }
170   }
171   return false;
172 }
173 
174 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
175   if (MI.mayLoad() || MI.mayStore())
176     return false;
177 
178   // Some target-independent operations that trivially lower to data-invariant
179   // instructions.
180   if (MI.isCopyLike() || MI.isInsertSubreg())
181     return true;
182 
183   unsigned Opcode = MI.getOpcode();
184   using namespace X86;
185   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
186   // However, they set flags and are perhaps the most surprisingly constant
187   // time operations so we call them out here separately.
188   if (isIMUL(Opcode))
189     return true;
190   // Bit scanning and counting instructions that are somewhat surprisingly
191   // constant time as they scan across bits and do other fairly complex
192   // operations like popcnt, but are believed to be constant time on x86.
193   // However, these set flags.
194   if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
195       isTZCNT(Opcode))
196     return true;
197   // Bit manipulation instructions are effectively combinations of basic
198   // arithmetic ops, and should still execute in constant time. These also
199   // set flags.
200   if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
201       isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
202       isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
203       isTZMSK(Opcode))
204     return true;
205   // Bit extracting and clearing instructions should execute in constant time,
206   // and set flags.
207   if (isBEXTR(Opcode) || isBZHI(Opcode))
208     return true;
209   // Shift and rotate.
210   if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
211       isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
212     return true;
213   // Basic arithmetic is constant time on the input but does set flags.
214   if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
215       isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
216     return true;
217   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
218   if (isANDN(Opcode))
219     return true;
220   // Unary arithmetic operations.
221   if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
222     return true;
223   // Unlike other arithmetic, NOT doesn't set EFLAGS.
224   if (isNOT(Opcode))
225     return true;
226   // Various move instructions used to zero or sign extend things. Note that we
227   // intentionally don't support the _NOREX variants as we can't handle that
228   // register constraint anyways.
229   if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
230     return true;
231   // Arithmetic instructions that are both constant time and don't set flags.
232   if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
233     return true;
234   // LEA doesn't actually access memory, and its arithmetic is constant time.
235   if (isLEA(Opcode))
236     return true;
237   // By default, assume that the instruction is not data invariant.
238   return false;
239 }
240 
241 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
242   switch (MI.getOpcode()) {
243   default:
244     // By default, assume that the load will immediately leak.
245     return false;
246 
247   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
248   // However, they set flags and are perhaps the most surprisingly constant
249   // time operations so we call them out here separately.
250   case X86::IMUL16rm:
251   case X86::IMUL16rmi:
252   case X86::IMUL32rm:
253   case X86::IMUL32rmi:
254   case X86::IMUL64rm:
255   case X86::IMUL64rmi32:
256 
257   // Bit scanning and counting instructions that are somewhat surprisingly
258   // constant time as they scan across bits and do other fairly complex
259   // operations like popcnt, but are believed to be constant time on x86.
260   // However, these set flags.
261   case X86::BSF16rm:
262   case X86::BSF32rm:
263   case X86::BSF64rm:
264   case X86::BSR16rm:
265   case X86::BSR32rm:
266   case X86::BSR64rm:
267   case X86::LZCNT16rm:
268   case X86::LZCNT32rm:
269   case X86::LZCNT64rm:
270   case X86::POPCNT16rm:
271   case X86::POPCNT32rm:
272   case X86::POPCNT64rm:
273   case X86::TZCNT16rm:
274   case X86::TZCNT32rm:
275   case X86::TZCNT64rm:
276 
277   // Bit manipulation instructions are effectively combinations of basic
278   // arithmetic ops, and should still execute in constant time. These also
279   // set flags.
280   case X86::BLCFILL32rm:
281   case X86::BLCFILL64rm:
282   case X86::BLCI32rm:
283   case X86::BLCI64rm:
284   case X86::BLCIC32rm:
285   case X86::BLCIC64rm:
286   case X86::BLCMSK32rm:
287   case X86::BLCMSK64rm:
288   case X86::BLCS32rm:
289   case X86::BLCS64rm:
290   case X86::BLSFILL32rm:
291   case X86::BLSFILL64rm:
292   case X86::BLSI32rm:
293   case X86::BLSI64rm:
294   case X86::BLSIC32rm:
295   case X86::BLSIC64rm:
296   case X86::BLSMSK32rm:
297   case X86::BLSMSK64rm:
298   case X86::BLSR32rm:
299   case X86::BLSR64rm:
300   case X86::TZMSK32rm:
301   case X86::TZMSK64rm:
302 
303   // Bit extracting and clearing instructions should execute in constant time,
304   // and set flags.
305   case X86::BEXTR32rm:
306   case X86::BEXTR64rm:
307   case X86::BEXTRI32mi:
308   case X86::BEXTRI64mi:
309   case X86::BZHI32rm:
310   case X86::BZHI64rm:
311 
312   // Basic arithmetic is constant time on the input but does set flags.
313   case X86::ADC8rm:
314   case X86::ADC16rm:
315   case X86::ADC32rm:
316   case X86::ADC64rm:
317   case X86::ADD8rm:
318   case X86::ADD16rm:
319   case X86::ADD32rm:
320   case X86::ADD64rm:
321   case X86::AND8rm:
322   case X86::AND16rm:
323   case X86::AND32rm:
324   case X86::AND64rm:
325   case X86::ANDN32rm:
326   case X86::ANDN64rm:
327   case X86::OR8rm:
328   case X86::OR16rm:
329   case X86::OR32rm:
330   case X86::OR64rm:
331   case X86::SBB8rm:
332   case X86::SBB16rm:
333   case X86::SBB32rm:
334   case X86::SBB64rm:
335   case X86::SUB8rm:
336   case X86::SUB16rm:
337   case X86::SUB32rm:
338   case X86::SUB64rm:
339   case X86::XOR8rm:
340   case X86::XOR16rm:
341   case X86::XOR32rm:
342   case X86::XOR64rm:
343 
344   // Integer multiply w/o affecting flags is still believed to be constant
345   // time on x86. Called out separately as this is among the most surprising
346   // instructions to exhibit that behavior.
347   case X86::MULX32rm:
348   case X86::MULX64rm:
349 
350   // Arithmetic instructions that are both constant time and don't set flags.
351   case X86::RORX32mi:
352   case X86::RORX64mi:
353   case X86::SARX32rm:
354   case X86::SARX64rm:
355   case X86::SHLX32rm:
356   case X86::SHLX64rm:
357   case X86::SHRX32rm:
358   case X86::SHRX64rm:
359 
360   // Conversions are believed to be constant time and don't set flags.
361   case X86::CVTTSD2SI64rm:
362   case X86::VCVTTSD2SI64rm:
363   case X86::VCVTTSD2SI64Zrm:
364   case X86::CVTTSD2SIrm:
365   case X86::VCVTTSD2SIrm:
366   case X86::VCVTTSD2SIZrm:
367   case X86::CVTTSS2SI64rm:
368   case X86::VCVTTSS2SI64rm:
369   case X86::VCVTTSS2SI64Zrm:
370   case X86::CVTTSS2SIrm:
371   case X86::VCVTTSS2SIrm:
372   case X86::VCVTTSS2SIZrm:
373   case X86::CVTSI2SDrm:
374   case X86::VCVTSI2SDrm:
375   case X86::VCVTSI2SDZrm:
376   case X86::CVTSI2SSrm:
377   case X86::VCVTSI2SSrm:
378   case X86::VCVTSI2SSZrm:
379   case X86::CVTSI642SDrm:
380   case X86::VCVTSI642SDrm:
381   case X86::VCVTSI642SDZrm:
382   case X86::CVTSI642SSrm:
383   case X86::VCVTSI642SSrm:
384   case X86::VCVTSI642SSZrm:
385   case X86::CVTSS2SDrm:
386   case X86::VCVTSS2SDrm:
387   case X86::VCVTSS2SDZrm:
388   case X86::CVTSD2SSrm:
389   case X86::VCVTSD2SSrm:
390   case X86::VCVTSD2SSZrm:
391   // AVX512 added unsigned integer conversions.
392   case X86::VCVTTSD2USI64Zrm:
393   case X86::VCVTTSD2USIZrm:
394   case X86::VCVTTSS2USI64Zrm:
395   case X86::VCVTTSS2USIZrm:
396   case X86::VCVTUSI2SDZrm:
397   case X86::VCVTUSI642SDZrm:
398   case X86::VCVTUSI2SSZrm:
399   case X86::VCVTUSI642SSZrm:
400 
401   // Loads to register don't set flags.
402   case X86::MOV8rm:
403   case X86::MOV8rm_NOREX:
404   case X86::MOV16rm:
405   case X86::MOV32rm:
406   case X86::MOV64rm:
407   case X86::MOVSX16rm8:
408   case X86::MOVSX32rm16:
409   case X86::MOVSX32rm8:
410   case X86::MOVSX32rm8_NOREX:
411   case X86::MOVSX64rm16:
412   case X86::MOVSX64rm32:
413   case X86::MOVSX64rm8:
414   case X86::MOVZX16rm8:
415   case X86::MOVZX32rm16:
416   case X86::MOVZX32rm8:
417   case X86::MOVZX32rm8_NOREX:
418   case X86::MOVZX64rm16:
419   case X86::MOVZX64rm8:
420     return true;
421   }
422 }
423 
424 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
425   const MachineFunction *MF = MI.getParent()->getParent();
426   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
427 
428   if (isFrameInstr(MI)) {
429     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
430     SPAdj -= getFrameAdjustment(MI);
431     if (!isFrameSetup(MI))
432       SPAdj = -SPAdj;
433     return SPAdj;
434   }
435 
436   // To know whether a call adjusts the stack, we need information
437   // that is bound to the following ADJCALLSTACKUP pseudo.
438   // Look for the next ADJCALLSTACKUP that follows the call.
439   if (MI.isCall()) {
440     const MachineBasicBlock *MBB = MI.getParent();
441     auto I = ++MachineBasicBlock::const_iterator(MI);
442     for (auto E = MBB->end(); I != E; ++I) {
443       if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall())
444         break;
445     }
446 
447     // If we could not find a frame destroy opcode, then it has already
448     // been simplified, so we don't care.
449     if (I->getOpcode() != getCallFrameDestroyOpcode())
450       return 0;
451 
452     return -(I->getOperand(1).getImm());
453   }
454 
455   // Currently handle only PUSHes we can reasonably expect to see
456   // in call sequences
457   switch (MI.getOpcode()) {
458   default:
459     return 0;
460   case X86::PUSH32r:
461   case X86::PUSH32rmm:
462   case X86::PUSH32rmr:
463   case X86::PUSH32i:
464     return 4;
465   case X86::PUSH64r:
466   case X86::PUSH64rmm:
467   case X86::PUSH64rmr:
468   case X86::PUSH64i32:
469     return 8;
470   }
471 }
472 
473 /// Return true and the FrameIndex if the specified
474 /// operand and follow operands form a reference to the stack frame.
475 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
476                                   int &FrameIndex) const {
477   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
478       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
479       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
480       MI.getOperand(Op + X86::AddrDisp).isImm() &&
481       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
482       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
483       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
484     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
485     return true;
486   }
487   return false;
488 }
489 
490 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
491   switch (Opcode) {
492   default:
493     return false;
494   case X86::MOV8rm:
495   case X86::KMOVBkm:
496   case X86::KMOVBkm_EVEX:
497     MemBytes = 1;
498     return true;
499   case X86::MOV16rm:
500   case X86::KMOVWkm:
501   case X86::KMOVWkm_EVEX:
502   case X86::VMOVSHZrm:
503   case X86::VMOVSHZrm_alt:
504     MemBytes = 2;
505     return true;
506   case X86::MOV32rm:
507   case X86::MOVSSrm:
508   case X86::MOVSSrm_alt:
509   case X86::VMOVSSrm:
510   case X86::VMOVSSrm_alt:
511   case X86::VMOVSSZrm:
512   case X86::VMOVSSZrm_alt:
513   case X86::KMOVDkm:
514   case X86::KMOVDkm_EVEX:
515     MemBytes = 4;
516     return true;
517   case X86::MOV64rm:
518   case X86::LD_Fp64m:
519   case X86::MOVSDrm:
520   case X86::MOVSDrm_alt:
521   case X86::VMOVSDrm:
522   case X86::VMOVSDrm_alt:
523   case X86::VMOVSDZrm:
524   case X86::VMOVSDZrm_alt:
525   case X86::MMX_MOVD64rm:
526   case X86::MMX_MOVQ64rm:
527   case X86::KMOVQkm:
528   case X86::KMOVQkm_EVEX:
529     MemBytes = 8;
530     return true;
531   case X86::MOVAPSrm:
532   case X86::MOVUPSrm:
533   case X86::MOVAPDrm:
534   case X86::MOVUPDrm:
535   case X86::MOVDQArm:
536   case X86::MOVDQUrm:
537   case X86::VMOVAPSrm:
538   case X86::VMOVUPSrm:
539   case X86::VMOVAPDrm:
540   case X86::VMOVUPDrm:
541   case X86::VMOVDQArm:
542   case X86::VMOVDQUrm:
543   case X86::VMOVAPSZ128rm:
544   case X86::VMOVUPSZ128rm:
545   case X86::VMOVAPSZ128rm_NOVLX:
546   case X86::VMOVUPSZ128rm_NOVLX:
547   case X86::VMOVAPDZ128rm:
548   case X86::VMOVUPDZ128rm:
549   case X86::VMOVDQU8Z128rm:
550   case X86::VMOVDQU16Z128rm:
551   case X86::VMOVDQA32Z128rm:
552   case X86::VMOVDQU32Z128rm:
553   case X86::VMOVDQA64Z128rm:
554   case X86::VMOVDQU64Z128rm:
555     MemBytes = 16;
556     return true;
557   case X86::VMOVAPSYrm:
558   case X86::VMOVUPSYrm:
559   case X86::VMOVAPDYrm:
560   case X86::VMOVUPDYrm:
561   case X86::VMOVDQAYrm:
562   case X86::VMOVDQUYrm:
563   case X86::VMOVAPSZ256rm:
564   case X86::VMOVUPSZ256rm:
565   case X86::VMOVAPSZ256rm_NOVLX:
566   case X86::VMOVUPSZ256rm_NOVLX:
567   case X86::VMOVAPDZ256rm:
568   case X86::VMOVUPDZ256rm:
569   case X86::VMOVDQU8Z256rm:
570   case X86::VMOVDQU16Z256rm:
571   case X86::VMOVDQA32Z256rm:
572   case X86::VMOVDQU32Z256rm:
573   case X86::VMOVDQA64Z256rm:
574   case X86::VMOVDQU64Z256rm:
575     MemBytes = 32;
576     return true;
577   case X86::VMOVAPSZrm:
578   case X86::VMOVUPSZrm:
579   case X86::VMOVAPDZrm:
580   case X86::VMOVUPDZrm:
581   case X86::VMOVDQU8Zrm:
582   case X86::VMOVDQU16Zrm:
583   case X86::VMOVDQA32Zrm:
584   case X86::VMOVDQU32Zrm:
585   case X86::VMOVDQA64Zrm:
586   case X86::VMOVDQU64Zrm:
587     MemBytes = 64;
588     return true;
589   }
590 }
591 
592 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
593   switch (Opcode) {
594   default:
595     return false;
596   case X86::MOV8mr:
597   case X86::KMOVBmk:
598   case X86::KMOVBmk_EVEX:
599     MemBytes = 1;
600     return true;
601   case X86::MOV16mr:
602   case X86::KMOVWmk:
603   case X86::KMOVWmk_EVEX:
604   case X86::VMOVSHZmr:
605     MemBytes = 2;
606     return true;
607   case X86::MOV32mr:
608   case X86::MOVSSmr:
609   case X86::VMOVSSmr:
610   case X86::VMOVSSZmr:
611   case X86::KMOVDmk:
612   case X86::KMOVDmk_EVEX:
613     MemBytes = 4;
614     return true;
615   case X86::MOV64mr:
616   case X86::ST_FpP64m:
617   case X86::MOVSDmr:
618   case X86::VMOVSDmr:
619   case X86::VMOVSDZmr:
620   case X86::MMX_MOVD64mr:
621   case X86::MMX_MOVQ64mr:
622   case X86::MMX_MOVNTQmr:
623   case X86::KMOVQmk:
624   case X86::KMOVQmk_EVEX:
625     MemBytes = 8;
626     return true;
627   case X86::MOVAPSmr:
628   case X86::MOVUPSmr:
629   case X86::MOVAPDmr:
630   case X86::MOVUPDmr:
631   case X86::MOVDQAmr:
632   case X86::MOVDQUmr:
633   case X86::VMOVAPSmr:
634   case X86::VMOVUPSmr:
635   case X86::VMOVAPDmr:
636   case X86::VMOVUPDmr:
637   case X86::VMOVDQAmr:
638   case X86::VMOVDQUmr:
639   case X86::VMOVUPSZ128mr:
640   case X86::VMOVAPSZ128mr:
641   case X86::VMOVUPSZ128mr_NOVLX:
642   case X86::VMOVAPSZ128mr_NOVLX:
643   case X86::VMOVUPDZ128mr:
644   case X86::VMOVAPDZ128mr:
645   case X86::VMOVDQA32Z128mr:
646   case X86::VMOVDQU32Z128mr:
647   case X86::VMOVDQA64Z128mr:
648   case X86::VMOVDQU64Z128mr:
649   case X86::VMOVDQU8Z128mr:
650   case X86::VMOVDQU16Z128mr:
651     MemBytes = 16;
652     return true;
653   case X86::VMOVUPSYmr:
654   case X86::VMOVAPSYmr:
655   case X86::VMOVUPDYmr:
656   case X86::VMOVAPDYmr:
657   case X86::VMOVDQUYmr:
658   case X86::VMOVDQAYmr:
659   case X86::VMOVUPSZ256mr:
660   case X86::VMOVAPSZ256mr:
661   case X86::VMOVUPSZ256mr_NOVLX:
662   case X86::VMOVAPSZ256mr_NOVLX:
663   case X86::VMOVUPDZ256mr:
664   case X86::VMOVAPDZ256mr:
665   case X86::VMOVDQU8Z256mr:
666   case X86::VMOVDQU16Z256mr:
667   case X86::VMOVDQA32Z256mr:
668   case X86::VMOVDQU32Z256mr:
669   case X86::VMOVDQA64Z256mr:
670   case X86::VMOVDQU64Z256mr:
671     MemBytes = 32;
672     return true;
673   case X86::VMOVUPSZmr:
674   case X86::VMOVAPSZmr:
675   case X86::VMOVUPDZmr:
676   case X86::VMOVAPDZmr:
677   case X86::VMOVDQU8Zmr:
678   case X86::VMOVDQU16Zmr:
679   case X86::VMOVDQA32Zmr:
680   case X86::VMOVDQU32Zmr:
681   case X86::VMOVDQA64Zmr:
682   case X86::VMOVDQU64Zmr:
683     MemBytes = 64;
684     return true;
685   }
686   return false;
687 }
688 
689 Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
690                                            int &FrameIndex) const {
691   unsigned Dummy;
692   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
693 }
694 
695 Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
696                                            int &FrameIndex,
697                                            unsigned &MemBytes) const {
698   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
699     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
700       return MI.getOperand(0).getReg();
701   return 0;
702 }
703 
704 Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
705                                                  int &FrameIndex) const {
706   unsigned Dummy;
707   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
708     unsigned Reg;
709     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
710       return Reg;
711     // Check for post-frame index elimination operations
712     SmallVector<const MachineMemOperand *, 1> Accesses;
713     if (hasLoadFromStackSlot(MI, Accesses)) {
714       FrameIndex =
715           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
716               ->getFrameIndex();
717       return MI.getOperand(0).getReg();
718     }
719   }
720   return 0;
721 }
722 
723 Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
724                                           int &FrameIndex) const {
725   unsigned Dummy;
726   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
727 }
728 
729 Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
730                                           int &FrameIndex,
731                                           unsigned &MemBytes) const {
732   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
733     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
734         isFrameOperand(MI, 0, FrameIndex))
735       return MI.getOperand(X86::AddrNumOperands).getReg();
736   return 0;
737 }
738 
739 Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
740                                                 int &FrameIndex) const {
741   unsigned Dummy;
742   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
743     unsigned Reg;
744     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
745       return Reg;
746     // Check for post-frame index elimination operations
747     SmallVector<const MachineMemOperand *, 1> Accesses;
748     if (hasStoreToStackSlot(MI, Accesses)) {
749       FrameIndex =
750           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
751               ->getFrameIndex();
752       return MI.getOperand(X86::AddrNumOperands).getReg();
753     }
754   }
755   return 0;
756 }
757 
758 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
759 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
760   // Don't waste compile time scanning use-def chains of physregs.
761   if (!BaseReg.isVirtual())
762     return false;
763   bool isPICBase = false;
764   for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) {
765     if (DefMI.getOpcode() != X86::MOVPC32r)
766       return false;
767     assert(!isPICBase && "More than one PIC base?");
768     isPICBase = true;
769   }
770   return isPICBase;
771 }
772 
773 bool X86InstrInfo::isReallyTriviallyReMaterializable(
774     const MachineInstr &MI) const {
775   switch (MI.getOpcode()) {
776   default:
777     // This function should only be called for opcodes with the ReMaterializable
778     // flag set.
779     llvm_unreachable("Unknown rematerializable operation!");
780     break;
781   case X86::IMPLICIT_DEF:
782     // Defer to generic logic.
783     break;
784   case X86::LOAD_STACK_GUARD:
785   case X86::LD_Fp032:
786   case X86::LD_Fp064:
787   case X86::LD_Fp080:
788   case X86::LD_Fp132:
789   case X86::LD_Fp164:
790   case X86::LD_Fp180:
791   case X86::AVX1_SETALLONES:
792   case X86::AVX2_SETALLONES:
793   case X86::AVX512_128_SET0:
794   case X86::AVX512_256_SET0:
795   case X86::AVX512_512_SET0:
796   case X86::AVX512_512_SETALLONES:
797   case X86::AVX512_FsFLD0SD:
798   case X86::AVX512_FsFLD0SH:
799   case X86::AVX512_FsFLD0SS:
800   case X86::AVX512_FsFLD0F128:
801   case X86::AVX_SET0:
802   case X86::FsFLD0SD:
803   case X86::FsFLD0SS:
804   case X86::FsFLD0SH:
805   case X86::FsFLD0F128:
806   case X86::KSET0D:
807   case X86::KSET0Q:
808   case X86::KSET0W:
809   case X86::KSET1D:
810   case X86::KSET1Q:
811   case X86::KSET1W:
812   case X86::MMX_SET0:
813   case X86::MOV32ImmSExti8:
814   case X86::MOV32r0:
815   case X86::MOV32r1:
816   case X86::MOV32r_1:
817   case X86::MOV32ri64:
818   case X86::MOV64ImmSExti8:
819   case X86::V_SET0:
820   case X86::V_SETALLONES:
821   case X86::MOV16ri:
822   case X86::MOV32ri:
823   case X86::MOV64ri:
824   case X86::MOV64ri32:
825   case X86::MOV8ri:
826   case X86::PTILEZEROV:
827     return true;
828 
829   case X86::MOV8rm:
830   case X86::MOV8rm_NOREX:
831   case X86::MOV16rm:
832   case X86::MOV32rm:
833   case X86::MOV64rm:
834   case X86::MOVSSrm:
835   case X86::MOVSSrm_alt:
836   case X86::MOVSDrm:
837   case X86::MOVSDrm_alt:
838   case X86::MOVAPSrm:
839   case X86::MOVUPSrm:
840   case X86::MOVAPDrm:
841   case X86::MOVUPDrm:
842   case X86::MOVDQArm:
843   case X86::MOVDQUrm:
844   case X86::VMOVSSrm:
845   case X86::VMOVSSrm_alt:
846   case X86::VMOVSDrm:
847   case X86::VMOVSDrm_alt:
848   case X86::VMOVAPSrm:
849   case X86::VMOVUPSrm:
850   case X86::VMOVAPDrm:
851   case X86::VMOVUPDrm:
852   case X86::VMOVDQArm:
853   case X86::VMOVDQUrm:
854   case X86::VMOVAPSYrm:
855   case X86::VMOVUPSYrm:
856   case X86::VMOVAPDYrm:
857   case X86::VMOVUPDYrm:
858   case X86::VMOVDQAYrm:
859   case X86::VMOVDQUYrm:
860   case X86::MMX_MOVD64rm:
861   case X86::MMX_MOVQ64rm:
862   case X86::VBROADCASTSSrm:
863   case X86::VBROADCASTSSYrm:
864   case X86::VBROADCASTSDYrm:
865   // AVX-512
866   case X86::VPBROADCASTBZ128rm:
867   case X86::VPBROADCASTBZ256rm:
868   case X86::VPBROADCASTBZrm:
869   case X86::VBROADCASTF32X2Z256rm:
870   case X86::VBROADCASTF32X2Zrm:
871   case X86::VBROADCASTI32X2Z128rm:
872   case X86::VBROADCASTI32X2Z256rm:
873   case X86::VBROADCASTI32X2Zrm:
874   case X86::VPBROADCASTWZ128rm:
875   case X86::VPBROADCASTWZ256rm:
876   case X86::VPBROADCASTWZrm:
877   case X86::VPBROADCASTDZ128rm:
878   case X86::VPBROADCASTDZ256rm:
879   case X86::VPBROADCASTDZrm:
880   case X86::VBROADCASTSSZ128rm:
881   case X86::VBROADCASTSSZ256rm:
882   case X86::VBROADCASTSSZrm:
883   case X86::VPBROADCASTQZ128rm:
884   case X86::VPBROADCASTQZ256rm:
885   case X86::VPBROADCASTQZrm:
886   case X86::VBROADCASTSDZ256rm:
887   case X86::VBROADCASTSDZrm:
888   case X86::VMOVSSZrm:
889   case X86::VMOVSSZrm_alt:
890   case X86::VMOVSDZrm:
891   case X86::VMOVSDZrm_alt:
892   case X86::VMOVSHZrm:
893   case X86::VMOVSHZrm_alt:
894   case X86::VMOVAPDZ128rm:
895   case X86::VMOVAPDZ256rm:
896   case X86::VMOVAPDZrm:
897   case X86::VMOVAPSZ128rm:
898   case X86::VMOVAPSZ256rm:
899   case X86::VMOVAPSZ128rm_NOVLX:
900   case X86::VMOVAPSZ256rm_NOVLX:
901   case X86::VMOVAPSZrm:
902   case X86::VMOVDQA32Z128rm:
903   case X86::VMOVDQA32Z256rm:
904   case X86::VMOVDQA32Zrm:
905   case X86::VMOVDQA64Z128rm:
906   case X86::VMOVDQA64Z256rm:
907   case X86::VMOVDQA64Zrm:
908   case X86::VMOVDQU16Z128rm:
909   case X86::VMOVDQU16Z256rm:
910   case X86::VMOVDQU16Zrm:
911   case X86::VMOVDQU32Z128rm:
912   case X86::VMOVDQU32Z256rm:
913   case X86::VMOVDQU32Zrm:
914   case X86::VMOVDQU64Z128rm:
915   case X86::VMOVDQU64Z256rm:
916   case X86::VMOVDQU64Zrm:
917   case X86::VMOVDQU8Z128rm:
918   case X86::VMOVDQU8Z256rm:
919   case X86::VMOVDQU8Zrm:
920   case X86::VMOVUPDZ128rm:
921   case X86::VMOVUPDZ256rm:
922   case X86::VMOVUPDZrm:
923   case X86::VMOVUPSZ128rm:
924   case X86::VMOVUPSZ256rm:
925   case X86::VMOVUPSZ128rm_NOVLX:
926   case X86::VMOVUPSZ256rm_NOVLX:
927   case X86::VMOVUPSZrm: {
928     // Loads from constant pools are trivially rematerializable.
929     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
930         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
931         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
932         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
933         MI.isDereferenceableInvariantLoad()) {
934       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
935       if (BaseReg == 0 || BaseReg == X86::RIP)
936         return true;
937       // Allow re-materialization of PIC load.
938       if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) {
939         const MachineFunction &MF = *MI.getParent()->getParent();
940         const MachineRegisterInfo &MRI = MF.getRegInfo();
941         if (regIsPICBase(BaseReg, MRI))
942           return true;
943       }
944     }
945     break;
946   }
947 
948   case X86::LEA32r:
949   case X86::LEA64r: {
950     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
951         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
952         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
953         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
954       // lea fi#, lea GV, etc. are all rematerializable.
955       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
956         return true;
957       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
958       if (BaseReg == 0)
959         return true;
960       // Allow re-materialization of lea PICBase + x.
961       const MachineFunction &MF = *MI.getParent()->getParent();
962       const MachineRegisterInfo &MRI = MF.getRegInfo();
963       if (regIsPICBase(BaseReg, MRI))
964         return true;
965     }
966     break;
967   }
968   }
969   return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
970 }
971 
972 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
973                                  MachineBasicBlock::iterator I,
974                                  Register DestReg, unsigned SubIdx,
975                                  const MachineInstr &Orig,
976                                  const TargetRegisterInfo &TRI) const {
977   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
978   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
979                             MachineBasicBlock::LQR_Dead) {
980     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
981     // effects.
982     int Value;
983     switch (Orig.getOpcode()) {
984     case X86::MOV32r0:
985       Value = 0;
986       break;
987     case X86::MOV32r1:
988       Value = 1;
989       break;
990     case X86::MOV32r_1:
991       Value = -1;
992       break;
993     default:
994       llvm_unreachable("Unexpected instruction!");
995     }
996 
997     const DebugLoc &DL = Orig.getDebugLoc();
998     BuildMI(MBB, I, DL, get(X86::MOV32ri))
999         .add(Orig.getOperand(0))
1000         .addImm(Value);
1001   } else {
1002     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1003     MBB.insert(I, MI);
1004   }
1005 
1006   MachineInstr &NewMI = *std::prev(I);
1007   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1008 }
1009 
1010 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1011 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1012   for (const MachineOperand &MO : MI.operands()) {
1013     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
1014         !MO.isDead()) {
1015       return true;
1016     }
1017   }
1018   return false;
1019 }
1020 
1021 /// Check whether the shift count for a machine operand is non-zero.
1022 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1023                                               unsigned ShiftAmtOperandIdx) {
1024   // The shift count is six bits with the REX.W prefix and five bits without.
1025   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1026   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1027   return Imm & ShiftCountMask;
1028 }
1029 
1030 /// Check whether the given shift count is appropriate
1031 /// can be represented by a LEA instruction.
1032 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1033   // Left shift instructions can be transformed into load-effective-address
1034   // instructions if we can encode them appropriately.
1035   // A LEA instruction utilizes a SIB byte to encode its scale factor.
1036   // The SIB.scale field is two bits wide which means that we can encode any
1037   // shift amount less than 4.
1038   return ShAmt < 4 && ShAmt > 0;
1039 }
1040 
1041 static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
1042                                    MachineInstr &CmpValDefInstr,
1043                                    const MachineRegisterInfo *MRI,
1044                                    MachineInstr **AndInstr,
1045                                    const TargetRegisterInfo *TRI,
1046                                    bool &NoSignFlag, bool &ClearsOverflowFlag) {
1047   if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
1048         CmpInstr.getOpcode() == X86::TEST64rr) &&
1049       !(CmpValDefInstr.getOpcode() == X86::COPY &&
1050         CmpInstr.getOpcode() == X86::TEST16rr))
1051     return false;
1052 
1053   // CmpInstr is a TEST16rr/TEST64rr instruction, and
1054   // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1055   // registers are identical.
1056   assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
1057          "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1058          "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1059          "same.");
1060 
1061   // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1062   // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1063   // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1064   // redundant.
1065   assert(
1066       (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
1067       "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1068       "is a user of COPY sub16bit.");
1069   MachineInstr *VregDefInstr = nullptr;
1070   if (CmpInstr.getOpcode() == X86::TEST16rr) {
1071     if (!CmpValDefInstr.getOperand(1).getReg().isVirtual())
1072       return false;
1073     VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg());
1074     if (!VregDefInstr)
1075       return false;
1076     // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1077     // size, others 32/64 bit ops would test higher bits which test16rr don't
1078     // want to.
1079     if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1080            VregDefInstr->getOpcode() == X86::AND64ri32) &&
1081           isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1082       return false;
1083   }
1084 
1085   if (CmpInstr.getOpcode() == X86::TEST64rr) {
1086     // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1087     // typically 0.
1088     if (CmpValDefInstr.getOperand(1).getImm() != 0)
1089       return false;
1090 
1091     // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1092     // sub_32bit or sub_xmm.
1093     if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1094       return false;
1095 
1096     VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1097   }
1098 
1099   assert(VregDefInstr && "Must have a definition (SSA)");
1100 
1101   // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1102   // to simplify the subsequent analysis.
1103   //
1104   // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1105   // `CmpValDefInstr.getParent()`, this could be handled.
1106   if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1107     return false;
1108 
1109   if (X86::isAND(VregDefInstr->getOpcode())) {
1110     // Get a sequence of instructions like
1111     //   %reg = and* ...                    // Set EFLAGS
1112     //   ...                                // EFLAGS not changed
1113     //   %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1114     //   test64rr %extended_reg, %extended_reg, implicit-def $eflags
1115     // or
1116     //   %reg = and32* ...
1117     //   ...                         // EFLAGS not changed.
1118     //   %src_reg = copy %reg.sub_16bit:gr32
1119     //   test16rr %src_reg, %src_reg, implicit-def $eflags
1120     //
1121     // If subsequent readers use a subset of bits that don't change
1122     // after `and*` instructions, it's likely that the test64rr could
1123     // be optimized away.
1124     for (const MachineInstr &Instr :
1125          make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1126                     MachineBasicBlock::iterator(CmpValDefInstr))) {
1127       // There are instructions between 'VregDefInstr' and
1128       // 'CmpValDefInstr' that modifies EFLAGS.
1129       if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1130         return false;
1131     }
1132 
1133     *AndInstr = VregDefInstr;
1134 
1135     // AND instruction will essentially update SF and clear OF, so
1136     // NoSignFlag should be false in the sense that SF is modified by `AND`.
1137     //
1138     // However, the implementation artifically sets `NoSignFlag` to true
1139     // to poison the SF bit; that is to say, if SF is looked at later, the
1140     // optimization (to erase TEST64rr) will be disabled.
1141     //
1142     // The reason to poison SF bit is that SF bit value could be different
1143     // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1144     // and is known to be 0 as a result of `TEST64rr`.
1145     //
1146     // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1147     // the AND instruction and using the static information to guide peephole
1148     // optimization if possible. For example, it's possible to fold a
1149     // conditional move into a copy if the relevant EFLAG bits could be deduced
1150     // from an immediate operand of and operation.
1151     //
1152     NoSignFlag = true;
1153     // ClearsOverflowFlag is true for AND operation (no surprise).
1154     ClearsOverflowFlag = true;
1155     return true;
1156   }
1157   return false;
1158 }
1159 
1160 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1161                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1162                                   bool &isKill, MachineOperand &ImplicitOp,
1163                                   LiveVariables *LV, LiveIntervals *LIS) const {
1164   MachineFunction &MF = *MI.getParent()->getParent();
1165   const TargetRegisterClass *RC;
1166   if (AllowSP) {
1167     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1168   } else {
1169     RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1170   }
1171   Register SrcReg = Src.getReg();
1172   isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr);
1173 
1174   // For both LEA64 and LEA32 the register already has essentially the right
1175   // type (32-bit or 64-bit) we may just need to forbid SP.
1176   if (Opc != X86::LEA64_32r) {
1177     NewSrc = SrcReg;
1178     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1179 
1180     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1181       return false;
1182 
1183     return true;
1184   }
1185 
1186   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1187   // another we need to add 64-bit registers to the final MI.
1188   if (SrcReg.isPhysical()) {
1189     ImplicitOp = Src;
1190     ImplicitOp.setImplicit();
1191 
1192     NewSrc = getX86SubSuperRegister(SrcReg, 64);
1193     assert(NewSrc.isValid() && "Invalid Operand");
1194     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1195   } else {
1196     // Virtual register of the wrong class, we have to create a temporary 64-bit
1197     // vreg to feed into the LEA.
1198     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1199     MachineInstr *Copy =
1200         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1201             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1202             .addReg(SrcReg, getKillRegState(isKill));
1203 
1204     // Which is obviously going to be dead after we're done with it.
1205     isKill = true;
1206 
1207     if (LV)
1208       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1209 
1210     if (LIS) {
1211       SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1212       SlotIndex Idx = LIS->getInstructionIndex(MI);
1213       LiveInterval &LI = LIS->getInterval(SrcReg);
1214       LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1215       if (S->end.getBaseIndex() == Idx)
1216         S->end = CopyIdx.getRegSlot();
1217     }
1218   }
1219 
1220   // We've set all the parameters without issue.
1221   return true;
1222 }
1223 
1224 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1225                                                          MachineInstr &MI,
1226                                                          LiveVariables *LV,
1227                                                          LiveIntervals *LIS,
1228                                                          bool Is8BitOp) const {
1229   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1230   MachineBasicBlock &MBB = *MI.getParent();
1231   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1232   assert((Is8BitOp ||
1233           RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1234               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1235          "Unexpected type for LEA transform");
1236 
1237   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1238   // something like this:
1239   //   Opcode = X86::LEA32r;
1240   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1241   //   OutRegLEA =
1242   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1243   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1244   if (!Subtarget.is64Bit())
1245     return nullptr;
1246 
1247   unsigned Opcode = X86::LEA64_32r;
1248   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1249   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1250   Register InRegLEA2;
1251 
1252   // Build and insert into an implicit UNDEF value. This is OK because
1253   // we will be shifting and then extracting the lower 8/16-bits.
1254   // This has the potential to cause partial register stall. e.g.
1255   //   movw    (%rbp,%rcx,2), %dx
1256   //   leal    -65(%rdx), %esi
1257   // But testing has shown this *does* help performance in 64-bit mode (at
1258   // least on modern x86 machines).
1259   MachineBasicBlock::iterator MBBI = MI.getIterator();
1260   Register Dest = MI.getOperand(0).getReg();
1261   Register Src = MI.getOperand(1).getReg();
1262   Register Src2;
1263   bool IsDead = MI.getOperand(0).isDead();
1264   bool IsKill = MI.getOperand(1).isKill();
1265   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1266   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1267   MachineInstr *ImpDef =
1268       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1269   MachineInstr *InsMI =
1270       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1271           .addReg(InRegLEA, RegState::Define, SubReg)
1272           .addReg(Src, getKillRegState(IsKill));
1273   MachineInstr *ImpDef2 = nullptr;
1274   MachineInstr *InsMI2 = nullptr;
1275 
1276   MachineInstrBuilder MIB =
1277       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1278   switch (MIOpc) {
1279   default:
1280     llvm_unreachable("Unreachable!");
1281   case X86::SHL8ri:
1282   case X86::SHL16ri: {
1283     unsigned ShAmt = MI.getOperand(2).getImm();
1284     MIB.addReg(0)
1285         .addImm(1LL << ShAmt)
1286         .addReg(InRegLEA, RegState::Kill)
1287         .addImm(0)
1288         .addReg(0);
1289     break;
1290   }
1291   case X86::INC8r:
1292   case X86::INC16r:
1293     addRegOffset(MIB, InRegLEA, true, 1);
1294     break;
1295   case X86::DEC8r:
1296   case X86::DEC16r:
1297     addRegOffset(MIB, InRegLEA, true, -1);
1298     break;
1299   case X86::ADD8ri:
1300   case X86::ADD8ri_DB:
1301   case X86::ADD16ri:
1302   case X86::ADD16ri_DB:
1303     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1304     break;
1305   case X86::ADD8rr:
1306   case X86::ADD8rr_DB:
1307   case X86::ADD16rr:
1308   case X86::ADD16rr_DB: {
1309     Src2 = MI.getOperand(2).getReg();
1310     bool IsKill2 = MI.getOperand(2).isKill();
1311     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1312     if (Src == Src2) {
1313       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1314       // just a single insert_subreg.
1315       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1316     } else {
1317       if (Subtarget.is64Bit())
1318         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1319       else
1320         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1321       // Build and insert into an implicit UNDEF value. This is OK because
1322       // we will be shifting and then extracting the lower 8/16-bits.
1323       ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1324                         InRegLEA2);
1325       InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1326                    .addReg(InRegLEA2, RegState::Define, SubReg)
1327                    .addReg(Src2, getKillRegState(IsKill2));
1328       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1329     }
1330     if (LV && IsKill2 && InsMI2)
1331       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1332     break;
1333   }
1334   }
1335 
1336   MachineInstr *NewMI = MIB;
1337   MachineInstr *ExtMI =
1338       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1339           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1340           .addReg(OutRegLEA, RegState::Kill, SubReg);
1341 
1342   if (LV) {
1343     // Update live variables.
1344     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1345     if (InRegLEA2)
1346       LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1347     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1348     if (IsKill)
1349       LV->replaceKillInstruction(Src, MI, *InsMI);
1350     if (IsDead)
1351       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1352   }
1353 
1354   if (LIS) {
1355     LIS->InsertMachineInstrInMaps(*ImpDef);
1356     SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1357     if (ImpDef2)
1358       LIS->InsertMachineInstrInMaps(*ImpDef2);
1359     SlotIndex Ins2Idx;
1360     if (InsMI2)
1361       Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1362     SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1363     SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1364     LIS->getInterval(InRegLEA);
1365     LIS->getInterval(OutRegLEA);
1366     if (InRegLEA2)
1367       LIS->getInterval(InRegLEA2);
1368 
1369     // Move the use of Src up to InsMI.
1370     LiveInterval &SrcLI = LIS->getInterval(Src);
1371     LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1372     if (SrcSeg->end == NewIdx.getRegSlot())
1373       SrcSeg->end = InsIdx.getRegSlot();
1374 
1375     if (InsMI2) {
1376       // Move the use of Src2 up to InsMI2.
1377       LiveInterval &Src2LI = LIS->getInterval(Src2);
1378       LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1379       if (Src2Seg->end == NewIdx.getRegSlot())
1380         Src2Seg->end = Ins2Idx.getRegSlot();
1381     }
1382 
1383     // Move the definition of Dest down to ExtMI.
1384     LiveInterval &DestLI = LIS->getInterval(Dest);
1385     LiveRange::Segment *DestSeg =
1386         DestLI.getSegmentContaining(NewIdx.getRegSlot());
1387     assert(DestSeg->start == NewIdx.getRegSlot() &&
1388            DestSeg->valno->def == NewIdx.getRegSlot());
1389     DestSeg->start = ExtIdx.getRegSlot();
1390     DestSeg->valno->def = ExtIdx.getRegSlot();
1391   }
1392 
1393   return ExtMI;
1394 }
1395 
1396 /// This method must be implemented by targets that
1397 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1398 /// may be able to convert a two-address instruction into a true
1399 /// three-address instruction on demand.  This allows the X86 target (for
1400 /// example) to convert ADD and SHL instructions into LEA instructions if they
1401 /// would require register copies due to two-addressness.
1402 ///
1403 /// This method returns a null pointer if the transformation cannot be
1404 /// performed, otherwise it returns the new instruction.
1405 ///
1406 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1407                                                   LiveVariables *LV,
1408                                                   LiveIntervals *LIS) const {
1409   // The following opcodes also sets the condition code register(s). Only
1410   // convert them to equivalent lea if the condition code register def's
1411   // are dead!
1412   if (hasLiveCondCodeDef(MI))
1413     return nullptr;
1414 
1415   MachineFunction &MF = *MI.getParent()->getParent();
1416   // All instructions input are two-addr instructions.  Get the known operands.
1417   const MachineOperand &Dest = MI.getOperand(0);
1418   const MachineOperand &Src = MI.getOperand(1);
1419 
1420   // Ideally, operations with undef should be folded before we get here, but we
1421   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1422   // Without this, we have to forward undef state to new register operands to
1423   // avoid machine verifier errors.
1424   if (Src.isUndef())
1425     return nullptr;
1426   if (MI.getNumOperands() > 2)
1427     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1428       return nullptr;
1429 
1430   MachineInstr *NewMI = nullptr;
1431   Register SrcReg, SrcReg2;
1432   bool Is64Bit = Subtarget.is64Bit();
1433 
1434   bool Is8BitOp = false;
1435   unsigned NumRegOperands = 2;
1436   unsigned MIOpc = MI.getOpcode();
1437   switch (MIOpc) {
1438   default:
1439     llvm_unreachable("Unreachable!");
1440   case X86::SHL64ri: {
1441     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1442     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1443     if (!isTruncatedShiftCountForLEA(ShAmt))
1444       return nullptr;
1445 
1446     // LEA can't handle RSP.
1447     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1448                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1449       return nullptr;
1450 
1451     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1452                 .add(Dest)
1453                 .addReg(0)
1454                 .addImm(1LL << ShAmt)
1455                 .add(Src)
1456                 .addImm(0)
1457                 .addReg(0);
1458     break;
1459   }
1460   case X86::SHL32ri: {
1461     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1462     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1463     if (!isTruncatedShiftCountForLEA(ShAmt))
1464       return nullptr;
1465 
1466     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1467 
1468     // LEA can't handle ESP.
1469     bool isKill;
1470     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1471     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1472                         ImplicitOp, LV, LIS))
1473       return nullptr;
1474 
1475     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1476                                   .add(Dest)
1477                                   .addReg(0)
1478                                   .addImm(1LL << ShAmt)
1479                                   .addReg(SrcReg, getKillRegState(isKill))
1480                                   .addImm(0)
1481                                   .addReg(0);
1482     if (ImplicitOp.getReg() != 0)
1483       MIB.add(ImplicitOp);
1484     NewMI = MIB;
1485 
1486     // Add kills if classifyLEAReg created a new register.
1487     if (LV && SrcReg != Src.getReg())
1488       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1489     break;
1490   }
1491   case X86::SHL8ri:
1492     Is8BitOp = true;
1493     [[fallthrough]];
1494   case X86::SHL16ri: {
1495     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1496     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1497     if (!isTruncatedShiftCountForLEA(ShAmt))
1498       return nullptr;
1499     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1500   }
1501   case X86::INC64r:
1502   case X86::INC32r: {
1503     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1504     unsigned Opc = MIOpc == X86::INC64r
1505                        ? X86::LEA64r
1506                        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1507     bool isKill;
1508     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1509     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1510                         ImplicitOp, LV, LIS))
1511       return nullptr;
1512 
1513     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1514                                   .add(Dest)
1515                                   .addReg(SrcReg, getKillRegState(isKill));
1516     if (ImplicitOp.getReg() != 0)
1517       MIB.add(ImplicitOp);
1518 
1519     NewMI = addOffset(MIB, 1);
1520 
1521     // Add kills if classifyLEAReg created a new register.
1522     if (LV && SrcReg != Src.getReg())
1523       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1524     break;
1525   }
1526   case X86::DEC64r:
1527   case X86::DEC32r: {
1528     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1529     unsigned Opc = MIOpc == X86::DEC64r
1530                        ? X86::LEA64r
1531                        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1532 
1533     bool isKill;
1534     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1535     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1536                         ImplicitOp, LV, LIS))
1537       return nullptr;
1538 
1539     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1540                                   .add(Dest)
1541                                   .addReg(SrcReg, getKillRegState(isKill));
1542     if (ImplicitOp.getReg() != 0)
1543       MIB.add(ImplicitOp);
1544 
1545     NewMI = addOffset(MIB, -1);
1546 
1547     // Add kills if classifyLEAReg created a new register.
1548     if (LV && SrcReg != Src.getReg())
1549       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1550     break;
1551   }
1552   case X86::DEC8r:
1553   case X86::INC8r:
1554     Is8BitOp = true;
1555     [[fallthrough]];
1556   case X86::DEC16r:
1557   case X86::INC16r:
1558     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1559   case X86::ADD64rr:
1560   case X86::ADD64rr_DB:
1561   case X86::ADD32rr:
1562   case X86::ADD32rr_DB: {
1563     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1564     unsigned Opc;
1565     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1566       Opc = X86::LEA64r;
1567     else
1568       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1569 
1570     const MachineOperand &Src2 = MI.getOperand(2);
1571     bool isKill2;
1572     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1573     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1574                         ImplicitOp2, LV, LIS))
1575       return nullptr;
1576 
1577     bool isKill;
1578     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1579     if (Src.getReg() == Src2.getReg()) {
1580       // Don't call classify LEAReg a second time on the same register, in case
1581       // the first call inserted a COPY from Src2 and marked it as killed.
1582       isKill = isKill2;
1583       SrcReg = SrcReg2;
1584     } else {
1585       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1586                           ImplicitOp, LV, LIS))
1587         return nullptr;
1588     }
1589 
1590     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1591     if (ImplicitOp.getReg() != 0)
1592       MIB.add(ImplicitOp);
1593     if (ImplicitOp2.getReg() != 0)
1594       MIB.add(ImplicitOp2);
1595 
1596     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1597 
1598     // Add kills if classifyLEAReg created a new register.
1599     if (LV) {
1600       if (SrcReg2 != Src2.getReg())
1601         LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1602       if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1603         LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1604     }
1605     NumRegOperands = 3;
1606     break;
1607   }
1608   case X86::ADD8rr:
1609   case X86::ADD8rr_DB:
1610     Is8BitOp = true;
1611     [[fallthrough]];
1612   case X86::ADD16rr:
1613   case X86::ADD16rr_DB:
1614     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1615   case X86::ADD64ri32:
1616   case X86::ADD64ri32_DB:
1617     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1618     NewMI = addOffset(
1619         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1620         MI.getOperand(2));
1621     break;
1622   case X86::ADD32ri:
1623   case X86::ADD32ri_DB: {
1624     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1625     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1626 
1627     bool isKill;
1628     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1629     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1630                         ImplicitOp, LV, LIS))
1631       return nullptr;
1632 
1633     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1634                                   .add(Dest)
1635                                   .addReg(SrcReg, getKillRegState(isKill));
1636     if (ImplicitOp.getReg() != 0)
1637       MIB.add(ImplicitOp);
1638 
1639     NewMI = addOffset(MIB, MI.getOperand(2));
1640 
1641     // Add kills if classifyLEAReg created a new register.
