1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCExpr.h" 36 #include "llvm/MC/MCInst.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "x86-instr-info" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "X86GenInstrInfo.inc" 49 50 static cl::opt<bool> 51 NoFusing("disable-spill-fusing", 52 cl::desc("Disable fusing of spill code into instructions"), 53 cl::Hidden); 54 static cl::opt<bool> 55 PrintFailedFusing("print-failed-fuse-candidates", 56 cl::desc("Print instructions that the allocator wants to" 57 " fuse, but the X86 backend currently can't"), 58 cl::Hidden); 59 static cl::opt<bool> 60 ReMatPICStubLoad("remat-pic-stub-load", 61 cl::desc("Re-materialize load from stub in PIC mode"), 62 cl::init(false), cl::Hidden); 63 static cl::opt<unsigned> 64 PartialRegUpdateClearance("partial-reg-update-clearance", 65 cl::desc("Clearance between two register writes " 66 "for inserting XOR to avoid partial " 67 "register update"), 68 cl::init(64), cl::Hidden); 69 static cl::opt<unsigned> 70 UndefRegClearance("undef-reg-clearance", 71 cl::desc("How many idle instructions we would like before " 72 "certain undef register reads"), 73 cl::init(128), cl::Hidden); 74 75 76 // Pin the vtable to this file. 77 void X86InstrInfo::anchor() {} 78 79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 80 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 81 : X86::ADJCALLSTACKDOWN32), 82 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 83 : X86::ADJCALLSTACKUP32), 84 X86::CATCHRET, 85 (STI.is64Bit() ? X86::RETQ : X86::RETL)), 86 Subtarget(STI), RI(STI.getTargetTriple()) { 87 } 88 89 bool 90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 91 Register &SrcReg, Register &DstReg, 92 unsigned &SubIdx) const { 93 switch (MI.getOpcode()) { 94 default: break; 95 case X86::MOVSX16rr8: 96 case X86::MOVZX16rr8: 97 case X86::MOVSX32rr8: 98 case X86::MOVZX32rr8: 99 case X86::MOVSX64rr8: 100 if (!Subtarget.is64Bit()) 101 // It's not always legal to reference the low 8-bit of the larger 102 // register in 32-bit mode. 103 return false; 104 LLVM_FALLTHROUGH; 105 case X86::MOVSX32rr16: 106 case X86::MOVZX32rr16: 107 case X86::MOVSX64rr16: 108 case X86::MOVSX64rr32: { 109 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 110 // Be conservative. 111 return false; 112 SrcReg = MI.getOperand(1).getReg(); 113 DstReg = MI.getOperand(0).getReg(); 114 switch (MI.getOpcode()) { 115 default: llvm_unreachable("Unreachable!"); 116 case X86::MOVSX16rr8: 117 case X86::MOVZX16rr8: 118 case X86::MOVSX32rr8: 119 case X86::MOVZX32rr8: 120 case X86::MOVSX64rr8: 121 SubIdx = X86::sub_8bit; 122 break; 123 case X86::MOVSX32rr16: 124 case X86::MOVZX32rr16: 125 case X86::MOVSX64rr16: 126 SubIdx = X86::sub_16bit; 127 break; 128 case X86::MOVSX64rr32: 129 SubIdx = X86::sub_32bit; 130 break; 131 } 132 return true; 133 } 134 } 135 return false; 136 } 137 138 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { 139 switch (MI.getOpcode()) { 140 default: 141 // By default, assume that the instruction is not data invariant. 142 return false; 143 144 // Some target-independent operations that trivially lower to data-invariant 145 // instructions. 146 case TargetOpcode::COPY: 147 case TargetOpcode::INSERT_SUBREG: 148 case TargetOpcode::SUBREG_TO_REG: 149 return true; 150 151 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 152 // However, they set flags and are perhaps the most surprisingly constant 153 // time operations so we call them out here separately. 154 case X86::IMUL16rr: 155 case X86::IMUL16rri8: 156 case X86::IMUL16rri: 157 case X86::IMUL32rr: 158 case X86::IMUL32rri8: 159 case X86::IMUL32rri: 160 case X86::IMUL64rr: 161 case X86::IMUL64rri32: 162 case X86::IMUL64rri8: 163 164 // Bit scanning and counting instructions that are somewhat surprisingly 165 // constant time as they scan across bits and do other fairly complex 166 // operations like popcnt, but are believed to be constant time on x86. 167 // However, these set flags. 168 case X86::BSF16rr: 169 case X86::BSF32rr: 170 case X86::BSF64rr: 171 case X86::BSR16rr: 172 case X86::BSR32rr: 173 case X86::BSR64rr: 174 case X86::LZCNT16rr: 175 case X86::LZCNT32rr: 176 case X86::LZCNT64rr: 177 case X86::POPCNT16rr: 178 case X86::POPCNT32rr: 179 case X86::POPCNT64rr: 180 case X86::TZCNT16rr: 181 case X86::TZCNT32rr: 182 case X86::TZCNT64rr: 183 184 // Bit manipulation instructions are effectively combinations of basic 185 // arithmetic ops, and should still execute in constant time. These also 186 // set flags. 187 case X86::BLCFILL32rr: 188 case X86::BLCFILL64rr: 189 case X86::BLCI32rr: 190 case X86::BLCI64rr: 191 case X86::BLCIC32rr: 192 case X86::BLCIC64rr: 193 case X86::BLCMSK32rr: 194 case X86::BLCMSK64rr: 195 case X86::BLCS32rr: 196 case X86::BLCS64rr: 197 case X86::BLSFILL32rr: 198 case X86::BLSFILL64rr: 199 case X86::BLSI32rr: 200 case X86::BLSI64rr: 201 case X86::BLSIC32rr: 202 case X86::BLSIC64rr: 203 case X86::BLSMSK32rr: 204 case X86::BLSMSK64rr: 205 case X86::BLSR32rr: 206 case X86::BLSR64rr: 207 case X86::TZMSK32rr: 208 case X86::TZMSK64rr: 209 210 // Bit extracting and clearing instructions should execute in constant time, 211 // and set flags. 212 case X86::BEXTR32rr: 213 case X86::BEXTR64rr: 214 case X86::BEXTRI32ri: 215 case X86::BEXTRI64ri: 216 case X86::BZHI32rr: 217 case X86::BZHI64rr: 218 219 // Shift and rotate. 220 case X86::ROL8r1: 221 case X86::ROL16r1: 222 case X86::ROL32r1: 223 case X86::ROL64r1: 224 case X86::ROL8rCL: 225 case X86::ROL16rCL: 226 case X86::ROL32rCL: 227 case X86::ROL64rCL: 228 case X86::ROL8ri: 229 case X86::ROL16ri: 230 case X86::ROL32ri: 231 case X86::ROL64ri: 232 case X86::ROR8r1: 233 case X86::ROR16r1: 234 case X86::ROR32r1: 235 case X86::ROR64r1: 236 case X86::ROR8rCL: 237 case X86::ROR16rCL: 238 case X86::ROR32rCL: 239 case X86::ROR64rCL: 240 case X86::ROR8ri: 241 case X86::ROR16ri: 242 case X86::ROR32ri: 243 case X86::ROR64ri: 244 case X86::SAR8r1: 245 case X86::SAR16r1: 246 case X86::SAR32r1: 247 case X86::SAR64r1: 248 case X86::SAR8rCL: 249 case X86::SAR16rCL: 250 case X86::SAR32rCL: 251 case X86::SAR64rCL: 252 case X86::SAR8ri: 253 case X86::SAR16ri: 254 case X86::SAR32ri: 255 case X86::SAR64ri: 256 case X86::SHL8r1: 257 case X86::SHL16r1: 258 case X86::SHL32r1: 259 case X86::SHL64r1: 260 case X86::SHL8rCL: 261 case X86::SHL16rCL: 262 case X86::SHL32rCL: 263 case X86::SHL64rCL: 264 case X86::SHL8ri: 265 case X86::SHL16ri: 266 case X86::SHL32ri: 267 case X86::SHL64ri: 268 case X86::SHR8r1: 269 case X86::SHR16r1: 270 case X86::SHR32r1: 271 case X86::SHR64r1: 272 case X86::SHR8rCL: 273 case X86::SHR16rCL: 274 case X86::SHR32rCL: 275 case X86::SHR64rCL: 276 case X86::SHR8ri: 277 case X86::SHR16ri: 278 case X86::SHR32ri: 279 case X86::SHR64ri: 280 case X86::SHLD16rrCL: 281 case X86::SHLD32rrCL: 282 case X86::SHLD64rrCL: 283 case X86::SHLD16rri8: 284 case X86::SHLD32rri8: 285 case X86::SHLD64rri8: 286 case X86::SHRD16rrCL: 287 case X86::SHRD32rrCL: 288 case X86::SHRD64rrCL: 289 case X86::SHRD16rri8: 290 case X86::SHRD32rri8: 291 case X86::SHRD64rri8: 292 293 // Basic arithmetic is constant time on the input but does set flags. 294 case X86::ADC8rr: 295 case X86::ADC8ri: 296 case X86::ADC16rr: 297 case X86::ADC16ri: 298 case X86::ADC16ri8: 299 case X86::ADC32rr: 300 case X86::ADC32ri: 301 case X86::ADC32ri8: 302 case X86::ADC64rr: 303 case X86::ADC64ri8: 304 case X86::ADC64ri32: 305 case X86::ADD8rr: 306 case X86::ADD8ri: 307 case X86::ADD16rr: 308 case X86::ADD16ri: 309 case X86::ADD16ri8: 310 case X86::ADD32rr: 311 case X86::ADD32ri: 312 case X86::ADD32ri8: 313 case X86::ADD64rr: 314 case X86::ADD64ri8: 315 case X86::ADD64ri32: 316 case X86::AND8rr: 317 case X86::AND8ri: 318 case X86::AND16rr: 319 case X86::AND16ri: 320 case X86::AND16ri8: 321 case X86::AND32rr: 322 case X86::AND32ri: 323 case X86::AND32ri8: 324 case X86::AND64rr: 325 case X86::AND64ri8: 326 case X86::AND64ri32: 327 case X86::OR8rr: 328 case X86::OR8ri: 329 case X86::OR16rr: 330 case X86::OR16ri: 331 case X86::OR16ri8: 332 case X86::OR32rr: 333 case X86::OR32ri: 334 case X86::OR32ri8: 335 case X86::OR64rr: 336 case X86::OR64ri8: 337 case X86::OR64ri32: 338 case X86::SBB8rr: 339 case X86::SBB8ri: 340 case X86::SBB16rr: 341 case X86::SBB16ri: 342 case X86::SBB16ri8: 343 case X86::SBB32rr: 344 case X86::SBB32ri: 345 case X86::SBB32ri8: 346 case X86::SBB64rr: 347 case X86::SBB64ri8: 348 case X86::SBB64ri32: 349 case X86::SUB8rr: 350 case X86::SUB8ri: 351 case X86::SUB16rr: 352 case X86::SUB16ri: 353 case X86::SUB16ri8: 354 case X86::SUB32rr: 355 case X86::SUB32ri: 356 case X86::SUB32ri8: 357 case X86::SUB64rr: 358 case X86::SUB64ri8: 359 case X86::SUB64ri32: 360 case X86::XOR8rr: 361 case X86::XOR8ri: 362 case X86::XOR16rr: 363 case X86::XOR16ri: 364 case X86::XOR16ri8: 365 case X86::XOR32rr: 366 case X86::XOR32ri: 367 case X86::XOR32ri8: 368 case X86::XOR64rr: 369 case X86::XOR64ri8: 370 case X86::XOR64ri32: 371 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 372 case X86::ADCX32rr: 373 case X86::ADCX64rr: 374 case X86::ADOX32rr: 375 case X86::ADOX64rr: 376 case X86::ANDN32rr: 377 case X86::ANDN64rr: 378 // Unary arithmetic operations. 379 case X86::DEC8r: 380 case X86::DEC16r: 381 case X86::DEC32r: 382 case X86::DEC64r: 383 case X86::INC8r: 384 case X86::INC16r: 385 case X86::INC32r: 386 case X86::INC64r: 387 case X86::NEG8r: 388 case X86::NEG16r: 389 case X86::NEG32r: 390 case X86::NEG64r: 391 392 // Unlike other arithmetic, NOT doesn't set EFLAGS. 393 case X86::NOT8r: 394 case X86::NOT16r: 395 case X86::NOT32r: 396 case X86::NOT64r: 397 398 // Various move instructions used to zero or sign extend things. Note that we 399 // intentionally don't support the _NOREX variants as we can't handle that 400 // register constraint anyways. 401 case X86::MOVSX16rr8: 402 case X86::MOVSX32rr8: 403 case X86::MOVSX32rr16: 404 case X86::MOVSX64rr8: 405 case X86::MOVSX64rr16: 406 case X86::MOVSX64rr32: 407 case X86::MOVZX16rr8: 408 case X86::MOVZX32rr8: 409 case X86::MOVZX32rr16: 410 case X86::MOVZX64rr8: 411 case X86::MOVZX64rr16: 412 case X86::MOV32rr: 413 414 // Arithmetic instructions that are both constant time and don't set flags. 415 case X86::RORX32ri: 416 case X86::RORX64ri: 417 case X86::SARX32rr: 418 case X86::SARX64rr: 419 case X86::SHLX32rr: 420 case X86::SHLX64rr: 421 case X86::SHRX32rr: 422 case X86::SHRX64rr: 423 424 // LEA doesn't actually access memory, and its arithmetic is constant time. 425 case X86::LEA16r: 426 case X86::LEA32r: 427 case X86::LEA64_32r: 428 case X86::LEA64r: 429 return true; 430 } 431 } 432 433 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { 434 switch (MI.getOpcode()) { 435 default: 436 // By default, assume that the load will immediately leak. 437 return false; 438 439 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 440 // However, they set flags and are perhaps the most surprisingly constant 441 // time operations so we call them out here separately. 442 case X86::IMUL16rm: 443 case X86::IMUL16rmi8: 444 case X86::IMUL16rmi: 445 case X86::IMUL32rm: 446 case X86::IMUL32rmi8: 447 case X86::IMUL32rmi: 448 case X86::IMUL64rm: 449 case X86::IMUL64rmi32: 450 case X86::IMUL64rmi8: 451 452 // Bit scanning and counting instructions that are somewhat surprisingly 453 // constant time as they scan across bits and do other fairly complex 454 // operations like popcnt, but are believed to be constant time on x86. 455 // However, these set flags. 456 case X86::BSF16rm: 457 case X86::BSF32rm: 458 case X86::BSF64rm: 459 case X86::BSR16rm: 460 case X86::BSR32rm: 461 case X86::BSR64rm: 462 case X86::LZCNT16rm: 463 case X86::LZCNT32rm: 464 case X86::LZCNT64rm: 465 case X86::POPCNT16rm: 466 case X86::POPCNT32rm: 467 case X86::POPCNT64rm: 468 case X86::TZCNT16rm: 469 case X86::TZCNT32rm: 470 case X86::TZCNT64rm: 471 472 // Bit manipulation instructions are effectively combinations of basic 473 // arithmetic ops, and should still execute in constant time. These also 474 // set flags. 475 case X86::BLCFILL32rm: 476 case X86::BLCFILL64rm: 477 case X86::BLCI32rm: 478 case X86::BLCI64rm: 479 case X86::BLCIC32rm: 480 case X86::BLCIC64rm: 481 case X86::BLCMSK32rm: 482 case X86::BLCMSK64rm: 483 case X86::BLCS32rm: 484 case X86::BLCS64rm: 485 case X86::BLSFILL32rm: 486 case X86::BLSFILL64rm: 487 case X86::BLSI32rm: 488 case X86::BLSI64rm: 489 case X86::BLSIC32rm: 490 case X86::BLSIC64rm: 491 case X86::BLSMSK32rm: 492 case X86::BLSMSK64rm: 493 case X86::BLSR32rm: 494 case X86::BLSR64rm: 495 case X86::TZMSK32rm: 496 case X86::TZMSK64rm: 497 498 // Bit extracting and clearing instructions should execute in constant time, 499 // and set flags. 500 case X86::BEXTR32rm: 501 case X86::BEXTR64rm: 502 case X86::BEXTRI32mi: 503 case X86::BEXTRI64mi: 504 case X86::BZHI32rm: 505 case X86::BZHI64rm: 506 507 // Basic arithmetic is constant time on the input but does set flags. 508 case X86::ADC8rm: 509 case X86::ADC16rm: 510 case X86::ADC32rm: 511 case X86::ADC64rm: 512 case X86::ADCX32rm: 513 case X86::ADCX64rm: 514 case X86::ADD8rm: 515 case X86::ADD16rm: 516 case X86::ADD32rm: 517 case X86::ADD64rm: 518 case X86::ADOX32rm: 519 case X86::ADOX64rm: 520 case X86::AND8rm: 521 case X86::AND16rm: 522 case X86::AND32rm: 523 case X86::AND64rm: 524 case X86::ANDN32rm: 525 case X86::ANDN64rm: 526 case X86::OR8rm: 527 case X86::OR16rm: 528 case X86::OR32rm: 529 case X86::OR64rm: 530 case X86::SBB8rm: 531 case X86::SBB16rm: 532 case X86::SBB32rm: 533 case X86::SBB64rm: 534 case X86::SUB8rm: 535 case X86::SUB16rm: 536 case X86::SUB32rm: 537 case X86::SUB64rm: 538 case X86::XOR8rm: 539 case X86::XOR16rm: 540 case X86::XOR32rm: 541 case X86::XOR64rm: 542 543 // Integer multiply w/o affecting flags is still believed to be constant 544 // time on x86. Called out separately as this is among the most surprising 545 // instructions to exhibit that behavior. 546 case X86::MULX32rm: 547 case X86::MULX64rm: 548 549 // Arithmetic instructions that are both constant time and don't set flags. 550 case X86::RORX32mi: 551 case X86::RORX64mi: 552 case X86::SARX32rm: 553 case X86::SARX64rm: 554 case X86::SHLX32rm: 555 case X86::SHLX64rm: 556 case X86::SHRX32rm: 557 case X86::SHRX64rm: 558 559 // Conversions are believed to be constant time and don't set flags. 560 case X86::CVTTSD2SI64rm: 561 case X86::VCVTTSD2SI64rm: 562 case X86::VCVTTSD2SI64Zrm: 563 case X86::CVTTSD2SIrm: 564 case X86::VCVTTSD2SIrm: 565 case X86::VCVTTSD2SIZrm: 566 case X86::CVTTSS2SI64rm: 567 case X86::VCVTTSS2SI64rm: 568 case X86::VCVTTSS2SI64Zrm: 569 case X86::CVTTSS2SIrm: 570 case X86::VCVTTSS2SIrm: 571 case X86::VCVTTSS2SIZrm: 572 case X86::CVTSI2SDrm: 573 case X86::VCVTSI2SDrm: 574 case X86::VCVTSI2SDZrm: 575 case X86::CVTSI2SSrm: 576 case X86::VCVTSI2SSrm: 577 case X86::VCVTSI2SSZrm: 578 case X86::CVTSI642SDrm: 579 case X86::VCVTSI642SDrm: 580 case X86::VCVTSI642SDZrm: 581 case X86::CVTSI642SSrm: 582 case X86::VCVTSI642SSrm: 583 case X86::VCVTSI642SSZrm: 584 case X86::CVTSS2SDrm: 585 case X86::VCVTSS2SDrm: 586 case X86::VCVTSS2SDZrm: 587 case X86::CVTSD2SSrm: 588 case X86::VCVTSD2SSrm: 589 case X86::VCVTSD2SSZrm: 590 // AVX512 added unsigned integer conversions. 591 case X86::VCVTTSD2USI64Zrm: 592 case X86::VCVTTSD2USIZrm: 593 case X86::VCVTTSS2USI64Zrm: 594 case X86::VCVTTSS2USIZrm: 595 case X86::VCVTUSI2SDZrm: 596 case X86::VCVTUSI642SDZrm: 597 case X86::VCVTUSI2SSZrm: 598 case X86::VCVTUSI642SSZrm: 599 600 // Loads to register don't set flags. 601 case X86::MOV8rm: 602 case X86::MOV8rm_NOREX: 603 case X86::MOV16rm: 604 case X86::MOV32rm: 605 case X86::MOV64rm: 606 case X86::MOVSX16rm8: 607 case X86::MOVSX32rm16: 608 case X86::MOVSX32rm8: 609 case X86::MOVSX32rm8_NOREX: 610 case X86::MOVSX64rm16: 611 case X86::MOVSX64rm32: 612 case X86::MOVSX64rm8: 613 case X86::MOVZX16rm8: 614 case X86::MOVZX32rm16: 615 case X86::MOVZX32rm8: 616 case X86::MOVZX32rm8_NOREX: 617 case X86::MOVZX64rm16: 618 case X86::MOVZX64rm8: 619 return true; 620 } 621 } 622 623 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 624 const MachineFunction *MF = MI.getParent()->getParent(); 625 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 626 627 if (isFrameInstr(MI)) { 628 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); 629 SPAdj -= getFrameAdjustment(MI); 630 if (!isFrameSetup(MI)) 631 SPAdj = -SPAdj; 632 return SPAdj; 633 } 634 635 // To know whether a call adjusts the stack, we need information 636 // that is bound to the following ADJCALLSTACKUP pseudo. 637 // Look for the next ADJCALLSTACKUP that follows the call. 638 if (MI.isCall()) { 639 const MachineBasicBlock *MBB = MI.getParent(); 640 auto I = ++MachineBasicBlock::const_iterator(MI); 641 for (auto E = MBB->end(); I != E; ++I) { 642 if (I->getOpcode() == getCallFrameDestroyOpcode() || 643 I->isCall()) 644 break; 645 } 646 647 // If we could not find a frame destroy opcode, then it has already 648 // been simplified, so we don't care. 649 if (I->getOpcode() != getCallFrameDestroyOpcode()) 650 return 0; 651 652 return -(I->getOperand(1).getImm()); 653 } 654 655 // Currently handle only PUSHes we can reasonably expect to see 656 // in call sequences 657 switch (MI.getOpcode()) { 658 default: 659 return 0; 660 case X86::PUSH32i8: 661 case X86::PUSH32r: 662 case X86::PUSH32rmm: 663 case X86::PUSH32rmr: 664 case X86::PUSHi32: 665 return 4; 666 case X86::PUSH64i8: 667 case X86::PUSH64r: 668 case X86::PUSH64rmm: 669 case X86::PUSH64rmr: 670 case X86::PUSH64i32: 671 return 8; 672 } 673 } 674 675 /// Return true and the FrameIndex if the specified 676 /// operand and follow operands form a reference to the stack frame. 677 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 678 int &FrameIndex) const { 679 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 680 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 681 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 682 MI.getOperand(Op + X86::AddrDisp).isImm() && 683 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 684 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 685 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 686 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 687 return true; 688 } 689 return false; 690 } 691 692 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 693 switch (Opcode) { 694 default: 695 return false; 696 case X86::MOV8rm: 697 case X86::KMOVBkm: 698 MemBytes = 1; 699 return true; 700 case X86::MOV16rm: 701 case X86::KMOVWkm: 702 MemBytes = 2; 703 return true; 704 case X86::MOV32rm: 705 case X86::MOVSSrm: 706 case X86::MOVSSrm_alt: 707 case X86::VMOVSSrm: 708 case X86::VMOVSSrm_alt: 709 case X86::VMOVSSZrm: 710 case X86::VMOVSSZrm_alt: 711 case X86::KMOVDkm: 712 MemBytes = 4; 713 return true; 714 case X86::MOV64rm: 715 case X86::LD_Fp64m: 716 case X86::MOVSDrm: 717 case X86::MOVSDrm_alt: 718 case X86::VMOVSDrm: 719 case X86::VMOVSDrm_alt: 720 case X86::VMOVSDZrm: 721 case X86::VMOVSDZrm_alt: 722 case X86::MMX_MOVD64rm: 723 case X86::MMX_MOVQ64rm: 724 case X86::KMOVQkm: 725 MemBytes = 8; 726 return true; 727 case X86::MOVAPSrm: 728 case X86::MOVUPSrm: 729 case X86::MOVAPDrm: 730 case X86::MOVUPDrm: 731 case X86::MOVDQArm: 732 case X86::MOVDQUrm: 733 case X86::VMOVAPSrm: 734 case X86::VMOVUPSrm: 735 case X86::VMOVAPDrm: 736 case X86::VMOVUPDrm: 737 case X86::VMOVDQArm: 738 case X86::VMOVDQUrm: 739 case X86::VMOVAPSZ128rm: 740 case X86::VMOVUPSZ128rm: 741 case X86::VMOVAPSZ128rm_NOVLX: 742 case X86::VMOVUPSZ128rm_NOVLX: 743 case X86::VMOVAPDZ128rm: 744 case X86::VMOVUPDZ128rm: 745 case X86::VMOVDQU8Z128rm: 746 case X86::VMOVDQU16Z128rm: 747 case X86::VMOVDQA32Z128rm: 748 case X86::VMOVDQU32Z128rm: 749 case X86::VMOVDQA64Z128rm: 750 case X86::VMOVDQU64Z128rm: 751 MemBytes = 16; 752 return true; 753 case X86::VMOVAPSYrm: 754 case X86::VMOVUPSYrm: 755 case X86::VMOVAPDYrm: 756 case X86::VMOVUPDYrm: 757 case X86::VMOVDQAYrm: 758 case X86::VMOVDQUYrm: 759 case X86::VMOVAPSZ256rm: 760 case X86::VMOVUPSZ256rm: 761 case X86::VMOVAPSZ256rm_NOVLX: 762 case X86::VMOVUPSZ256rm_NOVLX: 763 case X86::VMOVAPDZ256rm: 764 case X86::VMOVUPDZ256rm: 765 case X86::VMOVDQU8Z256rm: 766 case X86::VMOVDQU16Z256rm: 767 case X86::VMOVDQA32Z256rm: 768 case X86::VMOVDQU32Z256rm: 769 case X86::VMOVDQA64Z256rm: 770 case X86::VMOVDQU64Z256rm: 771 MemBytes = 32; 772 return true; 773 case X86::VMOVAPSZrm: 774 case X86::VMOVUPSZrm: 775 case X86::VMOVAPDZrm: 776 case X86::VMOVUPDZrm: 777 case X86::VMOVDQU8Zrm: 778 case X86::VMOVDQU16Zrm: 779 case X86::VMOVDQA32Zrm: 780 case X86::VMOVDQU32Zrm: 781 case X86::VMOVDQA64Zrm: 782 case X86::VMOVDQU64Zrm: 783 MemBytes = 64; 784 return true; 785 } 786 } 787 788 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 789 switch (Opcode) { 790 default: 791 return false; 792 case X86::MOV8mr: 793 case X86::KMOVBmk: 794 MemBytes = 1; 795 return true; 796 case X86::MOV16mr: 797 case X86::KMOVWmk: 798 MemBytes = 2; 799 return true; 800 case X86::MOV32mr: 801 case X86::MOVSSmr: 802 case X86::VMOVSSmr: 803 case X86::VMOVSSZmr: 804 case X86::KMOVDmk: 805 MemBytes = 4; 806 return true; 807 case X86::MOV64mr: 808 case X86::ST_FpP64m: 809 case X86::MOVSDmr: 810 case X86::VMOVSDmr: 811 case X86::VMOVSDZmr: 812 case X86::MMX_MOVD64mr: 813 case X86::MMX_MOVQ64mr: 814 case X86::MMX_MOVNTQmr: 815 case X86::KMOVQmk: 816 MemBytes = 8; 817 return true; 818 case X86::MOVAPSmr: 819 case X86::MOVUPSmr: 820 case X86::MOVAPDmr: 821 case X86::MOVUPDmr: 822 case X86::MOVDQAmr: 823 case X86::MOVDQUmr: 824 case X86::VMOVAPSmr: 825 case X86::VMOVUPSmr: 826 case X86::VMOVAPDmr: 827 case X86::VMOVUPDmr: 828 case X86::VMOVDQAmr: 829 case X86::VMOVDQUmr: 830 case X86::VMOVUPSZ128mr: 831 case X86::VMOVAPSZ128mr: 832 case X86::VMOVUPSZ128mr_NOVLX: 833 case X86::VMOVAPSZ128mr_NOVLX: 834 case X86::VMOVUPDZ128mr: 835 case X86::VMOVAPDZ128mr: 836 case X86::VMOVDQA32Z128mr: 837 case X86::VMOVDQU32Z128mr: 838 case X86::VMOVDQA64Z128mr: 839 case X86::VMOVDQU64Z128mr: 840 case X86::VMOVDQU8Z128mr: 841 case X86::VMOVDQU16Z128mr: 842 MemBytes = 16; 843 return true; 844 case X86::VMOVUPSYmr: 845 case X86::VMOVAPSYmr: 846 case X86::VMOVUPDYmr: 847 case X86::VMOVAPDYmr: 848 case X86::VMOVDQUYmr: 849 case X86::VMOVDQAYmr: 850 case X86::VMOVUPSZ256mr: 851 case X86::VMOVAPSZ256mr: 852 case X86::VMOVUPSZ256mr_NOVLX: 853 case X86::VMOVAPSZ256mr_NOVLX: 854 case X86::VMOVUPDZ256mr: 855 case X86::VMOVAPDZ256mr: 856 case X86::VMOVDQU8Z256mr: 857 case X86::VMOVDQU16Z256mr: 858 case X86::VMOVDQA32Z256mr: 859 case X86::VMOVDQU32Z256mr: 860 case X86::VMOVDQA64Z256mr: 861 case X86::VMOVDQU64Z256mr: 862 MemBytes = 32; 863 return true; 864 case X86::VMOVUPSZmr: 865 case X86::VMOVAPSZmr: 866 case X86::VMOVUPDZmr: 867 case X86::VMOVAPDZmr: 868 case X86::VMOVDQU8Zmr: 869 case X86::VMOVDQU16Zmr: 870 case X86::VMOVDQA32Zmr: 871 case X86::VMOVDQU32Zmr: 872 case X86::VMOVDQA64Zmr: 873 case X86::VMOVDQU64Zmr: 874 MemBytes = 64; 875 return true; 876 } 877 return false; 878 } 879 880 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 881 int &FrameIndex) const { 882 unsigned Dummy; 883 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 884 } 885 886 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 887 int &FrameIndex, 888 unsigned &MemBytes) const { 889 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 890 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 891 return MI.getOperand(0).getReg(); 892 return 0; 893 } 894 895 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 896 int &FrameIndex) const { 897 unsigned Dummy; 898 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 899 unsigned Reg; 900 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 901 return Reg; 902 // Check for post-frame index elimination operations 903 SmallVector<const MachineMemOperand *, 1> Accesses; 904 if (hasLoadFromStackSlot(MI, Accesses)) { 905 FrameIndex = 906 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 907 ->getFrameIndex(); 908 return 1; 909 } 910 } 911 return 0; 912 } 913 914 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 915 int &FrameIndex) const { 916 unsigned Dummy; 917 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 918 } 919 920 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 921 int &FrameIndex, 922 unsigned &MemBytes) const { 923 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 924 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 925 isFrameOperand(MI, 0, FrameIndex)) 926 return MI.getOperand(X86::AddrNumOperands).getReg(); 927 return 0; 928 } 929 930 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 931 int &FrameIndex) const { 932 unsigned Dummy; 933 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 934 unsigned Reg; 935 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 936 return Reg; 937 // Check for post-frame index elimination operations 938 SmallVector<const MachineMemOperand *, 1> Accesses; 939 if (hasStoreToStackSlot(MI, Accesses)) { 940 FrameIndex = 941 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 942 ->getFrameIndex(); 943 return 1; 944 } 945 } 946 return 0; 947 } 948 949 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 950 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 951 // Don't waste compile time scanning use-def chains of physregs. 952 if (!Register::isVirtualRegister(BaseReg)) 953 return false; 954 bool isPICBase = false; 955 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 956 E = MRI.def_instr_end(); I != E; ++I) { 957 MachineInstr *DefMI = &*I; 958 if (DefMI->getOpcode() != X86::MOVPC32r) 959 return false; 960 assert(!isPICBase && "More than one PIC base?"); 961 isPICBase = true; 962 } 963 return isPICBase; 964 } 965 966 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 967 AAResults *AA) const { 968 switch (MI.getOpcode()) { 969 default: 970 // This function should only be called for opcodes with the ReMaterializable 971 // flag set. 972 llvm_unreachable("Unknown rematerializable operation!"); 973 break; 974 975 case X86::LOAD_STACK_GUARD: 976 case X86::AVX1_SETALLONES: 977 case X86::AVX2_SETALLONES: 978 case X86::AVX512_128_SET0: 979 case X86::AVX512_256_SET0: 980 case X86::AVX512_512_SET0: 981 case X86::AVX512_512_SETALLONES: 982 case X86::AVX512_FsFLD0SD: 983 case X86::AVX512_FsFLD0SS: 984 case X86::AVX512_FsFLD0F128: 985 case X86::AVX_SET0: 986 case X86::FsFLD0SD: 987 case X86::FsFLD0SS: 988 case X86::FsFLD0F128: 989 case X86::KSET0D: 990 case X86::KSET0Q: 991 case X86::KSET0W: 992 case X86::KSET1D: 993 case X86::KSET1Q: 994 case X86::KSET1W: 995 case X86::MMX_SET0: 996 case X86::MOV32ImmSExti8: 997 case X86::MOV32r0: 998 case X86::MOV32r1: 999 case X86::MOV32r_1: 1000 case X86::MOV32ri64: 1001 case X86::MOV64ImmSExti8: 1002 case X86::V_SET0: 1003 case X86::V_SETALLONES: 1004 case X86::MOV16ri: 1005 case X86::MOV32ri: 1006 case X86::MOV64ri: 1007 case X86::MOV64ri32: 1008 case X86::MOV8ri: 1009 return true; 1010 1011 case X86::MOV8rm: 1012 case X86::MOV8rm_NOREX: 1013 case X86::MOV16rm: 1014 case X86::MOV32rm: 1015 case X86::MOV64rm: 1016 case X86::MOVSSrm: 1017 case X86::MOVSSrm_alt: 1018 case X86::MOVSDrm: 1019 case X86::MOVSDrm_alt: 1020 case X86::MOVAPSrm: 1021 case X86::MOVUPSrm: 1022 case X86::MOVAPDrm: 1023 case X86::MOVUPDrm: 1024 case X86::MOVDQArm: 1025 case X86::MOVDQUrm: 1026 case X86::VMOVSSrm: 1027 case X86::VMOVSSrm_alt: 1028 case X86::VMOVSDrm: 1029 case X86::VMOVSDrm_alt: 1030 case X86::VMOVAPSrm: 1031 case X86::VMOVUPSrm: 1032 case X86::VMOVAPDrm: 1033 case X86::VMOVUPDrm: 1034 case X86::VMOVDQArm: 1035 case X86::VMOVDQUrm: 1036 case X86::VMOVAPSYrm: 1037 case X86::VMOVUPSYrm: 1038 case X86::VMOVAPDYrm: 1039 case X86::VMOVUPDYrm: 1040 case X86::VMOVDQAYrm: 1041 case X86::VMOVDQUYrm: 1042 case X86::MMX_MOVD64rm: 1043 case X86::MMX_MOVQ64rm: 1044 // AVX-512 1045 case X86::VMOVSSZrm: 1046 case X86::VMOVSSZrm_alt: 1047 case X86::VMOVSDZrm: 1048 case X86::VMOVSDZrm_alt: 1049 case X86::VMOVAPDZ128rm: 1050 case X86::VMOVAPDZ256rm: 1051 case X86::VMOVAPDZrm: 1052 case X86::VMOVAPSZ128rm: 1053 case X86::VMOVAPSZ256rm: 1054 case X86::VMOVAPSZ128rm_NOVLX: 1055 case X86::VMOVAPSZ256rm_NOVLX: 1056 case X86::VMOVAPSZrm: 1057 case X86::VMOVDQA32Z128rm: 1058 case X86::VMOVDQA32Z256rm: 1059 case X86::VMOVDQA32Zrm: 1060 case X86::VMOVDQA64Z128rm: 1061 case X86::VMOVDQA64Z256rm: 1062 case X86::VMOVDQA64Zrm: 1063 case X86::VMOVDQU16Z128rm: 1064 case X86::VMOVDQU16Z256rm: 1065 case X86::VMOVDQU16Zrm: 1066 case X86::VMOVDQU32Z128rm: 1067 case X86::VMOVDQU32Z256rm: 1068 case X86::VMOVDQU32Zrm: 1069 case X86::VMOVDQU64Z128rm: 1070 case X86::VMOVDQU64Z256rm: 1071 case X86::VMOVDQU64Zrm: 1072 case X86::VMOVDQU8Z128rm: 1073 case X86::VMOVDQU8Z256rm: 1074 case X86::VMOVDQU8Zrm: 1075 case X86::VMOVUPDZ128rm: 1076 case X86::VMOVUPDZ256rm: 1077 case X86::VMOVUPDZrm: 1078 case X86::VMOVUPSZ128rm: 1079 case X86::VMOVUPSZ256rm: 1080 case X86::VMOVUPSZ128rm_NOVLX: 1081 case X86::VMOVUPSZ256rm_NOVLX: 1082 case X86::VMOVUPSZrm: { 1083 // Loads from constant pools are trivially rematerializable. 1084 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 1085 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 1086 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 1087 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 1088 MI.isDereferenceableInvariantLoad(AA)) { 1089 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 1090 if (BaseReg == 0 || BaseReg == X86::RIP) 1091 return true; 1092 // Allow re-materialization of PIC load. 1093 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) 1094 return false; 1095 const MachineFunction &MF = *MI.getParent()->getParent(); 1096 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1097 return regIsPICBase(BaseReg, MRI); 1098 } 1099 return false; 1100 } 1101 1102 case X86::LEA32r: 1103 case X86::LEA64r: { 1104 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 1105 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 1106 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 1107 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 1108 // lea fi#, lea GV, etc. are all rematerializable. 1109 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 1110 return true; 1111 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 1112 if (BaseReg == 0) 1113 return true; 1114 // Allow re-materialization of lea PICBase + x. 1115 const MachineFunction &MF = *MI.getParent()->getParent(); 1116 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1117 return regIsPICBase(BaseReg, MRI); 1118 } 1119 return false; 1120 } 1121 } 1122 } 1123 1124 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 1125 MachineBasicBlock::iterator I, 1126 Register DestReg, unsigned SubIdx, 1127 const MachineInstr &Orig, 1128 const TargetRegisterInfo &TRI) const { 1129 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 1130 if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { 1131 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 1132 // effects. 1133 int Value; 1134 switch (Orig.getOpcode()) { 1135 case X86::MOV32r0: Value = 0; break; 1136 case X86::MOV32r1: Value = 1; break; 1137 case X86::MOV32r_1: Value = -1; break; 1138 default: 1139 llvm_unreachable("Unexpected instruction!"); 1140 } 1141 1142 const DebugLoc &DL = Orig.getDebugLoc(); 1143 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 1144 .add(Orig.getOperand(0)) 1145 .addImm(Value); 1146 } else { 1147 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1148 MBB.insert(I, MI); 1149 } 1150 1151 MachineInstr &NewMI = *std::prev(I); 1152 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1153 } 1154 1155 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 1156 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 1157 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1158 MachineOperand &MO = MI.getOperand(i); 1159 if (MO.isReg() && MO.isDef() && 1160 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 1161 return true; 1162 } 1163 } 1164 return false; 1165 } 1166 1167 /// Check whether the shift count for a machine operand is non-zero. 1168 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 1169 unsigned ShiftAmtOperandIdx) { 1170 // The shift count is six bits with the REX.W prefix and five bits without. 1171 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 1172 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 1173 return Imm & ShiftCountMask; 1174 } 1175 1176 /// Check whether the given shift count is appropriate 1177 /// can be represented by a LEA instruction. 1178 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 1179 // Left shift instructions can be transformed into load-effective-address 1180 // instructions if we can encode them appropriately. 1181 // A LEA instruction utilizes a SIB byte to encode its scale factor. 1182 // The SIB.scale field is two bits wide which means that we can encode any 1183 // shift amount less than 4. 1184 return ShAmt < 4 && ShAmt > 0; 1185 } 1186 1187 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 1188 unsigned Opc, bool AllowSP, Register &NewSrc, 1189 bool &isKill, MachineOperand &ImplicitOp, 1190 LiveVariables *LV) const { 1191 MachineFunction &MF = *MI.getParent()->getParent(); 1192 const TargetRegisterClass *RC; 1193 if (AllowSP) { 1194 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 1195 } else { 1196 RC = Opc != X86::LEA32r ? 1197 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 1198 } 1199 Register SrcReg = Src.getReg(); 1200 1201 // For both LEA64 and LEA32 the register already has essentially the right 1202 // type (32-bit or 64-bit) we may just need to forbid SP. 1203 if (Opc != X86::LEA64_32r) { 1204 NewSrc = SrcReg; 1205 isKill = Src.isKill(); 1206 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1207 1208 if (Register::isVirtualRegister(NewSrc) && 1209 !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 1210 return false; 1211 1212 return true; 1213 } 1214 1215 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 1216 // another we need to add 64-bit registers to the final MI. 1217 if (Register::isPhysicalRegister(SrcReg)) { 1218 ImplicitOp = Src; 1219 ImplicitOp.setImplicit(); 1220 1221 NewSrc = getX86SubSuperRegister(Src.getReg(), 64); 1222 isKill = Src.isKill(); 1223 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1224 } else { 1225 // Virtual register of the wrong class, we have to create a temporary 64-bit 1226 // vreg to feed into the LEA. 1227 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 1228 MachineInstr *Copy = 1229 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1230 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 1231 .add(Src); 1232 1233 // Which is obviously going to be dead after we're done with it. 1234 isKill = true; 1235 1236 if (LV) 1237 LV->replaceKillInstruction(SrcReg, MI, *Copy); 1238 } 1239 1240 // We've set all the parameters without issue. 1241 return true; 1242 } 1243 1244 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( 1245 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, 1246 LiveVariables *LV, bool Is8BitOp) const { 1247 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 1248 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 1249 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 1250 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 1251 "Unexpected type for LEA transform"); 1252 1253 // TODO: For a 32-bit target, we need to adjust the LEA variables with 1254 // something like this: 1255 // Opcode = X86::LEA32r; 1256 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1257 // OutRegLEA = 1258 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 1259 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 1260 if (!Subtarget.is64Bit()) 1261 return nullptr; 1262 1263 unsigned Opcode = X86::LEA64_32r; 1264 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1265 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1266 1267 // Build and insert into an implicit UNDEF value. This is OK because 1268 // we will be shifting and then extracting the lower 8/16-bits. 1269 // This has the potential to cause partial register stall. e.g. 1270 // movw (%rbp,%rcx,2), %dx 1271 // leal -65(%rdx), %esi 1272 // But testing has shown this *does* help performance in 64-bit mode (at 1273 // least on modern x86 machines). 1274 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1275 Register Dest = MI.getOperand(0).getReg(); 1276 Register Src = MI.getOperand(1).getReg(); 1277 bool IsDead = MI.getOperand(0).isDead(); 1278 bool IsKill = MI.getOperand(1).isKill(); 1279 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 1280 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 1281 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 1282 MachineInstr *InsMI = 1283 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1284 .addReg(InRegLEA, RegState::Define, SubReg) 1285 .addReg(Src, getKillRegState(IsKill)); 1286 1287 MachineInstrBuilder MIB = 1288 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 1289 switch (MIOpc) { 1290 default: llvm_unreachable("Unreachable!"); 1291 case X86::SHL8ri: 1292 case X86::SHL16ri: { 1293 unsigned ShAmt = MI.getOperand(2).getImm(); 1294 MIB.addReg(0).addImm(1ULL << ShAmt) 1295 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0); 1296 break; 1297 } 1298 case X86::INC8r: 1299 case X86::INC16r: 1300 addRegOffset(MIB, InRegLEA, true, 1); 1301 break; 1302 case X86::DEC8r: 1303 case X86::DEC16r: 1304 addRegOffset(MIB, InRegLEA, true, -1); 1305 break; 1306 case X86::ADD8ri: 1307 case X86::ADD8ri_DB: 1308 case X86::ADD16ri: 1309 case X86::ADD16ri8: 1310 case X86::ADD16ri_DB: 1311 case X86::ADD16ri8_DB: 1312 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 1313 break; 1314 case X86::ADD8rr: 1315 case X86::ADD8rr_DB: 1316 case X86::ADD16rr: 1317 case X86::ADD16rr_DB: { 1318 Register Src2 = MI.getOperand(2).getReg(); 1319 bool IsKill2 = MI.getOperand(2).isKill(); 1320 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 1321 unsigned InRegLEA2 = 0; 1322 MachineInstr *InsMI2 = nullptr; 1323 if (Src == Src2) { 1324 // ADD8rr/ADD16rr killed %reg1028, %reg1028 1325 // just a single insert_subreg. 1326 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 1327 } else { 1328 if (Subtarget.is64Bit()) 1329 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1330 else 1331 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1332 // Build and insert into an implicit UNDEF value. This is OK because 1333 // we will be shifting and then extracting the lower 8/16-bits. 1334 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2); 1335 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1336 .addReg(InRegLEA2, RegState::Define, SubReg) 1337 .addReg(Src2, getKillRegState(IsKill2)); 1338 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 1339 } 1340 if (LV && IsKill2 && InsMI2) 1341 LV->replaceKillInstruction(Src2, MI, *InsMI2); 1342 break; 1343 } 1344 } 1345 1346 MachineInstr *NewMI = MIB; 1347 MachineInstr *ExtMI = 1348 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1349 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 1350 .addReg(OutRegLEA, RegState::Kill, SubReg); 1351 1352 if (LV) { 1353 // Update live variables. 1354 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 1355 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 1356 if (IsKill) 1357 LV->replaceKillInstruction(Src, MI, *InsMI); 1358 if (IsDead) 1359 LV->replaceKillInstruction(Dest, MI, *ExtMI); 1360 } 1361 1362 return ExtMI; 1363 } 1364 1365 /// This method must be implemented by targets that 1366 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1367 /// may be able to convert a two-address instruction into a true 1368 /// three-address instruction on demand. This allows the X86 target (for 1369 /// example) to convert ADD and SHL instructions into LEA instructions if they 1370 /// would require register copies due to two-addressness. 1371 /// 1372 /// This method returns a null pointer if the transformation cannot be 1373 /// performed, otherwise it returns the new instruction. 