xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetOptions.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "x86-instr-info"
47 
48 #define GET_INSTRINFO_CTOR_DTOR
49 #include "X86GenInstrInfo.inc"
50 
51 static cl::opt<bool>
52     NoFusing("disable-spill-fusing",
53              cl::desc("Disable fusing of spill code into instructions"),
54              cl::Hidden);
55 static cl::opt<bool>
56 PrintFailedFusing("print-failed-fuse-candidates",
57                   cl::desc("Print instructions that the allocator wants to"
58                            " fuse, but the X86 backend currently can't"),
59                   cl::Hidden);
60 static cl::opt<bool>
61 ReMatPICStubLoad("remat-pic-stub-load",
62                  cl::desc("Re-materialize load from stub in PIC mode"),
63                  cl::init(false), cl::Hidden);
64 static cl::opt<unsigned>
65 PartialRegUpdateClearance("partial-reg-update-clearance",
66                           cl::desc("Clearance between two register writes "
67                                    "for inserting XOR to avoid partial "
68                                    "register update"),
69                           cl::init(64), cl::Hidden);
70 static cl::opt<unsigned>
71 UndefRegClearance("undef-reg-clearance",
72                   cl::desc("How many idle instructions we would like before "
73                            "certain undef register reads"),
74                   cl::init(128), cl::Hidden);
75 
76 
77 // Pin the vtable to this file.
78 void X86InstrInfo::anchor() {}
79 
80 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
81     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
82                                                : X86::ADJCALLSTACKDOWN32),
83                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
84                                                : X86::ADJCALLSTACKUP32),
85                       X86::CATCHRET,
86                       (STI.is64Bit() ? X86::RET64 : X86::RET32)),
87       Subtarget(STI), RI(STI.getTargetTriple()) {
88 }
89 
90 bool
91 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
92                                     Register &SrcReg, Register &DstReg,
93                                     unsigned &SubIdx) const {
94   switch (MI.getOpcode()) {
95   default: break;
96   case X86::MOVSX16rr8:
97   case X86::MOVZX16rr8:
98   case X86::MOVSX32rr8:
99   case X86::MOVZX32rr8:
100   case X86::MOVSX64rr8:
101     if (!Subtarget.is64Bit())
102       // It's not always legal to reference the low 8-bit of the larger
103       // register in 32-bit mode.
104       return false;
105     LLVM_FALLTHROUGH;
106   case X86::MOVSX32rr16:
107   case X86::MOVZX32rr16:
108   case X86::MOVSX64rr16:
109   case X86::MOVSX64rr32: {
110     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
111       // Be conservative.
112       return false;
113     SrcReg = MI.getOperand(1).getReg();
114     DstReg = MI.getOperand(0).getReg();
115     switch (MI.getOpcode()) {
116     default: llvm_unreachable("Unreachable!");
117     case X86::MOVSX16rr8:
118     case X86::MOVZX16rr8:
119     case X86::MOVSX32rr8:
120     case X86::MOVZX32rr8:
121     case X86::MOVSX64rr8:
122       SubIdx = X86::sub_8bit;
123       break;
124     case X86::MOVSX32rr16:
125     case X86::MOVZX32rr16:
126     case X86::MOVSX64rr16:
127       SubIdx = X86::sub_16bit;
128       break;
129     case X86::MOVSX64rr32:
130       SubIdx = X86::sub_32bit;
131       break;
132     }
133     return true;
134   }
135   }
136   return false;
137 }
138 
139 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
140   switch (MI.getOpcode()) {
141   default:
142     // By default, assume that the instruction is not data invariant.
143     return false;
144 
145     // Some target-independent operations that trivially lower to data-invariant
146     // instructions.
147   case TargetOpcode::COPY:
148   case TargetOpcode::INSERT_SUBREG:
149   case TargetOpcode::SUBREG_TO_REG:
150     return true;
151 
152   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
153   // However, they set flags and are perhaps the most surprisingly constant
154   // time operations so we call them out here separately.
155   case X86::IMUL16rr:
156   case X86::IMUL16rri8:
157   case X86::IMUL16rri:
158   case X86::IMUL32rr:
159   case X86::IMUL32rri8:
160   case X86::IMUL32rri:
161   case X86::IMUL64rr:
162   case X86::IMUL64rri32:
163   case X86::IMUL64rri8:
164 
165   // Bit scanning and counting instructions that are somewhat surprisingly
166   // constant time as they scan across bits and do other fairly complex
167   // operations like popcnt, but are believed to be constant time on x86.