1642     if (LV && SrcReg != Src.getReg())
1643       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1644     break;
1645   }
1646   case X86::ADD8ri:
1647   case X86::ADD8ri_DB:
1648     Is8BitOp = true;
1649     [[fallthrough]];
1650   case X86::ADD16ri:
1651   case X86::ADD16ri_DB:
1652     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1653   case X86::SUB8ri:
1654   case X86::SUB16ri:
1655     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1656     return nullptr;
1657   case X86::SUB32ri: {
1658     if (!MI.getOperand(2).isImm())
1659       return nullptr;
1660     int64_t Imm = MI.getOperand(2).getImm();
1661     if (!isInt<32>(-Imm))
1662       return nullptr;
1663 
1664     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1665     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1666 
1667     bool isKill;
1668     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1669     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1670                         ImplicitOp, LV, LIS))
1671       return nullptr;
1672 
1673     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1674                                   .add(Dest)
1675                                   .addReg(SrcReg, getKillRegState(isKill));
1676     if (ImplicitOp.getReg() != 0)
1677       MIB.add(ImplicitOp);
1678 
1679     NewMI = addOffset(MIB, -Imm);
1680 
1681     // Add kills if classifyLEAReg created a new register.
1682     if (LV && SrcReg != Src.getReg())
1683       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1684     break;
1685   }
1686 
1687   case X86::SUB64ri32: {
1688     if (!MI.getOperand(2).isImm())
1689       return nullptr;
1690     int64_t Imm = MI.getOperand(2).getImm();
1691     if (!isInt<32>(-Imm))
1692       return nullptr;
1693 
1694     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1695 
1696     MachineInstrBuilder MIB =
1697         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src);
1698     NewMI = addOffset(MIB, -Imm);
1699     break;
1700   }
1701 
1702   case X86::VMOVDQU8Z128rmk:
1703   case X86::VMOVDQU8Z256rmk:
1704   case X86::VMOVDQU8Zrmk:
1705   case X86::VMOVDQU16Z128rmk:
1706   case X86::VMOVDQU16Z256rmk:
1707   case X86::VMOVDQU16Zrmk:
1708   case X86::VMOVDQU32Z128rmk:
1709   case X86::VMOVDQA32Z128rmk:
1710   case X86::VMOVDQU32Z256rmk:
1711   case X86::VMOVDQA32Z256rmk:
1712   case X86::VMOVDQU32Zrmk:
1713   case X86::VMOVDQA32Zrmk:
1714   case X86::VMOVDQU64Z128rmk:
1715   case X86::VMOVDQA64Z128rmk:
1716   case X86::VMOVDQU64Z256rmk:
1717   case X86::VMOVDQA64Z256rmk:
1718   case X86::VMOVDQU64Zrmk:
1719   case X86::VMOVDQA64Zrmk:
1720   case X86::VMOVUPDZ128rmk:
1721   case X86::VMOVAPDZ128rmk:
1722   case X86::VMOVUPDZ256rmk:
1723   case X86::VMOVAPDZ256rmk:
1724   case X86::VMOVUPDZrmk:
1725   case X86::VMOVAPDZrmk:
1726   case X86::VMOVUPSZ128rmk:
1727   case X86::VMOVAPSZ128rmk:
1728   case X86::VMOVUPSZ256rmk:
1729   case X86::VMOVAPSZ256rmk:
1730   case X86::VMOVUPSZrmk:
1731   case X86::VMOVAPSZrmk:
1732   case X86::VBROADCASTSDZ256rmk:
1733   case X86::VBROADCASTSDZrmk:
1734   case X86::VBROADCASTSSZ128rmk:
1735   case X86::VBROADCASTSSZ256rmk:
1736   case X86::VBROADCASTSSZrmk:
1737   case X86::VPBROADCASTDZ128rmk:
1738   case X86::VPBROADCASTDZ256rmk:
1739   case X86::VPBROADCASTDZrmk:
1740   case X86::VPBROADCASTQZ128rmk:
1741   case X86::VPBROADCASTQZ256rmk:
1742   case X86::VPBROADCASTQZrmk: {
1743     unsigned Opc;
1744     switch (MIOpc) {
1745     default:
1746       llvm_unreachable("Unreachable!");
1747     case X86::VMOVDQU8Z128rmk:
1748       Opc = X86::VPBLENDMBZ128rmk;
1749       break;
1750     case X86::VMOVDQU8Z256rmk:
1751       Opc = X86::VPBLENDMBZ256rmk;
1752       break;
1753     case X86::VMOVDQU8Zrmk:
1754       Opc = X86::VPBLENDMBZrmk;
1755       break;
1756     case X86::VMOVDQU16Z128rmk:
1757       Opc = X86::VPBLENDMWZ128rmk;
1758       break;
1759     case X86::VMOVDQU16Z256rmk:
1760       Opc = X86::VPBLENDMWZ256rmk;
1761       break;
1762     case X86::VMOVDQU16Zrmk:
1763       Opc = X86::VPBLENDMWZrmk;
1764       break;
1765     case X86::VMOVDQU32Z128rmk:
1766       Opc = X86::VPBLENDMDZ128rmk;
1767       break;
1768     case X86::VMOVDQU32Z256rmk:
1769       Opc = X86::VPBLENDMDZ256rmk;
1770       break;
1771     case X86::VMOVDQU32Zrmk:
1772       Opc = X86::VPBLENDMDZrmk;
1773       break;
1774     case X86::VMOVDQU64Z128rmk:
1775       Opc = X86::VPBLENDMQZ128rmk;
1776       break;
1777     case X86::VMOVDQU64Z256rmk:
1778       Opc = X86::VPBLENDMQZ256rmk;
1779       break;
1780     case X86::VMOVDQU64Zrmk:
1781       Opc = X86::VPBLENDMQZrmk;
1782       break;
1783     case X86::VMOVUPDZ128rmk:
1784       Opc = X86::VBLENDMPDZ128rmk;
1785       break;
1786     case X86::VMOVUPDZ256rmk:
1787       Opc = X86::VBLENDMPDZ256rmk;
1788       break;
1789     case X86::VMOVUPDZrmk:
1790       Opc = X86::VBLENDMPDZrmk;
1791       break;
1792     case X86::VMOVUPSZ128rmk:
1793       Opc = X86::VBLENDMPSZ128rmk;
1794       break;
1795     case X86::VMOVUPSZ256rmk:
1796       Opc = X86::VBLENDMPSZ256rmk;
1797       break;
1798     case X86::VMOVUPSZrmk:
1799       Opc = X86::VBLENDMPSZrmk;
1800       break;
1801     case X86::VMOVDQA32Z128rmk:
1802       Opc = X86::VPBLENDMDZ128rmk;
1803       break;
1804     case X86::VMOVDQA32Z256rmk:
1805       Opc = X86::VPBLENDMDZ256rmk;
1806       break;
1807     case X86::VMOVDQA32Zrmk:
1808       Opc = X86::VPBLENDMDZrmk;
1809       break;
1810     case X86::VMOVDQA64Z128rmk:
1811       Opc = X86::VPBLENDMQZ128rmk;
1812       break;
1813     case X86::VMOVDQA64Z256rmk:
1814       Opc = X86::VPBLENDMQZ256rmk;
1815       break;
1816     case X86::VMOVDQA64Zrmk:
1817       Opc = X86::VPBLENDMQZrmk;
1818       break;
1819     case X86::VMOVAPDZ128rmk:
1820       Opc = X86::VBLENDMPDZ128rmk;
1821       break;
1822     case X86::VMOVAPDZ256rmk:
1823       Opc = X86::VBLENDMPDZ256rmk;
1824       break;
1825     case X86::VMOVAPDZrmk:
1826       Opc = X86::VBLENDMPDZrmk;
1827       break;
1828     case X86::VMOVAPSZ128rmk:
1829       Opc = X86::VBLENDMPSZ128rmk;
1830       break;
1831     case X86::VMOVAPSZ256rmk:
1832       Opc = X86::VBLENDMPSZ256rmk;
1833       break;
1834     case X86::VMOVAPSZrmk:
1835       Opc = X86::VBLENDMPSZrmk;
1836       break;
1837     case X86::VBROADCASTSDZ256rmk:
1838       Opc = X86::VBLENDMPDZ256rmbk;
1839       break;
1840     case X86::VBROADCASTSDZrmk:
1841       Opc = X86::VBLENDMPDZrmbk;
1842       break;
1843     case X86::VBROADCASTSSZ128rmk:
1844       Opc = X86::VBLENDMPSZ128rmbk;
1845       break;
1846     case X86::VBROADCASTSSZ256rmk:
1847       Opc = X86::VBLENDMPSZ256rmbk;
1848       break;
1849     case X86::VBROADCASTSSZrmk:
1850       Opc = X86::VBLENDMPSZrmbk;
1851       break;
1852     case X86::VPBROADCASTDZ128rmk:
1853       Opc = X86::VPBLENDMDZ128rmbk;
1854       break;
1855     case X86::VPBROADCASTDZ256rmk:
1856       Opc = X86::VPBLENDMDZ256rmbk;
1857       break;
1858     case X86::VPBROADCASTDZrmk:
1859       Opc = X86::VPBLENDMDZrmbk;
1860       break;
1861     case X86::VPBROADCASTQZ128rmk:
1862       Opc = X86::VPBLENDMQZ128rmbk;
1863       break;
1864     case X86::VPBROADCASTQZ256rmk:
1865       Opc = X86::VPBLENDMQZ256rmbk;
1866       break;
1867     case X86::VPBROADCASTQZrmk:
1868       Opc = X86::VPBLENDMQZrmbk;
1869       break;
1870     }
1871 
1872     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1873                 .add(Dest)
1874                 .add(MI.getOperand(2))
1875                 .add(Src)
1876                 .add(MI.getOperand(3))
1877                 .add(MI.getOperand(4))
1878                 .add(MI.getOperand(5))
1879                 .add(MI.getOperand(6))
1880                 .add(MI.getOperand(7));
1881     NumRegOperands = 4;
1882     break;
1883   }
1884 
1885   case X86::VMOVDQU8Z128rrk:
1886   case X86::VMOVDQU8Z256rrk:
1887   case X86::VMOVDQU8Zrrk:
1888   case X86::VMOVDQU16Z128rrk:
1889   case X86::VMOVDQU16Z256rrk:
1890   case X86::VMOVDQU16Zrrk:
1891   case X86::VMOVDQU32Z128rrk:
1892   case X86::VMOVDQA32Z128rrk:
1893   case X86::VMOVDQU32Z256rrk:
1894   case X86::VMOVDQA32Z256rrk:
1895   case X86::VMOVDQU32Zrrk:
1896   case X86::VMOVDQA32Zrrk:
1897   case X86::VMOVDQU64Z128rrk:
1898   case X86::VMOVDQA64Z128rrk:
1899   case X86::VMOVDQU64Z256rrk:
1900   case X86::VMOVDQA64Z256rrk:
1901   case X86::VMOVDQU64Zrrk:
1902   case X86::VMOVDQA64Zrrk:
1903   case X86::VMOVUPDZ128rrk:
1904   case X86::VMOVAPDZ128rrk:
1905   case X86::VMOVUPDZ256rrk:
1906   case X86::VMOVAPDZ256rrk:
1907   case X86::VMOVUPDZrrk:
1908   case X86::VMOVAPDZrrk:
1909   case X86::VMOVUPSZ128rrk:
1910   case X86::VMOVAPSZ128rrk:
1911   case X86::VMOVUPSZ256rrk:
1912   case X86::VMOVAPSZ256rrk:
1913   case X86::VMOVUPSZrrk:
1914   case X86::VMOVAPSZrrk: {
1915     unsigned Opc;
1916     switch (MIOpc) {
1917     default:
1918       llvm_unreachable("Unreachable!");
1919     case X86::VMOVDQU8Z128rrk:
1920       Opc = X86::VPBLENDMBZ128rrk;
1921       break;
1922     case X86::VMOVDQU8Z256rrk:
1923       Opc = X86::VPBLENDMBZ256rrk;
1924       break;
1925     case X86::VMOVDQU8Zrrk:
1926       Opc = X86::VPBLENDMBZrrk;
1927       break;
1928     case X86::VMOVDQU16Z128rrk:
1929       Opc = X86::VPBLENDMWZ128rrk;
1930       break;
1931     case X86::VMOVDQU16Z256rrk:
1932       Opc = X86::VPBLENDMWZ256rrk;
1933       break;
1934     case X86::VMOVDQU16Zrrk:
1935       Opc = X86::VPBLENDMWZrrk;
1936       break;
1937     case X86::VMOVDQU32Z128rrk:
1938       Opc = X86::VPBLENDMDZ128rrk;
1939       break;
1940     case X86::VMOVDQU32Z256rrk:
1941       Opc = X86::VPBLENDMDZ256rrk;
1942       break;
1943     case X86::VMOVDQU32Zrrk:
1944       Opc = X86::VPBLENDMDZrrk;
1945       break;
1946     case X86::VMOVDQU64Z128rrk:
1947       Opc = X86::VPBLENDMQZ128rrk;
1948       break;
1949     case X86::VMOVDQU64Z256rrk:
1950       Opc = X86::VPBLENDMQZ256rrk;
1951       break;
1952     case X86::VMOVDQU64Zrrk:
1953       Opc = X86::VPBLENDMQZrrk;
1954       break;
1955     case X86::VMOVUPDZ128rrk:
1956       Opc = X86::VBLENDMPDZ128rrk;
1957       break;
1958     case X86::VMOVUPDZ256rrk:
1959       Opc = X86::VBLENDMPDZ256rrk;
1960       break;
1961     case X86::VMOVUPDZrrk:
1962       Opc = X86::VBLENDMPDZrrk;
1963       break;
1964     case X86::VMOVUPSZ128rrk:
1965       Opc = X86::VBLENDMPSZ128rrk;
1966       break;
1967     case X86::VMOVUPSZ256rrk:
1968       Opc = X86::VBLENDMPSZ256rrk;
1969       break;
1970     case X86::VMOVUPSZrrk:
1971       Opc = X86::VBLENDMPSZrrk;
1972       break;
1973     case X86::VMOVDQA32Z128rrk:
1974       Opc = X86::VPBLENDMDZ128rrk;
1975       break;
1976     case X86::VMOVDQA32Z256rrk:
1977       Opc = X86::VPBLENDMDZ256rrk;
1978       break;
1979     case X86::VMOVDQA32Zrrk:
1980       Opc = X86::VPBLENDMDZrrk;
1981       break;
1982     case X86::VMOVDQA64Z128rrk:
1983       Opc = X86::VPBLENDMQZ128rrk;
1984       break;
1985     case X86::VMOVDQA64Z256rrk:
1986       Opc = X86::VPBLENDMQZ256rrk;
1987       break;
1988     case X86::VMOVDQA64Zrrk:
1989       Opc = X86::VPBLENDMQZrrk;
1990       break;
1991     case X86::VMOVAPDZ128rrk:
1992       Opc = X86::VBLENDMPDZ128rrk;
1993       break;
1994     case X86::VMOVAPDZ256rrk:
1995       Opc = X86::VBLENDMPDZ256rrk;
1996       break;
1997     case X86::VMOVAPDZrrk:
1998       Opc = X86::VBLENDMPDZrrk;
1999       break;
2000     case X86::VMOVAPSZ128rrk:
2001       Opc = X86::VBLENDMPSZ128rrk;
2002       break;
2003     case X86::VMOVAPSZ256rrk:
2004       Opc = X86::VBLENDMPSZ256rrk;
2005       break;
2006     case X86::VMOVAPSZrrk:
2007       Opc = X86::VBLENDMPSZrrk;
2008       break;
2009     }
2010 
2011     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
2012                 .add(Dest)
2013                 .add(MI.getOperand(2))
2014                 .add(Src)
2015                 .add(MI.getOperand(3));
2016     NumRegOperands = 4;
2017     break;
2018   }
2019   }
2020 
2021   if (!NewMI)
2022     return nullptr;
2023 
2024   if (LV) { // Update live variables
2025     for (unsigned I = 0; I < NumRegOperands; ++I) {
2026       MachineOperand &Op = MI.getOperand(I);
2027       if (Op.isReg() && (Op.isDead() || Op.isKill()))
2028         LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
2029     }
2030   }
2031 
2032   MachineBasicBlock &MBB = *MI.getParent();
2033   MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
2034 
2035   if (LIS) {
2036     LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
2037     if (SrcReg)
2038       LIS->getInterval(SrcReg);
2039     if (SrcReg2)
2040       LIS->getInterval(SrcReg2);
2041   }
2042 
2043   return NewMI;
2044 }
2045 
2046 /// This determines which of three possible cases of a three source commute
2047 /// the source indexes correspond to taking into account any mask operands.
2048 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2049 /// possible.
2050 /// Case 0 - Possible to commute the first and second operands.
2051 /// Case 1 - Possible to commute the first and third operands.
2052 /// Case 2 - Possible to commute the second and third operands.
2053 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
2054                                        unsigned SrcOpIdx2) {
2055   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2056   if (SrcOpIdx1 > SrcOpIdx2)
2057     std::swap(SrcOpIdx1, SrcOpIdx2);
2058 
2059   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2060   if (X86II::isKMasked(TSFlags)) {
2061     Op2++;
2062     Op3++;
2063   }
2064 
2065   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2066     return 0;
2067   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2068     return 1;
2069   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2070     return 2;
2071   llvm_unreachable("Unknown three src commute case.");
2072 }
2073 
2074 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
2075     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
2076     const X86InstrFMA3Group &FMA3Group) const {
2077 
2078   unsigned Opc = MI.getOpcode();
2079 
2080   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2081   // analysis. The commute optimization is legal only if all users of FMA*_Int
2082   // use only the lowest element of the FMA*_Int instruction. Such analysis are
2083   // not implemented yet. So, just return 0 in that case.
2084   // When such analysis are available this place will be the right place for
2085   // calling it.
2086   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
2087          "Intrinsic instructions can't commute operand 1");
2088 
2089   // Determine which case this commute is or if it can't be done.
2090   unsigned Case =
2091       getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2092   assert(Case < 3 && "Unexpected case number!");
2093 
2094   // Define the FMA forms mapping array that helps to map input FMA form
2095   // to output FMA form to preserve the operation semantics after
2096   // commuting the operands.
2097   const unsigned Form132Index = 0;
2098   const unsigned Form213Index = 1;
2099   const unsigned Form231Index = 2;
2100   static const unsigned FormMapping[][3] = {
2101       // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2102       // FMA132 A, C, b; ==> FMA231 C, A, b;
2103       // FMA213 B, A, c; ==> FMA213 A, B, c;
2104       // FMA231 C, A, b; ==> FMA132 A, C, b;
2105       {Form231Index, Form213Index, Form132Index},
2106       // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2107       // FMA132 A, c, B; ==> FMA132 B, c, A;
2108       // FMA213 B, a, C; ==> FMA231 C, a, B;
2109       // FMA231 C, a, B; ==> FMA213 B, a, C;
2110       {Form132Index, Form231Index, Form213Index},
2111       // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2112       // FMA132 a, C, B; ==> FMA213 a, B, C;
2113       // FMA213 b, A, C; ==> FMA132 b, C, A;
2114       // FMA231 c, A, B; ==> FMA231 c, B, A;
2115       {Form213Index, Form132Index, Form231Index}};
2116 
2117   unsigned FMAForms[3];
2118   FMAForms[0] = FMA3Group.get132Opcode();
2119   FMAForms[1] = FMA3Group.get213Opcode();
2120   FMAForms[2] = FMA3Group.get231Opcode();
2121 
2122   // Everything is ready, just adjust the FMA opcode and return it.
2123   for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2124     if (Opc == FMAForms[FormIndex])
2125       return FMAForms[FormMapping[Case][FormIndex]];
2126 
2127   llvm_unreachable("Illegal FMA3 format");
2128 }
2129 
2130 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
2131                              unsigned SrcOpIdx2) {
2132   // Determine which case this commute is or if it can't be done.
2133   unsigned Case =
2134       getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2135   assert(Case < 3 && "Unexpected case value!");
2136 
2137   // For each case we need to swap two pairs of bits in the final immediate.
2138   static const uint8_t SwapMasks[3][4] = {
2139       {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2140       {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2141       {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2142   };
2143 
2144   uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2145   // Clear out the bits we are swapping.
2146   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2147                            SwapMasks[Case][2] | SwapMasks[Case][3]);
2148   // If the immediate had a bit of the pair set, then set the opposite bit.
2149   if (Imm & SwapMasks[Case][0])
2150     NewImm |= SwapMasks[Case][1];
2151   if (Imm & SwapMasks[Case][1])
2152     NewImm |= SwapMasks[Case][0];
2153   if (Imm & SwapMasks[Case][2])
2154     NewImm |= SwapMasks[Case][3];
2155   if (Imm & SwapMasks[Case][3])
2156     NewImm |= SwapMasks[Case][2];
2157   MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm);
2158 }
2159 
2160 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2161 // commuted.
2162 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2163 #define VPERM_CASES(Suffix)                                                    \
2164   case X86::VPERMI2##Suffix##Z128rr:                                           \
2165   case X86::VPERMT2##Suffix##Z128rr:                                           \
2166   case X86::VPERMI2##Suffix##Z256rr:                                           \
2167   case X86::VPERMT2##Suffix##Z256rr:                                           \
2168   case X86::VPERMI2##Suffix##Zrr:                                              \
2169   case X86::VPERMT2##Suffix##Zrr:                                              \
2170   case X86::VPERMI2##Suffix##Z128rm:                                           \
2171   case X86::VPERMT2##Suffix##Z128rm:                                           \
2172   case X86::VPERMI2##Suffix##Z256rm:                                           \
2173   case X86::VPERMT2##Suffix##Z256rm:                                           \
2174   case X86::VPERMI2##Suffix##Zrm:                                              \
2175   case X86::VPERMT2##Suffix##Zrm:                                              \
2176   case X86::VPERMI2##Suffix##Z128rrkz:                                         \
2177   case X86::VPERMT2##Suffix##Z128rrkz:                                         \
2178   case X86::VPERMI2##Suffix##Z256rrkz:                                         \
2179   case X86::VPERMT2##Suffix##Z256rrkz:                                         \
2180   case X86::VPERMI2##Suffix##Zrrkz:                                            \
2181   case X86::VPERMT2##Suffix##Zrrkz:                                            \
2182   case X86::VPERMI2##Suffix##Z128rmkz:                                         \
2183   case X86::VPERMT2##Suffix##Z128rmkz:                                         \
2184   case X86::VPERMI2##Suffix##Z256rmkz:                                         \
2185   case X86::VPERMT2##Suffix##Z256rmkz:                                         \
2186   case X86::VPERMI2##Suffix##Zrmkz:                                            \
2187   case X86::VPERMT2##Suffix##Zrmkz:
2188 
2189 #define VPERM_CASES_BROADCAST(Suffix)                                          \
2190   VPERM_CASES(Suffix)                                                          \
2191   case X86::VPERMI2##Suffix##Z128rmb:                                          \
2192   case X86::VPERMT2##Suffix##Z128rmb:                                          \
2193   case X86::VPERMI2##Suffix##Z256rmb:                                          \
2194   case X86::VPERMT2##Suffix##Z256rmb:                                          \
2195   case X86::VPERMI2##Suffix##Zrmb:                                             \
2196   case X86::VPERMT2##Suffix##Zrmb:                                             \
2197   case X86::VPERMI2##Suffix##Z128rmbkz:                                        \
2198   case X86::VPERMT2##Suffix##Z128rmbkz:                                        \
2199   case X86::VPERMI2##Suffix##Z256rmbkz:                                        \
2200   case X86::VPERMT2##Suffix##Z256rmbkz:                                        \
2201   case X86::VPERMI2##Suffix##Zrmbkz:                                           \
2202   case X86::VPERMT2##Suffix##Zrmbkz:
2203 
2204   switch (Opcode) {
2205   default:
2206     return false;
2207     VPERM_CASES(B)
2208     VPERM_CASES_BROADCAST(D)
2209     VPERM_CASES_BROADCAST(PD)
2210     VPERM_CASES_BROADCAST(PS)
2211     VPERM_CASES_BROADCAST(Q)
2212     VPERM_CASES(W)
2213     return true;
2214   }
2215 #undef VPERM_CASES_BROADCAST
2216 #undef VPERM_CASES
2217 }
2218 
2219 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2220 // from the I opcode to the T opcode and vice versa.
2221 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2222 #define VPERM_CASES(Orig, New)                                                 \
2223   case X86::Orig##Z128rr:                                                      \
2224     return X86::New##Z128rr;                                                   \
2225   case X86::Orig##Z128rrkz:                                                    \
2226     return X86::New##Z128rrkz;                                                 \
2227   case X86::Orig##Z128rm:                                                      \
2228     return X86::New##Z128rm;                                                   \
2229   case X86::Orig##Z128rmkz:                                                    \
2230     return X86::New##Z128rmkz;                                                 \
2231   case X86::Orig##Z256rr:                                                      \
2232     return X86::New##Z256rr;                                                   \
2233   case X86::Orig##Z256rrkz:                                                    \
2234     return X86::New##Z256rrkz;                                                 \
2235   case X86::Orig##Z256rm:                                                      \
2236     return X86::New##Z256rm;                                                   \
2237   case X86::Orig##Z256rmkz:                                                    \
2238     return X86::New##Z256rmkz;                                                 \
2239   case X86::Orig##Zrr:                                                         \
2240     return X86::New##Zrr;                                                      \
2241   case X86::Orig##Zrrkz:                                                       \
2242     return X86::New##Zrrkz;                                                    \
2243   case X86::Orig##Zrm:                                                         \
2244     return X86::New##Zrm;                                                      \
2245   case X86::Orig##Zrmkz:                                                       \
2246     return X86::New##Zrmkz;
2247 
2248 #define VPERM_CASES_BROADCAST(Orig, New)                                       \
2249   VPERM_CASES(Orig, New)                                                       \
2250   case X86::Orig##Z128rmb:                                                     \
2251     return X86::New##Z128rmb;                                                  \
2252   case X86::Orig##Z128rmbkz:                                                   \
2253     return X86::New##Z128rmbkz;                                                \
2254   case X86::Orig##Z256rmb:                                                     \
2255     return X86::New##Z256rmb;                                                  \
2256   case X86::Orig##Z256rmbkz:                                                   \
2257     return X86::New##Z256rmbkz;                                                \
2258   case X86::Orig##Zrmb:                                                        \
2259     return X86::New##Zrmb;                                                     \
2260   case X86::Orig##Zrmbkz:                                                      \
2261     return X86::New##Zrmbkz;
2262 
2263   switch (Opcode) {
2264     VPERM_CASES(VPERMI2B, VPERMT2B)
2265     VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
2266     VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2267     VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2268     VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
2269     VPERM_CASES(VPERMI2W, VPERMT2W)
2270     VPERM_CASES(VPERMT2B, VPERMI2B)
2271     VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2272     VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2273     VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2274     VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2275     VPERM_CASES(VPERMT2W, VPERMI2W)
2276   }
2277 
2278   llvm_unreachable("Unreachable!");
2279 #undef VPERM_CASES_BROADCAST
2280 #undef VPERM_CASES
2281 }
2282 
2283 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2284                                                    unsigned OpIdx1,
2285                                                    unsigned OpIdx2) const {
2286   auto CloneIfNew = [&](MachineInstr &MI) {
2287     return std::exchange(NewMI, false)
2288                ? MI.getParent()->getParent()->CloneMachineInstr(&MI)
2289                : &MI;
2290   };
2291   MachineInstr *WorkingMI = nullptr;
2292   unsigned Opc = MI.getOpcode();
2293 
2294 #define CASE_ND(OP)                                                            \
2295   case X86::OP:                                                                \
2296   case X86::OP##_ND:
2297 
2298   switch (Opc) {
2299   // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2300   CASE_ND(SHRD16rri8)
2301   CASE_ND(SHLD16rri8)
2302   CASE_ND(SHRD32rri8)
2303   CASE_ND(SHLD32rri8)
2304   CASE_ND(SHRD64rri8)
2305   CASE_ND(SHLD64rri8) {
2306     unsigned Size;
2307     switch (Opc) {
2308     default:
2309       llvm_unreachable("Unreachable!");
2310 #define FROM_TO_SIZE(A, B, S)                                                  \
2311   case X86::A:                                                                 \
2312     Opc = X86::B;                                                              \
2313     Size = S;                                                                  \
2314     break;                                                                     \
2315   case X86::A##_ND:                                                            \
2316     Opc = X86::B##_ND;                                                         \
2317     Size = S;                                                                  \
2318     break;                                                                     \
2319   case X86::B:                                                                 \
2320     Opc = X86::A;                                                              \
2321     Size = S;                                                                  \
2322     break;                                                                     \
2323   case X86::B##_ND:                                                            \
2324     Opc = X86::A##_ND;                                                         \
2325     Size = S;                                                                  \
2326     break;
2327 
2328     FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16)
2329     FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32)
2330     FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64)
2331 #undef FROM_TO_SIZE
2332     }
2333     WorkingMI = CloneIfNew(MI);
2334     WorkingMI->setDesc(get(Opc));
2335     WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm());
2336     break;
2337   }
2338   case X86::PFSUBrr:
2339   case X86::PFSUBRrr:
2340     // PFSUB  x, y: x = x - y
2341     // PFSUBR x, y: x = y - x
2342     WorkingMI = CloneIfNew(MI);
2343     WorkingMI->setDesc(
2344         get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2345     break;
2346   case X86::BLENDPDrri:
2347   case X86::BLENDPSrri:
2348   case X86::VBLENDPDrri:
2349   case X86::VBLENDPSrri:
2350     // If we're optimizing for size, try to use MOVSD/MOVSS.
2351     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2352       unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F;
2353       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2354 #define FROM_TO(FROM, TO)                                                      \
2355   case X86::FROM:                                                              \
2356     Opc = X86::TO;                                                             \
2357     break;
2358         switch (Opc) {
2359         default:
2360           llvm_unreachable("Unreachable!");
2361         FROM_TO(BLENDPDrri, MOVSDrr)
2362         FROM_TO(BLENDPSrri, MOVSSrr)
2363         FROM_TO(VBLENDPDrri, VMOVSDrr)
2364         FROM_TO(VBLENDPSrri, VMOVSSrr)
2365         }
2366         WorkingMI = CloneIfNew(MI);
2367         WorkingMI->setDesc(get(Opc));
2368         WorkingMI->removeOperand(3);
2369         break;
2370       }
2371 #undef FROM_TO
2372     }
2373     [[fallthrough]];
2374   case X86::PBLENDWrri:
2375   case X86::VBLENDPDYrri:
2376   case X86::VBLENDPSYrri:
2377   case X86::VPBLENDDrri:
2378   case X86::VPBLENDWrri:
2379   case X86::VPBLENDDYrri:
2380   case X86::VPBLENDWYrri: {
2381     int8_t Mask;
2382     switch (Opc) {
2383     default:
2384       llvm_unreachable("Unreachable!");
2385     case X86::BLENDPDrri:
2386       Mask = (int8_t)0x03;
2387       break;
2388     case X86::BLENDPSrri:
2389       Mask = (int8_t)0x0F;
2390       break;
2391     case X86::PBLENDWrri:
2392       Mask = (int8_t)0xFF;
2393       break;
2394     case X86::VBLENDPDrri:
2395       Mask = (int8_t)0x03;
2396       break;
2397     case X86::VBLENDPSrri:
2398       Mask = (int8_t)0x0F;
2399       break;
2400     case X86::VBLENDPDYrri:
2401       Mask = (int8_t)0x0F;
2402       break;
2403     case X86::VBLENDPSYrri:
2404       Mask = (int8_t)0xFF;
2405       break;
2406     case X86::VPBLENDDrri:
2407       Mask = (int8_t)0x0F;
2408       break;
2409     case X86::VPBLENDWrri:
2410       Mask = (int8_t)0xFF;
2411       break;
2412     case X86::VPBLENDDYrri:
2413       Mask = (int8_t)0xFF;
2414       break;
2415     case X86::VPBLENDWYrri:
2416       Mask = (int8_t)0xFF;
2417       break;
2418     }
2419     // Only the least significant bits of Imm are used.
2420     // Using int8_t to ensure it will be sign extended to the int64_t that
2421     // setImm takes in order to match isel behavior.
2422     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2423     WorkingMI = CloneIfNew(MI);
2424     WorkingMI->getOperand(3).setImm(Mask ^ Imm);
2425     break;
2426   }
2427   case X86::INSERTPSrr:
2428   case X86::VINSERTPSrr:
2429   case X86::VINSERTPSZrr: {
2430     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2431     unsigned ZMask = Imm & 15;
2432     unsigned DstIdx = (Imm >> 4) & 3;
2433     unsigned SrcIdx = (Imm >> 6) & 3;
2434 
2435     // We can commute insertps if we zero 2 of the elements, the insertion is
2436     // "inline" and we don't override the insertion with a zero.
2437     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2438         llvm::popcount(ZMask) == 2) {
2439       unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15);
2440       assert(AltIdx < 4 && "Illegal insertion index");
2441       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2442       WorkingMI = CloneIfNew(MI);
2443       WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2444       break;
2445     }
2446     return nullptr;
2447   }
2448   case X86::MOVSDrr:
2449   case X86::MOVSSrr:
2450   case X86::VMOVSDrr:
2451   case X86::VMOVSSrr: {
2452     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2453     if (Subtarget.hasSSE41()) {
2454       unsigned Mask;
2455       switch (Opc) {
2456       default:
2457         llvm_unreachable("Unreachable!");
2458       case X86::MOVSDrr:
2459         Opc = X86::BLENDPDrri;
2460         Mask = 0x02;
2461         break;
2462       case X86::MOVSSrr:
2463         Opc = X86::BLENDPSrri;
2464         Mask = 0x0E;
2465         break;
2466       case X86::VMOVSDrr:
2467         Opc = X86::VBLENDPDrri;
2468         Mask = 0x02;
2469         break;
2470       case X86::VMOVSSrr:
2471         Opc = X86::VBLENDPSrri;
2472         Mask = 0x0E;
2473         break;
2474       }
2475 
2476       WorkingMI = CloneIfNew(MI);
2477       WorkingMI->setDesc(get(Opc));
2478       WorkingMI->addOperand(MachineOperand::CreateImm(Mask));
2479       break;
2480     }
2481 
2482     WorkingMI = CloneIfNew(MI);
2483     WorkingMI->setDesc(get(X86::SHUFPDrri));
2484     WorkingMI->addOperand(MachineOperand::CreateImm(0x02));
2485     break;
2486   }
2487   case X86::SHUFPDrri: {
2488     // Commute to MOVSD.
2489     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2490     WorkingMI = CloneIfNew(MI);
2491     WorkingMI->setDesc(get(X86::MOVSDrr));
2492     WorkingMI->removeOperand(3);
2493     break;
2494   }
2495   case X86::PCLMULQDQrri:
2496   case X86::VPCLMULQDQrri:
2497   case X86::VPCLMULQDQYrri:
2498   case X86::VPCLMULQDQZrri:
2499   case X86::VPCLMULQDQZ128rri:
2500   case X86::VPCLMULQDQZ256rri: {
2501     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2502     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2503     unsigned Imm = MI.getOperand(3).getImm();
2504     unsigned Src1Hi = Imm & 0x01;
2505     unsigned Src2Hi = Imm & 0x10;
2506     WorkingMI = CloneIfNew(MI);
2507     WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2508     break;
2509   }
2510   case X86::VPCMPBZ128rri:
2511   case X86::VPCMPUBZ128rri:
2512   case X86::VPCMPBZ256rri:
2513   case X86::VPCMPUBZ256rri:
2514   case X86::VPCMPBZrri:
2515   case X86::VPCMPUBZrri:
2516   case X86::VPCMPDZ128rri:
2517   case X86::VPCMPUDZ128rri:
2518   case X86::VPCMPDZ256rri:
2519   case X86::VPCMPUDZ256rri:
2520   case X86::VPCMPDZrri:
2521   case X86::VPCMPUDZrri:
2522   case X86::VPCMPQZ128rri:
2523   case X86::VPCMPUQZ128rri:
2524   case X86::VPCMPQZ256rri:
2525   case X86::VPCMPUQZ256rri:
2526   case X86::VPCMPQZrri:
2527   case X86::VPCMPUQZrri:
2528   case X86::VPCMPWZ128rri:
2529   case X86::VPCMPUWZ128rri:
2530   case X86::VPCMPWZ256rri:
2531   case X86::VPCMPUWZ256rri:
2532   case X86::VPCMPWZrri:
2533   case X86::VPCMPUWZrri:
2534   case X86::VPCMPBZ128rrik:
2535   case X86::VPCMPUBZ128rrik:
2536   case X86::VPCMPBZ256rrik:
2537   case X86::VPCMPUBZ256rrik:
2538   case X86::VPCMPBZrrik:
2539   case X86::VPCMPUBZrrik:
2540   case X86::VPCMPDZ128rrik:
2541   case X86::VPCMPUDZ128rrik:
2542   case X86::VPCMPDZ256rrik:
2543   case X86::VPCMPUDZ256rrik:
2544   case X86::VPCMPDZrrik:
2545   case X86::VPCMPUDZrrik:
2546   case X86::VPCMPQZ128rrik:
2547   case X86::VPCMPUQZ128rrik:
2548   case X86::VPCMPQZ256rrik:
2549   case X86::VPCMPUQZ256rrik:
2550   case X86::VPCMPQZrrik:
2551   case X86::VPCMPUQZrrik:
2552   case X86::VPCMPWZ128rrik:
2553   case X86::VPCMPUWZ128rrik:
2554   case X86::VPCMPWZ256rrik:
2555   case X86::VPCMPUWZ256rrik:
2556   case X86::VPCMPWZrrik:
2557   case X86::VPCMPUWZrrik:
2558     WorkingMI = CloneIfNew(MI);
2559     // Flip comparison mode immediate (if necessary).
2560     WorkingMI->getOperand(MI.getNumOperands() - 1)
2561         .setImm(X86::getSwappedVPCMPImm(
2562             MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7));
2563     break;
2564   case X86::VPCOMBri:
2565   case X86::VPCOMUBri:
2566   case X86::VPCOMDri:
2567   case X86::VPCOMUDri:
2568   case X86::VPCOMQri:
2569   case X86::VPCOMUQri:
2570   case X86::VPCOMWri:
2571   case X86::VPCOMUWri:
2572     WorkingMI = CloneIfNew(MI);
2573     // Flip comparison mode immediate (if necessary).
2574     WorkingMI->getOperand(3).setImm(
2575         X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7));
2576     break;
2577   case X86::VCMPSDZrri:
2578   case X86::VCMPSSZrri:
2579   case X86::VCMPPDZrri:
2580   case X86::VCMPPSZrri:
2581   case X86::VCMPSHZrri:
2582   case X86::VCMPPHZrri:
2583   case X86::VCMPPHZ128rri:
2584   case X86::VCMPPHZ256rri:
2585   case X86::VCMPPDZ128rri:
2586   case X86::VCMPPSZ128rri:
2587   case X86::VCMPPDZ256rri:
2588   case X86::VCMPPSZ256rri:
2589   case X86::VCMPPDZrrik:
2590   case X86::VCMPPSZrrik:
2591   case X86::VCMPPDZ128rrik:
2592   case X86::VCMPPSZ128rrik:
2593   case X86::VCMPPDZ256rrik:
2594   case X86::VCMPPSZ256rrik:
2595     WorkingMI = CloneIfNew(MI);
2596     WorkingMI->getOperand(MI.getNumExplicitOperands() - 1)
2597         .setImm(X86::getSwappedVCMPImm(
2598             MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2599     break;
2600   case X86::VPERM2F128rr:
2601   case X86::VPERM2I128rr:
2602     // Flip permute source immediate.
2603     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2604     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2605     WorkingMI = CloneIfNew(MI);
2606     WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22);
2607     break;
2608   case X86::MOVHLPSrr:
2609   case X86::UNPCKHPDrr:
2610   case X86::VMOVHLPSrr:
2611   case X86::VUNPCKHPDrr:
2612   case X86::VMOVHLPSZrr:
2613   case X86::VUNPCKHPDZ128rr:
2614     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2615 
2616     switch (Opc) {
2617     default:
2618       llvm_unreachable("Unreachable!");
2619     case X86::MOVHLPSrr:
2620       Opc = X86::UNPCKHPDrr;
2621       break;
2622     case X86::UNPCKHPDrr:
2623       Opc = X86::MOVHLPSrr;
2624       break;
2625     case X86::VMOVHLPSrr:
2626       Opc = X86::VUNPCKHPDrr;
2627       break;
2628     case X86::VUNPCKHPDrr:
2629       Opc = X86::VMOVHLPSrr;
2630       break;
2631     case X86::VMOVHLPSZrr:
2632       Opc = X86::VUNPCKHPDZ128rr;
2633       break;
2634     case X86::VUNPCKHPDZ128rr:
2635       Opc = X86::VMOVHLPSZrr;
2636       break;
2637     }
2638     WorkingMI = CloneIfNew(MI);
2639     WorkingMI->setDesc(get(Opc));
2640     break;
2641   CASE_ND(CMOV16rr)
2642   CASE_ND(CMOV32rr)
2643   CASE_ND(CMOV64rr) {
2644     WorkingMI = CloneIfNew(MI);
2645     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2646     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2647     WorkingMI->getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2648     break;
2649   }
2650   case X86::VPTERNLOGDZrri:
2651   case X86::VPTERNLOGDZrmi:
2652   case X86::VPTERNLOGDZ128rri:
2653   case X86::VPTERNLOGDZ128rmi:
2654   case X86::VPTERNLOGDZ256rri:
2655   case X86::VPTERNLOGDZ256rmi:
2656   case X86::VPTERNLOGQZrri:
2657   case X86::VPTERNLOGQZrmi:
2658   case X86::VPTERNLOGQZ128rri:
2659   case X86::VPTERNLOGQZ128rmi:
2660   case X86::VPTERNLOGQZ256rri:
2661   case X86::VPTERNLOGQZ256rmi:
2662   case X86::VPTERNLOGDZrrik:
2663   case X86::VPTERNLOGDZ128rrik:
2664   case X86::VPTERNLOGDZ256rrik:
2665   case X86::VPTERNLOGQZrrik:
2666   case X86::VPTERNLOGQZ128rrik:
2667   case X86::VPTERNLOGQZ256rrik:
2668   case X86::VPTERNLOGDZrrikz:
2669   case X86::VPTERNLOGDZrmikz:
2670   case X86::VPTERNLOGDZ128rrikz:
2671   case X86::VPTERNLOGDZ128rmikz:
2672   case X86::VPTERNLOGDZ256rrikz:
2673   case X86::VPTERNLOGDZ256rmikz:
2674   case X86::VPTERNLOGQZrrikz:
2675   case X86::VPTERNLOGQZrmikz:
2676   case X86::VPTERNLOGQZ128rrikz:
2677   case X86::VPTERNLOGQZ128rmikz:
2678   case X86::VPTERNLOGQZ256rrikz:
2679   case X86::VPTERNLOGQZ256rmikz:
2680   case X86::VPTERNLOGDZ128rmbi:
2681   case X86::VPTERNLOGDZ256rmbi:
2682   case X86::VPTERNLOGDZrmbi:
2683   case X86::VPTERNLOGQZ128rmbi:
2684   case X86::VPTERNLOGQZ256rmbi:
2685   case X86::VPTERNLOGQZrmbi:
2686   case X86::VPTERNLOGDZ128rmbikz:
2687   case X86::VPTERNLOGDZ256rmbikz:
2688   case X86::VPTERNLOGDZrmbikz:
2689   case X86::VPTERNLOGQZ128rmbikz:
2690   case X86::VPTERNLOGQZ256rmbikz:
2691   case X86::VPTERNLOGQZrmbikz: {
2692     WorkingMI = CloneIfNew(MI);
2693     commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2);
2694     break;
2695   }
2696   default:
2697     if (isCommutableVPERMV3Instruction(Opc)) {
2698       WorkingMI = CloneIfNew(MI);
2699       WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc)));
2700       break;
2701     }
2702 
2703     if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) {
2704       WorkingMI = CloneIfNew(MI);
2705       WorkingMI->setDesc(
2706           get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group)));
2707       break;
2708     }
2709   }
2710   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2711 }
2712 
2713 bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2714                                                  unsigned &SrcOpIdx1,
2715                                                  unsigned &SrcOpIdx2,
2716                                                  bool IsIntrinsic) const {
2717   uint64_t TSFlags = MI.getDesc().TSFlags;
2718 
2719   unsigned FirstCommutableVecOp = 1;
2720   unsigned LastCommutableVecOp = 3;
2721   unsigned KMaskOp = -1U;
2722   if (X86II::isKMasked(TSFlags)) {
2723     // For k-zero-masked operations it is Ok to commute the first vector
2724     // operand. Unless this is an intrinsic instruction.
2725     // For regular k-masked operations a conservative choice is done as the
2726     // elements of the first vector operand, for which the corresponding bit
2727     // in the k-mask operand is set to 0, are copied to the result of the
2728     // instruction.
2729     // TODO/FIXME: The commute still may be legal if it is known that the
2730     // k-mask operand is set to either all ones or all zeroes.
2731     // It is also Ok to commute the 1st operand if all users of MI use only
2732     // the elements enabled by the k-mask operand. For example,
2733     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2734     //                                                     : v1[i];
2735     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2736     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2737 
2738     // The k-mask operand has index = 2 for masked and zero-masked operations.
2739     KMaskOp = 2;
2740 
2741     // The operand with index = 1 is used as a source for those elements for
2742     // which the corresponding bit in the k-mask is set to 0.
2743     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2744       FirstCommutableVecOp = 3;
2745 
2746     LastCommutableVecOp++;
2747   } else if (IsIntrinsic) {
2748     // Commuting the first operand of an intrinsic instruction isn't possible
2749     // unless we can prove that only the lowest element of the result is used.
2750     FirstCommutableVecOp = 2;
2751   }
2752 
2753   if (isMem(MI, LastCommutableVecOp))
2754     LastCommutableVecOp--;
2755 
2756   // Only the first RegOpsNum operands are commutable.
2757   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2758   // that the operand is not specified/fixed.
2759   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2760       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2761        SrcOpIdx1 == KMaskOp))
2762     return false;
2763   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2764       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2765        SrcOpIdx2 == KMaskOp))
2766     return false;
2767 
2768   // Look for two different register operands assumed to be commutable
2769   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2770   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2771       SrcOpIdx2 == CommuteAnyOperandIndex) {
2772     unsigned CommutableOpIdx2 = SrcOpIdx2;
2773 
2774     // At least one of operands to be commuted is not specified and
2775     // this method is free to choose appropriate commutable operands.
2776     if (SrcOpIdx1 == SrcOpIdx2)
2777       // Both of operands are not fixed. By default set one of commutable
2778       // operands to the last register operand of the instruction.
2779       CommutableOpIdx2 = LastCommutableVecOp;
2780     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2781       // Only one of operands is not fixed.
2782       CommutableOpIdx2 = SrcOpIdx1;
2783 
2784     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2785     // operand and assign its index to CommutableOpIdx1.
2786     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2787 
2788     unsigned CommutableOpIdx1;
2789     for (CommutableOpIdx1 = LastCommutableVecOp;
2790          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2791       // Just ignore and skip the k-mask operand.
2792       if (CommutableOpIdx1 == KMaskOp)
2793         continue;
2794 
2795       // The commuted operands must have different registers.
2796       // Otherwise, the commute transformation does not change anything and
2797       // is useless then.
2798       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2799         break;
2800     }
2801 
2802     // No appropriate commutable operands were found.
2803     if (CommutableOpIdx1 < FirstCommutableVecOp)
2804       return false;
2805 
2806     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2807     // to return those values.
2808     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2809                               CommutableOpIdx2))
2810       return false;
2811   }
2812 
2813   return true;
2814 }
2815 
2816 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2817                                          unsigned &SrcOpIdx1,
2818                                          unsigned &SrcOpIdx2) const {
2819   const MCInstrDesc &Desc = MI.getDesc();
2820   if (!Desc.isCommutable())
2821     return false;
2822 
2823   switch (MI.getOpcode()) {
2824   case X86::CMPSDrri:
2825   case X86::CMPSSrri:
2826   case X86::CMPPDrri:
2827   case X86::CMPPSrri:
2828   case X86::VCMPSDrri:
2829   case X86::VCMPSSrri:
2830   case X86::VCMPPDrri:
2831   case X86::VCMPPSrri:
2832   case X86::VCMPPDYrri:
2833   case X86::VCMPPSYrri:
2834   case X86::VCMPSDZrri:
2835   case X86::VCMPSSZrri:
2836   case X86::VCMPPDZrri:
2837   case X86::VCMPPSZrri:
2838   case X86::VCMPSHZrri:
2839   case X86::VCMPPHZrri:
2840   case X86::VCMPPHZ128rri:
2841   case X86::VCMPPHZ256rri:
2842   case X86::VCMPPDZ128rri:
2843   case X86::VCMPPSZ128rri:
2844   case X86::VCMPPDZ256rri:
2845   case X86::VCMPPSZ256rri:
2846   case X86::VCMPPDZrrik:
2847   case X86::VCMPPSZrrik:
2848   case X86::VCMPPDZ128rrik:
2849   case X86::VCMPPSZ128rrik:
2850   case X86::VCMPPDZ256rrik:
2851   case X86::VCMPPSZ256rrik: {
2852     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2853 
2854     // Float comparison can be safely commuted for
2855     // Ordered/Unordered/Equal/NotEqual tests
2856     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2857     switch (Imm) {
2858     default:
2859       // EVEX versions can be commuted.
2860       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2861         break;
2862       return false;
2863     case 0x00: // EQUAL
2864     case 0x03: // UNORDERED
2865     case 0x04: // NOT EQUAL
2866     case 0x07: // ORDERED
2867       break;
2868     }
2869 
2870     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2871     // when masked).
2872     // Assign them to the returned operand indices here.
2873     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2874                                 2 + OpOffset);
2875   }
2876   case X86::MOVSSrr:
2877     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2878     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2879     // AVX implies sse4.1.
2880     if (Subtarget.hasSSE41())
2881       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2882     return false;
2883   case X86::SHUFPDrri:
2884     // We can commute this to MOVSD.