1374 /// 1375 MachineInstr * 1376 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 1377 MachineInstr &MI, LiveVariables *LV) const { 1378 // The following opcodes also sets the condition code register(s). Only 1379 // convert them to equivalent lea if the condition code register def's 1380 // are dead! 1381 if (hasLiveCondCodeDef(MI)) 1382 return nullptr; 1383 1384 MachineFunction &MF = *MI.getParent()->getParent(); 1385 // All instructions input are two-addr instructions. Get the known operands. 1386 const MachineOperand &Dest = MI.getOperand(0); 1387 const MachineOperand &Src = MI.getOperand(1); 1388 1389 // Ideally, operations with undef should be folded before we get here, but we 1390 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 1391 // Without this, we have to forward undef state to new register operands to 1392 // avoid machine verifier errors. 1393 if (Src.isUndef()) 1394 return nullptr; 1395 if (MI.getNumOperands() > 2) 1396 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 1397 return nullptr; 1398 1399 MachineInstr *NewMI = nullptr; 1400 bool Is64Bit = Subtarget.is64Bit(); 1401 1402 bool Is8BitOp = false; 1403 unsigned MIOpc = MI.getOpcode(); 1404 switch (MIOpc) { 1405 default: llvm_unreachable("Unreachable!"); 1406 case X86::SHL64ri: { 1407 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1408 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1409 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1410 1411 // LEA can't handle RSP. 1412 if (Register::isVirtualRegister(Src.getReg()) && 1413 !MF.getRegInfo().constrainRegClass(Src.getReg(), 1414 &X86::GR64_NOSPRegClass)) 1415 return nullptr; 1416 1417 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 1418 .add(Dest) 1419 .addReg(0) 1420 .addImm(1ULL << ShAmt) 1421 .add(Src) 1422 .addImm(0) 1423 .addReg(0); 1424 break; 1425 } 1426 case X86::SHL32ri: { 1427 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1428 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1429 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1430 1431 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1432 1433 // LEA can't handle ESP. 1434 bool isKill; 1435 Register SrcReg; 1436 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1437 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 1438 SrcReg, isKill, ImplicitOp, LV)) 1439 return nullptr; 1440 1441 MachineInstrBuilder MIB = 1442 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1443 .add(Dest) 1444 .addReg(0) 1445 .addImm(1ULL << ShAmt) 1446 .addReg(SrcReg, getKillRegState(isKill)) 1447 .addImm(0) 1448 .addReg(0); 1449 if (ImplicitOp.getReg() != 0) 1450 MIB.add(ImplicitOp); 1451 NewMI = MIB; 1452 1453 break; 1454 } 1455 case X86::SHL8ri: 1456 Is8BitOp = true; 1457 LLVM_FALLTHROUGH; 1458 case X86::SHL16ri: { 1459 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1460 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1461 if (!isTruncatedShiftCountForLEA(ShAmt)) 1462 return nullptr; 1463 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1464 } 1465 case X86::INC64r: 1466 case X86::INC32r: { 1467 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 1468 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : 1469 (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1470 bool isKill; 1471 Register SrcReg; 1472 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1473 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 1474 ImplicitOp, LV)) 1475 return nullptr; 1476 1477 MachineInstrBuilder MIB = 1478 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1479 .add(Dest) 1480 .addReg(SrcReg, getKillRegState(isKill)); 1481 if (ImplicitOp.getReg() != 0) 1482 MIB.add(ImplicitOp); 1483 1484 NewMI = addOffset(MIB, 1); 1485 break; 1486 } 1487 case X86::DEC64r: 1488 case X86::DEC32r: { 1489 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 1490 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1491 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1492 1493 bool isKill; 1494 Register SrcReg; 1495 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1496 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 1497 ImplicitOp, LV)) 1498 return nullptr; 1499 1500 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1501 .add(Dest) 1502 .addReg(SrcReg, getKillRegState(isKill)); 1503 if (ImplicitOp.getReg() != 0) 1504 MIB.add(ImplicitOp); 1505 1506 NewMI = addOffset(MIB, -1); 1507 1508 break; 1509 } 1510 case X86::DEC8r: 1511 case X86::INC8r: 1512 Is8BitOp = true; 1513 LLVM_FALLTHROUGH; 1514 case X86::DEC16r: 1515 case X86::INC16r: 1516 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1517 case X86::ADD64rr: 1518 case X86::ADD64rr_DB: 1519 case X86::ADD32rr: 1520 case X86::ADD32rr_DB: { 1521 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1522 unsigned Opc; 1523 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1524 Opc = X86::LEA64r; 1525 else 1526 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1527 1528 bool isKill; 1529 Register SrcReg; 1530 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1531 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1532 SrcReg, isKill, ImplicitOp, LV)) 1533 return nullptr; 1534 1535 const MachineOperand &Src2 = MI.getOperand(2); 1536 bool isKill2; 1537 Register SrcReg2; 1538 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1539 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, 1540 SrcReg2, isKill2, ImplicitOp2, LV)) 1541 return nullptr; 1542 1543 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1544 if (ImplicitOp.getReg() != 0) 1545 MIB.add(ImplicitOp); 1546 if (ImplicitOp2.getReg() != 0) 1547 MIB.add(ImplicitOp2); 1548 1549 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1550 if (LV && Src2.isKill()) 1551 LV->replaceKillInstruction(SrcReg2, MI, *NewMI); 1552 break; 1553 } 1554 case X86::ADD8rr: 1555 case X86::ADD8rr_DB: 1556 Is8BitOp = true; 1557 LLVM_FALLTHROUGH; 1558 case X86::ADD16rr: 1559 case X86::ADD16rr_DB: 1560 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1561 case X86::ADD64ri32: 1562 case X86::ADD64ri8: 1563 case X86::ADD64ri32_DB: 1564 case X86::ADD64ri8_DB: 1565 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1566 NewMI = addOffset( 1567 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1568 MI.getOperand(2)); 1569 break; 1570 case X86::ADD32ri: 1571 case X86::ADD32ri8: 1572 case X86::ADD32ri_DB: 1573 case X86::ADD32ri8_DB: { 1574 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1575 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1576 1577 bool isKill; 1578 Register SrcReg; 1579 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1580 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1581 SrcReg, isKill, ImplicitOp, LV)) 1582 return nullptr; 1583 1584 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1585 .add(Dest) 1586 .addReg(SrcReg, getKillRegState(isKill)); 1587 if (ImplicitOp.getReg() != 0) 1588 MIB.add(ImplicitOp); 1589 1590 NewMI = addOffset(MIB, MI.getOperand(2)); 1591 break; 1592 } 1593 case X86::ADD8ri: 1594 case X86::ADD8ri_DB: 1595 Is8BitOp = true; 1596 LLVM_FALLTHROUGH; 1597 case X86::ADD16ri: 1598 case X86::ADD16ri8: 1599 case X86::ADD16ri_DB: 1600 case X86::ADD16ri8_DB: 1601 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1602 case X86::SUB8ri: 1603 case X86::SUB16ri8: 1604 case X86::SUB16ri: 1605 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1606 return nullptr; 1607 case X86::SUB32ri8: 1608 case X86::SUB32ri: { 1609 if (!MI.getOperand(2).isImm()) 1610 return nullptr; 1611 int64_t Imm = MI.getOperand(2).getImm(); 1612 if (!isInt<32>(-Imm)) 1613 return nullptr; 1614 1615 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1616 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1617 1618 bool isKill; 1619 Register SrcReg; 1620 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1621 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1622 SrcReg, isKill, ImplicitOp, LV)) 1623 return nullptr; 1624 1625 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1626 .add(Dest) 1627 .addReg(SrcReg, getKillRegState(isKill)); 1628 if (ImplicitOp.getReg() != 0) 1629 MIB.add(ImplicitOp); 1630 1631 NewMI = addOffset(MIB, -Imm); 1632 break; 1633 } 1634 1635 case X86::SUB64ri8: 1636 case X86::SUB64ri32: { 1637 if (!MI.getOperand(2).isImm()) 1638 return nullptr; 1639 int64_t Imm = MI.getOperand(2).getImm(); 1640 if (!isInt<32>(-Imm)) 1641 return nullptr; 1642 1643 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1644 1645 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), 1646 get(X86::LEA64r)).add(Dest).add(Src); 1647 NewMI = addOffset(MIB, -Imm); 1648 break; 1649 } 1650 1651 case X86::VMOVDQU8Z128rmk: 1652 case X86::VMOVDQU8Z256rmk: 1653 case X86::VMOVDQU8Zrmk: 1654 case X86::VMOVDQU16Z128rmk: 1655 case X86::VMOVDQU16Z256rmk: 1656 case X86::VMOVDQU16Zrmk: 1657 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: 1658 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: 1659 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: 1660 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: 1661 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: 1662 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: 1663 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: 1664 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: 1665 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: 1666 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: 1667 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: 1668 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: 1669 case X86::VBROADCASTSDZ256rmk: 1670 case X86::VBROADCASTSDZrmk: 1671 case X86::VBROADCASTSSZ128rmk: 1672 case X86::VBROADCASTSSZ256rmk: 1673 case X86::VBROADCASTSSZrmk: 1674 case X86::VPBROADCASTDZ128rmk: 1675 case X86::VPBROADCASTDZ256rmk: 1676 case X86::VPBROADCASTDZrmk: 1677 case X86::VPBROADCASTQZ128rmk: 1678 case X86::VPBROADCASTQZ256rmk: 1679 case X86::VPBROADCASTQZrmk: { 1680 unsigned Opc; 1681 switch (MIOpc) { 1682 default: llvm_unreachable("Unreachable!"); 1683 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; 1684 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; 1685 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; 1686 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; 1687 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; 1688 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; 1689 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1690 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1691 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1692 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1693 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1694 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1695 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1696 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1697 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1698 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1699 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1700 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1701 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1702 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1703 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1704 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1705 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1706 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1707 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1708 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1709 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1710 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1711 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1712 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1713 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break; 1714 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break; 1715 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break; 1716 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break; 1717 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break; 1718 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break; 1719 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break; 1720 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break; 1721 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break; 1722 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break; 1723 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break; 1724 } 1725 1726 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1727 .add(Dest) 1728 .add(MI.getOperand(2)) 1729 .add(Src) 1730 .add(MI.getOperand(3)) 1731 .add(MI.getOperand(4)) 1732 .add(MI.getOperand(5)) 1733 .add(MI.getOperand(6)) 1734 .add(MI.getOperand(7)); 1735 break; 1736 } 1737 1738 case X86::VMOVDQU8Z128rrk: 1739 case X86::VMOVDQU8Z256rrk: 1740 case X86::VMOVDQU8Zrrk: 1741 case X86::VMOVDQU16Z128rrk: 1742 case X86::VMOVDQU16Z256rrk: 1743 case X86::VMOVDQU16Zrrk: 1744 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: 1745 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: 1746 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: 1747 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: 1748 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: 1749 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: 1750 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: 1751 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: 1752 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: 1753 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: 1754 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: 1755 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { 1756 unsigned Opc; 1757 switch (MIOpc) { 1758 default: llvm_unreachable("Unreachable!"); 1759 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; 1760 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; 1761 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; 1762 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; 1763 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; 1764 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; 1765 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1766 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1767 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1768 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1769 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1770 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1771 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1772 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1773 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1774 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1775 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1776 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1777 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1778 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1779 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1780 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1781 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1782 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1783 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1784 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1785 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1786 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1787 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1788 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1789 } 1790 1791 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1792 .add(Dest) 1793 .add(MI.getOperand(2)) 1794 .add(Src) 1795 .add(MI.getOperand(3)); 1796 break; 1797 } 1798 } 1799 1800 if (!NewMI) return nullptr; 1801 1802 if (LV) { // Update live variables 1803 if (Src.isKill()) 1804 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); 1805 if (Dest.isDead()) 1806 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); 1807 } 1808 1809 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst 1810 return NewMI; 1811 } 1812 1813 /// This determines which of three possible cases of a three source commute 1814 /// the source indexes correspond to taking into account any mask operands. 1815 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 1816 /// possible. 1817 /// Case 0 - Possible to commute the first and second operands. 1818 /// Case 1 - Possible to commute the first and third operands. 1819 /// Case 2 - Possible to commute the second and third operands. 1820 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 1821 unsigned SrcOpIdx2) { 1822 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 1823 if (SrcOpIdx1 > SrcOpIdx2) 1824 std::swap(SrcOpIdx1, SrcOpIdx2); 1825 1826 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 1827 if (X86II::isKMasked(TSFlags)) { 1828 Op2++; 1829 Op3++; 1830 } 1831 1832 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 1833 return 0; 1834 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 1835 return 1; 1836 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 1837 return 2; 1838 llvm_unreachable("Unknown three src commute case."); 1839 } 1840 1841 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 1842 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 1843 const X86InstrFMA3Group &FMA3Group) const { 1844 1845 unsigned Opc = MI.getOpcode(); 1846 1847 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 1848 // analysis. The commute optimization is legal only if all users of FMA*_Int 1849 // use only the lowest element of the FMA*_Int instruction. Such analysis are 1850 // not implemented yet. So, just return 0 in that case. 1851 // When such analysis are available this place will be the right place for 1852 // calling it. 1853 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 1854 "Intrinsic instructions can't commute operand 1"); 1855 1856 // Determine which case this commute is or if it can't be done. 1857 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1858 SrcOpIdx2); 1859 assert(Case < 3 && "Unexpected case number!"); 1860 1861 // Define the FMA forms mapping array that helps to map input FMA form 1862 // to output FMA form to preserve the operation semantics after 1863 // commuting the operands. 1864 const unsigned Form132Index = 0; 1865 const unsigned Form213Index = 1; 1866 const unsigned Form231Index = 2; 1867 static const unsigned FormMapping[][3] = { 1868 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 1869 // FMA132 A, C, b; ==> FMA231 C, A, b; 1870 // FMA213 B, A, c; ==> FMA213 A, B, c; 1871 // FMA231 C, A, b; ==> FMA132 A, C, b; 1872 { Form231Index, Form213Index, Form132Index }, 1873 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 1874 // FMA132 A, c, B; ==> FMA132 B, c, A; 1875 // FMA213 B, a, C; ==> FMA231 C, a, B; 1876 // FMA231 C, a, B; ==> FMA213 B, a, C; 1877 { Form132Index, Form231Index, Form213Index }, 1878 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 1879 // FMA132 a, C, B; ==> FMA213 a, B, C; 1880 // FMA213 b, A, C; ==> FMA132 b, C, A; 1881 // FMA231 c, A, B; ==> FMA231 c, B, A; 1882 { Form213Index, Form132Index, Form231Index } 1883 }; 1884 1885 unsigned FMAForms[3]; 1886 FMAForms[0] = FMA3Group.get132Opcode(); 1887 FMAForms[1] = FMA3Group.get213Opcode(); 1888 FMAForms[2] = FMA3Group.get231Opcode(); 1889 unsigned FormIndex; 1890 for (FormIndex = 0; FormIndex < 3; FormIndex++) 1891 if (Opc == FMAForms[FormIndex]) 1892 break; 1893 1894 // Everything is ready, just adjust the FMA opcode and return it. 1895 FormIndex = FormMapping[Case][FormIndex]; 1896 return FMAForms[FormIndex]; 1897 } 1898 1899 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 1900 unsigned SrcOpIdx2) { 1901 // Determine which case this commute is or if it can't be done. 1902 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1903 SrcOpIdx2); 1904 assert(Case < 3 && "Unexpected case value!"); 1905 1906 // For each case we need to swap two pairs of bits in the final immediate. 1907 static const uint8_t SwapMasks[3][4] = { 1908 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. 1909 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. 1910 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. 1911 }; 1912 1913 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); 1914 // Clear out the bits we are swapping. 1915 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 1916 SwapMasks[Case][2] | SwapMasks[Case][3]); 1917 // If the immediate had a bit of the pair set, then set the opposite bit. 1918 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; 1919 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; 1920 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; 1921 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; 1922 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); 1923 } 1924 1925 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 1926 // commuted. 1927 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 1928 #define VPERM_CASES(Suffix) \ 1929 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ 1930 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ 1931 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ 1932 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ 1933 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ 1934 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ 1935 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ 1936 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ 1937 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ 1938 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ 1939 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ 1940 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: 1941 1942 #define VPERM_CASES_BROADCAST(Suffix) \ 1943 VPERM_CASES(Suffix) \ 1944 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ 1945 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ 1946 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ 1947 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ 1948 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ 1949 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: 1950 1951 switch (Opcode) { 1952 default: return false; 1953 VPERM_CASES(B) 1954 VPERM_CASES_BROADCAST(D) 1955 VPERM_CASES_BROADCAST(PD) 1956 VPERM_CASES_BROADCAST(PS) 1957 VPERM_CASES_BROADCAST(Q) 1958 VPERM_CASES(W) 1959 return true; 1960 } 1961 #undef VPERM_CASES_BROADCAST 1962 #undef VPERM_CASES 1963 } 1964 1965 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 1966 // from the I opcode to the T opcode and vice versa. 1967 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 1968 #define VPERM_CASES(Orig, New) \ 1969 case X86::Orig##128rr: return X86::New##128rr; \ 1970 case X86::Orig##128rrkz: return X86::New##128rrkz; \ 1971 case X86::Orig##128rm: return X86::New##128rm; \ 1972 case X86::Orig##128rmkz: return X86::New##128rmkz; \ 1973 case X86::Orig##256rr: return X86::New##256rr; \ 1974 case X86::Orig##256rrkz: return X86::New##256rrkz; \ 1975 case X86::Orig##256rm: return X86::New##256rm; \ 1976 case X86::Orig##256rmkz: return X86::New##256rmkz; \ 1977 case X86::Orig##rr: return X86::New##rr; \ 1978 case X86::Orig##rrkz: return X86::New##rrkz; \ 1979 case X86::Orig##rm: return X86::New##rm; \ 1980 case X86::Orig##rmkz: return X86::New##rmkz; 1981 1982 #define VPERM_CASES_BROADCAST(Orig, New) \ 1983 VPERM_CASES(Orig, New) \ 1984 case X86::Orig##128rmb: return X86::New##128rmb; \ 1985 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ 1986 case X86::Orig##256rmb: return X86::New##256rmb; \ 1987 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ 1988 case X86::Orig##rmb: return X86::New##rmb; \ 1989 case X86::Orig##rmbkz: return X86::New##rmbkz; 1990 1991 switch (Opcode) { 1992 VPERM_CASES(VPERMI2B, VPERMT2B) 1993 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 1994 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 1995 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 1996 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 1997 VPERM_CASES(VPERMI2W, VPERMT2W) 1998 VPERM_CASES(VPERMT2B, VPERMI2B) 1999 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 2000 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 2001 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 2002 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 2003 VPERM_CASES(VPERMT2W, VPERMI2W) 2004 } 2005 2006 llvm_unreachable("Unreachable!"); 2007 #undef VPERM_CASES_BROADCAST 2008 #undef VPERM_CASES 2009 } 2010 2011 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2012 unsigned OpIdx1, 2013 unsigned OpIdx2) const { 2014 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 2015 if (NewMI) 2016 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 2017 return MI; 2018 }; 2019 2020 switch (MI.getOpcode()) { 2021 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 2022 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 2023 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 2024 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 2025 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 2026 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 2027 unsigned Opc; 2028 unsigned Size; 2029 switch (MI.getOpcode()) { 2030 default: llvm_unreachable("Unreachable!"); 2031 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 2032 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 2033 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 2034 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 2035 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 2036 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 2037 } 2038 unsigned Amt = MI.getOperand(3).getImm(); 2039 auto &WorkingMI = cloneIfNew(MI); 2040 WorkingMI.setDesc(get(Opc)); 2041 WorkingMI.getOperand(3).setImm(Size - Amt); 2042 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2043 OpIdx1, OpIdx2); 2044 } 2045 case X86::PFSUBrr: 2046 case X86::PFSUBRrr: { 2047 // PFSUB x, y: x = x - y 2048 // PFSUBR x, y: x = y - x 2049 unsigned Opc = 2050 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); 2051 auto &WorkingMI = cloneIfNew(MI); 2052 WorkingMI.setDesc(get(Opc)); 2053 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2054 OpIdx1, OpIdx2); 2055 } 2056 case X86::BLENDPDrri: 2057 case X86::BLENDPSrri: 2058 case X86::VBLENDPDrri: 2059 case X86::VBLENDPSrri: 2060 // If we're optimizing for size, try to use MOVSD/MOVSS. 2061 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 2062 unsigned Mask, Opc; 2063 switch (MI.getOpcode()) { 2064 default: llvm_unreachable("Unreachable!"); 2065 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; 2066 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; 2067 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; 2068 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; 2069 } 2070 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 2071 auto &WorkingMI = cloneIfNew(MI); 2072 WorkingMI.setDesc(get(Opc)); 2073 WorkingMI.RemoveOperand(3); 2074 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, 2075 /*NewMI=*/false, 2076 OpIdx1, OpIdx2); 2077 } 2078 } 2079 LLVM_FALLTHROUGH; 2080 case X86::PBLENDWrri: 2081 case X86::VBLENDPDYrri: 2082 case X86::VBLENDPSYrri: 2083 case X86::VPBLENDDrri: 2084 case X86::VPBLENDWrri: 2085 case X86::VPBLENDDYrri: 2086 case X86::VPBLENDWYrri:{ 2087 int8_t Mask; 2088 switch (MI.getOpcode()) { 2089 default: llvm_unreachable("Unreachable!"); 2090 case X86::BLENDPDrri: Mask = (int8_t)0x03; break; 2091 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; 2092 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; 2093 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; 2094 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; 2095 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; 2096 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; 2097 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; 2098 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; 2099 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; 2100 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; 2101 } 2102 // Only the least significant bits of Imm are used. 2103 // Using int8_t to ensure it will be sign extended to the int64_t that 2104 // setImm takes in order to match isel behavior. 2105 int8_t Imm = MI.getOperand(3).getImm() & Mask; 2106 auto &WorkingMI = cloneIfNew(MI); 2107 WorkingMI.getOperand(3).setImm(Mask ^ Imm); 2108 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2109 OpIdx1, OpIdx2); 2110 } 2111 case X86::INSERTPSrr: 2112 case X86::VINSERTPSrr: 2113 case X86::VINSERTPSZrr: { 2114 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2115 unsigned ZMask = Imm & 15; 2116 unsigned DstIdx = (Imm >> 4) & 3; 2117 unsigned SrcIdx = (Imm >> 6) & 3; 2118 2119 // We can commute insertps if we zero 2 of the elements, the insertion is 2120 // "inline" and we don't override the insertion with a zero. 2121 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 2122 countPopulation(ZMask) == 2) { 2123 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15); 2124 assert(AltIdx < 4 && "Illegal insertion index"); 2125 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 2126 auto &WorkingMI = cloneIfNew(MI); 2127 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm); 2128 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2129 OpIdx1, OpIdx2); 2130 } 2131 return nullptr; 2132 } 2133 case X86::MOVSDrr: 2134 case X86::MOVSSrr: 2135 case X86::VMOVSDrr: 2136 case X86::VMOVSSrr:{ 2137 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 2138 if (Subtarget.hasSSE41()) { 2139 unsigned Mask, Opc; 2140 switch (MI.getOpcode()) { 2141 default: llvm_unreachable("Unreachable!"); 2142 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; 2143 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; 2144 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; 2145 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; 2146 } 2147 2148 auto &WorkingMI = cloneIfNew(MI); 2149 WorkingMI.setDesc(get(Opc)); 2150 WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); 2151 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2152 OpIdx1, OpIdx2); 2153 } 2154 2155 // Convert to SHUFPD. 2156 assert(MI.getOpcode() == X86::MOVSDrr && 2157 "Can only commute MOVSDrr without SSE4.1"); 2158 2159 auto &WorkingMI = cloneIfNew(MI); 2160 WorkingMI.setDesc(get(X86::SHUFPDrri)); 2161 WorkingMI.addOperand(MachineOperand::CreateImm(0x02)); 2162 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2163 OpIdx1, OpIdx2); 2164 } 2165 case X86::SHUFPDrri: { 2166 // Commute to MOVSD. 2167 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 2168 auto &WorkingMI = cloneIfNew(MI); 2169 WorkingMI.setDesc(get(X86::MOVSDrr)); 2170 WorkingMI.RemoveOperand(3); 2171 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2172 OpIdx1, OpIdx2); 2173 } 2174 case X86::PCLMULQDQrr: 2175 case X86::VPCLMULQDQrr: 2176 case X86::VPCLMULQDQYrr: 2177 case X86::VPCLMULQDQZrr: 2178 case X86::VPCLMULQDQZ128rr: 2179 case X86::VPCLMULQDQZ256rr: { 2180 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 2181 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 2182 unsigned Imm = MI.getOperand(3).getImm(); 2183 unsigned Src1Hi = Imm & 0x01; 2184 unsigned Src2Hi = Imm & 0x10; 2185 auto &WorkingMI = cloneIfNew(MI); 2186 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 2187 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2188 OpIdx1, OpIdx2); 2189 } 2190 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: 2191 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: 2192 case X86::VPCMPBZrri: case X86::VPCMPUBZrri: 2193 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: 2194 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: 2195 case X86::VPCMPDZrri: case X86::VPCMPUDZrri: 2196 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: 2197 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: 2198 case X86::VPCMPQZrri: case X86::VPCMPUQZrri: 2199 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: 2200 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: 2201 case X86::VPCMPWZrri: case X86::VPCMPUWZrri: 2202 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: 2203 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: 2204 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: 2205 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: 2206 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: 2207 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: 2208 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: 2209 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: 2210 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: 2211 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: 2212 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: 2213 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { 2214 // Flip comparison mode immediate (if necessary). 2215 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; 2216 Imm = X86::getSwappedVPCMPImm(Imm); 2217 auto &WorkingMI = cloneIfNew(MI); 2218 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); 2219 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2220 OpIdx1, OpIdx2); 2221 } 2222 case X86::VPCOMBri: case X86::VPCOMUBri: 2223 case X86::VPCOMDri: case X86::VPCOMUDri: 2224 case X86::VPCOMQri: case X86::VPCOMUQri: 2225 case X86::VPCOMWri: case X86::VPCOMUWri: { 2226 // Flip comparison mode immediate (if necessary). 2227 unsigned Imm = MI.getOperand(3).getImm() & 0x7; 2228 Imm = X86::getSwappedVPCOMImm(Imm); 2229 auto &WorkingMI = cloneIfNew(MI); 2230 WorkingMI.getOperand(3).setImm(Imm); 2231 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2232 OpIdx1, OpIdx2); 2233 } 2234 case X86::VCMPSDZrr: 2235 case X86::VCMPSSZrr: 2236 case X86::VCMPPDZrri: 2237 case X86::VCMPPSZrri: 2238 case X86::VCMPPDZ128rri: 2239 case X86::VCMPPSZ128rri: 2240 case X86::VCMPPDZ256rri: 2241 case X86::VCMPPSZ256rri: 2242 case X86::VCMPPDZrrik: 2243 case X86::VCMPPSZrrik: 2244 case X86::VCMPPDZ128rrik: 2245 case X86::VCMPPSZ128rrik: 2246 case X86::VCMPPDZ256rrik: 2247 case X86::VCMPPSZ256rrik: { 2248 unsigned Imm = 2249 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f; 2250 Imm = X86::getSwappedVCMPImm(Imm); 2251 auto &WorkingMI = cloneIfNew(MI); 2252 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm); 2253 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2254 OpIdx1, OpIdx2); 2255 } 2256 case X86::VPERM2F128rr: 2257 case X86::VPERM2I128rr: { 2258 // Flip permute source immediate. 2259 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 2260 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 2261 int8_t Imm = MI.getOperand(3).getImm() & 0xFF; 2262 auto &WorkingMI = cloneIfNew(MI); 2263 WorkingMI.getOperand(3).setImm(Imm ^ 0x22); 2264 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2265 OpIdx1, OpIdx2); 2266 } 2267 case X86::MOVHLPSrr: 2268 case X86::UNPCKHPDrr: 2269 case X86::VMOVHLPSrr: 2270 case X86::VUNPCKHPDrr: 2271 case X86::VMOVHLPSZrr: 2272 case X86::VUNPCKHPDZ128rr: { 2273 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 2274 2275 unsigned Opc = MI.getOpcode(); 2276 switch (Opc) { 2277 default: llvm_unreachable("Unreachable!"); 2278 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; 2279 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; 2280 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; 2281 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; 2282 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; 2283 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; 2284 } 2285 auto &WorkingMI = cloneIfNew(MI); 2286 WorkingMI.setDesc(get(Opc)); 2287 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2288 OpIdx1, OpIdx2); 2289 } 2290 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: { 2291 auto &WorkingMI = cloneIfNew(MI); 2292 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 2293 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 2294 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 2295 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2296 OpIdx1, OpIdx2); 2297 } 2298 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2299 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2300 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2301 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2302 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2303 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2304 case X86::VPTERNLOGDZrrik: 2305 case X86::VPTERNLOGDZ128rrik: 2306 case X86::VPTERNLOGDZ256rrik: 2307 case X86::VPTERNLOGQZrrik: 2308 case X86::VPTERNLOGQZ128rrik: 2309 case X86::VPTERNLOGQZ256rrik: 2310 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2311 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2312 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2313 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2314 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2315 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2316 case X86::VPTERNLOGDZ128rmbi: 2317 case X86::VPTERNLOGDZ256rmbi: 2318 case X86::VPTERNLOGDZrmbi: 2319 case X86::VPTERNLOGQZ128rmbi: 2320 case X86::VPTERNLOGQZ256rmbi: 2321 case X86::VPTERNLOGQZrmbi: 2322 case X86::VPTERNLOGDZ128rmbikz: 2323 case X86::VPTERNLOGDZ256rmbikz: 2324 case X86::VPTERNLOGDZrmbikz: 2325 case X86::VPTERNLOGQZ128rmbikz: 2326 case X86::VPTERNLOGQZ256rmbikz: 2327 case X86::VPTERNLOGQZrmbikz: { 2328 auto &WorkingMI = cloneIfNew(MI); 2329 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); 2330 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2331 OpIdx1, OpIdx2); 2332 } 2333 default: { 2334 if (isCommutableVPERMV3Instruction(MI.getOpcode())) { 2335 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); 2336 auto &WorkingMI = cloneIfNew(MI); 2337 WorkingMI.setDesc(get(Opc)); 2338 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2339 OpIdx1, OpIdx2); 2340 } 2341 2342 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2343 MI.getDesc().TSFlags); 2344 if (FMA3Group) { 2345 unsigned Opc = 2346 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); 2347 auto &WorkingMI = cloneIfNew(MI); 2348 WorkingMI.setDesc(get(Opc)); 2349 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2350 OpIdx1, OpIdx2); 2351 } 2352 2353 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2354 } 2355 } 2356 } 2357 2358 bool 2359 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 2360 unsigned &SrcOpIdx1, 2361 unsigned &SrcOpIdx2, 2362 bool IsIntrinsic) const { 2363 uint64_t TSFlags = MI.getDesc().TSFlags; 2364 2365 unsigned FirstCommutableVecOp = 1; 2366 unsigned LastCommutableVecOp = 3; 2367 unsigned KMaskOp = -1U; 2368 if (X86II::isKMasked(TSFlags)) { 2369 // For k-zero-masked operations it is Ok to commute the first vector 2370 // operand. Unless this is an intrinsic instruction. 2371 // For regular k-masked operations a conservative choice is done as the 2372 // elements of the first vector operand, for which the corresponding bit 2373 // in the k-mask operand is set to 0, are copied to the result of the 2374 // instruction. 2375 // TODO/FIXME: The commute still may be legal if it is known that the 2376 // k-mask operand is set to either all ones or all zeroes. 2377 // It is also Ok to commute the 1st operand if all users of MI use only 2378 // the elements enabled by the k-mask operand. For example, 2379 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 2380 // : v1[i]; 2381 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 2382 // // Ok, to commute v1 in FMADD213PSZrk. 2383 2384 // The k-mask operand has index = 2 for masked and zero-masked operations. 2385 KMaskOp = 2; 2386 2387 // The operand with index = 1 is used as a source for those elements for 2388 // which the corresponding bit in the k-mask is set to 0. 2389 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) 2390 FirstCommutableVecOp = 3; 2391 2392 LastCommutableVecOp++; 2393 } else if (IsIntrinsic) { 2394 // Commuting the first operand of an intrinsic instruction isn't possible 2395 // unless we can prove that only the lowest element of the result is used. 2396 FirstCommutableVecOp = 2; 2397 } 2398 2399 if (isMem(MI, LastCommutableVecOp)) 2400 LastCommutableVecOp--; 2401 2402 // Only the first RegOpsNum operands are commutable. 