168   // However, these set flags.
169   case X86::BSF16rr:
170   case X86::BSF32rr:
171   case X86::BSF64rr:
172   case X86::BSR16rr:
173   case X86::BSR32rr:
174   case X86::BSR64rr:
175   case X86::LZCNT16rr:
176   case X86::LZCNT32rr:
177   case X86::LZCNT64rr:
178   case X86::POPCNT16rr:
179   case X86::POPCNT32rr:
180   case X86::POPCNT64rr:
181   case X86::TZCNT16rr:
182   case X86::TZCNT32rr:
183   case X86::TZCNT64rr:
184 
185   // Bit manipulation instructions are effectively combinations of basic
186   // arithmetic ops, and should still execute in constant time. These also
187   // set flags.
188   case X86::BLCFILL32rr:
189   case X86::BLCFILL64rr:
190   case X86::BLCI32rr:
191   case X86::BLCI64rr:
192   case X86::BLCIC32rr:
193   case X86::BLCIC64rr:
194   case X86::BLCMSK32rr:
195   case X86::BLCMSK64rr:
196   case X86::BLCS32rr:
197   case X86::BLCS64rr:
198   case X86::BLSFILL32rr:
199   case X86::BLSFILL64rr:
200   case X86::BLSI32rr:
201   case X86::BLSI64rr:
202   case X86::BLSIC32rr:
203   case X86::BLSIC64rr:
204   case X86::BLSMSK32rr:
205   case X86::BLSMSK64rr:
206   case X86::BLSR32rr:
207   case X86::BLSR64rr:
208   case X86::TZMSK32rr:
209   case X86::TZMSK64rr:
210 
211   // Bit extracting and clearing instructions should execute in constant time,
212   // and set flags.
213   case X86::BEXTR32rr:
214   case X86::BEXTR64rr:
215   case X86::BEXTRI32ri:
216   case X86::BEXTRI64ri:
217   case X86::BZHI32rr:
218   case X86::BZHI64rr:
219 
220   // Shift and rotate.
221   case X86::ROL8r1:
222   case X86::ROL16r1:
223   case X86::ROL32r1:
224   case X86::ROL64r1:
225   case X86::ROL8rCL:
226   case X86::ROL16rCL:
227   case X86::ROL32rCL:
228   case X86::ROL64rCL:
229   case X86::ROL8ri:
230   case X86::ROL16ri:
231   case X86::ROL32ri:
232   case X86::ROL64ri:
233   case X86::ROR8r1:
234   case X86::ROR16r1:
235   case X86::ROR32r1:
236   case X86::ROR64r1:
237   case X86::ROR8rCL:
238   case X86::ROR16rCL:
239   case X86::ROR32rCL:
240   case X86::ROR64rCL:
241   case X86::ROR8ri:
242   case X86::ROR16ri:
243   case X86::ROR32ri:
244   case X86::ROR64ri:
245   case X86::SAR8r1:
246   case X86::SAR16r1:
247   case X86::SAR32r1:
248   case X86::SAR64r1:
249   case X86::SAR8rCL:
250   case X86::SAR16rCL:
251   case X86::SAR32rCL:
252   case X86::SAR64rCL:
253   case X86::SAR8ri:
254   case X86::SAR16ri:
255   case X86::SAR32ri:
256   case X86::SAR64ri:
257   case X86::SHL8r1:
258   case X86::SHL16r1:
259   case X86::SHL32r1:
260   case X86::SHL64r1:
261   case X86::SHL8rCL:
262   case X86::SHL16rCL:
263   case X86::SHL32rCL:
264   case X86::SHL64rCL:
265   case X86::SHL8ri:
266   case X86::SHL16ri:
267   case X86::SHL32ri:
268   case X86::SHL64ri:
269   case X86::SHR8r1:
270   case X86::SHR16r1:
271   case X86::SHR32r1:
272   case X86::SHR64r1:
273   case X86::SHR8rCL:
274   case X86::SHR16rCL:
275   case X86::SHR32rCL:
276   case X86::SHR64rCL:
277   case X86::SHR8ri:
278   case X86::SHR16ri:
279   case X86::SHR32ri:
280   case X86::SHR64ri:
281   case X86::SHLD16rrCL:
282   case X86::SHLD32rrCL:
283   case X86::SHLD64rrCL:
284   case X86::SHLD16rri8:
285   case X86::SHLD32rri8:
286   case X86::SHLD64rri8:
287   case X86::SHRD16rrCL:
288   case X86::SHRD32rrCL:
289   case X86::SHRD64rrCL:
290   case X86::SHRD16rri8:
291   case X86::SHRD32rri8:
292   case X86::SHRD64rri8:
293 
294   // Basic arithmetic is constant time on the input but does set flags.