2885     if (MI.getOperand(3).getImm() == 0x02)
2886       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2887     return false;
2888   case X86::MOVHLPSrr:
2889   case X86::UNPCKHPDrr:
2890   case X86::VMOVHLPSrr:
2891   case X86::VUNPCKHPDrr:
2892   case X86::VMOVHLPSZrr:
2893   case X86::VUNPCKHPDZ128rr:
2894     if (Subtarget.hasSSE2())
2895       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2896     return false;
2897   case X86::VPTERNLOGDZrri:
2898   case X86::VPTERNLOGDZrmi:
2899   case X86::VPTERNLOGDZ128rri:
2900   case X86::VPTERNLOGDZ128rmi:
2901   case X86::VPTERNLOGDZ256rri:
2902   case X86::VPTERNLOGDZ256rmi:
2903   case X86::VPTERNLOGQZrri:
2904   case X86::VPTERNLOGQZrmi:
2905   case X86::VPTERNLOGQZ128rri:
2906   case X86::VPTERNLOGQZ128rmi:
2907   case X86::VPTERNLOGQZ256rri:
2908   case X86::VPTERNLOGQZ256rmi:
2909   case X86::VPTERNLOGDZrrik:
2910   case X86::VPTERNLOGDZ128rrik:
2911   case X86::VPTERNLOGDZ256rrik:
2912   case X86::VPTERNLOGQZrrik:
2913   case X86::VPTERNLOGQZ128rrik:
2914   case X86::VPTERNLOGQZ256rrik:
2915   case X86::VPTERNLOGDZrrikz:
2916   case X86::VPTERNLOGDZrmikz:
2917   case X86::VPTERNLOGDZ128rrikz:
2918   case X86::VPTERNLOGDZ128rmikz:
2919   case X86::VPTERNLOGDZ256rrikz:
2920   case X86::VPTERNLOGDZ256rmikz:
2921   case X86::VPTERNLOGQZrrikz:
2922   case X86::VPTERNLOGQZrmikz:
2923   case X86::VPTERNLOGQZ128rrikz:
2924   case X86::VPTERNLOGQZ128rmikz:
2925   case X86::VPTERNLOGQZ256rrikz:
2926   case X86::VPTERNLOGQZ256rmikz:
2927   case X86::VPTERNLOGDZ128rmbi:
2928   case X86::VPTERNLOGDZ256rmbi:
2929   case X86::VPTERNLOGDZrmbi:
2930   case X86::VPTERNLOGQZ128rmbi:
2931   case X86::VPTERNLOGQZ256rmbi:
2932   case X86::VPTERNLOGQZrmbi:
2933   case X86::VPTERNLOGDZ128rmbikz:
2934   case X86::VPTERNLOGDZ256rmbikz:
2935   case X86::VPTERNLOGDZrmbikz:
2936   case X86::VPTERNLOGQZ128rmbikz:
2937   case X86::VPTERNLOGQZ256rmbikz:
2938   case X86::VPTERNLOGQZrmbikz:
2939     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2940   case X86::VPDPWSSDYrr:
2941   case X86::VPDPWSSDrr:
2942   case X86::VPDPWSSDSYrr:
2943   case X86::VPDPWSSDSrr:
2944   case X86::VPDPWUUDrr:
2945   case X86::VPDPWUUDYrr:
2946   case X86::VPDPWUUDSrr:
2947   case X86::VPDPWUUDSYrr:
2948   case X86::VPDPBSSDSrr:
2949   case X86::VPDPBSSDSYrr:
2950   case X86::VPDPBSSDrr:
2951   case X86::VPDPBSSDYrr:
2952   case X86::VPDPBUUDSrr:
2953   case X86::VPDPBUUDSYrr:
2954   case X86::VPDPBUUDrr:
2955   case X86::VPDPBUUDYrr:
2956   case X86::VPDPWSSDZ128r:
2957   case X86::VPDPWSSDZ128rk:
2958   case X86::VPDPWSSDZ128rkz:
2959   case X86::VPDPWSSDZ256r:
2960   case X86::VPDPWSSDZ256rk:
2961   case X86::VPDPWSSDZ256rkz:
2962   case X86::VPDPWSSDZr:
2963   case X86::VPDPWSSDZrk:
2964   case X86::VPDPWSSDZrkz:
2965   case X86::VPDPWSSDSZ128r:
2966   case X86::VPDPWSSDSZ128rk:
2967   case X86::VPDPWSSDSZ128rkz:
2968   case X86::VPDPWSSDSZ256r:
2969   case X86::VPDPWSSDSZ256rk:
2970   case X86::VPDPWSSDSZ256rkz:
2971   case X86::VPDPWSSDSZr:
2972   case X86::VPDPWSSDSZrk:
2973   case X86::VPDPWSSDSZrkz:
2974   case X86::VPMADD52HUQrr:
2975   case X86::VPMADD52HUQYrr:
2976   case X86::VPMADD52HUQZ128r:
2977   case X86::VPMADD52HUQZ128rk:
2978   case X86::VPMADD52HUQZ128rkz:
2979   case X86::VPMADD52HUQZ256r:
2980   case X86::VPMADD52HUQZ256rk:
2981   case X86::VPMADD52HUQZ256rkz:
2982   case X86::VPMADD52HUQZr:
2983   case X86::VPMADD52HUQZrk:
2984   case X86::VPMADD52HUQZrkz:
2985   case X86::VPMADD52LUQrr:
2986   case X86::VPMADD52LUQYrr:
2987   case X86::VPMADD52LUQZ128r:
2988   case X86::VPMADD52LUQZ128rk:
2989   case X86::VPMADD52LUQZ128rkz:
2990   case X86::VPMADD52LUQZ256r:
2991   case X86::VPMADD52LUQZ256rk:
2992   case X86::VPMADD52LUQZ256rkz:
2993   case X86::VPMADD52LUQZr:
2994   case X86::VPMADD52LUQZrk:
2995   case X86::VPMADD52LUQZrkz:
2996   case X86::VFMADDCPHZr:
2997   case X86::VFMADDCPHZrk:
2998   case X86::VFMADDCPHZrkz:
2999   case X86::VFMADDCPHZ128r:
3000   case X86::VFMADDCPHZ128rk:
3001   case X86::VFMADDCPHZ128rkz:
3002   case X86::VFMADDCPHZ256r:
3003   case X86::VFMADDCPHZ256rk:
3004   case X86::VFMADDCPHZ256rkz:
3005   case X86::VFMADDCSHZr:
3006   case X86::VFMADDCSHZrk:
3007   case X86::VFMADDCSHZrkz: {
3008     unsigned CommutableOpIdx1 = 2;
3009     unsigned CommutableOpIdx2 = 3;
3010     if (X86II::isKMasked(Desc.TSFlags)) {
3011       // Skip the mask register.
3012       ++CommutableOpIdx1;
3013       ++CommutableOpIdx2;
3014     }
3015     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3016                               CommutableOpIdx2))
3017       return false;
3018     if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
3019       // No idea.
3020       return false;
3021     return true;
3022   }
3023 
3024   default:
3025     const X86InstrFMA3Group *FMA3Group =
3026         getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags);
3027     if (FMA3Group)
3028       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
3029                                            FMA3Group->isIntrinsic());
3030 
3031     // Handled masked instructions since we need to skip over the mask input
3032     // and the preserved input.
3033     if (X86II::isKMasked(Desc.TSFlags)) {
3034       // First assume that the first input is the mask operand and skip past it.
3035       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
3036       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
3037       // Check if the first input is tied. If there isn't one then we only
3038       // need to skip the mask operand which we did above.
3039       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
3040                                              MCOI::TIED_TO) != -1)) {
3041         // If this is zero masking instruction with a tied operand, we need to
3042         // move the first index back to the first input since this must
3043         // be a 3 input instruction and we want the first two non-mask inputs.
3044         // Otherwise this is a 2 input instruction with a preserved input and
3045         // mask, so we need to move the indices to skip one more input.
3046         if (X86II::isKMergeMasked(Desc.TSFlags)) {
3047           ++CommutableOpIdx1;
3048           ++CommutableOpIdx2;
3049         } else {
3050           --CommutableOpIdx1;
3051         }
3052       }
3053 
3054       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3055                                 CommutableOpIdx2))
3056         return false;
3057 
3058       if (!MI.getOperand(SrcOpIdx1).isReg() ||
3059           !MI.getOperand(SrcOpIdx2).isReg())
3060         // No idea.
3061         return false;
3062       return true;
3063     }
3064 
3065     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3066   }
3067   return false;
3068 }
3069 
3070 static bool isConvertibleLEA(MachineInstr *MI) {
3071   unsigned Opcode = MI->getOpcode();
3072   if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3073       Opcode != X86::LEA64_32r)
3074     return false;
3075 
3076   const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
3077   const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
3078   const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
3079 
3080   if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
3081       Scale.getImm() > 1)
3082     return false;
3083 
3084   return true;
3085 }
3086 
3087 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
3088   // Currently we're interested in following sequence only.
3089   //   r3 = lea r1, r2
3090   //   r5 = add r3, r4
3091   // Both r3 and r4 are killed in add, we hope the add instruction has the
3092   // operand order
3093   //   r5 = add r4, r3
3094   // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3095   unsigned Opcode = MI.getOpcode();
3096   if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3097     return false;
3098 
3099   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3100   Register Reg1 = MI.getOperand(1).getReg();
3101   Register Reg2 = MI.getOperand(2).getReg();
3102 
3103   // Check if Reg1 comes from LEA in the same MBB.
3104   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
3105     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3106       Commute = true;
3107       return true;
3108     }
3109   }
3110 
3111   // Check if Reg2 comes from LEA in the same MBB.
3112   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
3113     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3114       Commute = false;
3115       return true;
3116     }
3117   }
3118 
3119   return false;
3120 }
3121 
3122 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
3123   unsigned Opcode = MCID.getOpcode();
3124   if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode) ||
3125         X86::isCFCMOVCC(Opcode) || X86::isCCMPCC(Opcode) ||
3126         X86::isCTESTCC(Opcode)))
3127     return -1;
3128   // Assume that condition code is always the last use operand.
3129   unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
3130   return NumUses - 1;
3131 }
3132 
3133 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
3134   const MCInstrDesc &MCID = MI.getDesc();
3135   int CondNo = getCondSrcNoFromDesc(MCID);
3136   if (CondNo < 0)
3137     return X86::COND_INVALID;
3138   CondNo += MCID.getNumDefs();
3139   return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
3140 }
3141 
3142 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
3143   return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3144                                     : X86::COND_INVALID;
3145 }
3146 
3147 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
3148   return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3149                                       : X86::COND_INVALID;
3150 }
3151 
3152 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
3153   return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3154                                        : X86::COND_INVALID;
3155 }
3156 
3157 X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) {
3158   return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3159                                          : X86::COND_INVALID;
3160 }
3161 
3162 X86::CondCode X86::getCondFromCCMP(const MachineInstr &MI) {
3163   return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode())
3164              ? X86::getCondFromMI(MI)
3165              : X86::COND_INVALID;
3166 }
3167 
3168 int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC) {
3169   // CCMP/CTEST has two conditional operands:
3170   // - SCC: source conditonal code (same as CMOV)
3171   // - DCF: destination conditional flags, which has 4 valid bits
3172   //
3173   // +----+----+----+----+
3174   // | OF | SF | ZF | CF |
3175   // +----+----+----+----+
3176   //
3177   // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates
3178   // the conditional flags by as follows:
3179   //
3180   // OF = DCF.OF
3181   // SF = DCF.SF
3182   // ZF = DCF.ZF
3183   // CF = DCF.CF
3184   // PF = DCF.CF
3185   // AF = 0 (Auxiliary Carry Flag)
3186   //
3187   // Otherwise, the CMP or TEST is executed and it updates the
3188   // CSPAZO flags normally.
3189   //
3190   // NOTE:
3191   // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value.
3192   // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value.
3193 
3194   enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF };
3195 
3196   switch (CC) {
3197   default:
3198     llvm_unreachable("Illegal condition code!");
3199   case X86::COND_NO:
3200   case X86::COND_NE:
3201   case X86::COND_GE:
3202   case X86::COND_G:
3203   case X86::COND_AE:
3204   case X86::COND_A:
3205   case X86::COND_NS:
3206   case X86::COND_NP:
3207     return 0;
3208   case X86::COND_O:
3209     return OF;
3210   case X86::COND_B:
3211   case X86::COND_BE:
3212     return CF;
3213     break;
3214   case X86::COND_E:
3215   case X86::COND_LE:
3216     return ZF;
3217   case X86::COND_S:
3218   case X86::COND_L:
3219     return SF;
3220   case X86::COND_P:
3221     return PF;
3222   }
3223 }
3224 
3225 #define GET_X86_NF_TRANSFORM_TABLE
3226 #define GET_X86_ND2NONND_TABLE
3227 #include "X86GenInstrMapping.inc"
3228 
3229 static unsigned getNewOpcFromTable(ArrayRef<X86TableEntry> Table,
3230                                    unsigned Opc) {
3231   const auto I = llvm::lower_bound(Table, Opc);
3232   return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc;
3233 }
3234 unsigned X86::getNFVariant(unsigned Opc) {
3235   return getNewOpcFromTable(X86NFTransformTable, Opc);
3236 }
3237 
3238 unsigned X86::getNonNDVariant(unsigned Opc) {
3239   return getNewOpcFromTable(X86ND2NonNDTable, Opc);
3240 }
3241 
3242 /// Return the inverse of the specified condition,
3243 /// e.g. turning COND_E to COND_NE.
3244 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3245   switch (CC) {
3246   default:
3247     llvm_unreachable("Illegal condition code!");
3248   case X86::COND_E:
3249     return X86::COND_NE;
3250   case X86::COND_NE:
3251     return X86::COND_E;
3252   case X86::COND_L:
3253     return X86::COND_GE;
3254   case X86::COND_LE:
3255     return X86::COND_G;
3256   case X86::COND_G:
3257     return X86::COND_LE;
3258   case X86::COND_GE:
3259     return X86::COND_L;
3260   case X86::COND_B:
3261     return X86::COND_AE;
3262   case X86::COND_BE:
3263     return X86::COND_A;
3264   case X86::COND_A:
3265     return X86::COND_BE;
3266   case X86::COND_AE:
3267     return X86::COND_B;
3268   case X86::COND_S:
3269     return X86::COND_NS;
3270   case X86::COND_NS:
3271     return X86::COND_S;
3272   case X86::COND_P:
3273     return X86::COND_NP;
3274   case X86::COND_NP:
3275     return X86::COND_P;
3276   case X86::COND_O:
3277     return X86::COND_NO;
3278   case X86::COND_NO:
3279     return X86::COND_O;
3280   case X86::COND_NE_OR_P:
3281     return X86::COND_E_AND_NP;
3282   case X86::COND_E_AND_NP:
3283     return X86::COND_NE_OR_P;
3284   }
3285 }
3286 
3287 /// Assuming the flags are set by MI(a,b), return the condition code if we
3288 /// modify the instructions such that flags are set by MI(b,a).
3289 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3290   switch (CC) {
3291   default:
3292     return X86::COND_INVALID;
3293   case X86::COND_E:
3294     return X86::COND_E;
3295   case X86::COND_NE:
3296     return X86::COND_NE;
3297   case X86::COND_L:
3298     return X86::COND_G;
3299   case X86::COND_LE:
3300     return X86::COND_GE;
3301   case X86::COND_G:
3302     return X86::COND_L;
3303   case X86::COND_GE:
3304     return X86::COND_LE;
3305   case X86::COND_B:
3306     return X86::COND_A;
3307   case X86::COND_BE:
3308     return X86::COND_AE;
3309   case X86::COND_A:
3310     return X86::COND_B;
3311   case X86::COND_AE:
3312     return X86::COND_BE;
3313   }
3314 }
3315 
3316 std::pair<X86::CondCode, bool>
3317 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
3318   X86::CondCode CC = X86::COND_INVALID;
3319   bool NeedSwap = false;
3320   switch (Predicate) {
3321   default:
3322     break;
3323   // Floating-point Predicates
3324   case CmpInst::FCMP_UEQ:
3325     CC = X86::COND_E;
3326     break;
3327   case CmpInst::FCMP_OLT:
3328     NeedSwap = true;
3329     [[fallthrough]];
3330   case CmpInst::FCMP_OGT:
3331     CC = X86::COND_A;
3332     break;
3333   case CmpInst::FCMP_OLE:
3334     NeedSwap = true;
3335     [[fallthrough]];
3336   case CmpInst::FCMP_OGE:
3337     CC = X86::COND_AE;
3338     break;
3339   case CmpInst::FCMP_UGT:
3340     NeedSwap = true;
3341     [[fallthrough]];
3342   case CmpInst::FCMP_ULT:
3343     CC = X86::COND_B;
3344     break;
3345   case CmpInst::FCMP_UGE:
3346     NeedSwap = true;
3347     [[fallthrough]];
3348   case CmpInst::FCMP_ULE:
3349     CC = X86::COND_BE;
3350     break;
3351   case CmpInst::FCMP_ONE:
3352     CC = X86::COND_NE;
3353     break;
3354   case CmpInst::FCMP_UNO:
3355     CC = X86::COND_P;
3356     break;
3357   case CmpInst::FCMP_ORD:
3358     CC = X86::COND_NP;
3359     break;
3360   case CmpInst::FCMP_OEQ:
3361     [[fallthrough]];
3362   case CmpInst::FCMP_UNE:
3363     CC = X86::COND_INVALID;
3364     break;
3365 
3366   // Integer Predicates
3367   case CmpInst::ICMP_EQ:
3368     CC = X86::COND_E;
3369     break;
3370   case CmpInst::ICMP_NE:
3371     CC = X86::COND_NE;
3372     break;
3373   case CmpInst::ICMP_UGT:
3374     CC = X86::COND_A;
3375     break;
3376   case CmpInst::ICMP_UGE:
3377     CC = X86::COND_AE;
3378     break;
3379   case CmpInst::ICMP_ULT:
3380     CC = X86::COND_B;
3381     break;
3382   case CmpInst::ICMP_ULE:
3383     CC = X86::COND_BE;
3384     break;
3385   case CmpInst::ICMP_SGT:
3386     CC = X86::COND_G;
3387     break;
3388   case CmpInst::ICMP_SGE:
3389     CC = X86::COND_GE;
3390     break;
3391   case CmpInst::ICMP_SLT:
3392     CC = X86::COND_L;
3393     break;
3394   case CmpInst::ICMP_SLE:
3395     CC = X86::COND_LE;
3396     break;
3397   }
3398 
3399   return std::make_pair(CC, NeedSwap);
3400 }
3401 
3402 /// Return a cmov opcode for the given register size in bytes, and operand type.
3403 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand,
3404                             bool HasNDD) {
3405   switch (RegBytes) {
3406   default:
3407     llvm_unreachable("Illegal register size!");
3408 #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3409   case 2:
3410     return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm)
3411                             : GET_ND_IF_ENABLED(X86::CMOV16rr);
3412   case 4:
3413     return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm)
3414                             : GET_ND_IF_ENABLED(X86::CMOV32rr);
3415   case 8:
3416     return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm)
3417                             : GET_ND_IF_ENABLED(X86::CMOV64rr);
3418   }
3419 }
3420 
3421 /// Get the VPCMP immediate for the given condition.
3422 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
3423   switch (CC) {
3424   default:
3425     llvm_unreachable("Unexpected SETCC condition");
3426   case ISD::SETNE:
3427     return 4;
3428   case ISD::SETEQ:
3429     return 0;
3430   case ISD::SETULT:
3431   case ISD::SETLT:
3432     return 1;
3433   case ISD::SETUGT:
3434   case ISD::SETGT:
3435     return 6;
3436   case ISD::SETUGE:
3437   case ISD::SETGE:
3438     return 5;
3439   case ISD::SETULE:
3440   case ISD::SETLE:
3441     return 2;
3442   }
3443 }
3444 
3445 /// Get the VPCMP immediate if the operands are swapped.
3446 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
3447   switch (Imm) {
3448   default:
3449     llvm_unreachable("Unreachable!");
3450   case 0x01:
3451     Imm = 0x06;
3452     break; // LT  -> NLE
3453   case 0x02:
3454     Imm = 0x05;
3455     break; // LE  -> NLT
3456   case 0x05:
3457     Imm = 0x02;
3458     break; // NLT -> LE
3459   case 0x06:
3460     Imm = 0x01;
3461     break;   // NLE -> LT
3462   case 0x00: // EQ
3463   case 0x03: // FALSE
3464   case 0x04: // NE
3465   case 0x07: // TRUE
3466     break;
3467   }
3468 
3469   return Imm;
3470 }
3471 
3472 /// Get the VPCOM immediate if the operands are swapped.
3473 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
3474   switch (Imm) {
3475   default:
3476     llvm_unreachable("Unreachable!");
3477   case 0x00:
3478     Imm = 0x02;
3479     break; // LT -> GT
3480   case 0x01:
3481     Imm = 0x03;
3482     break; // LE -> GE
3483   case 0x02:
3484     Imm = 0x00;
3485     break; // GT -> LT
3486   case 0x03:
3487     Imm = 0x01;
3488     break;   // GE -> LE
3489   case 0x04: // EQ
3490   case 0x05: // NE
3491   case 0x06: // FALSE
3492   case 0x07: // TRUE
3493     break;
3494   }
3495 
3496   return Imm;
3497 }
3498 
3499 /// Get the VCMP immediate if the operands are swapped.
3500 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
3501   // Only need the lower 2 bits to distinquish.
3502   switch (Imm & 0x3) {
3503   default:
3504     llvm_unreachable("Unreachable!");
3505   case 0x00:
3506   case 0x03:
3507     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3508     break;
3509   case 0x01:
3510   case 0x02:
3511     // Need to toggle bits 3:0. Bit 4 stays the same.
3512     Imm ^= 0xf;
3513     break;
3514   }
3515 
3516   return Imm;
3517 }
3518 
3519 unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) {
3520   if (Info.RegClass == X86::VR128RegClassID ||
3521       Info.RegClass == X86::VR128XRegClassID)
3522     return 128;
3523   if (Info.RegClass == X86::VR256RegClassID ||
3524       Info.RegClass == X86::VR256XRegClassID)
3525     return 256;
3526   if (Info.RegClass == X86::VR512RegClassID)
3527     return 512;
3528   llvm_unreachable("Unknown register class!");
3529 }
3530 
3531 /// Return true if the Reg is X87 register.
3532 static bool isX87Reg(unsigned Reg) {
3533   return (Reg == X86::FPCW || Reg == X86::FPSW ||
3534           (Reg >= X86::ST0 && Reg <= X86::ST7));
3535 }
3536 
3537 /// check if the instruction is X87 instruction
3538 bool X86::isX87Instruction(MachineInstr &MI) {
3539   // Call defs X87 register, so we special case it here because
3540   // otherwise calls are incorrectly flagged as x87 instructions
3541   // as a result.
3542   if (MI.isCall())
3543     return false;
3544   for (const MachineOperand &MO : MI.operands()) {
3545     if (!MO.isReg())
3546       continue;
3547     if (isX87Reg(MO.getReg()))
3548       return true;
3549   }
3550   return false;
3551 }
3552 
3553 int X86::getFirstAddrOperandIdx(const MachineInstr &MI) {
3554   auto IsMemOp = [](const MCOperandInfo &OpInfo) {
3555     return OpInfo.OperandType == MCOI::OPERAND_MEMORY;
3556   };
3557 
3558   const MCInstrDesc &Desc = MI.getDesc();
3559 
3560   // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3561   // instructions (fast case).
3562   if (!X86II::isPseudo(Desc.TSFlags)) {
3563     int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
3564     if (MemRefIdx >= 0)
3565       return MemRefIdx + X86II::getOperandBias(Desc);
3566 #ifdef EXPENSIVE_CHECKS
3567     assert(none_of(Desc.operands(), IsMemOp) &&
3568            "Got false negative from X86II::getMemoryOperandNo()!");
3569 #endif
3570     return -1;
3571   }
3572 
3573   // Otherwise, handle pseudo instructions by examining the type of their
3574   // operands (slow case). An instruction cannot have a memory reference if it
3575   // has fewer than AddrNumOperands (= 5) explicit operands.
3576   unsigned NumOps = Desc.getNumOperands();
3577   if (NumOps < X86::AddrNumOperands) {
3578 #ifdef EXPENSIVE_CHECKS
3579     assert(none_of(Desc.operands(), IsMemOp) &&
3580            "Expected no operands to have OPERAND_MEMORY type!");
3581 #endif
3582     return -1;
3583   }
3584 
3585   // The first operand with type OPERAND_MEMORY indicates the start of a memory
3586   // reference. We expect the following AddrNumOperand-1 operands to also have
3587   // OPERAND_MEMORY type.
3588   for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) {
3589     if (IsMemOp(Desc.operands()[I])) {
3590 #ifdef EXPENSIVE_CHECKS
3591       assert(std::all_of(Desc.operands().begin() + I,
3592                          Desc.operands().begin() + I + X86::AddrNumOperands,
3593                          IsMemOp) &&
3594              "Expected all five operands in the memory reference to have "
3595              "OPERAND_MEMORY type!");
3596 #endif
3597       return I;
3598     }
3599   }
3600 
3601   return -1;
3602 }
3603 
3604 const Constant *X86::getConstantFromPool(const MachineInstr &MI,
3605                                          unsigned OpNo) {
3606   assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) &&
3607          "Unexpected number of operands!");
3608 
3609   const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg);
3610   if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3611     return nullptr;
3612 
3613   const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp);
3614   if (!Disp.isCPI() || Disp.getOffset() != 0)
3615     return nullptr;
3616 
3617   ArrayRef<MachineConstantPoolEntry> Constants =
3618       MI.getParent()->getParent()->getConstantPool()->getConstants();
3619   const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()];
3620 
3621   // Bail if this is a machine constant pool entry, we won't be able to dig out
3622   // anything useful.
3623   if (ConstantEntry.isMachineConstantPoolEntry())
3624     return nullptr;
3625 
3626   return ConstantEntry.Val.ConstVal;
3627 }
3628 
3629 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
3630   switch (MI.getOpcode()) {
3631   case X86::TCRETURNdi:
3632   case X86::TCRETURNri:
3633   case X86::TCRETURNmi:
3634   case X86::TCRETURNdi64:
3635   case X86::TCRETURNri64:
3636   case X86::TCRETURNmi64:
3637     return true;
3638   default:
3639     return false;
3640   }
3641 }
3642 
3643 bool X86InstrInfo::canMakeTailCallConditional(
3644     SmallVectorImpl<MachineOperand> &BranchCond,
3645     const MachineInstr &TailCall) const {
3646 
3647   const MachineFunction *MF = TailCall.getMF();
3648 
3649   if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
3650     // Kernel patches thunk calls in runtime, these should never be conditional.
3651     const MachineOperand &Target = TailCall.getOperand(0);
3652     if (Target.isSymbol()) {
3653       StringRef Symbol(Target.getSymbolName());
3654       // this is currently only relevant to r11/kernel indirect thunk.
3655       if (Symbol == "__x86_indirect_thunk_r11")
3656         return false;
3657     }
3658   }
3659 
3660   if (TailCall.getOpcode() != X86::TCRETURNdi &&
3661       TailCall.getOpcode() != X86::TCRETURNdi64) {
3662     // Only direct calls can be done with a conditional branch.
3663     return false;
3664   }
3665 
3666   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3667     // Conditional tail calls confuse the Win64 unwinder.
3668     return false;
3669   }
3670 
3671   assert(BranchCond.size() == 1);
3672   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3673     // Can't make a conditional tail call with this condition.
3674     return false;
3675   }
3676 
3677   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3678   if (X86FI->getTCReturnAddrDelta() != 0 ||
3679       TailCall.getOperand(1).getImm() != 0) {
3680     // A conditional tail call cannot do any stack adjustment.
3681     return false;
3682   }
3683 
3684   return true;
3685 }
3686 
3687 void X86InstrInfo::replaceBranchWithTailCall(
3688     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3689     const MachineInstr &TailCall) const {
3690   assert(canMakeTailCallConditional(BranchCond, TailCall));
3691 
3692   MachineBasicBlock::iterator I = MBB.end();
3693   while (I != MBB.begin()) {
3694     --I;
3695     if (I->isDebugInstr())
3696       continue;
3697     if (!I->isBranch())
3698       assert(0 && "Can't find the branch to replace!");
3699 
3700     X86::CondCode CC = X86::getCondFromBranch(*I);
3701     assert(BranchCond.size() == 1);
3702     if (CC != BranchCond[0].getImm())
3703       continue;
3704 
3705     break;
3706   }
3707 
3708   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3709                                                          : X86::TCRETURNdi64cc;
3710 
3711   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3712   MIB->addOperand(TailCall.getOperand(0)); // Destination.
3713   MIB.addImm(0);                           // Stack offset (not used).
3714   MIB->addOperand(BranchCond[0]);          // Condition.
3715   MIB.copyImplicitOps(TailCall);           // Regmask and (imp-used) parameters.
3716 
3717   // Add implicit uses and defs of all live regs potentially clobbered by the
3718   // call. This way they still appear live across the call.
3719   LivePhysRegs LiveRegs(getRegisterInfo());
3720   LiveRegs.addLiveOuts(MBB);
3721   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3722   LiveRegs.stepForward(*MIB, Clobbers);
3723   for (const auto &C : Clobbers) {
3724     MIB.addReg(C.first, RegState::Implicit);
3725     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3726   }
3727 
3728   I->eraseFromParent();
3729 }
3730 
3731 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3732 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3733 // fallthrough MBB cannot be identified.
3734 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3735                                             MachineBasicBlock *TBB) {
3736   // Look for non-EHPad successors other than TBB. If we find exactly one, it
3737   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3738   // and fallthrough MBB. If we find more than one, we cannot identify the
3739   // fallthrough MBB and should return nullptr.
3740   MachineBasicBlock *FallthroughBB = nullptr;
3741   for (MachineBasicBlock *Succ : MBB->successors()) {
3742     if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3743       continue;
3744     // Return a nullptr if we found more than one fallthrough successor.
3745     if (FallthroughBB && FallthroughBB != TBB)
3746       return nullptr;
3747     FallthroughBB = Succ;
3748   }
3749   return FallthroughBB;
3750 }
3751 
3752 bool X86InstrInfo::analyzeBranchImpl(
3753     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3754     SmallVectorImpl<MachineOperand> &Cond,
3755     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3756 
3757   // Start from the bottom of the block and work up, examining the
3758   // terminator instructions.
3759   MachineBasicBlock::iterator I = MBB.end();
3760   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3761   while (I != MBB.begin()) {
3762     --I;
3763     if (I->isDebugInstr())
3764       continue;
3765 
3766     // Working from the bottom, when we see a non-terminator instruction, we're
3767     // done.
3768     if (!isUnpredicatedTerminator(*I))
3769       break;
3770 
3771     // A terminator that isn't a branch can't easily be handled by this
3772     // analysis.
3773     if (!I->isBranch())
3774       return true;
3775 
3776     // Handle unconditional branches.
3777     if (I->getOpcode() == X86::JMP_1) {
3778       UnCondBrIter = I;
3779 
3780       if (!AllowModify) {
3781         TBB = I->getOperand(0).getMBB();
3782         continue;
3783       }
3784 
3785       // If the block has any instructions after a JMP, delete them.
3786       MBB.erase(std::next(I), MBB.end());
3787 
3788       Cond.clear();
3789       FBB = nullptr;
3790 
3791       // Delete the JMP if it's equivalent to a fall-through.
3792       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3793         TBB = nullptr;
3794         I->eraseFromParent();
3795         I = MBB.end();
3796         UnCondBrIter = MBB.end();
3797         continue;
3798       }
3799 
3800       // TBB is used to indicate the unconditional destination.
3801       TBB = I->getOperand(0).getMBB();
3802       continue;
3803     }
3804 
3805     // Handle conditional branches.
3806     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3807     if (BranchCode == X86::COND_INVALID)
3808       return true; // Can't handle indirect branch.
3809 
3810     // In practice we should never have an undef eflags operand, if we do
3811     // abort here as we are not prepared to preserve the flag.
3812     if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef())
3813       return true;
3814 
3815     // Working from the bottom, handle the first conditional branch.
3816     if (Cond.empty()) {
3817       FBB = TBB;
3818       TBB = I->getOperand(0).getMBB();
3819       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3820       CondBranches.push_back(&*I);
3821       continue;
3822     }
3823 
3824     // Handle subsequent conditional branches. Only handle the case where all
3825     // conditional branches branch to the same destination and their condition
3826     // opcodes fit one of the special multi-branch idioms.
3827     assert(Cond.size() == 1);
3828     assert(TBB);
3829 
3830     // If the conditions are the same, we can leave them alone.
3831     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3832     auto NewTBB = I->getOperand(0).getMBB();
3833     if (OldBranchCode == BranchCode && TBB == NewTBB)
3834       continue;
3835 
3836     // If they differ, see if they fit one of the known patterns. Theoretically,
3837     // we could handle more patterns here, but we shouldn't expect to see them
3838     // if instruction selection has done a reasonable job.
3839     if (TBB == NewTBB &&
3840         ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3841          (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3842       BranchCode = X86::COND_NE_OR_P;
3843     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3844                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3845       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3846         return true;
3847 
3848       // X86::COND_E_AND_NP usually has two different branch destinations.
3849       //
3850       // JP B1
3851       // JE B2
3852       // JMP B1
3853       // B1:
3854       // B2:
3855       //
3856       // Here this condition branches to B2 only if NP && E. It has another
3857       // equivalent form:
3858       //
3859       // JNE B1
3860       // JNP B2
3861       // JMP B1
3862       // B1:
3863       // B2:
3864       //
3865       // Similarly it branches to B2 only if E && NP. That is why this condition
3866       // is named with COND_E_AND_NP.
3867       BranchCode = X86::COND_E_AND_NP;
3868     } else
3869       return true;
3870 
3871     // Update the MachineOperand.
3872     Cond[0].setImm(BranchCode);
3873     CondBranches.push_back(&*I);
3874   }
3875 
3876   return false;
3877 }
3878 
3879 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3880                                  MachineBasicBlock *&TBB,
3881                                  MachineBasicBlock *&FBB,
3882                                  SmallVectorImpl<MachineOperand> &Cond,
3883                                  bool AllowModify) const {
3884   SmallVector<MachineInstr *, 4> CondBranches;
3885   return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3886 }
3887 
3888 static int getJumpTableIndexFromAddr(const MachineInstr &MI) {
3889   const MCInstrDesc &Desc = MI.getDesc();
3890   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3891   assert(MemRefBegin >= 0 && "instr should have memory operand");
3892   MemRefBegin += X86II::getOperandBias(Desc);
3893 
3894   const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp);
3895   if (!MO.isJTI())
3896     return -1;
3897 
3898   return MO.getIndex();
3899 }
3900 
3901 static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI,
3902                                     Register Reg) {
3903   if (!Reg.isVirtual())
3904     return -1;
3905   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3906   if (MI == nullptr)
3907     return -1;
3908   unsigned Opcode = MI->getOpcode();
3909   if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3910     return -1;
3911   return getJumpTableIndexFromAddr(*MI);
3912 }
3913 
3914 int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const {
3915   unsigned Opcode = MI.getOpcode();
3916   // Switch-jump pattern for non-PIC code looks like:
3917   //   JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3918   if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3919     return getJumpTableIndexFromAddr(MI);
3920   }
3921   // The pattern for PIC code looks like:
3922   //   %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3923   //   %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3924   //   %2 = ADD64rr %1, %0
3925   //   JMP64r %2
3926   if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3927     Register Reg = MI.getOperand(0).getReg();
3928     if (!Reg.isVirtual())
3929       return -1;
3930     const MachineFunction &MF = *MI.getParent()->getParent();
3931     const MachineRegisterInfo &MRI = MF.getRegInfo();
3932     MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3933     if (Add == nullptr)
3934       return -1;
3935     if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
3936       return -1;
3937     int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg());
3938     if (JTI1 >= 0)
3939       return JTI1;
3940     int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg());
3941     if (JTI2 >= 0)
3942       return JTI2;
3943   }
3944   return -1;
3945 }
3946 
3947 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3948                                           MachineBranchPredicate &MBP,
3949                                           bool AllowModify) const {
3950   using namespace std::placeholders;
3951 
3952   SmallVector<MachineOperand, 4> Cond;
3953   SmallVector<MachineInstr *, 4> CondBranches;
3954   if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3955                         AllowModify))
3956     return true;
3957 
3958   if (Cond.size() != 1)
3959     return true;
3960 
3961   assert(MBP.TrueDest && "expected!");
3962 
3963   if (!MBP.FalseDest)
3964     MBP.FalseDest = MBB.getNextNode();
3965 
3966   const TargetRegisterInfo *TRI = &getRegisterInfo();
3967 
3968   MachineInstr *ConditionDef = nullptr;
3969   bool SingleUseCondition = true;
3970 
3971   for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3972     if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3973       ConditionDef = &MI;
3974       break;
3975     }
3976 
3977     if (MI.readsRegister(X86::EFLAGS, TRI))
3978       SingleUseCondition = false;
3979   }
3980 
3981   if (!ConditionDef)
3982     return true;
3983 
3984   if (SingleUseCondition) {
3985     for (auto *Succ : MBB.successors())
3986       if (Succ->isLiveIn(X86::EFLAGS))
3987         SingleUseCondition = false;
3988   }
3989 
3990   MBP.ConditionDef = ConditionDef;
3991   MBP.SingleUseCondition = SingleUseCondition;
3992 
3993   // Currently we only recognize the simple pattern:
3994   //
3995   //   test %reg, %reg
3996   //   je %label
3997   //
3998   const unsigned TestOpcode =
3999       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
4000 
4001   if (ConditionDef->getOpcode() == TestOpcode &&
4002       ConditionDef->getNumOperands() == 3 &&
4003       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
4004       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
4005     MBP.LHS = ConditionDef->getOperand(0);
4006     MBP.RHS = MachineOperand::CreateImm(0);
4007     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
4008                         ? MachineBranchPredicate::PRED_NE
4009                         : MachineBranchPredicate::PRED_EQ;
4010     return false;
4011   }
4012 
4013   return true;
4014 }
4015 
4016 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
4017                                     int *BytesRemoved) const {
4018   assert(!BytesRemoved && "code size not handled");
4019 
4020   MachineBasicBlock::iterator I = MBB.end();
4021   unsigned Count = 0;
4022 
4023   while (I != MBB.begin()) {
4024     --I;
4025     if (I->isDebugInstr())
4026       continue;
4027     if (I->getOpcode() != X86::JMP_1 &&
4028         X86::getCondFromBranch(*I) == X86::COND_INVALID)
4029       break;
4030     // Remove the branch.
4031     I->eraseFromParent();
4032     I = MBB.end();
4033     ++Count;
4034   }
4035 
4036   return Count;
4037 }
4038 
4039 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
4040                                     MachineBasicBlock *TBB,
4041                                     MachineBasicBlock *FBB,
4042                                     ArrayRef<MachineOperand> Cond,
4043                                     const DebugLoc &DL, int *BytesAdded) const {
4044   // Shouldn't be a fall through.
4045   assert(TBB && "insertBranch must not be told to insert a fallthrough");
4046   assert((Cond.size() == 1 || Cond.size() == 0) &&
4047          "X86 branch conditions have one component!");
4048   assert(!BytesAdded && "code size not handled");
4049 
4050   if (Cond.empty()) {
4051     // Unconditional branch?
4052     assert(!FBB && "Unconditional branch with multiple successors!");
4053     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
4054     return 1;
4055   }
4056 
4057   // If FBB is null, it is implied to be a fall-through block.
4058   bool FallThru = FBB == nullptr;
4059 
4060   // Conditional branch.
4061   unsigned Count = 0;
4062   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
4063   switch (CC) {
4064   case X86::COND_NE_OR_P:
4065     // Synthesize NE_OR_P with two branches.
4066     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
4067     ++Count;
4068     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
4069     ++Count;
4070     break;
4071   case X86::COND_E_AND_NP:
4072     // Use the next block of MBB as FBB if it is null.
4073     if (FBB == nullptr) {
4074       FBB = getFallThroughMBB(&MBB, TBB);
4075       assert(FBB && "MBB cannot be the last block in function when the false "
4076                     "body is a fall-through.");
4077     }
4078     // Synthesize COND_E_AND_NP with two branches.
4079     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
4080     ++Count;
4081     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
4082     ++Count;
4083     break;
4084   default: {
4085     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
4086     ++Count;
4087   }
4088   }
4089   if (!FallThru) {
4090     // Two-way Conditional branch. Insert the second branch.
4091     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
4092     ++Count;
4093   }
4094   return Count;
4095 }
4096 
4097 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
4098                                    ArrayRef<MachineOperand> Cond,
4099                                    Register DstReg, Register TrueReg,
4100                                    Register FalseReg, int &CondCycles,
4101                                    int &TrueCycles, int &FalseCycles) const {
4102   // Not all subtargets have cmov instructions.
4103   if (!Subtarget.canUseCMOV())
4104     return false;
4105   if (Cond.size() != 1)
4106     return false;
4107   // We cannot do the composite conditions, at least not in SSA form.
4108   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
4109     return false;
4110 
4111   // Check register classes.
4112   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4113   const TargetRegisterClass *RC =
4114       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
4115   if (!RC)
4116     return false;
4117 
4118   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4119   if (X86::GR16RegClass.hasSubClassEq(RC) ||
4120       X86::GR32RegClass.hasSubClassEq(RC) ||
4121       X86::GR64RegClass.hasSubClassEq(RC)) {
4122     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4123     // Bridge. Probably Ivy Bridge as well.
4124     CondCycles = 2;
4125     TrueCycles = 2;
4126     FalseCycles = 2;
4127     return true;
4128   }
4129 
4130   // Can't do vectors.
4131   return false;
4132 }
4133 
4134 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
4135                                 MachineBasicBlock::iterator I,
4136                                 const DebugLoc &DL, Register DstReg,
4137                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
4138                                 Register FalseReg) const {
4139   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4140   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4141   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
4142   assert(Cond.size() == 1 && "Invalid Cond array");
4143   unsigned Opc =
4144       X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
4145                          false /*HasMemoryOperand*/, Subtarget.hasNDD());
4146   BuildMI(MBB, I, DL, get(Opc), DstReg)
4147       .addReg(FalseReg)
4148       .addReg(TrueReg)
4149       .addImm(Cond[0].getImm());
4150 }
4151 
4152 /// Test if the given register is a physical h register.
4153 static bool isHReg(unsigned Reg) {
4154   return X86::GR8_ABCD_HRegClass.contains(Reg);
4155 }
4156 
4157 // Try and copy between VR128/VR64 and GR64 registers.
4158 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
4159                                         const X86Subtarget &Subtarget) {
4160   bool HasAVX = Subtarget.hasAVX();
4161   bool HasAVX512 = Subtarget.hasAVX512();
4162   bool HasEGPR = Subtarget.hasEGPR();
4163 
4164   // SrcReg(MaskReg) -> DestReg(GR64)
4165   // SrcReg(MaskReg) -> DestReg(GR32)
4166 
4167   // All KMASK RegClasses hold the same k registers, can be tested against
4168   // anyone.
4169   if (X86::VK16RegClass.contains(SrcReg)) {
4170     if (X86::GR64RegClass.contains(DestReg)) {
4171       assert(Subtarget.hasBWI());
4172       return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4173     }
4174     if (X86::GR32RegClass.contains(DestReg))
4175       return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4176                                 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4177   }
4178 
4179   // SrcReg(GR64) -> DestReg(MaskReg)
4180   // SrcReg(GR32) -> DestReg(MaskReg)
4181 
4182   // All KMASK RegClasses hold the same k registers, can be tested against
4183   // anyone.
4184   if (X86::VK16RegClass.contains(DestReg)) {
4185     if (X86::GR64RegClass.contains(SrcReg)) {
4186       assert(Subtarget.hasBWI());
4187       return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4188     }
4189     if (X86::GR32RegClass.contains(SrcReg))
4190       return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4191                                 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4192   }
4193 
4194   // SrcReg(VR128) -> DestReg(GR64)
4195   // SrcReg(VR64)  -> DestReg(GR64)
4196   // SrcReg(GR64)  -> DestReg(VR128)
4197   // SrcReg(GR64)  -> DestReg(VR64)
4198 
4199   if (X86::GR64RegClass.contains(DestReg)) {
4200     if (X86::VR128XRegClass.contains(SrcReg))
4201       // Copy from a VR128 register to a GR64 register.
4202       return HasAVX512 ? X86::VMOVPQIto64Zrr
4203              : HasAVX  ? X86::VMOVPQIto64rr
4204                        : X86::MOVPQIto64rr;
4205     if (X86::VR64RegClass.contains(SrcReg))
4206       // Copy from a VR64 register to a GR64 register.
4207       return X86::MMX_MOVD64from64rr;
4208   } else if (X86::GR64RegClass.contains(SrcReg)) {
4209     // Copy from a GR64 register to a VR128 register.
4210     if (X86::VR128XRegClass.contains(DestReg))
4211       return HasAVX512 ? X86::VMOV64toPQIZrr
4212              : HasAVX  ? X86::VMOV64toPQIrr
4213                        : X86::MOV64toPQIrr;
4214     // Copy from a GR64 register to a VR64 register.
4215     if (X86::VR64RegClass.contains(DestReg))
4216       return X86::MMX_MOVD64to64rr;
4217   }
4218 
4219   // SrcReg(VR128) -> DestReg(GR32)
4220   // SrcReg(GR32)  -> DestReg(VR128)
4221 
4222   if (X86::GR32RegClass.contains(DestReg) &&
4223       X86::VR128XRegClass.contains(SrcReg))
4224     // Copy from a VR128 register to a GR32 register.
4225     return HasAVX512 ? X86::VMOVPDI2DIZrr
4226            : HasAVX  ? X86::VMOVPDI2DIrr
4227                      : X86::MOVPDI2DIrr;
4228 
4229   if (X86::VR128XRegClass.contains(DestReg) &&
4230       X86::GR32RegClass.contains(SrcReg))
4231     // Copy from a VR128 register to a VR128 register.
4232     return HasAVX512 ? X86::VMOVDI2PDIZrr
4233            : HasAVX  ? X86::VMOVDI2PDIrr
4234                      : X86::MOVDI2PDIrr;
4235   return 0;
4236 }
4237 
4238 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
4239                                MachineBasicBlock::iterator MI,
4240                                const DebugLoc &DL, MCRegister DestReg,
4241                                MCRegister SrcReg, bool KillSrc) const {
4242   // First deal with the normal symmetric copies.
4243   bool HasAVX = Subtarget.hasAVX();
4244   bool HasVLX = Subtarget.hasVLX();
4245   bool HasEGPR = Subtarget.hasEGPR();
4246   unsigned Opc = 0;
4247   if (X86::GR64RegClass.contains(DestReg, SrcReg))
4248     Opc = X86::MOV64rr;
4249   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4250     Opc = X86::MOV32rr;
4251   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4252     Opc = X86::MOV16rr;
4253   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4254     // Copying to or from a physical H register on x86-64 requires a NOREX
4255     // move.  Otherwise use a normal move.
4256     if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) {
4257       Opc = X86::MOV8rr_NOREX;
4258       // Both operands must be encodable without an REX prefix.
4259       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4260              "8-bit H register can not be copied outside GR8_NOREX");
4261     } else
4262       Opc = X86::MOV8rr;
4263   } else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4264     Opc = X86::MMX_MOVQ64rr;
4265   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
4266     if (HasVLX)
4267       Opc = X86::VMOVAPSZ128rr;
4268     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4269       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4270     else {
4271       // If this an extended register and we don't have VLX we need to use a
4272       // 512-bit move.
4273       Opc = X86::VMOVAPSZrr;
4274       const TargetRegisterInfo *TRI = &getRegisterInfo();
4275       DestReg =
4276           TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4277       SrcReg =
4278           TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4279     }
4280   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
4281     if (HasVLX)
4282       Opc = X86::VMOVAPSZ256rr;
4283     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4284       Opc = X86::VMOVAPSYrr;
4285     else {
4286       // If this an extended register and we don't have VLX we need to use a
4287       // 512-bit move.
4288       Opc = X86::VMOVAPSZrr;
4289       const TargetRegisterInfo *TRI = &getRegisterInfo();
4290       DestReg =
4291           TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4292       SrcReg =
4293           TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4294     }
4295   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
4296     Opc = X86::VMOVAPSZrr;
4297   // All KMASK RegClasses hold the same k registers, can be tested against
4298   // anyone.
4299   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
4300     Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4301                              : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4302   if (!Opc)
4303     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4304 
4305   if (Opc) {
4306     BuildMI(MBB, MI, DL, get(Opc), DestReg)
4307         .addReg(SrcReg, getKillRegState(KillSrc));
4308     return;
4309   }
4310 
4311   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4312     // FIXME: We use a fatal error here because historically LLVM has tried
4313     // lower some of these physreg copies and we want to ensure we get
4314     // reasonable bug reports if someone encounters a case no other testing
4315     // found. This path should be removed after the LLVM 7 release.
4316     report_fatal_error("Unable to copy EFLAGS physical register!");
4317   }
4318 
4319   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
4320                     << RI.getName(DestReg) << '\n');
4321   report_fatal_error("Cannot emit physreg copy instruction");
4322 }
4323 
4324 std::optional<DestSourcePair>
4325 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
4326   if (MI.isMoveReg()) {
4327     // FIXME: Dirty hack for apparent invariant that doesn't hold when
4328     // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4329     // were asserted as 0 are now undef.
4330     if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg())
4331       return std::nullopt;
4332 
4333     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
4334   }
4335   return std::nullopt;
4336 }
4337 
4338 static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
4339   if (STI.hasFP16())
4340     return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4341   if (Load)
4342     return STI.hasAVX512() ? X86::VMOVSSZrm
4343            : STI.hasAVX()  ? X86::VMOVSSrm
4344                            : X86::MOVSSrm;
4345   else
4346     return STI.hasAVX512() ? X86::VMOVSSZmr
4347            : STI.hasAVX()  ? X86::VMOVSSmr
4348                            : X86::MOVSSmr;
4349 }
4350 
4351 static unsigned getLoadStoreRegOpcode(Register Reg,
4352                                       const TargetRegisterClass *RC,
4353                                       bool IsStackAligned,
4354                                       const X86Subtarget &STI, bool Load) {
4355   bool HasAVX = STI.hasAVX();
4356   bool HasAVX512 = STI.hasAVX512();
4357   bool HasVLX = STI.hasVLX();
4358   bool HasEGPR = STI.hasEGPR();
4359 
4360   assert(RC != nullptr && "Invalid target register class");
4361   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
4362   default:
4363     llvm_unreachable("Unknown spill size");
4364   case 1:
4365     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4366     if (STI.is64Bit())
4367       // Copying to or from a physical H register on x86-64 requires a NOREX
4368       // move.  Otherwise use a normal move.