2403 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 2404 // that the operand is not specified/fixed. 2405 if (SrcOpIdx1 != CommuteAnyOperandIndex && 2406 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 2407 SrcOpIdx1 == KMaskOp)) 2408 return false; 2409 if (SrcOpIdx2 != CommuteAnyOperandIndex && 2410 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 2411 SrcOpIdx2 == KMaskOp)) 2412 return false; 2413 2414 // Look for two different register operands assumed to be commutable 2415 // regardless of the FMA opcode. The FMA opcode is adjusted later. 2416 if (SrcOpIdx1 == CommuteAnyOperandIndex || 2417 SrcOpIdx2 == CommuteAnyOperandIndex) { 2418 unsigned CommutableOpIdx2 = SrcOpIdx2; 2419 2420 // At least one of operands to be commuted is not specified and 2421 // this method is free to choose appropriate commutable operands. 2422 if (SrcOpIdx1 == SrcOpIdx2) 2423 // Both of operands are not fixed. By default set one of commutable 2424 // operands to the last register operand of the instruction. 2425 CommutableOpIdx2 = LastCommutableVecOp; 2426 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 2427 // Only one of operands is not fixed. 2428 CommutableOpIdx2 = SrcOpIdx1; 2429 2430 // CommutableOpIdx2 is well defined now. Let's choose another commutable 2431 // operand and assign its index to CommutableOpIdx1. 2432 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 2433 2434 unsigned CommutableOpIdx1; 2435 for (CommutableOpIdx1 = LastCommutableVecOp; 2436 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 2437 // Just ignore and skip the k-mask operand. 2438 if (CommutableOpIdx1 == KMaskOp) 2439 continue; 2440 2441 // The commuted operands must have different registers. 2442 // Otherwise, the commute transformation does not change anything and 2443 // is useless then. 2444 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 2445 break; 2446 } 2447 2448 // No appropriate commutable operands were found. 2449 if (CommutableOpIdx1 < FirstCommutableVecOp) 2450 return false; 2451 2452 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 2453 // to return those values. 2454 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2455 CommutableOpIdx1, CommutableOpIdx2)) 2456 return false; 2457 } 2458 2459 return true; 2460 } 2461 2462 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2463 unsigned &SrcOpIdx1, 2464 unsigned &SrcOpIdx2) const { 2465 const MCInstrDesc &Desc = MI.getDesc(); 2466 if (!Desc.isCommutable()) 2467 return false; 2468 2469 switch (MI.getOpcode()) { 2470 case X86::CMPSDrr: 2471 case X86::CMPSSrr: 2472 case X86::CMPPDrri: 2473 case X86::CMPPSrri: 2474 case X86::VCMPSDrr: 2475 case X86::VCMPSSrr: 2476 case X86::VCMPPDrri: 2477 case X86::VCMPPSrri: 2478 case X86::VCMPPDYrri: 2479 case X86::VCMPPSYrri: 2480 case X86::VCMPSDZrr: 2481 case X86::VCMPSSZrr: 2482 case X86::VCMPPDZrri: 2483 case X86::VCMPPSZrri: 2484 case X86::VCMPPDZ128rri: 2485 case X86::VCMPPSZ128rri: 2486 case X86::VCMPPDZ256rri: 2487 case X86::VCMPPSZ256rri: 2488 case X86::VCMPPDZrrik: 2489 case X86::VCMPPSZrrik: 2490 case X86::VCMPPDZ128rrik: 2491 case X86::VCMPPSZ128rrik: 2492 case X86::VCMPPDZ256rrik: 2493 case X86::VCMPPSZ256rrik: { 2494 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 2495 2496 // Float comparison can be safely commuted for 2497 // Ordered/Unordered/Equal/NotEqual tests 2498 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 2499 switch (Imm) { 2500 default: 2501 // EVEX versions can be commuted. 2502 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) 2503 break; 2504 return false; 2505 case 0x00: // EQUAL 2506 case 0x03: // UNORDERED 2507 case 0x04: // NOT EQUAL 2508 case 0x07: // ORDERED 2509 break; 2510 } 2511 2512 // The indices of the commutable operands are 1 and 2 (or 2 and 3 2513 // when masked). 2514 // Assign them to the returned operand indices here. 2515 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2516 2 + OpOffset); 2517 } 2518 case X86::MOVSSrr: 2519 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 2520 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 2521 // AVX implies sse4.1. 2522 if (Subtarget.hasSSE41()) 2523 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2524 return false; 2525 case X86::SHUFPDrri: 2526 // We can commute this to MOVSD. 2527 if (MI.getOperand(3).getImm() == 0x02) 2528 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2529 return false; 2530 case X86::MOVHLPSrr: 2531 case X86::UNPCKHPDrr: 2532 case X86::VMOVHLPSrr: 2533 case X86::VUNPCKHPDrr: 2534 case X86::VMOVHLPSZrr: 2535 case X86::VUNPCKHPDZ128rr: 2536 if (Subtarget.hasSSE2()) 2537 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2538 return false; 2539 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2540 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2541 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2542 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2543 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2544 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2545 case X86::VPTERNLOGDZrrik: 2546 case X86::VPTERNLOGDZ128rrik: 2547 case X86::VPTERNLOGDZ256rrik: 2548 case X86::VPTERNLOGQZrrik: 2549 case X86::VPTERNLOGQZ128rrik: 2550 case X86::VPTERNLOGQZ256rrik: 2551 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2552 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2553 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2554 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2555 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2556 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2557 case X86::VPTERNLOGDZ128rmbi: 2558 case X86::VPTERNLOGDZ256rmbi: 2559 case X86::VPTERNLOGDZrmbi: 2560 case X86::VPTERNLOGQZ128rmbi: 2561 case X86::VPTERNLOGQZ256rmbi: 2562 case X86::VPTERNLOGQZrmbi: 2563 case X86::VPTERNLOGDZ128rmbikz: 2564 case X86::VPTERNLOGDZ256rmbikz: 2565 case X86::VPTERNLOGDZrmbikz: 2566 case X86::VPTERNLOGQZ128rmbikz: 2567 case X86::VPTERNLOGQZ256rmbikz: 2568 case X86::VPTERNLOGQZrmbikz: 2569 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2570 case X86::VPDPWSSDZ128r: 2571 case X86::VPDPWSSDZ128rk: 2572 case X86::VPDPWSSDZ128rkz: 2573 case X86::VPDPWSSDZ256r: 2574 case X86::VPDPWSSDZ256rk: 2575 case X86::VPDPWSSDZ256rkz: 2576 case X86::VPDPWSSDZr: 2577 case X86::VPDPWSSDZrk: 2578 case X86::VPDPWSSDZrkz: 2579 case X86::VPDPWSSDSZ128r: 2580 case X86::VPDPWSSDSZ128rk: 2581 case X86::VPDPWSSDSZ128rkz: 2582 case X86::VPDPWSSDSZ256r: 2583 case X86::VPDPWSSDSZ256rk: 2584 case X86::VPDPWSSDSZ256rkz: 2585 case X86::VPDPWSSDSZr: 2586 case X86::VPDPWSSDSZrk: 2587 case X86::VPDPWSSDSZrkz: 2588 case X86::VPMADD52HUQZ128r: 2589 case X86::VPMADD52HUQZ128rk: 2590 case X86::VPMADD52HUQZ128rkz: 2591 case X86::VPMADD52HUQZ256r: 2592 case X86::VPMADD52HUQZ256rk: 2593 case X86::VPMADD52HUQZ256rkz: 2594 case X86::VPMADD52HUQZr: 2595 case X86::VPMADD52HUQZrk: 2596 case X86::VPMADD52HUQZrkz: 2597 case X86::VPMADD52LUQZ128r: 2598 case X86::VPMADD52LUQZ128rk: 2599 case X86::VPMADD52LUQZ128rkz: 2600 case X86::VPMADD52LUQZ256r: 2601 case X86::VPMADD52LUQZ256rk: 2602 case X86::VPMADD52LUQZ256rkz: 2603 case X86::VPMADD52LUQZr: 2604 case X86::VPMADD52LUQZrk: 2605 case X86::VPMADD52LUQZrkz: { 2606 unsigned CommutableOpIdx1 = 2; 2607 unsigned CommutableOpIdx2 = 3; 2608 if (X86II::isKMasked(Desc.TSFlags)) { 2609 // Skip the mask register. 2610 ++CommutableOpIdx1; 2611 ++CommutableOpIdx2; 2612 } 2613 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2614 CommutableOpIdx1, CommutableOpIdx2)) 2615 return false; 2616 if (!MI.getOperand(SrcOpIdx1).isReg() || 2617 !MI.getOperand(SrcOpIdx2).isReg()) 2618 // No idea. 2619 return false; 2620 return true; 2621 } 2622 2623 default: 2624 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2625 MI.getDesc().TSFlags); 2626 if (FMA3Group) 2627 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 2628 FMA3Group->isIntrinsic()); 2629 2630 // Handled masked instructions since we need to skip over the mask input 2631 // and the preserved input. 2632 if (X86II::isKMasked(Desc.TSFlags)) { 2633 // First assume that the first input is the mask operand and skip past it. 2634 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 2635 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 2636 // Check if the first input is tied. If there isn't one then we only 2637 // need to skip the mask operand which we did above. 2638 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 2639 MCOI::TIED_TO) != -1)) { 2640 // If this is zero masking instruction with a tied operand, we need to 2641 // move the first index back to the first input since this must 2642 // be a 3 input instruction and we want the first two non-mask inputs. 2643 // Otherwise this is a 2 input instruction with a preserved input and 2644 // mask, so we need to move the indices to skip one more input. 2645 if (X86II::isKMergeMasked(Desc.TSFlags)) { 2646 ++CommutableOpIdx1; 2647 ++CommutableOpIdx2; 2648 } else { 2649 --CommutableOpIdx1; 2650 } 2651 } 2652 2653 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2654 CommutableOpIdx1, CommutableOpIdx2)) 2655 return false; 2656 2657 if (!MI.getOperand(SrcOpIdx1).isReg() || 2658 !MI.getOperand(SrcOpIdx2).isReg()) 2659 // No idea. 2660 return false; 2661 return true; 2662 } 2663 2664 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2665 } 2666 return false; 2667 } 2668 2669 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 2670 switch (MI.getOpcode()) { 2671 default: return X86::COND_INVALID; 2672 case X86::JCC_1: 2673 return static_cast<X86::CondCode>( 2674 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2675 } 2676 } 2677 2678 /// Return condition code of a SETCC opcode. 2679 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 2680 switch (MI.getOpcode()) { 2681 default: return X86::COND_INVALID; 2682 case X86::SETCCr: case X86::SETCCm: 2683 return static_cast<X86::CondCode>( 2684 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2685 } 2686 } 2687 2688 /// Return condition code of a CMov opcode. 2689 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 2690 switch (MI.getOpcode()) { 2691 default: return X86::COND_INVALID; 2692 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: 2693 case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm: 2694 return static_cast<X86::CondCode>( 2695 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2696 } 2697 } 2698 2699 /// Return the inverse of the specified condition, 2700 /// e.g. turning COND_E to COND_NE. 2701 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2702 switch (CC) { 2703 default: llvm_unreachable("Illegal condition code!"); 2704 case X86::COND_E: return X86::COND_NE; 2705 case X86::COND_NE: return X86::COND_E; 2706 case X86::COND_L: return X86::COND_GE; 2707 case X86::COND_LE: return X86::COND_G; 2708 case X86::COND_G: return X86::COND_LE; 2709 case X86::COND_GE: return X86::COND_L; 2710 case X86::COND_B: return X86::COND_AE; 2711 case X86::COND_BE: return X86::COND_A; 2712 case X86::COND_A: return X86::COND_BE; 2713 case X86::COND_AE: return X86::COND_B; 2714 case X86::COND_S: return X86::COND_NS; 2715 case X86::COND_NS: return X86::COND_S; 2716 case X86::COND_P: return X86::COND_NP; 2717 case X86::COND_NP: return X86::COND_P; 2718 case X86::COND_O: return X86::COND_NO; 2719 case X86::COND_NO: return X86::COND_O; 2720 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; 2721 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; 2722 } 2723 } 2724 2725 /// Assuming the flags are set by MI(a,b), return the condition code if we 2726 /// modify the instructions such that flags are set by MI(b,a). 2727 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 2728 switch (CC) { 2729 default: return X86::COND_INVALID; 2730 case X86::COND_E: return X86::COND_E; 2731 case X86::COND_NE: return X86::COND_NE; 2732 case X86::COND_L: return X86::COND_G; 2733 case X86::COND_LE: return X86::COND_GE; 2734 case X86::COND_G: return X86::COND_L; 2735 case X86::COND_GE: return X86::COND_LE; 2736 case X86::COND_B: return X86::COND_A; 2737 case X86::COND_BE: return X86::COND_AE; 2738 case X86::COND_A: return X86::COND_B; 2739 case X86::COND_AE: return X86::COND_BE; 2740 } 2741 } 2742 2743 std::pair<X86::CondCode, bool> 2744 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 2745 X86::CondCode CC = X86::COND_INVALID; 2746 bool NeedSwap = false; 2747 switch (Predicate) { 2748 default: break; 2749 // Floating-point Predicates 2750 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; 2751 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; 2752 case CmpInst::FCMP_OGT: CC = X86::COND_A; break; 2753 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; 2754 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; 2755 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; 2756 case CmpInst::FCMP_ULT: CC = X86::COND_B; break; 2757 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; 2758 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; 2759 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; 2760 case CmpInst::FCMP_UNO: CC = X86::COND_P; break; 2761 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; 2762 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; 2763 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; 2764 2765 // Integer Predicates 2766 case CmpInst::ICMP_EQ: CC = X86::COND_E; break; 2767 case CmpInst::ICMP_NE: CC = X86::COND_NE; break; 2768 case CmpInst::ICMP_UGT: CC = X86::COND_A; break; 2769 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; 2770 case CmpInst::ICMP_ULT: CC = X86::COND_B; break; 2771 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; 2772 case CmpInst::ICMP_SGT: CC = X86::COND_G; break; 2773 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; 2774 case CmpInst::ICMP_SLT: CC = X86::COND_L; break; 2775 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; 2776 } 2777 2778 return std::make_pair(CC, NeedSwap); 2779 } 2780 2781 /// Return a setcc opcode based on whether it has memory operand. 2782 unsigned X86::getSETOpc(bool HasMemoryOperand) { 2783 return HasMemoryOperand ? X86::SETCCr : X86::SETCCm; 2784 } 2785 2786 /// Return a cmov opcode for the given register size in bytes, and operand type. 2787 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) { 2788 switch(RegBytes) { 2789 default: llvm_unreachable("Illegal register size!"); 2790 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr; 2791 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr; 2792 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr; 2793 } 2794 } 2795 2796 /// Get the VPCMP immediate for the given condition. 2797 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 2798 switch (CC) { 2799 default: llvm_unreachable("Unexpected SETCC condition"); 2800 case ISD::SETNE: return 4; 2801 case ISD::SETEQ: return 0; 2802 case ISD::SETULT: 2803 case ISD::SETLT: return 1; 2804 case ISD::SETUGT: 2805 case ISD::SETGT: return 6; 2806 case ISD::SETUGE: 2807 case ISD::SETGE: return 5; 2808 case ISD::SETULE: 2809 case ISD::SETLE: return 2; 2810 } 2811 } 2812 2813 /// Get the VPCMP immediate if the operands are swapped. 2814 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 2815 switch (Imm) { 2816 default: llvm_unreachable("Unreachable!"); 2817 case 0x01: Imm = 0x06; break; // LT -> NLE 2818 case 0x02: Imm = 0x05; break; // LE -> NLT 2819 case 0x05: Imm = 0x02; break; // NLT -> LE 2820 case 0x06: Imm = 0x01; break; // NLE -> LT 2821 case 0x00: // EQ 2822 case 0x03: // FALSE 2823 case 0x04: // NE 2824 case 0x07: // TRUE 2825 break; 2826 } 2827 2828 return Imm; 2829 } 2830 2831 /// Get the VPCOM immediate if the operands are swapped. 2832 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 2833 switch (Imm) { 2834 default: llvm_unreachable("Unreachable!"); 2835 case 0x00: Imm = 0x02; break; // LT -> GT 2836 case 0x01: Imm = 0x03; break; // LE -> GE 2837 case 0x02: Imm = 0x00; break; // GT -> LT 2838 case 0x03: Imm = 0x01; break; // GE -> LE 2839 case 0x04: // EQ 2840 case 0x05: // NE 2841 case 0x06: // FALSE 2842 case 0x07: // TRUE 2843 break; 2844 } 2845 2846 return Imm; 2847 } 2848 2849 /// Get the VCMP immediate if the operands are swapped. 2850 unsigned X86::getSwappedVCMPImm(unsigned Imm) { 2851 // Only need the lower 2 bits to distinquish. 2852 switch (Imm & 0x3) { 2853 default: llvm_unreachable("Unreachable!"); 2854 case 0x00: case 0x03: 2855 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. 2856 break; 2857 case 0x01: case 0x02: 2858 // Need to toggle bits 3:0. Bit 4 stays the same. 2859 Imm ^= 0xf; 2860 break; 2861 } 2862 2863 return Imm; 2864 } 2865 2866 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 2867 switch (MI.getOpcode()) { 2868 case X86::TCRETURNdi: 2869 case X86::TCRETURNri: 2870 case X86::TCRETURNmi: 2871 case X86::TCRETURNdi64: 2872 case X86::TCRETURNri64: 2873 case X86::TCRETURNmi64: 2874 return true; 2875 default: 2876 return false; 2877 } 2878 } 2879 2880 bool X86InstrInfo::canMakeTailCallConditional( 2881 SmallVectorImpl<MachineOperand> &BranchCond, 2882 const MachineInstr &TailCall) const { 2883 if (TailCall.getOpcode() != X86::TCRETURNdi && 2884 TailCall.getOpcode() != X86::TCRETURNdi64) { 2885 // Only direct calls can be done with a conditional branch. 2886 return false; 2887 } 2888 2889 const MachineFunction *MF = TailCall.getParent()->getParent(); 2890 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 2891 // Conditional tail calls confuse the Win64 unwinder. 2892 return false; 2893 } 2894 2895 assert(BranchCond.size() == 1); 2896 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 2897 // Can't make a conditional tail call with this condition. 2898 return false; 2899 } 2900 2901 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 2902 if (X86FI->getTCReturnAddrDelta() != 0 || 2903 TailCall.getOperand(1).getImm() != 0) { 2904 // A conditional tail call cannot do any stack adjustment. 2905 return false; 2906 } 2907 2908 return true; 2909 } 2910 2911 void X86InstrInfo::replaceBranchWithTailCall( 2912 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 2913 const MachineInstr &TailCall) const { 2914 assert(canMakeTailCallConditional(BranchCond, TailCall)); 2915 2916 MachineBasicBlock::iterator I = MBB.end(); 2917 while (I != MBB.begin()) { 2918 --I; 2919 if (I->isDebugInstr()) 2920 continue; 2921 if (!I->isBranch()) 2922 assert(0 && "Can't find the branch to replace!"); 2923 2924 X86::CondCode CC = X86::getCondFromBranch(*I); 2925 assert(BranchCond.size() == 1); 2926 if (CC != BranchCond[0].getImm()) 2927 continue; 2928 2929 break; 2930 } 2931 2932 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 2933 : X86::TCRETURNdi64cc; 2934 2935 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 2936 MIB->addOperand(TailCall.getOperand(0)); // Destination. 2937 MIB.addImm(0); // Stack offset (not used). 2938 MIB->addOperand(BranchCond[0]); // Condition. 2939 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 2940 2941 // Add implicit uses and defs of all live regs potentially clobbered by the 2942 // call. This way they still appear live across the call. 2943 LivePhysRegs LiveRegs(getRegisterInfo()); 2944 LiveRegs.addLiveOuts(MBB); 2945 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 2946 LiveRegs.stepForward(*MIB, Clobbers); 2947 for (const auto &C : Clobbers) { 2948 MIB.addReg(C.first, RegState::Implicit); 2949 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 2950 } 2951 2952 I->eraseFromParent(); 2953 } 2954 2955 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 2956 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 2957 // fallthrough MBB cannot be identified. 2958 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 2959 MachineBasicBlock *TBB) { 2960 // Look for non-EHPad successors other than TBB. If we find exactly one, it 2961 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 2962 // and fallthrough MBB. If we find more than one, we cannot identify the 2963 // fallthrough MBB and should return nullptr. 2964 MachineBasicBlock *FallthroughBB = nullptr; 2965 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { 2966 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) 2967 continue; 2968 // Return a nullptr if we found more than one fallthrough successor. 2969 if (FallthroughBB && FallthroughBB != TBB) 2970 return nullptr; 2971 FallthroughBB = *SI; 2972 } 2973 return FallthroughBB; 2974 } 2975 2976 bool X86InstrInfo::AnalyzeBranchImpl( 2977 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 2978 SmallVectorImpl<MachineOperand> &Cond, 2979 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 2980 2981 // Start from the bottom of the block and work up, examining the 2982 // terminator instructions. 2983 MachineBasicBlock::iterator I = MBB.end(); 2984 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 2985 while (I != MBB.begin()) { 2986 --I; 2987 if (I->isDebugInstr()) 2988 continue; 2989 2990 // Working from the bottom, when we see a non-terminator instruction, we're 2991 // done. 2992 if (!isUnpredicatedTerminator(*I)) 2993 break; 2994 2995 // A terminator that isn't a branch can't easily be handled by this 2996 // analysis. 2997 if (!I->isBranch()) 2998 return true; 2999 3000 // Handle unconditional branches. 3001 if (I->getOpcode() == X86::JMP_1) { 3002 UnCondBrIter = I; 3003 3004 if (!AllowModify) { 3005 TBB = I->getOperand(0).getMBB(); 3006 continue; 3007 } 3008 3009 // If the block has any instructions after a JMP, delete them. 3010 while (std::next(I) != MBB.end()) 3011 std::next(I)->eraseFromParent(); 3012 3013 Cond.clear(); 3014 FBB = nullptr; 3015 3016 // Delete the JMP if it's equivalent to a fall-through. 3017 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3018 TBB = nullptr; 3019 I->eraseFromParent(); 3020 I = MBB.end(); 3021 UnCondBrIter = MBB.end(); 3022 continue; 3023 } 3024 3025 // TBB is used to indicate the unconditional destination. 3026 TBB = I->getOperand(0).getMBB(); 3027 continue; 3028 } 3029 3030 // Handle conditional branches. 3031 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 3032 if (BranchCode == X86::COND_INVALID) 3033 return true; // Can't handle indirect branch. 3034 3035 // In practice we should never have an undef eflags operand, if we do 3036 // abort here as we are not prepared to preserve the flag. 3037 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef()) 3038 return true; 3039 3040 // Working from the bottom, handle the first conditional branch. 3041 if (Cond.empty()) { 3042 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 3043 if (AllowModify && UnCondBrIter != MBB.end() && 3044 MBB.isLayoutSuccessor(TargetBB)) { 3045 // If we can modify the code and it ends in something like: 3046 // 3047 // jCC L1 3048 // jmp L2 3049 // L1: 3050 // ... 3051 // L2: 3052 // 3053 // Then we can change this to: 3054 // 3055 // jnCC L2 3056 // L1: 3057 // ... 3058 // L2: 3059 // 3060 // Which is a bit more efficient. 3061 // We conditionally jump to the fall-through block. 3062 BranchCode = GetOppositeBranchCondition(BranchCode); 3063 MachineBasicBlock::iterator OldInst = I; 3064 3065 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1)) 3066 .addMBB(UnCondBrIter->getOperand(0).getMBB()) 3067 .addImm(BranchCode); 3068 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) 3069 .addMBB(TargetBB); 3070 3071 OldInst->eraseFromParent(); 3072 UnCondBrIter->eraseFromParent(); 3073 3074 // Restart the analysis. 3075 UnCondBrIter = MBB.end(); 3076 I = MBB.end(); 3077 continue; 3078 } 3079 3080 FBB = TBB; 3081 TBB = I->getOperand(0).getMBB(); 3082 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 3083 CondBranches.push_back(&*I); 3084 continue; 3085 } 3086 3087 // Handle subsequent conditional branches. Only handle the case where all 3088 // conditional branches branch to the same destination and their condition 3089 // opcodes fit one of the special multi-branch idioms. 3090 assert(Cond.size() == 1); 3091 assert(TBB); 3092 3093 // If the conditions are the same, we can leave them alone. 3094 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 3095 auto NewTBB = I->getOperand(0).getMBB(); 3096 if (OldBranchCode == BranchCode && TBB == NewTBB) 3097 continue; 3098 3099 // If they differ, see if they fit one of the known patterns. Theoretically, 3100 // we could handle more patterns here, but we shouldn't expect to see them 3101 // if instruction selection has done a reasonable job. 3102 if (TBB == NewTBB && 3103 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 3104 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 3105 BranchCode = X86::COND_NE_OR_P; 3106 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 3107 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 3108 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 3109 return true; 3110 3111 // X86::COND_E_AND_NP usually has two different branch destinations. 3112 // 3113 // JP B1 3114 // JE B2 3115 // JMP B1 3116 // B1: 3117 // B2: 3118 // 3119 // Here this condition branches to B2 only if NP && E. It has another 3120 // equivalent form: 3121 // 3122 // JNE B1 3123 // JNP B2 3124 // JMP B1 3125 // B1: 3126 // B2: 3127 // 3128 // Similarly it branches to B2 only if E && NP. That is why this condition 3129 // is named with COND_E_AND_NP. 3130 BranchCode = X86::COND_E_AND_NP; 3131 } else 3132 return true; 3133 3134 // Update the MachineOperand. 3135 Cond[0].setImm(BranchCode); 3136 CondBranches.push_back(&*I); 3137 } 3138 3139 return false; 3140 } 3141 3142 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 3143 MachineBasicBlock *&TBB, 3144 MachineBasicBlock *&FBB, 3145 SmallVectorImpl<MachineOperand> &Cond, 3146 bool AllowModify) const { 3147 SmallVector<MachineInstr *, 4> CondBranches; 3148 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 3149 } 3150 3151 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 3152 MachineBranchPredicate &MBP, 3153 bool AllowModify) const { 3154 using namespace std::placeholders; 3155 3156 SmallVector<MachineOperand, 4> Cond; 3157 SmallVector<MachineInstr *, 4> CondBranches; 3158 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 3159 AllowModify)) 3160 return true; 3161 3162 if (Cond.size() != 1) 3163 return true; 3164 3165 assert(MBP.TrueDest && "expected!"); 3166 3167 if (!MBP.FalseDest) 3168 MBP.FalseDest = MBB.getNextNode(); 3169 3170 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3171 3172 MachineInstr *ConditionDef = nullptr; 3173 bool SingleUseCondition = true; 3174 3175 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { 3176 if (I->modifiesRegister(X86::EFLAGS, TRI)) { 3177 ConditionDef = &*I; 3178 break; 3179 } 3180 3181 if (I->readsRegister(X86::EFLAGS, TRI)) 3182 SingleUseCondition = false; 3183 } 3184 3185 if (!ConditionDef) 3186 return true; 3187 3188 if (SingleUseCondition) { 3189 for (auto *Succ : MBB.successors()) 3190 if (Succ->isLiveIn(X86::EFLAGS)) 3191 SingleUseCondition = false; 3192 } 3193 3194 MBP.ConditionDef = ConditionDef; 3195 MBP.SingleUseCondition = SingleUseCondition; 3196 3197 // Currently we only recognize the simple pattern: 3198 // 3199 // test %reg, %reg 3200 // je %label 3201 // 3202 const unsigned TestOpcode = 3203 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 3204 3205 if (ConditionDef->getOpcode() == TestOpcode && 3206 ConditionDef->getNumOperands() == 3 && 3207 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 3208 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 3209 MBP.LHS = ConditionDef->getOperand(0); 3210 MBP.RHS = MachineOperand::CreateImm(0); 3211 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 3212 ? MachineBranchPredicate::PRED_NE 3213 : MachineBranchPredicate::PRED_EQ; 3214 return false; 3215 } 3216 3217 return true; 3218 } 3219 3220 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 3221 int *BytesRemoved) const { 3222 assert(!BytesRemoved && "code size not handled"); 3223 3224 MachineBasicBlock::iterator I = MBB.end(); 3225 unsigned Count = 0; 3226 3227 while (I != MBB.begin()) { 3228 --I; 3229 if (I->isDebugInstr()) 3230 continue; 3231 if (I->getOpcode() != X86::JMP_1 && 3232 X86::getCondFromBranch(*I) == X86::COND_INVALID) 3233 break; 3234 // Remove the branch. 3235 I->eraseFromParent(); 3236 I = MBB.end(); 3237 ++Count; 3238 } 3239 3240 return Count; 3241 } 3242 3243 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 3244 MachineBasicBlock *TBB, 3245 MachineBasicBlock *FBB, 3246 ArrayRef<MachineOperand> Cond, 3247 const DebugLoc &DL, 3248 int *BytesAdded) const { 3249 // Shouldn't be a fall through. 3250 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 3251 assert((Cond.size() == 1 || Cond.size() == 0) && 3252 "X86 branch conditions have one component!"); 3253 assert(!BytesAdded && "code size not handled"); 3254 3255 if (Cond.empty()) { 3256 // Unconditional branch? 3257 assert(!FBB && "Unconditional branch with multiple successors!"); 3258 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 3259 return 1; 3260 } 3261 3262 // If FBB is null, it is implied to be a fall-through block. 3263 bool FallThru = FBB == nullptr; 3264 3265 // Conditional branch. 3266 unsigned Count = 0; 3267 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 3268 switch (CC) { 3269 case X86::COND_NE_OR_P: 3270 // Synthesize NE_OR_P with two branches. 3271 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 3272 ++Count; 3273 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 3274 ++Count; 3275 break; 3276 case X86::COND_E_AND_NP: 3277 // Use the next block of MBB as FBB if it is null. 3278 if (FBB == nullptr) { 3279 FBB = getFallThroughMBB(&MBB, TBB); 3280 assert(FBB && "MBB cannot be the last block in function when the false " 3281 "body is a fall-through."); 3282 } 3283 // Synthesize COND_E_AND_NP with two branches. 3284 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 3285 ++Count; 3286 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 3287 ++Count; 3288 break; 3289 default: { 3290 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 3291 ++Count; 3292 } 3293 } 3294 if (!FallThru) { 3295 // Two-way Conditional branch. Insert the second branch. 3296 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 3297 ++Count; 3298 } 3299 return Count; 3300 } 3301 3302 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3303 ArrayRef<MachineOperand> Cond, 3304 Register DstReg, Register TrueReg, 3305 Register FalseReg, int &CondCycles, 3306 int &TrueCycles, int &FalseCycles) const { 3307 // Not all subtargets have cmov instructions. 3308 if (!Subtarget.hasCMov()) 3309 return false; 3310 if (Cond.size() != 1) 3311 return false; 3312 // We cannot do the composite conditions, at least not in SSA form. 3313 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 3314 return false; 3315 3316 // Check register classes. 3317 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3318 const TargetRegisterClass *RC = 3319 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 3320 if (!RC) 3321 return false; 3322 3323 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 3324 if (X86::GR16RegClass.hasSubClassEq(RC) || 3325 X86::GR32RegClass.hasSubClassEq(RC) || 3326 X86::GR64RegClass.hasSubClassEq(RC)) { 3327 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 3328 // Bridge. Probably Ivy Bridge as well. 3329 CondCycles = 2; 3330 TrueCycles = 2; 3331 FalseCycles = 2; 3332 return true; 3333 } 3334 3335 // Can't do vectors. 3336 return false; 3337 } 3338 3339 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 3340 MachineBasicBlock::iterator I, 3341 const DebugLoc &DL, Register DstReg, 3342 ArrayRef<MachineOperand> Cond, Register TrueReg, 3343 Register FalseReg) const { 3344 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3345 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 3346 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 3347 assert(Cond.size() == 1 && "Invalid Cond array"); 3348 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 3349 false /*HasMemoryOperand*/); 3350 BuildMI(MBB, I, DL, get(Opc), DstReg) 3351 .addReg(FalseReg) 3352 .addReg(TrueReg) 3353 .addImm(Cond[0].getImm()); 3354 } 3355 3356 /// Test if the given register is a physical h register. 3357 static bool isHReg(unsigned Reg) { 3358 return X86::GR8_ABCD_HRegClass.contains(Reg); 3359 } 3360 3361 // Try and copy between VR128/VR64 and GR64 registers. 3362 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 3363 const X86Subtarget &Subtarget) { 3364 bool HasAVX = Subtarget.hasAVX(); 3365 bool HasAVX512 = Subtarget.hasAVX512(); 3366 3367 // SrcReg(MaskReg) -> DestReg(GR64) 3368 // SrcReg(MaskReg) -> DestReg(GR32) 3369 3370 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3371 if (X86::VK16RegClass.contains(SrcReg)) { 3372 if (X86::GR64RegClass.contains(DestReg)) { 3373 assert(Subtarget.hasBWI()); 3374 return X86::KMOVQrk; 3375 } 3376 if (X86::GR32RegClass.contains(DestReg)) 3377 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; 3378 } 3379 3380 // SrcReg(GR64) -> DestReg(MaskReg) 3381 // SrcReg(GR32) -> DestReg(MaskReg) 3382 3383 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3384 if (X86::VK16RegClass.contains(DestReg)) { 3385 if (X86::GR64RegClass.contains(SrcReg)) { 3386 assert(Subtarget.hasBWI()); 3387 return X86::KMOVQkr; 3388 } 3389 if (X86::GR32RegClass.contains(SrcReg)) 3390 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; 3391 } 3392 3393 3394 // SrcReg(VR128) -> DestReg(GR64) 3395 // SrcReg(VR64) -> DestReg(GR64) 3396 // SrcReg(GR64) -> DestReg(VR128) 3397 // SrcReg(GR64) -> DestReg(VR64) 3398 3399 if (X86::GR64RegClass.contains(DestReg)) { 3400 if (X86::VR128XRegClass.contains(SrcReg)) 3401 // Copy from a VR128 register to a GR64 register. 3402 return HasAVX512 ? X86::VMOVPQIto64Zrr : 3403 HasAVX ? X86::VMOVPQIto64rr : 3404 X86::MOVPQIto64rr; 3405 if (X86::VR64RegClass.contains(SrcReg)) 3406 // Copy from a VR64 register to a GR64 register. 3407 return X86::MMX_MOVD64from64rr; 3408 } else if (X86::GR64RegClass.contains(SrcReg)) { 3409 // Copy from a GR64 register to a VR128 register. 3410 if (X86::VR128XRegClass.contains(DestReg)) 3411 return HasAVX512 ? X86::VMOV64toPQIZrr : 3412 HasAVX ? X86::VMOV64toPQIrr : 3413 X86::MOV64toPQIrr; 3414 // Copy from a GR64 register to a VR64 register. 3415 if (X86::VR64RegClass.contains(DestReg)) 3416 return X86::MMX_MOVD64to64rr; 3417 } 3418 3419 // SrcReg(VR128) -> DestReg(GR32) 3420 // SrcReg(GR32) -> DestReg(VR128) 3421 3422 if (X86::GR32RegClass.contains(DestReg) && 3423 X86::VR128XRegClass.contains(SrcReg)) 3424 // Copy from a VR128 register to a GR32 register. 3425 return HasAVX512 ? X86::VMOVPDI2DIZrr : 3426 HasAVX ? X86::VMOVPDI2DIrr : 3427 X86::MOVPDI2DIrr; 3428 3429 if (X86::VR128XRegClass.contains(DestReg) && 3430 X86::GR32RegClass.contains(SrcReg)) 3431 // Copy from a VR128 register to a VR128 register. 3432 return HasAVX512 ? X86::VMOVDI2PDIZrr : 3433 HasAVX ? X86::VMOVDI2PDIrr : 3434 X86::MOVDI2PDIrr; 3435 return 0; 3436 } 3437 3438 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 3439 MachineBasicBlock::iterator MI, 3440 const DebugLoc &DL, MCRegister DestReg, 3441 MCRegister SrcReg, bool KillSrc) const { 3442 // First deal with the normal symmetric copies. 3443 bool HasAVX = Subtarget.hasAVX(); 3444 bool HasVLX = Subtarget.hasVLX(); 3445 unsigned Opc = 0; 3446 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 3447 Opc = X86::MOV64rr; 3448 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 3449 Opc = X86::MOV32rr; 3450 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 3451 Opc = X86::MOV16rr; 3452 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 3453 // Copying to or from a physical H register on x86-64 requires a NOREX 3454 // move. Otherwise use a normal move. 3455 if ((isHReg(DestReg) || isHReg(SrcReg)) && 3456 Subtarget.is64Bit()) { 3457 Opc = X86::MOV8rr_NOREX; 3458 // Both operands must be encodable without an REX prefix. 3459 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 3460 "8-bit H register can not be copied outside GR8_NOREX"); 3461 } else 3462 Opc = X86::MOV8rr; 3463 } 3464 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 3465 Opc = X86::MMX_MOVQ64rr; 3466 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 3467 if (HasVLX) 3468 Opc = X86::VMOVAPSZ128rr; 3469 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 3470 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 3471 else { 3472 // If this an extended register and we don't have VLX we need to use a 3473 // 512-bit move. 3474 Opc = X86::VMOVAPSZrr; 3475 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3476 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, 3477 &X86::VR512RegClass); 3478 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, 3479 &X86::VR512RegClass); 3480 } 3481 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 3482 if (HasVLX) 3483 Opc = X86::VMOVAPSZ256rr; 3484 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 3485 Opc = X86::VMOVAPSYrr; 3486 else { 3487 // If this an extended register and we don't have VLX we need to use a 3488 // 512-bit move. 3489 Opc = X86::VMOVAPSZrr; 3490 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3491 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, 3492 &X86::VR512RegClass); 3493 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, 3494 &X86::VR512RegClass); 3495 } 3496 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 3497 Opc = X86::VMOVAPSZrr; 3498 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3499 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 3500 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; 3501 if (!Opc) 3502 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 3503 3504 if (Opc) { 3505 BuildMI(MBB, MI, DL, get(Opc), DestReg) 3506 .addReg(SrcReg, getKillRegState(KillSrc)); 3507 return; 3508 } 3509 3510 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 3511 // FIXME: We use a fatal error here because historically LLVM has tried 3512 // lower some of these physreg copies and we want to ensure we get 3513 // reasonable bug reports if someone encounters a case no other testing 3514 // found. This path should be removed after the LLVM 7 release. 3515 report_fatal_error("Unable to copy EFLAGS physical register!"); 3516 } 3517 3518 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 3519 << RI.getName(DestReg) << '\n'); 3520 report_fatal_error("Cannot emit physreg copy instruction"); 3521 } 3522 3523 Optional<DestSourcePair> 3524 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 3525 if (MI.isMoveReg()) 3526 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 3527 return None; 3528 } 3529 3530 static unsigned getLoadStoreRegOpcode(unsigned Reg, 3531 const TargetRegisterClass *RC, 3532 bool isStackAligned, 3533 const X86Subtarget &STI, 3534 bool load) { 3535 bool HasAVX = STI.hasAVX(); 3536 bool HasAVX512 = STI.hasAVX512(); 3537 bool HasVLX = STI.hasVLX(); 3538 3539 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 3540 default: 3541 llvm_unreachable("Unknown spill size"); 3542 case 1: 3543 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 3544 if (STI.is64Bit()) 3545 // Copying to or from a physical H register on x86-64 requires a NOREX 3546 // move. Otherwise use a normal move. 3547 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 3548 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 3549 return load ? X86::MOV8rm : X86::MOV8mr; 3550 case 2: 3551 if (X86::VK16RegClass.hasSubClassEq(RC)) 3552 return load ? X86::KMOVWkm : X86::KMOVWmk; 3553 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 3554 return load ? X86::MOV16rm : X86::MOV16mr; 3555 case 4: 3556 if (X86::GR32RegClass.hasSubClassEq(RC)) 3557 return load ? X86::MOV32rm : X86::MOV32mr; 3558 if (X86::FR32XRegClass.hasSubClassEq(RC)) 3559 return load ? 3560 (HasAVX512 ? X86::VMOVSSZrm_alt : 3561 HasAVX ? X86::VMOVSSrm_alt : 3562 X86::MOVSSrm_alt) : 3563 (HasAVX512 ? X86::VMOVSSZmr : 3564 HasAVX ? X86::VMOVSSmr : 3565 X86::MOVSSmr); 3566 if (X86::RFP32RegClass.hasSubClassEq(RC)) 3567 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 3568 if (X86::VK32RegClass.hasSubClassEq(RC)) { 3569 assert(STI.hasBWI() && "KMOVD requires BWI"); 3570 return load ? X86::KMOVDkm : X86::KMOVDmk; 3571 } 3572 // All of these mask pair classes have the same spill size, the same kind 3573 // of kmov instructions can be used with all of them. 3574 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 3575 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 3576 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 3577 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 3578 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 3579 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 3580 llvm_unreachable("Unknown 4-byte regclass"); 3581 case 8: 3582 if (X86::GR64RegClass.hasSubClassEq(RC)) 3583 return load ? X86::MOV64rm : X86::MOV64mr; 3584 if (X86::FR64XRegClass.hasSubClassEq(RC)) 3585 return load ? 3586 (HasAVX512 ? X86::VMOVSDZrm_alt : 3587 HasAVX ? X86::VMOVSDrm_alt : 3588 X86::MOVSDrm_alt) : 3589 (HasAVX512 ? X86::VMOVSDZmr : 3590 HasAVX ? X86::VMOVSDmr : 3591 X86::MOVSDmr); 3592 if (X86::VR64RegClass.hasSubClassEq(RC)) 3593 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 3594 if (X86::RFP64RegClass.hasSubClassEq(RC)) 3595 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 3596 if (X86::VK64RegClass.hasSubClassEq(RC)) { 3597 assert(STI.hasBWI() && "KMOVQ requires BWI"); 3598 return load ? X86::KMOVQkm : X86::KMOVQmk; 3599 } 3600 llvm_unreachable("Unknown 8-byte regclass"); 3601 case 10: 3602 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 3603 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 3604 case 16: { 3605 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 3606 // If stack is realigned we can use aligned stores. 3607 if (isStackAligned) 3608 return load ? 3609 (HasVLX ? X86::VMOVAPSZ128rm : 3610 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : 3611 HasAVX ? X86::VMOVAPSrm : 3612 X86::MOVAPSrm): 3613 (HasVLX ? X86::VMOVAPSZ128mr : 3614 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : 3615 HasAVX ? X86::VMOVAPSmr : 3616 X86::MOVAPSmr); 3617 else 3618 return load ? 3619 (HasVLX ? X86::VMOVUPSZ128rm : 3620 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : 3621 HasAVX ? X86::VMOVUPSrm : 3622 X86::MOVUPSrm): 3623 (HasVLX ? X86::VMOVUPSZ128mr : 3624 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : 3625 HasAVX ? X86::VMOVUPSmr : 3626 X86::MOVUPSmr); 3627 } 3628 if (X86::BNDRRegClass.hasSubClassEq(RC)) { 3629 if (STI.is64Bit()) 3630 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; 3631 else 3632 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; 3633 } 3634 llvm_unreachable("Unknown 16-byte regclass"); 3635 } 3636 case 32: 3637 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 3638 // If stack is realigned we can use aligned stores. 3639 if (isStackAligned) 3640 return load ? 3641 (HasVLX ? X86::VMOVAPSZ256rm : 3642 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : 3643 X86::VMOVAPSYrm) : 3644 (HasVLX ? X86::VMOVAPSZ256mr : 3645 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : 3646 X86::VMOVAPSYmr); 3647 else 3648 return load ? 3649 (HasVLX ? X86::VMOVUPSZ256rm : 3650 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : 3651 X86::VMOVUPSYrm) : 3652 (HasVLX ? X86::VMOVUPSZ256mr : 3653 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : 3654 X86::VMOVUPSYmr); 3655 case 64: 3656 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 3657 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 3658 if (isStackAligned) 3659 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 3660 else 3661 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 3662 } 3663 } 3664 3665 bool X86InstrInfo::getMemOperandsWithOffsetWidth( 3666 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, 3667 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 3668 const TargetRegisterInfo *TRI) const { 3669 const MCInstrDesc &Desc = MemOp.getDesc(); 3670 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3671 if (MemRefBegin < 0) 3672 return false; 3673 3674 MemRefBegin += X86II::getOperandBias(Desc); 3675 3676 const MachineOperand *BaseOp = 3677 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 3678 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 3679 return false; 3680 3681 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 3682 return false; 3683 3684 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 3685 X86::NoRegister) 3686 return false; 3687 3688 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 3689 3690 // Displacement can be symbolic 3691 if (!DispMO.isImm()) 3692 return false; 3693 3694 Offset = DispMO.getImm(); 3695 3696 if (!BaseOp->isReg()) 3697 return false; 3698 3699 OffsetIsScalable = false; 3700 // FIXME: Relying on memoperands() may not be right thing to do here. Check 3701 // with X86 maintainers, and fix it accordingly. For now, it is ok, since 3702 // there is no use of `Width` for X86 back-end at the moment. 3703 Width = 3704 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; 3705 BaseOps.push_back(BaseOp); 3706 return true; 3707 } 3708 3709 static unsigned getStoreRegOpcode(unsigned SrcReg, 3710 const TargetRegisterClass *RC, 3711 bool isStackAligned, 3712 const X86Subtarget &STI) { 3713 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); 3714 } 3715 3716 3717 static unsigned getLoadRegOpcode(unsigned DestReg, 3718 const TargetRegisterClass *RC, 3719 bool isStackAligned, 3720 const X86Subtarget &STI) { 3721 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); 3722 } 3723 3724 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 3725 MachineBasicBlock::iterator MI, 3726 Register SrcReg, bool isKill, int FrameIdx, 3727 const TargetRegisterClass *RC, 3728 const TargetRegisterInfo *TRI) const { 3729 const MachineFunction &MF = *MBB.getParent(); 3730 assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 3731 "Stack slot too small for store"); 3732 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3733 bool isAligned = 3734 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3735 RI.canRealignStack(MF); 3736 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 3737 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3738 .addReg(SrcReg, getKillRegState(isKill)); 3739 } 3740 3741 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 3742 MachineBasicBlock::iterator MI, 3743 Register DestReg, int FrameIdx, 3744 const TargetRegisterClass *RC, 3745 const TargetRegisterInfo *TRI) const { 3746 const MachineFunction &MF = *MBB.getParent(); 3747 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3748 bool isAligned = 3749 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3750 RI.canRealignStack(MF); 3751 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 3752 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx); 3753 } 3754 3755 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 3756 Register &SrcReg2, int &CmpMask, 3757 int &CmpValue) const { 3758 switch (MI.getOpcode()) { 3759 default: break; 3760 case X86::CMP64ri32: 3761 case X86::CMP64ri8: 3762 case X86::CMP32ri: 3763 case X86::CMP32ri8: 3764 case X86::CMP16ri: 3765 case X86::CMP16ri8: 3766 case X86::CMP8ri: 3767 SrcReg = MI.getOperand(0).getReg(); 3768 SrcReg2 = 0; 3769 if (MI.getOperand(1).isImm()) { 3770 CmpMask = ~0; 3771 CmpValue = MI.getOperand(1).getImm(); 3772 } else { 3773 CmpMask = CmpValue = 0; 3774 } 3775 return true; 3776 // A SUB can be used to perform comparison. 3777 case X86::SUB64rm: 3778 case X86::SUB32rm: 3779 case X86::SUB16rm: 3780 case X86::SUB8rm: 3781 SrcReg = MI.getOperand(1).getReg(); 3782 SrcReg2 = 0; 3783 CmpMask = 0; 3784 CmpValue = 0; 3785 return true; 3786 case X86::SUB64rr: 3787 case X86::SUB32rr: 3788 case X86::SUB16rr: 3789 case X86::SUB8rr: 3790 SrcReg = MI.getOperand(1).getReg(); 3791 SrcReg2 = MI.getOperand(2).getReg(); 3792 CmpMask = 0; 3793 CmpValue = 0; 3794 return true; 3795 case X86::SUB64ri32: 3796 case X86::SUB64ri8: 3797 case X86::SUB32ri: 3798 case X86::SUB32ri8: 3799 case X86::SUB16ri: 3800 case X86::SUB16ri8: 3801 case X86::SUB8ri: 3802 SrcReg = MI.getOperand(1).getReg(); 3803 SrcReg2 = 0; 3804 if (MI.getOperand(2).isImm()) { 3805 CmpMask = ~0; 3806 CmpValue = MI.getOperand(2).getImm(); 3807 } else { 3808 CmpMask = CmpValue = 0; 3809 } 3810 return true; 3811 case X86::CMP64rr: 3812 case X86::CMP32rr: 3813 case X86::CMP16rr: 3814 case X86::CMP8rr: 3815 SrcReg = MI.getOperand(0).getReg(); 3816 SrcReg2 = MI.getOperand(1).getReg(); 3817 CmpMask = 0; 3818 CmpValue = 0; 3819 return true; 3820 case X86::TEST8rr: 3821 case X86::TEST16rr: 3822 case X86::TEST32rr: 3823 case X86::TEST64rr: 3824 SrcReg = MI.getOperand(0).getReg(); 3825 if (MI.getOperand(1).getReg() != SrcReg) 3826 return false; 3827 // Compare against zero. 3828 SrcReg2 = 0; 3829 CmpMask = ~0; 3830 CmpValue = 0; 3831 return true; 3832 } 3833 return false; 3834 } 3835 3836 /// Check whether the first instruction, whose only 3837 /// purpose is to update flags, can be made redundant. 3838 /// CMPrr can be made redundant by SUBrr if the operands are the same. 3839 /// This function can be extended later on. 3840 /// SrcReg, SrcRegs: register operands for FlagI. 3841 /// ImmValue: immediate for FlagI if it takes an immediate. 3842 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI, 3843 Register SrcReg, Register SrcReg2, 3844 int ImmMask, int ImmValue, 3845 const MachineInstr &OI) { 3846 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || 3847 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || 3848 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || 3849 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && 3850 ((OI.getOperand(1).getReg() == SrcReg && 3851 OI.getOperand(2).getReg() == SrcReg2) || 3852 (OI.getOperand(1).getReg() == SrcReg2 && 3853 OI.getOperand(2).getReg() == SrcReg))) 3854 return true; 3855 3856 if (ImmMask != 0 && 3857 ((FlagI.getOpcode() == X86::CMP64ri32 && 3858 OI.getOpcode() == X86::SUB64ri32) || 3859 (FlagI.getOpcode() == X86::CMP64ri8 && 3860 OI.getOpcode() == X86::SUB64ri8) || 3861 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || 3862 (FlagI.getOpcode() == X86::CMP32ri8 && 3863 OI.getOpcode() == X86::SUB32ri8) || 3864 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || 3865 (FlagI.getOpcode() == X86::CMP16ri8 && 3866 OI.getOpcode() == X86::SUB16ri8) || 3867 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && 3868 OI.getOperand(1).getReg() == SrcReg && 3869 OI.getOperand(2).getImm() == ImmValue) 3870 return true; 3871 return false; 3872 } 3873 3874 /// Check whether the definition can be converted 3875 /// to remove a comparison against zero. 3876 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) { 3877 NoSignFlag = false; 3878 3879 switch (MI.getOpcode()) { 3880 default: return false; 3881 3882 // The shift instructions only modify ZF if their shift count is non-zero. 3883 // N.B.: The processor truncates the shift count depending on the encoding. 3884 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 3885 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 3886 return getTruncatedShiftCount(MI, 2) != 0; 3887 3888 // Some left shift instructions can be turned into LEA instructions but only 3889 // if their flags aren't used. Avoid transforming such instructions. 3890 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 3891 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 3892 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 3893 return ShAmt != 0; 3894 } 3895 3896 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 3897 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 3898 return getTruncatedShiftCount(MI, 3) != 0; 3899 3900 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 3901 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 3902 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 3903 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 3904 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 3905 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 3906 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 3907 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 3908 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 3909 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 3910 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 3911 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 3912 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 3913 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 3914 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 3915 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 3916 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 3917 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 3918 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 3919 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 3920 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 3921 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 3922 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 3923 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 3924 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 3925 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 3926 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 3927 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: 3928 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: 3929 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: 3930 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: 3931 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: 3932 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: 3933 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: 3934 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: 3935 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: 3936 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: 3937 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 3938 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 3939 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 3940 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 3941 case X86::ANDN32rr: case X86::ANDN32rm: 3942 case X86::ANDN64rr: case X86::ANDN64rm: 3943 case X86::BLSI32rr: case X86::BLSI32rm: 3944 case X86::BLSI64rr: case X86::BLSI64rm: 3945 case X86::BLSMSK32rr:case X86::BLSMSK32rm: 3946 case X86::BLSMSK64rr:case X86::BLSMSK64rm: 3947 case X86::BLSR32rr: case X86::BLSR32rm: 3948 case X86::BLSR64rr: case X86::BLSR64rm: 3949 case X86::BZHI32rr: case X86::BZHI32rm: 3950 case X86::BZHI64rr: case X86::BZHI64rm: 3951 case X86::LZCNT16rr: case X86::LZCNT16rm: 3952 case X86::LZCNT32rr: case X86::LZCNT32rm: 3953 case X86::LZCNT64rr: case X86::LZCNT64rm: 3954 case X86::POPCNT16rr:case X86::POPCNT16rm: 3955 case X86::POPCNT32rr:case X86::POPCNT32rm: 3956 case X86::POPCNT64rr:case X86::POPCNT64rm: 3957 case X86::TZCNT16rr: case X86::TZCNT16rm: 3958 case X86::TZCNT32rr: case X86::TZCNT32rm: 3959 case X86::TZCNT64rr: case X86::TZCNT64rm: 3960 case X86::BLCFILL32rr: case X86::BLCFILL32rm: 3961 case X86::BLCFILL64rr: case X86::BLCFILL64rm: 3962 case X86::BLCI32rr: case X86::BLCI32rm: 3963 case X86::BLCI64rr: case X86::BLCI64rm: 3964 case X86::BLCIC32rr: case X86::BLCIC32rm: 3965 case X86::BLCIC64rr: case X86::BLCIC64rm: 3966 case X86::BLCMSK32rr: case X86::BLCMSK32rm: 3967 case X86::BLCMSK64rr: case X86::BLCMSK64rm: 3968 case X86::BLCS32rr: case X86::BLCS32rm: 3969 case X86::BLCS64rr: case X86::BLCS64rm: 3970 case X86::BLSFILL32rr: case X86::BLSFILL32rm: 3971 case X86::BLSFILL64rr: case X86::BLSFILL64rm: 3972 case X86::BLSIC32rr: case X86::BLSIC32rm: 3973 case X86::BLSIC64rr: case X86::BLSIC64rm: 3974 case X86::T1MSKC32rr: case X86::T1MSKC32rm: 3975 case X86::T1MSKC64rr: case X86::T1MSKC64rm: 3976 case X86::TZMSK32rr: case X86::TZMSK32rm: 3977 case X86::TZMSK64rr: case X86::TZMSK64rm: 3978 return true; 3979 case X86::BEXTR32rr: case X86::BEXTR64rr: 3980 case X86::BEXTR32rm: case X86::BEXTR64rm: 3981 case X86::BEXTRI32ri: case X86::BEXTRI32mi: 3982 case X86::BEXTRI64ri: case X86::BEXTRI64mi: 3983 // BEXTR doesn't update the sign flag so we can't use it. 3984 NoSignFlag = true; 3985 return true; 3986 } 3987 } 3988 3989 /// Check whether the use can be converted to remove a comparison against zero. 3990 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { 3991 switch (MI.getOpcode()) { 3992 default: return X86::COND_INVALID; 3993 case X86::NEG8r: 3994 case X86::NEG16r: 3995 case X86::NEG32r: 3996 case X86::NEG64r: 3997 return X86::COND_AE; 3998 case X86::LZCNT16rr: 3999 case X86::LZCNT32rr: 4000 case X86::LZCNT64rr: 4001 return X86::COND_B; 4002 case X86::POPCNT16rr: 4003 case X86::POPCNT32rr: 4004 case X86::POPCNT64rr: 4005 return X86::COND_E; 4006 case X86::TZCNT16rr: 4007 case X86::TZCNT32rr: 4008 case X86::TZCNT64rr: 4009 return X86::COND_B; 4010 case X86::BSF16rr: 4011 case X86::BSF32rr: 4012 case X86::BSF64rr: 4013 case X86::BSR16rr: 4014 case X86::BSR32rr: 4015 case X86::BSR64rr: 4016 return X86::COND_E; 4017 case X86::BLSI32rr: 4018 case X86::BLSI64rr: 4019 return X86::COND_AE; 4020 case X86::BLSR32rr: 4021 case X86::BLSR64rr: 4022 case X86::BLSMSK32rr: 4023 case X86::BLSMSK64rr: 4024 return X86::COND_B; 4025 // TODO: TBM instructions. 4026 } 4027 } 4028 4029 /// Check if there exists an earlier instruction that 4030 /// operates on the same source operands and sets flags in the same way as 4031 /// Compare; remove Compare if possible. 4032 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 4033 Register SrcReg2, int CmpMask, 4034 int CmpValue, 4035 const MachineRegisterInfo *MRI) const { 4036 // Check whether we can replace SUB with CMP. 4037 switch (CmpInstr.getOpcode()) { 4038 default: break; 4039 case X86::SUB64ri32: 4040 case X86::SUB64ri8: 4041 case X86::SUB32ri: 4042 case X86::SUB32ri8: 4043 case X86::SUB16ri: 4044 case X86::SUB16ri8: 4045 case X86::SUB8ri: 4046 case X86::SUB64rm: 4047 case X86::SUB32rm: 4048 case X86::SUB16rm: 4049 case X86::SUB8rm: 4050 case X86::SUB64rr: 4051 case X86::SUB32rr: 4052 case X86::SUB16rr: 4053 case X86::SUB8rr: { 4054 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 4055 return false; 4056 // There is no use of the destination register, we can replace SUB with CMP. 4057 unsigned NewOpcode = 0; 4058 switch (CmpInstr.getOpcode()) { 4059 default: llvm_unreachable("Unreachable!"); 4060 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 4061 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 4062 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 4063 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 4064 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 4065 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 4066 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 4067 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 4068 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 4069 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 4070 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 4071 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 4072 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 4073 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 4074 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 4075 } 4076 CmpInstr.setDesc(get(NewOpcode)); 4077 CmpInstr.RemoveOperand(0); 4078 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 4079 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 4080 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 4081 return false; 4082 } 4083 } 4084 4085 // Get the unique definition of SrcReg. 4086 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 4087 if (!MI) return false; 4088 4089 // CmpInstr is the first instruction of the BB. 4090 MachineBasicBlock::iterator I = CmpInstr, Def = MI; 4091 4092 // If we are comparing against zero, check whether we can use MI to update 4093 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. 4094 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 4095 if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) 4096 return false; 4097 4098 // If we have a use of the source register between the def and our compare 4099 // instruction we can eliminate the compare iff the use sets EFLAGS in the 4100 // right way. 4101 bool ShouldUpdateCC = false; 4102 bool NoSignFlag = false; 4103 X86::CondCode NewCC = X86::COND_INVALID; 4104 if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) { 4105 // Scan forward from the use until we hit the use we're looking for or the 4106 // compare instruction. 4107 for (MachineBasicBlock::iterator J = MI;; ++J) { 4108 // Do we have a convertible instruction? 4109 NewCC = isUseDefConvertible(*J); 4110 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && 4111 J->getOperand(1).getReg() == SrcReg) { 4112 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); 4113 ShouldUpdateCC = true; // Update CC later on. 4114 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going 4115 // with the new def. 4116 Def = J; 4117 MI = &*Def; 4118 break; 4119 } 4120 4121 if (J == I) 4122 return false; 4123 } 4124 } 4125 4126 // We are searching for an earlier instruction that can make CmpInstr 4127 // redundant and that instruction will be saved in Sub. 4128 MachineInstr *Sub = nullptr; 4129 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4130 4131 // We iterate backward, starting from the instruction before CmpInstr and 4132 // stop when reaching the definition of a source register or done with the BB. 4133 // RI points to the instruction before CmpInstr. 4134 // If the definition is in this basic block, RE points to the definition; 4135 // otherwise, RE is the rend of the basic block. 4136 MachineBasicBlock::reverse_iterator 4137 RI = ++I.getReverse(), 4138 RE = CmpInstr.getParent() == MI->getParent() 4139 ? Def.getReverse() /* points to MI */ 4140 : CmpInstr.getParent()->rend(); 4141 MachineInstr *Movr0Inst = nullptr; 4142 for (; RI != RE; ++RI) { 4143 MachineInstr &Instr = *RI; 4144 // Check whether CmpInstr can be made redundant by the current instruction. 4145 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, 4146 CmpValue, Instr)) { 4147 Sub = &Instr; 4148 break; 4149 } 4150 4151 if (Instr.modifiesRegister(X86::EFLAGS, TRI) || 4152 Instr.readsRegister(X86::EFLAGS, TRI)) { 4153 // This instruction modifies or uses EFLAGS. 4154 4155 // MOV32r0 etc. are implemented with xor which clobbers condition code. 4156 // They are safe to move up, if the definition to EFLAGS is dead and 4157 // earlier instructions do not read or write EFLAGS. 4158 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && 4159 Instr.registerDefIsDead(X86::EFLAGS, TRI)) { 4160 Movr0Inst = &Instr; 4161 continue; 4162 } 4163 4164 // We can't remove CmpInstr. 4165 return false; 4166 } 4167 } 4168 4169 // Return false if no candidates exist. 4170 if (!IsCmpZero && !Sub) 4171 return false; 4172 4173 bool IsSwapped = 4174 (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 && 4175 Sub->getOperand(2).getReg() == SrcReg); 4176 4177 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 4178 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 4179 // If we are done with the basic block, we need to check whether EFLAGS is 4180 // live-out. 4181 bool IsSafe = false; 4182 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate; 4183 MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); 4184 for (++I; I != E; ++I) { 4185 const MachineInstr &Instr = *I; 4186 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 4187 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 4188 // We should check the usage if this instruction uses and updates EFLAGS. 4189 if (!UseEFLAGS && ModifyEFLAGS) { 4190 // It is safe to remove CmpInstr if EFLAGS is updated again. 4191 IsSafe = true; 4192 break; 4193 } 4194 if (!UseEFLAGS && !ModifyEFLAGS) 4195 continue; 4196 4197 // EFLAGS is used by this instruction. 4198 X86::CondCode OldCC = X86::COND_INVALID; 4199 if (IsCmpZero || IsSwapped) { 4200 // We decode the condition code from opcode. 4201 if (Instr.isBranch()) 4202 OldCC = X86::getCondFromBranch(Instr); 4203 else { 4204 OldCC = X86::getCondFromSETCC(Instr); 4205 if (OldCC == X86::COND_INVALID) 4206 OldCC = X86::getCondFromCMov(Instr); 4207 } 4208 if (OldCC == X86::COND_INVALID) return false; 4209 } 4210 X86::CondCode ReplacementCC = X86::COND_INVALID; 4211 if (IsCmpZero) { 4212 switch (OldCC) { 4213 default: break; 4214 case X86::COND_A: case X86::COND_AE: 4215 case X86::COND_B: case X86::COND_BE: 4216 case X86::COND_G: case X86::COND_GE: 4217 case X86::COND_L: case X86::COND_LE: 4218 case X86::COND_O: case X86::COND_NO: 4219 // CF and OF are used, we can't perform this optimization. 4220 return false; 4221 case X86::COND_S: case X86::COND_NS: 4222 // If SF is used, but the instruction doesn't update the SF, then we 4223 // can't do the optimization. 4224 if (NoSignFlag) 4225 return false; 4226 break; 4227 } 4228 4229 // If we're updating the condition code check if we have to reverse the 4230 // condition. 4231 if (ShouldUpdateCC) 4232 switch (OldCC) { 4233 default: 4234 return false; 4235 case X86::COND_E: 4236 ReplacementCC = NewCC; 4237 break; 4238 case X86::COND_NE: 4239 ReplacementCC = GetOppositeBranchCondition(NewCC); 4240 break; 4241 } 4242 } else if (IsSwapped) { 4243 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 4244 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 4245 // We swap the condition code and synthesize the new opcode. 4246 ReplacementCC = getSwappedCondition(OldCC); 4247 if (ReplacementCC == X86::COND_INVALID) return false; 4248 } 4249 4250 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { 4251 // Push the MachineInstr to OpsToUpdate. 4252 // If it is safe to remove CmpInstr, the condition code of these 4253 // instructions will be modified. 4254 OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC)); 4255 } 4256 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 4257 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 4258 IsSafe = true; 4259 break; 4260 } 4261 } 4262 4263 // If EFLAGS is not killed nor re-defined, we should check whether it is 4264 // live-out. If it is live-out, do not optimize. 4265 if ((IsCmpZero || IsSwapped) && !IsSafe) { 4266 MachineBasicBlock *MBB = CmpInstr.getParent(); 4267 for (MachineBasicBlock *Successor : MBB->successors()) 4268 if (Successor->isLiveIn(X86::EFLAGS)) 4269 return false; 4270 } 4271 4272 // The instruction to be updated is either Sub or MI. 4273 Sub = IsCmpZero ? MI : Sub; 4274 // Move Movr0Inst to the appropriate place before Sub. 4275 if (Movr0Inst) { 4276 // Look backwards until we find a def that doesn't use the current EFLAGS. 4277 Def = Sub; 4278 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), 4279 InsertE = Sub->getParent()->rend(); 4280 for (; InsertI != InsertE; ++InsertI) { 4281 MachineInstr *Instr = &*InsertI; 4282 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 4283 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 4284 Sub->getParent()->remove(Movr0Inst); 4285 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 4286 Movr0Inst); 4287 break; 4288 } 4289 } 4290 if (InsertI == InsertE) 4291 return false; 4292 } 4293 4294 // Make sure Sub instruction defines EFLAGS and mark the def live. 4295 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS); 4296 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 4297 FlagDef->setIsDead(false); 4298 4299 CmpInstr.eraseFromParent(); 4300 4301 // Modify the condition code of instructions in OpsToUpdate. 4302 for (auto &Op : OpsToUpdate) { 4303 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 4304 .setImm(Op.second); 4305 } 4306 return true; 4307 } 4308 4309 /// Try to remove the load by folding it to a register 4310 /// operand at the use. We fold the load instructions if load defines a virtual 4311 /// register, the virtual register is used once in the same BB, and the 4312 /// instructions in-between do not load or store, and have no side effects. 4313 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 4314 const MachineRegisterInfo *MRI, 4315 unsigned &FoldAsLoadDefReg, 4316 MachineInstr *&DefMI) const { 4317 // Check whether we can move DefMI here. 4318 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 4319 assert(DefMI); 4320 bool SawStore = false; 4321 if (!DefMI->isSafeToMove(nullptr, SawStore)) 4322 return nullptr; 4323 4324 // Collect information about virtual register operands of MI. 4325 SmallVector<unsigned, 1> SrcOperandIds; 4326 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4327 MachineOperand &MO = MI.getOperand(i); 4328 if (!MO.isReg()) 4329 continue; 4330 Register Reg = MO.getReg(); 4331 if (Reg != FoldAsLoadDefReg) 4332 continue; 4333 // Do not fold if we have a subreg use or a def. 4334 if (MO.getSubReg() || MO.isDef()) 4335 return nullptr; 4336 SrcOperandIds.push_back(i); 4337 } 4338 if (SrcOperandIds.empty()) 4339 return nullptr; 4340 4341 // Check whether we can fold the def into SrcOperandId. 4342 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 4343 FoldAsLoadDefReg = 0; 4344 return FoldMI; 4345 } 4346 4347 return nullptr; 4348 } 4349 4350 /// Expand a single-def pseudo instruction to a two-addr 4351 /// instruction with two undef reads of the register being defined. 4352 /// This is used for mapping: 4353 /// %xmm4 = V_SET0 4354 /// to: 4355 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 4356 /// 4357 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 4358 const MCInstrDesc &Desc) { 4359 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4360 Register Reg = MIB.getReg(0); 4361 MIB->setDesc(Desc); 4362 4363 // MachineInstr::addOperand() will insert explicit operands before any 4364 // implicit operands. 4365 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4366 // But we don't trust that. 4367 assert(MIB.getReg(1) == Reg && 4368 MIB.getReg(2) == Reg && "Misplaced operand"); 4369 return true; 4370 } 4371 4372 /// Expand a single-def pseudo instruction to a two-addr 4373 /// instruction with two %k0 reads. 4374 /// This is used for mapping: 4375 /// %k4 = K_SET1 4376 /// to: 4377 /// %k4 = KXNORrr %k0, %k0 4378 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, 4379 const MCInstrDesc &Desc, unsigned Reg) { 4380 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4381 MIB->setDesc(Desc); 4382 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4383 return true; 4384 } 4385 4386 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 4387 bool MinusOne) { 4388 MachineBasicBlock &MBB = *MIB->getParent(); 4389 DebugLoc DL = MIB->getDebugLoc(); 4390 Register Reg = MIB.getReg(0); 4391 4392 // Insert the XOR. 4393 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 4394 .addReg(Reg, RegState::Undef) 4395 .addReg(Reg, RegState::Undef); 4396 4397 // Turn the pseudo into an INC or DEC. 4398 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 4399 MIB.addReg(Reg); 4400 4401 return true; 4402 } 4403 4404 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 4405 const TargetInstrInfo &TII, 4406 const X86Subtarget &Subtarget) { 4407 MachineBasicBlock &MBB = *MIB->getParent(); 4408 DebugLoc DL = MIB->getDebugLoc(); 4409 int64_t Imm = MIB->getOperand(1).getImm(); 4410 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 4411 MachineBasicBlock::iterator I = MIB.getInstr(); 4412 4413 int StackAdjustment; 4414 4415 if (Subtarget.is64Bit()) { 4416 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 4417 MIB->getOpcode() == X86::MOV32ImmSExti8); 4418 4419 // Can't use push/pop lowering if the function might write to the red zone. 4420 X86MachineFunctionInfo *X86FI = 4421 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 4422 if (X86FI->getUsesRedZone()) { 4423 MIB->setDesc(TII.get(MIB->getOpcode() == 4424 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); 4425 return true; 4426 } 4427 4428 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 4429 // widen the register if necessary. 4430 StackAdjustment = 8; 4431 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); 4432 MIB->setDesc(TII.get(X86::POP64r)); 4433 MIB->getOperand(0) 4434 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); 4435 } else { 4436 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 4437 StackAdjustment = 4; 4438 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); 4439 MIB->setDesc(TII.get(X86::POP32r)); 4440 } 4441 MIB->RemoveOperand(1); 4442 MIB->addImplicitDefUseOperands(*MBB.getParent()); 4443 4444 // Build CFI if necessary. 4445 MachineFunction &MF = *MBB.getParent(); 4446 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 4447 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 4448 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 4449 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 4450 if (EmitCFI) { 4451 TFL->BuildCFI(MBB, I, DL, 4452 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 4453 TFL->BuildCFI(MBB, std::next(I), DL, 4454 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 4455 } 4456 4457 return true; 4458 } 4459 4460 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 4461 // code sequence is needed for other targets. 4462 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 4463 const TargetInstrInfo &TII) { 4464 MachineBasicBlock &MBB = *MIB->getParent(); 4465 DebugLoc DL = MIB->getDebugLoc(); 4466 Register Reg = MIB.getReg(0); 4467 const GlobalValue *GV = 4468 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 4469 auto Flags = MachineMemOperand::MOLoad | 4470 MachineMemOperand::MODereferenceable | 4471 MachineMemOperand::MOInvariant; 4472 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4473 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); 4474 MachineBasicBlock::iterator I = MIB.getInstr(); 4475 4476 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 4477 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 4478 .addMemOperand(MMO); 4479 MIB->setDebugLoc(DL); 4480 MIB->setDesc(TII.get(X86::MOV64rm)); 4481 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 4482 } 4483 4484 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 4485 MachineBasicBlock &MBB = *MIB->getParent(); 4486 MachineFunction &MF = *MBB.getParent(); 4487 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 4488 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 4489 unsigned XorOp = 4490 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 4491 MIB->setDesc(TII.get(XorOp)); 4492 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 4493 return true; 4494 } 4495 4496 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4497 // but not VLX. If it uses an extended register we need to use an instruction 4498 // that loads the lower 128/256-bit, but is available with only AVX512F. 4499 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 4500 const TargetRegisterInfo *TRI, 4501 const MCInstrDesc &LoadDesc, 4502 const MCInstrDesc &BroadcastDesc, 4503 unsigned SubIdx) { 4504 Register DestReg = MIB.getReg(0); 4505 // Check if DestReg is XMM16-31 or YMM16-31. 4506 if (TRI->getEncodingValue(DestReg) < 16) { 4507 // We can use a normal VEX encoded load. 4508 MIB->setDesc(LoadDesc); 4509 } else { 4510 // Use a 128/256-bit VBROADCAST instruction. 4511 MIB->setDesc(BroadcastDesc); 4512 // Change the destination to a 512-bit register. 4513 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 4514 MIB->getOperand(0).setReg(DestReg); 4515 } 4516 return true; 4517 } 4518 4519 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4520 // but not VLX. If it uses an extended register we need to use an instruction 4521 // that stores the lower 128/256-bit, but is available with only AVX512F. 4522 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 4523 const TargetRegisterInfo *TRI, 4524 const MCInstrDesc &StoreDesc, 4525 const MCInstrDesc &ExtractDesc, 4526 unsigned SubIdx) { 4527 Register SrcReg = MIB.getReg(X86::AddrNumOperands); 4528 // Check if DestReg is XMM16-31 or YMM16-31. 4529 if (TRI->getEncodingValue(SrcReg) < 16) { 4530 // We can use a normal VEX encoded store. 4531 MIB->setDesc(StoreDesc); 4532 } else { 4533 // Use a VEXTRACTF instruction. 4534 MIB->setDesc(ExtractDesc); 4535 // Change the destination to a 512-bit register. 4536 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 4537 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 4538 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 4539 } 4540 4541 return true; 4542 } 4543 4544 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 4545 MIB->setDesc(Desc); 4546 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 4547 // Temporarily remove the immediate so we can add another source register. 4548 MIB->RemoveOperand(2); 4549 // Add the register. Don't copy the kill flag if there is one. 4550 MIB.addReg(MIB.getReg(1), 4551 getUndefRegState(MIB->getOperand(1).isUndef())); 4552 // Add back the immediate. 4553 MIB.addImm(ShiftAmt); 4554 return true; 4555 } 4556 4557 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 4558 bool HasAVX = Subtarget.hasAVX(); 4559 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4560 switch (MI.getOpcode()) { 4561 case X86::MOV32r0: 4562 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 4563 case X86::MOV32r1: 4564 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 4565 case X86::MOV32r_1: 4566 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 4567 case X86::MOV32ImmSExti8: 4568 case X86::MOV64ImmSExti8: 4569 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 4570 case X86::SETB_C32r: 4571 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 4572 case X86::SETB_C64r: 4573 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 4574 case X86::MMX_SET0: 4575 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); 4576 case X86::V_SET0: 4577 case X86::FsFLD0SS: 4578 case X86::FsFLD0SD: 4579 case X86::FsFLD0F128: 4580 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 4581 case X86::AVX_SET0: { 4582 assert(HasAVX && "AVX not supported"); 4583 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4584 Register SrcReg = MIB.getReg(0); 4585 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4586 MIB->getOperand(0).setReg(XReg); 4587 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 4588 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4589 return true; 4590 } 4591 case X86::AVX512_128_SET0: 4592 case X86::AVX512_FsFLD0SS: 4593 case X86::AVX512_FsFLD0SD: 4594 case X86::AVX512_FsFLD0F128: { 4595 bool HasVLX = Subtarget.hasVLX(); 4596 Register SrcReg = MIB.getReg(0); 4597 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4598 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 4599 return Expand2AddrUndef(MIB, 4600 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4601 // Extended register without VLX. Use a larger XOR. 4602 SrcReg = 4603 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 4604 MIB->getOperand(0).setReg(SrcReg); 4605 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4606 } 4607 case X86::AVX512_256_SET0: 4608 case X86::AVX512_512_SET0: { 4609 bool HasVLX = Subtarget.hasVLX(); 4610 Register SrcReg = MIB.getReg(0); 4611 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4612 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 4613 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4614 MIB->getOperand(0).setReg(XReg); 4615 Expand2AddrUndef(MIB, 4616 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4617 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4618 return true; 4619 } 4620 if (MI.getOpcode() == X86::AVX512_256_SET0) { 4621 // No VLX so we must reference a zmm. 4622 unsigned ZReg = 4623 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 4624 MIB->getOperand(0).setReg(ZReg); 4625 } 4626 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4627 } 4628 case X86::V_SETALLONES: 4629 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 4630 case X86::AVX2_SETALLONES: 4631 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 4632 case X86::AVX1_SETALLONES: { 4633 Register Reg = MIB.getReg(0); 4634 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 4635 MIB->setDesc(get(X86::VCMPPSYrri)); 4636 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 4637 return true; 4638 } 4639 case X86::AVX512_512_SETALLONES: { 4640 Register Reg = MIB.getReg(0); 4641 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 4642 // VPTERNLOGD needs 3 register inputs and an immediate. 