4369       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4370         return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4371     return Load ? X86::MOV8rm : X86::MOV8mr;
4372   case 2:
4373     if (X86::VK16RegClass.hasSubClassEq(RC))
4374       return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4375                   : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4376     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4377     return Load ? X86::MOV16rm : X86::MOV16mr;
4378   case 4:
4379     if (X86::GR32RegClass.hasSubClassEq(RC))
4380       return Load ? X86::MOV32rm : X86::MOV32mr;
4381     if (X86::FR32XRegClass.hasSubClassEq(RC))
4382       return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4383                      : HasAVX  ? X86::VMOVSSrm_alt
4384                                : X86::MOVSSrm_alt)
4385                   : (HasAVX512 ? X86::VMOVSSZmr
4386                      : HasAVX  ? X86::VMOVSSmr
4387                                : X86::MOVSSmr);
4388     if (X86::RFP32RegClass.hasSubClassEq(RC))
4389       return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4390     if (X86::VK32RegClass.hasSubClassEq(RC)) {
4391       assert(STI.hasBWI() && "KMOVD requires BWI");
4392       return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4393                   : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4394     }
4395     // All of these mask pair classes have the same spill size, the same kind
4396     // of kmov instructions can be used with all of them.
4397     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4398         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4399         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4400         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4401         X86::VK16PAIRRegClass.hasSubClassEq(RC))
4402       return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4403     if (X86::FR16RegClass.hasSubClassEq(RC) ||
4404         X86::FR16XRegClass.hasSubClassEq(RC))
4405       return getLoadStoreOpcodeForFP16(Load, STI);
4406     llvm_unreachable("Unknown 4-byte regclass");
4407   case 8:
4408     if (X86::GR64RegClass.hasSubClassEq(RC))
4409       return Load ? X86::MOV64rm : X86::MOV64mr;
4410     if (X86::FR64XRegClass.hasSubClassEq(RC))
4411       return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4412                      : HasAVX  ? X86::VMOVSDrm_alt
4413                                : X86::MOVSDrm_alt)
4414                   : (HasAVX512 ? X86::VMOVSDZmr
4415                      : HasAVX  ? X86::VMOVSDmr
4416                                : X86::MOVSDmr);
4417     if (X86::VR64RegClass.hasSubClassEq(RC))
4418       return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4419     if (X86::RFP64RegClass.hasSubClassEq(RC))
4420       return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4421     if (X86::VK64RegClass.hasSubClassEq(RC)) {
4422       assert(STI.hasBWI() && "KMOVQ requires BWI");
4423       return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4424                   : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4425     }
4426     llvm_unreachable("Unknown 8-byte regclass");
4427   case 10:
4428     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4429     return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4430   case 16: {
4431     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4432       // If stack is realigned we can use aligned stores.
4433       if (IsStackAligned)
4434         return Load ? (HasVLX      ? X86::VMOVAPSZ128rm
4435                        : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4436                        : HasAVX    ? X86::VMOVAPSrm
4437                                    : X86::MOVAPSrm)
4438                     : (HasVLX      ? X86::VMOVAPSZ128mr
4439                        : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4440                        : HasAVX    ? X86::VMOVAPSmr
4441                                    : X86::MOVAPSmr);
4442       else
4443         return Load ? (HasVLX      ? X86::VMOVUPSZ128rm
4444                        : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4445                        : HasAVX    ? X86::VMOVUPSrm
4446                                    : X86::MOVUPSrm)
4447                     : (HasVLX      ? X86::VMOVUPSZ128mr
4448                        : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4449                        : HasAVX    ? X86::VMOVUPSmr
4450                                    : X86::MOVUPSmr);
4451     }
4452     llvm_unreachable("Unknown 16-byte regclass");
4453   }
4454   case 32:
4455     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
4456     // If stack is realigned we can use aligned stores.
4457     if (IsStackAligned)
4458       return Load ? (HasVLX      ? X86::VMOVAPSZ256rm
4459                      : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4460                                  : X86::VMOVAPSYrm)
4461                   : (HasVLX      ? X86::VMOVAPSZ256mr
4462                      : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4463                                  : X86::VMOVAPSYmr);
4464     else
4465       return Load ? (HasVLX      ? X86::VMOVUPSZ256rm
4466                      : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4467                                  : X86::VMOVUPSYrm)
4468                   : (HasVLX      ? X86::VMOVUPSZ256mr
4469                      : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4470                                  : X86::VMOVUPSYmr);
4471   case 64:
4472     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4473     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
4474     if (IsStackAligned)
4475       return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4476     else
4477       return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4478   case 1024:
4479     assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
4480     assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4481 #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4482     return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
4483                 : GET_EGPR_IF_ENABLED(X86::TILESTORED);
4484 #undef GET_EGPR_IF_ENABLED
4485   }
4486 }
4487 
4488 std::optional<ExtAddrMode>
4489 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
4490                                       const TargetRegisterInfo *TRI) const {
4491   const MCInstrDesc &Desc = MemI.getDesc();
4492   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4493   if (MemRefBegin < 0)
4494     return std::nullopt;
4495 
4496   MemRefBegin += X86II::getOperandBias(Desc);
4497 
4498   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
4499   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
4500     return std::nullopt;
4501 
4502   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
4503   // Displacement can be symbolic
4504   if (!DispMO.isImm())
4505     return std::nullopt;
4506 
4507   ExtAddrMode AM;
4508   AM.BaseReg = BaseOp.getReg();
4509   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
4510   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
4511   AM.Displacement = DispMO.getImm();
4512   return AM;
4513 }
4514 
4515 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
4516                                      StringRef &ErrInfo) const {
4517   std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
4518   if (!AMOrNone)
4519     return true;
4520 
4521   ExtAddrMode AM = *AMOrNone;
4522   assert(AM.Form == ExtAddrMode::Formula::Basic);
4523   if (AM.ScaledReg != X86::NoRegister) {
4524     switch (AM.Scale) {
4525     case 1:
4526     case 2:
4527     case 4:
4528     case 8:
4529       break;
4530     default:
4531       ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
4532       return false;
4533     }
4534   }
4535   if (!isInt<32>(AM.Displacement)) {
4536     ErrInfo = "Displacement in address must fit into 32-bit signed "
4537               "integer";
4538     return false;
4539   }
4540 
4541   return true;
4542 }
4543 
4544 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
4545                                            const Register Reg,
4546                                            int64_t &ImmVal) const {
4547   Register MovReg = Reg;
4548   const MachineInstr *MovMI = &MI;
4549 
4550   // Follow use-def for SUBREG_TO_REG to find the real move immediate
4551   // instruction. It is quite common for x86-64.
4552   if (MI.isSubregToReg()) {
4553     // We use following pattern to setup 64b immediate.
4554     //      %8:gr32 = MOV32r0 implicit-def dead $eflags
4555     //      %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4556     if (!MI.getOperand(1).isImm())
4557       return false;
4558     unsigned FillBits = MI.getOperand(1).getImm();
4559     unsigned SubIdx = MI.getOperand(3).getImm();
4560     MovReg = MI.getOperand(2).getReg();
4561     if (SubIdx != X86::sub_32bit || FillBits != 0)
4562       return false;
4563     const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4564     MovMI = MRI.getUniqueVRegDef(MovReg);
4565     if (!MovMI)
4566       return false;
4567   }
4568 
4569   if (MovMI->getOpcode() == X86::MOV32r0 &&
4570       MovMI->getOperand(0).getReg() == MovReg) {
4571     ImmVal = 0;
4572     return true;
4573   }
4574 
4575   if (MovMI->getOpcode() != X86::MOV32ri &&
4576       MovMI->getOpcode() != X86::MOV64ri &&
4577       MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri)
4578     return false;
4579   // Mov Src can be a global address.
4580   if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg)
4581     return false;
4582   ImmVal = MovMI->getOperand(1).getImm();
4583   return true;
4584 }
4585 
4586 bool X86InstrInfo::preservesZeroValueInReg(
4587     const MachineInstr *MI, const Register NullValueReg,
4588     const TargetRegisterInfo *TRI) const {
4589   if (!MI->modifiesRegister(NullValueReg, TRI))
4590     return true;
4591   switch (MI->getOpcode()) {
4592   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4593   // X.
4594   case X86::SHR64ri:
4595   case X86::SHR32ri:
4596   case X86::SHL64ri:
4597   case X86::SHL32ri:
4598     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
4599            "expected for shift opcode!");
4600     return MI->getOperand(0).getReg() == NullValueReg &&
4601            MI->getOperand(1).getReg() == NullValueReg;
4602   // Zero extend of a sub-reg of NullValueReg into itself does not change the
4603   // null value.
4604   case X86::MOV32rr:
4605     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
4606       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
4607     });
4608   default:
4609     return false;
4610   }
4611   llvm_unreachable("Should be handled above!");
4612 }
4613 
4614 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
4615     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
4616     int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
4617     const TargetRegisterInfo *TRI) const {
4618   const MCInstrDesc &Desc = MemOp.getDesc();
4619   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4620   if (MemRefBegin < 0)
4621     return false;
4622 
4623   MemRefBegin += X86II::getOperandBias(Desc);
4624 
4625   const MachineOperand *BaseOp =
4626       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
4627   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
4628     return false;
4629 
4630   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4631     return false;
4632 
4633   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4634       X86::NoRegister)
4635     return false;
4636 
4637   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
4638 
4639   // Displacement can be symbolic
4640   if (!DispMO.isImm())
4641     return false;
4642 
4643   Offset = DispMO.getImm();
4644 
4645   if (!BaseOp->isReg())
4646     return false;
4647 
4648   OffsetIsScalable = false;
4649   // FIXME: Relying on memoperands() may not be right thing to do here. Check
4650   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4651   // there is no use of `Width` for X86 back-end at the moment.
4652   Width =
4653       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
4654   BaseOps.push_back(BaseOp);
4655   return true;
4656 }
4657 
4658 static unsigned getStoreRegOpcode(Register SrcReg,
4659                                   const TargetRegisterClass *RC,
4660                                   bool IsStackAligned,
4661                                   const X86Subtarget &STI) {
4662   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
4663 }
4664 
4665 static unsigned getLoadRegOpcode(Register DestReg,
4666                                  const TargetRegisterClass *RC,
4667                                  bool IsStackAligned, const X86Subtarget &STI) {
4668   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
4669 }
4670 
4671 static bool isAMXOpcode(unsigned Opc) {
4672   switch (Opc) {
4673   default:
4674     return false;
4675   case X86::TILELOADD:
4676   case X86::TILESTORED:
4677   case X86::TILELOADD_EVEX:
4678   case X86::TILESTORED_EVEX:
4679     return true;
4680   }
4681 }
4682 
4683 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB,
4684                                     MachineBasicBlock::iterator MI,
4685                                     unsigned Opc, Register Reg, int FrameIdx,
4686                                     bool isKill) const {
4687   switch (Opc) {
4688   default:
4689     llvm_unreachable("Unexpected special opcode!");
4690   case X86::TILESTORED:
4691   case X86::TILESTORED_EVEX: {
4692     // tilestored %tmm, (%sp, %idx)
4693     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4694     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4695     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4696     MachineInstr *NewMI =
4697         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4698             .addReg(Reg, getKillRegState(isKill));
4699     MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg);
4700     MO.setReg(VirtReg);
4701     MO.setIsKill(true);
4702     break;
4703   }
4704   case X86::TILELOADD:
4705   case X86::TILELOADD_EVEX: {
4706     // tileloadd (%sp, %idx), %tmm
4707     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4708     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4709     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4710     MachineInstr *NewMI = addFrameReference(
4711         BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4712     MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg);
4713     MO.setReg(VirtReg);
4714     MO.setIsKill(true);
4715     break;
4716   }
4717   }
4718 }
4719 
4720 void X86InstrInfo::storeRegToStackSlot(
4721     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
4722     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4723     const TargetRegisterInfo *TRI, Register VReg) const {
4724   const MachineFunction &MF = *MBB.getParent();
4725   const MachineFrameInfo &MFI = MF.getFrameInfo();
4726   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4727          "Stack slot too small for store");
4728 
4729   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4730   bool isAligned =
4731       (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4732       (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4733 
4734   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4735   if (isAMXOpcode(Opc))
4736     loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
4737   else
4738     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4739         .addReg(SrcReg, getKillRegState(isKill));
4740 }
4741 
4742 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4743                                         MachineBasicBlock::iterator MI,
4744                                         Register DestReg, int FrameIdx,
4745                                         const TargetRegisterClass *RC,
4746                                         const TargetRegisterInfo *TRI,
4747                                         Register VReg) const {
4748   const MachineFunction &MF = *MBB.getParent();
4749   const MachineFrameInfo &MFI = MF.getFrameInfo();
4750   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4751          "Load size exceeds stack slot");
4752   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4753   bool isAligned =
4754       (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4755       (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4756 
4757   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4758   if (isAMXOpcode(Opc))
4759     loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
4760   else
4761     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4762                       FrameIdx);
4763 }
4764 
4765 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
4766                                   Register &SrcReg2, int64_t &CmpMask,
4767                                   int64_t &CmpValue) const {
4768   switch (MI.getOpcode()) {
4769   default:
4770     break;
4771   case X86::CMP64ri32:
4772   case X86::CMP32ri:
4773   case X86::CMP16ri:
4774   case X86::CMP8ri:
4775     SrcReg = MI.getOperand(0).getReg();
4776     SrcReg2 = 0;
4777     if (MI.getOperand(1).isImm()) {
4778       CmpMask = ~0;
4779       CmpValue = MI.getOperand(1).getImm();
4780     } else {
4781       CmpMask = CmpValue = 0;
4782     }
4783     return true;
4784   // A SUB can be used to perform comparison.
4785   CASE_ND(SUB64rm)
4786   CASE_ND(SUB32rm)
4787   CASE_ND(SUB16rm)
4788   CASE_ND(SUB8rm)
4789     SrcReg = MI.getOperand(1).getReg();
4790     SrcReg2 = 0;
4791     CmpMask = 0;
4792     CmpValue = 0;
4793     return true;
4794   CASE_ND(SUB64rr)
4795   CASE_ND(SUB32rr)
4796   CASE_ND(SUB16rr)
4797   CASE_ND(SUB8rr)
4798     SrcReg = MI.getOperand(1).getReg();
4799     SrcReg2 = MI.getOperand(2).getReg();
4800     CmpMask = 0;
4801     CmpValue = 0;
4802     return true;
4803   CASE_ND(SUB64ri32)
4804   CASE_ND(SUB32ri)
4805   CASE_ND(SUB16ri)
4806   CASE_ND(SUB8ri)
4807     SrcReg = MI.getOperand(1).getReg();
4808     SrcReg2 = 0;
4809     if (MI.getOperand(2).isImm()) {
4810       CmpMask = ~0;
4811       CmpValue = MI.getOperand(2).getImm();
4812     } else {
4813       CmpMask = CmpValue = 0;
4814     }
4815     return true;
4816   case X86::CMP64rr:
4817   case X86::CMP32rr:
4818   case X86::CMP16rr:
4819   case X86::CMP8rr:
4820     SrcReg = MI.getOperand(0).getReg();
4821     SrcReg2 = MI.getOperand(1).getReg();
4822     CmpMask = 0;
4823     CmpValue = 0;
4824     return true;
4825   case X86::TEST8rr:
4826   case X86::TEST16rr:
4827   case X86::TEST32rr:
4828   case X86::TEST64rr:
4829     SrcReg = MI.getOperand(0).getReg();
4830     if (MI.getOperand(1).getReg() != SrcReg)
4831       return false;
4832     // Compare against zero.
4833     SrcReg2 = 0;
4834     CmpMask = ~0;
4835     CmpValue = 0;
4836     return true;
4837   }
4838   return false;
4839 }
4840 
4841 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4842                                         Register SrcReg, Register SrcReg2,
4843                                         int64_t ImmMask, int64_t ImmValue,
4844                                         const MachineInstr &OI, bool *IsSwapped,
4845                                         int64_t *ImmDelta) const {
4846   switch (OI.getOpcode()) {
4847   case X86::CMP64rr:
4848   case X86::CMP32rr:
4849   case X86::CMP16rr:
4850   case X86::CMP8rr:
4851   CASE_ND(SUB64rr)
4852   CASE_ND(SUB32rr)
4853   CASE_ND(SUB16rr)
4854   CASE_ND(SUB8rr) {
4855     Register OISrcReg;
4856     Register OISrcReg2;
4857     int64_t OIMask;
4858     int64_t OIValue;
4859     if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4860         OIMask != ImmMask || OIValue != ImmValue)
4861       return false;
4862     if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4863       *IsSwapped = false;
4864       return true;
4865     }
4866     if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4867       *IsSwapped = true;
4868       return true;
4869     }
4870     return false;
4871   }
4872   case X86::CMP64ri32:
4873   case X86::CMP32ri:
4874   case X86::CMP16ri:
4875   case X86::CMP8ri:
4876   CASE_ND(SUB64ri32)
4877   CASE_ND(SUB32ri)
4878   CASE_ND(SUB16ri)
4879   CASE_ND(SUB8ri)
4880   case X86::TEST64rr:
4881   case X86::TEST32rr:
4882   case X86::TEST16rr:
4883   case X86::TEST8rr: {
4884     if (ImmMask != 0) {
4885       Register OISrcReg;
4886       Register OISrcReg2;
4887       int64_t OIMask;
4888       int64_t OIValue;
4889       if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4890           SrcReg == OISrcReg && ImmMask == OIMask) {
4891         if (OIValue == ImmValue) {
4892           *ImmDelta = 0;
4893           return true;
4894         } else if (static_cast<uint64_t>(ImmValue) ==
4895                    static_cast<uint64_t>(OIValue) - 1) {
4896           *ImmDelta = -1;
4897           return true;
4898         } else if (static_cast<uint64_t>(ImmValue) ==
4899                    static_cast<uint64_t>(OIValue) + 1) {
4900           *ImmDelta = 1;
4901           return true;
4902         } else {
4903           return false;
4904         }
4905       }
4906     }
4907     return FlagI.isIdenticalTo(OI);
4908   }
4909   default:
4910     return false;
4911   }
4912 }
4913 
4914 /// Check whether the definition can be converted
4915 /// to remove a comparison against zero.
4916 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4917                                     bool &ClearsOverflowFlag) {
4918   NoSignFlag = false;
4919   ClearsOverflowFlag = false;
4920 
4921   // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4922   // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4923   // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4924   // on the EFLAGS modification of ADD actually happening in the final binary.
4925   if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4926     unsigned Flags = MI.getOperand(5).getTargetFlags();
4927     if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4928         Flags == X86II::MO_GOTNTPOFF)
4929       return false;
4930   }
4931 
4932   switch (MI.getOpcode()) {
4933   default:
4934     return false;
4935 
4936   // The shift instructions only modify ZF if their shift count is non-zero.
4937   // N.B.: The processor truncates the shift count depending on the encoding.
4938   CASE_ND(SAR8ri)
4939   CASE_ND(SAR16ri)
4940   CASE_ND(SAR32ri)
4941   CASE_ND(SAR64ri)
4942   CASE_ND(SHR8ri)
4943   CASE_ND(SHR16ri)
4944   CASE_ND(SHR32ri)
4945   CASE_ND(SHR64ri)
4946     return getTruncatedShiftCount(MI, 2) != 0;
4947 
4948   // Some left shift instructions can be turned into LEA instructions but only
4949   // if their flags aren't used. Avoid transforming such instructions.
4950   CASE_ND(SHL8ri)
4951   CASE_ND(SHL16ri)
4952   CASE_ND(SHL32ri)
4953   CASE_ND(SHL64ri) {
4954     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4955     if (isTruncatedShiftCountForLEA(ShAmt))
4956       return false;
4957     return ShAmt != 0;
4958   }
4959 
4960   CASE_ND(SHRD16rri8)
4961   CASE_ND(SHRD32rri8)
4962   CASE_ND(SHRD64rri8)
4963   CASE_ND(SHLD16rri8)
4964   CASE_ND(SHLD32rri8)
4965   CASE_ND(SHLD64rri8)
4966     return getTruncatedShiftCount(MI, 3) != 0;
4967 
4968   CASE_ND(SUB64ri32)
4969   CASE_ND(SUB32ri)
4970   CASE_ND(SUB16ri)
4971   CASE_ND(SUB8ri)
4972   CASE_ND(SUB64rr)
4973   CASE_ND(SUB32rr)
4974   CASE_ND(SUB16rr)
4975   CASE_ND(SUB8rr)
4976   CASE_ND(SUB64rm)
4977   CASE_ND(SUB32rm)
4978   CASE_ND(SUB16rm)
4979   CASE_ND(SUB8rm)
4980   CASE_ND(DEC64r)
4981   CASE_ND(DEC32r)
4982   CASE_ND(DEC16r)
4983   CASE_ND(DEC8r)
4984   CASE_ND(ADD64ri32)
4985   CASE_ND(ADD32ri)
4986   CASE_ND(ADD16ri)
4987   CASE_ND(ADD8ri)
4988   CASE_ND(ADD64rr)
4989   CASE_ND(ADD32rr)
4990   CASE_ND(ADD16rr)
4991   CASE_ND(ADD8rr)
4992   CASE_ND(ADD64rm)
4993   CASE_ND(ADD32rm)
4994   CASE_ND(ADD16rm)
4995   CASE_ND(ADD8rm)
4996   CASE_ND(INC64r)
4997   CASE_ND(INC32r)
4998   CASE_ND(INC16r)
4999   CASE_ND(INC8r)
5000   CASE_ND(ADC64ri32)
5001   CASE_ND(ADC32ri)
5002   CASE_ND(ADC16ri)
5003   CASE_ND(ADC8ri)
5004   CASE_ND(ADC64rr)
5005   CASE_ND(ADC32rr)
5006   CASE_ND(ADC16rr)
5007   CASE_ND(ADC8rr)
5008   CASE_ND(ADC64rm)
5009   CASE_ND(ADC32rm)
5010   CASE_ND(ADC16rm)
5011   CASE_ND(ADC8rm)
5012   CASE_ND(SBB64ri32)
5013   CASE_ND(SBB32ri)
5014   CASE_ND(SBB16ri)
5015   CASE_ND(SBB8ri)
5016   CASE_ND(SBB64rr)
5017   CASE_ND(SBB32rr)
5018   CASE_ND(SBB16rr)
5019   CASE_ND(SBB8rr)
5020   CASE_ND(SBB64rm)
5021   CASE_ND(SBB32rm)
5022   CASE_ND(SBB16rm)
5023   CASE_ND(SBB8rm)
5024   CASE_ND(NEG8r)
5025   CASE_ND(NEG16r)
5026   CASE_ND(NEG32r)
5027   CASE_ND(NEG64r)
5028   case X86::LZCNT16rr:
5029   case X86::LZCNT16rm:
5030   case X86::LZCNT32rr:
5031   case X86::LZCNT32rm:
5032   case X86::LZCNT64rr:
5033   case X86::LZCNT64rm:
5034   case X86::POPCNT16rr:
5035   case X86::POPCNT16rm:
5036   case X86::POPCNT32rr:
5037   case X86::POPCNT32rm:
5038   case X86::POPCNT64rr:
5039   case X86::POPCNT64rm:
5040   case X86::TZCNT16rr:
5041   case X86::TZCNT16rm:
5042   case X86::TZCNT32rr:
5043   case X86::TZCNT32rm:
5044   case X86::TZCNT64rr:
5045   case X86::TZCNT64rm:
5046     return true;
5047   CASE_ND(AND64ri32)
5048   CASE_ND(AND32ri)
5049   CASE_ND(AND16ri)
5050   CASE_ND(AND8ri)
5051   CASE_ND(AND64rr)
5052   CASE_ND(AND32rr)
5053   CASE_ND(AND16rr)
5054   CASE_ND(AND8rr)
5055   CASE_ND(AND64rm)
5056   CASE_ND(AND32rm)
5057   CASE_ND(AND16rm)
5058   CASE_ND(AND8rm)
5059   CASE_ND(XOR64ri32)
5060   CASE_ND(XOR32ri)
5061   CASE_ND(XOR16ri)
5062   CASE_ND(XOR8ri)
5063   CASE_ND(XOR64rr)
5064   CASE_ND(XOR32rr)
5065   CASE_ND(XOR16rr)
5066   CASE_ND(XOR8rr)
5067   CASE_ND(XOR64rm)
5068   CASE_ND(XOR32rm)
5069   CASE_ND(XOR16rm)
5070   CASE_ND(XOR8rm)
5071   CASE_ND(OR64ri32)
5072   CASE_ND(OR32ri)
5073   CASE_ND(OR16ri)
5074   CASE_ND(OR8ri)
5075   CASE_ND(OR64rr)
5076   CASE_ND(OR32rr)
5077   CASE_ND(OR16rr)
5078   CASE_ND(OR8rr)
5079   CASE_ND(OR64rm)
5080   CASE_ND(OR32rm)
5081   CASE_ND(OR16rm)
5082   CASE_ND(OR8rm)
5083   case X86::ANDN32rr:
5084   case X86::ANDN32rm:
5085   case X86::ANDN64rr:
5086   case X86::ANDN64rm:
5087   case X86::BLSI32rr:
5088   case X86::BLSI32rm:
5089   case X86::BLSI64rr:
5090   case X86::BLSI64rm:
5091   case X86::BLSMSK32rr:
5092   case X86::BLSMSK32rm:
5093   case X86::BLSMSK64rr:
5094   case X86::BLSMSK64rm:
5095   case X86::BLSR32rr:
5096   case X86::BLSR32rm:
5097   case X86::BLSR64rr:
5098   case X86::BLSR64rm:
5099   case X86::BLCFILL32rr:
5100   case X86::BLCFILL32rm:
5101   case X86::BLCFILL64rr:
5102   case X86::BLCFILL64rm:
5103   case X86::BLCI32rr:
5104   case X86::BLCI32rm:
5105   case X86::BLCI64rr:
5106   case X86::BLCI64rm:
5107   case X86::BLCIC32rr:
5108   case X86::BLCIC32rm:
5109   case X86::BLCIC64rr:
5110   case X86::BLCIC64rm:
5111   case X86::BLCMSK32rr:
5112   case X86::BLCMSK32rm:
5113   case X86::BLCMSK64rr:
5114   case X86::BLCMSK64rm:
5115   case X86::BLCS32rr:
5116   case X86::BLCS32rm:
5117   case X86::BLCS64rr:
5118   case X86::BLCS64rm:
5119   case X86::BLSFILL32rr:
5120   case X86::BLSFILL32rm:
5121   case X86::BLSFILL64rr:
5122   case X86::BLSFILL64rm:
5123   case X86::BLSIC32rr:
5124   case X86::BLSIC32rm:
5125   case X86::BLSIC64rr:
5126   case X86::BLSIC64rm:
5127   case X86::BZHI32rr:
5128   case X86::BZHI32rm:
5129   case X86::BZHI64rr:
5130   case X86::BZHI64rm:
5131   case X86::T1MSKC32rr:
5132   case X86::T1MSKC32rm:
5133   case X86::T1MSKC64rr:
5134   case X86::T1MSKC64rm:
5135   case X86::TZMSK32rr:
5136   case X86::TZMSK32rm:
5137   case X86::TZMSK64rr:
5138   case X86::TZMSK64rm:
5139     // These instructions clear the overflow flag just like TEST.
5140     // FIXME: These are not the only instructions in this switch that clear the
5141     // overflow flag.
5142     ClearsOverflowFlag = true;
5143     return true;
5144   case X86::BEXTR32rr:
5145   case X86::BEXTR64rr:
5146   case X86::BEXTR32rm:
5147   case X86::BEXTR64rm:
5148   case X86::BEXTRI32ri:
5149   case X86::BEXTRI32mi:
5150   case X86::BEXTRI64ri:
5151   case X86::BEXTRI64mi:
5152     // BEXTR doesn't update the sign flag so we can't use it. It does clear
5153     // the overflow flag, but that's not useful without the sign flag.
5154     NoSignFlag = true;
5155     return true;
5156   }
5157 }
5158 
5159 /// Check whether the use can be converted to remove a comparison against zero.
5160 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
5161   switch (MI.getOpcode()) {
5162   default:
5163     return X86::COND_INVALID;
5164   CASE_ND(NEG8r)
5165   CASE_ND(NEG16r)
5166   CASE_ND(NEG32r)
5167   CASE_ND(NEG64r)
5168     return X86::COND_AE;
5169   case X86::LZCNT16rr:
5170   case X86::LZCNT32rr:
5171   case X86::LZCNT64rr:
5172     return X86::COND_B;
5173   case X86::POPCNT16rr:
5174   case X86::POPCNT32rr:
5175   case X86::POPCNT64rr:
5176     return X86::COND_E;
5177   case X86::TZCNT16rr:
5178   case X86::TZCNT32rr:
5179   case X86::TZCNT64rr:
5180     return X86::COND_B;
5181   case X86::BSF16rr:
5182   case X86::BSF32rr:
5183   case X86::BSF64rr:
5184   case X86::BSR16rr:
5185   case X86::BSR32rr:
5186   case X86::BSR64rr:
5187     return X86::COND_E;
5188   case X86::BLSI32rr:
5189   case X86::BLSI64rr:
5190     return X86::COND_AE;
5191   case X86::BLSR32rr:
5192   case X86::BLSR64rr:
5193   case X86::BLSMSK32rr:
5194   case X86::BLSMSK64rr:
5195     return X86::COND_B;
5196     // TODO: TBM instructions.
5197   }
5198 }
5199 
5200 /// Check if there exists an earlier instruction that
5201 /// operates on the same source operands and sets flags in the same way as
5202 /// Compare; remove Compare if possible.
5203 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
5204                                         Register SrcReg2, int64_t CmpMask,
5205                                         int64_t CmpValue,
5206                                         const MachineRegisterInfo *MRI) const {
5207   // Check whether we can replace SUB with CMP.
5208   switch (CmpInstr.getOpcode()) {
5209   default:
5210     break;
5211   CASE_ND(SUB64ri32)
5212   CASE_ND(SUB32ri)
5213   CASE_ND(SUB16ri)
5214   CASE_ND(SUB8ri)
5215   CASE_ND(SUB64rm)
5216   CASE_ND(SUB32rm)
5217   CASE_ND(SUB16rm)
5218   CASE_ND(SUB8rm)
5219   CASE_ND(SUB64rr)
5220   CASE_ND(SUB32rr)
5221   CASE_ND(SUB16rr)
5222   CASE_ND(SUB8rr) {
5223     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
5224       return false;
5225     // There is no use of the destination register, we can replace SUB with CMP.
5226     unsigned NewOpcode = 0;
5227 #define FROM_TO(A, B)                                                          \
5228   CASE_ND(A) NewOpcode = X86::B;                                               \
5229   break;
5230     switch (CmpInstr.getOpcode()) {
5231     default:
5232       llvm_unreachable("Unreachable!");
5233     FROM_TO(SUB64rm, CMP64rm)
5234     FROM_TO(SUB32rm, CMP32rm)
5235     FROM_TO(SUB16rm, CMP16rm)
5236     FROM_TO(SUB8rm, CMP8rm)
5237     FROM_TO(SUB64rr, CMP64rr)
5238     FROM_TO(SUB32rr, CMP32rr)
5239     FROM_TO(SUB16rr, CMP16rr)
5240     FROM_TO(SUB8rr, CMP8rr)
5241     FROM_TO(SUB64ri32, CMP64ri32)
5242     FROM_TO(SUB32ri, CMP32ri)
5243     FROM_TO(SUB16ri, CMP16ri)
5244     FROM_TO(SUB8ri, CMP8ri)
5245     }
5246 #undef FROM_TO
5247     CmpInstr.setDesc(get(NewOpcode));
5248     CmpInstr.removeOperand(0);
5249     // Mutating this instruction invalidates any debug data associated with it.
5250     CmpInstr.dropDebugNumber();
5251     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5252     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5253         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5254       return false;
5255   }
5256   }
5257 
5258   // The following code tries to remove the comparison by re-using EFLAGS
5259   // from earlier instructions.
5260 
5261   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5262 
5263   // Transformation currently requires SSA values.
5264   if (SrcReg2.isPhysical())
5265     return false;
5266   MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
5267   assert(SrcRegDef && "Must have a definition (SSA)");
5268 
5269   MachineInstr *MI = nullptr;
5270   MachineInstr *Sub = nullptr;
5271   MachineInstr *Movr0Inst = nullptr;
5272   bool NoSignFlag = false;
5273   bool ClearsOverflowFlag = false;
5274   bool ShouldUpdateCC = false;
5275   bool IsSwapped = false;
5276   X86::CondCode NewCC = X86::COND_INVALID;
5277   int64_t ImmDelta = 0;
5278 
5279   // Search backward from CmpInstr for the next instruction defining EFLAGS.
5280   const TargetRegisterInfo *TRI = &getRegisterInfo();
5281   MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
5282   MachineBasicBlock::reverse_iterator From =
5283       std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
5284   for (MachineBasicBlock *MBB = &CmpMBB;;) {
5285     for (MachineInstr &Inst : make_range(From, MBB->rend())) {
5286       // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5287       //     %eax = addl ...
5288       //     ...                // EFLAGS not changed
5289       //     testl %eax, %eax   // <-- can be removed
5290       if (&Inst == SrcRegDef) {
5291         if (IsCmpZero &&
5292             isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
5293           MI = &Inst;
5294           break;
5295         }
5296 
5297         // Look back for the following pattern, in which case the
5298         // test16rr/test64rr instruction could be erased.
5299         //
5300         // Example for test16rr:
5301         //  %reg = and32ri %in_reg, 5
5302         //  ...                         // EFLAGS not changed.
5303         //  %src_reg = copy %reg.sub_16bit:gr32
5304         //  test16rr %src_reg, %src_reg, implicit-def $eflags
5305         // Example for test64rr:
5306         //  %reg = and32ri %in_reg, 5
5307         //  ...                         // EFLAGS not changed.
5308         //  %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5309         //  test64rr %src_reg, %src_reg, implicit-def $eflags
5310         MachineInstr *AndInstr = nullptr;
5311         if (IsCmpZero &&
5312             findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
5313                                    NoSignFlag, ClearsOverflowFlag)) {
5314           assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
5315           MI = AndInstr;
5316           break;
5317         }
5318         // Cannot find other candidates before definition of SrcReg.
5319         return false;
5320       }
5321 
5322       if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
5323         // Try to use EFLAGS produced by an instruction reading %SrcReg.
5324         // Example:
5325         //      %eax = ...
5326         //      ...
5327         //      popcntl %eax
5328         //      ...                 // EFLAGS not changed
5329         //      testl %eax, %eax    // <-- can be removed
5330         if (IsCmpZero) {
5331           NewCC = isUseDefConvertible(Inst);
5332           if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
5333               Inst.getOperand(1).getReg() == SrcReg) {
5334             ShouldUpdateCC = true;
5335             MI = &Inst;
5336             break;
5337           }
5338         }
5339 
5340         // Try to use EFLAGS from an instruction with similar flag results.
5341         // Example:
5342         //     sub x, y  or  cmp x, y
5343         //     ...           // EFLAGS not changed
5344         //     cmp x, y      // <-- can be removed
5345         if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
5346                                  Inst, &IsSwapped, &ImmDelta)) {
5347           Sub = &Inst;
5348           break;
5349         }
5350 
5351         // MOV32r0 is implemented with xor which clobbers condition code. It is
5352         // safe to move up, if the definition to EFLAGS is dead and earlier
5353         // instructions do not read or write EFLAGS.
5354         if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
5355             Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
5356           Movr0Inst = &Inst;
5357           continue;
5358         }
5359 
5360         // Cannot do anything for any other EFLAG changes.
5361         return false;
5362       }
5363     }
5364 
5365     if (MI || Sub)
5366       break;
5367 
5368     // Reached begin of basic block. Continue in predecessor if there is
5369     // exactly one.
5370     if (MBB->pred_size() != 1)
5371       return false;
5372     MBB = *MBB->pred_begin();
5373     From = MBB->rbegin();
5374   }
5375 
5376   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5377   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5378   // If we are done with the basic block, we need to check whether EFLAGS is
5379   // live-out.
5380   bool FlagsMayLiveOut = true;
5381   SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate;
5382   MachineBasicBlock::iterator AfterCmpInstr =
5383       std::next(MachineBasicBlock::iterator(CmpInstr));
5384   for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
5385     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5386     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5387     // We should check the usage if this instruction uses and updates EFLAGS.
5388     if (!UseEFLAGS && ModifyEFLAGS) {
5389       // It is safe to remove CmpInstr if EFLAGS is updated again.
5390       FlagsMayLiveOut = false;
5391       break;
5392     }
5393     if (!UseEFLAGS && !ModifyEFLAGS)
5394       continue;
5395 
5396     // EFLAGS is used by this instruction.
5397     X86::CondCode OldCC = X86::getCondFromMI(Instr);
5398     if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
5399       return false;
5400 
5401     X86::CondCode ReplacementCC = X86::COND_INVALID;
5402     if (MI) {
5403       switch (OldCC) {
5404       default:
5405         break;
5406       case X86::COND_A:
5407       case X86::COND_AE:
5408       case X86::COND_B:
5409       case X86::COND_BE:
5410         // CF is used, we can't perform this optimization.
5411         return false;
5412       case X86::COND_G:
5413       case X86::COND_GE:
5414       case X86::COND_L:
5415       case X86::COND_LE:
5416         // If SF is used, but the instruction doesn't update the SF, then we
5417         // can't do the optimization.
5418         if (NoSignFlag)
5419           return false;
5420         [[fallthrough]];
5421       case X86::COND_O:
5422       case X86::COND_NO:
5423         // If OF is used, the instruction needs to clear it like CmpZero does.
5424         if (!ClearsOverflowFlag)
5425           return false;
5426         break;
5427       case X86::COND_S:
5428       case X86::COND_NS:
5429         // If SF is used, but the instruction doesn't update the SF, then we
5430         // can't do the optimization.
5431         if (NoSignFlag)
5432           return false;
5433         break;
5434       }
5435 
5436       // If we're updating the condition code check if we have to reverse the
5437       // condition.
5438       if (ShouldUpdateCC)
5439         switch (OldCC) {
5440         default:
5441           return false;
5442         case X86::COND_E:
5443           ReplacementCC = NewCC;
5444           break;
5445         case X86::COND_NE:
5446           ReplacementCC = GetOppositeBranchCondition(NewCC);
5447           break;
5448         }
5449     } else if (IsSwapped) {
5450       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5451       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5452       // We swap the condition code and synthesize the new opcode.
5453       ReplacementCC = getSwappedCondition(OldCC);
5454       if (ReplacementCC == X86::COND_INVALID)
5455         return false;
5456       ShouldUpdateCC = true;
5457     } else if (ImmDelta != 0) {
5458       unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
5459       // Shift amount for min/max constants to adjust for 8/16/32 instruction
5460       // sizes.
5461       switch (OldCC) {
5462       case X86::COND_L: // x <s (C + 1)  -->  x <=s C
5463         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5464           return false;
5465         ReplacementCC = X86::COND_LE;
5466         break;
5467       case X86::COND_B: // x <u (C + 1)  -->  x <=u C
5468         if (ImmDelta != 1 || CmpValue == 0)
5469           return false;
5470         ReplacementCC = X86::COND_BE;
5471         break;
5472       case X86::COND_GE: // x >=s (C + 1)  -->  x >s C
5473         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5474           return false;
5475         ReplacementCC = X86::COND_G;
5476         break;
5477       case X86::COND_AE: // x >=u (C + 1)  -->  x >u C
5478         if (ImmDelta != 1 || CmpValue == 0)
5479           return false;
5480         ReplacementCC = X86::COND_A;
5481         break;
5482       case X86::COND_G: // x >s (C - 1)  -->  x >=s C
5483         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5484           return false;
5485         ReplacementCC = X86::COND_GE;
5486         break;
5487       case X86::COND_A: // x >u (C - 1)  -->  x >=u C
5488         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5489           return false;
5490         ReplacementCC = X86::COND_AE;
5491         break;
5492       case X86::COND_LE: // x <=s (C - 1)  -->  x <s C
5493         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5494           return false;
5495         ReplacementCC = X86::COND_L;
5496         break;
5497       case X86::COND_BE: // x <=u (C - 1)  -->  x <u C
5498         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5499           return false;
5500         ReplacementCC = X86::COND_B;
5501         break;
5502       default:
5503         return false;
5504       }
5505       ShouldUpdateCC = true;
5506     }
5507 
5508     if (ShouldUpdateCC && ReplacementCC != OldCC) {
5509       // Push the MachineInstr to OpsToUpdate.
5510       // If it is safe to remove CmpInstr, the condition code of these
5511       // instructions will be modified.
5512       OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
5513     }
5514     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5515       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5516       FlagsMayLiveOut = false;
5517       break;
5518     }
5519   }
5520 
5521   // If we have to update users but EFLAGS is live-out abort, since we cannot
5522   // easily find all of the users.
5523   if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5524     for (MachineBasicBlock *Successor : CmpMBB.successors())
5525       if (Successor->isLiveIn(X86::EFLAGS))
5526         return false;
5527   }
5528 
5529   // The instruction to be updated is either Sub or MI.
5530   assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
5531   Sub = MI != nullptr ? MI : Sub;
5532   MachineBasicBlock *SubBB = Sub->getParent();
5533   // Move Movr0Inst to the appropriate place before Sub.
5534   if (Movr0Inst) {
5535     // Only move within the same block so we don't accidentally move to a
5536     // block with higher execution frequency.
5537     if (&CmpMBB != SubBB)
5538       return false;
5539     // Look backwards until we find a def that doesn't use the current EFLAGS.
5540     MachineBasicBlock::reverse_iterator InsertI = Sub,
5541                                         InsertE = Sub->getParent()->rend();
5542     for (; InsertI != InsertE; ++InsertI) {
5543       MachineInstr *Instr = &*InsertI;
5544       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5545           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5546         Movr0Inst->getParent()->remove(Movr0Inst);
5547         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
5548                                    Movr0Inst);
5549         break;
5550       }
5551     }
5552     if (InsertI == InsertE)
5553       return false;
5554   }
5555 
5556   // Make sure Sub instruction defines EFLAGS and mark the def live.
5557   MachineOperand *FlagDef =
5558       Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
5559   assert(FlagDef && "Unable to locate a def EFLAGS operand");
5560   FlagDef->setIsDead(false);
5561 
5562   CmpInstr.eraseFromParent();
5563 
5564   // Modify the condition code of instructions in OpsToUpdate.
5565   for (auto &Op : OpsToUpdate) {
5566     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
5567         .setImm(Op.second);
5568   }
5569   // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5570   for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
5571        MBB = *MBB->pred_begin()) {
5572     assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
5573     if (!MBB->isLiveIn(X86::EFLAGS))
5574       MBB->addLiveIn(X86::EFLAGS);
5575   }
5576   return true;
5577 }
5578 
5579 /// Try to remove the load by folding it to a register
5580 /// operand at the use. We fold the load instructions if load defines a virtual
5581 /// register, the virtual register is used once in the same BB, and the
5582 /// instructions in-between do not load or store, and have no side effects.
5583 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
5584                                               const MachineRegisterInfo *MRI,
5585                                               Register &FoldAsLoadDefReg,
5586                                               MachineInstr *&DefMI) const {
5587   // Check whether we can move DefMI here.
5588   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
5589   assert(DefMI);
5590   bool SawStore = false;
5591   if (!DefMI->isSafeToMove(nullptr, SawStore))
5592     return nullptr;
5593 
5594   // Collect information about virtual register operands of MI.
5595   SmallVector<unsigned, 1> SrcOperandIds;
5596   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5597     MachineOperand &MO = MI.getOperand(i);
5598     if (!MO.isReg())
5599       continue;
5600     Register Reg = MO.getReg();
5601     if (Reg != FoldAsLoadDefReg)
5602       continue;
5603     // Do not fold if we have a subreg use or a def.
5604     if (MO.getSubReg() || MO.isDef())
5605       return nullptr;
5606     SrcOperandIds.push_back(i);
5607   }
5608   if (SrcOperandIds.empty())
5609     return nullptr;
5610 
5611   // Check whether we can fold the def into SrcOperandId.
5612   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
5613     FoldAsLoadDefReg = 0;
5614     return FoldMI;
5615   }
5616 
5617   return nullptr;
5618 }
5619 
5620 /// \returns true if the instruction can be changed to COPY when imm is 0.
5621 static bool canConvert2Copy(unsigned Opc) {
5622   switch (Opc) {
5623   default:
5624     return false;
5625   CASE_ND(ADD64ri32)
5626   CASE_ND(SUB64ri32)
5627   CASE_ND(OR64ri32)
5628   CASE_ND(XOR64ri32)
5629   CASE_ND(ADD32ri)
5630   CASE_ND(SUB32ri)
5631   CASE_ND(OR32ri)
5632   CASE_ND(XOR32ri)
5633     return true;
5634   }
5635 }
5636 
5637 /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5638 ///     ADD32rr  ==>  ADD32ri
5639 static unsigned convertALUrr2ALUri(unsigned Opc) {
5640   switch (Opc) {
5641   default:
5642     return 0;
5643 #define FROM_TO(FROM, TO)                                                      \
5644   case X86::FROM:                                                              \
5645     return X86::TO;                                                            \
5646   case X86::FROM##_ND:                                                         \
5647     return X86::TO##_ND;
5648     FROM_TO(ADD64rr, ADD64ri32)
5649     FROM_TO(ADC64rr, ADC64ri32)
5650     FROM_TO(SUB64rr, SUB64ri32)
5651     FROM_TO(SBB64rr, SBB64ri32)
5652     FROM_TO(AND64rr, AND64ri32)
5653     FROM_TO(OR64rr, OR64ri32)
5654     FROM_TO(XOR64rr, XOR64ri32)
5655     FROM_TO(SHR64rCL, SHR64ri)
5656     FROM_TO(SHL64rCL, SHL64ri)
5657     FROM_TO(SAR64rCL, SAR64ri)
5658     FROM_TO(ROL64rCL, ROL64ri)
5659     FROM_TO(ROR64rCL, ROR64ri)
5660     FROM_TO(RCL64rCL, RCL64ri)
5661     FROM_TO(RCR64rCL, RCR64ri)
5662     FROM_TO(ADD32rr, ADD32ri)
5663     FROM_TO(ADC32rr, ADC32ri)
5664     FROM_TO(SUB32rr, SUB32ri)
5665     FROM_TO(SBB32rr, SBB32ri)
5666     FROM_TO(AND32rr, AND32ri)
5667     FROM_TO(OR32rr, OR32ri)
5668     FROM_TO(XOR32rr, XOR32ri)
5669     FROM_TO(SHR32rCL, SHR32ri)
5670     FROM_TO(SHL32rCL, SHL32ri)
5671     FROM_TO(SAR32rCL, SAR32ri)
5672     FROM_TO(ROL32rCL, ROL32ri)
5673     FROM_TO(ROR32rCL, ROR32ri)
5674     FROM_TO(RCL32rCL, RCL32ri)
5675     FROM_TO(RCR32rCL, RCR32ri)
5676 #undef FROM_TO
5677 #define FROM_TO(FROM, TO)                                                      \
5678   case X86::FROM:                                                              \
5679     return X86::TO;
5680     FROM_TO(TEST64rr, TEST64ri32)
5681     FROM_TO(CTEST64rr, CTEST64ri32)
5682     FROM_TO(CMP64rr, CMP64ri32)
5683     FROM_TO(CCMP64rr, CCMP64ri32)
5684     FROM_TO(TEST32rr, TEST32ri)
5685     FROM_TO(CTEST32rr, CTEST32ri)
5686     FROM_TO(CMP32rr, CMP32ri)
5687     FROM_TO(CCMP32rr, CCMP32ri)
5688 #undef FROM_TO
5689   }
5690 }
5691 
5692 /// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5693 /// If MakeChange is true, this function tries to replace Reg by ImmVal in
5694 /// UseMI. If MakeChange is false, just check if folding is possible.
5695 //
5696 /// \returns true if folding is successful or possible.
5697 bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI,
5698                                      Register Reg, int64_t ImmVal,
5699                                      MachineRegisterInfo *MRI,
5700                                      bool MakeChange) const {
5701   bool Modified = false;
5702 
5703   // 64 bit operations accept sign extended 32 bit immediates.
5704   // 32 bit operations accept all 32 bit immediates, so we don't need to check
5705   // them.
5706   const TargetRegisterClass *RC = nullptr;
5707   if (Reg.isVirtual())
5708     RC = MRI->getRegClass(Reg);
5709   if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5710       (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5711     if (!isInt<32>(ImmVal))
5712       return false;
5713   }
5714 
5715   if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg())
5716     return false;
5717   // Immediate has larger code size than register. So avoid folding the
5718   // immediate if it has more than 1 use and we are optimizing for size.
5719   if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() &&
5720       !MRI->hasOneNonDBGUse(Reg))
5721     return false;
5722 
5723   unsigned Opc = UseMI.getOpcode();
5724   unsigned NewOpc;
5725   if (Opc == TargetOpcode::COPY) {
5726     Register ToReg = UseMI.getOperand(0).getReg();
5727     const TargetRegisterClass *RC = nullptr;
5728     if (ToReg.isVirtual())
5729       RC = MRI->getRegClass(ToReg);
5730     bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5731                    (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg));
5732     bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5733                    (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg));
5734     bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5735                   (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg));
5736 
5737     if (ImmVal == 0) {
5738       // We have MOV32r0 only.