4643 // 0xff will return 1s for any input. 4644 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) 4645 .addReg(Reg, RegState::Undef).addImm(0xff); 4646 return true; 4647 } 4648 case X86::AVX512_512_SEXT_MASK_32: 4649 case X86::AVX512_512_SEXT_MASK_64: { 4650 Register Reg = MIB.getReg(0); 4651 Register MaskReg = MIB.getReg(1); 4652 unsigned MaskState = getRegState(MIB->getOperand(1)); 4653 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? 4654 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; 4655 MI.RemoveOperand(1); 4656 MIB->setDesc(get(Opc)); 4657 // VPTERNLOG needs 3 register inputs and an immediate. 4658 // 0xff will return 1s for any input. 4659 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) 4660 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); 4661 return true; 4662 } 4663 case X86::VMOVAPSZ128rm_NOVLX: 4664 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 4665 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4666 case X86::VMOVUPSZ128rm_NOVLX: 4667 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 4668 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4669 case X86::VMOVAPSZ256rm_NOVLX: 4670 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 4671 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4672 case X86::VMOVUPSZ256rm_NOVLX: 4673 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 4674 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4675 case X86::VMOVAPSZ128mr_NOVLX: 4676 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 4677 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4678 case X86::VMOVUPSZ128mr_NOVLX: 4679 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 4680 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4681 case X86::VMOVAPSZ256mr_NOVLX: 4682 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 4683 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4684 case X86::VMOVUPSZ256mr_NOVLX: 4685 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 4686 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4687 case X86::MOV32ri64: { 4688 Register Reg = MIB.getReg(0); 4689 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 4690 MI.setDesc(get(X86::MOV32ri)); 4691 MIB->getOperand(0).setReg(Reg32); 4692 MIB.addReg(Reg, RegState::ImplicitDefine); 4693 return true; 4694 } 4695 4696 // KNL does not recognize dependency-breaking idioms for mask registers, 4697 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 4698 // Using %k0 as the undef input register is a performance heuristic based 4699 // on the assumption that %k0 is used less frequently than the other mask 4700 // registers, since it is not usable as a write mask. 4701 // FIXME: A more advanced approach would be to choose the best input mask 4702 // register based on context. 4703 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); 4704 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); 4705 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); 4706 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); 4707 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); 4708 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); 4709 case TargetOpcode::LOAD_STACK_GUARD: 4710 expandLoadStackGuard(MIB, *this); 4711 return true; 4712 case X86::XOR64_FP: 4713 case X86::XOR32_FP: 4714 return expandXorFP(MIB, *this); 4715 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 4716 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 4717 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 4718 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 4719 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; 4720 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; 4721 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; 4722 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; 4723 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; 4724 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; 4725 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; 4726 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; 4727 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break; 4728 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break; 4729 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break; 4730 } 4731 return false; 4732 } 4733 4734 /// Return true for all instructions that only update 4735 /// the first 32 or 64-bits of the destination register and leave the rest 4736 /// unmodified. This can be used to avoid folding loads if the instructions 4737 /// only update part of the destination register, and the non-updated part is 4738 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 4739 /// instructions breaks the partial register dependency and it can improve 4740 /// performance. e.g.: 4741 /// 4742 /// movss (%rdi), %xmm0 4743 /// cvtss2sd %xmm0, %xmm0 4744 /// 4745 /// Instead of 4746 /// cvtss2sd (%rdi), %xmm0 4747 /// 4748 /// FIXME: This should be turned into a TSFlags. 4749 /// 4750 static bool hasPartialRegUpdate(unsigned Opcode, 4751 const X86Subtarget &Subtarget, 4752 bool ForLoadFold = false) { 4753 switch (Opcode) { 4754 case X86::CVTSI2SSrr: 4755 case X86::CVTSI2SSrm: 4756 case X86::CVTSI642SSrr: 4757 case X86::CVTSI642SSrm: 4758 case X86::CVTSI2SDrr: 4759 case X86::CVTSI2SDrm: 4760 case X86::CVTSI642SDrr: 4761 case X86::CVTSI642SDrm: 4762 // Load folding won't effect the undef register update since the input is 4763 // a GPR. 4764 return !ForLoadFold; 4765 case X86::CVTSD2SSrr: 4766 case X86::CVTSD2SSrm: 4767 case X86::CVTSS2SDrr: 4768 case X86::CVTSS2SDrm: 4769 case X86::MOVHPDrm: 4770 case X86::MOVHPSrm: 4771 case X86::MOVLPDrm: 4772 case X86::MOVLPSrm: 4773 case X86::RCPSSr: 4774 case X86::RCPSSm: 4775 case X86::RCPSSr_Int: 4776 case X86::RCPSSm_Int: 4777 case X86::ROUNDSDr: 4778 case X86::ROUNDSDm: 4779 case X86::ROUNDSSr: 4780 case X86::ROUNDSSm: 4781 case X86::RSQRTSSr: 4782 case X86::RSQRTSSm: 4783 case X86::RSQRTSSr_Int: 4784 case X86::RSQRTSSm_Int: 4785 case X86::SQRTSSr: 4786 case X86::SQRTSSm: 4787 case X86::SQRTSSr_Int: 4788 case X86::SQRTSSm_Int: 4789 case X86::SQRTSDr: 4790 case X86::SQRTSDm: 4791 case X86::SQRTSDr_Int: 4792 case X86::SQRTSDm_Int: 4793 return true; 4794 // GPR 4795 case X86::POPCNT32rm: 4796 case X86::POPCNT32rr: 4797 case X86::POPCNT64rm: 4798 case X86::POPCNT64rr: 4799 return Subtarget.hasPOPCNTFalseDeps(); 4800 case X86::LZCNT32rm: 4801 case X86::LZCNT32rr: 4802 case X86::LZCNT64rm: 4803 case X86::LZCNT64rr: 4804 case X86::TZCNT32rm: 4805 case X86::TZCNT32rr: 4806 case X86::TZCNT64rm: 4807 case X86::TZCNT64rr: 4808 return Subtarget.hasLZCNTFalseDeps(); 4809 } 4810 4811 return false; 4812 } 4813 4814 /// Inform the BreakFalseDeps pass how many idle 4815 /// instructions we would like before a partial register update. 4816 unsigned X86InstrInfo::getPartialRegUpdateClearance( 4817 const MachineInstr &MI, unsigned OpNum, 4818 const TargetRegisterInfo *TRI) const { 4819 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 4820 return 0; 4821 4822 // If MI is marked as reading Reg, the partial register update is wanted. 4823 const MachineOperand &MO = MI.getOperand(0); 4824 Register Reg = MO.getReg(); 4825 if (Register::isVirtualRegister(Reg)) { 4826 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 4827 return 0; 4828 } else { 4829 if (MI.readsRegister(Reg, TRI)) 4830 return 0; 4831 } 4832 4833 // If any instructions in the clearance range are reading Reg, insert a 4834 // dependency breaking instruction, which is inexpensive and is likely to 4835 // be hidden in other instruction's cycles. 4836 return PartialRegUpdateClearance; 4837 } 4838 4839 // Return true for any instruction the copies the high bits of the first source 4840 // operand into the unused high bits of the destination operand. 4841 // Also returns true for instructions that have two inputs where one may 4842 // be undef and we want it to use the same register as the other input. 4843 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, 4844 bool ForLoadFold = false) { 4845 // Set the OpNum parameter to the first source operand. 4846 switch (Opcode) { 4847 case X86::MMX_PUNPCKHBWirr: 4848 case X86::MMX_PUNPCKHWDirr: 4849 case X86::MMX_PUNPCKHDQirr: 4850 case X86::MMX_PUNPCKLBWirr: 4851 case X86::MMX_PUNPCKLWDirr: 4852 case X86::MMX_PUNPCKLDQirr: 4853 case X86::MOVHLPSrr: 4854 case X86::PACKSSWBrr: 4855 case X86::PACKUSWBrr: 4856 case X86::PACKSSDWrr: 4857 case X86::PACKUSDWrr: 4858 case X86::PUNPCKHBWrr: 4859 case X86::PUNPCKLBWrr: 4860 case X86::PUNPCKHWDrr: 4861 case X86::PUNPCKLWDrr: 4862 case X86::PUNPCKHDQrr: 4863 case X86::PUNPCKLDQrr: 4864 case X86::PUNPCKHQDQrr: 4865 case X86::PUNPCKLQDQrr: 4866 case X86::SHUFPDrri: 4867 case X86::SHUFPSrri: 4868 // These instructions are sometimes used with an undef first or second 4869 // source. Return true here so BreakFalseDeps will assign this source to the 4870 // same register as the first source to avoid a false dependency. 4871 // Operand 1 of these instructions is tied so they're separate from their 4872 // VEX counterparts. 4873 return OpNum == 2 && !ForLoadFold; 4874 4875 case X86::VMOVLHPSrr: 4876 case X86::VMOVLHPSZrr: 4877 case X86::VPACKSSWBrr: 4878 case X86::VPACKUSWBrr: 4879 case X86::VPACKSSDWrr: 4880 case X86::VPACKUSDWrr: 4881 case X86::VPACKSSWBZ128rr: 4882 case X86::VPACKUSWBZ128rr: 4883 case X86::VPACKSSDWZ128rr: 4884 case X86::VPACKUSDWZ128rr: 4885 case X86::VPERM2F128rr: 4886 case X86::VPERM2I128rr: 4887 case X86::VSHUFF32X4Z256rri: 4888 case X86::VSHUFF32X4Zrri: 4889 case X86::VSHUFF64X2Z256rri: 4890 case X86::VSHUFF64X2Zrri: 4891 case X86::VSHUFI32X4Z256rri: 4892 case X86::VSHUFI32X4Zrri: 4893 case X86::VSHUFI64X2Z256rri: 4894 case X86::VSHUFI64X2Zrri: 4895 case X86::VPUNPCKHBWrr: 4896 case X86::VPUNPCKLBWrr: 4897 case X86::VPUNPCKHBWYrr: 4898 case X86::VPUNPCKLBWYrr: 4899 case X86::VPUNPCKHBWZ128rr: 4900 case X86::VPUNPCKLBWZ128rr: 4901 case X86::VPUNPCKHBWZ256rr: 4902 case X86::VPUNPCKLBWZ256rr: 4903 case X86::VPUNPCKHBWZrr: 4904 case X86::VPUNPCKLBWZrr: 4905 case X86::VPUNPCKHWDrr: 4906 case X86::VPUNPCKLWDrr: 4907 case X86::VPUNPCKHWDYrr: 4908 case X86::VPUNPCKLWDYrr: 4909 case X86::VPUNPCKHWDZ128rr: 4910 case X86::VPUNPCKLWDZ128rr: 4911 case X86::VPUNPCKHWDZ256rr: 4912 case X86::VPUNPCKLWDZ256rr: 4913 case X86::VPUNPCKHWDZrr: 4914 case X86::VPUNPCKLWDZrr: 4915 case X86::VPUNPCKHDQrr: 4916 case X86::VPUNPCKLDQrr: 4917 case X86::VPUNPCKHDQYrr: 4918 case X86::VPUNPCKLDQYrr: 4919 case X86::VPUNPCKHDQZ128rr: 4920 case X86::VPUNPCKLDQZ128rr: 4921 case X86::VPUNPCKHDQZ256rr: 4922 case X86::VPUNPCKLDQZ256rr: 4923 case X86::VPUNPCKHDQZrr: 4924 case X86::VPUNPCKLDQZrr: 4925 case X86::VPUNPCKHQDQrr: 4926 case X86::VPUNPCKLQDQrr: 4927 case X86::VPUNPCKHQDQYrr: 4928 case X86::VPUNPCKLQDQYrr: 4929 case X86::VPUNPCKHQDQZ128rr: 4930 case X86::VPUNPCKLQDQZ128rr: 4931 case X86::VPUNPCKHQDQZ256rr: 4932 case X86::VPUNPCKLQDQZ256rr: 4933 case X86::VPUNPCKHQDQZrr: 4934 case X86::VPUNPCKLQDQZrr: 4935 // These instructions are sometimes used with an undef first or second 4936 // source. Return true here so BreakFalseDeps will assign this source to the 4937 // same register as the first source to avoid a false dependency. 4938 return (OpNum == 1 || OpNum == 2) && !ForLoadFold; 4939 4940 case X86::VCVTSI2SSrr: 4941 case X86::VCVTSI2SSrm: 4942 case X86::VCVTSI2SSrr_Int: 4943 case X86::VCVTSI2SSrm_Int: 4944 case X86::VCVTSI642SSrr: 4945 case X86::VCVTSI642SSrm: 4946 case X86::VCVTSI642SSrr_Int: 4947 case X86::VCVTSI642SSrm_Int: 4948 case X86::VCVTSI2SDrr: 4949 case X86::VCVTSI2SDrm: 4950 case X86::VCVTSI2SDrr_Int: 4951 case X86::VCVTSI2SDrm_Int: 4952 case X86::VCVTSI642SDrr: 4953 case X86::VCVTSI642SDrm: 4954 case X86::VCVTSI642SDrr_Int: 4955 case X86::VCVTSI642SDrm_Int: 4956 // AVX-512 4957 case X86::VCVTSI2SSZrr: 4958 case X86::VCVTSI2SSZrm: 4959 case X86::VCVTSI2SSZrr_Int: 4960 case X86::VCVTSI2SSZrrb_Int: 4961 case X86::VCVTSI2SSZrm_Int: 4962 case X86::VCVTSI642SSZrr: 4963 case X86::VCVTSI642SSZrm: 4964 case X86::VCVTSI642SSZrr_Int: 4965 case X86::VCVTSI642SSZrrb_Int: 4966 case X86::VCVTSI642SSZrm_Int: 4967 case X86::VCVTSI2SDZrr: 4968 case X86::VCVTSI2SDZrm: 4969 case X86::VCVTSI2SDZrr_Int: 4970 case X86::VCVTSI2SDZrm_Int: 4971 case X86::VCVTSI642SDZrr: 4972 case X86::VCVTSI642SDZrm: 4973 case X86::VCVTSI642SDZrr_Int: 4974 case X86::VCVTSI642SDZrrb_Int: 4975 case X86::VCVTSI642SDZrm_Int: 4976 case X86::VCVTUSI2SSZrr: 4977 case X86::VCVTUSI2SSZrm: 4978 case X86::VCVTUSI2SSZrr_Int: 4979 case X86::VCVTUSI2SSZrrb_Int: 4980 case X86::VCVTUSI2SSZrm_Int: 4981 case X86::VCVTUSI642SSZrr: 4982 case X86::VCVTUSI642SSZrm: 4983 case X86::VCVTUSI642SSZrr_Int: 4984 case X86::VCVTUSI642SSZrrb_Int: 4985 case X86::VCVTUSI642SSZrm_Int: 4986 case X86::VCVTUSI2SDZrr: 4987 case X86::VCVTUSI2SDZrm: 4988 case X86::VCVTUSI2SDZrr_Int: 4989 case X86::VCVTUSI2SDZrm_Int: 4990 case X86::VCVTUSI642SDZrr: 4991 case X86::VCVTUSI642SDZrm: 4992 case X86::VCVTUSI642SDZrr_Int: 4993 case X86::VCVTUSI642SDZrrb_Int: 4994 case X86::VCVTUSI642SDZrm_Int: 4995 // Load folding won't effect the undef register update since the input is 4996 // a GPR. 4997 return OpNum == 1 && !ForLoadFold; 4998 case X86::VCVTSD2SSrr: 4999 case X86::VCVTSD2SSrm: 5000 case X86::VCVTSD2SSrr_Int: 5001 case X86::VCVTSD2SSrm_Int: 5002 case X86::VCVTSS2SDrr: 5003 case X86::VCVTSS2SDrm: 5004 case X86::VCVTSS2SDrr_Int: 5005 case X86::VCVTSS2SDrm_Int: 5006 case X86::VRCPSSr: 5007 case X86::VRCPSSr_Int: 5008 case X86::VRCPSSm: 5009 case X86::VRCPSSm_Int: 5010 case X86::VROUNDSDr: 5011 case X86::VROUNDSDm: 5012 case X86::VROUNDSDr_Int: 5013 case X86::VROUNDSDm_Int: 5014 case X86::VROUNDSSr: 5015 case X86::VROUNDSSm: 5016 case X86::VROUNDSSr_Int: 5017 case X86::VROUNDSSm_Int: 5018 case X86::VRSQRTSSr: 5019 case X86::VRSQRTSSr_Int: 5020 case X86::VRSQRTSSm: 5021 case X86::VRSQRTSSm_Int: 5022 case X86::VSQRTSSr: 5023 case X86::VSQRTSSr_Int: 5024 case X86::VSQRTSSm: 5025 case X86::VSQRTSSm_Int: 5026 case X86::VSQRTSDr: 5027 case X86::VSQRTSDr_Int: 5028 case X86::VSQRTSDm: 5029 case X86::VSQRTSDm_Int: 5030 // AVX-512 5031 case X86::VCVTSD2SSZrr: 5032 case X86::VCVTSD2SSZrr_Int: 5033 case X86::VCVTSD2SSZrrb_Int: 5034 case X86::VCVTSD2SSZrm: 5035 case X86::VCVTSD2SSZrm_Int: 5036 case X86::VCVTSS2SDZrr: 5037 case X86::VCVTSS2SDZrr_Int: 5038 case X86::VCVTSS2SDZrrb_Int: 5039 case X86::VCVTSS2SDZrm: 5040 case X86::VCVTSS2SDZrm_Int: 5041 case X86::VGETEXPSDZr: 5042 case X86::VGETEXPSDZrb: 5043 case X86::VGETEXPSDZm: 5044 case X86::VGETEXPSSZr: 5045 case X86::VGETEXPSSZrb: 5046 case X86::VGETEXPSSZm: 5047 case X86::VGETMANTSDZrri: 5048 case X86::VGETMANTSDZrrib: 5049 case X86::VGETMANTSDZrmi: 5050 case X86::VGETMANTSSZrri: 5051 case X86::VGETMANTSSZrrib: 5052 case X86::VGETMANTSSZrmi: 5053 case X86::VRNDSCALESDZr: 5054 case X86::VRNDSCALESDZr_Int: 5055 case X86::VRNDSCALESDZrb_Int: 5056 case X86::VRNDSCALESDZm: 5057 case X86::VRNDSCALESDZm_Int: 5058 case X86::VRNDSCALESSZr: 5059 case X86::VRNDSCALESSZr_Int: 5060 case X86::VRNDSCALESSZrb_Int: 5061 case X86::VRNDSCALESSZm: 5062 case X86::VRNDSCALESSZm_Int: 5063 case X86::VRCP14SDZrr: 5064 case X86::VRCP14SDZrm: 5065 case X86::VRCP14SSZrr: 5066 case X86::VRCP14SSZrm: 5067 case X86::VRCP28SDZr: 5068 case X86::VRCP28SDZrb: 5069 case X86::VRCP28SDZm: 5070 case X86::VRCP28SSZr: 5071 case X86::VRCP28SSZrb: 5072 case X86::VRCP28SSZm: 5073 case X86::VREDUCESSZrmi: 5074 case X86::VREDUCESSZrri: 5075 case X86::VREDUCESSZrrib: 5076 case X86::VRSQRT14SDZrr: 5077 case X86::VRSQRT14SDZrm: 5078 case X86::VRSQRT14SSZrr: 5079 case X86::VRSQRT14SSZrm: 5080 case X86::VRSQRT28SDZr: 5081 case X86::VRSQRT28SDZrb: 5082 case X86::VRSQRT28SDZm: 5083 case X86::VRSQRT28SSZr: 5084 case X86::VRSQRT28SSZrb: 5085 case X86::VRSQRT28SSZm: 5086 case X86::VSQRTSSZr: 5087 case X86::VSQRTSSZr_Int: 5088 case X86::VSQRTSSZrb_Int: 5089 case X86::VSQRTSSZm: 5090 case X86::VSQRTSSZm_Int: 5091 case X86::VSQRTSDZr: 5092 case X86::VSQRTSDZr_Int: 5093 case X86::VSQRTSDZrb_Int: 5094 case X86::VSQRTSDZm: 5095 case X86::VSQRTSDZm_Int: 5096 return OpNum == 1; 5097 case X86::VMOVSSZrrk: 5098 case X86::VMOVSDZrrk: 5099 return OpNum == 3 && !ForLoadFold; 5100 case X86::VMOVSSZrrkz: 5101 case X86::VMOVSDZrrkz: 5102 return OpNum == 2 && !ForLoadFold; 5103 } 5104 5105 return false; 5106 } 5107 5108 /// Inform the BreakFalseDeps pass how many idle instructions we would like 5109 /// before certain undef register reads. 5110 /// 5111 /// This catches the VCVTSI2SD family of instructions: 5112 /// 5113 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 5114 /// 5115 /// We should to be careful *not* to catch VXOR idioms which are presumably 5116 /// handled specially in the pipeline: 5117 /// 5118 /// vxorps undef %xmm1, undef %xmm1, %xmm1 5119 /// 5120 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 5121 /// high bits that are passed-through are not live. 5122 unsigned 5123 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, 5124 const TargetRegisterInfo *TRI) const { 5125 for (unsigned i = MI.getNumExplicitDefs(), e = MI.getNumExplicitOperands(); 5126 i != e; ++i) { 5127 const MachineOperand &MO = MI.getOperand(i); 5128 if (MO.isReg() && MO.isUndef() && 5129 Register::isPhysicalRegister(MO.getReg()) && 5130 hasUndefRegUpdate(MI.getOpcode(), i)) { 5131 OpNum = i; 5132 return UndefRegClearance; 5133 } 5134 } 5135 5136 return 0; 5137 } 5138 5139 void X86InstrInfo::breakPartialRegDependency( 5140 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5141 Register Reg = MI.getOperand(OpNum).getReg(); 5142 // If MI kills this register, the false dependence is already broken. 5143 if (MI.killsRegister(Reg, TRI)) 5144 return; 5145 5146 if (X86::VR128RegClass.contains(Reg)) { 5147 // These instructions are all floating point domain, so xorps is the best 5148 // choice. 5149 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 5150 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 5151 .addReg(Reg, RegState::Undef) 5152 .addReg(Reg, RegState::Undef); 5153 MI.addRegisterKilled(Reg, TRI, true); 5154 } else if (X86::VR256RegClass.contains(Reg)) { 5155 // Use vxorps to clear the full ymm register. 5156 // It wants to read and write the xmm sub-register. 5157 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5158 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 5159 .addReg(XReg, RegState::Undef) 5160 .addReg(XReg, RegState::Undef) 5161 .addReg(Reg, RegState::ImplicitDefine); 5162 MI.addRegisterKilled(Reg, TRI, true); 5163 } else if (X86::GR64RegClass.contains(Reg)) { 5164 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 5165 // as well. 5166 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); 5167 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 5168 .addReg(XReg, RegState::Undef) 5169 .addReg(XReg, RegState::Undef) 5170 .addReg(Reg, RegState::ImplicitDefine); 5171 MI.addRegisterKilled(Reg, TRI, true); 5172 } else if (X86::GR32RegClass.contains(Reg)) { 5173 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 5174 .addReg(Reg, RegState::Undef) 5175 .addReg(Reg, RegState::Undef); 5176 MI.addRegisterKilled(Reg, TRI, true); 5177 } 5178 } 5179 5180 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 5181 int PtrOffset = 0) { 5182 unsigned NumAddrOps = MOs.size(); 5183 5184 if (NumAddrOps < 4) { 5185 // FrameIndex only - add an immediate offset (whether its zero or not). 5186 for (unsigned i = 0; i != NumAddrOps; ++i) 5187 MIB.add(MOs[i]); 5188 addOffset(MIB, PtrOffset); 5189 } else { 5190 // General Memory Addressing - we need to add any offset to an existing 5191 // offset. 5192 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 5193 for (unsigned i = 0; i != NumAddrOps; ++i) { 5194 const MachineOperand &MO = MOs[i]; 5195 if (i == 3 && PtrOffset != 0) { 5196 MIB.addDisp(MO, PtrOffset); 5197 } else { 5198 MIB.add(MO); 5199 } 5200 } 5201 } 5202 } 5203 5204 static void updateOperandRegConstraints(MachineFunction &MF, 5205 MachineInstr &NewMI, 5206 const TargetInstrInfo &TII) { 5207 MachineRegisterInfo &MRI = MF.getRegInfo(); 5208 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 5209 5210 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 5211 MachineOperand &MO = NewMI.getOperand(Idx); 5212 // We only need to update constraints on virtual register operands. 5213 if (!MO.isReg()) 5214 continue; 5215 Register Reg = MO.getReg(); 5216 if (!Register::isVirtualRegister(Reg)) 5217 continue; 5218 5219 auto *NewRC = MRI.constrainRegClass( 5220 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 5221 if (!NewRC) { 5222 LLVM_DEBUG( 5223 dbgs() << "WARNING: Unable to update register constraint for operand " 5224 << Idx << " of instruction:\n"; 5225 NewMI.dump(); dbgs() << "\n"); 5226 } 5227 } 5228 } 5229 5230 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 5231 ArrayRef<MachineOperand> MOs, 5232 MachineBasicBlock::iterator InsertPt, 5233 MachineInstr &MI, 5234 const TargetInstrInfo &TII) { 5235 // Create the base instruction with the memory operand as the first part. 5236 // Omit the implicit operands, something BuildMI can't do. 5237 MachineInstr *NewMI = 5238 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5239 MachineInstrBuilder MIB(MF, NewMI); 5240 addOperands(MIB, MOs); 5241 5242 // Loop over the rest of the ri operands, converting them over. 5243 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 5244 for (unsigned i = 0; i != NumOps; ++i) { 5245 MachineOperand &MO = MI.getOperand(i + 2); 5246 MIB.add(MO); 5247 } 5248 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { 5249 MachineOperand &MO = MI.getOperand(i); 5250 MIB.add(MO); 5251 } 5252 5253 updateOperandRegConstraints(MF, *NewMI, TII); 5254 5255 MachineBasicBlock *MBB = InsertPt->getParent(); 5256 MBB->insert(InsertPt, NewMI); 5257 5258 return MIB; 5259 } 5260 5261 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 5262 unsigned OpNo, ArrayRef<MachineOperand> MOs, 5263 MachineBasicBlock::iterator InsertPt, 5264 MachineInstr &MI, const TargetInstrInfo &TII, 5265 int PtrOffset = 0) { 5266 // Omit the implicit operands, something BuildMI can't do. 5267 MachineInstr *NewMI = 5268 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5269 MachineInstrBuilder MIB(MF, NewMI); 5270 5271 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5272 MachineOperand &MO = MI.getOperand(i); 5273 if (i == OpNo) { 5274 assert(MO.isReg() && "Expected to fold into reg operand!"); 5275 addOperands(MIB, MOs, PtrOffset); 5276 } else { 5277 MIB.add(MO); 5278 } 5279 } 5280 5281 updateOperandRegConstraints(MF, *NewMI, TII); 5282 5283 // Copy the NoFPExcept flag from the instruction we're fusing. 5284 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 5285 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); 5286 5287 MachineBasicBlock *MBB = InsertPt->getParent(); 5288 MBB->insert(InsertPt, NewMI); 5289 5290 return MIB; 5291 } 5292 5293 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 5294 ArrayRef<MachineOperand> MOs, 5295 MachineBasicBlock::iterator InsertPt, 5296 MachineInstr &MI) { 5297 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 5298 MI.getDebugLoc(), TII.get(Opcode)); 5299 addOperands(MIB, MOs); 5300 return MIB.addImm(0); 5301 } 5302 5303 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 5304 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 5305 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5306 unsigned Size, Align Alignment) const { 5307 switch (MI.getOpcode()) { 5308 case X86::INSERTPSrr: 5309 case X86::VINSERTPSrr: 5310 case X86::VINSERTPSZrr: 5311 // Attempt to convert the load of inserted vector into a fold load 5312 // of a single float. 5313 if (OpNum == 2) { 5314 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 5315 unsigned ZMask = Imm & 15; 5316 unsigned DstIdx = (Imm >> 4) & 3; 5317 unsigned SrcIdx = (Imm >> 6) & 3; 5318 5319 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5320 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5321 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5322 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) { 5323 int PtrOffset = SrcIdx * 4; 5324 unsigned NewImm = (DstIdx << 4) | ZMask; 5325 unsigned NewOpCode = 5326 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : 5327 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : 5328 X86::INSERTPSrm; 5329 MachineInstr *NewMI = 5330 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 5331 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 5332 return NewMI; 5333 } 5334 } 5335 break; 5336 case X86::MOVHLPSrr: 5337 case X86::VMOVHLPSrr: 5338 case X86::VMOVHLPSZrr: 5339 // Move the upper 64-bits of the second operand to the lower 64-bits. 5340 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 5341 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 5342 if (OpNum == 2) { 5343 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5344 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5345 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5346 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { 5347 unsigned NewOpCode = 5348 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : 5349 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : 5350 X86::MOVLPSrm; 5351 MachineInstr *NewMI = 5352 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 5353 return NewMI; 5354 } 5355 } 5356 break; 5357 case X86::UNPCKLPDrr: 5358 // If we won't be able to fold this to the memory form of UNPCKL, use 5359 // MOVHPD instead. Done as custom because we can't have this in the load 5360 // table twice. 5361 if (OpNum == 2) { 5362 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5363 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5364 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5365 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { 5366 MachineInstr *NewMI = 5367 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 5368 return NewMI; 5369 } 5370 } 5371 break; 5372 } 5373 5374 return nullptr; 5375 } 5376 5377 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 5378 MachineInstr &MI) { 5379 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) || 5380 !MI.getOperand(1).isReg()) 5381 return false; 5382 5383 // The are two cases we need to handle depending on where in the pipeline 5384 // the folding attempt is being made. 5385 // -Register has the undef flag set. 5386 // -Register is produced by the IMPLICIT_DEF instruction. 5387 5388 if (MI.getOperand(1).isUndef()) 5389 return true; 5390 5391 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5392 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 5393 return VRegDef && VRegDef->isImplicitDef(); 5394 } 5395 5396 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5397 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 5398 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5399 unsigned Size, Align Alignment, bool AllowCommute) const { 5400 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 5401 bool isTwoAddrFold = false; 5402 5403 // For CPUs that favor the register form of a call or push, 5404 // do not fold loads into calls or pushes, unless optimizing for size 5405 // aggressively. 5406 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 5407 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || 5408 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || 5409 MI.getOpcode() == X86::PUSH64r)) 5410 return nullptr; 5411 5412 // Avoid partial and undef register update stalls unless optimizing for size. 5413 if (!MF.getFunction().hasOptSize() && 5414 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5415 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5416 return nullptr; 5417 5418 unsigned NumOps = MI.getDesc().getNumOperands(); 5419 bool isTwoAddr = 5420 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 5421 5422 // FIXME: AsmPrinter doesn't know how to handle 5423 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 5424 if (MI.getOpcode() == X86::ADD32ri && 5425 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 5426 return nullptr; 5427 5428 // GOTTPOFF relocation loads can only be folded into add instructions. 5429 // FIXME: Need to exclude other relocations that only support specific 5430 // instructions. 5431 if (MOs.size() == X86::AddrNumOperands && 5432 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 5433 MI.getOpcode() != X86::ADD64rr) 5434 return nullptr; 5435 5436 MachineInstr *NewMI = nullptr; 5437 5438 // Attempt to fold any custom cases we have. 5439 if (MachineInstr *CustomMI = foldMemoryOperandCustom( 5440 MF, MI, OpNum, MOs, InsertPt, Size, Alignment)) 5441 return CustomMI; 5442 5443 const X86MemoryFoldTableEntry *I = nullptr; 5444 5445 // Folding a memory location into the two-address part of a two-address 5446 // instruction is different than folding it other places. It requires 5447 // replacing the *two* registers with the memory location. 5448 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && 5449 MI.getOperand(1).isReg() && 5450 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 5451 I = lookupTwoAddrFoldTable(MI.getOpcode()); 5452 isTwoAddrFold = true; 5453 } else { 5454 if (OpNum == 0) { 5455 if (MI.getOpcode() == X86::MOV32r0) { 5456 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 5457 if (NewMI) 5458 return NewMI; 5459 } 5460 } 5461 5462 I = lookupFoldTable(MI.getOpcode(), OpNum); 5463 } 5464 5465 if (I != nullptr) { 5466 unsigned Opcode = I->DstOp; 5467 MaybeAlign MinAlign = 5468 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT); 5469 if (MinAlign && Alignment < *MinAlign) 5470 return nullptr; 5471 bool NarrowToMOV32rm = false; 5472 if (Size) { 5473 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5474 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, 5475 &RI, MF); 5476 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5477 if (Size < RCSize) { 5478 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 5479 // Check if it's safe to fold the load. If the size of the object is 5480 // narrower than the load width, then it's not. 5481 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 5482 return nullptr; 5483 // If this is a 64-bit load, but the spill slot is 32, then we can do 5484 // a 32-bit load which is implicitly zero-extended. This likely is 5485 // due to live interval analysis remat'ing a load from stack slot. 5486 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 5487 return nullptr; 5488 Opcode = X86::MOV32rm; 5489 NarrowToMOV32rm = true; 5490 } 5491 } 5492 5493 if (isTwoAddrFold) 5494 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 5495 else 5496 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 5497 5498 if (NarrowToMOV32rm) { 5499 // If this is the special case where we use a MOV32rm to load a 32-bit 5500 // value and zero-extend the top bits. Change the destination register 5501 // to a 32-bit one. 5502 Register DstReg = NewMI->getOperand(0).getReg(); 5503 if (Register::isPhysicalRegister(DstReg)) 5504 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 5505 else 5506 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 5507 } 5508 return NewMI; 5509 } 5510 5511 // If the instruction and target operand are commutable, commute the 5512 // instruction and try again. 5513 if (AllowCommute) { 5514 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 5515 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 5516 bool HasDef = MI.getDesc().getNumDefs(); 5517 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 5518 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); 5519 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); 5520 bool Tied1 = 5521 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 5522 bool Tied2 = 5523 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 5524 5525 // If either of the commutable operands are tied to the destination 5526 // then we can not commute + fold. 5527 if ((HasDef && Reg0 == Reg1 && Tied1) || 5528 (HasDef && Reg0 == Reg2 && Tied2)) 5529 return nullptr; 5530 5531 MachineInstr *CommutedMI = 5532 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5533 if (!CommutedMI) { 5534 // Unable to commute. 5535 return nullptr; 5536 } 5537 if (CommutedMI != &MI) { 5538 // New instruction. We can't fold from this. 5539 CommutedMI->eraseFromParent(); 5540 return nullptr; 5541 } 5542 5543 // Attempt to fold with the commuted version of the instruction. 5544 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, 5545 Alignment, /*AllowCommute=*/false); 5546 if (NewMI) 5547 return NewMI; 5548 5549 // Folding failed again - undo the commute before returning. 5550 MachineInstr *UncommutedMI = 5551 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 5552 if (!UncommutedMI) { 5553 // Unable to commute. 5554 return nullptr; 5555 } 5556 if (UncommutedMI != &MI) { 5557 // New instruction. It doesn't need to be kept. 5558 UncommutedMI->eraseFromParent(); 5559 return nullptr; 5560 } 5561 5562 // Return here to prevent duplicate fuse failure report. 5563 return nullptr; 5564 } 5565 } 5566 5567 // No fusion 5568 if (PrintFailedFusing && !MI.isCopy()) 5569 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; 5570 return nullptr; 5571 } 5572 5573 MachineInstr * 5574 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 5575 ArrayRef<unsigned> Ops, 5576 MachineBasicBlock::iterator InsertPt, 5577 int FrameIndex, LiveIntervals *LIS, 5578 VirtRegMap *VRM) const { 5579 // Check switch flag 5580 if (NoFusing) 5581 return nullptr; 5582 5583 // Avoid partial and undef register update stalls unless optimizing for size. 5584 if (!MF.getFunction().hasOptSize() && 5585 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5586 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5587 return nullptr; 5588 5589 // Don't fold subreg spills, or reloads that use a high subreg. 5590 for (auto Op : Ops) { 5591 MachineOperand &MO = MI.getOperand(Op); 5592 auto SubReg = MO.getSubReg(); 5593 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 5594 return nullptr; 5595 } 5596 5597 const MachineFrameInfo &MFI = MF.getFrameInfo(); 5598 unsigned Size = MFI.getObjectSize(FrameIndex); 5599 Align Alignment = MFI.getObjectAlign(FrameIndex); 5600 // If the function stack isn't realigned we don't want to fold instructions 5601 // that need increased alignment. 5602 if (!RI.needsStackRealignment(MF)) 5603 Alignment = 5604 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); 5605 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 5606 unsigned NewOpc = 0; 5607 unsigned RCSize = 0; 5608 switch (MI.getOpcode()) { 5609 default: return nullptr; 5610 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 5611 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 5612 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 5613 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 5614 } 5615 // Check if it's safe to fold the load. If the size of the object is 5616 // narrower than the load width, then it's not. 5617 if (Size < RCSize) 5618 return nullptr; 5619 // Change to CMPXXri r, 0 first. 5620 MI.setDesc(get(NewOpc)); 5621 MI.getOperand(1).ChangeToImmediate(0); 5622 } else if (Ops.size() != 1) 5623 return nullptr; 5624 5625 return foldMemoryOperandImpl(MF, MI, Ops[0], 5626 MachineOperand::CreateFI(FrameIndex), InsertPt, 5627 Size, Alignment, /*AllowCommute=*/true); 5628 } 5629 5630 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 5631 /// because the latter uses contents that wouldn't be defined in the folded 5632 /// version. For instance, this transformation isn't legal: 5633 /// movss (%rdi), %xmm0 5634 /// addps %xmm0, %xmm0 5635 /// -> 5636 /// addps (%rdi), %xmm0 5637 /// 5638 /// But this one is: 5639 /// movss (%rdi), %xmm0 5640 /// addss %xmm0, %xmm0 5641 /// -> 5642 /// addss (%rdi), %xmm0 5643 /// 5644 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 5645 const MachineInstr &UserMI, 5646 const MachineFunction &MF) { 5647 unsigned Opc = LoadMI.getOpcode(); 5648 unsigned UserOpc = UserMI.getOpcode(); 5649 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5650 const TargetRegisterClass *RC = 5651 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 5652 unsigned RegSize = TRI.getRegSizeInBits(*RC); 5653 5654 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 5655 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 5656 Opc == X86::VMOVSSZrm_alt) && 5657 RegSize > 32) { 5658 // These instructions only load 32 bits, we can't fold them if the 5659 // destination register is wider than 32 bits (4 bytes), and its user 5660 // instruction isn't scalar (SS). 5661 switch (UserOpc) { 5662 case X86::CVTSS2SDrr_Int: 5663 case X86::VCVTSS2SDrr_Int: 5664 case X86::VCVTSS2SDZrr_Int: 5665 case X86::VCVTSS2SDZrr_Intk: 5666 case X86::VCVTSS2SDZrr_Intkz: 5667 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int: 5668 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int: 5669 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int: 5670 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int: 5671 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int: 5672 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int: 5673 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int: 5674 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int: 5675 case X86::RCPSSr_Int: case X86::VRCPSSr_Int: 5676 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int: 5677 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int: 5678 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int: 5679 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int: 5680 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: 5681 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: 5682 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: 5683 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: 5684 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: 5685 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: 5686 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int: 5687 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: 5688 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: 5689 case X86::VCMPSSZrr_Intk: 5690 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: 5691 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: 5692 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: 5693 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: 5694 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: 5695 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: 5696 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: 5697 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: 5698 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: 5699 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: 5700 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: 5701 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: 5702 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: 5703 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: 5704 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: 5705 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: 5706 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: 5707 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: 5708 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: 5709 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: 5710 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: 5711 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: 5712 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: 5713 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: 5714 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: 5715 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: 5716 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: 5717 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: 5718 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: 5719 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: 5720 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: 5721 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: 5722 case X86::VFIXUPIMMSSZrri: 5723 case X86::VFIXUPIMMSSZrrik: 5724 case X86::VFIXUPIMMSSZrrikz: 5725 case X86::VFPCLASSSSZrr: 5726 case X86::VFPCLASSSSZrrk: 5727 case X86::VGETEXPSSZr: 5728 case X86::VGETEXPSSZrk: 5729 case X86::VGETEXPSSZrkz: 5730 case X86::VGETMANTSSZrri: 5731 case X86::VGETMANTSSZrrik: 5732 case X86::VGETMANTSSZrrikz: 5733 case X86::VRANGESSZrri: 5734 case X86::VRANGESSZrrik: 5735 case X86::VRANGESSZrrikz: 5736 case X86::VRCP14SSZrr: 5737 case X86::VRCP14SSZrrk: 5738 case X86::VRCP14SSZrrkz: 5739 case X86::VRCP28SSZr: 5740 case X86::VRCP28SSZrk: 5741 case X86::VRCP28SSZrkz: 5742 case X86::VREDUCESSZrri: 5743 case X86::VREDUCESSZrrik: 5744 case X86::VREDUCESSZrrikz: 5745 case X86::VRNDSCALESSZr_Int: 5746 case X86::VRNDSCALESSZr_Intk: 5747 case X86::VRNDSCALESSZr_Intkz: 5748 case X86::VRSQRT14SSZrr: 5749 case X86::VRSQRT14SSZrrk: 5750 case X86::VRSQRT14SSZrrkz: 5751 case X86::VRSQRT28SSZr: 5752 case X86::VRSQRT28SSZrk: 5753 case X86::VRSQRT28SSZrkz: 5754 case X86::VSCALEFSSZrr: 5755 case X86::VSCALEFSSZrrk: 5756 case X86::VSCALEFSSZrrkz: 5757 return false; 5758 default: 5759 return true; 5760 } 5761 } 5762 5763 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 5764 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 5765 Opc == X86::VMOVSDZrm_alt) && 5766 RegSize > 64) { 5767 // These instructions only load 64 bits, we can't fold them if the 5768 // destination register is wider than 64 bits (8 bytes), and its user 5769 // instruction isn't scalar (SD). 