5739       if (!GR32Reg)
5740         return false;
5741     }
5742 
5743     if (GR64Reg) {
5744       if (isUInt<32>(ImmVal))
5745         NewOpc = X86::MOV32ri64;
5746       else
5747         NewOpc = X86::MOV64ri;
5748     } else if (GR32Reg) {
5749       NewOpc = X86::MOV32ri;
5750       if (ImmVal == 0) {
5751         // MOV32r0 clobbers EFLAGS.
5752         const TargetRegisterInfo *TRI = &getRegisterInfo();
5753         if (UseMI.getParent()->computeRegisterLiveness(
5754                 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead)
5755           return false;
5756 
5757         // MOV32r0 is different than other cases because it doesn't encode the
5758         // immediate in the instruction. So we directly modify it here.
5759         if (!MakeChange)
5760           return true;
5761         UseMI.setDesc(get(X86::MOV32r0));
5762         UseMI.removeOperand(
5763             UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5764         UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true,
5765                                                    /*isImp=*/true,
5766                                                    /*isKill=*/false,
5767                                                    /*isDead=*/true));
5768         Modified = true;
5769       }
5770     } else if (GR8Reg)
5771       NewOpc = X86::MOV8ri;
5772     else
5773       return false;
5774   } else
5775     NewOpc = convertALUrr2ALUri(Opc);
5776 
5777   if (!NewOpc)
5778     return false;
5779 
5780   // For SUB instructions the immediate can only be the second source operand.
5781   if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5782        NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri ||
5783        NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND ||
5784        NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) &&
5785       UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2)
5786     return false;
5787   // For CMP instructions the immediate can only be at index 1.
5788   if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) ||
5789        (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) &&
5790       UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1)
5791     return false;
5792 
5793   using namespace X86;
5794   if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) ||
5795       isRCL(Opc) || isRCR(Opc)) {
5796     unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
5797     if (RegIdx < 2)
5798       return false;
5799     if (!isInt<8>(ImmVal))
5800       return false;
5801     assert(Reg == X86::CL);
5802 
5803     if (!MakeChange)
5804       return true;
5805     UseMI.setDesc(get(NewOpc));
5806     UseMI.removeOperand(RegIdx);
5807     UseMI.addOperand(MachineOperand::CreateImm(ImmVal));
5808     // Reg is physical register $cl, so we don't know if DefMI is dead through
5809     // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5810     // the dead physical register define instruction.
5811     return true;
5812   }
5813 
5814   if (!MakeChange)
5815     return true;
5816 
5817   if (!Modified) {
5818     // Modify the instruction.
5819     if (ImmVal == 0 && canConvert2Copy(NewOpc) &&
5820         UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
5821       //          %100 = add %101, 0
5822       //    ==>
5823       //          %100 = COPY %101
5824       UseMI.setDesc(get(TargetOpcode::COPY));
5825       UseMI.removeOperand(
5826           UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5827       UseMI.removeOperand(
5828           UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr));
5829       UseMI.untieRegOperand(0);
5830       UseMI.clearFlag(MachineInstr::MIFlag::NoSWrap);
5831       UseMI.clearFlag(MachineInstr::MIFlag::NoUWrap);
5832     } else {
5833       unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5834       unsigned ImmOpNum = 2;
5835       if (!UseMI.getOperand(0).isDef()) {
5836         Op1 = 0; // TEST, CMP, CTEST, CCMP
5837         ImmOpNum = 1;
5838       }
5839       if (Opc == TargetOpcode::COPY)
5840         ImmOpNum = 1;
5841       if (findCommutedOpIndices(UseMI, Op1, Op2) &&
5842           UseMI.getOperand(Op1).getReg() == Reg)
5843         commuteInstruction(UseMI);
5844 
5845       assert(UseMI.getOperand(ImmOpNum).getReg() == Reg);
5846       UseMI.setDesc(get(NewOpc));
5847       UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal);
5848     }
5849   }
5850 
5851   if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg))
5852     DefMI->eraseFromBundle();
5853 
5854   return true;
5855 }
5856 
5857 /// foldImmediate - 'Reg' is known to be defined by a move immediate
5858 /// instruction, try to fold the immediate into the use instruction.
5859 bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
5860                                  Register Reg, MachineRegisterInfo *MRI) const {
5861   int64_t ImmVal;
5862   if (!getConstValDefinedInReg(DefMI, Reg, ImmVal))
5863     return false;
5864 
5865   return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true);
5866 }
5867 
5868 /// Expand a single-def pseudo instruction to a two-addr
5869 /// instruction with two undef reads of the register being defined.
5870 /// This is used for mapping:
5871 ///   %xmm4 = V_SET0
5872 /// to:
5873 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
5874 ///
5875 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
5876                              const MCInstrDesc &Desc) {
5877   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5878   Register Reg = MIB.getReg(0);
5879   MIB->setDesc(Desc);
5880 
5881   // MachineInstr::addOperand() will insert explicit operands before any
5882   // implicit operands.
5883   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5884   // But we don't trust that.
5885   assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand");
5886   return true;
5887 }
5888 
5889 /// Expand a single-def pseudo instruction to a two-addr
5890 /// instruction with two %k0 reads.
5891 /// This is used for mapping:
5892 ///   %k4 = K_SET1
5893 /// to:
5894 ///   %k4 = KXNORrr %k0, %k0
5895 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
5896                             Register Reg) {
5897   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5898   MIB->setDesc(Desc);
5899   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5900   return true;
5901 }
5902 
5903 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
5904                           bool MinusOne) {
5905   MachineBasicBlock &MBB = *MIB->getParent();
5906   const DebugLoc &DL = MIB->getDebugLoc();
5907   Register Reg = MIB.getReg(0);
5908 
5909   // Insert the XOR.
5910   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5911       .addReg(Reg, RegState::Undef)
5912       .addReg(Reg, RegState::Undef);
5913 
5914   // Turn the pseudo into an INC or DEC.
5915   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5916   MIB.addReg(Reg);
5917 
5918   return true;
5919 }
5920 
5921 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
5922                                const TargetInstrInfo &TII,
5923                                const X86Subtarget &Subtarget) {
5924   MachineBasicBlock &MBB = *MIB->getParent();
5925   const DebugLoc &DL = MIB->getDebugLoc();
5926   int64_t Imm = MIB->getOperand(1).getImm();
5927   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
5928   MachineBasicBlock::iterator I = MIB.getInstr();
5929 
5930   int StackAdjustment;
5931 
5932   if (Subtarget.is64Bit()) {
5933     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
5934            MIB->getOpcode() == X86::MOV32ImmSExti8);
5935 
5936     // Can't use push/pop lowering if the function might write to the red zone.
5937     X86MachineFunctionInfo *X86FI =
5938         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
5939     if (X86FI->getUsesRedZone()) {
5940       MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8
5941                                ? X86::MOV32ri
5942                                : X86::MOV64ri));
5943       return true;
5944     }
5945 
5946     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
5947     // widen the register if necessary.
5948     StackAdjustment = 8;
5949     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
5950     MIB->setDesc(TII.get(X86::POP64r));
5951     MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
5952   } else {
5953     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
5954     StackAdjustment = 4;
5955     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
5956     MIB->setDesc(TII.get(X86::POP32r));
5957   }
5958   MIB->removeOperand(1);
5959   MIB->addImplicitDefUseOperands(*MBB.getParent());
5960 
5961   // Build CFI if necessary.
5962   MachineFunction &MF = *MBB.getParent();
5963   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
5964   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
5965   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
5966   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
5967   if (EmitCFI) {
5968     TFL->BuildCFI(
5969         MBB, I, DL,
5970         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
5971     TFL->BuildCFI(
5972         MBB, std::next(I), DL,
5973         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
5974   }
5975 
5976   return true;
5977 }
5978 
5979 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
5980 // code sequence is needed for other targets.
5981 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
5982                                  const TargetInstrInfo &TII) {
5983   MachineBasicBlock &MBB = *MIB->getParent();
5984   const DebugLoc &DL = MIB->getDebugLoc();
5985   Register Reg = MIB.getReg(0);
5986   const GlobalValue *GV =
5987       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
5988   auto Flags = MachineMemOperand::MOLoad |
5989                MachineMemOperand::MODereferenceable |
5990                MachineMemOperand::MOInvariant;
5991   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
5992       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
5993   MachineBasicBlock::iterator I = MIB.getInstr();
5994 
5995   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg)
5996       .addReg(X86::RIP)
5997       .addImm(1)
5998       .addReg(0)
5999       .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL)
6000       .addReg(0)
6001       .addMemOperand(MMO);
6002   MIB->setDebugLoc(DL);
6003   MIB->setDesc(TII.get(X86::MOV64rm));
6004   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
6005 }
6006 
6007 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
6008   MachineBasicBlock &MBB = *MIB->getParent();
6009   MachineFunction &MF = *MBB.getParent();
6010   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
6011   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
6012   unsigned XorOp =
6013       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
6014   MIB->setDesc(TII.get(XorOp));
6015   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
6016   return true;
6017 }
6018 
6019 // This is used to handle spills for 128/256-bit registers when we have AVX512,
6020 // but not VLX. If it uses an extended register we need to use an instruction
6021 // that loads the lower 128/256-bit, but is available with only AVX512F.
6022 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
6023                             const TargetRegisterInfo *TRI,
6024                             const MCInstrDesc &LoadDesc,
6025                             const MCInstrDesc &BroadcastDesc, unsigned SubIdx) {
6026   Register DestReg = MIB.getReg(0);
6027   // Check if DestReg is XMM16-31 or YMM16-31.
6028   if (TRI->getEncodingValue(DestReg) < 16) {
6029     // We can use a normal VEX encoded load.
6030     MIB->setDesc(LoadDesc);
6031   } else {
6032     // Use a 128/256-bit VBROADCAST instruction.
6033     MIB->setDesc(BroadcastDesc);
6034     // Change the destination to a 512-bit register.
6035     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
6036     MIB->getOperand(0).setReg(DestReg);
6037   }
6038   return true;
6039 }
6040 
6041 // This is used to handle spills for 128/256-bit registers when we have AVX512,
6042 // but not VLX. If it uses an extended register we need to use an instruction
6043 // that stores the lower 128/256-bit, but is available with only AVX512F.
6044 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
6045                              const TargetRegisterInfo *TRI,
6046                              const MCInstrDesc &StoreDesc,
6047                              const MCInstrDesc &ExtractDesc, unsigned SubIdx) {
6048   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
6049   // Check if DestReg is XMM16-31 or YMM16-31.
6050   if (TRI->getEncodingValue(SrcReg) < 16) {
6051     // We can use a normal VEX encoded store.
6052     MIB->setDesc(StoreDesc);
6053   } else {
6054     // Use a VEXTRACTF instruction.
6055     MIB->setDesc(ExtractDesc);
6056     // Change the destination to a 512-bit register.
6057     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
6058     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
6059     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
6060   }
6061 
6062   return true;
6063 }
6064 
6065 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
6066   MIB->setDesc(Desc);
6067   int64_t ShiftAmt = MIB->getOperand(2).getImm();
6068   // Temporarily remove the immediate so we can add another source register.
6069   MIB->removeOperand(2);
6070   // Add the register. Don't copy the kill flag if there is one.
6071   MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef()));
6072   // Add back the immediate.
6073   MIB.addImm(ShiftAmt);
6074   return true;
6075 }
6076 
6077 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
6078   bool HasAVX = Subtarget.hasAVX();
6079   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
6080   switch (MI.getOpcode()) {
6081   case X86::MOV32r0:
6082     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
6083   case X86::MOV32r1:
6084     return expandMOV32r1(MIB, *this, /*MinusOne=*/false);
6085   case X86::MOV32r_1:
6086     return expandMOV32r1(MIB, *this, /*MinusOne=*/true);
6087   case X86::MOV32ImmSExti8:
6088   case X86::MOV64ImmSExti8:
6089     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
6090   case X86::SETB_C32r:
6091     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
6092   case X86::SETB_C64r:
6093     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
6094   case X86::MMX_SET0:
6095     return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
6096   case X86::V_SET0:
6097   case X86::FsFLD0SS:
6098   case X86::FsFLD0SD:
6099   case X86::FsFLD0SH:
6100   case X86::FsFLD0F128:
6101     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
6102   case X86::AVX_SET0: {
6103     assert(HasAVX && "AVX not supported");
6104     const TargetRegisterInfo *TRI = &getRegisterInfo();
6105     Register SrcReg = MIB.getReg(0);
6106     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6107     MIB->getOperand(0).setReg(XReg);
6108     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
6109     MIB.addReg(SrcReg, RegState::ImplicitDefine);
6110     return true;
6111   }
6112   case X86::AVX512_128_SET0:
6113   case X86::AVX512_FsFLD0SH:
6114   case X86::AVX512_FsFLD0SS:
6115   case X86::AVX512_FsFLD0SD:
6116   case X86::AVX512_FsFLD0F128: {
6117     bool HasVLX = Subtarget.hasVLX();
6118     Register SrcReg = MIB.getReg(0);
6119     const TargetRegisterInfo *TRI = &getRegisterInfo();
6120     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
6121       return Expand2AddrUndef(MIB,
6122                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6123     // Extended register without VLX. Use a larger XOR.
6124     SrcReg =
6125         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6126     MIB->getOperand(0).setReg(SrcReg);
6127     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6128   }
6129   case X86::AVX512_256_SET0:
6130   case X86::AVX512_512_SET0: {
6131     bool HasVLX = Subtarget.hasVLX();
6132     Register SrcReg = MIB.getReg(0);
6133     const TargetRegisterInfo *TRI = &getRegisterInfo();
6134     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
6135       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6136       MIB->getOperand(0).setReg(XReg);
6137       Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6138       MIB.addReg(SrcReg, RegState::ImplicitDefine);
6139       return true;
6140     }
6141     if (MI.getOpcode() == X86::AVX512_256_SET0) {
6142       // No VLX so we must reference a zmm.
6143       unsigned ZReg =
6144           TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6145       MIB->getOperand(0).setReg(ZReg);
6146     }
6147     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6148   }
6149   case X86::V_SETALLONES:
6150     return Expand2AddrUndef(MIB,
6151                             get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6152   case X86::AVX2_SETALLONES:
6153     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
6154   case X86::AVX1_SETALLONES: {
6155     Register Reg = MIB.getReg(0);
6156     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6157     MIB->setDesc(get(X86::VCMPPSYrri));
6158     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
6159     return true;
6160   }
6161   case X86::AVX512_512_SETALLONES: {
6162     Register Reg = MIB.getReg(0);
6163     MIB->setDesc(get(X86::VPTERNLOGDZrri));
6164     // VPTERNLOGD needs 3 register inputs and an immediate.
6165     // 0xff will return 1s for any input.
6166     MIB.addReg(Reg, RegState::Undef)
6167         .addReg(Reg, RegState::Undef)
6168         .addReg(Reg, RegState::Undef)
6169         .addImm(0xff);
6170     return true;
6171   }
6172   case X86::AVX512_512_SEXT_MASK_32:
6173   case X86::AVX512_512_SEXT_MASK_64: {
6174     Register Reg = MIB.getReg(0);
6175     Register MaskReg = MIB.getReg(1);
6176     unsigned MaskState = getRegState(MIB->getOperand(1));
6177     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6178                        ? X86::VPTERNLOGQZrrikz
6179                        : X86::VPTERNLOGDZrrikz;
6180     MI.removeOperand(1);
6181     MIB->setDesc(get(Opc));
6182     // VPTERNLOG needs 3 register inputs and an immediate.
6183     // 0xff will return 1s for any input.
6184     MIB.addReg(Reg, RegState::Undef)
6185         .addReg(MaskReg, MaskState)
6186         .addReg(Reg, RegState::Undef)
6187         .addReg(Reg, RegState::Undef)
6188         .addImm(0xff);
6189     return true;
6190   }
6191   case X86::VMOVAPSZ128rm_NOVLX:
6192     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
6193                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6194   case X86::VMOVUPSZ128rm_NOVLX:
6195     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
6196                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6197   case X86::VMOVAPSZ256rm_NOVLX:
6198     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
6199                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6200   case X86::VMOVUPSZ256rm_NOVLX:
6201     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
6202                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6203   case X86::VMOVAPSZ128mr_NOVLX:
6204     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
6205                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6206   case X86::VMOVUPSZ128mr_NOVLX:
6207     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
6208                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6209   case X86::VMOVAPSZ256mr_NOVLX:
6210     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
6211                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6212   case X86::VMOVUPSZ256mr_NOVLX:
6213     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
6214                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6215   case X86::MOV32ri64: {
6216     Register Reg = MIB.getReg(0);
6217     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6218     MI.setDesc(get(X86::MOV32ri));
6219     MIB->getOperand(0).setReg(Reg32);
6220     MIB.addReg(Reg, RegState::ImplicitDefine);
6221     return true;
6222   }
6223 
6224   case X86::RDFLAGS32:
6225   case X86::RDFLAGS64: {
6226     unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64;
6227     MachineBasicBlock &MBB = *MIB->getParent();
6228 
6229     MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(),
6230                                   get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6231                               .getInstr();
6232 
6233     // Permit reads of the EFLAGS and DF registers without them being defined.
6234     // This intrinsic exists to read external processor state in flags, such as
6235     // the trap flag, interrupt flag, and direction flag, none of which are
6236     // modeled by the backend.
6237     assert(NewMI->getOperand(2).getReg() == X86::EFLAGS &&
6238            "Unexpected register in operand! Should be EFLAGS.");
6239     NewMI->getOperand(2).setIsUndef();
6240     assert(NewMI->getOperand(3).getReg() == X86::DF &&
6241            "Unexpected register in operand! Should be DF.");
6242     NewMI->getOperand(3).setIsUndef();
6243 
6244     MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r));
6245     return true;
6246   }
6247 
6248   case X86::WRFLAGS32:
6249   case X86::WRFLAGS64: {
6250     unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64;
6251     MachineBasicBlock &MBB = *MIB->getParent();
6252 
6253     BuildMI(MBB, MI, MIB->getDebugLoc(),
6254             get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6255         .addReg(MI.getOperand(0).getReg());
6256     BuildMI(MBB, MI, MIB->getDebugLoc(),
6257             get(Is64Bit ? X86::POPF64 : X86::POPF32));
6258     MI.eraseFromParent();
6259     return true;
6260   }
6261 
6262   // KNL does not recognize dependency-breaking idioms for mask registers,
6263   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6264   // Using %k0 as the undef input register is a performance heuristic based
6265   // on the assumption that %k0 is used less frequently than the other mask
6266   // registers, since it is not usable as a write mask.
6267   // FIXME: A more advanced approach would be to choose the best input mask
6268   // register based on context.
6269   case X86::KSET0W:
6270     return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
6271   case X86::KSET0D:
6272     return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
6273   case X86::KSET0Q:
6274     return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
6275   case X86::KSET1W:
6276     return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
6277   case X86::KSET1D:
6278     return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
6279   case X86::KSET1Q:
6280     return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
6281   case TargetOpcode::LOAD_STACK_GUARD:
6282     expandLoadStackGuard(MIB, *this);
6283     return true;
6284   case X86::XOR64_FP:
6285   case X86::XOR32_FP:
6286     return expandXorFP(MIB, *this);
6287   case X86::SHLDROT32ri:
6288     return expandSHXDROT(MIB, get(X86::SHLD32rri8));
6289   case X86::SHLDROT64ri:
6290     return expandSHXDROT(MIB, get(X86::SHLD64rri8));
6291   case X86::SHRDROT32ri:
6292     return expandSHXDROT(MIB, get(X86::SHRD32rri8));
6293   case X86::SHRDROT64ri:
6294     return expandSHXDROT(MIB, get(X86::SHRD64rri8));
6295   case X86::ADD8rr_DB:
6296     MIB->setDesc(get(X86::OR8rr));
6297     break;
6298   case X86::ADD16rr_DB:
6299     MIB->setDesc(get(X86::OR16rr));
6300     break;
6301   case X86::ADD32rr_DB:
6302     MIB->setDesc(get(X86::OR32rr));
6303     break;
6304   case X86::ADD64rr_DB:
6305     MIB->setDesc(get(X86::OR64rr));
6306     break;
6307   case X86::ADD8ri_DB:
6308     MIB->setDesc(get(X86::OR8ri));
6309     break;
6310   case X86::ADD16ri_DB:
6311     MIB->setDesc(get(X86::OR16ri));
6312     break;
6313   case X86::ADD32ri_DB:
6314     MIB->setDesc(get(X86::OR32ri));
6315     break;
6316   case X86::ADD64ri32_DB:
6317     MIB->setDesc(get(X86::OR64ri32));
6318     break;
6319   }
6320   return false;
6321 }
6322 
6323 /// Return true for all instructions that only update
6324 /// the first 32 or 64-bits of the destination register and leave the rest
6325 /// unmodified. This can be used to avoid folding loads if the instructions
6326 /// only update part of the destination register, and the non-updated part is
6327 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6328 /// instructions breaks the partial register dependency and it can improve
6329 /// performance. e.g.:
6330 ///
6331 ///   movss (%rdi), %xmm0
6332 ///   cvtss2sd %xmm0, %xmm0
6333 ///
6334 /// Instead of
6335 ///   cvtss2sd (%rdi), %xmm0
6336 ///
6337 /// FIXME: This should be turned into a TSFlags.
6338 ///
6339 static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget,
6340                                 bool ForLoadFold = false) {
6341   switch (Opcode) {
6342   case X86::CVTSI2SSrr:
6343   case X86::CVTSI2SSrm:
6344   case X86::CVTSI642SSrr:
6345   case X86::CVTSI642SSrm:
6346   case X86::CVTSI2SDrr:
6347   case X86::CVTSI2SDrm:
6348   case X86::CVTSI642SDrr:
6349   case X86::CVTSI642SDrm:
6350     // Load folding won't effect the undef register update since the input is
6351     // a GPR.
6352     return !ForLoadFold;
6353   case X86::CVTSD2SSrr:
6354   case X86::CVTSD2SSrm:
6355   case X86::CVTSS2SDrr:
6356   case X86::CVTSS2SDrm:
6357   case X86::MOVHPDrm:
6358   case X86::MOVHPSrm:
6359   case X86::MOVLPDrm:
6360   case X86::MOVLPSrm:
6361   case X86::RCPSSr:
6362   case X86::RCPSSm:
6363   case X86::RCPSSr_Int:
6364   case X86::RCPSSm_Int:
6365   case X86::ROUNDSDri:
6366   case X86::ROUNDSDmi:
6367   case X86::ROUNDSSri:
6368   case X86::ROUNDSSmi:
6369   case X86::RSQRTSSr:
6370   case X86::RSQRTSSm:
6371   case X86::RSQRTSSr_Int:
6372   case X86::RSQRTSSm_Int:
6373   case X86::SQRTSSr:
6374   case X86::SQRTSSm:
6375   case X86::SQRTSSr_Int:
6376   case X86::SQRTSSm_Int:
6377   case X86::SQRTSDr:
6378   case X86::SQRTSDm:
6379   case X86::SQRTSDr_Int:
6380   case X86::SQRTSDm_Int:
6381     return true;
6382   case X86::VFCMULCPHZ128rm:
6383   case X86::VFCMULCPHZ128rmb:
6384   case X86::VFCMULCPHZ128rmbkz:
6385   case X86::VFCMULCPHZ128rmkz:
6386   case X86::VFCMULCPHZ128rr:
6387   case X86::VFCMULCPHZ128rrkz:
6388   case X86::VFCMULCPHZ256rm:
6389   case X86::VFCMULCPHZ256rmb:
6390   case X86::VFCMULCPHZ256rmbkz:
6391   case X86::VFCMULCPHZ256rmkz:
6392   case X86::VFCMULCPHZ256rr:
6393   case X86::VFCMULCPHZ256rrkz:
6394   case X86::VFCMULCPHZrm:
6395   case X86::VFCMULCPHZrmb:
6396   case X86::VFCMULCPHZrmbkz:
6397   case X86::VFCMULCPHZrmkz:
6398   case X86::VFCMULCPHZrr:
6399   case X86::VFCMULCPHZrrb:
6400   case X86::VFCMULCPHZrrbkz:
6401   case X86::VFCMULCPHZrrkz:
6402   case X86::VFMULCPHZ128rm:
6403   case X86::VFMULCPHZ128rmb:
6404   case X86::VFMULCPHZ128rmbkz:
6405   case X86::VFMULCPHZ128rmkz:
6406   case X86::VFMULCPHZ128rr:
6407   case X86::VFMULCPHZ128rrkz:
6408   case X86::VFMULCPHZ256rm:
6409   case X86::VFMULCPHZ256rmb:
6410   case X86::VFMULCPHZ256rmbkz:
6411   case X86::VFMULCPHZ256rmkz:
6412   case X86::VFMULCPHZ256rr:
6413   case X86::VFMULCPHZ256rrkz:
6414   case X86::VFMULCPHZrm:
6415   case X86::VFMULCPHZrmb:
6416   case X86::VFMULCPHZrmbkz:
6417   case X86::VFMULCPHZrmkz:
6418   case X86::VFMULCPHZrr:
6419   case X86::VFMULCPHZrrb:
6420   case X86::VFMULCPHZrrbkz:
6421   case X86::VFMULCPHZrrkz:
6422   case X86::VFCMULCSHZrm:
6423   case X86::VFCMULCSHZrmkz:
6424   case X86::VFCMULCSHZrr:
6425   case X86::VFCMULCSHZrrb:
6426   case X86::VFCMULCSHZrrbkz:
6427   case X86::VFCMULCSHZrrkz:
6428   case X86::VFMULCSHZrm:
6429   case X86::VFMULCSHZrmkz:
6430   case X86::VFMULCSHZrr:
6431   case X86::VFMULCSHZrrb:
6432   case X86::VFMULCSHZrrbkz:
6433   case X86::VFMULCSHZrrkz:
6434     return Subtarget.hasMULCFalseDeps();
6435   case X86::VPERMDYrm:
6436   case X86::VPERMDYrr:
6437   case X86::VPERMQYmi:
6438   case X86::VPERMQYri:
6439   case X86::VPERMPSYrm:
6440   case X86::VPERMPSYrr:
6441   case X86::VPERMPDYmi:
6442   case X86::VPERMPDYri:
6443   case X86::VPERMDZ256rm:
6444   case X86::VPERMDZ256rmb:
6445   case X86::VPERMDZ256rmbkz:
6446   case X86::VPERMDZ256rmkz:
6447   case X86::VPERMDZ256rr:
6448   case X86::VPERMDZ256rrkz:
6449   case X86::VPERMDZrm:
6450   case X86::VPERMDZrmb:
6451   case X86::VPERMDZrmbkz:
6452   case X86::VPERMDZrmkz:
6453   case X86::VPERMDZrr:
6454   case X86::VPERMDZrrkz:
6455   case X86::VPERMQZ256mbi:
6456   case X86::VPERMQZ256mbikz:
6457   case X86::VPERMQZ256mi:
6458   case X86::VPERMQZ256mikz:
6459   case X86::VPERMQZ256ri:
6460   case X86::VPERMQZ256rikz:
6461   case X86::VPERMQZ256rm:
6462   case X86::VPERMQZ256rmb:
6463   case X86::VPERMQZ256rmbkz:
6464   case X86::VPERMQZ256rmkz:
6465   case X86::VPERMQZ256rr:
6466   case X86::VPERMQZ256rrkz:
6467   case X86::VPERMQZmbi:
6468   case X86::VPERMQZmbikz:
6469   case X86::VPERMQZmi:
6470   case X86::VPERMQZmikz:
6471   case X86::VPERMQZri:
6472   case X86::VPERMQZrikz:
6473   case X86::VPERMQZrm:
6474   case X86::VPERMQZrmb:
6475   case X86::VPERMQZrmbkz:
6476   case X86::VPERMQZrmkz:
6477   case X86::VPERMQZrr:
6478   case X86::VPERMQZrrkz:
6479   case X86::VPERMPSZ256rm:
6480   case X86::VPERMPSZ256rmb:
6481   case X86::VPERMPSZ256rmbkz:
6482   case X86::VPERMPSZ256rmkz:
6483   case X86::VPERMPSZ256rr:
6484   case X86::VPERMPSZ256rrkz:
6485   case X86::VPERMPSZrm:
6486   case X86::VPERMPSZrmb:
6487   case X86::VPERMPSZrmbkz:
6488   case X86::VPERMPSZrmkz:
6489   case X86::VPERMPSZrr:
6490   case X86::VPERMPSZrrkz:
6491   case X86::VPERMPDZ256mbi:
6492   case X86::VPERMPDZ256mbikz:
6493   case X86::VPERMPDZ256mi:
6494   case X86::VPERMPDZ256mikz:
6495   case X86::VPERMPDZ256ri:
6496   case X86::VPERMPDZ256rikz:
6497   case X86::VPERMPDZ256rm:
6498   case X86::VPERMPDZ256rmb:
6499   case X86::VPERMPDZ256rmbkz:
6500   case X86::VPERMPDZ256rmkz:
6501   case X86::VPERMPDZ256rr:
6502   case X86::VPERMPDZ256rrkz:
6503   case X86::VPERMPDZmbi:
6504   case X86::VPERMPDZmbikz:
6505   case X86::VPERMPDZmi:
6506   case X86::VPERMPDZmikz:
6507   case X86::VPERMPDZri:
6508   case X86::VPERMPDZrikz:
6509   case X86::VPERMPDZrm:
6510   case X86::VPERMPDZrmb:
6511   case X86::VPERMPDZrmbkz:
6512   case X86::VPERMPDZrmkz:
6513   case X86::VPERMPDZrr:
6514   case X86::VPERMPDZrrkz:
6515     return Subtarget.hasPERMFalseDeps();
6516   case X86::VRANGEPDZ128rmbi:
6517   case X86::VRANGEPDZ128rmbikz:
6518   case X86::VRANGEPDZ128rmi:
6519   case X86::VRANGEPDZ128rmikz:
6520   case X86::VRANGEPDZ128rri:
6521   case X86::VRANGEPDZ128rrikz:
6522   case X86::VRANGEPDZ256rmbi:
6523   case X86::VRANGEPDZ256rmbikz:
6524   case X86::VRANGEPDZ256rmi:
6525   case X86::VRANGEPDZ256rmikz:
6526   case X86::VRANGEPDZ256rri:
6527   case X86::VRANGEPDZ256rrikz:
6528   case X86::VRANGEPDZrmbi:
6529   case X86::VRANGEPDZrmbikz:
6530   case X86::VRANGEPDZrmi:
6531   case X86::VRANGEPDZrmikz:
6532   case X86::VRANGEPDZrri:
6533   case X86::VRANGEPDZrrib:
6534   case X86::VRANGEPDZrribkz:
6535   case X86::VRANGEPDZrrikz:
6536   case X86::VRANGEPSZ128rmbi:
6537   case X86::VRANGEPSZ128rmbikz:
6538   case X86::VRANGEPSZ128rmi:
6539   case X86::VRANGEPSZ128rmikz:
6540   case X86::VRANGEPSZ128rri:
6541   case X86::VRANGEPSZ128rrikz:
6542   case X86::VRANGEPSZ256rmbi:
6543   case X86::VRANGEPSZ256rmbikz:
6544   case X86::VRANGEPSZ256rmi:
6545   case X86::VRANGEPSZ256rmikz:
6546   case X86::VRANGEPSZ256rri:
6547   case X86::VRANGEPSZ256rrikz:
6548   case X86::VRANGEPSZrmbi:
6549   case X86::VRANGEPSZrmbikz:
6550   case X86::VRANGEPSZrmi:
6551   case X86::VRANGEPSZrmikz:
6552   case X86::VRANGEPSZrri:
6553   case X86::VRANGEPSZrrib:
6554   case X86::VRANGEPSZrribkz:
6555   case X86::VRANGEPSZrrikz:
6556   case X86::VRANGESDZrmi:
6557   case X86::VRANGESDZrmikz:
6558   case X86::VRANGESDZrri:
6559   case X86::VRANGESDZrrib:
6560   case X86::VRANGESDZrribkz:
6561   case X86::VRANGESDZrrikz:
6562   case X86::VRANGESSZrmi:
6563   case X86::VRANGESSZrmikz:
6564   case X86::VRANGESSZrri:
6565   case X86::VRANGESSZrrib:
6566   case X86::VRANGESSZrribkz:
6567   case X86::VRANGESSZrrikz:
6568     return Subtarget.hasRANGEFalseDeps();
6569   case X86::VGETMANTSSZrmi:
6570   case X86::VGETMANTSSZrmikz:
6571   case X86::VGETMANTSSZrri:
6572   case X86::VGETMANTSSZrrib:
6573   case X86::VGETMANTSSZrribkz:
6574   case X86::VGETMANTSSZrrikz:
6575   case X86::VGETMANTSDZrmi:
6576   case X86::VGETMANTSDZrmikz:
6577   case X86::VGETMANTSDZrri:
6578   case X86::VGETMANTSDZrrib:
6579   case X86::VGETMANTSDZrribkz:
6580   case X86::VGETMANTSDZrrikz:
6581   case X86::VGETMANTSHZrmi:
6582   case X86::VGETMANTSHZrmikz:
6583   case X86::VGETMANTSHZrri:
6584   case X86::VGETMANTSHZrrib:
6585   case X86::VGETMANTSHZrribkz:
6586   case X86::VGETMANTSHZrrikz:
6587   case X86::VGETMANTPSZ128rmbi:
6588   case X86::VGETMANTPSZ128rmbikz:
6589   case X86::VGETMANTPSZ128rmi:
6590   case X86::VGETMANTPSZ128rmikz:
6591   case X86::VGETMANTPSZ256rmbi:
6592   case X86::VGETMANTPSZ256rmbikz:
6593   case X86::VGETMANTPSZ256rmi:
6594   case X86::VGETMANTPSZ256rmikz:
6595   case X86::VGETMANTPSZrmbi:
6596   case X86::VGETMANTPSZrmbikz:
6597   case X86::VGETMANTPSZrmi:
6598   case X86::VGETMANTPSZrmikz:
6599   case X86::VGETMANTPDZ128rmbi:
6600   case X86::VGETMANTPDZ128rmbikz:
6601   case X86::VGETMANTPDZ128rmi:
6602   case X86::VGETMANTPDZ128rmikz:
6603   case X86::VGETMANTPDZ256rmbi:
6604   case X86::VGETMANTPDZ256rmbikz:
6605   case X86::VGETMANTPDZ256rmi:
6606   case X86::VGETMANTPDZ256rmikz:
6607   case X86::VGETMANTPDZrmbi:
6608   case X86::VGETMANTPDZrmbikz:
6609   case X86::VGETMANTPDZrmi:
6610   case X86::VGETMANTPDZrmikz:
6611     return Subtarget.hasGETMANTFalseDeps();
6612   case X86::VPMULLQZ128rm:
6613   case X86::VPMULLQZ128rmb:
6614   case X86::VPMULLQZ128rmbkz:
6615   case X86::VPMULLQZ128rmkz:
6616   case X86::VPMULLQZ128rr:
6617   case X86::VPMULLQZ128rrkz:
6618   case X86::VPMULLQZ256rm:
6619   case X86::VPMULLQZ256rmb:
6620   case X86::VPMULLQZ256rmbkz:
6621   case X86::VPMULLQZ256rmkz:
6622   case X86::VPMULLQZ256rr:
6623   case X86::VPMULLQZ256rrkz:
6624   case X86::VPMULLQZrm:
6625   case X86::VPMULLQZrmb:
6626   case X86::VPMULLQZrmbkz:
6627   case X86::VPMULLQZrmkz:
6628   case X86::VPMULLQZrr:
6629   case X86::VPMULLQZrrkz:
6630     return Subtarget.hasMULLQFalseDeps();
6631   // GPR
6632   case X86::POPCNT32rm:
6633   case X86::POPCNT32rr:
6634   case X86::POPCNT64rm:
6635   case X86::POPCNT64rr:
6636     return Subtarget.hasPOPCNTFalseDeps();
6637   case X86::LZCNT32rm:
6638   case X86::LZCNT32rr:
6639   case X86::LZCNT64rm:
6640   case X86::LZCNT64rr:
6641   case X86::TZCNT32rm:
6642   case X86::TZCNT32rr:
6643   case X86::TZCNT64rm:
6644   case X86::TZCNT64rr:
6645     return Subtarget.hasLZCNTFalseDeps();
6646   }
6647 
6648   return false;
6649 }
6650 
6651 /// Inform the BreakFalseDeps pass how many idle
6652 /// instructions we would like before a partial register update.
6653 unsigned X86InstrInfo::getPartialRegUpdateClearance(
6654     const MachineInstr &MI, unsigned OpNum,
6655     const TargetRegisterInfo *TRI) const {
6656   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
6657     return 0;
6658 
6659   // If MI is marked as reading Reg, the partial register update is wanted.
6660   const MachineOperand &MO = MI.getOperand(0);
6661   Register Reg = MO.getReg();
6662   if (Reg.isVirtual()) {
6663     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
6664       return 0;
6665   } else {
6666     if (MI.readsRegister(Reg, TRI))
6667       return 0;
6668   }
6669 
6670   // If any instructions in the clearance range are reading Reg, insert a
6671   // dependency breaking instruction, which is inexpensive and is likely to
6672   // be hidden in other instruction's cycles.
6673   return PartialRegUpdateClearance;
6674 }
6675 
6676 // Return true for any instruction the copies the high bits of the first source
6677 // operand into the unused high bits of the destination operand.
6678 // Also returns true for instructions that have two inputs where one may
6679 // be undef and we want it to use the same register as the other input.
6680 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
6681                               bool ForLoadFold = false) {
6682   // Set the OpNum parameter to the first source operand.
6683   switch (Opcode) {
6684   case X86::MMX_PUNPCKHBWrr:
6685   case X86::MMX_PUNPCKHWDrr:
6686   case X86::MMX_PUNPCKHDQrr:
6687   case X86::MMX_PUNPCKLBWrr:
6688   case X86::MMX_PUNPCKLWDrr:
6689   case X86::MMX_PUNPCKLDQrr:
6690   case X86::MOVHLPSrr:
6691   case X86::PACKSSWBrr:
6692   case X86::PACKUSWBrr:
6693   case X86::PACKSSDWrr:
6694   case X86::PACKUSDWrr:
6695   case X86::PUNPCKHBWrr:
6696   case X86::PUNPCKLBWrr:
6697   case X86::PUNPCKHWDrr:
6698   case X86::PUNPCKLWDrr:
6699   case X86::PUNPCKHDQrr:
6700   case X86::PUNPCKLDQrr:
6701   case X86::PUNPCKHQDQrr:
6702   case X86::PUNPCKLQDQrr:
6703   case X86::SHUFPDrri:
6704   case X86::SHUFPSrri:
6705     // These instructions are sometimes used with an undef first or second
6706     // source. Return true here so BreakFalseDeps will assign this source to the
6707     // same register as the first source to avoid a false dependency.
6708     // Operand 1 of these instructions is tied so they're separate from their
6709     // VEX counterparts.
6710     return OpNum == 2 && !ForLoadFold;
6711 
6712   case X86::VMOVLHPSrr:
6713   case X86::VMOVLHPSZrr:
6714   case X86::VPACKSSWBrr:
6715   case X86::VPACKUSWBrr:
6716   case X86::VPACKSSDWrr:
6717   case X86::VPACKUSDWrr:
6718   case X86::VPACKSSWBZ128rr:
6719   case X86::VPACKUSWBZ128rr:
6720   case X86::VPACKSSDWZ128rr:
6721   case X86::VPACKUSDWZ128rr:
6722   case X86::VPERM2F128rr:
6723   case X86::VPERM2I128rr:
6724   case X86::VSHUFF32X4Z256rri:
6725   case X86::VSHUFF32X4Zrri:
6726   case X86::VSHUFF64X2Z256rri:
6727   case X86::VSHUFF64X2Zrri:
6728   case X86::VSHUFI32X4Z256rri:
6729   case X86::VSHUFI32X4Zrri:
6730   case X86::VSHUFI64X2Z256rri:
6731   case X86::VSHUFI64X2Zrri:
6732   case X86::VPUNPCKHBWrr:
6733   case X86::VPUNPCKLBWrr:
6734   case X86::VPUNPCKHBWYrr:
6735   case X86::VPUNPCKLBWYrr:
6736   case X86::VPUNPCKHBWZ128rr:
6737   case X86::VPUNPCKLBWZ128rr:
6738   case X86::VPUNPCKHBWZ256rr:
6739   case X86::VPUNPCKLBWZ256rr:
6740   case X86::VPUNPCKHBWZrr:
6741   case X86::VPUNPCKLBWZrr:
6742   case X86::VPUNPCKHWDrr:
6743   case X86::VPUNPCKLWDrr:
6744   case X86::VPUNPCKHWDYrr:
6745   case X86::VPUNPCKLWDYrr:
6746   case X86::VPUNPCKHWDZ128rr:
6747   case X86::VPUNPCKLWDZ128rr:
6748   case X86::VPUNPCKHWDZ256rr:
6749   case X86::VPUNPCKLWDZ256rr:
6750   case X86::VPUNPCKHWDZrr:
6751   case X86::VPUNPCKLWDZrr:
6752   case X86::VPUNPCKHDQrr:
6753   case X86::VPUNPCKLDQrr:
6754   case X86::VPUNPCKHDQYrr:
6755   case X86::VPUNPCKLDQYrr:
6756   case X86::VPUNPCKHDQZ128rr:
6757   case X86::VPUNPCKLDQZ128rr:
6758   case X86::VPUNPCKHDQZ256rr:
6759   case X86::VPUNPCKLDQZ256rr:
6760   case X86::VPUNPCKHDQZrr:
6761   case X86::VPUNPCKLDQZrr:
6762   case X86::VPUNPCKHQDQrr:
6763   case X86::VPUNPCKLQDQrr:
6764   case X86::VPUNPCKHQDQYrr:
6765   case X86::VPUNPCKLQDQYrr:
6766   case X86::VPUNPCKHQDQZ128rr:
6767   case X86::VPUNPCKLQDQZ128rr:
6768   case X86::VPUNPCKHQDQZ256rr:
6769   case X86::VPUNPCKLQDQZ256rr:
6770   case X86::VPUNPCKHQDQZrr:
6771   case X86::VPUNPCKLQDQZrr:
6772     // These instructions are sometimes used with an undef first or second
6773     // source. Return true here so BreakFalseDeps will assign this source to the
6774     // same register as the first source to avoid a false dependency.
6775     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6776 
6777   case X86::VCVTSI2SSrr:
6778   case X86::VCVTSI2SSrm:
6779   case X86::VCVTSI2SSrr_Int:
6780   case X86::VCVTSI2SSrm_Int:
6781   case X86::VCVTSI642SSrr:
6782   case X86::VCVTSI642SSrm:
6783   case X86::VCVTSI642SSrr_Int:
6784   case X86::VCVTSI642SSrm_Int:
6785   case X86::VCVTSI2SDrr:
6786   case X86::VCVTSI2SDrm:
6787   case X86::VCVTSI2SDrr_Int:
6788   case X86::VCVTSI2SDrm_Int:
6789   case X86::VCVTSI642SDrr:
6790   case X86::VCVTSI642SDrm:
6791   case X86::VCVTSI642SDrr_Int:
6792   case X86::VCVTSI642SDrm_Int:
6793   // AVX-512
6794   case X86::VCVTSI2SSZrr:
6795   case X86::VCVTSI2SSZrm:
6796   case X86::VCVTSI2SSZrr_Int:
6797   case X86::VCVTSI2SSZrrb_Int:
6798   case X86::VCVTSI2SSZrm_Int:
6799   case X86::VCVTSI642SSZrr:
6800   case X86::VCVTSI642SSZrm:
6801   case X86::VCVTSI642SSZrr_Int:
6802   case X86::VCVTSI642SSZrrb_Int:
6803   case X86::VCVTSI642SSZrm_Int:
6804   case X86::VCVTSI2SDZrr:
6805   case X86::VCVTSI2SDZrm:
6806   case X86::VCVTSI2SDZrr_Int:
6807   case X86::VCVTSI2SDZrm_Int:
6808   case X86::VCVTSI642SDZrr:
6809   case X86::VCVTSI642SDZrm:
6810   case X86::VCVTSI642SDZrr_Int:
6811   case X86::VCVTSI642SDZrrb_Int:
6812   case X86::VCVTSI642SDZrm_Int:
6813   case X86::VCVTUSI2SSZrr:
6814   case X86::VCVTUSI2SSZrm:
6815   case X86::VCVTUSI2SSZrr_Int:
6816   case X86::VCVTUSI2SSZrrb_Int:
6817   case X86::VCVTUSI2SSZrm_Int:
6818   case X86::VCVTUSI642SSZrr:
6819   case X86::VCVTUSI642SSZrm:
6820   case X86::VCVTUSI642SSZrr_Int:
6821   case X86::VCVTUSI642SSZrrb_Int:
6822   case X86::VCVTUSI642SSZrm_Int:
6823   case X86::VCVTUSI2SDZrr:
6824   case X86::VCVTUSI2SDZrm:
6825   case X86::VCVTUSI2SDZrr_Int:
6826   case X86::VCVTUSI2SDZrm_Int:
6827   case X86::VCVTUSI642SDZrr:
6828   case X86::VCVTUSI642SDZrm:
6829   case X86::VCVTUSI642SDZrr_Int:
6830   case X86::VCVTUSI642SDZrrb_Int:
6831   case X86::VCVTUSI642SDZrm_Int:
6832   case X86::VCVTSI2SHZrr:
6833   case X86::VCVTSI2SHZrm:
6834   case X86::VCVTSI2SHZrr_Int:
6835   case X86::VCVTSI2SHZrrb_Int:
6836   case X86::VCVTSI2SHZrm_Int:
6837   case X86::VCVTSI642SHZrr:
6838   case X86::VCVTSI642SHZrm:
6839   case X86::VCVTSI642SHZrr_Int:
6840   case X86::VCVTSI642SHZrrb_Int:
6841   case X86::VCVTSI642SHZrm_Int:
6842   case X86::VCVTUSI2SHZrr:
6843   case X86::VCVTUSI2SHZrm:
6844   case X86::VCVTUSI2SHZrr_Int:
6845   case X86::VCVTUSI2SHZrrb_Int:
6846   case X86::VCVTUSI2SHZrm_Int:
6847   case X86::VCVTUSI642SHZrr:
6848   case X86::VCVTUSI642SHZrm:
6849   case X86::VCVTUSI642SHZrr_Int:
6850   case X86::VCVTUSI642SHZrrb_Int:
6851   case X86::VCVTUSI642SHZrm_Int:
6852     // Load folding won't effect the undef register update since the input is
6853     // a GPR.
6854     return OpNum == 1 && !ForLoadFold;
6855   case X86::VCVTSD2SSrr:
6856   case X86::VCVTSD2SSrm:
6857   case X86::VCVTSD2SSrr_Int:
6858   case X86::VCVTSD2SSrm_Int:
6859   case X86::VCVTSS2SDrr:
6860   case X86::VCVTSS2SDrm:
6861   case X86::VCVTSS2SDrr_Int:
6862   case X86::VCVTSS2SDrm_Int:
6863   case X86::VRCPSSr:
6864   case X86::VRCPSSr_Int:
6865   case X86::VRCPSSm:
6866   case X86::VRCPSSm_Int:
6867   case X86::VROUNDSDri:
6868   case X86::VROUNDSDmi:
6869   case X86::VROUNDSDri_Int:
6870   case X86::VROUNDSDmi_Int:
6871   case X86::VROUNDSSri:
6872   case X86::VROUNDSSmi:
6873   case X86::VROUNDSSri_Int:
6874   case X86::VROUNDSSmi_Int:
6875   case X86::VRSQRTSSr:
6876   case X86::VRSQRTSSr_Int:
6877   case X86::VRSQRTSSm:
6878   case X86::VRSQRTSSm_Int:
6879   case X86::VSQRTSSr:
6880   case X86::VSQRTSSr_Int:
6881   case X86::VSQRTSSm:
6882   case X86::VSQRTSSm_Int:
6883   case X86::VSQRTSDr:
6884   case X86::VSQRTSDr_Int:
6885   case X86::VSQRTSDm:
6886   case X86::VSQRTSDm_Int:
6887   // AVX-512
6888   case X86::VCVTSD2SSZrr:
6889   case X86::VCVTSD2SSZrr_Int:
6890   case X86::VCVTSD2SSZrrb_Int:
6891   case X86::VCVTSD2SSZrm:
6892   case X86::VCVTSD2SSZrm_Int:
6893   case X86::VCVTSS2SDZrr:
6894   case X86::VCVTSS2SDZrr_Int:
6895   case X86::VCVTSS2SDZrrb_Int:
6896   case X86::VCVTSS2SDZrm:
6897   case X86::VCVTSS2SDZrm_Int:
6898   case X86::VGETEXPSDZr:
6899   case X86::VGETEXPSDZrb:
6900   case X86::VGETEXPSDZm:
6901   case X86::VGETEXPSSZr:
6902   case X86::VGETEXPSSZrb:
6903   case X86::VGETEXPSSZm:
6904   case X86::VGETMANTSDZrri:
6905   case X86::VGETMANTSDZrrib:
6906   case X86::VGETMANTSDZrmi:
6907   case X86::VGETMANTSSZrri:
6908   case X86::VGETMANTSSZrrib:
6909   case X86::VGETMANTSSZrmi:
6910   case X86::VRNDSCALESDZr:
6911   case X86::VRNDSCALESDZr_Int:
6912   case X86::VRNDSCALESDZrb_Int:
6913   case X86::VRNDSCALESDZm:
6914   case X86::VRNDSCALESDZm_Int:
6915   case X86::VRNDSCALESSZr:
6916   case X86::VRNDSCALESSZr_Int:
6917   case X86::VRNDSCALESSZrb_Int:
6918   case X86::VRNDSCALESSZm:
6919   case X86::VRNDSCALESSZm_Int:
6920   case X86::VRCP14SDZrr:
6921   case X86::VRCP14SDZrm:
6922   case X86::VRCP14SSZrr:
6923   case X86::VRCP14SSZrm:
6924   case X86::VRCPSHZrr:
6925   case X86::VRCPSHZrm:
6926   case X86::VRSQRTSHZrr:
6927   case X86::VRSQRTSHZrm:
6928   case X86::VREDUCESHZrmi:
6929   case X86::VREDUCESHZrri:
6930   case X86::VREDUCESHZrrib:
6931   case X86::VGETEXPSHZr:
6932   case X86::VGETEXPSHZrb:
6933   case X86::VGETEXPSHZm:
6934   case X86::VGETMANTSHZrri:
6935   case X86::VGETMANTSHZrrib:
6936   case X86::VGETMANTSHZrmi:
6937   case X86::VRNDSCALESHZr:
6938   case X86::VRNDSCALESHZr_Int:
6939   case X86::VRNDSCALESHZrb_Int:
6940   case X86::VRNDSCALESHZm:
6941   case X86::VRNDSCALESHZm_Int:
6942   case X86::VSQRTSHZr:
6943   case X86::VSQRTSHZr_Int:
6944   case X86::VSQRTSHZrb_Int:
6945   case X86::VSQRTSHZm:
6946   case X86::VSQRTSHZm_Int:
6947   case X86::VRCP28SDZr:
6948   case X86::VRCP28SDZrb:
6949   case X86::VRCP28SDZm:
6950   case X86::VRCP28SSZr:
6951   case X86::VRCP28SSZrb:
6952   case X86::VRCP28SSZm:
6953   case X86::VREDUCESSZrmi:
6954   case X86::VREDUCESSZrri:
6955   case X86::VREDUCESSZrrib:
6956   case X86::VRSQRT14SDZrr:
6957   case X86::VRSQRT14SDZrm:
6958   case X86::VRSQRT14SSZrr:
6959   case X86::VRSQRT14SSZrm:
6960   case X86::VRSQRT28SDZr:
6961   case X86::VRSQRT28SDZrb:
6962   case X86::VRSQRT28SDZm:
6963   case X86::VRSQRT28SSZr:
6964   case X86::VRSQRT28SSZrb:
6965   case X86::VRSQRT28SSZm:
6966   case X86::VSQRTSSZr:
6967   case X86::VSQRTSSZr_Int:
6968   case X86::VSQRTSSZrb_Int:
6969   case X86::VSQRTSSZm:
6970   case X86::VSQRTSSZm_Int:
6971   case X86::VSQRTSDZr:
6972   case X86::VSQRTSDZr_Int:
6973   case X86::VSQRTSDZrb_Int:
6974   case X86::VSQRTSDZm:
6975   case X86::VSQRTSDZm_Int:
6976   case X86::VCVTSD2SHZrr:
6977   case X86::VCVTSD2SHZrr_Int:
6978   case X86::VCVTSD2SHZrrb_Int:
6979   case X86::VCVTSD2SHZrm:
6980   case X86::VCVTSD2SHZrm_Int:
6981   case X86::VCVTSS2SHZrr:
6982   case X86::VCVTSS2SHZrr_Int:
6983   case X86::VCVTSS2SHZrrb_Int:
6984   case X86::VCVTSS2SHZrm:
6985   case X86::VCVTSS2SHZrm_Int:
6986   case X86::VCVTSH2SDZrr:
6987   case X86::VCVTSH2SDZrr_Int:
6988   case X86::VCVTSH2SDZrrb_Int:
6989   case X86::VCVTSH2SDZrm:
6990   case X86::VCVTSH2SDZrm_Int:
6991   case X86::VCVTSH2SSZrr:
6992   case X86::VCVTSH2SSZrr_Int:
6993   case X86::VCVTSH2SSZrrb_Int:
6994   case X86::VCVTSH2SSZrm:
6995   case X86::VCVTSH2SSZrm_Int:
6996     return OpNum == 1;
6997   case X86::VMOVSSZrrk:
6998   case X86::VMOVSDZrrk:
6999     return OpNum == 3 && !ForLoadFold;
7000   case X86::VMOVSSZrrkz:
7001   case X86::VMOVSDZrrkz:
7002     return OpNum == 2 && !ForLoadFold;
7003   }
7004 
7005   return false;
7006 }
7007 
7008 /// Inform the BreakFalseDeps pass how many idle instructions we would like
7009 /// before certain undef register reads.
7010 ///
7011 /// This catches the VCVTSI2SD family of instructions:
7012 ///
7013 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
7014 ///
7015 /// We should to be careful *not* to catch VXOR idioms which are presumably
7016 /// handled specially in the pipeline:
7017 ///
7018 /// vxorps undef %xmm1, undef %xmm1, %xmm1
7019 ///
7020 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
7021 /// high bits that are passed-through are not live.
7022 unsigned
7023 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
7024                                    const TargetRegisterInfo *TRI) const {
7025   const MachineOperand &MO = MI.getOperand(OpNum);
7026   if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
7027     return UndefRegClearance;
7028 
7029   return 0;
7030 }
7031 
7032 void X86InstrInfo::breakPartialRegDependency(
7033     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
7034   Register Reg = MI.getOperand(OpNum).getReg();
7035   // If MI kills this register, the false dependence is already broken.
7036   if (MI.killsRegister(Reg, TRI))
7037     return;
7038 
7039   if (X86::VR128RegClass.contains(Reg)) {
7040     // These instructions are all floating point domain, so xorps is the best
7041     // choice.
7042     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
7043     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
7044         .addReg(Reg, RegState::Undef)
7045         .addReg(Reg, RegState::Undef);
7046     MI.addRegisterKilled(Reg, TRI, true);
7047   } else if (X86::VR256RegClass.contains(Reg)) {
7048     // Use vxorps to clear the full ymm register.
7049     // It wants to read and write the xmm sub-register.
7050     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7051     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
7052         .addReg(XReg, RegState::Undef)
7053         .addReg(XReg, RegState::Undef)
7054         .addReg(Reg, RegState::ImplicitDefine);
7055     MI.addRegisterKilled(Reg, TRI, true);
7056   } else if (X86::VR128XRegClass.contains(Reg)) {
7057     // Only handle VLX targets.
7058     if (!Subtarget.hasVLX())
7059       return;
7060     // Since vxorps requires AVX512DQ, vpxord should be the best choice.
7061     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
7062         .addReg(Reg, RegState::Undef)
7063         .addReg(Reg, RegState::Undef);
7064     MI.addRegisterKilled(Reg, TRI, true);
7065   } else if (X86::VR256XRegClass.contains(Reg) ||
7066              X86::VR512RegClass.contains(Reg)) {
7067     // Only handle VLX targets.
7068     if (!Subtarget.hasVLX())
7069       return;
7070     // Use vpxord to clear the full ymm/zmm register.
7071     // It wants to read and write the xmm sub-register.
7072     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7073     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
7074         .addReg(XReg, RegState::Undef)
7075         .addReg(XReg, RegState::Undef)
7076         .addReg(Reg, RegState::ImplicitDefine);
7077     MI.addRegisterKilled(Reg, TRI, true);
7078   } else if (X86::GR64RegClass.contains(Reg)) {
7079     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
7080     // as well.
7081     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
7082     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
7083         .addReg(XReg, RegState::Undef)
7084         .addReg(XReg, RegState::Undef)
7085         .addReg(Reg, RegState::ImplicitDefine);
7086     MI.addRegisterKilled(Reg, TRI, true);
7087   } else if (X86::GR32RegClass.contains(Reg)) {
7088     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
7089         .addReg(Reg, RegState::Undef)
7090         .addReg(Reg, RegState::Undef);
7091     MI.addRegisterKilled(Reg, TRI, true);
7092   }
7093 }
7094 
7095 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
7096                         int PtrOffset = 0) {
7097   unsigned NumAddrOps = MOs.size();
7098 
7099   if (NumAddrOps < 4) {
7100     // FrameIndex only - add an immediate offset (whether its zero or not).
7101     for (unsigned i = 0; i != NumAddrOps; ++i)
7102       MIB.add(MOs[i]);
7103     addOffset(MIB, PtrOffset);
7104   } else {
7105     // General Memory Addressing - we need to add any offset to an existing
7106     // offset.
7107     assert(MOs.size() == 5 && "Unexpected memory operand list length");
7108     for (unsigned i = 0; i != NumAddrOps; ++i) {
7109       const MachineOperand &MO = MOs[i];
7110       if (i == 3 && PtrOffset != 0) {
7111         MIB.addDisp(MO, PtrOffset);
7112       } else {
7113         MIB.add(MO);
7114       }
7115     }
7116   }
7117 }
7118 
7119 static void updateOperandRegConstraints(MachineFunction &MF,
7120                                         MachineInstr &NewMI,
7121                                         const TargetInstrInfo &TII) {
7122   MachineRegisterInfo &MRI = MF.getRegInfo();
7123   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
7124 
7125   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
7126     MachineOperand &MO = NewMI.getOperand(Idx);
7127     // We only need to update constraints on virtual register operands.
7128     if (!MO.isReg())
7129       continue;
7130     Register Reg = MO.getReg();
7131     if (!Reg.isVirtual())
7132       continue;
7133 
7134     auto *NewRC = MRI.constrainRegClass(
7135         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
7136     if (!NewRC) {
7137       LLVM_DEBUG(
7138           dbgs() << "WARNING: Unable to update register constraint for operand "
7139                  << Idx << " of instruction:\n";
7140           NewMI.dump(); dbgs() << "\n");
7141     }
7142   }
7143 }
7144 
7145 static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
7146                                      ArrayRef<MachineOperand> MOs,
7147                                      MachineBasicBlock::iterator InsertPt,
7148                                      MachineInstr &MI,
7149                                      const TargetInstrInfo &TII) {
7150   // Create the base instruction with the memory operand as the first part.
7151   // Omit the implicit operands, something BuildMI can't do.
7152   MachineInstr *NewMI =
7153       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7154   MachineInstrBuilder MIB(MF, NewMI);
7155   addOperands(MIB, MOs);
7156 
7157   // Loop over the rest of the ri operands, converting them over.
7158   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
7159   for (unsigned i = 0; i != NumOps; ++i) {
7160     MachineOperand &MO = MI.getOperand(i + 2);
7161     MIB.add(MO);
7162   }
7163   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
7164     MIB.add(MO);
7165 
7166   updateOperandRegConstraints(MF, *NewMI, TII);
7167 
7168   MachineBasicBlock *MBB = InsertPt->getParent();
7169   MBB->insert(InsertPt, NewMI);
7170 
7171   return MIB;
7172 }
7173 
7174 static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode,
7175                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
7176                               MachineBasicBlock::iterator InsertPt,
7177                               MachineInstr &MI, const TargetInstrInfo &TII,
7178                               int PtrOffset = 0) {
7179   // Omit the implicit operands, something BuildMI can't do.
7180   MachineInstr *NewMI =
7181       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7182   MachineInstrBuilder MIB(MF, NewMI);
7183 
7184   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7185     MachineOperand &MO = MI.getOperand(i);
7186     if (i == OpNo) {
7187       assert(MO.isReg() && "Expected to fold into reg operand!");
7188       addOperands(MIB, MOs, PtrOffset);
7189     } else {
7190       MIB.add(MO);
7191     }
7192   }
7193 
7194   updateOperandRegConstraints(MF, *NewMI, TII);
7195 
7196   // Copy the NoFPExcept flag from the instruction we're fusing.
7197   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
7198     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
7199 
7200   MachineBasicBlock *MBB = InsertPt->getParent();
7201   MBB->insert(InsertPt, NewMI);
7202 
7203   return MIB;
7204 }
7205 
7206 static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
7207                                 ArrayRef<MachineOperand> MOs,
7208                                 MachineBasicBlock::iterator InsertPt,
7209                                 MachineInstr &MI) {
7210   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
7211                                     MI.getDebugLoc(), TII.get(Opcode));
7212   addOperands(MIB, MOs);
7213   return MIB.addImm(0);
7214 }
7215 
7216 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
7217     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7218     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7219     unsigned Size, Align Alignment) const {
7220   switch (MI.getOpcode()) {
7221   case X86::INSERTPSrr:
7222   case X86::VINSERTPSrr:
7223   case X86::VINSERTPSZrr:
7224     // Attempt to convert the load of inserted vector into a fold load
7225     // of a single float.
7226     if (OpNum == 2) {
7227       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
7228       unsigned ZMask = Imm & 15;
7229       unsigned DstIdx = (Imm >> 4) & 3;
7230       unsigned SrcIdx = (Imm >> 6) & 3;
7231 
7232       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7233       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7234       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7235       if ((Size == 0 || Size >= 16) && RCSize >= 16 &&
7236           (MI.getOpcode() != X86::INSERTPSrr || Alignment >= Align(4))) {
7237         int PtrOffset = SrcIdx * 4;
7238         unsigned NewImm = (DstIdx << 4) | ZMask;
7239         unsigned NewOpCode =
7240             (MI.getOpcode() == X86::VINSERTPSZrr)  ? X86::VINSERTPSZrm
7241             : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm
7242                                                    : X86::INSERTPSrm;
7243         MachineInstr *NewMI =
7244             fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
7245         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
7246         return NewMI;
7247       }
7248     }
7249     break;
7250   case X86::MOVHLPSrr:
7251   case X86::VMOVHLPSrr:
7252   case X86::VMOVHLPSZrr:
7253     // Move the upper 64-bits of the second operand to the lower 64-bits.
7254     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7255     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7256     if (OpNum == 2) {
7257       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7258       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7259       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7260       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
7261         unsigned NewOpCode =
7262             (MI.getOpcode() == X86::VMOVHLPSZrr)  ? X86::VMOVLPSZ128rm
7263             : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7264                                                   : X86::MOVLPSrm;
7265         MachineInstr *NewMI =
7266             fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
7267         return NewMI;
7268       }
7269     }
7270     break;
7271   case X86::UNPCKLPDrr:
7272     // If we won't be able to fold this to the memory form of UNPCKL, use
7273     // MOVHPD instead. Done as custom because we can't have this in the load
7274     // table twice.
7275     if (OpNum == 2) {
7276       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7277       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7278       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7279       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
7280         MachineInstr *NewMI =
7281             fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
7282         return NewMI;
7283       }
7284     }
7285     break;
7286   case X86::MOV32r0:
7287     if (auto *NewMI =
7288             makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs,
7289                        InsertPt, MI))
7290       return NewMI;
7291     break;
7292   }
7293 
7294   return nullptr;
7295 }
7296 
7297 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
7298                                                MachineInstr &MI) {
7299   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) ||
7300       !MI.getOperand(1).isReg())
7301     return false;
7302 
7303   // The are two cases we need to handle depending on where in the pipeline
7304   // the folding attempt is being made.
7305   // -Register has the undef flag set.
7306   // -Register is produced by the IMPLICIT_DEF instruction.
7307 
7308   if (MI.getOperand(1).isUndef())
7309     return true;
7310 
7311   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7312   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
7313   return VRegDef && VRegDef->isImplicitDef();
7314 }
7315 
7316 unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI,
7317                                               unsigned Idx1) const {
7318   unsigned Idx2 = CommuteAnyOperandIndex;
7319   if (!findCommutedOpIndices(MI, Idx1, Idx2))
7320     return Idx1;
7321 
7322   bool HasDef = MI.getDesc().getNumDefs();
7323   Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
7324   Register Reg1 = MI.getOperand(Idx1).getReg();
7325   Register Reg2 = MI.getOperand(Idx2).getReg();
7326   bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO);
7327   bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO);
7328 
7329   // If either of the commutable operands are tied to the destination
7330   // then we can not commute + fold.
7331   if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2))
7332     return Idx1;
7333 
7334   return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1;
7335 }
7336 
7337 static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) {
7338   if (PrintFailedFusing && !MI.isCopy())
7339     dbgs() << "We failed to fuse operand " << Idx << " in " << MI;
7340 }
7341 
7342 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7343     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7344     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7345     unsigned Size, Align Alignment, bool AllowCommute) const {
7346   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7347   unsigned Opc = MI.getOpcode();
7348 
7349   // For CPUs that favor the register form of a call or push,
7350   // do not fold loads into calls or pushes, unless optimizing for size
7351   // aggressively.
7352   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
7353       (Opc == X86::CALL32r || Opc == X86::CALL64r || Opc == X86::PUSH16r ||
7354        Opc == X86::PUSH32r || Opc == X86::PUSH64r))
7355     return nullptr;
7356 
7357   // Avoid partial and undef register update stalls unless optimizing for size.
7358   if (!MF.getFunction().hasOptSize() &&
7359       (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) ||
7360        shouldPreventUndefRegUpdateMemFold(MF, MI)))
7361     return nullptr;
7362 
7363   unsigned NumOps = MI.getDesc().getNumOperands();
7364   bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() &&
7365                    MI.getOperand(1).isReg() &&
7366                    MI.getOperand(0).getReg() == MI.getOperand(1).getReg();
7367 
7368   // FIXME: AsmPrinter doesn't know how to handle
7369   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7370   if (Opc == X86::ADD32ri &&
7371       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
7372     return nullptr;
7373 
7374   // GOTTPOFF relocation loads can only be folded into add instructions.
7375   // FIXME: Need to exclude other relocations that only support specific
7376   // instructions.
7377   if (MOs.size() == X86::AddrNumOperands &&
7378       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
7379       Opc != X86::ADD64rr)
7380     return nullptr;
7381 
7382   // Don't fold loads into indirect calls that need a KCFI check as we'll
7383   // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7384   if (MI.isCall() && MI.getCFIType())
7385     return nullptr;
7386 
7387   // Attempt to fold any custom cases we have.
7388   if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt,
7389                                                Size, Alignment))
7390     return CustomMI;
7391 
7392   // Folding a memory location into the two-address part of a two-address
7393   // instruction is different than folding it other places.  It requires
7394   // replacing the *two* registers with the memory location.
7395   //
7396   // Utilize the mapping NonNDD -> RMW for the NDD variant.
7397   unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U;
7398   const X86FoldTableEntry *I =
7399       IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc)
7400                 : lookupFoldTable(Opc, OpNum);
7401 
7402   MachineInstr *NewMI = nullptr;
7403   if (I) {
7404     unsigned Opcode = I->DstOp;
7405     if (Alignment <
7406         Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)))
7407       return nullptr;
7408     bool NarrowToMOV32rm = false;
7409     if (Size) {
7410       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7411       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7412       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7413       // Check if it's safe to fold the load. If the size of the object is
7414       // narrower than the load width, then it's not.
7415       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7416       if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) {
7417         // If this is a 64-bit load, but the spill slot is 32, then we can do
7418         // a 32-bit load which is implicitly zero-extended. This likely is
7419         // due to live interval analysis remat'ing a load from stack slot.
7420         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
7421           return nullptr;
7422         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
7423           return nullptr;
7424         Opcode = X86::MOV32rm;
7425         NarrowToMOV32rm = true;
7426       }
7427       // For stores, make sure the size of the object is equal to the size of
7428       // the store. If the object is larger, the extra bits would be garbage. If
7429       // the object is smaller we might overwrite another object or fault.
7430       if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize)
7431         return nullptr;
7432     }
7433 
7434     NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this)
7435                       : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
7436 
7437     if (NarrowToMOV32rm) {
7438       // If this is the special case where we use a MOV32rm to load a 32-bit
7439       // value and zero-extend the top bits. Change the destination register
7440       // to a 32-bit one.
7441       Register DstReg = NewMI->getOperand(0).getReg();
7442       if (DstReg.isPhysical())
7443         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
7444       else
7445         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
7446     }
7447     return NewMI;
7448   }
7449 
7450   if (AllowCommute) {
7451     // If the instruction and target operand are commutable, commute the
7452     // instruction and try again.
7453     unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
7454     if (CommuteOpIdx2 == OpNum) {
7455       printFailMsgforFold(MI, OpNum);
7456       return nullptr;
7457     }
7458     // Attempt to fold with the commuted version of the instruction.
7459     NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
7460                                   Alignment, /*AllowCommute=*/false);
7461     if (NewMI)
7462       return NewMI;
7463     // Folding failed again - undo the commute before returning.
7464     commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
7465   }
7466 
7467   printFailMsgforFold(MI, OpNum);
7468   return nullptr;
7469 }
7470 
7471 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7472     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7473     MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
7474     VirtRegMap *VRM) const {
7475   // Check switch flag
7476   if (NoFusing)
7477     return nullptr;
7478 
7479   // Avoid partial and undef register update stalls unless optimizing for size.
7480   if (!MF.getFunction().hasOptSize() &&
7481       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7482        shouldPreventUndefRegUpdateMemFold(MF, MI)))
7483     return nullptr;
7484 
7485   // Don't fold subreg spills, or reloads that use a high subreg.
7486   for (auto Op : Ops) {
7487     MachineOperand &MO = MI.getOperand(Op);
7488     auto SubReg = MO.getSubReg();
7489     // MOV32r0 is special b/c it's used to clear a 64-bit register too.
7490     // (See patterns for MOV32r0 in TD files).
7491     if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit)
7492       continue;
7493     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
7494       return nullptr;
7495   }
7496 
7497   const MachineFrameInfo &MFI = MF.getFrameInfo();
7498   unsigned Size = MFI.getObjectSize(FrameIndex);
7499   Align Alignment = MFI.getObjectAlign(FrameIndex);
7500   // If the function stack isn't realigned we don't want to fold instructions
7501   // that need increased alignment.
7502   if (!RI.hasStackRealignment(MF))
7503     Alignment =
7504         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
7505 
7506   auto Impl = [&]() {
7507     return foldMemoryOperandImpl(MF, MI, Ops[0],
7508                                  MachineOperand::CreateFI(FrameIndex), InsertPt,
7509                                  Size, Alignment, /*AllowCommute=*/true);
7510   };
7511   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7512     unsigned NewOpc = 0;
7513     unsigned RCSize = 0;
7514     unsigned Opc = MI.getOpcode();
7515     switch (Opc) {
7516     default:
7517       // NDD can be folded into RMW though its Op0 and Op1 are not tied.
7518       return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl()
7519                                                                    : nullptr;
7520     case X86::TEST8rr:
7521       NewOpc = X86::CMP8ri;
7522       RCSize = 1;
7523       break;
7524     case X86::TEST16rr:
7525       NewOpc = X86::CMP16ri;
7526       RCSize = 2;
7527       break;
7528     case X86::TEST32rr:
7529       NewOpc = X86::CMP32ri;
7530       RCSize = 4;
7531       break;
7532     case X86::TEST64rr:
7533       NewOpc = X86::CMP64ri32;
7534       RCSize = 8;
7535       break;
7536     }
7537     // Check if it's safe to fold the load. If the size of the object is
7538     // narrower than the load width, then it's not.
7539     if (Size < RCSize)
7540       return nullptr;
7541     // Change to CMPXXri r, 0 first.
7542     MI.setDesc(get(NewOpc));
7543     MI.getOperand(1).ChangeToImmediate(0);
7544   } else if (Ops.size() != 1)
7545     return nullptr;
7546 
7547   return Impl();
7548 }
7549 
7550 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7551 /// because the latter uses contents that wouldn't be defined in the folded
7552 /// version.  For instance, this transformation isn't legal:
7553 ///   movss (%rdi), %xmm0
7554 ///   addps %xmm0, %xmm0
7555 /// ->
7556 ///   addps (%rdi), %xmm0
7557 ///
7558 /// But this one is:
7559 ///   movss (%rdi), %xmm0
7560 ///   addss %xmm0, %xmm0
7561 /// ->
7562 ///   addss (%rdi), %xmm0
7563 ///
7564 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
7565                                              const MachineInstr &UserMI,
7566                                              const MachineFunction &MF) {
7567   unsigned Opc = LoadMI.getOpcode();
7568   unsigned UserOpc = UserMI.getOpcode();
7569   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7570   const TargetRegisterClass *RC =
7571       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
7572   unsigned RegSize = TRI.getRegSizeInBits(*RC);
7573 
7574   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
7575        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
7576        Opc == X86::VMOVSSZrm_alt) &&
7577       RegSize > 32) {
7578     // These instructions only load 32 bits, we can't fold them if the
7579     // destination register is wider than 32 bits (4 bytes), and its user
7580     // instruction isn't scalar (SS).
7581     switch (UserOpc) {
7582     case X86::CVTSS2SDrr_Int:
7583     case X86::VCVTSS2SDrr_Int:
7584     case X86::VCVTSS2SDZrr_Int:
7585     case X86::VCVTSS2SDZrr_Intk:
7586     case X86::VCVTSS2SDZrr_Intkz:
7587     case X86::CVTSS2SIrr_Int:
7588     case X86::CVTSS2SI64rr_Int:
7589     case X86::VCVTSS2SIrr_Int:
7590     case X86::VCVTSS2SI64rr_Int:
7591     case X86::VCVTSS2SIZrr_Int:
7592     case X86::VCVTSS2SI64Zrr_Int:
7593     case X86::CVTTSS2SIrr_Int:
7594     case X86::CVTTSS2SI64rr_Int:
7595     case X86::VCVTTSS2SIrr_Int:
7596     case X86::VCVTTSS2SI64rr_Int:
7597     case X86::VCVTTSS2SIZrr_Int:
7598     case X86::VCVTTSS2SI64Zrr_Int:
7599     case X86::VCVTSS2USIZrr_Int:
7600     case X86::VCVTSS2USI64Zrr_Int:
7601     case X86::VCVTTSS2USIZrr_Int:
7602     case X86::VCVTTSS2USI64Zrr_Int:
7603     case X86::RCPSSr_Int:
7604     case X86::VRCPSSr_Int:
7605     case X86::RSQRTSSr_Int:
7606     case X86::VRSQRTSSr_Int:
7607     case X86::ROUNDSSri_Int:
7608     case X86::VROUNDSSri_Int:
7609     case X86::COMISSrr_Int:
7610     case X86::VCOMISSrr_Int:
7611     case X86::VCOMISSZrr_Int:
7612     case X86::UCOMISSrr_Int:
7613     case X86::VUCOMISSrr_Int:
7614     case X86::VUCOMISSZrr_Int:
7615     case X86::ADDSSrr_Int:
7616     case X86::VADDSSrr_Int:
7617     case X86::VADDSSZrr_Int:
7618     case X86::CMPSSrri_Int:
7619     case X86::VCMPSSrri_Int:
7620     case X86::VCMPSSZrri_Int:
7621     case X86::DIVSSrr_Int:
7622     case X86::VDIVSSrr_Int:
7623     case X86::VDIVSSZrr_Int:
7624     case X86::MAXSSrr_Int:
7625     case X86::VMAXSSrr_Int:
7626     case X86::VMAXSSZrr_Int:
7627     case X86::MINSSrr_Int:
7628     case X86::VMINSSrr_Int:
7629     case X86::VMINSSZrr_Int:
7630     case X86::MULSSrr_Int:
7631     case X86::VMULSSrr_Int:
7632     case X86::VMULSSZrr_Int:
7633     case X86::SQRTSSr_Int:
7634     case X86::VSQRTSSr_Int:
7635     case X86::VSQRTSSZr_Int:
7636     case X86::SUBSSrr_Int:
7637     case X86::VSUBSSrr_Int:
7638     case X86::VSUBSSZrr_Int:
7639     case X86::VADDSSZrr_Intk:
7640     case X86::VADDSSZrr_Intkz:
7641     case X86::VCMPSSZrri_Intk:
7642     case X86::VDIVSSZrr_Intk:
7643     case X86::VDIVSSZrr_Intkz:
7644     case X86::VMAXSSZrr_Intk:
7645     case X86::VMAXSSZrr_Intkz:
7646     case X86::VMINSSZrr_Intk:
7647     case X86::VMINSSZrr_Intkz:
7648     case X86::VMULSSZrr_Intk:
7649     case X86::VMULSSZrr_Intkz:
7650     case X86::VSQRTSSZr_Intk:
7651     case X86::VSQRTSSZr_Intkz:
7652     case X86::VSUBSSZrr_Intk:
7653     case X86::VSUBSSZrr_Intkz:
7654     case X86::VFMADDSS4rr_Int:
7655     case X86::VFNMADDSS4rr_Int:
7656     case X86::VFMSUBSS4rr_Int:
7657     case X86::VFNMSUBSS4rr_Int:
7658     case X86::VFMADD132SSr_Int:
7659     case X86::VFNMADD132SSr_Int:
7660     case X86::VFMADD213SSr_Int:
7661     case X86::VFNMADD213SSr_Int:
7662     case X86::VFMADD231SSr_Int:
7663     case X86::VFNMADD231SSr_Int:
7664     case X86::VFMSUB132SSr_Int:
7665     case X86::VFNMSUB132SSr_Int:
7666     case X86::VFMSUB213SSr_Int:
7667     case X86::VFNMSUB213SSr_Int:
7668     case X86::VFMSUB231SSr_Int:
7669     case X86::VFNMSUB231SSr_Int:
7670     case X86::VFMADD132SSZr_Int:
7671     case X86::VFNMADD132SSZr_Int:
7672     case X86::VFMADD213SSZr_Int:
7673     case X86::VFNMADD213SSZr_Int:
7674     case X86::VFMADD231SSZr_Int:
7675     case X86::VFNMADD231SSZr_Int:
7676     case X86::VFMSUB132SSZr_Int:
7677     case X86::VFNMSUB132SSZr_Int:
7678     case X86::VFMSUB213SSZr_Int:
7679     case X86::VFNMSUB213SSZr_Int:
7680     case X86::VFMSUB231SSZr_Int:
7681     case X86::VFNMSUB231SSZr_Int:
7682     case X86::VFMADD132SSZr_Intk:
7683     case X86::VFNMADD132SSZr_Intk:
7684     case X86::VFMADD213SSZr_Intk:
7685     case X86::VFNMADD213SSZr_Intk:
7686     case X86::VFMADD231SSZr_Intk:
7687     case X86::VFNMADD231SSZr_Intk:
7688     case X86::VFMSUB132SSZr_Intk:
7689     case X86::VFNMSUB132SSZr_Intk:
7690     case X86::VFMSUB213SSZr_Intk:
7691     case X86::VFNMSUB213SSZr_Intk:
7692     case X86::VFMSUB231SSZr_Intk:
7693     case X86::VFNMSUB231SSZr_Intk:
7694     case X86::VFMADD132SSZr_Intkz:
7695     case X86::VFNMADD132SSZr_Intkz:
7696     case X86::VFMADD213SSZr_Intkz:
7697     case X86::VFNMADD213SSZr_Intkz:
7698     case X86::VFMADD231SSZr_Intkz:
7699     case X86::VFNMADD231SSZr_Intkz:
7700     case X86::VFMSUB132SSZr_Intkz:
7701     case X86::VFNMSUB132SSZr_Intkz:
7702     case X86::VFMSUB213SSZr_Intkz:
7703     case X86::VFNMSUB213SSZr_Intkz:
7704     case X86::VFMSUB231SSZr_Intkz:
7705     case X86::VFNMSUB231SSZr_Intkz:
7706     case X86::VFIXUPIMMSSZrri:
7707     case X86::VFIXUPIMMSSZrrik:
7708     case X86::VFIXUPIMMSSZrrikz:
7709     case X86::VFPCLASSSSZrr:
7710     case X86::VFPCLASSSSZrrk:
7711     case X86::VGETEXPSSZr:
7712     case X86::VGETEXPSSZrk:
7713     case X86::VGETEXPSSZrkz:
7714     case X86::VGETMANTSSZrri:
7715     case X86::VGETMANTSSZrrik:
7716     case X86::VGETMANTSSZrrikz:
7717     case X86::VRANGESSZrri:
7718     case X86::VRANGESSZrrik:
7719     case X86::VRANGESSZrrikz:
7720     case X86::VRCP14SSZrr:
7721     case X86::VRCP14SSZrrk:
7722     case X86::VRCP14SSZrrkz:
7723     case X86::VRCP28SSZr:
7724     case X86::VRCP28SSZrk:
7725     case X86::VRCP28SSZrkz:
7726     case X86::VREDUCESSZrri:
7727     case X86::VREDUCESSZrrik:
7728     case X86::VREDUCESSZrrikz:
7729     case X86::VRNDSCALESSZr_Int:
7730     case X86::VRNDSCALESSZr_Intk:
7731     case X86::VRNDSCALESSZr_Intkz:
7732     case X86::VRSQRT14SSZrr:
7733     case X86::VRSQRT14SSZrrk:
7734     case X86::VRSQRT14SSZrrkz:
7735     case X86::VRSQRT28SSZr:
7736     case X86::VRSQRT28SSZrk:
7737     case X86::VRSQRT28SSZrkz:
7738     case X86::VSCALEFSSZrr:
7739     case X86::VSCALEFSSZrrk:
7740     case X86::VSCALEFSSZrrkz:
7741       return false;
7742     default:
7743       return true;
7744     }
7745   }
7746 
7747   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
7748        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
7749        Opc == X86::VMOVSDZrm_alt) &&
7750       RegSize > 64) {
7751     // These instructions only load 64 bits, we can't fold them if the
7752     // destination register is wider than 64 bits (8 bytes), and its user
7753     // instruction isn't scalar (SD).
7754     switch (UserOpc) {
7755     case X86::CVTSD2SSrr_Int:
7756     case X86::VCVTSD2SSrr_Int:
7757     case X86::VCVTSD2SSZrr_Int:
7758     case X86::VCVTSD2SSZrr_Intk:
7759     case X86::VCVTSD2SSZrr_Intkz:
7760     case X86::CVTSD2SIrr_Int:
7761     case X86::CVTSD2SI64rr_Int:
7762     case X86::VCVTSD2SIrr_Int:
7763     case X86::VCVTSD2SI64rr_Int:
7764     case X86::VCVTSD2SIZrr_Int:
7765     case X86::VCVTSD2SI64Zrr_Int:
7766     case X86::CVTTSD2SIrr_Int:
7767     case X86::CVTTSD2SI64rr_Int:
7768     case X86::VCVTTSD2SIrr_Int:
7769     case X86::VCVTTSD2SI64rr_Int:
7770     case X86::VCVTTSD2SIZrr_Int:
7771     case X86::VCVTTSD2SI64Zrr_Int:
7772     case X86::VCVTSD2USIZrr_Int:
7773     case X86::VCVTSD2USI64Zrr_Int:
7774     case X86::VCVTTSD2USIZrr_Int:
7775     case X86::VCVTTSD2USI64Zrr_Int:
7776     case X86::ROUNDSDri_Int:
7777     case X86::VROUNDSDri_Int:
7778     case X86::COMISDrr_Int:
7779     case X86::VCOMISDrr_Int:
7780     case X86::VCOMISDZrr_Int:
7781     case X86::UCOMISDrr_Int:
7782     case X86::VUCOMISDrr_Int:
7783     case X86::VUCOMISDZrr_Int:
7784     case X86::ADDSDrr_Int:
7785     case X86::VADDSDrr_Int:
7786     case X86::VADDSDZrr_Int:
7787     case X86::CMPSDrri_Int:
7788     case X86::VCMPSDrri_Int:
7789     case X86::VCMPSDZrri_Int:
7790     case X86::DIVSDrr_Int:
7791     case X86::VDIVSDrr_Int:
7792     case X86::VDIVSDZrr_Int:
7793     case X86::MAXSDrr_Int:
7794     case X86::VMAXSDrr_Int:
7795     case X86::VMAXSDZrr_Int:
7796     case X86::MINSDrr_Int:
7797     case X86::VMINSDrr_Int:
7798     case X86::VMINSDZrr_Int:
7799     case X86::MULSDrr_Int:
7800     case X86::VMULSDrr_Int:
7801     case X86::VMULSDZrr_Int:
7802     case X86::SQRTSDr_Int:
7803     case X86::VSQRTSDr_Int:
7804     case X86::VSQRTSDZr_Int:
7805     case X86::SUBSDrr_Int:
7806     case X86::VSUBSDrr_Int:
7807     case X86::VSUBSDZrr_Int:
7808     case X86::VADDSDZrr_Intk:
7809     case X86::VADDSDZrr_Intkz:
7810     case X86::VCMPSDZrri_Intk:
7811     case X86::VDIVSDZrr_Intk:
7812     case X86::VDIVSDZrr_Intkz:
7813     case X86::VMAXSDZrr_Intk:
7814     case X86::VMAXSDZrr_Intkz:
7815     case X86::VMINSDZrr_Intk:
7816     case X86::VMINSDZrr_Intkz:
7817     case X86::VMULSDZrr_Intk:
7818     case X86::VMULSDZrr_Intkz:
7819     case X86::VSQRTSDZr_Intk:
7820     case X86::VSQRTSDZr_Intkz:
7821     case X86::VSUBSDZrr_Intk:
7822     case X86::VSUBSDZrr_Intkz:
7823     case X86::VFMADDSD4rr_Int:
7824     case X86::VFNMADDSD4rr_Int:
7825     case X86::VFMSUBSD4rr_Int:
7826     case X86::VFNMSUBSD4rr_Int:
7827     case X86::VFMADD132SDr_Int:
7828     case X86::VFNMADD132SDr_Int:
7829     case X86::VFMADD213SDr_Int:
7830     case X86::VFNMADD213SDr_Int:
7831     case X86::VFMADD231SDr_Int:
7832     case X86::VFNMADD231SDr_Int:
7833     case X86::VFMSUB132SDr_Int:
7834     case X86::VFNMSUB132SDr_Int:
7835     case X86::VFMSUB213SDr_Int:
7836     case X86::VFNMSUB213SDr_Int:
7837     case X86::VFMSUB231SDr_Int:
7838     case X86::VFNMSUB231SDr_Int:
7839     case X86::VFMADD132SDZr_Int:
7840     case X86::VFNMADD132SDZr_Int:
7841     case X86::VFMADD213SDZr_Int:
7842     case X86::VFNMADD213SDZr_Int:
7843     case X86::VFMADD231SDZr_Int:
7844     case X86::VFNMADD231SDZr_Int:
7845     case X86::VFMSUB132SDZr_Int:
7846     case X86::VFNMSUB132SDZr_Int:
7847     case X86::VFMSUB213SDZr_Int:
7848     case X86::VFNMSUB213SDZr_Int:
7849     case X86::VFMSUB231SDZr_Int:
7850     case X86::VFNMSUB231SDZr_Int:
7851     case X86::VFMADD132SDZr_Intk:
7852     case X86::VFNMADD132SDZr_Intk:
7853     case X86::VFMADD213SDZr_Intk:
7854     case X86::VFNMADD213SDZr_Intk:
7855     case X86::VFMADD231SDZr_Intk:
7856     case X86::VFNMADD231SDZr_Intk:
7857     case X86::VFMSUB132SDZr_Intk:
7858     case X86::VFNMSUB132SDZr_Intk:
7859     case X86::VFMSUB213SDZr_Intk:
7860     case X86::VFNMSUB213SDZr_Intk:
7861     case X86::VFMSUB231SDZr_Intk:
7862     case X86::VFNMSUB231SDZr_Intk:
7863     case X86::VFMADD132SDZr_Intkz:
7864     case X86::VFNMADD132SDZr_Intkz:
7865     case X86::VFMADD213SDZr_Intkz:
7866     case X86::VFNMADD213SDZr_Intkz:
7867     case X86::VFMADD231SDZr_Intkz:
7868     case X86::VFNMADD231SDZr_Intkz:
7869     case X86::VFMSUB132SDZr_Intkz:
7870     case X86::VFNMSUB132SDZr_Intkz:
7871     case X86::VFMSUB213SDZr_Intkz:
7872     case X86::VFNMSUB213SDZr_Intkz:
7873     case X86::VFMSUB231SDZr_Intkz:
7874     case X86::VFNMSUB231SDZr_Intkz:
7875     case X86::VFIXUPIMMSDZrri:
7876     case X86::VFIXUPIMMSDZrrik:
7877     case X86::VFIXUPIMMSDZrrikz:
7878     case X86::VFPCLASSSDZrr:
7879     case X86::VFPCLASSSDZrrk:
7880     case X86::VGETEXPSDZr:
7881     case X86::VGETEXPSDZrk:
7882     case X86::VGETEXPSDZrkz:
7883     case X86::VGETMANTSDZrri:
7884     case X86::VGETMANTSDZrrik:
7885     case X86::VGETMANTSDZrrikz:
7886     case X86::VRANGESDZrri:
7887     case X86::VRANGESDZrrik:
7888     case X86::VRANGESDZrrikz:
7889     case X86::VRCP14SDZrr:
7890     case X86::VRCP14SDZrrk:
7891     case X86::VRCP14SDZrrkz:
7892     case X86::VRCP28SDZr:
7893     case X86::VRCP28SDZrk:
7894     case X86::VRCP28SDZrkz:
7895     case X86::VREDUCESDZrri:
7896     case X86::VREDUCESDZrrik:
7897     case X86::VREDUCESDZrrikz:
7898     case X86::VRNDSCALESDZr_Int:
7899     case X86::VRNDSCALESDZr_Intk:
7900     case X86::VRNDSCALESDZr_Intkz:
7901     case X86::VRSQRT14SDZrr:
7902     case X86::VRSQRT14SDZrrk:
7903     case X86::VRSQRT14SDZrrkz:
7904     case X86::VRSQRT28SDZr:
7905     case X86::VRSQRT28SDZrk:
7906     case X86::VRSQRT28SDZrkz:
7907     case X86::VSCALEFSDZrr:
7908     case X86::VSCALEFSDZrrk:
7909     case X86::VSCALEFSDZrrkz:
7910       return false;
7911     default:
7912       return true;
7913     }
7914   }
7915 
7916   if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
7917     // These instructions only load 16 bits, we can't fold them if the
7918     // destination register is wider than 16 bits (2 bytes), and its user
7919     // instruction isn't scalar (SH).
7920     switch (UserOpc) {
7921     case X86::VADDSHZrr_Int:
7922     case X86::VCMPSHZrri_Int:
7923     case X86::VDIVSHZrr_Int:
7924     case X86::VMAXSHZrr_Int:
7925     case X86::VMINSHZrr_Int:
7926     case X86::VMULSHZrr_Int:
7927     case X86::VSUBSHZrr_Int:
7928     case X86::VADDSHZrr_Intk:
7929     case X86::VADDSHZrr_Intkz:
7930     case X86::VCMPSHZrri_Intk:
7931     case X86::VDIVSHZrr_Intk:
7932     case X86::VDIVSHZrr_Intkz:
7933     case X86::VMAXSHZrr_Intk:
7934     case X86::VMAXSHZrr_Intkz:
7935     case X86::VMINSHZrr_Intk:
7936     case X86::VMINSHZrr_Intkz:
7937     case X86::VMULSHZrr_Intk:
7938     case X86::VMULSHZrr_Intkz:
7939     case X86::VSUBSHZrr_Intk:
7940     case X86::VSUBSHZrr_Intkz:
7941     case X86::VFMADD132SHZr_Int:
7942     case X86::VFNMADD132SHZr_Int:
7943     case X86::VFMADD213SHZr_Int:
7944     case X86::VFNMADD213SHZr_Int:
7945     case X86::VFMADD231SHZr_Int:
7946     case X86::VFNMADD231SHZr_Int:
7947     case X86::VFMSUB132SHZr_Int:
7948     case X86::VFNMSUB132SHZr_Int:
7949     case X86::VFMSUB213SHZr_Int:
7950     case X86::VFNMSUB213SHZr_Int:
7951     case X86::VFMSUB231SHZr_Int:
7952     case X86::VFNMSUB231SHZr_Int:
7953     case X86::VFMADD132SHZr_Intk:
7954     case X86::VFNMADD132SHZr_Intk:
7955     case X86::VFMADD213SHZr_Intk:
7956     case X86::VFNMADD213SHZr_Intk:
7957     case X86::VFMADD231SHZr_Intk:
7958     case X86::VFNMADD231SHZr_Intk:
7959     case X86::VFMSUB132SHZr_Intk:
7960     case X86::VFNMSUB132SHZr_Intk:
7961     case X86::VFMSUB213SHZr_Intk:
7962     case X86::VFNMSUB213SHZr_Intk:
7963     case X86::VFMSUB231SHZr_Intk:
7964     case X86::VFNMSUB231SHZr_Intk:
7965     case X86::VFMADD132SHZr_Intkz:
7966     case X86::VFNMADD132SHZr_Intkz:
7967     case X86::VFMADD213SHZr_Intkz:
7968     case X86::VFNMADD213SHZr_Intkz:
7969     case X86::VFMADD231SHZr_Intkz:
7970     case X86::VFNMADD231SHZr_Intkz:
7971     case X86::VFMSUB132SHZr_Intkz:
7972     case X86::VFNMSUB132SHZr_Intkz:
7973     case X86::VFMSUB213SHZr_Intkz:
7974     case X86::VFNMSUB213SHZr_Intkz:
7975     case X86::VFMSUB231SHZr_Intkz:
7976     case X86::VFNMSUB231SHZr_Intkz:
7977       return false;
7978     default:
7979       return true;
7980     }
7981   }
7982 
7983   return false;
7984 }
7985 
7986 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7987     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7988     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
7989     LiveIntervals *LIS) const {
7990 
7991   // TODO: Support the case where LoadMI loads a wide register, but MI
7992   // only uses a subreg.
7993   for (auto Op : Ops) {
7994     if (MI.getOperand(Op).getSubReg())
7995       return nullptr;
7996   }
7997 
7998   // If loading from a FrameIndex, fold directly from the FrameIndex.
7999   unsigned NumOps = LoadMI.getDesc().getNumOperands();
8000   int FrameIndex;
8001   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
8002     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8003       return nullptr;
8004     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
8005   }
8006 
8007   // Check switch flag
8008   if (NoFusing)
8009     return nullptr;
8010 
8011   // Avoid partial and undef register update stalls unless optimizing for size.
8012   if (!MF.getFunction().hasOptSize() &&
8013       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
8014        shouldPreventUndefRegUpdateMemFold(MF, MI)))
8015     return nullptr;
8016 
8017   // Determine the alignment of the load.
8018   Align Alignment;
8019   unsigned LoadOpc = LoadMI.getOpcode();
8020   if (LoadMI.hasOneMemOperand())
8021     Alignment = (*LoadMI.memoperands_begin())->getAlign();
8022   else
8023     switch (LoadOpc) {
8024     case X86::AVX512_512_SET0:
8025     case X86::AVX512_512_SETALLONES:
8026       Alignment = Align(64);
8027       break;
8028     case X86::AVX2_SETALLONES:
8029     case X86::AVX1_SETALLONES:
8030     case X86::AVX_SET0:
8031     case X86::AVX512_256_SET0:
8032       Alignment = Align(32);
8033       break;
8034     case X86::V_SET0:
8035     case X86::V_SETALLONES:
8036     case X86::AVX512_128_SET0:
8037     case X86::FsFLD0F128:
8038     case X86::AVX512_FsFLD0F128:
8039       Alignment = Align(16);
8040       break;
8041     case X86::MMX_SET0:
8042     case X86::FsFLD0SD:
8043     case X86::AVX512_FsFLD0SD:
8044       Alignment = Align(8);
8045       break;
8046     case X86::FsFLD0SS:
8047     case X86::AVX512_FsFLD0SS:
8048       Alignment = Align(4);
8049       break;
8050     case X86::FsFLD0SH:
8051     case X86::AVX512_FsFLD0SH:
8052       Alignment = Align(2);
8053       break;
8054     default:
8055       return nullptr;
8056     }
8057   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8058     unsigned NewOpc = 0;
8059     switch (MI.getOpcode()) {
8060     default:
8061       return nullptr;
8062     case X86::TEST8rr:
8063       NewOpc = X86::CMP8ri;
8064       break;
8065     case X86::TEST16rr:
8066       NewOpc = X86::CMP16ri;
8067       break;
8068     case X86::TEST32rr:
8069       NewOpc = X86::CMP32ri;
8070       break;
8071     case X86::TEST64rr:
8072       NewOpc = X86::CMP64ri32;
8073       break;
8074     }
8075     // Change to CMPXXri r, 0 first.
8076     MI.setDesc(get(NewOpc));
8077     MI.getOperand(1).ChangeToImmediate(0);
8078   } else if (Ops.size() != 1)
8079     return nullptr;
8080 
8081   // Make sure the subregisters match.
8082   // Otherwise we risk changing the size of the load.
8083   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
8084     return nullptr;
8085 
8086   SmallVector<MachineOperand, X86::AddrNumOperands> MOs;
8087   switch (LoadOpc) {
8088   case X86::MMX_SET0:
8089   case X86::V_SET0:
8090   case X86::V_SETALLONES:
8091   case X86::AVX2_SETALLONES:
8092   case X86::AVX1_SETALLONES:
8093   case X86::AVX_SET0:
8094   case X86::AVX512_128_SET0:
8095   case X86::AVX512_256_SET0:
8096   case X86::AVX512_512_SET0:
8097   case X86::AVX512_512_SETALLONES:
8098   case X86::FsFLD0SH:
8099   case X86::AVX512_FsFLD0SH:
8100   case X86::FsFLD0SD:
8101   case X86::AVX512_FsFLD0SD:
8102   case X86::FsFLD0SS:
8103   case X86::AVX512_FsFLD0SS:
8104   case X86::FsFLD0F128:
8105   case X86::AVX512_FsFLD0F128: {
8106     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8107     // Create a constant-pool entry and operands to load from it.
8108 
8109     // Large code model can't fold loads this way.
8110     if (MF.getTarget().getCodeModel() == CodeModel::Large)
8111       return nullptr;
8112 
8113     // x86-32 PIC requires a PIC base register for constant pools.
8114     unsigned PICBase = 0;
8115     // Since we're using Small or Kernel code model, we can always use
8116     // RIP-relative addressing for a smaller encoding.
8117     if (Subtarget.is64Bit()) {
8118       PICBase = X86::RIP;
8119     } else if (MF.getTarget().isPositionIndependent()) {
8120       // FIXME: PICBase = getGlobalBaseReg(&MF);
8121       // This doesn't work for several reasons.
8122       // 1. GlobalBaseReg may have been spilled.
8123       // 2. It may not be live at MI.
8124       return nullptr;
8125     }
8126 
8127     // Create a constant-pool entry.