5770 switch (UserOpc) { 5771 case X86::CVTSD2SSrr_Int: 5772 case X86::VCVTSD2SSrr_Int: 5773 case X86::VCVTSD2SSZrr_Int: 5774 case X86::VCVTSD2SSZrr_Intk: 5775 case X86::VCVTSD2SSZrr_Intkz: 5776 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int: 5777 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int: 5778 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int: 5779 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int: 5780 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int: 5781 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int: 5782 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int: 5783 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int: 5784 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int: 5785 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int: 5786 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int: 5787 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: 5788 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: 5789 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: 5790 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: 5791 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: 5792 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: 5793 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int: 5794 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: 5795 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: 5796 case X86::VCMPSDZrr_Intk: 5797 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: 5798 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: 5799 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: 5800 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: 5801 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: 5802 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: 5803 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: 5804 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: 5805 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: 5806 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: 5807 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: 5808 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: 5809 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: 5810 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: 5811 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: 5812 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: 5813 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: 5814 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: 5815 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: 5816 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: 5817 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: 5818 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: 5819 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: 5820 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: 5821 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: 5822 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: 5823 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: 5824 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: 5825 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: 5826 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: 5827 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: 5828 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: 5829 case X86::VFIXUPIMMSDZrri: 5830 case X86::VFIXUPIMMSDZrrik: 5831 case X86::VFIXUPIMMSDZrrikz: 5832 case X86::VFPCLASSSDZrr: 5833 case X86::VFPCLASSSDZrrk: 5834 case X86::VGETEXPSDZr: 5835 case X86::VGETEXPSDZrk: 5836 case X86::VGETEXPSDZrkz: 5837 case X86::VGETMANTSDZrri: 5838 case X86::VGETMANTSDZrrik: 5839 case X86::VGETMANTSDZrrikz: 5840 case X86::VRANGESDZrri: 5841 case X86::VRANGESDZrrik: 5842 case X86::VRANGESDZrrikz: 5843 case X86::VRCP14SDZrr: 5844 case X86::VRCP14SDZrrk: 5845 case X86::VRCP14SDZrrkz: 5846 case X86::VRCP28SDZr: 5847 case X86::VRCP28SDZrk: 5848 case X86::VRCP28SDZrkz: 5849 case X86::VREDUCESDZrri: 5850 case X86::VREDUCESDZrrik: 5851 case X86::VREDUCESDZrrikz: 5852 case X86::VRNDSCALESDZr_Int: 5853 case X86::VRNDSCALESDZr_Intk: 5854 case X86::VRNDSCALESDZr_Intkz: 5855 case X86::VRSQRT14SDZrr: 5856 case X86::VRSQRT14SDZrrk: 5857 case X86::VRSQRT14SDZrrkz: 5858 case X86::VRSQRT28SDZr: 5859 case X86::VRSQRT28SDZrk: 5860 case X86::VRSQRT28SDZrkz: 5861 case X86::VSCALEFSDZrr: 5862 case X86::VSCALEFSDZrrk: 5863 case X86::VSCALEFSDZrrkz: 5864 return false; 5865 default: 5866 return true; 5867 } 5868 } 5869 5870 return false; 5871 } 5872 5873 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5874 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 5875 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 5876 LiveIntervals *LIS) const { 5877 5878 // TODO: Support the case where LoadMI loads a wide register, but MI 5879 // only uses a subreg. 5880 for (auto Op : Ops) { 5881 if (MI.getOperand(Op).getSubReg()) 5882 return nullptr; 5883 } 5884 5885 // If loading from a FrameIndex, fold directly from the FrameIndex. 5886 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 5887 int FrameIndex; 5888 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 5889 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 5890 return nullptr; 5891 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 5892 } 5893 5894 // Check switch flag 5895 if (NoFusing) return nullptr; 5896 5897 // Avoid partial and undef register update stalls unless optimizing for size. 5898 if (!MF.getFunction().hasOptSize() && 5899 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5900 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5901 return nullptr; 5902 5903 // Determine the alignment of the load. 5904 Align Alignment; 5905 if (LoadMI.hasOneMemOperand()) 5906 Alignment = (*LoadMI.memoperands_begin())->getAlign(); 5907 else 5908 switch (LoadMI.getOpcode()) { 5909 case X86::AVX512_512_SET0: 5910 case X86::AVX512_512_SETALLONES: 5911 Alignment = Align(64); 5912 break; 5913 case X86::AVX2_SETALLONES: 5914 case X86::AVX1_SETALLONES: 5915 case X86::AVX_SET0: 5916 case X86::AVX512_256_SET0: 5917 Alignment = Align(32); 5918 break; 5919 case X86::V_SET0: 5920 case X86::V_SETALLONES: 5921 case X86::AVX512_128_SET0: 5922 case X86::FsFLD0F128: 5923 case X86::AVX512_FsFLD0F128: 5924 Alignment = Align(16); 5925 break; 5926 case X86::MMX_SET0: 5927 case X86::FsFLD0SD: 5928 case X86::AVX512_FsFLD0SD: 5929 Alignment = Align(8); 5930 break; 5931 case X86::FsFLD0SS: 5932 case X86::AVX512_FsFLD0SS: 5933 Alignment = Align(4); 5934 break; 5935 default: 5936 return nullptr; 5937 } 5938 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 5939 unsigned NewOpc = 0; 5940 switch (MI.getOpcode()) { 5941 default: return nullptr; 5942 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 5943 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 5944 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 5945 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 5946 } 5947 // Change to CMPXXri r, 0 first. 5948 MI.setDesc(get(NewOpc)); 5949 MI.getOperand(1).ChangeToImmediate(0); 5950 } else if (Ops.size() != 1) 5951 return nullptr; 5952 5953 // Make sure the subregisters match. 5954 // Otherwise we risk changing the size of the load. 5955 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 5956 return nullptr; 5957 5958 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 5959 switch (LoadMI.getOpcode()) { 5960 case X86::MMX_SET0: 5961 case X86::V_SET0: 5962 case X86::V_SETALLONES: 5963 case X86::AVX2_SETALLONES: 5964 case X86::AVX1_SETALLONES: 5965 case X86::AVX_SET0: 5966 case X86::AVX512_128_SET0: 5967 case X86::AVX512_256_SET0: 5968 case X86::AVX512_512_SET0: 5969 case X86::AVX512_512_SETALLONES: 5970 case X86::FsFLD0SD: 5971 case X86::AVX512_FsFLD0SD: 5972 case X86::FsFLD0SS: 5973 case X86::AVX512_FsFLD0SS: 5974 case X86::FsFLD0F128: 5975 case X86::AVX512_FsFLD0F128: { 5976 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 5977 // Create a constant-pool entry and operands to load from it. 5978 5979 // Medium and large mode can't fold loads this way. 5980 if (MF.getTarget().getCodeModel() != CodeModel::Small && 5981 MF.getTarget().getCodeModel() != CodeModel::Kernel) 5982 return nullptr; 5983 5984 // x86-32 PIC requires a PIC base register for constant pools. 5985 unsigned PICBase = 0; 5986 if (MF.getTarget().isPositionIndependent()) { 5987 if (Subtarget.is64Bit()) 5988 PICBase = X86::RIP; 5989 else 5990 // FIXME: PICBase = getGlobalBaseReg(&MF); 5991 // This doesn't work for several reasons. 5992 // 1. GlobalBaseReg may have been spilled. 5993 // 2. It may not be live at MI. 5994 return nullptr; 5995 } 5996 5997 // Create a constant-pool entry. 5998 MachineConstantPool &MCP = *MF.getConstantPool(); 5999 Type *Ty; 6000 unsigned Opc = LoadMI.getOpcode(); 6001 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) 6002 Ty = Type::getFloatTy(MF.getFunction().getContext()); 6003 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) 6004 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 6005 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128) 6006 Ty = Type::getFP128Ty(MF.getFunction().getContext()); 6007 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) 6008 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6009 16); 6010 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || 6011 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) 6012 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6013 8); 6014 else if (Opc == X86::MMX_SET0) 6015 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6016 2); 6017 else 6018 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6019 4); 6020 6021 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || 6022 Opc == X86::AVX512_512_SETALLONES || 6023 Opc == X86::AVX1_SETALLONES); 6024 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 6025 Constant::getNullValue(Ty); 6026 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 6027 6028 // Create operands to load from the constant pool entry. 6029 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 6030 MOs.push_back(MachineOperand::CreateImm(1)); 6031 MOs.push_back(MachineOperand::CreateReg(0, false)); 6032 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 6033 MOs.push_back(MachineOperand::CreateReg(0, false)); 6034 break; 6035 } 6036 default: { 6037 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6038 return nullptr; 6039 6040 // Folding a normal load. Just copy the load's address operands. 6041 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 6042 LoadMI.operands_begin() + NumOps); 6043 break; 6044 } 6045 } 6046 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 6047 /*Size=*/0, Alignment, /*AllowCommute=*/true); 6048 } 6049 6050 static SmallVector<MachineMemOperand *, 2> 6051 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6052 SmallVector<MachineMemOperand *, 2> LoadMMOs; 6053 6054 for (MachineMemOperand *MMO : MMOs) { 6055 if (!MMO->isLoad()) 6056 continue; 6057 6058 if (!MMO->isStore()) { 6059 // Reuse the MMO. 6060 LoadMMOs.push_back(MMO); 6061 } else { 6062 // Clone the MMO and unset the store flag. 6063 LoadMMOs.push_back(MF.getMachineMemOperand( 6064 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 6065 } 6066 } 6067 6068 return LoadMMOs; 6069 } 6070 6071 static SmallVector<MachineMemOperand *, 2> 6072 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6073 SmallVector<MachineMemOperand *, 2> StoreMMOs; 6074 6075 for (MachineMemOperand *MMO : MMOs) { 6076 if (!MMO->isStore()) 6077 continue; 6078 6079 if (!MMO->isLoad()) { 6080 // Reuse the MMO. 6081 StoreMMOs.push_back(MMO); 6082 } else { 6083 // Clone the MMO and unset the load flag. 6084 StoreMMOs.push_back(MF.getMachineMemOperand( 6085 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 6086 } 6087 } 6088 6089 return StoreMMOs; 6090 } 6091 6092 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I, 6093 const TargetRegisterClass *RC, 6094 const X86Subtarget &STI) { 6095 assert(STI.hasAVX512() && "Expected at least AVX512!"); 6096 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); 6097 assert((SpillSize == 64 || STI.hasVLX()) && 6098 "Can't broadcast less than 64 bytes without AVX512VL!"); 6099 6100 switch (I->Flags & TB_BCAST_MASK) { 6101 default: llvm_unreachable("Unexpected broadcast type!"); 6102 case TB_BCAST_D: 6103 switch (SpillSize) { 6104 default: llvm_unreachable("Unknown spill size"); 6105 case 16: return X86::VPBROADCASTDZ128rm; 6106 case 32: return X86::VPBROADCASTDZ256rm; 6107 case 64: return X86::VPBROADCASTDZrm; 6108 } 6109 break; 6110 case TB_BCAST_Q: 6111 switch (SpillSize) { 6112 default: llvm_unreachable("Unknown spill size"); 6113 case 16: return X86::VPBROADCASTQZ128rm; 6114 case 32: return X86::VPBROADCASTQZ256rm; 6115 case 64: return X86::VPBROADCASTQZrm; 6116 } 6117 break; 6118 case TB_BCAST_SS: 6119 switch (SpillSize) { 6120 default: llvm_unreachable("Unknown spill size"); 6121 case 16: return X86::VBROADCASTSSZ128rm; 6122 case 32: return X86::VBROADCASTSSZ256rm; 6123 case 64: return X86::VBROADCASTSSZrm; 6124 } 6125 break; 6126 case TB_BCAST_SD: 6127 switch (SpillSize) { 6128 default: llvm_unreachable("Unknown spill size"); 6129 case 16: return X86::VMOVDDUPZ128rm; 6130 case 32: return X86::VBROADCASTSDZ256rm; 6131 case 64: return X86::VBROADCASTSDZrm; 6132 } 6133 break; 6134 } 6135 } 6136 6137 bool X86InstrInfo::unfoldMemoryOperand( 6138 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 6139 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 6140 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 6141 if (I == nullptr) 6142 return false; 6143 unsigned Opc = I->DstOp; 6144 unsigned Index = I->Flags & TB_INDEX_MASK; 6145 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6146 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6147 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6148 if (UnfoldLoad && !FoldedLoad) 6149 return false; 6150 UnfoldLoad &= FoldedLoad; 6151 if (UnfoldStore && !FoldedStore) 6152 return false; 6153 UnfoldStore &= FoldedStore; 6154 6155 const MCInstrDesc &MCID = get(Opc); 6156 6157 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6158 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6159 // TODO: Check if 32-byte or greater accesses are slow too? 6160 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 6161 Subtarget.isUnalignedMem16Slow()) 6162 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 6163 // conservatively assume the address is unaligned. That's bad for 6164 // performance. 6165 return false; 6166 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 6167 SmallVector<MachineOperand,2> BeforeOps; 6168 SmallVector<MachineOperand,2> AfterOps; 6169 SmallVector<MachineOperand,4> ImpOps; 6170 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 6171 MachineOperand &Op = MI.getOperand(i); 6172 if (i >= Index && i < Index + X86::AddrNumOperands) 6173 AddrOps.push_back(Op); 6174 else if (Op.isReg() && Op.isImplicit()) 6175 ImpOps.push_back(Op); 6176 else if (i < Index) 6177 BeforeOps.push_back(Op); 6178 else if (i > Index) 6179 AfterOps.push_back(Op); 6180 } 6181 6182 // Emit the load or broadcast instruction. 6183 if (UnfoldLoad) { 6184 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 6185 6186 unsigned Opc; 6187 if (FoldedBCast) { 6188 Opc = getBroadcastOpcode(I, RC, Subtarget); 6189 } else { 6190 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6191 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6192 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); 6193 } 6194 6195 DebugLoc DL; 6196 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); 6197 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6198 MIB.add(AddrOps[i]); 6199 MIB.setMemRefs(MMOs); 6200 NewMIs.push_back(MIB); 6201 6202 if (UnfoldStore) { 6203 // Address operands cannot be marked isKill. 6204 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 6205 MachineOperand &MO = NewMIs[0]->getOperand(i); 6206 if (MO.isReg()) 6207 MO.setIsKill(false); 6208 } 6209 } 6210 } 6211 6212 // Emit the data processing instruction. 6213 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 6214 MachineInstrBuilder MIB(MF, DataMI); 6215 6216 if (FoldedStore) 6217 MIB.addReg(Reg, RegState::Define); 6218 for (MachineOperand &BeforeOp : BeforeOps) 6219 MIB.add(BeforeOp); 6220 if (FoldedLoad) 6221 MIB.addReg(Reg); 6222 for (MachineOperand &AfterOp : AfterOps) 6223 MIB.add(AfterOp); 6224 for (MachineOperand &ImpOp : ImpOps) { 6225 MIB.addReg(ImpOp.getReg(), 6226 getDefRegState(ImpOp.isDef()) | 6227 RegState::Implicit | 6228 getKillRegState(ImpOp.isKill()) | 6229 getDeadRegState(ImpOp.isDead()) | 6230 getUndefRegState(ImpOp.isUndef())); 6231 } 6232 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6233 switch (DataMI->getOpcode()) { 6234 default: break; 6235 case X86::CMP64ri32: 6236 case X86::CMP64ri8: 6237 case X86::CMP32ri: 6238 case X86::CMP32ri8: 6239 case X86::CMP16ri: 6240 case X86::CMP16ri8: 6241 case X86::CMP8ri: { 6242 MachineOperand &MO0 = DataMI->getOperand(0); 6243 MachineOperand &MO1 = DataMI->getOperand(1); 6244 if (MO1.getImm() == 0) { 6245 unsigned NewOpc; 6246 switch (DataMI->getOpcode()) { 6247 default: llvm_unreachable("Unreachable!"); 6248 case X86::CMP64ri8: 6249 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 6250 case X86::CMP32ri8: 6251 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 6252 case X86::CMP16ri8: 6253 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 6254 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 6255 } 6256 DataMI->setDesc(get(NewOpc)); 6257 MO1.ChangeToRegister(MO0.getReg(), false); 6258 } 6259 } 6260 } 6261 NewMIs.push_back(DataMI); 6262 6263 // Emit the store instruction. 6264 if (UnfoldStore) { 6265 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 6266 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 6267 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); 6268 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6269 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); 6270 DebugLoc DL; 6271 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 6272 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6273 MIB.add(AddrOps[i]); 6274 MIB.addReg(Reg, RegState::Kill); 6275 MIB.setMemRefs(MMOs); 6276 NewMIs.push_back(MIB); 6277 } 6278 6279 return true; 6280 } 6281 6282 bool 6283 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 6284 SmallVectorImpl<SDNode*> &NewNodes) const { 6285 if (!N->isMachineOpcode()) 6286 return false; 6287 6288 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 6289 if (I == nullptr) 6290 return false; 6291 unsigned Opc = I->DstOp; 6292 unsigned Index = I->Flags & TB_INDEX_MASK; 6293 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6294 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6295 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6296 const MCInstrDesc &MCID = get(Opc); 6297 MachineFunction &MF = DAG.getMachineFunction(); 6298 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6299 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6300 unsigned NumDefs = MCID.NumDefs; 6301 std::vector<SDValue> AddrOps; 6302 std::vector<SDValue> BeforeOps; 6303 std::vector<SDValue> AfterOps; 6304 SDLoc dl(N); 6305 unsigned NumOps = N->getNumOperands(); 6306 for (unsigned i = 0; i != NumOps-1; ++i) { 6307 SDValue Op = N->getOperand(i); 6308 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 6309 AddrOps.push_back(Op); 6310 else if (i < Index-NumDefs) 6311 BeforeOps.push_back(Op); 6312 else if (i > Index-NumDefs) 6313 AfterOps.push_back(Op); 6314 } 6315 SDValue Chain = N->getOperand(NumOps-1); 6316 AddrOps.push_back(Chain); 6317 6318 // Emit the load instruction. 6319 SDNode *Load = nullptr; 6320 if (FoldedLoad) { 6321 EVT VT = *TRI.legalclasstypes_begin(*RC); 6322 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 6323 if (MMOs.empty() && RC == &X86::VR128RegClass && 6324 Subtarget.isUnalignedMem16Slow()) 6325 // Do not introduce a slow unaligned load. 6326 return false; 6327 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6328 // memory access is slow above. 6329 6330 unsigned Opc; 6331 if (FoldedBCast) { 6332 Opc = getBroadcastOpcode(I, RC, Subtarget); 6333 } else { 6334 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6335 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6336 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); 6337 } 6338 6339 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); 6340 NewNodes.push_back(Load); 6341 6342 // Preserve memory reference information. 6343 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 6344 } 6345 6346 // Emit the data processing instruction. 6347 std::vector<EVT> VTs; 6348 const TargetRegisterClass *DstRC = nullptr; 6349 if (MCID.getNumDefs() > 0) { 6350 DstRC = getRegClass(MCID, 0, &RI, MF); 6351 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 6352 } 6353 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 6354 EVT VT = N->getValueType(i); 6355 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 6356 VTs.push_back(VT); 6357 } 6358 if (Load) 6359 BeforeOps.push_back(SDValue(Load, 0)); 6360 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); 6361 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6362 switch (Opc) { 6363 default: break; 6364 case X86::CMP64ri32: 6365 case X86::CMP64ri8: 6366 case X86::CMP32ri: 6367 case X86::CMP32ri8: 6368 case X86::CMP16ri: 6369 case X86::CMP16ri8: 6370 case X86::CMP8ri: 6371 if (isNullConstant(BeforeOps[1])) { 6372 switch (Opc) { 6373 default: llvm_unreachable("Unreachable!"); 6374 case X86::CMP64ri8: 6375 case X86::CMP64ri32: Opc = X86::TEST64rr; break; 6376 case X86::CMP32ri8: 6377 case X86::CMP32ri: Opc = X86::TEST32rr; break; 6378 case X86::CMP16ri8: 6379 case X86::CMP16ri: Opc = X86::TEST16rr; break; 6380 case X86::CMP8ri: Opc = X86::TEST8rr; break; 6381 } 6382 BeforeOps[1] = BeforeOps[0]; 6383 } 6384 } 6385 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 6386 NewNodes.push_back(NewNode); 6387 6388 // Emit the store instruction. 6389 if (FoldedStore) { 6390 AddrOps.pop_back(); 6391 AddrOps.push_back(SDValue(NewNode, 0)); 6392 AddrOps.push_back(Chain); 6393 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 6394 if (MMOs.empty() && RC == &X86::VR128RegClass && 6395 Subtarget.isUnalignedMem16Slow()) 6396 // Do not introduce a slow unaligned store. 6397 return false; 6398 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 6399 // memory access is slow above. 6400 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6401 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6402 SDNode *Store = 6403 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 6404 dl, MVT::Other, AddrOps); 6405 NewNodes.push_back(Store); 6406 6407 // Preserve memory reference information. 6408 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 6409 } 6410 6411 return true; 6412 } 6413 6414 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 6415 bool UnfoldLoad, bool UnfoldStore, 6416 unsigned *LoadRegIndex) const { 6417 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); 6418 if (I == nullptr) 6419 return 0; 6420 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6421 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6422 if (UnfoldLoad && !FoldedLoad) 6423 return 0; 6424 if (UnfoldStore && !FoldedStore) 6425 return 0; 6426 if (LoadRegIndex) 6427 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 6428 return I->DstOp; 6429 } 6430 6431 bool 6432 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 6433 int64_t &Offset1, int64_t &Offset2) const { 6434 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 6435 return false; 6436 unsigned Opc1 = Load1->getMachineOpcode(); 6437 unsigned Opc2 = Load2->getMachineOpcode(); 6438 switch (Opc1) { 6439 default: return false; 6440 case X86::MOV8rm: 6441 case X86::MOV16rm: 6442 case X86::MOV32rm: 6443 case X86::MOV64rm: 6444 case X86::LD_Fp32m: 6445 case X86::LD_Fp64m: 6446 case X86::LD_Fp80m: 6447 case X86::MOVSSrm: 6448 case X86::MOVSSrm_alt: 6449 case X86::MOVSDrm: 6450 case X86::MOVSDrm_alt: 6451 case X86::MMX_MOVD64rm: 6452 case X86::MMX_MOVQ64rm: 6453 case X86::MOVAPSrm: 6454 case X86::MOVUPSrm: 6455 case X86::MOVAPDrm: 6456 case X86::MOVUPDrm: 6457 case X86::MOVDQArm: 6458 case X86::MOVDQUrm: 6459 // AVX load instructions 6460 case X86::VMOVSSrm: 6461 case X86::VMOVSSrm_alt: 6462 case X86::VMOVSDrm: 6463 case X86::VMOVSDrm_alt: 6464 case X86::VMOVAPSrm: 6465 case X86::VMOVUPSrm: 6466 case X86::VMOVAPDrm: 6467 case X86::VMOVUPDrm: 6468 case X86::VMOVDQArm: 6469 case X86::VMOVDQUrm: 6470 case X86::VMOVAPSYrm: 6471 case X86::VMOVUPSYrm: 6472 case X86::VMOVAPDYrm: 6473 case X86::VMOVUPDYrm: 6474 case X86::VMOVDQAYrm: 6475 case X86::VMOVDQUYrm: 6476 // AVX512 load instructions 6477 case X86::VMOVSSZrm: 6478 case X86::VMOVSSZrm_alt: 6479 case X86::VMOVSDZrm: 6480 case X86::VMOVSDZrm_alt: 6481 case X86::VMOVAPSZ128rm: 6482 case X86::VMOVUPSZ128rm: 6483 case X86::VMOVAPSZ128rm_NOVLX: 6484 case X86::VMOVUPSZ128rm_NOVLX: 6485 case X86::VMOVAPDZ128rm: 6486 case X86::VMOVUPDZ128rm: 6487 case X86::VMOVDQU8Z128rm: 6488 case X86::VMOVDQU16Z128rm: 6489 case X86::VMOVDQA32Z128rm: 6490 case X86::VMOVDQU32Z128rm: 6491 case X86::VMOVDQA64Z128rm: 6492 case X86::VMOVDQU64Z128rm: 6493 case X86::VMOVAPSZ256rm: 6494 case X86::VMOVUPSZ256rm: 6495 case X86::VMOVAPSZ256rm_NOVLX: 6496 case X86::VMOVUPSZ256rm_NOVLX: 6497 case X86::VMOVAPDZ256rm: 6498 case X86::VMOVUPDZ256rm: 6499 case X86::VMOVDQU8Z256rm: 6500 case X86::VMOVDQU16Z256rm: 6501 case X86::VMOVDQA32Z256rm: 6502 case X86::VMOVDQU32Z256rm: 6503 case X86::VMOVDQA64Z256rm: 6504 case X86::VMOVDQU64Z256rm: 6505 case X86::VMOVAPSZrm: 6506 case X86::VMOVUPSZrm: 6507 case X86::VMOVAPDZrm: 6508 case X86::VMOVUPDZrm: 6509 case X86::VMOVDQU8Zrm: 6510 case X86::VMOVDQU16Zrm: 6511 case X86::VMOVDQA32Zrm: 6512 case X86::VMOVDQU32Zrm: 6513 case X86::VMOVDQA64Zrm: 6514 case X86::VMOVDQU64Zrm: 6515 case X86::KMOVBkm: 6516 case X86::KMOVWkm: 6517 case X86::KMOVDkm: 6518 case X86::KMOVQkm: 6519 break; 6520 } 6521 switch (Opc2) { 6522 default: return false; 6523 case X86::MOV8rm: 6524 case X86::MOV16rm: 6525 case X86::MOV32rm: 6526 case X86::MOV64rm: 6527 case X86::LD_Fp32m: 6528 case X86::LD_Fp64m: 6529 case X86::LD_Fp80m: 6530 case X86::MOVSSrm: 6531 case X86::MOVSSrm_alt: 6532 case X86::MOVSDrm: 6533 case X86::MOVSDrm_alt: 6534 case X86::MMX_MOVD64rm: 6535 case X86::MMX_MOVQ64rm: 6536 case X86::MOVAPSrm: 6537 case X86::MOVUPSrm: 6538 case X86::MOVAPDrm: 6539 case X86::MOVUPDrm: 6540 case X86::MOVDQArm: 6541 case X86::MOVDQUrm: 6542 // AVX load instructions 6543 case X86::VMOVSSrm: 6544 case X86::VMOVSSrm_alt: 6545 case X86::VMOVSDrm: 6546 case X86::VMOVSDrm_alt: 6547 case X86::VMOVAPSrm: 6548 case X86::VMOVUPSrm: 6549 case X86::VMOVAPDrm: 6550 case X86::VMOVUPDrm: 6551 case X86::VMOVDQArm: 6552 case X86::VMOVDQUrm: 6553 case X86::VMOVAPSYrm: 6554 case X86::VMOVUPSYrm: 6555 case X86::VMOVAPDYrm: 6556 case X86::VMOVUPDYrm: 6557 case X86::VMOVDQAYrm: 6558 case X86::VMOVDQUYrm: 6559 // AVX512 load instructions 6560 case X86::VMOVSSZrm: 6561 case X86::VMOVSSZrm_alt: 6562 case X86::VMOVSDZrm: 6563 case X86::VMOVSDZrm_alt: 6564 case X86::VMOVAPSZ128rm: 6565 case X86::VMOVUPSZ128rm: 6566 case X86::VMOVAPSZ128rm_NOVLX: 6567 case X86::VMOVUPSZ128rm_NOVLX: 6568 case X86::VMOVAPDZ128rm: 6569 case X86::VMOVUPDZ128rm: 6570 case X86::VMOVDQU8Z128rm: 6571 case X86::VMOVDQU16Z128rm: 6572 case X86::VMOVDQA32Z128rm: 6573 case X86::VMOVDQU32Z128rm: 6574 case X86::VMOVDQA64Z128rm: 6575 case X86::VMOVDQU64Z128rm: 6576 case X86::VMOVAPSZ256rm: 6577 case X86::VMOVUPSZ256rm: 6578 case X86::VMOVAPSZ256rm_NOVLX: 6579 case X86::VMOVUPSZ256rm_NOVLX: 6580 case X86::VMOVAPDZ256rm: 6581 case X86::VMOVUPDZ256rm: 6582 case X86::VMOVDQU8Z256rm: 6583 case X86::VMOVDQU16Z256rm: 6584 case X86::VMOVDQA32Z256rm: 6585 case X86::VMOVDQU32Z256rm: 6586 case X86::VMOVDQA64Z256rm: 6587 case X86::VMOVDQU64Z256rm: 6588 case X86::VMOVAPSZrm: 6589 case X86::VMOVUPSZrm: 6590 case X86::VMOVAPDZrm: 6591 case X86::VMOVUPDZrm: 6592 case X86::VMOVDQU8Zrm: 6593 case X86::VMOVDQU16Zrm: 6594 case X86::VMOVDQA32Zrm: 6595 case X86::VMOVDQU32Zrm: 6596 case X86::VMOVDQA64Zrm: 6597 case X86::VMOVDQU64Zrm: 6598 case X86::KMOVBkm: 6599 case X86::KMOVWkm: 6600 case X86::KMOVDkm: 6601 case X86::KMOVQkm: 6602 break; 6603 } 6604 6605 // Lambda to check if both the loads have the same value for an operand index. 6606 auto HasSameOp = [&](int I) { 6607 return Load1->getOperand(I) == Load2->getOperand(I); 6608 }; 6609 6610 // All operands except the displacement should match. 6611 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 6612 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 6613 return false; 6614 6615 // Chain Operand must be the same. 6616 if (!HasSameOp(5)) 6617 return false; 6618 6619 // Now let's examine if the displacements are constants. 6620 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 6621 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 6622 if (!Disp1 || !Disp2) 6623 return false; 6624 6625 Offset1 = Disp1->getSExtValue(); 6626 Offset2 = Disp2->getSExtValue(); 6627 return true; 6628 } 6629 6630 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 6631 int64_t Offset1, int64_t Offset2, 6632 unsigned NumLoads) const { 6633 assert(Offset2 > Offset1); 6634 if ((Offset2 - Offset1) / 8 > 64) 6635 return false; 6636 6637 unsigned Opc1 = Load1->getMachineOpcode(); 6638 unsigned Opc2 = Load2->getMachineOpcode(); 6639 if (Opc1 != Opc2) 6640 return false; // FIXME: overly conservative? 6641 6642 switch (Opc1) { 6643 default: break; 6644 case X86::LD_Fp32m: 6645 case X86::LD_Fp64m: 6646 case X86::LD_Fp80m: 6647 case X86::MMX_MOVD64rm: 6648 case X86::MMX_MOVQ64rm: 6649 return false; 6650 } 6651 6652 EVT VT = Load1->getValueType(0); 6653 switch (VT.getSimpleVT().SimpleTy) { 6654 default: 6655 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 6656 // have 16 of them to play with. 6657 if (Subtarget.is64Bit()) { 6658 if (NumLoads >= 3) 6659 return false; 6660 } else if (NumLoads) { 6661 return false; 6662 } 6663 break; 6664 case MVT::i8: 6665 case MVT::i16: 6666 case MVT::i32: 6667 case MVT::i64: 6668 case MVT::f32: 6669 case MVT::f64: 6670 if (NumLoads) 6671 return false; 6672 break; 6673 } 6674 6675 return true; 6676 } 6677 6678 bool X86InstrInfo:: 6679 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 6680 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 6681 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 6682 Cond[0].setImm(GetOppositeBranchCondition(CC)); 6683 return false; 6684 } 6685 6686 bool X86InstrInfo:: 6687 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 6688 // FIXME: Return false for x87 stack register classes for now. We can't 6689 // allow any loads of these registers before FpGet_ST0_80. 6690 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 6691 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 6692 RC == &X86::RFP80RegClass); 6693 } 6694 6695 /// Return a virtual register initialized with the 6696 /// the global base register value. Output instructions required to 6697 /// initialize the register in the function entry block, if necessary. 6698 /// 6699 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 6700 /// 6701 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 6702 assert((!Subtarget.is64Bit() || 6703 MF->getTarget().getCodeModel() == CodeModel::Medium || 6704 MF->getTarget().getCodeModel() == CodeModel::Large) && 6705 "X86-64 PIC uses RIP relative addressing"); 6706 6707 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 6708 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 6709 if (GlobalBaseReg != 0) 6710 return GlobalBaseReg; 6711 6712 // Create the register. The code to initialize it is inserted 6713 // later, by the CGBR pass (below). 6714 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 6715 GlobalBaseReg = RegInfo.createVirtualRegister( 6716 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 6717 X86FI->setGlobalBaseReg(GlobalBaseReg); 6718 return GlobalBaseReg; 6719 } 6720 6721 // These are the replaceable SSE instructions. Some of these have Int variants 6722 // that we don't include here. We don't want to replace instructions selected 6723 // by intrinsics. 6724 static const uint16_t ReplaceableInstrs[][3] = { 6725 //PackedSingle PackedDouble PackedInt 6726 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 6727 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 6728 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 6729 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 6730 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 6731 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 6732 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, 6733 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, 6734 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, 6735 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm }, 6736 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, 6737 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm }, 6738 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 6739 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 6740 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 6741 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 6742 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 6743 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 6744 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 6745 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 6746 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 6747 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, 6748 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, 6749 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, 6750 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, 6751 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, 6752 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, 6753 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, 6754 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, 6755 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, 6756 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, 6757 // AVX 128-bit support 6758 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 6759 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 6760 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 6761 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 6762 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 6763 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 6764 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, 6765 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, 6766 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, 6767 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm }, 6768 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, 6769 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm }, 6770 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 6771 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 6772 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 6773 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 6774 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 6775 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 6776 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 6777 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 6778 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 6779 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, 6780 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, 6781 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, 6782 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, 6783 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, 6784 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, 6785 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, 6786 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, 6787 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, 6788 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, 6789 // AVX 256-bit support 6790 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 6791 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 6792 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 6793 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 6794 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 6795 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 6796 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, 6797 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, 6798 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, 6799 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, 6800 // AVX512 support 6801 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, 6802 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, 6803 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, 6804 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, 6805 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, 6806 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, 6807 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, 6808 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm }, 6809 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, 6810 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm }, 6811 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr }, 6812 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm }, 6813 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr }, 6814 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm }, 6815 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr }, 6816 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm }, 6817 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr }, 6818 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm }, 6819 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr }, 6820 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm }, 6821 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr }, 6822 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm }, 6823 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, 6824 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, 6825 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, 6826 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, 6827 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, 6828 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, 6829 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, 6830 