8128     MachineConstantPool &MCP = *MF.getConstantPool();
8129     Type *Ty;
8130     bool IsAllOnes = false;
8131     switch (LoadOpc) {
8132     case X86::FsFLD0SS:
8133     case X86::AVX512_FsFLD0SS:
8134       Ty = Type::getFloatTy(MF.getFunction().getContext());
8135       break;
8136     case X86::FsFLD0SD:
8137     case X86::AVX512_FsFLD0SD:
8138       Ty = Type::getDoubleTy(MF.getFunction().getContext());
8139       break;
8140     case X86::FsFLD0F128:
8141     case X86::AVX512_FsFLD0F128:
8142       Ty = Type::getFP128Ty(MF.getFunction().getContext());
8143       break;
8144     case X86::FsFLD0SH:
8145     case X86::AVX512_FsFLD0SH:
8146       Ty = Type::getHalfTy(MF.getFunction().getContext());
8147       break;
8148     case X86::AVX512_512_SETALLONES:
8149       IsAllOnes = true;
8150       [[fallthrough]];
8151     case X86::AVX512_512_SET0:
8152       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8153                                 16);
8154       break;
8155     case X86::AVX1_SETALLONES:
8156     case X86::AVX2_SETALLONES:
8157       IsAllOnes = true;
8158       [[fallthrough]];
8159     case X86::AVX512_256_SET0:
8160     case X86::AVX_SET0:
8161       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8162                                 8);
8163 
8164       break;
8165     case X86::MMX_SET0:
8166       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8167                                 2);
8168       break;
8169     case X86::V_SETALLONES:
8170       IsAllOnes = true;
8171       [[fallthrough]];
8172     case X86::V_SET0:
8173     case X86::AVX512_128_SET0:
8174       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8175                                 4);
8176       break;
8177     }
8178 
8179     const Constant *C =
8180         IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty);
8181     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8182 
8183     // Create operands to load from the constant pool entry.
8184     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
8185     MOs.push_back(MachineOperand::CreateImm(1));
8186     MOs.push_back(MachineOperand::CreateReg(0, false));
8187     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
8188     MOs.push_back(MachineOperand::CreateReg(0, false));
8189     break;
8190   }
8191   case X86::VPBROADCASTBZ128rm:
8192   case X86::VPBROADCASTBZ256rm:
8193   case X86::VPBROADCASTBZrm:
8194   case X86::VBROADCASTF32X2Z256rm:
8195   case X86::VBROADCASTF32X2Zrm:
8196   case X86::VBROADCASTI32X2Z128rm:
8197   case X86::VBROADCASTI32X2Z256rm:
8198   case X86::VBROADCASTI32X2Zrm:
8199     // No instructions currently fuse with 8bits or 32bits x 2.
8200     return nullptr;
8201 
8202 #define FOLD_BROADCAST(SIZE)                                                   \
8203   MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,          \
8204              LoadMI.operands_begin() + NumOps);                                \
8205   return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE,     \
8206                              /*AllowCommute=*/true);
8207   case X86::VPBROADCASTWZ128rm:
8208   case X86::VPBROADCASTWZ256rm:
8209   case X86::VPBROADCASTWZrm:
8210     FOLD_BROADCAST(16);
8211   case X86::VPBROADCASTDZ128rm:
8212   case X86::VPBROADCASTDZ256rm:
8213   case X86::VPBROADCASTDZrm:
8214   case X86::VBROADCASTSSZ128rm:
8215   case X86::VBROADCASTSSZ256rm:
8216   case X86::VBROADCASTSSZrm:
8217     FOLD_BROADCAST(32);
8218   case X86::VPBROADCASTQZ128rm:
8219   case X86::VPBROADCASTQZ256rm:
8220   case X86::VPBROADCASTQZrm:
8221   case X86::VBROADCASTSDZ256rm:
8222   case X86::VBROADCASTSDZrm:
8223     FOLD_BROADCAST(64);
8224   default: {
8225     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8226       return nullptr;
8227 
8228     // Folding a normal load. Just copy the load's address operands.
8229     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
8230                LoadMI.operands_begin() + NumOps);
8231     break;
8232   }
8233   }
8234   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
8235                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
8236 }
8237 
8238 MachineInstr *
8239 X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI,
8240                                   unsigned OpNum, ArrayRef<MachineOperand> MOs,
8241                                   MachineBasicBlock::iterator InsertPt,
8242                                   unsigned BitsSize, bool AllowCommute) const {
8243 
8244   if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum))
8245     return matchBroadcastSize(*I, BitsSize)
8246                ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this)
8247                : nullptr;
8248 
8249   if (AllowCommute) {
8250     // If the instruction and target operand are commutable, commute the
8251     // instruction and try again.
8252     unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
8253     if (CommuteOpIdx2 == OpNum) {
8254       printFailMsgforFold(MI, OpNum);
8255       return nullptr;
8256     }
8257     MachineInstr *NewMI =
8258         foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize,
8259                             /*AllowCommute=*/false);
8260     if (NewMI)
8261       return NewMI;
8262     // Folding failed again - undo the commute before returning.
8263     commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
8264   }
8265 
8266   printFailMsgforFold(MI, OpNum);
8267   return nullptr;
8268 }
8269 
8270 static SmallVector<MachineMemOperand *, 2>
8271 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8272   SmallVector<MachineMemOperand *, 2> LoadMMOs;
8273 
8274   for (MachineMemOperand *MMO : MMOs) {
8275     if (!MMO->isLoad())
8276       continue;
8277 
8278     if (!MMO->isStore()) {
8279       // Reuse the MMO.
8280       LoadMMOs.push_back(MMO);
8281     } else {
8282       // Clone the MMO and unset the store flag.
8283       LoadMMOs.push_back(MF.getMachineMemOperand(
8284           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
8285     }
8286   }
8287 
8288   return LoadMMOs;
8289 }
8290 
8291 static SmallVector<MachineMemOperand *, 2>
8292 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8293   SmallVector<MachineMemOperand *, 2> StoreMMOs;
8294 
8295   for (MachineMemOperand *MMO : MMOs) {
8296     if (!MMO->isStore())
8297       continue;
8298 
8299     if (!MMO->isLoad()) {
8300       // Reuse the MMO.
8301       StoreMMOs.push_back(MMO);
8302     } else {
8303       // Clone the MMO and unset the load flag.
8304       StoreMMOs.push_back(MF.getMachineMemOperand(
8305           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
8306     }
8307   }
8308 
8309   return StoreMMOs;
8310 }
8311 
8312 static unsigned getBroadcastOpcode(const X86FoldTableEntry *I,
8313                                    const TargetRegisterClass *RC,
8314                                    const X86Subtarget &STI) {
8315   assert(STI.hasAVX512() && "Expected at least AVX512!");
8316   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
8317   assert((SpillSize == 64 || STI.hasVLX()) &&
8318          "Can't broadcast less than 64 bytes without AVX512VL!");
8319 
8320 #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64)                            \
8321   case TYPE:                                                                   \
8322     switch (SpillSize) {                                                       \
8323     default:                                                                   \
8324       llvm_unreachable("Unknown spill size");                                  \
8325     case 16:                                                                   \
8326       return X86::OP16;                                                        \
8327     case 32:                                                                   \
8328       return X86::OP32;                                                        \
8329     case 64:                                                                   \
8330       return X86::OP64;                                                        \
8331     }                                                                          \
8332     break;
8333 
8334   switch (I->Flags & TB_BCAST_MASK) {
8335   default:
8336     llvm_unreachable("Unexpected broadcast type!");
8337     CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8338                         VPBROADCASTWZrm)
8339     CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm,
8340                         VPBROADCASTDZrm)
8341     CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm,
8342                         VPBROADCASTQZrm)
8343     CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8344                         VPBROADCASTWZrm)
8345     CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm,
8346                         VBROADCASTSSZrm)
8347     CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm,
8348                         VBROADCASTSDZrm)
8349   }
8350 }
8351 
8352 bool X86InstrInfo::unfoldMemoryOperand(
8353     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
8354     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8355   const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
8356   if (I == nullptr)
8357     return false;
8358   unsigned Opc = I->DstOp;
8359   unsigned Index = I->Flags & TB_INDEX_MASK;
8360   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8361   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8362   if (UnfoldLoad && !FoldedLoad)
8363     return false;
8364   UnfoldLoad &= FoldedLoad;
8365   if (UnfoldStore && !FoldedStore)
8366     return false;
8367   UnfoldStore &= FoldedStore;
8368 
8369   const MCInstrDesc &MCID = get(Opc);
8370 
8371   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8372   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8373   // TODO: Check if 32-byte or greater accesses are slow too?
8374   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8375       Subtarget.isUnalignedMem16Slow())
8376     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8377     // conservatively assume the address is unaligned. That's bad for
8378     // performance.
8379     return false;
8380   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
8381   SmallVector<MachineOperand, 2> BeforeOps;
8382   SmallVector<MachineOperand, 2> AfterOps;
8383   SmallVector<MachineOperand, 4> ImpOps;
8384   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8385     MachineOperand &Op = MI.getOperand(i);
8386     if (i >= Index && i < Index + X86::AddrNumOperands)
8387       AddrOps.push_back(Op);
8388     else if (Op.isReg() && Op.isImplicit())
8389       ImpOps.push_back(Op);
8390     else if (i < Index)
8391       BeforeOps.push_back(Op);
8392     else if (i > Index)
8393       AfterOps.push_back(Op);
8394   }
8395 
8396   // Emit the load or broadcast instruction.
8397   if (UnfoldLoad) {
8398     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
8399 
8400     unsigned Opc;
8401     if (I->Flags & TB_BCAST_MASK) {
8402       Opc = getBroadcastOpcode(I, RC, Subtarget);
8403     } else {
8404       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8405       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8406       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
8407     }
8408 
8409     DebugLoc DL;
8410     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
8411     for (const MachineOperand &AddrOp : AddrOps)
8412       MIB.add(AddrOp);
8413     MIB.setMemRefs(MMOs);
8414     NewMIs.push_back(MIB);
8415 
8416     if (UnfoldStore) {
8417       // Address operands cannot be marked isKill.
8418       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8419         MachineOperand &MO = NewMIs[0]->getOperand(i);
8420         if (MO.isReg())
8421           MO.setIsKill(false);
8422       }
8423     }
8424   }
8425 
8426   // Emit the data processing instruction.
8427   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
8428   MachineInstrBuilder MIB(MF, DataMI);
8429 
8430   if (FoldedStore)
8431     MIB.addReg(Reg, RegState::Define);
8432   for (MachineOperand &BeforeOp : BeforeOps)
8433     MIB.add(BeforeOp);
8434   if (FoldedLoad)
8435     MIB.addReg(Reg);
8436   for (MachineOperand &AfterOp : AfterOps)
8437     MIB.add(AfterOp);
8438   for (MachineOperand &ImpOp : ImpOps) {
8439     MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) |
8440                                    RegState::Implicit |
8441                                    getKillRegState(ImpOp.isKill()) |
8442                                    getDeadRegState(ImpOp.isDead()) |
8443                                    getUndefRegState(ImpOp.isUndef()));
8444   }
8445   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8446   switch (DataMI->getOpcode()) {
8447   default:
8448     break;
8449   case X86::CMP64ri32:
8450   case X86::CMP32ri:
8451   case X86::CMP16ri:
8452   case X86::CMP8ri: {
8453     MachineOperand &MO0 = DataMI->getOperand(0);
8454     MachineOperand &MO1 = DataMI->getOperand(1);
8455     if (MO1.isImm() && MO1.getImm() == 0) {
8456       unsigned NewOpc;
8457       switch (DataMI->getOpcode()) {
8458       default:
8459         llvm_unreachable("Unreachable!");
8460       case X86::CMP64ri32:
8461         NewOpc = X86::TEST64rr;
8462         break;
8463       case X86::CMP32ri:
8464         NewOpc = X86::TEST32rr;
8465         break;
8466       case X86::CMP16ri:
8467         NewOpc = X86::TEST16rr;
8468         break;
8469       case X86::CMP8ri:
8470         NewOpc = X86::TEST8rr;
8471         break;
8472       }
8473       DataMI->setDesc(get(NewOpc));
8474       MO1.ChangeToRegister(MO0.getReg(), false);
8475     }
8476   }
8477   }
8478   NewMIs.push_back(DataMI);
8479 
8480   // Emit the store instruction.
8481   if (UnfoldStore) {
8482     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
8483     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
8484     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
8485     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8486     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
8487     DebugLoc DL;
8488     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
8489     for (const MachineOperand &AddrOp : AddrOps)
8490       MIB.add(AddrOp);
8491     MIB.addReg(Reg, RegState::Kill);
8492     MIB.setMemRefs(MMOs);
8493     NewMIs.push_back(MIB);
8494   }
8495 
8496   return true;
8497 }
8498 
8499 bool X86InstrInfo::unfoldMemoryOperand(
8500     SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const {
8501   if (!N->isMachineOpcode())
8502     return false;
8503 
8504   const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
8505   if (I == nullptr)
8506     return false;
8507   unsigned Opc = I->DstOp;
8508   unsigned Index = I->Flags & TB_INDEX_MASK;
8509   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8510   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8511   const MCInstrDesc &MCID = get(Opc);
8512   MachineFunction &MF = DAG.getMachineFunction();
8513   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8514   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8515   unsigned NumDefs = MCID.NumDefs;
8516   std::vector<SDValue> AddrOps;
8517   std::vector<SDValue> BeforeOps;
8518   std::vector<SDValue> AfterOps;
8519   SDLoc dl(N);
8520   unsigned NumOps = N->getNumOperands();
8521   for (unsigned i = 0; i != NumOps - 1; ++i) {
8522     SDValue Op = N->getOperand(i);
8523     if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands)
8524       AddrOps.push_back(Op);
8525     else if (i < Index - NumDefs)
8526       BeforeOps.push_back(Op);
8527     else if (i > Index - NumDefs)
8528       AfterOps.push_back(Op);
8529   }
8530   SDValue Chain = N->getOperand(NumOps - 1);
8531   AddrOps.push_back(Chain);
8532 
8533   // Emit the load instruction.
8534   SDNode *Load = nullptr;
8535   if (FoldedLoad) {
8536     EVT VT = *TRI.legalclasstypes_begin(*RC);
8537     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8538     if (MMOs.empty() && RC == &X86::VR128RegClass &&
8539         Subtarget.isUnalignedMem16Slow())
8540       // Do not introduce a slow unaligned load.
8541       return false;
8542     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8543     // memory access is slow above.
8544 
8545     unsigned Opc;
8546     if (I->Flags & TB_BCAST_MASK) {
8547       Opc = getBroadcastOpcode(I, RC, Subtarget);
8548     } else {
8549       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8550       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8551       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
8552     }
8553 
8554     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
8555     NewNodes.push_back(Load);
8556 
8557     // Preserve memory reference information.
8558     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
8559   }
8560 
8561   // Emit the data processing instruction.
8562   std::vector<EVT> VTs;
8563   const TargetRegisterClass *DstRC = nullptr;
8564   if (MCID.getNumDefs() > 0) {
8565     DstRC = getRegClass(MCID, 0, &RI, MF);
8566     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
8567   }
8568   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
8569     EVT VT = N->getValueType(i);
8570     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
8571       VTs.push_back(VT);
8572   }
8573   if (Load)
8574     BeforeOps.push_back(SDValue(Load, 0));
8575   llvm::append_range(BeforeOps, AfterOps);
8576   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8577   switch (Opc) {
8578   default:
8579     break;
8580   case X86::CMP64ri32:
8581   case X86::CMP32ri:
8582   case X86::CMP16ri:
8583   case X86::CMP8ri:
8584     if (isNullConstant(BeforeOps[1])) {
8585       switch (Opc) {
8586       default:
8587         llvm_unreachable("Unreachable!");
8588       case X86::CMP64ri32:
8589         Opc = X86::TEST64rr;
8590         break;
8591       case X86::CMP32ri:
8592         Opc = X86::TEST32rr;
8593         break;
8594       case X86::CMP16ri:
8595         Opc = X86::TEST16rr;
8596         break;
8597       case X86::CMP8ri:
8598         Opc = X86::TEST8rr;
8599         break;
8600       }
8601       BeforeOps[1] = BeforeOps[0];
8602     }
8603   }
8604   SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
8605   NewNodes.push_back(NewNode);
8606 
8607   // Emit the store instruction.
8608   if (FoldedStore) {
8609     AddrOps.pop_back();
8610     AddrOps.push_back(SDValue(NewNode, 0));
8611     AddrOps.push_back(Chain);
8612     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8613     if (MMOs.empty() && RC == &X86::VR128RegClass &&
8614         Subtarget.isUnalignedMem16Slow())
8615       // Do not introduce a slow unaligned store.
8616       return false;
8617     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8618     // memory access is slow above.
8619     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8620     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8621     SDNode *Store =
8622         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
8623                            dl, MVT::Other, AddrOps);
8624     NewNodes.push_back(Store);
8625 
8626     // Preserve memory reference information.
8627     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
8628   }
8629 
8630   return true;
8631 }
8632 
8633 unsigned
8634 X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad,
8635                                          bool UnfoldStore,
8636                                          unsigned *LoadRegIndex) const {
8637   const X86FoldTableEntry *I = lookupUnfoldTable(Opc);
8638   if (I == nullptr)
8639     return 0;
8640   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8641   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8642   if (UnfoldLoad && !FoldedLoad)
8643     return 0;
8644   if (UnfoldStore && !FoldedStore)
8645     return 0;
8646   if (LoadRegIndex)
8647     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
8648   return I->DstOp;
8649 }
8650 
8651 bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
8652                                            int64_t &Offset1,
8653                                            int64_t &Offset2) const {
8654   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
8655     return false;
8656 
8657   auto IsLoadOpcode = [&](unsigned Opcode) {
8658     switch (Opcode) {
8659     default:
8660       return false;
8661     case X86::MOV8rm:
8662     case X86::MOV16rm:
8663     case X86::MOV32rm:
8664     case X86::MOV64rm:
8665     case X86::LD_Fp32m:
8666     case X86::LD_Fp64m:
8667     case X86::LD_Fp80m:
8668     case X86::MOVSSrm:
8669     case X86::MOVSSrm_alt:
8670     case X86::MOVSDrm:
8671     case X86::MOVSDrm_alt:
8672     case X86::MMX_MOVD64rm:
8673     case X86::MMX_MOVQ64rm:
8674     case X86::MOVAPSrm:
8675     case X86::MOVUPSrm:
8676     case X86::MOVAPDrm:
8677     case X86::MOVUPDrm:
8678     case X86::MOVDQArm:
8679     case X86::MOVDQUrm:
8680     // AVX load instructions
8681     case X86::VMOVSSrm:
8682     case X86::VMOVSSrm_alt:
8683     case X86::VMOVSDrm:
8684     case X86::VMOVSDrm_alt:
8685     case X86::VMOVAPSrm:
8686     case X86::VMOVUPSrm:
8687     case X86::VMOVAPDrm:
8688     case X86::VMOVUPDrm:
8689     case X86::VMOVDQArm:
8690     case X86::VMOVDQUrm:
8691     case X86::VMOVAPSYrm:
8692     case X86::VMOVUPSYrm:
8693     case X86::VMOVAPDYrm:
8694     case X86::VMOVUPDYrm:
8695     case X86::VMOVDQAYrm:
8696     case X86::VMOVDQUYrm:
8697     // AVX512 load instructions
8698     case X86::VMOVSSZrm:
8699     case X86::VMOVSSZrm_alt:
8700     case X86::VMOVSDZrm:
8701     case X86::VMOVSDZrm_alt:
8702     case X86::VMOVAPSZ128rm:
8703     case X86::VMOVUPSZ128rm:
8704     case X86::VMOVAPSZ128rm_NOVLX:
8705     case X86::VMOVUPSZ128rm_NOVLX:
8706     case X86::VMOVAPDZ128rm:
8707     case X86::VMOVUPDZ128rm:
8708     case X86::VMOVDQU8Z128rm:
8709     case X86::VMOVDQU16Z128rm:
8710     case X86::VMOVDQA32Z128rm:
8711     case X86::VMOVDQU32Z128rm:
8712     case X86::VMOVDQA64Z128rm:
8713     case X86::VMOVDQU64Z128rm:
8714     case X86::VMOVAPSZ256rm:
8715     case X86::VMOVUPSZ256rm:
8716     case X86::VMOVAPSZ256rm_NOVLX:
8717     case X86::VMOVUPSZ256rm_NOVLX:
8718     case X86::VMOVAPDZ256rm:
8719     case X86::VMOVUPDZ256rm:
8720     case X86::VMOVDQU8Z256rm:
8721     case X86::VMOVDQU16Z256rm:
8722     case X86::VMOVDQA32Z256rm:
8723     case X86::VMOVDQU32Z256rm:
8724     case X86::VMOVDQA64Z256rm:
8725     case X86::VMOVDQU64Z256rm:
8726     case X86::VMOVAPSZrm:
8727     case X86::VMOVUPSZrm:
8728     case X86::VMOVAPDZrm:
8729     case X86::VMOVUPDZrm:
8730     case X86::VMOVDQU8Zrm:
8731     case X86::VMOVDQU16Zrm:
8732     case X86::VMOVDQA32Zrm:
8733     case X86::VMOVDQU32Zrm:
8734     case X86::VMOVDQA64Zrm:
8735     case X86::VMOVDQU64Zrm:
8736     case X86::KMOVBkm:
8737     case X86::KMOVBkm_EVEX:
8738     case X86::KMOVWkm:
8739     case X86::KMOVWkm_EVEX:
8740     case X86::KMOVDkm:
8741     case X86::KMOVDkm_EVEX:
8742     case X86::KMOVQkm:
8743     case X86::KMOVQkm_EVEX:
8744       return true;
8745     }
8746   };
8747 
8748   if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
8749       !IsLoadOpcode(Load2->getMachineOpcode()))
8750     return false;
8751 
8752   // Lambda to check if both the loads have the same value for an operand index.
8753   auto HasSameOp = [&](int I) {
8754     return Load1->getOperand(I) == Load2->getOperand(I);
8755   };
8756 
8757   // All operands except the displacement should match.
8758   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
8759       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
8760     return false;
8761 
8762   // Chain Operand must be the same.
8763   if (!HasSameOp(5))
8764     return false;
8765 
8766   // Now let's examine if the displacements are constants.
8767   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
8768   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
8769   if (!Disp1 || !Disp2)
8770     return false;
8771 
8772   Offset1 = Disp1->getSExtValue();
8773   Offset2 = Disp2->getSExtValue();
8774   return true;
8775 }
8776 
8777 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
8778                                            int64_t Offset1, int64_t Offset2,
8779                                            unsigned NumLoads) const {
8780   assert(Offset2 > Offset1);
8781   if ((Offset2 - Offset1) / 8 > 64)
8782     return false;
8783 
8784   unsigned Opc1 = Load1->getMachineOpcode();
8785   unsigned Opc2 = Load2->getMachineOpcode();
8786   if (Opc1 != Opc2)
8787     return false; // FIXME: overly conservative?
8788 
8789   switch (Opc1) {
8790   default:
8791     break;
8792   case X86::LD_Fp32m:
8793   case X86::LD_Fp64m:
8794   case X86::LD_Fp80m:
8795   case X86::MMX_MOVD64rm:
8796   case X86::MMX_MOVQ64rm:
8797     return false;
8798   }
8799 
8800   EVT VT = Load1->getValueType(0);
8801   switch (VT.getSimpleVT().SimpleTy) {
8802   default:
8803     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8804     // have 16 of them to play with.
8805     if (Subtarget.is64Bit()) {
8806       if (NumLoads >= 3)
8807         return false;
8808     } else if (NumLoads) {
8809       return false;
8810     }
8811     break;
8812   case MVT::i8:
8813   case MVT::i16:
8814   case MVT::i32:
8815   case MVT::i64:
8816   case MVT::f32:
8817   case MVT::f64:
8818     if (NumLoads)
8819       return false;
8820     break;
8821   }
8822 
8823   return true;
8824 }
8825 
8826 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
8827                                         const MachineBasicBlock *MBB,
8828                                         const MachineFunction &MF) const {
8829 
8830   // ENDBR instructions should not be scheduled around.
8831   unsigned Opcode = MI.getOpcode();
8832   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8833       Opcode == X86::PLDTILECFGV)
8834     return true;
8835 
8836   // Frame setup and destory can't be scheduled around.
8837   if (MI.getFlag(MachineInstr::FrameSetup) ||
8838       MI.getFlag(MachineInstr::FrameDestroy))
8839     return true;
8840 
8841   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
8842 }
8843 
8844 bool X86InstrInfo::reverseBranchCondition(
8845     SmallVectorImpl<MachineOperand> &Cond) const {
8846   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
8847   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
8848   Cond[0].setImm(GetOppositeBranchCondition(CC));
8849   return false;
8850 }
8851 
8852 bool X86InstrInfo::isSafeToMoveRegClassDefs(
8853     const TargetRegisterClass *RC) const {
8854   // FIXME: Return false for x87 stack register classes for now. We can't
8855   // allow any loads of these registers before FpGet_ST0_80.
8856   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
8857            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
8858            RC == &X86::RFP80RegClass);
8859 }
8860 
8861 /// Return a virtual register initialized with the
8862 /// the global base register value. Output instructions required to
8863 /// initialize the register in the function entry block, if necessary.
8864 ///
8865 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
8866 ///
8867 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
8868   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
8869   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8870   if (GlobalBaseReg != 0)
8871     return GlobalBaseReg;
8872 
8873   // Create the register. The code to initialize it is inserted
8874   // later, by the CGBR pass (below).
8875   MachineRegisterInfo &RegInfo = MF->getRegInfo();
8876   GlobalBaseReg = RegInfo.createVirtualRegister(
8877       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
8878   X86FI->setGlobalBaseReg(GlobalBaseReg);
8879   return GlobalBaseReg;
8880 }
8881 
8882 // FIXME: Some shuffle and unpack instructions have equivalents in different
8883 // domains, but they require a bit more work than just switching opcodes.
8884 
8885 static const uint16_t *lookup(unsigned opcode, unsigned domain,
8886                               ArrayRef<uint16_t[3]> Table) {
8887   for (const uint16_t(&Row)[3] : Table)
8888     if (Row[domain - 1] == opcode)
8889       return Row;
8890   return nullptr;
8891 }
8892 
8893 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
8894                                     ArrayRef<uint16_t[4]> Table) {
8895   // If this is the integer domain make sure to check both integer columns.
8896   for (const uint16_t(&Row)[4] : Table)
8897     if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
8898       return Row;
8899   return nullptr;
8900 }
8901 
8902 // Helper to attempt to widen/narrow blend masks.
8903 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
8904                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
8905   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
8906          "Illegal blend mask scale");
8907   unsigned NewMask = 0;
8908 
8909   if ((OldWidth % NewWidth) == 0) {
8910     unsigned Scale = OldWidth / NewWidth;
8911     unsigned SubMask = (1u << Scale) - 1;
8912     for (unsigned i = 0; i != NewWidth; ++i) {
8913       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
8914       if (Sub == SubMask)
8915         NewMask |= (1u << i);
8916       else if (Sub != 0x0)
8917         return false;
8918     }
8919   } else {
8920     unsigned Scale = NewWidth / OldWidth;
8921     unsigned SubMask = (1u << Scale) - 1;
8922     for (unsigned i = 0; i != OldWidth; ++i) {
8923       if (OldMask & (1 << i)) {
8924         NewMask |= (SubMask << (i * Scale));
8925       }
8926     }
8927   }
8928 
8929   if (pNewMask)
8930     *pNewMask = NewMask;
8931   return true;
8932 }
8933 
8934 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
8935   unsigned Opcode = MI.getOpcode();
8936   unsigned NumOperands = MI.getDesc().getNumOperands();
8937 
8938   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8939     uint16_t validDomains = 0;
8940     if (MI.getOperand(NumOperands - 1).isImm()) {
8941       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8942       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8943         validDomains |= 0x2; // PackedSingle
8944       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8945         validDomains |= 0x4; // PackedDouble
8946       if (!Is256 || Subtarget.hasAVX2())
8947         validDomains |= 0x8; // PackedInt
8948     }
8949     return validDomains;
8950   };
8951 
8952   switch (Opcode) {
8953   case X86::BLENDPDrmi:
8954   case X86::BLENDPDrri:
8955   case X86::VBLENDPDrmi:
8956   case X86::VBLENDPDrri:
8957     return GetBlendDomains(2, false);
8958   case X86::VBLENDPDYrmi:
8959   case X86::VBLENDPDYrri:
8960     return GetBlendDomains(4, true);
8961   case X86::BLENDPSrmi:
8962   case X86::BLENDPSrri:
8963   case X86::VBLENDPSrmi:
8964   case X86::VBLENDPSrri:
8965   case X86::VPBLENDDrmi:
8966   case X86::VPBLENDDrri:
8967     return GetBlendDomains(4, false);
8968   case X86::VBLENDPSYrmi:
8969   case X86::VBLENDPSYrri:
8970   case X86::VPBLENDDYrmi:
8971   case X86::VPBLENDDYrri:
8972     return GetBlendDomains(8, true);
8973   case X86::PBLENDWrmi:
8974   case X86::PBLENDWrri:
8975   case X86::VPBLENDWrmi:
8976   case X86::VPBLENDWrri:
8977   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8978   case X86::VPBLENDWYrmi:
8979   case X86::VPBLENDWYrri:
8980     return GetBlendDomains(8, false);
8981   case X86::VPANDDZ128rr:
8982   case X86::VPANDDZ128rm:
8983   case X86::VPANDDZ256rr:
8984   case X86::VPANDDZ256rm:
8985   case X86::VPANDQZ128rr:
8986   case X86::VPANDQZ128rm:
8987   case X86::VPANDQZ256rr:
8988   case X86::VPANDQZ256rm:
8989   case X86::VPANDNDZ128rr:
8990   case X86::VPANDNDZ128rm:
8991   case X86::VPANDNDZ256rr:
8992   case X86::VPANDNDZ256rm:
8993   case X86::VPANDNQZ128rr:
8994   case X86::VPANDNQZ128rm:
8995   case X86::VPANDNQZ256rr:
8996   case X86::VPANDNQZ256rm:
8997   case X86::VPORDZ128rr:
8998   case X86::VPORDZ128rm:
8999   case X86::VPORDZ256rr:
9000   case X86::VPORDZ256rm:
9001   case X86::VPORQZ128rr:
9002   case X86::VPORQZ128rm:
9003   case X86::VPORQZ256rr:
9004   case X86::VPORQZ256rm:
9005   case X86::VPXORDZ128rr:
9006   case X86::VPXORDZ128rm:
9007   case X86::VPXORDZ256rr:
9008   case X86::VPXORDZ256rm:
9009   case X86::VPXORQZ128rr:
9010   case X86::VPXORQZ128rm:
9011   case X86::VPXORQZ256rr:
9012   case X86::VPXORQZ256rm:
9013     // If we don't have DQI see if we can still switch from an EVEX integer
9014     // instruction to a VEX floating point instruction.
9015     if (Subtarget.hasDQI())
9016       return 0;
9017 
9018     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
9019       return 0;
9020     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
9021       return 0;
9022     // Register forms will have 3 operands. Memory form will have more.
9023     if (NumOperands == 3 &&
9024         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
9025       return 0;
9026 
9027     // All domains are valid.
9028     return 0xe;
9029   case X86::MOVHLPSrr:
9030     // We can swap domains when both inputs are the same register.
9031     // FIXME: This doesn't catch all the cases we would like. If the input
9032     // register isn't KILLed by the instruction, the two address instruction
9033     // pass puts a COPY on one input. The other input uses the original
9034     // register. This prevents the same physical register from being used by
9035     // both inputs.
9036     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9037         MI.getOperand(0).getSubReg() == 0 &&
9038         MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0)
9039       return 0x6;
9040     return 0;
9041   case X86::SHUFPDrri:
9042     return 0x6;
9043   }
9044   return 0;
9045 }
9046 
9047 #include "X86ReplaceableInstrs.def"
9048 
9049 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
9050                                             unsigned Domain) const {
9051   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9052   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9053   assert(dom && "Not an SSE instruction");
9054 
9055   unsigned Opcode = MI.getOpcode();
9056   unsigned NumOperands = MI.getDesc().getNumOperands();
9057 
9058   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
9059     if (MI.getOperand(NumOperands - 1).isImm()) {
9060       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
9061       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
9062       unsigned NewImm = Imm;
9063 
9064       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
9065       if (!table)
9066         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9067 
9068       if (Domain == 1) { // PackedSingle
9069         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9070       } else if (Domain == 2) { // PackedDouble
9071         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
9072       } else if (Domain == 3) { // PackedInt
9073         if (Subtarget.hasAVX2()) {
9074           // If we are already VPBLENDW use that, else use VPBLENDD.
9075           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
9076             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9077             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9078           }
9079         } else {
9080           assert(!Is256 && "128-bit vector expected");
9081           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
9082         }
9083       }
9084 
9085       assert(table && table[Domain - 1] && "Unknown domain op");
9086       MI.setDesc(get(table[Domain - 1]));
9087       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
9088     }
9089     return true;
9090   };
9091 
9092   switch (Opcode) {
9093   case X86::BLENDPDrmi:
9094   case X86::BLENDPDrri:
9095   case X86::VBLENDPDrmi:
9096   case X86::VBLENDPDrri:
9097     return SetBlendDomain(2, false);
9098   case X86::VBLENDPDYrmi:
9099   case X86::VBLENDPDYrri:
9100     return SetBlendDomain(4, true);
9101   case X86::BLENDPSrmi:
9102   case X86::BLENDPSrri:
9103   case X86::VBLENDPSrmi:
9104   case X86::VBLENDPSrri:
9105   case X86::VPBLENDDrmi:
9106   case X86::VPBLENDDrri:
9107     return SetBlendDomain(4, false);
9108   case X86::VBLENDPSYrmi:
9109   case X86::VBLENDPSYrri:
9110   case X86::VPBLENDDYrmi:
9111   case X86::VPBLENDDYrri:
9112     return SetBlendDomain(8, true);
9113   case X86::PBLENDWrmi:
9114   case X86::PBLENDWrri:
9115   case X86::VPBLENDWrmi:
9116   case X86::VPBLENDWrri:
9117     return SetBlendDomain(8, false);
9118   case X86::VPBLENDWYrmi:
9119   case X86::VPBLENDWYrri:
9120     return SetBlendDomain(16, true);
9121   case X86::VPANDDZ128rr:
9122   case X86::VPANDDZ128rm:
9123   case X86::VPANDDZ256rr:
9124   case X86::VPANDDZ256rm:
9125   case X86::VPANDQZ128rr:
9126   case X86::VPANDQZ128rm:
9127   case X86::VPANDQZ256rr:
9128   case X86::VPANDQZ256rm:
9129   case X86::VPANDNDZ128rr:
9130   case X86::VPANDNDZ128rm:
9131   case X86::VPANDNDZ256rr:
9132   case X86::VPANDNDZ256rm:
9133   case X86::VPANDNQZ128rr:
9134   case X86::VPANDNQZ128rm:
9135   case X86::VPANDNQZ256rr:
9136   case X86::VPANDNQZ256rm:
9137   case X86::VPORDZ128rr:
9138   case X86::VPORDZ128rm:
9139   case X86::VPORDZ256rr:
9140   case X86::VPORDZ256rm:
9141   case X86::VPORQZ128rr:
9142   case X86::VPORQZ128rm:
9143   case X86::VPORQZ256rr:
9144   case X86::VPORQZ256rm:
9145   case X86::VPXORDZ128rr:
9146   case X86::VPXORDZ128rm:
9147   case X86::VPXORDZ256rr:
9148   case X86::VPXORDZ256rm:
9149   case X86::VPXORQZ128rr:
9150   case X86::VPXORQZ128rm:
9151   case X86::VPXORQZ256rr:
9152   case X86::VPXORQZ256rm: {
9153     // Without DQI, convert EVEX instructions to VEX instructions.
9154     if (Subtarget.hasDQI())
9155       return false;
9156 
9157     const uint16_t *table =
9158         lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9159     assert(table && "Instruction not found in table?");
9160     // Don't change integer Q instructions to D instructions and
9161     // use D intructions if we started with a PS instruction.
9162     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9163       Domain = 4;
9164     MI.setDesc(get(table[Domain - 1]));
9165     return true;
9166   }
9167   case X86::UNPCKHPDrr:
9168   case X86::MOVHLPSrr:
9169     // We just need to commute the instruction which will switch the domains.
9170     if (Domain != dom && Domain != 3 &&
9171         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9172         MI.getOperand(0).getSubReg() == 0 &&
9173         MI.getOperand(1).getSubReg() == 0 &&
9174         MI.getOperand(2).getSubReg() == 0) {
9175       commuteInstruction(MI, false);
9176       return true;
9177     }
9178     // We must always return true for MOVHLPSrr.
9179     if (Opcode == X86::MOVHLPSrr)
9180       return true;
9181     break;
9182   case X86::SHUFPDrri: {
9183     if (Domain == 1) {
9184       unsigned Imm = MI.getOperand(3).getImm();
9185       unsigned NewImm = 0x44;
9186       if (Imm & 1)
9187         NewImm |= 0x0a;
9188       if (Imm & 2)
9189         NewImm |= 0xa0;
9190       MI.getOperand(3).setImm(NewImm);
9191       MI.setDesc(get(X86::SHUFPSrri));
9192     }
9193     return true;
9194   }
9195   }
9196   return false;
9197 }
9198 
9199 std::pair<uint16_t, uint16_t>
9200 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
9201   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9202   unsigned opcode = MI.getOpcode();
9203   uint16_t validDomains = 0;
9204   if (domain) {
9205     // Attempt to match for custom instructions.
9206     validDomains = getExecutionDomainCustom(MI);
9207     if (validDomains)
9208       return std::make_pair(domain, validDomains);
9209 
9210     if (lookup(opcode, domain, ReplaceableInstrs)) {
9211       validDomains = 0xe;
9212     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9213       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9214     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
9215       validDomains = 0x6;
9216     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9217       // Insert/extract instructions should only effect domain if AVX2
9218       // is enabled.
9219       if (!Subtarget.hasAVX2())
9220         return std::make_pair(0, 0);
9221       validDomains = 0xe;
9222     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9223       validDomains = 0xe;
9224     } else if (Subtarget.hasDQI() &&
9225                lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9226       validDomains = 0xe;
9227     } else if (Subtarget.hasDQI()) {
9228       if (const uint16_t *table =
9229               lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9230         if (domain == 1 || (domain == 3 && table[3] == opcode))
9231           validDomains = 0xa;
9232         else
9233           validDomains = 0xc;
9234       }
9235     }
9236   }
9237   return std::make_pair(domain, validDomains);
9238 }
9239 
9240 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
9241   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9242   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9243   assert(dom && "Not an SSE instruction");
9244 
9245   // Attempt to match for custom instructions.
9246   if (setExecutionDomainCustom(MI, Domain))
9247     return;
9248 
9249   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9250   if (!table) { // try the other table
9251     assert((Subtarget.hasAVX2() || Domain < 3) &&
9252            "256-bit vector operations only available in AVX2");
9253     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9254   }
9255   if (!table) { // try the FP table
9256     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
9257     assert((!table || Domain < 3) &&
9258            "Can only select PackedSingle or PackedDouble");
9259   }
9260   if (!table) { // try the other table
9261     assert(Subtarget.hasAVX2() &&
9262            "256-bit insert/extract only available in AVX2");
9263     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9264   }
9265   if (!table) { // try the AVX512 table
9266     assert(Subtarget.hasAVX512() && "Requires AVX-512");
9267     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9268     // Don't change integer Q instructions to D instructions.
9269     if (table && Domain == 3 && table[3] == MI.getOpcode())
9270       Domain = 4;
9271   }
9272   if (!table) { // try the AVX512DQ table
9273     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9274     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9275     // Don't change integer Q instructions to D instructions and
9276     // use D instructions if we started with a PS instruction.
9277     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9278       Domain = 4;
9279   }
9280   if (!table) { // try the AVX512DQMasked table
9281     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9282     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9283     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9284       Domain = 4;
9285   }
9286   assert(table && "Cannot change domain");
9287   MI.setDesc(get(table[Domain - 1]));
9288 }
9289 
9290 void X86InstrInfo::insertNoop(MachineBasicBlock &MBB,
9291                               MachineBasicBlock::iterator MI) const {
9292   DebugLoc DL;
9293   BuildMI(MBB, MI, DL, get(X86::NOOP));
9294 }
9295 
9296 /// Return the noop instruction to use for a noop.
9297 MCInst X86InstrInfo::getNop() const {
9298   MCInst Nop;
9299   Nop.setOpcode(X86::NOOP);
9300   return Nop;
9301 }
9302 
9303 bool X86InstrInfo::isHighLatencyDef(int opc) const {
9304   switch (opc) {
9305   default:
9306     return false;
9307   case X86::DIVPDrm:
9308   case X86::DIVPDrr:
9309   case X86::DIVPSrm:
9310   case X86::DIVPSrr:
9311   case X86::DIVSDrm:
9312   case X86::DIVSDrm_Int:
9313   case X86::DIVSDrr:
9314   case X86::DIVSDrr_Int:
9315   case X86::DIVSSrm:
9316   case X86::DIVSSrm_Int:
9317   case X86::DIVSSrr:
9318   case X86::DIVSSrr_Int:
9319   case X86::SQRTPDm:
9320   case X86::SQRTPDr:
9321   case X86::SQRTPSm:
9322   case X86::SQRTPSr:
9323   case X86::SQRTSDm:
9324   case X86::SQRTSDm_Int:
9325   case X86::SQRTSDr:
9326   case X86::SQRTSDr_Int:
9327   case X86::SQRTSSm:
9328   case X86::SQRTSSm_Int:
9329   case X86::SQRTSSr:
9330   case X86::SQRTSSr_Int:
9331   // AVX instructions with high latency
9332   case X86::VDIVPDrm:
9333   case X86::VDIVPDrr:
9334   case X86::VDIVPDYrm:
9335   case X86::VDIVPDYrr:
9336   case X86::VDIVPSrm:
9337   case X86::VDIVPSrr:
9338   case X86::VDIVPSYrm:
9339   case X86::VDIVPSYrr:
9340   case X86::VDIVSDrm:
9341   case X86::VDIVSDrm_Int:
9342   case X86::VDIVSDrr:
9343   case X86::VDIVSDrr_Int:
9344   case X86::VDIVSSrm:
9345   case X86::VDIVSSrm_Int:
9346   case X86::VDIVSSrr:
9347   case X86::VDIVSSrr_Int:
9348   case X86::VSQRTPDm:
9349   case X86::VSQRTPDr:
9350   case X86::VSQRTPDYm:
9351   case X86::VSQRTPDYr:
9352   case X86::VSQRTPSm:
9353   case X86::VSQRTPSr:
9354   case X86::VSQRTPSYm:
9355   case X86::VSQRTPSYr:
9356   case X86::VSQRTSDm:
9357   case X86::VSQRTSDm_Int:
9358   case X86::VSQRTSDr:
9359   case X86::VSQRTSDr_Int:
9360   case X86::VSQRTSSm:
9361   case X86::VSQRTSSm_Int:
9362   case X86::VSQRTSSr:
9363   case X86::VSQRTSSr_Int:
9364   // AVX512 instructions with high latency
9365   case X86::VDIVPDZ128rm:
9366   case X86::VDIVPDZ128rmb:
9367   case X86::VDIVPDZ128rmbk:
9368   case X86::VDIVPDZ128rmbkz:
9369   case X86::VDIVPDZ128rmk:
9370   case X86::VDIVPDZ128rmkz:
9371   case X86::VDIVPDZ128rr:
9372   case X86::VDIVPDZ128rrk:
9373   case X86::VDIVPDZ128rrkz:
9374   case X86::VDIVPDZ256rm:
9375   case X86::VDIVPDZ256rmb:
9376   case X86::VDIVPDZ256rmbk:
9377   case X86::VDIVPDZ256rmbkz:
9378   case X86::VDIVPDZ256rmk:
9379   case X86::VDIVPDZ256rmkz:
9380   case X86::VDIVPDZ256rr:
9381   case X86::VDIVPDZ256rrk:
9382   case X86::VDIVPDZ256rrkz:
9383   case X86::VDIVPDZrrb:
9384   case X86::VDIVPDZrrbk:
9385   case X86::VDIVPDZrrbkz:
9386   case X86::VDIVPDZrm:
9387   case X86::VDIVPDZrmb:
9388   case X86::VDIVPDZrmbk:
9389   case X86::VDIVPDZrmbkz:
9390   case X86::VDIVPDZrmk:
9391   case X86::VDIVPDZrmkz:
9392   case X86::VDIVPDZrr:
9393   case X86::VDIVPDZrrk:
9394   case X86::VDIVPDZrrkz:
9395   case X86::VDIVPSZ128rm:
9396   case X86::VDIVPSZ128rmb:
9397   case X86::VDIVPSZ128rmbk:
9398   case X86::VDIVPSZ128rmbkz:
9399   case X86::VDIVPSZ128rmk:
9400   case X86::VDIVPSZ128rmkz:
9401   case X86::VDIVPSZ128rr:
9402   case X86::VDIVPSZ128rrk:
9403   case X86::VDIVPSZ128rrkz:
9404   case X86::VDIVPSZ256rm:
9405   case X86::VDIVPSZ256rmb:
9406   case X86::VDIVPSZ256rmbk:
9407   case X86::VDIVPSZ256rmbkz:
9408   case X86::VDIVPSZ256rmk:
9409   case X86::VDIVPSZ256rmkz:
9410   case X86::VDIVPSZ256rr:
9411   case X86::VDIVPSZ256rrk:
9412   case X86::VDIVPSZ256rrkz:
9413   case X86::VDIVPSZrrb:
9414   case X86::VDIVPSZrrbk:
9415   case X86::VDIVPSZrrbkz:
9416   case X86::VDIVPSZrm:
9417   case X86::VDIVPSZrmb:
9418   case X86::VDIVPSZrmbk:
9419   case X86::VDIVPSZrmbkz:
9420   case X86::VDIVPSZrmk:
9421   case X86::VDIVPSZrmkz:
9422   case X86::VDIVPSZrr:
9423   case X86::VDIVPSZrrk:
9424   case X86::VDIVPSZrrkz:
9425   case X86::VDIVSDZrm:
9426   case X86::VDIVSDZrr:
9427   case X86::VDIVSDZrm_Int:
9428   case X86::VDIVSDZrm_Intk:
9429   case X86::VDIVSDZrm_Intkz:
9430   case X86::VDIVSDZrr_Int:
9431   case X86::VDIVSDZrr_Intk:
9432   case X86::VDIVSDZrr_Intkz:
9433   case X86::VDIVSDZrrb_Int:
9434   case X86::VDIVSDZrrb_Intk:
9435   case X86::VDIVSDZrrb_Intkz:
9436   case X86::VDIVSSZrm:
9437   case X86::VDIVSSZrr:
9438   case X86::VDIVSSZrm_Int:
9439   case X86::VDIVSSZrm_Intk:
9440   case X86::VDIVSSZrm_Intkz:
9441   case X86::VDIVSSZrr_Int:
9442   case X86::VDIVSSZrr_Intk:
9443   case X86::VDIVSSZrr_Intkz:
9444   case X86::VDIVSSZrrb_Int:
9445   case X86::VDIVSSZrrb_Intk:
9446   case X86::VDIVSSZrrb_Intkz:
9447   case X86::VSQRTPDZ128m:
9448   case X86::VSQRTPDZ128mb:
9449   case X86::VSQRTPDZ128mbk:
9450   case X86::VSQRTPDZ128mbkz:
9451   case X86::VSQRTPDZ128mk:
9452   case X86::VSQRTPDZ128mkz:
9453   case X86::VSQRTPDZ128r:
9454   case X86::VSQRTPDZ128rk:
9455   case X86::VSQRTPDZ128rkz:
9456   case X86::VSQRTPDZ256m:
9457   case X86::VSQRTPDZ256mb:
9458   case X86::VSQRTPDZ256mbk:
9459   case X86::VSQRTPDZ256mbkz:
9460   case X86::VSQRTPDZ256mk:
9461   case X86::VSQRTPDZ256mkz:
9462   case X86::VSQRTPDZ256r:
9463   case X86::VSQRTPDZ256rk:
9464   case X86::VSQRTPDZ256rkz:
9465   case X86::VSQRTPDZm:
9466   case X86::VSQRTPDZmb:
9467   case X86::VSQRTPDZmbk:
9468   case X86::VSQRTPDZmbkz:
9469   case X86::VSQRTPDZmk:
9470   case X86::VSQRTPDZmkz:
9471   case X86::VSQRTPDZr:
9472   case X86::VSQRTPDZrb:
9473   case X86::VSQRTPDZrbk:
9474   case X86::VSQRTPDZrbkz:
9475   case X86::VSQRTPDZrk:
9476   case X86::VSQRTPDZrkz:
9477   case X86::VSQRTPSZ128m:
9478   case X86::VSQRTPSZ128mb:
9479   case X86::VSQRTPSZ128mbk:
9480   case X86::VSQRTPSZ128mbkz:
9481   case X86::VSQRTPSZ128mk:
9482   case X86::VSQRTPSZ128mkz:
9483   case X86::VSQRTPSZ128r:
9484   case X86::VSQRTPSZ128rk:
9485   case X86::VSQRTPSZ128rkz:
9486   case X86::VSQRTPSZ256m:
9487   case X86::VSQRTPSZ256mb:
9488   case X86::VSQRTPSZ256mbk:
9489   case X86::VSQRTPSZ256mbkz:
9490   case X86::VSQRTPSZ256mk:
9491   case X86::VSQRTPSZ256mkz:
9492   case X86::VSQRTPSZ256r:
9493   case X86::VSQRTPSZ256rk:
9494   case X86::VSQRTPSZ256rkz:
9495   case X86::VSQRTPSZm:
9496   case X86::VSQRTPSZmb:
9497   case X86::VSQRTPSZmbk:
9498   case X86::VSQRTPSZmbkz:
9499   case X86::VSQRTPSZmk:
9500   case X86::VSQRTPSZmkz:
9501   case X86::VSQRTPSZr:
9502   case X86::VSQRTPSZrb:
9503   case X86::VSQRTPSZrbk:
9504   case X86::VSQRTPSZrbkz:
9505   case X86::VSQRTPSZrk:
9506   case X86::VSQRTPSZrkz:
9507   case X86::VSQRTSDZm:
9508   case X86::VSQRTSDZm_Int:
9509   case X86::VSQRTSDZm_Intk:
9510   case X86::VSQRTSDZm_Intkz:
9511   case X86::VSQRTSDZr:
9512   case X86::VSQRTSDZr_Int:
9513   case X86::VSQRTSDZr_Intk:
9514   case X86::VSQRTSDZr_Intkz:
9515   case X86::VSQRTSDZrb_Int:
9516   case X86::VSQRTSDZrb_Intk:
9517   case X86::VSQRTSDZrb_Intkz:
9518   case X86::VSQRTSSZm:
9519   case X86::VSQRTSSZm_Int:
9520   case X86::VSQRTSSZm_Intk:
9521   case X86::VSQRTSSZm_Intkz:
9522   case X86::VSQRTSSZr:
9523   case X86::VSQRTSSZr_Int:
9524   case X86::VSQRTSSZr_Intk:
9525   case X86::VSQRTSSZr_Intkz:
9526   case X86::VSQRTSSZrb_Int:
9527   case X86::VSQRTSSZrb_Intk:
9528   case X86::VSQRTSSZrb_Intkz:
9529 
9530   case X86::VGATHERDPDYrm:
9531   case X86::VGATHERDPDZ128rm:
9532   case X86::VGATHERDPDZ256rm:
9533   case X86::VGATHERDPDZrm:
9534   case X86::VGATHERDPDrm:
9535   case X86::VGATHERDPSYrm:
9536   case X86::VGATHERDPSZ128rm:
9537   case X86::VGATHERDPSZ256rm:
9538   case X86::VGATHERDPSZrm:
9539   case X86::VGATHERDPSrm:
9540   case X86::VGATHERPF0DPDm:
9541   case X86::VGATHERPF0DPSm:
9542   case X86::VGATHERPF0QPDm:
9543   case X86::VGATHERPF0QPSm:
9544   case X86::VGATHERPF1DPDm:
9545   case X86::VGATHERPF1DPSm:
9546   case X86::VGATHERPF1QPDm:
9547   case X86::VGATHERPF1QPSm:
9548   case X86::VGATHERQPDYrm:
9549   case X86::VGATHERQPDZ128rm:
9550   case X86::VGATHERQPDZ256rm:
9551   case X86::VGATHERQPDZrm:
9552   case X86::VGATHERQPDrm:
9553   case X86::VGATHERQPSYrm:
9554   case X86::VGATHERQPSZ128rm:
9555   case X86::VGATHERQPSZ256rm:
9556   case X86::VGATHERQPSZrm:
9557   case X86::VGATHERQPSrm:
9558   case X86::VPGATHERDDYrm:
9559   case X86::VPGATHERDDZ128rm:
9560   case X86::VPGATHERDDZ256rm:
9561   case X86::VPGATHERDDZrm:
9562   case X86::VPGATHERDDrm:
9563   case X86::VPGATHERDQYrm:
9564   case X86::VPGATHERDQZ128rm:
9565   case X86::VPGATHERDQZ256rm:
9566   case X86::VPGATHERDQZrm:
9567   case X86::VPGATHERDQrm:
9568   case X86::VPGATHERQDYrm:
9569   case X86::VPGATHERQDZ128rm:
9570   case X86::VPGATHERQDZ256rm:
9571   case X86::VPGATHERQDZrm:
9572   case X86::VPGATHERQDrm:
9573   case X86::VPGATHERQQYrm:
9574   case X86::VPGATHERQQZ128rm:
9575   case X86::VPGATHERQQZ256rm:
9576   case X86::VPGATHERQQZrm:
9577   case X86::VPGATHERQQrm:
9578   case X86::VSCATTERDPDZ128mr:
9579   case X86::VSCATTERDPDZ256mr:
9580   case X86::VSCATTERDPDZmr:
9581   case X86::VSCATTERDPSZ128mr:
9582   case X86::VSCATTERDPSZ256mr:
9583   case X86::VSCATTERDPSZmr:
9584   case X86::VSCATTERPF0DPDm:
9585   case X86::VSCATTERPF0DPSm:
9586   case X86::VSCATTERPF0QPDm:
9587   case X86::VSCATTERPF0QPSm:
9588   case X86::VSCATTERPF1DPDm:
9589   case X86::VSCATTERPF1DPSm:
9590   case X86::VSCATTERPF1QPDm:
9591   case X86::VSCATTERPF1QPSm:
9592   case X86::VSCATTERQPDZ128mr:
9593   case X86::VSCATTERQPDZ256mr:
9594   case X86::VSCATTERQPDZmr:
9595   case X86::VSCATTERQPSZ128mr:
9596   case X86::VSCATTERQPSZ256mr:
9597   case X86::VSCATTERQPSZmr:
9598   case X86::VPSCATTERDDZ128mr:
9599   case X86::VPSCATTERDDZ256mr:
9600   case X86::VPSCATTERDDZmr:
9601   case X86::VPSCATTERDQZ128mr:
9602   case X86::VPSCATTERDQZ256mr:
9603   case X86::VPSCATTERDQZmr:
9604   case X86::VPSCATTERQDZ128mr:
9605   case X86::VPSCATTERQDZ256mr:
9606   case X86::VPSCATTERQDZmr:
9607   case X86::VPSCATTERQQZ128mr:
9608   case X86::VPSCATTERQQZ256mr:
9609   case X86::VPSCATTERQQZmr:
9610     return true;
9611   }
9612 }
9613 
9614 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
9615                                          const MachineRegisterInfo *MRI,
9616                                          const MachineInstr &DefMI,
9617                                          unsigned DefIdx,
9618                                          const MachineInstr &UseMI,
9619                                          unsigned UseIdx) const {
9620   return isHighLatencyDef(DefMI.getOpcode());
9621 }
9622 
9623 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
9624                                            const MachineBasicBlock *MBB) const {
9625   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
9626          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
9627 
9628   // Integer binary math/logic instructions have a third source operand:
9629   // the EFLAGS register. That operand must be both defined here and never
9630   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9631   // not change anything because rearranging the operands could affect other
9632   // instructions that depend on the exact status flags (zero, sign, etc.)