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, 6831 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, 6832 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, 6833 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, 6834 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, 6835 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, 6836 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, 6837 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, 6838 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, 6839 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, 6840 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, 6841 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, 6842 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, 6843 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, 6844 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, 6845 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, 6846 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, 6847 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, 6848 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, 6849 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, 6850 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, 6851 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, 6852 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, 6853 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, 6854 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, 6855 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, 6856 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, 6857 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, 6858 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, 6859 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, 6860 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, 6861 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, 6862 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, 6863 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, 6864 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, 6865 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, 6866 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, 6867 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, 6868 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, 6869 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, 6870 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, 6871 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, 6872 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, 6873 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, 6874 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, 6875 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, 6876 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, 6877 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, 6878 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, 6879 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, 6880 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, 6881 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, 6882 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, 6883 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, 6884 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, 6885 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, 6886 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, 6887 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, 6888 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, 6889 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, 6890 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, 6891 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, 6892 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, 6893 }; 6894 6895 static const uint16_t ReplaceableInstrsAVX2[][3] = { 6896 //PackedSingle PackedDouble PackedInt 6897 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 6898 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 6899 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 6900 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 6901 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 6902 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 6903 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 6904 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 6905 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 6906 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 6907 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 6908 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 6909 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm}, 6910 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr}, 6911 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 6912 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 6913 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 6914 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, 6915 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, 6916 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, 6917 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, 6918 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, 6919 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, 6920 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, 6921 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, 6922 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, 6923 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, 6924 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, 6925 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, 6926 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, 6927 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, 6928 }; 6929 6930 static const uint16_t ReplaceableInstrsFP[][3] = { 6931 //PackedSingle PackedDouble 6932 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END }, 6933 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END }, 6934 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END }, 6935 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END }, 6936 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END }, 6937 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END }, 6938 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END }, 6939 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END }, 6940 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END }, 6941 }; 6942 6943 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { 6944 //PackedSingle PackedDouble PackedInt 6945 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 6946 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 6947 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 6948 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 6949 }; 6950 6951 static const uint16_t ReplaceableInstrsAVX512[][4] = { 6952 // Two integer columns for 64-bit and 32-bit elements. 6953 //PackedSingle PackedDouble PackedInt PackedInt 6954 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, 6955 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, 6956 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, 6957 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, 6958 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, 6959 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, 6960 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, 6961 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, 6962 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, 6963 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, 6964 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, 6965 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, 6966 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, 6967 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, 6968 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, 6969 }; 6970 6971 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { 6972 // Two integer columns for 64-bit and 32-bit elements. 6973 //PackedSingle PackedDouble PackedInt PackedInt 6974 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 6975 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 6976 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 6977 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 6978 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 6979 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 6980 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 6981 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 6982 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 6983 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 6984 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 6985 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 6986 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 6987 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 6988 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 6989 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 6990 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, 6991 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, 6992 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, 6993 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, 6994 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, 6995 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, 6996 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, 6997 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, 6998 }; 6999 7000 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { 7001 // Two integer columns for 64-bit and 32-bit elements. 7002 //PackedSingle PackedDouble 7003 //PackedInt PackedInt 7004 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, 7005 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, 7006 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, 7007 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, 7008 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, 7009 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, 7010 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, 7011 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, 7012 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, 7013 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, 7014 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, 7015 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, 7016 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, 7017 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, 7018 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, 7019 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, 7020 { X86::VORPSZ128rmk, X86::VORPDZ128rmk, 7021 X86::VPORQZ128rmk, X86::VPORDZ128rmk }, 7022 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, 7023 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, 7024 { X86::VORPSZ128rrk, X86::VORPDZ128rrk, 7025 X86::VPORQZ128rrk, X86::VPORDZ128rrk }, 7026 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, 7027 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, 7028 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, 7029 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, 7030 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, 7031 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, 7032 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, 7033 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, 7034 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, 7035 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, 7036 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, 7037 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, 7038 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, 7039 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, 7040 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, 7041 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, 7042 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, 7043 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, 7044 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, 7045 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, 7046 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, 7047 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, 7048 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, 7049 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, 7050 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, 7051 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, 7052 { X86::VORPSZ256rmk, X86::VORPDZ256rmk, 7053 X86::VPORQZ256rmk, X86::VPORDZ256rmk }, 7054 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, 7055 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, 7056 { X86::VORPSZ256rrk, X86::VORPDZ256rrk, 7057 X86::VPORQZ256rrk, X86::VPORDZ256rrk }, 7058 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, 7059 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, 7060 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, 7061 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, 7062 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, 7063 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, 7064 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, 7065 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, 7066 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, 7067 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, 7068 { X86::VANDNPSZrmk, X86::VANDNPDZrmk, 7069 X86::VPANDNQZrmk, X86::VPANDNDZrmk }, 7070 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, 7071 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, 7072 { X86::VANDNPSZrrk, X86::VANDNPDZrrk, 7073 X86::VPANDNQZrrk, X86::VPANDNDZrrk }, 7074 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, 7075 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, 7076 { X86::VANDPSZrmk, X86::VANDPDZrmk, 7077 X86::VPANDQZrmk, X86::VPANDDZrmk }, 7078 { X86::VANDPSZrmkz, X86::VANDPDZrmkz, 7079 X86::VPANDQZrmkz, X86::VPANDDZrmkz }, 7080 { X86::VANDPSZrrk, X86::VANDPDZrrk, 7081 X86::VPANDQZrrk, X86::VPANDDZrrk }, 7082 { X86::VANDPSZrrkz, X86::VANDPDZrrkz, 7083 X86::VPANDQZrrkz, X86::VPANDDZrrkz }, 7084 { X86::VORPSZrmk, X86::VORPDZrmk, 7085 X86::VPORQZrmk, X86::VPORDZrmk }, 7086 { X86::VORPSZrmkz, X86::VORPDZrmkz, 7087 X86::VPORQZrmkz, X86::VPORDZrmkz }, 7088 { X86::VORPSZrrk, X86::VORPDZrrk, 7089 X86::VPORQZrrk, X86::VPORDZrrk }, 7090 { X86::VORPSZrrkz, X86::VORPDZrrkz, 7091 X86::VPORQZrrkz, X86::VPORDZrrkz }, 7092 { X86::VXORPSZrmk, X86::VXORPDZrmk, 7093 X86::VPXORQZrmk, X86::VPXORDZrmk }, 7094 { X86::VXORPSZrmkz, X86::VXORPDZrmkz, 7095 X86::VPXORQZrmkz, X86::VPXORDZrmkz }, 7096 { X86::VXORPSZrrk, X86::VXORPDZrrk, 7097 X86::VPXORQZrrk, X86::VPXORDZrrk }, 7098 { X86::VXORPSZrrkz, X86::VXORPDZrrkz, 7099 X86::VPXORQZrrkz, X86::VPXORDZrrkz }, 7100 // Broadcast loads can be handled the same as masked operations to avoid 7101 // changing element size. 7102 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, 7103 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, 7104 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, 7105 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, 7106 { X86::VORPSZ128rmb, X86::VORPDZ128rmb, 7107 X86::VPORQZ128rmb, X86::VPORDZ128rmb }, 7108 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, 7109 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, 7110 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, 7111 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, 7112 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, 7113 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, 7114 { X86::VORPSZ256rmb, X86::VORPDZ256rmb, 7115 X86::VPORQZ256rmb, X86::VPORDZ256rmb }, 7116 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, 7117 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, 7118 { X86::VANDNPSZrmb, X86::VANDNPDZrmb, 7119 X86::VPANDNQZrmb, X86::VPANDNDZrmb }, 7120 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7121 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7122 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7123 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7124 { X86::VORPSZrmb, X86::VORPDZrmb, 7125 X86::VPORQZrmb, X86::VPORDZrmb }, 7126 { X86::VXORPSZrmb, X86::VXORPDZrmb, 7127 X86::VPXORQZrmb, X86::VPXORDZrmb }, 7128 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, 7129 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, 7130 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, 7131 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, 7132 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, 7133 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, 7134 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, 7135 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, 7136 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, 7137 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, 7138 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, 7139 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, 7140 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, 7141 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, 7142 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, 7143 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, 7144 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, 7145 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, 7146 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7147 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7148 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7149 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7150 { X86::VORPSZrmbk, X86::VORPDZrmbk, 7151 X86::VPORQZrmbk, X86::VPORDZrmbk }, 7152 { X86::VXORPSZrmbk, X86::VXORPDZrmbk, 7153 X86::VPXORQZrmbk, X86::VPXORDZrmbk }, 7154 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, 7155 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, 7156 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, 7157 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, 7158 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, 7159 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, 7160 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, 7161 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, 7162 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, 7163 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, 7164 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, 7165 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, 7166 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, 7167 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, 7168 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, 7169 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, 7170 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, 7171 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, 7172 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7173 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7174 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7175 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7176 { X86::VORPSZrmbkz, X86::VORPDZrmbkz, 7177 X86::VPORQZrmbkz, X86::VPORDZrmbkz }, 7178 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, 7179 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, 7180 }; 7181 7182 // NOTE: These should only be used by the custom domain methods. 7183 static const uint16_t ReplaceableBlendInstrs[][3] = { 7184 //PackedSingle PackedDouble PackedInt 7185 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, 7186 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, 7187 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, 7188 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, 7189 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, 7190 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, 7191 }; 7192 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = { 7193 //PackedSingle PackedDouble PackedInt 7194 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, 7195 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, 7196 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, 7197 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, 7198 }; 7199 7200 // Special table for changing EVEX logic instructions to VEX. 7201 // TODO: Should we run EVEX->VEX earlier? 7202 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { 7203 // Two integer columns for 64-bit and 32-bit elements. 7204 //PackedSingle PackedDouble PackedInt PackedInt 7205 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7206 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7207 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7208 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7209 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7210 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7211 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7212 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7213 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7214 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7215 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7216 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7217 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7218 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7219 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7220 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7221 }; 7222 7223 // FIXME: Some shuffle and unpack instructions have equivalents in different 7224 // domains, but they require a bit more work than just switching opcodes. 7225 7226 static const uint16_t *lookup(unsigned opcode, unsigned domain, 7227 ArrayRef<uint16_t[3]> Table) { 7228 for (const uint16_t (&Row)[3] : Table) 7229 if (Row[domain-1] == opcode) 7230 return Row; 7231 return nullptr; 7232 } 7233 7234 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 7235 ArrayRef<uint16_t[4]> Table) { 7236 // If this is the integer domain make sure to check both integer columns. 7237 for (const uint16_t (&Row)[4] : Table) 7238 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) 7239 return Row; 7240 return nullptr; 7241 } 7242 7243 // Helper to attempt to widen/narrow blend masks. 7244 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 7245 unsigned NewWidth, unsigned *pNewMask = nullptr) { 7246 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 7247 "Illegal blend mask scale"); 7248 unsigned NewMask = 0; 7249 7250 if ((OldWidth % NewWidth) == 0) { 7251 unsigned Scale = OldWidth / NewWidth; 7252 unsigned SubMask = (1u << Scale) - 1; 7253 for (unsigned i = 0; i != NewWidth; ++i) { 7254 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 7255 if (Sub == SubMask) 7256 NewMask |= (1u << i); 7257 else if (Sub != 0x0) 7258 return false; 7259 } 7260 } else { 7261 unsigned Scale = NewWidth / OldWidth; 7262 unsigned SubMask = (1u << Scale) - 1; 7263 for (unsigned i = 0; i != OldWidth; ++i) { 7264 if (OldMask & (1 << i)) { 7265 NewMask |= (SubMask << (i * Scale)); 7266 } 7267 } 7268 } 7269 7270 if (pNewMask) 7271 *pNewMask = NewMask; 7272 return true; 7273 } 7274 7275 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 7276 unsigned Opcode = MI.getOpcode(); 7277 unsigned NumOperands = MI.getDesc().getNumOperands(); 7278 7279 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 7280 uint16_t validDomains = 0; 7281 if (MI.getOperand(NumOperands - 1).isImm()) { 7282 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 7283 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 7284 validDomains |= 0x2; // PackedSingle 7285 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 7286 validDomains |= 0x4; // PackedDouble 7287 if (!Is256 || Subtarget.hasAVX2()) 7288 validDomains |= 0x8; // PackedInt 7289 } 7290 return validDomains; 7291 }; 7292 7293 switch (Opcode) { 7294 case X86::BLENDPDrmi: 7295 case X86::BLENDPDrri: 7296 case X86::VBLENDPDrmi: 7297 case X86::VBLENDPDrri: 7298 return GetBlendDomains(2, false); 7299 case X86::VBLENDPDYrmi: 7300 case X86::VBLENDPDYrri: 7301 return GetBlendDomains(4, true); 7302 case X86::BLENDPSrmi: 7303 case X86::BLENDPSrri: 7304 case X86::VBLENDPSrmi: 7305 case X86::VBLENDPSrri: 7306 case X86::VPBLENDDrmi: 7307 case X86::VPBLENDDrri: 7308 return GetBlendDomains(4, false); 7309 case X86::VBLENDPSYrmi: 7310 case X86::VBLENDPSYrri: 7311 case X86::VPBLENDDYrmi: 7312 case X86::VPBLENDDYrri: 7313 return GetBlendDomains(8, true); 7314 case X86::PBLENDWrmi: 7315 case X86::PBLENDWrri: 7316 case X86::VPBLENDWrmi: 7317 case X86::VPBLENDWrri: 7318 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 7319 case X86::VPBLENDWYrmi: 7320 case X86::VPBLENDWYrri: 7321 return GetBlendDomains(8, false); 7322 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 7323 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 7324 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 7325 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 7326 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 7327 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 7328 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 7329 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 7330 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 7331 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 7332 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 7333 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 7334 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 7335 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 7336 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 7337 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: 7338 // If we don't have DQI see if we can still switch from an EVEX integer 7339 // instruction to a VEX floating point instruction. 7340 if (Subtarget.hasDQI()) 7341 return 0; 7342 7343 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 7344 return 0; 7345 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 7346 return 0; 7347 // Register forms will have 3 operands. Memory form will have more. 7348 if (NumOperands == 3 && 7349 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 7350 return 0; 7351 7352 // All domains are valid. 7353 return 0xe; 7354 case X86::MOVHLPSrr: 7355 // We can swap domains when both inputs are the same register. 7356 // FIXME: This doesn't catch all the cases we would like. If the input 7357 // register isn't KILLed by the instruction, the two address instruction 7358 // pass puts a COPY on one input. The other input uses the original 7359 // register. This prevents the same physical register from being used by 7360 // both inputs. 7361 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 7362 MI.getOperand(0).getSubReg() == 0 && 7363 MI.getOperand(1).getSubReg() == 0 && 7364 MI.getOperand(2).getSubReg() == 0) 7365 return 0x6; 7366 return 0; 7367 case X86::SHUFPDrri: 7368 return 0x6; 7369 } 7370 return 0; 7371 } 7372 7373 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 7374 unsigned Domain) const { 7375 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 7376 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7377 assert(dom && "Not an SSE instruction"); 7378 7379 unsigned Opcode = MI.getOpcode(); 7380 unsigned NumOperands = MI.getDesc().getNumOperands(); 7381 7382 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 7383 if (MI.getOperand(NumOperands - 1).isImm()) { 7384 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 7385 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 7386 unsigned NewImm = Imm; 7387 7388 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 7389 if (!table) 7390 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 7391 7392 if (Domain == 1) { // PackedSingle 7393 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 7394 } else if (Domain == 2) { // PackedDouble 7395 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 7396 } else if (Domain == 3) { // PackedInt 7397 if (Subtarget.hasAVX2()) { 7398 // If we are already VPBLENDW use that, else use VPBLENDD. 7399 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 7400 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 7401 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 7402 } 7403 } else { 7404 assert(!Is256 && "128-bit vector expected"); 7405 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 7406 } 7407 } 7408 7409 assert(table && table[Domain - 1] && "Unknown domain op"); 7410 MI.setDesc(get(table[Domain - 1])); 7411 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 7412 } 7413 return true; 7414 }; 7415 7416 switch (Opcode) { 7417 case X86::BLENDPDrmi: 7418 case X86::BLENDPDrri: 7419 case X86::VBLENDPDrmi: 7420 case X86::VBLENDPDrri: 7421 return SetBlendDomain(2, false); 7422 case X86::VBLENDPDYrmi: 7423 case X86::VBLENDPDYrri: 7424 return SetBlendDomain(4, true); 7425 case X86::BLENDPSrmi: 7426 case X86::BLENDPSrri: 7427 case X86::VBLENDPSrmi: 7428 case X86::VBLENDPSrri: 7429 case X86::VPBLENDDrmi: 7430 case X86::VPBLENDDrri: 7431 return SetBlendDomain(4, false); 7432 case X86::VBLENDPSYrmi: 7433 case X86::VBLENDPSYrri: 7434 case X86::VPBLENDDYrmi: 7435 case X86::VPBLENDDYrri: 7436 return SetBlendDomain(8, true); 7437 case X86::PBLENDWrmi: 7438 case X86::PBLENDWrri: 7439 case X86::VPBLENDWrmi: 7440 case X86::VPBLENDWrri: 7441 return SetBlendDomain(8, false); 7442 case X86::VPBLENDWYrmi: 7443 case X86::VPBLENDWYrri: 7444 return SetBlendDomain(16, true); 7445 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 7446 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 7447 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 7448 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 7449 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 7450 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 7451 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 7452 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 7453 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 7454 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 7455 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 7456 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 7457 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 7458 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 7459 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 7460 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { 7461 // Without DQI, convert EVEX instructions to VEX instructions. 7462 if (Subtarget.hasDQI()) 7463 return false; 7464 7465 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, 7466 ReplaceableCustomAVX512LogicInstrs); 7467 assert(table && "Instruction not found in table?"); 7468 // Don't change integer Q instructions to D instructions and 7469 // use D intructions if we started with a PS instruction. 7470 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7471 Domain = 4; 7472 MI.setDesc(get(table[Domain - 1])); 7473 return true; 7474 } 7475 case X86::UNPCKHPDrr: 7476 case X86::MOVHLPSrr: 7477 // We just need to commute the instruction which will switch the domains. 7478 if (Domain != dom && Domain != 3 && 7479 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 7480 MI.getOperand(0).getSubReg() == 0 && 7481 MI.getOperand(1).getSubReg() == 0 && 7482 MI.getOperand(2).getSubReg() == 0) { 7483 commuteInstruction(MI, false); 7484 return true; 7485 } 7486 // We must always return true for MOVHLPSrr. 7487 if (Opcode == X86::MOVHLPSrr) 7488 return true; 7489 break; 7490 case X86::SHUFPDrri: { 7491 if (Domain == 1) { 7492 unsigned Imm = MI.getOperand(3).getImm(); 7493 unsigned NewImm = 0x44; 7494 if (Imm & 1) NewImm |= 0x0a; 7495 if (Imm & 2) NewImm |= 0xa0; 7496 MI.getOperand(3).setImm(NewImm); 7497 MI.setDesc(get(X86::SHUFPSrri)); 7498 } 7499 return true; 7500 } 7501 } 7502 return false; 7503 } 7504 7505 std::pair<uint16_t, uint16_t> 7506 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 7507 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7508 unsigned opcode = MI.getOpcode(); 7509 uint16_t validDomains = 0; 7510 if (domain) { 7511 // Attempt to match for custom instructions. 7512 validDomains = getExecutionDomainCustom(MI); 7513 if (validDomains) 7514 return std::make_pair(domain, validDomains); 7515 7516 if (lookup(opcode, domain, ReplaceableInstrs)) { 7517 validDomains = 0xe; 7518 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 7519 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 7520 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 7521 validDomains = 0x6; 7522 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 7523 // Insert/extract instructions should only effect domain if AVX2 7524 // is enabled. 7525 if (!Subtarget.hasAVX2()) 7526 return std::make_pair(0, 0); 7527 validDomains = 0xe; 7528 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 7529 validDomains = 0xe; 7530 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, 7531 ReplaceableInstrsAVX512DQ)) { 7532 validDomains = 0xe; 7533 } else if (Subtarget.hasDQI()) { 7534 if (const uint16_t *table = lookupAVX512(opcode, domain, 7535 ReplaceableInstrsAVX512DQMasked)) { 7536 if (domain == 1 || (domain == 3 && table[3] == opcode)) 7537 validDomains = 0xa; 7538 else 7539 validDomains = 0xc; 7540 } 7541 } 7542 } 7543 return std::make_pair(domain, validDomains); 7544 } 7545 7546 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 7547 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 7548 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 7549 assert(dom && "Not an SSE instruction"); 7550 7551 // Attempt to match for custom instructions. 7552 if (setExecutionDomainCustom(MI, Domain)) 7553 return; 7554 7555 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 7556 if (!table) { // try the other table 7557 assert((Subtarget.hasAVX2() || Domain < 3) && 7558 "256-bit vector operations only available in AVX2"); 7559 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 7560 } 7561 if (!table) { // try the FP table 7562 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 7563 assert((!table || Domain < 3) && 7564 "Can only select PackedSingle or PackedDouble"); 7565 } 7566 if (!table) { // try the other table 7567 assert(Subtarget.hasAVX2() && 7568 "256-bit insert/extract only available in AVX2"); 7569 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 7570 } 7571 if (!table) { // try the AVX512 table 7572 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 7573 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 7574 // Don't change integer Q instructions to D instructions. 7575 if (table && Domain == 3 && table[3] == MI.getOpcode()) 7576 Domain = 4; 7577 } 7578 if (!table) { // try the AVX512DQ table 7579 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 7580 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 7581 // Don't change integer Q instructions to D instructions and 7582 // use D instructions if we started with a PS instruction. 