9633   // that are set by using these particular operands with this operation.
9634   const MachineOperand *FlagDef =
9635       Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
9636   assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?");
9637   if (FlagDef && !FlagDef->isDead())
9638     return false;
9639 
9640   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
9641 }
9642 
9643 // TODO: There are many more machine instruction opcodes to match:
9644 //       1. Other data types (integer, vectors)
9645 //       2. Other math / logic operations (xor, or)
9646 //       3. Other forms of the same operation (intrinsics and other variants)
9647 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
9648                                                bool Invert) const {
9649   if (Invert)
9650     return false;
9651   switch (Inst.getOpcode()) {
9652   CASE_ND(ADD8rr)
9653   CASE_ND(ADD16rr)
9654   CASE_ND(ADD32rr)
9655   CASE_ND(ADD64rr)
9656   CASE_ND(AND8rr)
9657   CASE_ND(AND16rr)
9658   CASE_ND(AND32rr)
9659   CASE_ND(AND64rr)
9660   CASE_ND(OR8rr)
9661   CASE_ND(OR16rr)
9662   CASE_ND(OR32rr)
9663   CASE_ND(OR64rr)
9664   CASE_ND(XOR8rr)
9665   CASE_ND(XOR16rr)
9666   CASE_ND(XOR32rr)
9667   CASE_ND(XOR64rr)
9668   CASE_ND(IMUL16rr)
9669   CASE_ND(IMUL32rr)
9670   CASE_ND(IMUL64rr)
9671   case X86::PANDrr:
9672   case X86::PORrr:
9673   case X86::PXORrr:
9674   case X86::ANDPDrr:
9675   case X86::ANDPSrr:
9676   case X86::ORPDrr:
9677   case X86::ORPSrr:
9678   case X86::XORPDrr:
9679   case X86::XORPSrr:
9680   case X86::PADDBrr:
9681   case X86::PADDWrr:
9682   case X86::PADDDrr:
9683   case X86::PADDQrr:
9684   case X86::PMULLWrr:
9685   case X86::PMULLDrr:
9686   case X86::PMAXSBrr:
9687   case X86::PMAXSDrr:
9688   case X86::PMAXSWrr:
9689   case X86::PMAXUBrr:
9690   case X86::PMAXUDrr:
9691   case X86::PMAXUWrr:
9692   case X86::PMINSBrr:
9693   case X86::PMINSDrr:
9694   case X86::PMINSWrr:
9695   case X86::PMINUBrr:
9696   case X86::PMINUDrr:
9697   case X86::PMINUWrr:
9698   case X86::VPANDrr:
9699   case X86::VPANDYrr:
9700   case X86::VPANDDZ128rr:
9701   case X86::VPANDDZ256rr:
9702   case X86::VPANDDZrr:
9703   case X86::VPANDQZ128rr:
9704   case X86::VPANDQZ256rr:
9705   case X86::VPANDQZrr:
9706   case X86::VPORrr:
9707   case X86::VPORYrr:
9708   case X86::VPORDZ128rr:
9709   case X86::VPORDZ256rr:
9710   case X86::VPORDZrr:
9711   case X86::VPORQZ128rr:
9712   case X86::VPORQZ256rr:
9713   case X86::VPORQZrr:
9714   case X86::VPXORrr:
9715   case X86::VPXORYrr:
9716   case X86::VPXORDZ128rr:
9717   case X86::VPXORDZ256rr:
9718   case X86::VPXORDZrr:
9719   case X86::VPXORQZ128rr:
9720   case X86::VPXORQZ256rr:
9721   case X86::VPXORQZrr:
9722   case X86::VANDPDrr:
9723   case X86::VANDPSrr:
9724   case X86::VANDPDYrr:
9725   case X86::VANDPSYrr:
9726   case X86::VANDPDZ128rr:
9727   case X86::VANDPSZ128rr:
9728   case X86::VANDPDZ256rr:
9729   case X86::VANDPSZ256rr:
9730   case X86::VANDPDZrr:
9731   case X86::VANDPSZrr:
9732   case X86::VORPDrr:
9733   case X86::VORPSrr:
9734   case X86::VORPDYrr:
9735   case X86::VORPSYrr:
9736   case X86::VORPDZ128rr:
9737   case X86::VORPSZ128rr:
9738   case X86::VORPDZ256rr:
9739   case X86::VORPSZ256rr:
9740   case X86::VORPDZrr:
9741   case X86::VORPSZrr:
9742   case X86::VXORPDrr:
9743   case X86::VXORPSrr:
9744   case X86::VXORPDYrr:
9745   case X86::VXORPSYrr:
9746   case X86::VXORPDZ128rr:
9747   case X86::VXORPSZ128rr:
9748   case X86::VXORPDZ256rr:
9749   case X86::VXORPSZ256rr:
9750   case X86::VXORPDZrr:
9751   case X86::VXORPSZrr:
9752   case X86::KADDBrr:
9753   case X86::KADDWrr:
9754   case X86::KADDDrr:
9755   case X86::KADDQrr:
9756   case X86::KANDBrr:
9757   case X86::KANDWrr:
9758   case X86::KANDDrr:
9759   case X86::KANDQrr:
9760   case X86::KORBrr:
9761   case X86::KORWrr:
9762   case X86::KORDrr:
9763   case X86::KORQrr:
9764   case X86::KXORBrr:
9765   case X86::KXORWrr:
9766   case X86::KXORDrr:
9767   case X86::KXORQrr:
9768   case X86::VPADDBrr:
9769   case X86::VPADDWrr:
9770   case X86::VPADDDrr:
9771   case X86::VPADDQrr:
9772   case X86::VPADDBYrr:
9773   case X86::VPADDWYrr:
9774   case X86::VPADDDYrr:
9775   case X86::VPADDQYrr:
9776   case X86::VPADDBZ128rr:
9777   case X86::VPADDWZ128rr:
9778   case X86::VPADDDZ128rr:
9779   case X86::VPADDQZ128rr:
9780   case X86::VPADDBZ256rr:
9781   case X86::VPADDWZ256rr:
9782   case X86::VPADDDZ256rr:
9783   case X86::VPADDQZ256rr:
9784   case X86::VPADDBZrr:
9785   case X86::VPADDWZrr:
9786   case X86::VPADDDZrr:
9787   case X86::VPADDQZrr:
9788   case X86::VPMULLWrr:
9789   case X86::VPMULLWYrr:
9790   case X86::VPMULLWZ128rr:
9791   case X86::VPMULLWZ256rr:
9792   case X86::VPMULLWZrr:
9793   case X86::VPMULLDrr:
9794   case X86::VPMULLDYrr:
9795   case X86::VPMULLDZ128rr:
9796   case X86::VPMULLDZ256rr:
9797   case X86::VPMULLDZrr:
9798   case X86::VPMULLQZ128rr:
9799   case X86::VPMULLQZ256rr:
9800   case X86::VPMULLQZrr:
9801   case X86::VPMAXSBrr:
9802   case X86::VPMAXSBYrr:
9803   case X86::VPMAXSBZ128rr:
9804   case X86::VPMAXSBZ256rr:
9805   case X86::VPMAXSBZrr:
9806   case X86::VPMAXSDrr:
9807   case X86::VPMAXSDYrr:
9808   case X86::VPMAXSDZ128rr:
9809   case X86::VPMAXSDZ256rr:
9810   case X86::VPMAXSDZrr:
9811   case X86::VPMAXSQZ128rr:
9812   case X86::VPMAXSQZ256rr:
9813   case X86::VPMAXSQZrr:
9814   case X86::VPMAXSWrr:
9815   case X86::VPMAXSWYrr:
9816   case X86::VPMAXSWZ128rr:
9817   case X86::VPMAXSWZ256rr:
9818   case X86::VPMAXSWZrr:
9819   case X86::VPMAXUBrr:
9820   case X86::VPMAXUBYrr:
9821   case X86::VPMAXUBZ128rr:
9822   case X86::VPMAXUBZ256rr:
9823   case X86::VPMAXUBZrr:
9824   case X86::VPMAXUDrr:
9825   case X86::VPMAXUDYrr:
9826   case X86::VPMAXUDZ128rr:
9827   case X86::VPMAXUDZ256rr:
9828   case X86::VPMAXUDZrr:
9829   case X86::VPMAXUQZ128rr:
9830   case X86::VPMAXUQZ256rr:
9831   case X86::VPMAXUQZrr:
9832   case X86::VPMAXUWrr:
9833   case X86::VPMAXUWYrr:
9834   case X86::VPMAXUWZ128rr:
9835   case X86::VPMAXUWZ256rr:
9836   case X86::VPMAXUWZrr:
9837   case X86::VPMINSBrr:
9838   case X86::VPMINSBYrr:
9839   case X86::VPMINSBZ128rr:
9840   case X86::VPMINSBZ256rr:
9841   case X86::VPMINSBZrr:
9842   case X86::VPMINSDrr:
9843   case X86::VPMINSDYrr:
9844   case X86::VPMINSDZ128rr:
9845   case X86::VPMINSDZ256rr:
9846   case X86::VPMINSDZrr:
9847   case X86::VPMINSQZ128rr:
9848   case X86::VPMINSQZ256rr:
9849   case X86::VPMINSQZrr:
9850   case X86::VPMINSWrr:
9851   case X86::VPMINSWYrr:
9852   case X86::VPMINSWZ128rr:
9853   case X86::VPMINSWZ256rr:
9854   case X86::VPMINSWZrr:
9855   case X86::VPMINUBrr:
9856   case X86::VPMINUBYrr:
9857   case X86::VPMINUBZ128rr:
9858   case X86::VPMINUBZ256rr:
9859   case X86::VPMINUBZrr:
9860   case X86::VPMINUDrr:
9861   case X86::VPMINUDYrr:
9862   case X86::VPMINUDZ128rr:
9863   case X86::VPMINUDZ256rr:
9864   case X86::VPMINUDZrr:
9865   case X86::VPMINUQZ128rr:
9866   case X86::VPMINUQZ256rr:
9867   case X86::VPMINUQZrr:
9868   case X86::VPMINUWrr:
9869   case X86::VPMINUWYrr:
9870   case X86::VPMINUWZ128rr:
9871   case X86::VPMINUWZ256rr:
9872   case X86::VPMINUWZrr:
9873   // Normal min/max instructions are not commutative because of NaN and signed
9874   // zero semantics, but these are. Thus, there's no need to check for global
9875   // relaxed math; the instructions themselves have the properties we need.
9876   case X86::MAXCPDrr:
9877   case X86::MAXCPSrr:
9878   case X86::MAXCSDrr:
9879   case X86::MAXCSSrr:
9880   case X86::MINCPDrr:
9881   case X86::MINCPSrr:
9882   case X86::MINCSDrr:
9883   case X86::MINCSSrr:
9884   case X86::VMAXCPDrr:
9885   case X86::VMAXCPSrr:
9886   case X86::VMAXCPDYrr:
9887   case X86::VMAXCPSYrr:
9888   case X86::VMAXCPDZ128rr:
9889   case X86::VMAXCPSZ128rr:
9890   case X86::VMAXCPDZ256rr:
9891   case X86::VMAXCPSZ256rr:
9892   case X86::VMAXCPDZrr:
9893   case X86::VMAXCPSZrr:
9894   case X86::VMAXCSDrr:
9895   case X86::VMAXCSSrr:
9896   case X86::VMAXCSDZrr:
9897   case X86::VMAXCSSZrr:
9898   case X86::VMINCPDrr:
9899   case X86::VMINCPSrr:
9900   case X86::VMINCPDYrr:
9901   case X86::VMINCPSYrr:
9902   case X86::VMINCPDZ128rr:
9903   case X86::VMINCPSZ128rr:
9904   case X86::VMINCPDZ256rr:
9905   case X86::VMINCPSZ256rr:
9906   case X86::VMINCPDZrr:
9907   case X86::VMINCPSZrr:
9908   case X86::VMINCSDrr:
9909   case X86::VMINCSSrr:
9910   case X86::VMINCSDZrr:
9911   case X86::VMINCSSZrr:
9912   case X86::VMAXCPHZ128rr:
9913   case X86::VMAXCPHZ256rr:
9914   case X86::VMAXCPHZrr:
9915   case X86::VMAXCSHZrr:
9916   case X86::VMINCPHZ128rr:
9917   case X86::VMINCPHZ256rr:
9918   case X86::VMINCPHZrr:
9919   case X86::VMINCSHZrr:
9920     return true;
9921   case X86::ADDPDrr:
9922   case X86::ADDPSrr:
9923   case X86::ADDSDrr:
9924   case X86::ADDSSrr:
9925   case X86::MULPDrr:
9926   case X86::MULPSrr:
9927   case X86::MULSDrr:
9928   case X86::MULSSrr:
9929   case X86::VADDPDrr:
9930   case X86::VADDPSrr:
9931   case X86::VADDPDYrr:
9932   case X86::VADDPSYrr:
9933   case X86::VADDPDZ128rr:
9934   case X86::VADDPSZ128rr:
9935   case X86::VADDPDZ256rr:
9936   case X86::VADDPSZ256rr:
9937   case X86::VADDPDZrr:
9938   case X86::VADDPSZrr:
9939   case X86::VADDSDrr:
9940   case X86::VADDSSrr:
9941   case X86::VADDSDZrr:
9942   case X86::VADDSSZrr:
9943   case X86::VMULPDrr:
9944   case X86::VMULPSrr:
9945   case X86::VMULPDYrr:
9946   case X86::VMULPSYrr:
9947   case X86::VMULPDZ128rr:
9948   case X86::VMULPSZ128rr:
9949   case X86::VMULPDZ256rr:
9950   case X86::VMULPSZ256rr:
9951   case X86::VMULPDZrr:
9952   case X86::VMULPSZrr:
9953   case X86::VMULSDrr:
9954   case X86::VMULSSrr:
9955   case X86::VMULSDZrr:
9956   case X86::VMULSSZrr:
9957   case X86::VADDPHZ128rr:
9958   case X86::VADDPHZ256rr:
9959   case X86::VADDPHZrr:
9960   case X86::VADDSHZrr:
9961   case X86::VMULPHZ128rr:
9962   case X86::VMULPHZ256rr:
9963   case X86::VMULPHZrr:
9964   case X86::VMULSHZrr:
9965     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
9966            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
9967   default:
9968     return false;
9969   }
9970 }
9971 
9972 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
9973 /// register then, if possible, describe the value in terms of the source
9974 /// register.
9975 static std::optional<ParamLoadedValue>
9976 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
9977                          const TargetRegisterInfo *TRI) {
9978   Register DestReg = MI.getOperand(0).getReg();
9979   Register SrcReg = MI.getOperand(1).getReg();
9980 
9981   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9982 
9983   // If the described register is the destination, just return the source.
9984   if (DestReg == DescribedReg)
9985     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9986 
9987   // If the described register is a sub-register of the destination register,
9988   // then pick out the source register's corresponding sub-register.
9989   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9990     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9991     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9992   }
9993 
9994   // The remaining case to consider is when the described register is a
9995   // super-register of the destination register. MOV8rr and MOV16rr does not
9996   // write to any of the other bytes in the register, meaning that we'd have to
9997   // describe the value using a combination of the source register and the
9998   // non-overlapping bits in the described register, which is not currently
9999   // possible.
10000   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
10001       !TRI->isSuperRegister(DestReg, DescribedReg))
10002     return std::nullopt;
10003 
10004   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
10005   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
10006 }
10007 
10008 std::optional<ParamLoadedValue>
10009 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
10010   const MachineOperand *Op = nullptr;
10011   DIExpression *Expr = nullptr;
10012 
10013   const TargetRegisterInfo *TRI = &getRegisterInfo();
10014 
10015   switch (MI.getOpcode()) {
10016   case X86::LEA32r:
10017   case X86::LEA64r:
10018   case X86::LEA64_32r: {
10019     // We may need to describe a 64-bit parameter with a 32-bit LEA.
10020     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10021       return std::nullopt;
10022 
10023     // Operand 4 could be global address. For now we do not support
10024     // such situation.
10025     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
10026       return std::nullopt;
10027 
10028     const MachineOperand &Op1 = MI.getOperand(1);
10029     const MachineOperand &Op2 = MI.getOperand(3);
10030     assert(Op2.isReg() &&
10031            (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
10032 
10033     // Omit situations like:
10034     // %rsi = lea %rsi, 4, ...
10035     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
10036         Op2.getReg() == MI.getOperand(0).getReg())
10037       return std::nullopt;
10038     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
10039               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
10040              (Op2.getReg() != X86::NoRegister &&
10041               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
10042       return std::nullopt;
10043 
10044     int64_t Coef = MI.getOperand(2).getImm();
10045     int64_t Offset = MI.getOperand(4).getImm();
10046     SmallVector<uint64_t, 8> Ops;
10047 
10048     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
10049       Op = &Op1;
10050     } else if (Op1.isFI())
10051       Op = &Op1;
10052 
10053     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
10054       Ops.push_back(dwarf::DW_OP_constu);
10055       Ops.push_back(Coef + 1);
10056       Ops.push_back(dwarf::DW_OP_mul);
10057     } else {
10058       if (Op && Op2.getReg() != X86::NoRegister) {
10059         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
10060         if (dwarfReg < 0)
10061           return std::nullopt;
10062         else if (dwarfReg < 32) {
10063           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
10064           Ops.push_back(0);
10065         } else {
10066           Ops.push_back(dwarf::DW_OP_bregx);
10067           Ops.push_back(dwarfReg);
10068           Ops.push_back(0);
10069         }
10070       } else if (!Op) {
10071         assert(Op2.getReg() != X86::NoRegister);
10072         Op = &Op2;
10073       }
10074 
10075       if (Coef > 1) {
10076         assert(Op2.getReg() != X86::NoRegister);
10077         Ops.push_back(dwarf::DW_OP_constu);
10078         Ops.push_back(Coef);
10079         Ops.push_back(dwarf::DW_OP_mul);
10080       }
10081 
10082       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
10083           Op2.getReg() != X86::NoRegister) {
10084         Ops.push_back(dwarf::DW_OP_plus);
10085       }
10086     }
10087 
10088     DIExpression::appendOffset(Ops, Offset);
10089     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
10090 
10091     return ParamLoadedValue(*Op, Expr);
10092   }
10093   case X86::MOV8ri:
10094   case X86::MOV16ri:
10095     // TODO: Handle MOV8ri and MOV16ri.
10096     return std::nullopt;
10097   case X86::MOV32ri:
10098   case X86::MOV64ri:
10099   case X86::MOV64ri32:
10100     // MOV32ri may be used for producing zero-extended 32-bit immediates in
10101     // 64-bit parameters, so we need to consider super-registers.
10102     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10103       return std::nullopt;
10104     return ParamLoadedValue(MI.getOperand(1), Expr);
10105   case X86::MOV8rr:
10106   case X86::MOV16rr:
10107   case X86::MOV32rr:
10108   case X86::MOV64rr:
10109     return describeMOVrrLoadedValue(MI, Reg, TRI);
10110   case X86::XOR32rr: {
10111     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10112     // super-registers.
10113     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10114       return std::nullopt;
10115     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
10116       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
10117     return std::nullopt;
10118   }
10119   case X86::MOVSX64rr32: {
10120     // We may need to describe the lower 32 bits of the MOVSX; for example, in
10121     // cases like this:
10122     //
10123     //  $ebx = [...]
10124     //  $rdi = MOVSX64rr32 $ebx
10125     //  $esi = MOV32rr $edi
10126     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
10127       return std::nullopt;
10128 
10129     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
10130 
10131     // If the described register is the destination register we need to
10132     // sign-extend the source register from 32 bits. The other case we handle
10133     // is when the described register is the 32-bit sub-register of the
10134     // destination register, in case we just need to return the source
10135     // register.
10136     if (Reg == MI.getOperand(0).getReg())
10137       Expr = DIExpression::appendExt(Expr, 32, 64, true);
10138     else
10139       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
10140              "Unhandled sub-register case for MOVSX64rr32");
10141 
10142     return ParamLoadedValue(MI.getOperand(1), Expr);
10143   }
10144   default:
10145     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
10146     return TargetInstrInfo::describeLoadedValue(MI, Reg);
10147   }
10148 }
10149 
10150 /// This is an architecture-specific helper function of reassociateOps.
10151 /// Set special operand attributes for new instructions after reassociation.
10152 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
10153                                          MachineInstr &OldMI2,
10154                                          MachineInstr &NewMI1,
10155                                          MachineInstr &NewMI2) const {
10156   // Integer instructions may define an implicit EFLAGS dest register operand.
10157   MachineOperand *OldFlagDef1 =
10158       OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10159   MachineOperand *OldFlagDef2 =
10160       OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10161 
10162   assert(!OldFlagDef1 == !OldFlagDef2 &&
10163          "Unexpected instruction type for reassociation");
10164 
10165   if (!OldFlagDef1 || !OldFlagDef2)
10166     return;
10167 
10168   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
10169          "Must have dead EFLAGS operand in reassociable instruction");
10170 
10171   MachineOperand *NewFlagDef1 =
10172       NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10173   MachineOperand *NewFlagDef2 =
10174       NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10175 
10176   assert(NewFlagDef1 && NewFlagDef2 &&
10177          "Unexpected operand in reassociable instruction");
10178 
10179   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10180   // of this pass or other passes. The EFLAGS operands must be dead in these new
10181   // instructions because the EFLAGS operands in the original instructions must
10182   // be dead in order for reassociation to occur.
10183   NewFlagDef1->setIsDead();
10184   NewFlagDef2->setIsDead();
10185 }
10186 
10187 std::pair<unsigned, unsigned>
10188 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
10189   return std::make_pair(TF, 0u);
10190 }
10191 
10192 ArrayRef<std::pair<unsigned, const char *>>
10193 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
10194   using namespace X86II;
10195   static const std::pair<unsigned, const char *> TargetFlags[] = {
10196       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10197       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10198       {MO_GOT, "x86-got"},
10199       {MO_GOTOFF, "x86-gotoff"},
10200       {MO_GOTPCREL, "x86-gotpcrel"},
10201       {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
10202       {MO_PLT, "x86-plt"},
10203       {MO_TLSGD, "x86-tlsgd"},
10204       {MO_TLSLD, "x86-tlsld"},
10205       {MO_TLSLDM, "x86-tlsldm"},
10206       {MO_GOTTPOFF, "x86-gottpoff"},
10207       {MO_INDNTPOFF, "x86-indntpoff"},
10208       {MO_TPOFF, "x86-tpoff"},
10209       {MO_DTPOFF, "x86-dtpoff"},
10210       {MO_NTPOFF, "x86-ntpoff"},
10211       {MO_GOTNTPOFF, "x86-gotntpoff"},
10212       {MO_DLLIMPORT, "x86-dllimport"},
10213       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10214       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10215       {MO_TLVP, "x86-tlvp"},
10216       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10217       {MO_SECREL, "x86-secrel"},
10218       {MO_COFFSTUB, "x86-coffstub"}};
10219   return ArrayRef(TargetFlags);
10220 }
10221 
10222 namespace {
10223 /// Create Global Base Reg pass. This initializes the PIC
10224 /// global base register for x86-32.
10225 struct CGBR : public MachineFunctionPass {
10226   static char ID;
10227   CGBR() : MachineFunctionPass(ID) {}
10228 
10229   bool runOnMachineFunction(MachineFunction &MF) override {
10230     const X86TargetMachine *TM =
10231         static_cast<const X86TargetMachine *>(&MF.getTarget());
10232     const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10233 
10234     // Only emit a global base reg in PIC mode.
10235     if (!TM->isPositionIndependent())
10236       return false;
10237 
10238     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10239     Register GlobalBaseReg = X86FI->getGlobalBaseReg();
10240 
10241     // If we didn't need a GlobalBaseReg, don't insert code.
10242     if (GlobalBaseReg == 0)
10243       return false;
10244 
10245     // Insert the set of GlobalBaseReg into the first MBB of the function
10246     MachineBasicBlock &FirstMBB = MF.front();
10247     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
10248     DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10249     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10250     const X86InstrInfo *TII = STI.getInstrInfo();
10251 
10252     Register PC;
10253     if (STI.isPICStyleGOT())
10254       PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10255     else
10256       PC = GlobalBaseReg;
10257 
10258     if (STI.is64Bit()) {
10259       if (TM->getCodeModel() == CodeModel::Large) {
10260         // In the large code model, we are aiming for this code, though the
10261         // register allocation may vary:
10262         //   leaq .LN$pb(%rip), %rax
10263         //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10264         //   addq %rcx, %rax
10265         // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10266         Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10267         Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10268         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
10269             .addReg(X86::RIP)
10270             .addImm(0)
10271             .addReg(0)
10272             .addSym(MF.getPICBaseSymbol())
10273             .addReg(0);
10274         std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
10275         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
10276             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10277                                X86II::MO_PIC_BASE_OFFSET);
10278         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
10279             .addReg(PBReg, RegState::Kill)
10280             .addReg(GOTReg, RegState::Kill);
10281       } else {
10282         // In other code models, use a RIP-relative LEA to materialize the
10283         // GOT.
10284         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
10285             .addReg(X86::RIP)
10286             .addImm(0)
10287             .addReg(0)
10288             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10289             .addReg(0);
10290       }
10291     } else {
10292       // Operand of MovePCtoStack is completely ignored by asm printer. It's
10293       // only used in JIT code emission as displacement to pc.
10294       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10295 
10296       // If we're using vanilla 'GOT' PIC style, we should use relative
10297       // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10298       if (STI.isPICStyleGOT()) {
10299         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10300         // %some_register
10301         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10302             .addReg(PC)
10303             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10304                                X86II::MO_GOT_ABSOLUTE_ADDRESS);
10305       }
10306     }
10307 
10308     return true;
10309   }
10310 
10311   StringRef getPassName() const override {
10312     return "X86 PIC Global Base Reg Initialization";
10313   }
10314 
10315   void getAnalysisUsage(AnalysisUsage &AU) const override {
10316     AU.setPreservesCFG();
10317     MachineFunctionPass::getAnalysisUsage(AU);
10318   }
10319 };
10320 } // namespace
10321 
10322 char CGBR::ID = 0;
10323 FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
10324 
10325 namespace {
10326 struct LDTLSCleanup : public MachineFunctionPass {
10327   static char ID;
10328   LDTLSCleanup() : MachineFunctionPass(ID) {}
10329 
10330   bool runOnMachineFunction(MachineFunction &MF) override {
10331     if (skipFunction(MF.getFunction()))
10332       return false;
10333 
10334     X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
10335     if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10336       // No point folding accesses if there isn't at least two.
10337       return false;
10338     }
10339 
10340     MachineDominatorTree *DT =
10341         &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
10342     return VisitNode(DT->getRootNode(), 0);
10343   }
10344 
10345   // Visit the dominator subtree rooted at Node in pre-order.
10346   // If TLSBaseAddrReg is non-null, then use that to replace any
10347   // TLS_base_addr instructions. Otherwise, create the register
10348   // when the first such instruction is seen, and then use it
10349   // as we encounter more instructions.
10350   bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
10351     MachineBasicBlock *BB = Node->getBlock();
10352     bool Changed = false;
10353 
10354     // Traverse the current block.
10355     for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10356          ++I) {
10357       switch (I->getOpcode()) {
10358       case X86::TLS_base_addr32:
10359       case X86::TLS_base_addr64:
10360         if (TLSBaseAddrReg)
10361           I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
10362         else
10363           I = SetRegister(*I, &TLSBaseAddrReg);
10364         Changed = true;
10365         break;
10366       default:
10367         break;
10368       }
10369     }
10370 
10371     // Visit the children of this block in the dominator tree.
10372     for (auto &I : *Node) {
10373       Changed |= VisitNode(I, TLSBaseAddrReg);
10374     }
10375 
10376     return Changed;
10377   }
10378 
10379   // Replace the TLS_base_addr instruction I with a copy from
10380   // TLSBaseAddrReg, returning the new instruction.
10381   MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10382                                        unsigned TLSBaseAddrReg) {
10383     MachineFunction *MF = I.getParent()->getParent();
10384     const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10385     const bool is64Bit = STI.is64Bit();
10386     const X86InstrInfo *TII = STI.getInstrInfo();
10387 
10388     // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10389     MachineInstr *Copy =
10390         BuildMI(*I.getParent(), I, I.getDebugLoc(),
10391                 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10392             .addReg(TLSBaseAddrReg);
10393 
10394     // Erase the TLS_base_addr instruction.
10395     I.eraseFromParent();
10396 
10397     return Copy;
10398   }
10399 
10400   // Create a virtual register in *TLSBaseAddrReg, and populate it by
10401   // inserting a copy instruction after I. Returns the new instruction.
10402   MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
10403     MachineFunction *MF = I.getParent()->getParent();
10404     const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10405     const bool is64Bit = STI.is64Bit();
10406     const X86InstrInfo *TII = STI.getInstrInfo();
10407 
10408     // Create a virtual register for the TLS base address.
10409     MachineRegisterInfo &RegInfo = MF->getRegInfo();
10410     *TLSBaseAddrReg = RegInfo.createVirtualRegister(
10411         is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10412 
10413     // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10414     MachineInstr *Next = I.getNextNode();
10415     MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10416                                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10417                              .addReg(is64Bit ? X86::RAX : X86::EAX);
10418 
10419     return Copy;
10420   }
10421 
10422   StringRef getPassName() const override {
10423     return "Local Dynamic TLS Access Clean-up";
10424   }
10425 
10426   void getAnalysisUsage(AnalysisUsage &AU) const override {
10427     AU.setPreservesCFG();
10428     AU.addRequired<MachineDominatorTreeWrapperPass>();
10429     MachineFunctionPass::getAnalysisUsage(AU);
10430   }
10431 };
10432 } // namespace
10433 
10434 char LDTLSCleanup::ID = 0;
10435 FunctionPass *llvm::createCleanupLocalDynamicTLSPass() {
10436   return new LDTLSCleanup();
10437 }
10438 
10439 /// Constants defining how certain sequences should be outlined.
10440 ///
10441 /// \p MachineOutlinerDefault implies that the function is called with a call
10442 /// instruction, and a return must be emitted for the outlined function frame.
10443 ///
10444 /// That is,
10445 ///
10446 /// I1                                 OUTLINED_FUNCTION:
10447 /// I2 --> call OUTLINED_FUNCTION       I1
10448 /// I3                                  I2
10449 ///                                     I3
10450 ///                                     ret
10451 ///
10452 /// * Call construction overhead: 1 (call instruction)
10453 /// * Frame construction overhead: 1 (return instruction)
10454 ///
10455 /// \p MachineOutlinerTailCall implies that the function is being tail called.
10456 /// A jump is emitted instead of a call, and the return is already present in
10457 /// the outlined sequence. That is,
10458 ///
10459 /// I1                                 OUTLINED_FUNCTION:
10460 /// I2 --> jmp OUTLINED_FUNCTION       I1
10461 /// ret                                I2
10462 ///                                    ret
10463 ///
10464 /// * Call construction overhead: 1 (jump instruction)
10465 /// * Frame construction overhead: 0 (don't need to return)
10466 ///
10467 enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall };
10468 
10469 std::optional<outliner::OutlinedFunction>
10470 X86InstrInfo::getOutliningCandidateInfo(
10471     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
10472   unsigned SequenceSize = 0;
10473   for (auto &MI : RepeatedSequenceLocs[0]) {
10474     // FIXME: x86 doesn't implement getInstSizeInBytes, so
10475     // we can't tell the cost.  Just assume each instruction
10476     // is one byte.
10477     if (MI.isDebugInstr() || MI.isKill())
10478       continue;
10479     SequenceSize += 1;
10480   }
10481 
10482   // We check to see if CFI Instructions are present, and if they are
10483   // we find the number of CFI Instructions in the candidates.
10484   unsigned CFICount = 0;
10485   for (auto &I : RepeatedSequenceLocs[0]) {
10486     if (I.isCFIInstruction())
10487       CFICount++;
10488   }
10489 
10490   // We compare the number of found CFI Instructions to  the number of CFI
10491   // instructions in the parent function for each candidate.  We must check this
10492   // since if we outline one of the CFI instructions in a function, we have to
10493   // outline them all for correctness. If we do not, the address offsets will be
10494   // incorrect between the two sections of the program.
10495   for (outliner::Candidate &C : RepeatedSequenceLocs) {
10496     std::vector<MCCFIInstruction> CFIInstructions =
10497         C.getMF()->getFrameInstructions();
10498 
10499     if (CFICount > 0 && CFICount != CFIInstructions.size())
10500       return std::nullopt;
10501   }
10502 
10503   // FIXME: Use real size in bytes for call and ret instructions.
10504   if (RepeatedSequenceLocs[0].back().isTerminator()) {
10505     for (outliner::Candidate &C : RepeatedSequenceLocs)
10506       C.setCallInfo(MachineOutlinerTailCall, 1);
10507 
10508     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
10509                                       0, // Number of bytes to emit frame.
10510                                       MachineOutlinerTailCall // Type of frame.
10511     );
10512   }
10513 
10514   if (CFICount > 0)
10515     return std::nullopt;
10516 
10517   for (outliner::Candidate &C : RepeatedSequenceLocs)
10518     C.setCallInfo(MachineOutlinerDefault, 1);
10519 
10520   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
10521                                     MachineOutlinerDefault);
10522 }
10523 
10524 bool X86InstrInfo::isFunctionSafeToOutlineFrom(
10525     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
10526   const Function &F = MF.getFunction();
10527 
10528   // Does the function use a red zone? If it does, then we can't risk messing
10529   // with the stack.
10530   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
10531     // It could have a red zone. If it does, then we don't want to touch it.
10532     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10533     if (!X86FI || X86FI->getUsesRedZone())
10534       return false;
10535   }
10536 
10537   // If we *don't* want to outline from things that could potentially be deduped
10538   // then return false.
10539   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10540     return false;
10541 
10542   // This function is viable for outlining, so return true.
10543   return true;
10544 }
10545 
10546 outliner::InstrType
10547 X86InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
10548                                    unsigned Flags) const {
10549   MachineInstr &MI = *MIT;
10550 
10551   // Is this a terminator for a basic block?
10552   if (MI.isTerminator())
10553     // TargetInstrInfo::getOutliningType has already filtered out anything
10554     // that would break this, so we can allow it here.
10555     return outliner::InstrType::Legal;
10556 
10557   // Don't outline anything that modifies or reads from the stack pointer.
10558   //
10559   // FIXME: There are instructions which are being manually built without
10560   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10561   // able to remove the extra checks once those are fixed up. For example,
10562   // sometimes we might get something like %rax = POP64r 1. This won't be
10563   // caught by modifiesRegister or readsRegister even though the instruction
10564   // really ought to be formed so that modifiesRegister/readsRegister would
10565   // catch it.
10566   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10567       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10568       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10569     return outliner::InstrType::Illegal;
10570 
10571   // Outlined calls change the instruction pointer, so don't read from it.
10572   if (MI.readsRegister(X86::RIP, &RI) ||
10573       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10574       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10575     return outliner::InstrType::Illegal;
10576 
10577   // Don't outline CFI instructions.
10578   if (MI.isCFIInstruction())
10579     return outliner::InstrType::Illegal;
10580 
10581   return outliner::InstrType::Legal;
10582 }
10583 
10584 void X86InstrInfo::buildOutlinedFrame(
10585     MachineBasicBlock &MBB, MachineFunction &MF,
10586     const outliner::OutlinedFunction &OF) const {
10587   // If we're a tail call, we already have a return, so don't do anything.
10588   if (OF.FrameConstructionID == MachineOutlinerTailCall)
10589     return;
10590 
10591   // We're a normal call, so our sequence doesn't have a return instruction.
10592   // Add it in.
10593   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
10594   MBB.insert(MBB.end(), retq);
10595 }
10596 
10597 MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall(
10598     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
10599     MachineFunction &MF, outliner::Candidate &C) const {
10600   // Is it a tail call?
10601   if (C.CallConstructionID == MachineOutlinerTailCall) {
10602     // Yes, just insert a JMP.
10603     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
10604                             .addGlobalAddress(M.getNamedValue(MF.getName())));
10605   } else {
10606     // No, insert a call.
10607     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10608                             .addGlobalAddress(M.getNamedValue(MF.getName())));
10609   }
10610 
10611   return It;
10612 }
10613 
10614 void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB,
10615                                       MachineBasicBlock::iterator Iter,
10616                                       DebugLoc &DL,
10617                                       bool AllowSideEffects) const {
10618   const MachineFunction &MF = *MBB.getParent();
10619   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
10620   const TargetRegisterInfo &TRI = getRegisterInfo();
10621 
10622   if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10623     // FIXME: Should we ignore MMX registers?
10624     return;
10625 
10626   if (TRI.isGeneralPurposeRegister(MF, Reg)) {
10627     // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10628     // upper bits of a 64-bit register automagically.
10629     Reg = getX86SubSuperRegister(Reg, 32);
10630 
10631     if (!AllowSideEffects)
10632       // XOR affects flags, so use a MOV instead.
10633       BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0);
10634     else
10635       BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg)
10636           .addReg(Reg, RegState::Undef)
10637           .addReg(Reg, RegState::Undef);
10638   } else if (X86::VR128RegClass.contains(Reg)) {
10639     // XMM#
10640     if (!ST.hasSSE1())
10641       return;
10642 
10643     // PXOR is safe to use because it doesn't affect flags.
10644     BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg)
10645         .addReg(Reg, RegState::Undef)
10646         .addReg(Reg, RegState::Undef);
10647   } else if (X86::VR256RegClass.contains(Reg)) {
10648     // YMM#
10649     if (!ST.hasAVX())
10650       return;
10651 
10652     // VPXOR is safe to use because it doesn't affect flags.
10653     BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg)
10654         .addReg(Reg, RegState::Undef)
10655         .addReg(Reg, RegState::Undef);
10656   } else if (X86::VR512RegClass.contains(Reg)) {
10657     // ZMM#
10658     if (!ST.hasAVX512())
10659       return;
10660 
10661     // VPXORY is safe to use because it doesn't affect flags.
10662     BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg)
10663         .addReg(Reg, RegState::Undef)
10664         .addReg(Reg, RegState::Undef);
10665   } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) ||
10666              X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) ||
10667              X86::VK16RegClass.contains(Reg)) {
10668     if (!ST.hasVLX())
10669       return;
10670 
10671     // KXOR is safe to use because it doesn't affect flags.
10672     unsigned Op = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
10673     BuildMI(MBB, Iter, DL, get(Op), Reg)
10674         .addReg(Reg, RegState::Undef)
10675         .addReg(Reg, RegState::Undef);
10676   }
10677 }
10678 
10679 bool X86InstrInfo::getMachineCombinerPatterns(
10680     MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
10681     bool DoRegPressureReduce) const {
10682   unsigned Opc = Root.getOpcode();
10683   switch (Opc) {
10684   case X86::VPDPWSSDrr:
10685   case X86::VPDPWSSDrm:
10686   case X86::VPDPWSSDYrr:
10687   case X86::VPDPWSSDYrm: {
10688     if (!Subtarget.hasFastDPWSSD()) {
10689       Patterns.push_back(X86MachineCombinerPattern::DPWSSD);
10690       return true;
10691     }
10692     break;
10693   }
10694   case X86::VPDPWSSDZ128r:
10695   case X86::VPDPWSSDZ128m:
10696   case X86::VPDPWSSDZ256r:
10697   case X86::VPDPWSSDZ256m:
10698   case X86::VPDPWSSDZr:
10699   case X86::VPDPWSSDZm: {
10700    if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) {
10701      Patterns.push_back(X86MachineCombinerPattern::DPWSSD);
10702      return true;
10703     }
10704     break;
10705   }
10706   }
10707   return TargetInstrInfo::getMachineCombinerPatterns(Root,
10708                                                      Patterns, DoRegPressureReduce);
10709 }
10710 
10711 static void
10712 genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII,
10713                              SmallVectorImpl<MachineInstr *> &InsInstrs,
10714                              SmallVectorImpl<MachineInstr *> &DelInstrs,
10715                              DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
10716   MachineFunction *MF = Root.getMF();
10717   MachineRegisterInfo &RegInfo = MF->getRegInfo();
10718 
10719   unsigned Opc = Root.getOpcode();
10720   unsigned AddOpc = 0;
10721   unsigned MaddOpc = 0;
10722   switch (Opc) {
10723   default:
10724     assert(false && "It should not reach here");
10725     break;
10726   // vpdpwssd xmm2,xmm3,xmm1
10727   // -->
10728   // vpmaddwd xmm3,xmm3,xmm1
10729   // vpaddd xmm2,xmm2,xmm3
10730   case X86::VPDPWSSDrr:
10731     MaddOpc = X86::VPMADDWDrr;
10732     AddOpc = X86::VPADDDrr;
10733     break;
10734   case X86::VPDPWSSDrm:
10735     MaddOpc = X86::VPMADDWDrm;
10736     AddOpc = X86::VPADDDrr;
10737     break;
10738   case X86::VPDPWSSDZ128r:
10739     MaddOpc = X86::VPMADDWDZ128rr;
10740     AddOpc = X86::VPADDDZ128rr;
10741     break;
10742   case X86::VPDPWSSDZ128m:
10743     MaddOpc = X86::VPMADDWDZ128rm;
10744     AddOpc = X86::VPADDDZ128rr;
10745     break;
10746   // vpdpwssd ymm2,ymm3,ymm1
10747   // -->
10748   // vpmaddwd ymm3,ymm3,ymm1
10749   // vpaddd ymm2,ymm2,ymm3
10750   case X86::VPDPWSSDYrr:
10751     MaddOpc = X86::VPMADDWDYrr;
10752     AddOpc = X86::VPADDDYrr;
10753     break;
10754   case X86::VPDPWSSDYrm:
10755     MaddOpc = X86::VPMADDWDYrm;
10756     AddOpc = X86::VPADDDYrr;
10757     break;
10758   case X86::VPDPWSSDZ256r:
10759     MaddOpc = X86::VPMADDWDZ256rr;
10760     AddOpc = X86::VPADDDZ256rr;
10761     break;
10762   case X86::VPDPWSSDZ256m:
10763     MaddOpc = X86::VPMADDWDZ256rm;
10764     AddOpc = X86::VPADDDZ256rr;
10765     break;
10766   // vpdpwssd zmm2,zmm3,zmm1
10767   // -->
10768   // vpmaddwd zmm3,zmm3,zmm1
10769   // vpaddd zmm2,zmm2,zmm3
10770   case X86::VPDPWSSDZr:
10771     MaddOpc = X86::VPMADDWDZrr;
10772     AddOpc = X86::VPADDDZrr;
10773     break;
10774   case X86::VPDPWSSDZm:
10775     MaddOpc = X86::VPMADDWDZrm;
10776     AddOpc = X86::VPADDDZrr;
10777     break;
10778   }
10779   // Create vpmaddwd.
10780   const TargetRegisterClass *RC =
10781       RegInfo.getRegClass(Root.getOperand(0).getReg());
10782   Register NewReg = RegInfo.createVirtualRegister(RC);
10783   MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root);
10784   Madd->setDesc(TII.get(MaddOpc));
10785   Madd->untieRegOperand(1);
10786   Madd->removeOperand(1);
10787   Madd->getOperand(0).setReg(NewReg);
10788   InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0));
10789   // Create vpaddd.
10790   Register DstReg = Root.getOperand(0).getReg();
10791   bool IsKill = Root.getOperand(1).isKill();
10792   MachineInstr *Add =
10793       BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg)
10794           .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill))
10795           .addReg(Madd->getOperand(0).getReg(), getKillRegState(true));
10796   InsInstrs.push_back(Madd);
10797   InsInstrs.push_back(Add);
10798   DelInstrs.push_back(&Root);
10799 }
10800 
10801 void X86InstrInfo::genAlternativeCodeSequence(
10802     MachineInstr &Root, unsigned Pattern,
10803     SmallVectorImpl<MachineInstr *> &InsInstrs,
10804     SmallVectorImpl<MachineInstr *> &DelInstrs,
10805     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
10806   switch (Pattern) {
10807   default:
10808     // Reassociate instructions.
10809     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
10810                                                 DelInstrs, InstrIdxForVirtReg);
10811     return;
10812   case X86MachineCombinerPattern::DPWSSD:
10813     genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs,
10814                                  InstrIdxForVirtReg);
10815     return;
10816   }
10817 }
10818 
10819 // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10820 void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
10821                                          int FI) const {
10822   X86AddressMode M;
10823   M.BaseType = X86AddressMode::FrameIndexBase;
10824   M.Base.FrameIndex = FI;
10825   M.getFullAddress(Ops);
10826 }
10827 
10828 #define GET_INSTRINFO_HELPERS
10829 #include "X86GenInstrInfo.inc"
10830