7583 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7584 Domain = 4; 7585 } 7586 if (!table) { // try the AVX512DQMasked table 7587 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 7588 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 7589 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 7590 Domain = 4; 7591 } 7592 assert(table && "Cannot change domain"); 7593 MI.setDesc(get(table[Domain - 1])); 7594 } 7595 7596 /// Return the noop instruction to use for a noop. 7597 void X86InstrInfo::getNoop(MCInst &NopInst) const { 7598 NopInst.setOpcode(X86::NOOP); 7599 } 7600 7601 bool X86InstrInfo::isHighLatencyDef(int opc) const { 7602 switch (opc) { 7603 default: return false; 7604 case X86::DIVPDrm: 7605 case X86::DIVPDrr: 7606 case X86::DIVPSrm: 7607 case X86::DIVPSrr: 7608 case X86::DIVSDrm: 7609 case X86::DIVSDrm_Int: 7610 case X86::DIVSDrr: 7611 case X86::DIVSDrr_Int: 7612 case X86::DIVSSrm: 7613 case X86::DIVSSrm_Int: 7614 case X86::DIVSSrr: 7615 case X86::DIVSSrr_Int: 7616 case X86::SQRTPDm: 7617 case X86::SQRTPDr: 7618 case X86::SQRTPSm: 7619 case X86::SQRTPSr: 7620 case X86::SQRTSDm: 7621 case X86::SQRTSDm_Int: 7622 case X86::SQRTSDr: 7623 case X86::SQRTSDr_Int: 7624 case X86::SQRTSSm: 7625 case X86::SQRTSSm_Int: 7626 case X86::SQRTSSr: 7627 case X86::SQRTSSr_Int: 7628 // AVX instructions with high latency 7629 case X86::VDIVPDrm: 7630 case X86::VDIVPDrr: 7631 case X86::VDIVPDYrm: 7632 case X86::VDIVPDYrr: 7633 case X86::VDIVPSrm: 7634 case X86::VDIVPSrr: 7635 case X86::VDIVPSYrm: 7636 case X86::VDIVPSYrr: 7637 case X86::VDIVSDrm: 7638 case X86::VDIVSDrm_Int: 7639 case X86::VDIVSDrr: 7640 case X86::VDIVSDrr_Int: 7641 case X86::VDIVSSrm: 7642 case X86::VDIVSSrm_Int: 7643 case X86::VDIVSSrr: 7644 case X86::VDIVSSrr_Int: 7645 case X86::VSQRTPDm: 7646 case X86::VSQRTPDr: 7647 case X86::VSQRTPDYm: 7648 case X86::VSQRTPDYr: 7649 case X86::VSQRTPSm: 7650 case X86::VSQRTPSr: 7651 case X86::VSQRTPSYm: 7652 case X86::VSQRTPSYr: 7653 case X86::VSQRTSDm: 7654 case X86::VSQRTSDm_Int: 7655 case X86::VSQRTSDr: 7656 case X86::VSQRTSDr_Int: 7657 case X86::VSQRTSSm: 7658 case X86::VSQRTSSm_Int: 7659 case X86::VSQRTSSr: 7660 case X86::VSQRTSSr_Int: 7661 // AVX512 instructions with high latency 7662 case X86::VDIVPDZ128rm: 7663 case X86::VDIVPDZ128rmb: 7664 case X86::VDIVPDZ128rmbk: 7665 case X86::VDIVPDZ128rmbkz: 7666 case X86::VDIVPDZ128rmk: 7667 case X86::VDIVPDZ128rmkz: 7668 case X86::VDIVPDZ128rr: 7669 case X86::VDIVPDZ128rrk: 7670 case X86::VDIVPDZ128rrkz: 7671 case X86::VDIVPDZ256rm: 7672 case X86::VDIVPDZ256rmb: 7673 case X86::VDIVPDZ256rmbk: 7674 case X86::VDIVPDZ256rmbkz: 7675 case X86::VDIVPDZ256rmk: 7676 case X86::VDIVPDZ256rmkz: 7677 case X86::VDIVPDZ256rr: 7678 case X86::VDIVPDZ256rrk: 7679 case X86::VDIVPDZ256rrkz: 7680 case X86::VDIVPDZrrb: 7681 case X86::VDIVPDZrrbk: 7682 case X86::VDIVPDZrrbkz: 7683 case X86::VDIVPDZrm: 7684 case X86::VDIVPDZrmb: 7685 case X86::VDIVPDZrmbk: 7686 case X86::VDIVPDZrmbkz: 7687 case X86::VDIVPDZrmk: 7688 case X86::VDIVPDZrmkz: 7689 case X86::VDIVPDZrr: 7690 case X86::VDIVPDZrrk: 7691 case X86::VDIVPDZrrkz: 7692 case X86::VDIVPSZ128rm: 7693 case X86::VDIVPSZ128rmb: 7694 case X86::VDIVPSZ128rmbk: 7695 case X86::VDIVPSZ128rmbkz: 7696 case X86::VDIVPSZ128rmk: 7697 case X86::VDIVPSZ128rmkz: 7698 case X86::VDIVPSZ128rr: 7699 case X86::VDIVPSZ128rrk: 7700 case X86::VDIVPSZ128rrkz: 7701 case X86::VDIVPSZ256rm: 7702 case X86::VDIVPSZ256rmb: 7703 case X86::VDIVPSZ256rmbk: 7704 case X86::VDIVPSZ256rmbkz: 7705 case X86::VDIVPSZ256rmk: 7706 case X86::VDIVPSZ256rmkz: 7707 case X86::VDIVPSZ256rr: 7708 case X86::VDIVPSZ256rrk: 7709 case X86::VDIVPSZ256rrkz: 7710 case X86::VDIVPSZrrb: 7711 case X86::VDIVPSZrrbk: 7712 case X86::VDIVPSZrrbkz: 7713 case X86::VDIVPSZrm: 7714 case X86::VDIVPSZrmb: 7715 case X86::VDIVPSZrmbk: 7716 case X86::VDIVPSZrmbkz: 7717 case X86::VDIVPSZrmk: 7718 case X86::VDIVPSZrmkz: 7719 case X86::VDIVPSZrr: 7720 case X86::VDIVPSZrrk: 7721 case X86::VDIVPSZrrkz: 7722 case X86::VDIVSDZrm: 7723 case X86::VDIVSDZrr: 7724 case X86::VDIVSDZrm_Int: 7725 case X86::VDIVSDZrm_Intk: 7726 case X86::VDIVSDZrm_Intkz: 7727 case X86::VDIVSDZrr_Int: 7728 case X86::VDIVSDZrr_Intk: 7729 case X86::VDIVSDZrr_Intkz: 7730 case X86::VDIVSDZrrb_Int: 7731 case X86::VDIVSDZrrb_Intk: 7732 case X86::VDIVSDZrrb_Intkz: 7733 case X86::VDIVSSZrm: 7734 case X86::VDIVSSZrr: 7735 case X86::VDIVSSZrm_Int: 7736 case X86::VDIVSSZrm_Intk: 7737 case X86::VDIVSSZrm_Intkz: 7738 case X86::VDIVSSZrr_Int: 7739 case X86::VDIVSSZrr_Intk: 7740 case X86::VDIVSSZrr_Intkz: 7741 case X86::VDIVSSZrrb_Int: 7742 case X86::VDIVSSZrrb_Intk: 7743 case X86::VDIVSSZrrb_Intkz: 7744 case X86::VSQRTPDZ128m: 7745 case X86::VSQRTPDZ128mb: 7746 case X86::VSQRTPDZ128mbk: 7747 case X86::VSQRTPDZ128mbkz: 7748 case X86::VSQRTPDZ128mk: 7749 case X86::VSQRTPDZ128mkz: 7750 case X86::VSQRTPDZ128r: 7751 case X86::VSQRTPDZ128rk: 7752 case X86::VSQRTPDZ128rkz: 7753 case X86::VSQRTPDZ256m: 7754 case X86::VSQRTPDZ256mb: 7755 case X86::VSQRTPDZ256mbk: 7756 case X86::VSQRTPDZ256mbkz: 7757 case X86::VSQRTPDZ256mk: 7758 case X86::VSQRTPDZ256mkz: 7759 case X86::VSQRTPDZ256r: 7760 case X86::VSQRTPDZ256rk: 7761 case X86::VSQRTPDZ256rkz: 7762 case X86::VSQRTPDZm: 7763 case X86::VSQRTPDZmb: 7764 case X86::VSQRTPDZmbk: 7765 case X86::VSQRTPDZmbkz: 7766 case X86::VSQRTPDZmk: 7767 case X86::VSQRTPDZmkz: 7768 case X86::VSQRTPDZr: 7769 case X86::VSQRTPDZrb: 7770 case X86::VSQRTPDZrbk: 7771 case X86::VSQRTPDZrbkz: 7772 case X86::VSQRTPDZrk: 7773 case X86::VSQRTPDZrkz: 7774 case X86::VSQRTPSZ128m: 7775 case X86::VSQRTPSZ128mb: 7776 case X86::VSQRTPSZ128mbk: 7777 case X86::VSQRTPSZ128mbkz: 7778 case X86::VSQRTPSZ128mk: 7779 case X86::VSQRTPSZ128mkz: 7780 case X86::VSQRTPSZ128r: 7781 case X86::VSQRTPSZ128rk: 7782 case X86::VSQRTPSZ128rkz: 7783 case X86::VSQRTPSZ256m: 7784 case X86::VSQRTPSZ256mb: 7785 case X86::VSQRTPSZ256mbk: 7786 case X86::VSQRTPSZ256mbkz: 7787 case X86::VSQRTPSZ256mk: 7788 case X86::VSQRTPSZ256mkz: 7789 case X86::VSQRTPSZ256r: 7790 case X86::VSQRTPSZ256rk: 7791 case X86::VSQRTPSZ256rkz: 7792 case X86::VSQRTPSZm: 7793 case X86::VSQRTPSZmb: 7794 case X86::VSQRTPSZmbk: 7795 case X86::VSQRTPSZmbkz: 7796 case X86::VSQRTPSZmk: 7797 case X86::VSQRTPSZmkz: 7798 case X86::VSQRTPSZr: 7799 case X86::VSQRTPSZrb: 7800 case X86::VSQRTPSZrbk: 7801 case X86::VSQRTPSZrbkz: 7802 case X86::VSQRTPSZrk: 7803 case X86::VSQRTPSZrkz: 7804 case X86::VSQRTSDZm: 7805 case X86::VSQRTSDZm_Int: 7806 case X86::VSQRTSDZm_Intk: 7807 case X86::VSQRTSDZm_Intkz: 7808 case X86::VSQRTSDZr: 7809 case X86::VSQRTSDZr_Int: 7810 case X86::VSQRTSDZr_Intk: 7811 case X86::VSQRTSDZr_Intkz: 7812 case X86::VSQRTSDZrb_Int: 7813 case X86::VSQRTSDZrb_Intk: 7814 case X86::VSQRTSDZrb_Intkz: 7815 case X86::VSQRTSSZm: 7816 case X86::VSQRTSSZm_Int: 7817 case X86::VSQRTSSZm_Intk: 7818 case X86::VSQRTSSZm_Intkz: 7819 case X86::VSQRTSSZr: 7820 case X86::VSQRTSSZr_Int: 7821 case X86::VSQRTSSZr_Intk: 7822 case X86::VSQRTSSZr_Intkz: 7823 case X86::VSQRTSSZrb_Int: 7824 case X86::VSQRTSSZrb_Intk: 7825 case X86::VSQRTSSZrb_Intkz: 7826 7827 case X86::VGATHERDPDYrm: 7828 case X86::VGATHERDPDZ128rm: 7829 case X86::VGATHERDPDZ256rm: 7830 case X86::VGATHERDPDZrm: 7831 case X86::VGATHERDPDrm: 7832 case X86::VGATHERDPSYrm: 7833 case X86::VGATHERDPSZ128rm: 7834 case X86::VGATHERDPSZ256rm: 7835 case X86::VGATHERDPSZrm: 7836 case X86::VGATHERDPSrm: 7837 case X86::VGATHERPF0DPDm: 7838 case X86::VGATHERPF0DPSm: 7839 case X86::VGATHERPF0QPDm: 7840 case X86::VGATHERPF0QPSm: 7841 case X86::VGATHERPF1DPDm: 7842 case X86::VGATHERPF1DPSm: 7843 case X86::VGATHERPF1QPDm: 7844 case X86::VGATHERPF1QPSm: 7845 case X86::VGATHERQPDYrm: 7846 case X86::VGATHERQPDZ128rm: 7847 case X86::VGATHERQPDZ256rm: 7848 case X86::VGATHERQPDZrm: 7849 case X86::VGATHERQPDrm: 7850 case X86::VGATHERQPSYrm: 7851 case X86::VGATHERQPSZ128rm: 7852 case X86::VGATHERQPSZ256rm: 7853 case X86::VGATHERQPSZrm: 7854 case X86::VGATHERQPSrm: 7855 case X86::VPGATHERDDYrm: 7856 case X86::VPGATHERDDZ128rm: 7857 case X86::VPGATHERDDZ256rm: 7858 case X86::VPGATHERDDZrm: 7859 case X86::VPGATHERDDrm: 7860 case X86::VPGATHERDQYrm: 7861 case X86::VPGATHERDQZ128rm: 7862 case X86::VPGATHERDQZ256rm: 7863 case X86::VPGATHERDQZrm: 7864 case X86::VPGATHERDQrm: 7865 case X86::VPGATHERQDYrm: 7866 case X86::VPGATHERQDZ128rm: 7867 case X86::VPGATHERQDZ256rm: 7868 case X86::VPGATHERQDZrm: 7869 case X86::VPGATHERQDrm: 7870 case X86::VPGATHERQQYrm: 7871 case X86::VPGATHERQQZ128rm: 7872 case X86::VPGATHERQQZ256rm: 7873 case X86::VPGATHERQQZrm: 7874 case X86::VPGATHERQQrm: 7875 case X86::VSCATTERDPDZ128mr: 7876 case X86::VSCATTERDPDZ256mr: 7877 case X86::VSCATTERDPDZmr: 7878 case X86::VSCATTERDPSZ128mr: 7879 case X86::VSCATTERDPSZ256mr: 7880 case X86::VSCATTERDPSZmr: 7881 case X86::VSCATTERPF0DPDm: 7882 case X86::VSCATTERPF0DPSm: 7883 case X86::VSCATTERPF0QPDm: 7884 case X86::VSCATTERPF0QPSm: 7885 case X86::VSCATTERPF1DPDm: 7886 case X86::VSCATTERPF1DPSm: 7887 case X86::VSCATTERPF1QPDm: 7888 case X86::VSCATTERPF1QPSm: 7889 case X86::VSCATTERQPDZ128mr: 7890 case X86::VSCATTERQPDZ256mr: 7891 case X86::VSCATTERQPDZmr: 7892 case X86::VSCATTERQPSZ128mr: 7893 case X86::VSCATTERQPSZ256mr: 7894 case X86::VSCATTERQPSZmr: 7895 case X86::VPSCATTERDDZ128mr: 7896 case X86::VPSCATTERDDZ256mr: 7897 case X86::VPSCATTERDDZmr: 7898 case X86::VPSCATTERDQZ128mr: 7899 case X86::VPSCATTERDQZ256mr: 7900 case X86::VPSCATTERDQZmr: 7901 case X86::VPSCATTERQDZ128mr: 7902 case X86::VPSCATTERQDZ256mr: 7903 case X86::VPSCATTERQDZmr: 7904 case X86::VPSCATTERQQZ128mr: 7905 case X86::VPSCATTERQQZ256mr: 7906 case X86::VPSCATTERQQZmr: 7907 return true; 7908 } 7909 } 7910 7911 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 7912 const MachineRegisterInfo *MRI, 7913 const MachineInstr &DefMI, 7914 unsigned DefIdx, 7915 const MachineInstr &UseMI, 7916 unsigned UseIdx) const { 7917 return isHighLatencyDef(DefMI.getOpcode()); 7918 } 7919 7920 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 7921 const MachineBasicBlock *MBB) const { 7922 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && 7923 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); 7924 7925 // Integer binary math/logic instructions have a third source operand: 7926 // the EFLAGS register. That operand must be both defined here and never 7927 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 7928 // not change anything because rearranging the operands could affect other 7929 // instructions that depend on the exact status flags (zero, sign, etc.) 7930 // that are set by using these particular operands with this operation. 7931 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS); 7932 assert((Inst.getNumDefs() == 1 || FlagDef) && 7933 "Implicit def isn't flags?"); 7934 if (FlagDef && !FlagDef->isDead()) 7935 return false; 7936 7937 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 7938 } 7939 7940 // TODO: There are many more machine instruction opcodes to match: 7941 // 1. Other data types (integer, vectors) 7942 // 2. Other math / logic operations (xor, or) 7943 // 3. Other forms of the same operation (intrinsics and other variants) 7944 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 7945 switch (Inst.getOpcode()) { 7946 case X86::AND8rr: 7947 case X86::AND16rr: 7948 case X86::AND32rr: 7949 case X86::AND64rr: 7950 case X86::OR8rr: 7951 case X86::OR16rr: 7952 case X86::OR32rr: 7953 case X86::OR64rr: 7954 case X86::XOR8rr: 7955 case X86::XOR16rr: 7956 case X86::XOR32rr: 7957 case X86::XOR64rr: 7958 case X86::IMUL16rr: 7959 case X86::IMUL32rr: 7960 case X86::IMUL64rr: 7961 case X86::PANDrr: 7962 case X86::PORrr: 7963 case X86::PXORrr: 7964 case X86::ANDPDrr: 7965 case X86::ANDPSrr: 7966 case X86::ORPDrr: 7967 case X86::ORPSrr: 7968 case X86::XORPDrr: 7969 case X86::XORPSrr: 7970 case X86::PADDBrr: 7971 case X86::PADDWrr: 7972 case X86::PADDDrr: 7973 case X86::PADDQrr: 7974 case X86::PMULLWrr: 7975 case X86::PMULLDrr: 7976 case X86::PMAXSBrr: 7977 case X86::PMAXSDrr: 7978 case X86::PMAXSWrr: 7979 case X86::PMAXUBrr: 7980 case X86::PMAXUDrr: 7981 case X86::PMAXUWrr: 7982 case X86::PMINSBrr: 7983 case X86::PMINSDrr: 7984 case X86::PMINSWrr: 7985 case X86::PMINUBrr: 7986 case X86::PMINUDrr: 7987 case X86::PMINUWrr: 7988 case X86::VPANDrr: 7989 case X86::VPANDYrr: 7990 case X86::VPANDDZ128rr: 7991 case X86::VPANDDZ256rr: 7992 case X86::VPANDDZrr: 7993 case X86::VPANDQZ128rr: 7994 case X86::VPANDQZ256rr: 7995 case X86::VPANDQZrr: 7996 case X86::VPORrr: 7997 case X86::VPORYrr: 7998 case X86::VPORDZ128rr: 7999 case X86::VPORDZ256rr: 8000 case X86::VPORDZrr: 8001 case X86::VPORQZ128rr: 8002 case X86::VPORQZ256rr: 8003 case X86::VPORQZrr: 8004 case X86::VPXORrr: 8005 case X86::VPXORYrr: 8006 case X86::VPXORDZ128rr: 8007 case X86::VPXORDZ256rr: 8008 case X86::VPXORDZrr: 8009 case X86::VPXORQZ128rr: 8010 case X86::VPXORQZ256rr: 8011 case X86::VPXORQZrr: 8012 case X86::VANDPDrr: 8013 case X86::VANDPSrr: 8014 case X86::VANDPDYrr: 8015 case X86::VANDPSYrr: 8016 case X86::VANDPDZ128rr: 8017 case X86::VANDPSZ128rr: 8018 case X86::VANDPDZ256rr: 8019 case X86::VANDPSZ256rr: 8020 case X86::VANDPDZrr: 8021 case X86::VANDPSZrr: 8022 case X86::VORPDrr: 8023 case X86::VORPSrr: 8024 case X86::VORPDYrr: 8025 case X86::VORPSYrr: 8026 case X86::VORPDZ128rr: 8027 case X86::VORPSZ128rr: 8028 case X86::VORPDZ256rr: 8029 case X86::VORPSZ256rr: 8030 case X86::VORPDZrr: 8031 case X86::VORPSZrr: 8032 case X86::VXORPDrr: 8033 case X86::VXORPSrr: 8034 case X86::VXORPDYrr: 8035 case X86::VXORPSYrr: 8036 case X86::VXORPDZ128rr: 8037 case X86::VXORPSZ128rr: 8038 case X86::VXORPDZ256rr: 8039 case X86::VXORPSZ256rr: 8040 case X86::VXORPDZrr: 8041 case X86::VXORPSZrr: 8042 case X86::KADDBrr: 8043 case X86::KADDWrr: 8044 case X86::KADDDrr: 8045 case X86::KADDQrr: 8046 case X86::KANDBrr: 8047 case X86::KANDWrr: 8048 case X86::KANDDrr: 8049 case X86::KANDQrr: 8050 case X86::KORBrr: 8051 case X86::KORWrr: 8052 case X86::KORDrr: 8053 case X86::KORQrr: 8054 case X86::KXORBrr: 8055 case X86::KXORWrr: 8056 case X86::KXORDrr: 8057 case X86::KXORQrr: 8058 case X86::VPADDBrr: 8059 case X86::VPADDWrr: 8060 case X86::VPADDDrr: 8061 case X86::VPADDQrr: 8062 case X86::VPADDBYrr: 8063 case X86::VPADDWYrr: 8064 case X86::VPADDDYrr: 8065 case X86::VPADDQYrr: 8066 case X86::VPADDBZ128rr: 8067 case X86::VPADDWZ128rr: 8068 case X86::VPADDDZ128rr: 8069 case X86::VPADDQZ128rr: 8070 case X86::VPADDBZ256rr: 8071 case X86::VPADDWZ256rr: 8072 case X86::VPADDDZ256rr: 8073 case X86::VPADDQZ256rr: 8074 case X86::VPADDBZrr: 8075 case X86::VPADDWZrr: 8076 case X86::VPADDDZrr: 8077 case X86::VPADDQZrr: 8078 case X86::VPMULLWrr: 8079 case X86::VPMULLWYrr: 8080 case X86::VPMULLWZ128rr: 8081 case X86::VPMULLWZ256rr: 8082 case X86::VPMULLWZrr: 8083 case X86::VPMULLDrr: 8084 case X86::VPMULLDYrr: 8085 case X86::VPMULLDZ128rr: 8086 case X86::VPMULLDZ256rr: 8087 case X86::VPMULLDZrr: 8088 case X86::VPMULLQZ128rr: 8089 case X86::VPMULLQZ256rr: 8090 case X86::VPMULLQZrr: 8091 case X86::VPMAXSBrr: 8092 case X86::VPMAXSBYrr: 8093 case X86::VPMAXSBZ128rr: 8094 case X86::VPMAXSBZ256rr: 8095 case X86::VPMAXSBZrr: 8096 case X86::VPMAXSDrr: 8097 case X86::VPMAXSDYrr: 8098 case X86::VPMAXSDZ128rr: 8099 case X86::VPMAXSDZ256rr: 8100 case X86::VPMAXSDZrr: 8101 case X86::VPMAXSQZ128rr: 8102 case X86::VPMAXSQZ256rr: 8103 case X86::VPMAXSQZrr: 8104 case X86::VPMAXSWrr: 8105 case X86::VPMAXSWYrr: 8106 case X86::VPMAXSWZ128rr: 8107 case X86::VPMAXSWZ256rr: 8108 case X86::VPMAXSWZrr: 8109 case X86::VPMAXUBrr: 8110 case X86::VPMAXUBYrr: 8111 case X86::VPMAXUBZ128rr: 8112 case X86::VPMAXUBZ256rr: 8113 case X86::VPMAXUBZrr: 8114 case X86::VPMAXUDrr: 8115 case X86::VPMAXUDYrr: 8116 case X86::VPMAXUDZ128rr: 8117 case X86::VPMAXUDZ256rr: 8118 case X86::VPMAXUDZrr: 8119 case X86::VPMAXUQZ128rr: 8120 case X86::VPMAXUQZ256rr: 8121 case X86::VPMAXUQZrr: 8122 case X86::VPMAXUWrr: 8123 case X86::VPMAXUWYrr: 8124 case X86::VPMAXUWZ128rr: 8125 case X86::VPMAXUWZ256rr: 8126 case X86::VPMAXUWZrr: 8127 case X86::VPMINSBrr: 8128 case X86::VPMINSBYrr: 8129 case X86::VPMINSBZ128rr: 8130 case X86::VPMINSBZ256rr: 8131 case X86::VPMINSBZrr: 8132 case X86::VPMINSDrr: 8133 case X86::VPMINSDYrr: 8134 case X86::VPMINSDZ128rr: 8135 case X86::VPMINSDZ256rr: 8136 case X86::VPMINSDZrr: 8137 case X86::VPMINSQZ128rr: 8138 case X86::VPMINSQZ256rr: 8139 case X86::VPMINSQZrr: 8140 case X86::VPMINSWrr: 8141 case X86::VPMINSWYrr: 8142 case X86::VPMINSWZ128rr: 8143 case X86::VPMINSWZ256rr: 8144 case X86::VPMINSWZrr: 8145 case X86::VPMINUBrr: 8146 case X86::VPMINUBYrr: 8147 case X86::VPMINUBZ128rr: 8148 case X86::VPMINUBZ256rr: 8149 case X86::VPMINUBZrr: 8150 case X86::VPMINUDrr: 8151 case X86::VPMINUDYrr: 8152 case X86::VPMINUDZ128rr: 8153 case X86::VPMINUDZ256rr: 8154 case X86::VPMINUDZrr: 8155 case X86::VPMINUQZ128rr: 8156 case X86::VPMINUQZ256rr: 8157 case X86::VPMINUQZrr: 8158 case X86::VPMINUWrr: 8159 case X86::VPMINUWYrr: 8160 case X86::VPMINUWZ128rr: 8161 case X86::VPMINUWZ256rr: 8162 case X86::VPMINUWZrr: 8163 // Normal min/max instructions are not commutative because of NaN and signed 8164 // zero semantics, but these are. Thus, there's no need to check for global 8165 // relaxed math; the instructions themselves have the properties we need. 8166 case X86::MAXCPDrr: 8167 case X86::MAXCPSrr: 8168 case X86::MAXCSDrr: 8169 case X86::MAXCSSrr: 8170 case X86::MINCPDrr: 8171 case X86::MINCPSrr: 8172 case X86::MINCSDrr: 8173 case X86::MINCSSrr: 8174 case X86::VMAXCPDrr: 8175 case X86::VMAXCPSrr: 8176 case X86::VMAXCPDYrr: 8177 case X86::VMAXCPSYrr: 8178 case X86::VMAXCPDZ128rr: 8179 case X86::VMAXCPSZ128rr: 8180 case X86::VMAXCPDZ256rr: 8181 case X86::VMAXCPSZ256rr: 8182 case X86::VMAXCPDZrr: 8183 case X86::VMAXCPSZrr: 8184 case X86::VMAXCSDrr: 8185 case X86::VMAXCSSrr: 8186 case X86::VMAXCSDZrr: 8187 case X86::VMAXCSSZrr: 8188 case X86::VMINCPDrr: 8189 case X86::VMINCPSrr: 8190 case X86::VMINCPDYrr: 8191 case X86::VMINCPSYrr: 8192 case X86::VMINCPDZ128rr: 8193 case X86::VMINCPSZ128rr: 8194 case X86::VMINCPDZ256rr: 8195 case X86::VMINCPSZ256rr: 8196 case X86::VMINCPDZrr: 8197 case X86::VMINCPSZrr: 8198 case X86::VMINCSDrr: 8199 case X86::VMINCSSrr: 8200 case X86::VMINCSDZrr: 8201 case X86::VMINCSSZrr: 8202 return true; 8203 case X86::ADDPDrr: 8204 case X86::ADDPSrr: 8205 case X86::ADDSDrr: 8206 case X86::ADDSSrr: 8207 case X86::MULPDrr: 8208 case X86::MULPSrr: 8209 case X86::MULSDrr: 8210 case X86::MULSSrr: 8211 case X86::VADDPDrr: 8212 case X86::VADDPSrr: 8213 case X86::VADDPDYrr: 8214 case X86::VADDPSYrr: 8215 case X86::VADDPDZ128rr: 8216 case X86::VADDPSZ128rr: 8217 case X86::VADDPDZ256rr: 8218 case X86::VADDPSZ256rr: 8219 case X86::VADDPDZrr: 8220 case X86::VADDPSZrr: 8221 case X86::VADDSDrr: 8222 case X86::VADDSSrr: 8223 case X86::VADDSDZrr: 8224 case X86::VADDSSZrr: 8225 case X86::VMULPDrr: 8226 case X86::VMULPSrr: 8227 case X86::VMULPDYrr: 8228 case X86::VMULPSYrr: 8229 case X86::VMULPDZ128rr: 8230 case X86::VMULPSZ128rr: 8231 case X86::VMULPDZ256rr: 8232 case X86::VMULPSZ256rr: 8233 case X86::VMULPDZrr: 8234 case X86::VMULPSZrr: 8235 case X86::VMULSDrr: 8236 case X86::VMULSSrr: 8237 case X86::VMULSDZrr: 8238 case X86::VMULSSZrr: 8239 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 8240 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 8241 default: 8242 return false; 8243 } 8244 } 8245 8246 /// If \p DescribedReg overlaps with the MOVrr instruction's destination 8247 /// register then, if possible, describe the value in terms of the source 8248 /// register. 8249 static Optional<ParamLoadedValue> 8250 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, 8251 const TargetRegisterInfo *TRI) { 8252 Register DestReg = MI.getOperand(0).getReg(); 8253 Register SrcReg = MI.getOperand(1).getReg(); 8254 8255 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 8256 8257 // If the described register is the destination, just return the source. 8258 if (DestReg == DescribedReg) 8259 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8260 8261 // If the described register is a sub-register of the destination register, 8262 // then pick out the source register's corresponding sub-register. 8263 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { 8264 unsigned SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); 8265 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 8266 } 8267 8268 // The remaining case to consider is when the described register is a 8269 // super-register of the destination register. MOV8rr and MOV16rr does not 8270 // write to any of the other bytes in the register, meaning that we'd have to 8271 // describe the value using a combination of the source register and the 8272 // non-overlapping bits in the described register, which is not currently 8273 // possible. 8274 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || 8275 !TRI->isSuperRegister(DestReg, DescribedReg)) 8276 return None; 8277 8278 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); 8279 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8280 } 8281 8282 Optional<ParamLoadedValue> 8283 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 8284 const MachineOperand *Op = nullptr; 8285 DIExpression *Expr = nullptr; 8286 8287 const TargetRegisterInfo *TRI = &getRegisterInfo(); 8288 8289 switch (MI.getOpcode()) { 8290 case X86::LEA32r: 8291 case X86::LEA64r: 8292 case X86::LEA64_32r: { 8293 // We may need to describe a 64-bit parameter with a 32-bit LEA. 8294 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8295 return None; 8296 8297 // Operand 4 could be global address. For now we do not support 8298 // such situation. 8299 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) 8300 return None; 8301 8302 const MachineOperand &Op1 = MI.getOperand(1); 8303 const MachineOperand &Op2 = MI.getOperand(3); 8304 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister || 8305 Register::isPhysicalRegister(Op2.getReg()))); 8306 8307 // Omit situations like: 8308 // %rsi = lea %rsi, 4, ... 8309 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || 8310 Op2.getReg() == MI.getOperand(0).getReg()) 8311 return None; 8312 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && 8313 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || 8314 (Op2.getReg() != X86::NoRegister && 8315 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) 8316 return None; 8317 8318 int64_t Coef = MI.getOperand(2).getImm(); 8319 int64_t Offset = MI.getOperand(4).getImm(); 8320 SmallVector<uint64_t, 8> Ops; 8321 8322 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { 8323 Op = &Op1; 8324 } else if (Op1.isFI()) 8325 Op = &Op1; 8326 8327 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { 8328 Ops.push_back(dwarf::DW_OP_constu); 8329 Ops.push_back(Coef + 1); 8330 Ops.push_back(dwarf::DW_OP_mul); 8331 } else { 8332 if (Op && Op2.getReg() != X86::NoRegister) { 8333 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); 8334 if (dwarfReg < 0) 8335 return None; 8336 else if (dwarfReg < 32) { 8337 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); 8338 Ops.push_back(0); 8339 } else { 8340 Ops.push_back(dwarf::DW_OP_bregx); 8341 Ops.push_back(dwarfReg); 8342 Ops.push_back(0); 8343 } 8344 } else if (!Op) { 8345 assert(Op2.getReg() != X86::NoRegister); 8346 Op = &Op2; 8347 } 8348 8349 if (Coef > 1) { 8350 assert(Op2.getReg() != X86::NoRegister); 8351 Ops.push_back(dwarf::DW_OP_constu); 8352 Ops.push_back(Coef); 8353 Ops.push_back(dwarf::DW_OP_mul); 8354 } 8355 8356 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && 8357 Op2.getReg() != X86::NoRegister) { 8358 Ops.push_back(dwarf::DW_OP_plus); 8359 } 8360 } 8361 8362 DIExpression::appendOffset(Ops, Offset); 8363 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); 8364 8365 return ParamLoadedValue(*Op, Expr);; 8366 } 8367 case X86::MOV8ri: 8368 case X86::MOV16ri: 8369 // TODO: Handle MOV8ri and MOV16ri. 8370 return None; 8371 case X86::MOV32ri: 8372 case X86::MOV64ri: 8373 case X86::MOV64ri32: 8374 // MOV32ri may be used for producing zero-extended 32-bit immediates in 8375 // 64-bit parameters, so we need to consider super-registers. 8376 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8377 return None; 8378 return ParamLoadedValue(MI.getOperand(1), Expr); 8379 case X86::MOV8rr: 8380 case X86::MOV16rr: 8381 case X86::MOV32rr: 8382 case X86::MOV64rr: 8383 return describeMOVrrLoadedValue(MI, Reg, TRI); 8384 case X86::XOR32rr: { 8385 // 64-bit parameters are zero-materialized using XOR32rr, so also consider 8386 // super-registers. 8387 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 8388 return None; 8389 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 8390 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); 8391 return None; 8392 } 8393 case X86::MOVSX64rr32: { 8394 // We may need to describe the lower 32 bits of the MOVSX; for example, in 8395 // cases like this: 8396 // 8397 // $ebx = [...] 8398 // $rdi = MOVSX64rr32 $ebx 8399 // $esi = MOV32rr $edi 8400 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) 8401 return None; 8402 8403 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 8404 8405 // If the described register is the destination register we need to 8406 // sign-extend the source register from 32 bits. The other case we handle 8407 // is when the described register is the 32-bit sub-register of the 8408 // destination register, in case we just need to return the source 8409 // register. 8410 if (Reg == MI.getOperand(0).getReg()) 8411 Expr = DIExpression::appendExt(Expr, 32, 64, true); 8412 else 8413 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && 8414 "Unhandled sub-register case for MOVSX64rr32"); 8415 8416 return ParamLoadedValue(MI.getOperand(1), Expr); 8417 } 8418 default: 8419 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); 8420 return TargetInstrInfo::describeLoadedValue(MI, Reg); 8421 } 8422 } 8423 8424 /// This is an architecture-specific helper function of reassociateOps. 8425 /// Set special operand attributes for new instructions after reassociation. 8426 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 8427 MachineInstr &OldMI2, 8428 MachineInstr &NewMI1, 8429 MachineInstr &NewMI2) const { 8430 // Propagate FP flags from the original instructions. 8431 // But clear poison-generating flags because those may not be valid now. 8432 // TODO: There should be a helper function for copying only fast-math-flags. 8433 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 8434 NewMI1.setFlags(IntersectedFlags); 8435 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 8436 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 8437 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 8438 8439 NewMI2.setFlags(IntersectedFlags); 8440 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 8441 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 8442 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 8443 8444 // Integer instructions may define an implicit EFLAGS dest register operand. 8445 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS); 8446 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS); 8447 8448 assert(!OldFlagDef1 == !OldFlagDef2 && 8449 "Unexpected instruction type for reassociation"); 8450 8451 if (!OldFlagDef1 || !OldFlagDef2) 8452 return; 8453 8454 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && 8455 "Must have dead EFLAGS operand in reassociable instruction"); 8456 8457 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS); 8458 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS); 8459 8460 assert(NewFlagDef1 && NewFlagDef2 && 8461 "Unexpected operand in reassociable instruction"); 8462 8463 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 8464 // of this pass or other passes. The EFLAGS operands must be dead in these new 8465 // instructions because the EFLAGS operands in the original instructions must 8466 // be dead in order for reassociation to occur. 8467 NewFlagDef1->setIsDead(); 8468 NewFlagDef2->setIsDead(); 8469 } 8470 8471 std::pair<unsigned, unsigned> 8472 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 8473 return std::make_pair(TF, 0u); 8474 } 8475 8476 ArrayRef<std::pair<unsigned, const char *>> 8477 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 8478 using namespace X86II; 8479 static const std::pair<unsigned, const char *> TargetFlags[] = { 8480 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 8481 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 8482 {MO_GOT, "x86-got"}, 8483 {MO_GOTOFF, "x86-gotoff"}, 8484 {MO_GOTPCREL, "x86-gotpcrel"}, 8485 {MO_PLT, "x86-plt"}, 8486 {MO_TLSGD, "x86-tlsgd"}, 8487 {MO_TLSLD, "x86-tlsld"}, 8488 {MO_TLSLDM, "x86-tlsldm"}, 8489 {MO_GOTTPOFF, "x86-gottpoff"}, 8490 {MO_INDNTPOFF, "x86-indntpoff"}, 8491 {MO_TPOFF, "x86-tpoff"}, 8492 {MO_DTPOFF, "x86-dtpoff"}, 8493 {MO_NTPOFF, "x86-ntpoff"}, 8494 {MO_GOTNTPOFF, "x86-gotntpoff"}, 8495 {MO_DLLIMPORT, "x86-dllimport"}, 8496 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 8497 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 8498 {MO_TLVP, "x86-tlvp"}, 8499 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 8500 {MO_SECREL, "x86-secrel"}, 8501 {MO_COFFSTUB, "x86-coffstub"}}; 8502 return makeArrayRef(TargetFlags); 8503 } 8504 8505 namespace { 8506 /// Create Global Base Reg pass. This initializes the PIC 8507 /// global base register for x86-32. 8508 struct CGBR : public MachineFunctionPass { 8509 static char ID; 8510 CGBR() : MachineFunctionPass(ID) {} 8511 8512 bool runOnMachineFunction(MachineFunction &MF) override { 8513 const X86TargetMachine *TM = 8514 static_cast<const X86TargetMachine *>(&MF.getTarget()); 8515 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 8516 8517 // Don't do anything in the 64-bit small and kernel code models. They use 8518 // RIP-relative addressing for everything. 8519 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || 8520 TM->getCodeModel() == CodeModel::Kernel)) 8521 return false; 8522 8523 // Only emit a global base reg in PIC mode. 8524 if (!TM->isPositionIndependent()) 8525 return false; 8526 8527 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 8528 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 8529 8530 // If we didn't need a GlobalBaseReg, don't insert code. 8531 if (GlobalBaseReg == 0) 8532 return false; 8533 8534 // Insert the set of GlobalBaseReg into the first MBB of the function 8535 MachineBasicBlock &FirstMBB = MF.front(); 8536 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 8537 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 8538 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8539 const X86InstrInfo *TII = STI.getInstrInfo(); 8540 8541 unsigned PC; 8542 if (STI.isPICStyleGOT()) 8543 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 8544 else 8545 PC = GlobalBaseReg; 8546 8547 if (STI.is64Bit()) { 8548 if (TM->getCodeModel() == CodeModel::Medium) { 8549 // In the medium code model, use a RIP-relative LEA to materialize the 8550 // GOT. 8551 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 8552 .addReg(X86::RIP) 8553 .addImm(0) 8554 .addReg(0) 8555 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 8556 .addReg(0); 8557 } else if (TM->getCodeModel() == CodeModel::Large) { 8558 // In the large code model, we are aiming for this code, though the 8559 // register allocation may vary: 8560 // leaq .LN$pb(%rip), %rax 8561 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 8562 // addq %rcx, %rax 8563 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 8564 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 8565 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 8566 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 8567 .addReg(X86::RIP) 8568 .addImm(0) 8569 .addReg(0) 8570 .addSym(MF.getPICBaseSymbol()) 8571 .addReg(0); 8572 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 8573 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 8574 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 8575 X86II::MO_PIC_BASE_OFFSET); 8576 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 8577 .addReg(PBReg, RegState::Kill) 8578 .addReg(GOTReg, RegState::Kill); 8579 } else { 8580 llvm_unreachable("unexpected code model"); 8581 } 8582 } else { 8583 // Operand of MovePCtoStack is completely ignored by asm printer. It's 8584 // only used in JIT code emission as displacement to pc. 8585 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 8586 8587 // If we're using vanilla 'GOT' PIC style, we should use relative 8588 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 8589 if (STI.isPICStyleGOT()) { 8590 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 8591 // %some_register 8592 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 8593 .addReg(PC) 8594 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 8595 X86II::MO_GOT_ABSOLUTE_ADDRESS); 8596 } 8597 } 8598 8599 return true; 8600 } 8601 8602 StringRef getPassName() const override { 8603 return "X86 PIC Global Base Reg Initialization"; 8604 } 8605 8606 void getAnalysisUsage(AnalysisUsage &AU) const override { 8607 AU.setPreservesCFG(); 8608 MachineFunctionPass::getAnalysisUsage(AU); 8609 } 8610 }; 8611 } 8612 8613 char CGBR::ID = 0; 8614 FunctionPass* 8615 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 8616 8617 namespace { 8618 struct LDTLSCleanup : public MachineFunctionPass { 8619 static char ID; 8620 LDTLSCleanup() : MachineFunctionPass(ID) {} 8621 8622 bool runOnMachineFunction(MachineFunction &MF) override { 8623 if (skipFunction(MF.getFunction())) 8624 return false; 8625 8626 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 8627 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 8628 // No point folding accesses if there isn't at least two. 8629 return false; 8630 } 8631 8632 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 8633 return VisitNode(DT->getRootNode(), 0); 8634 } 8635 8636 // Visit the dominator subtree rooted at Node in pre-order. 8637 // If TLSBaseAddrReg is non-null, then use that to replace any 8638 // TLS_base_addr instructions. Otherwise, create the register 8639 // when the first such instruction is seen, and then use it 8640 // as we encounter more instructions. 8641 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 8642 MachineBasicBlock *BB = Node->getBlock(); 8643 bool Changed = false; 8644 8645 // Traverse the current block. 8646 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 8647 ++I) { 8648 switch (I->getOpcode()) { 8649 case X86::TLS_base_addr32: 8650 case X86::TLS_base_addr64: 8651 if (TLSBaseAddrReg) 8652 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 8653 else 8654 I = SetRegister(*I, &TLSBaseAddrReg); 8655 Changed = true; 8656 break; 8657 default: 8658 break; 8659 } 8660 } 8661 8662 // Visit the children of this block in the dominator tree. 8663 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) { 8664 Changed |= VisitNode(*I, TLSBaseAddrReg); 8665 } 8666 8667 return Changed; 8668 } 8669 8670 // Replace the TLS_base_addr instruction I with a copy from 8671 // TLSBaseAddrReg, returning the new instruction. 8672 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 8673 unsigned TLSBaseAddrReg) { 8674 MachineFunction *MF = I.getParent()->getParent(); 8675 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 8676 const bool is64Bit = STI.is64Bit(); 8677 const X86InstrInfo *TII = STI.getInstrInfo(); 8678 8679 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 8680 MachineInstr *Copy = 8681 BuildMI(*I.getParent(), I, I.getDebugLoc(), 8682 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 8683 .addReg(TLSBaseAddrReg); 8684 8685 // Erase the TLS_base_addr instruction. 8686 I.eraseFromParent(); 8687 8688 return Copy; 8689 } 8690 8691 // Create a virtual register in *TLSBaseAddrReg, and populate it by 8692 // inserting a copy instruction after I. Returns the new instruction. 8693 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 8694 MachineFunction *MF = I.getParent()->getParent(); 8695 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 8696 const bool is64Bit = STI.is64Bit(); 8697 const X86InstrInfo *TII = STI.getInstrInfo(); 8698 8699 // Create a virtual register for the TLS base address. 8700 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 8701 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 8702 ? &X86::GR64RegClass 8703 : &X86::GR32RegClass); 8704 8705 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 8706 MachineInstr *Next = I.getNextNode(); 8707 MachineInstr *Copy = 8708 BuildMI(*I.getParent(), Next, I.getDebugLoc(), 8709 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 8710 .addReg(is64Bit ? X86::RAX : X86::EAX); 8711 8712 return Copy; 8713 } 8714 8715 StringRef getPassName() const override { 8716 return "Local Dynamic TLS Access Clean-up"; 8717 } 8718 8719 void getAnalysisUsage(AnalysisUsage &AU) const override { 8720 AU.setPreservesCFG(); 8721 AU.addRequired<MachineDominatorTree>(); 8722 MachineFunctionPass::getAnalysisUsage(AU); 8723 } 8724 }; 8725 } 8726 8727 char LDTLSCleanup::ID = 0; 8728 FunctionPass* 8729 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 8730 8731 /// Constants defining how certain sequences should be outlined. 8732 /// 8733 /// \p MachineOutlinerDefault implies that the function is called with a call 8734 /// instruction, and a return must be emitted for the outlined function frame. 8735 /// 8736 /// That is, 8737 /// 8738 /// I1 OUTLINED_FUNCTION: 8739 /// I2 --> call OUTLINED_FUNCTION I1 8740 /// I3 I2 8741 /// I3 8742 /// ret 8743 /// 8744 /// * Call construction overhead: 1 (call instruction) 8745 /// * Frame construction overhead: 1 (return instruction) 8746 /// 8747 /// \p MachineOutlinerTailCall implies that the function is being tail called. 8748 /// A jump is emitted instead of a call, and the return is already present in 8749 /// the outlined sequence. That is, 8750 /// 8751 /// I1 OUTLINED_FUNCTION: 8752 /// I2 --> jmp OUTLINED_FUNCTION I1 8753 /// ret I2 8754 /// ret 8755 /// 8756 /// * Call construction overhead: 1 (jump instruction) 8757 /// * Frame construction overhead: 0 (don't need to return) 8758 /// 8759 enum MachineOutlinerClass { 8760 MachineOutlinerDefault, 8761 MachineOutlinerTailCall 8762 }; 8763 8764 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( 8765 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 8766 unsigned SequenceSize = 8767 std::accumulate(RepeatedSequenceLocs[0].front(), 8768 std::next(RepeatedSequenceLocs[0].back()), 0, 8769 [](unsigned Sum, const MachineInstr &MI) { 8770 // FIXME: x86 doesn't implement getInstSizeInBytes, so 8771 // we can't tell the cost. Just assume each instruction 8772 // is one byte. 8773 if (MI.isDebugInstr() || MI.isKill()) 8774 return Sum; 8775 return Sum + 1; 8776 }); 8777 8778 // We check to see if CFI Instructions are present, and if they are 8779 // we find the number of CFI Instructions in the candidates. 8780 unsigned CFICount = 0; 8781 MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front(); 8782 for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx(); 8783 Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) { 8784 const std::vector<MCCFIInstruction> &CFIInstructions = 8785 RepeatedSequenceLocs[0].getMF()->getFrameInstructions(); 8786 if (MBBI->isCFIInstruction()) { 8787 unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex(); 8788 MCCFIInstruction CFI = CFIInstructions[CFIIndex]; 8789 CFICount++; 8790 } 8791 MBBI++; 8792 } 8793 8794 // We compare the number of found CFI Instructions to the number of CFI 8795 // instructions in the parent function for each candidate. We must check this 8796 // since if we outline one of the CFI instructions in a function, we have to 8797 // outline them all for correctness. If we do not, the address offsets will be 8798 // incorrect between the two sections of the program. 8799 for (outliner::Candidate &C : RepeatedSequenceLocs) { 8800 std::vector<MCCFIInstruction> CFIInstructions = 8801 C.getMF()->getFrameInstructions(); 8802 8803 if (CFICount > 0 && CFICount != CFIInstructions.size()) 8804 return outliner::OutlinedFunction(); 8805 } 8806 8807 // FIXME: Use real size in bytes for call and ret instructions. 8808 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 8809 for (outliner::Candidate &C : RepeatedSequenceLocs) 8810 C.setCallInfo(MachineOutlinerTailCall, 1); 8811 8812 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 8813 0, // Number of bytes to emit frame. 8814 MachineOutlinerTailCall // Type of frame. 8815 ); 8816 } 8817 8818 if (CFICount > 0) 8819 return outliner::OutlinedFunction(); 8820 8821 for (outliner::Candidate &C : RepeatedSequenceLocs) 8822 C.setCallInfo(MachineOutlinerDefault, 1); 8823 8824 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, 8825 MachineOutlinerDefault); 8826 } 8827 8828 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, 8829 bool OutlineFromLinkOnceODRs) const { 8830 const Function &F = MF.getFunction(); 8831 8832 // Does the function use a red zone? If it does, then we can't risk messing 8833 // with the stack. 8834 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 8835 // It could have a red zone. If it does, then we don't want to touch it. 8836 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 8837 if (!X86FI || X86FI->getUsesRedZone()) 8838 return false; 8839 } 8840 8841 // If we *don't* want to outline from things that could potentially be deduped 8842 // then return false. 8843 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 8844 return false; 8845 8846 // This function is viable for outlining, so return true. 8847 return true; 8848 } 8849 8850 outliner::InstrType 8851 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 8852 MachineInstr &MI = *MIT; 8853 // Don't allow debug values to impact outlining type. 8854 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 8855 return outliner::InstrType::Invisible; 8856 8857 // At this point, KILL instructions don't really tell us much so we can go 8858 // ahead and skip over them. 8859 if (MI.isKill()) 8860 return outliner::InstrType::Invisible; 8861 8862 // Is this a tail call? If yes, we can outline as a tail call. 8863 if (isTailCall(MI)) 8864 return outliner::InstrType::Legal; 8865 8866 // Is this the terminator of a basic block? 8867 if (MI.isTerminator() || MI.isReturn()) { 8868 8869 // Does its parent have any successors in its MachineFunction? 8870 if (MI.getParent()->succ_empty()) 8871 return outliner::InstrType::Legal; 8872 8873 // It does, so we can't tail call it. 8874 return outliner::InstrType::Illegal; 8875 } 8876 8877 // Don't outline anything that modifies or reads from the stack pointer. 8878 // 8879 // FIXME: There are instructions which are being manually built without 8880 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 8881 // able to remove the extra checks once those are fixed up. For example, 8882 // sometimes we might get something like %rax = POP64r 1. This won't be 8883 // caught by modifiesRegister or readsRegister even though the instruction 8884 // really ought to be formed so that modifiesRegister/readsRegister would 8885 // catch it. 8886 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 8887 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 8888 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 8889 return outliner::InstrType::Illegal; 8890 8891 // Outlined calls change the instruction pointer, so don't read from it. 8892 if (MI.readsRegister(X86::RIP, &RI) || 8893 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 8894 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 8895 return outliner::InstrType::Illegal; 8896 8897 // Positions can't safely be outlined. 8898 if (MI.isPosition()) 8899 return outliner::InstrType::Illegal; 8900 8901 // Make sure none of the operands of this instruction do anything tricky. 8902 for (const MachineOperand &MOP : MI.operands()) 8903 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 8904 MOP.isTargetIndex()) 8905 return outliner::InstrType::Illegal; 8906 8907 return outliner::InstrType::Legal; 8908 } 8909 8910 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, 8911 MachineFunction &MF, 8912 const outliner::OutlinedFunction &OF) 8913 const { 8914 // If we're a tail call, we already have a return, so don't do anything. 8915 if (OF.FrameConstructionID == MachineOutlinerTailCall) 8916 return; 8917 8918 // We're a normal call, so our sequence doesn't have a return instruction. 8919 // Add it in. 8920 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); 8921 MBB.insert(MBB.end(), retq); 8922 } 8923 8924 MachineBasicBlock::iterator 8925 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 8926 MachineBasicBlock::iterator &It, 8927 MachineFunction &MF, 8928 const outliner::Candidate &C) const { 8929 // Is it a tail call? 8930 if (C.CallConstructionID == MachineOutlinerTailCall) { 8931 // Yes, just insert a JMP. 8932 It = MBB.insert(It, 8933 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 8934 .addGlobalAddress(M.getNamedValue(MF.getName()))); 8935 } else { 8936 // No, insert a call. 8937 It = MBB.insert(It, 8938 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 8939 .addGlobalAddress(M.getNamedValue(MF.getName()))); 8940 } 8941 8942 return It; 8943 } 8944 8945 #define GET_INSTRINFO_HELPERS 8946 #include "X86GenInstrInfo.inc" 8947