295   case X86::ADC8rr:
296   case X86::ADC8ri:
297   case X86::ADC16rr:
298   case X86::ADC16ri:
299   case X86::ADC16ri8:
300   case X86::ADC32rr:
301   case X86::ADC32ri:
302   case X86::ADC32ri8:
303   case X86::ADC64rr:
304   case X86::ADC64ri8:
305   case X86::ADC64ri32:
306   case X86::ADD8rr:
307   case X86::ADD8ri:
308   case X86::ADD16rr:
309   case X86::ADD16ri:
310   case X86::ADD16ri8:
311   case X86::ADD32rr:
312   case X86::ADD32ri:
313   case X86::ADD32ri8:
314   case X86::ADD64rr:
315   case X86::ADD64ri8:
316   case X86::ADD64ri32:
317   case X86::AND8rr:
318   case X86::AND8ri:
319   case X86::AND16rr:
320   case X86::AND16ri:
321   case X86::AND16ri8:
322   case X86::AND32rr:
323   case X86::AND32ri:
324   case X86::AND32ri8:
325   case X86::AND64rr:
326   case X86::AND64ri8:
327   case X86::AND64ri32:
328   case X86::OR8rr:
329   case X86::OR8ri:
330   case X86::OR16rr:
331   case X86::OR16ri:
332   case X86::OR16ri8:
333   case X86::OR32rr:
334   case X86::OR32ri:
335   case X86::OR32ri8:
336   case X86::OR64rr:
337   case X86::OR64ri8:
338   case X86::OR64ri32:
339   case X86::SBB8rr:
340   case X86::SBB8ri:
341   case X86::SBB16rr:
342   case X86::SBB16ri:
343   case X86::SBB16ri8:
344   case X86::SBB32rr:
345   case X86::SBB32ri:
346   case X86::SBB32ri8:
347   case X86::SBB64rr:
348   case X86::SBB64ri8:
349   case X86::SBB64ri32:
350   case X86::SUB8rr:
351   case X86::SUB8ri:
352   case X86::SUB16rr:
353   case X86::SUB16ri:
354   case X86::SUB16ri8:
355   case X86::SUB32rr:
356   case X86::SUB32ri:
357   case X86::SUB32ri8:
358   case X86::SUB64rr:
359   case X86::SUB64ri8:
360   case X86::SUB64ri32:
361   case X86::XOR8rr:
362   case X86::XOR8ri:
363   case X86::XOR16rr:
364   case X86::XOR16ri:
365   case X86::XOR16ri8:
366   case X86::XOR32rr:
367   case X86::XOR32ri:
368   case X86::XOR32ri8:
369   case X86::XOR64rr:
370   case X86::XOR64ri8:
371   case X86::XOR64ri32:
372   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
373   case X86::ADCX32rr:
374   case X86::ADCX64rr:
375   case X86::ADOX32rr:
376   case X86::ADOX64rr:
377   case X86::ANDN32rr:
378   case X86::ANDN64rr:
379   // Unary arithmetic operations.
380   case X86::DEC8r:
381   case X86::DEC16r:
382   case X86::DEC32r:
383   case X86::DEC64r:
384   case X86::INC8r:
385   case X86::INC16r:
386   case X86::INC32r:
387   case X86::INC64r:
388   case X86::NEG8r:
389   case X86::NEG16r:
390   case X86::NEG32r:
391   case X86::NEG64r:
392 
393   // Unlike other arithmetic, NOT doesn't set EFLAGS.
394   case X86::NOT8r:
395   case X86::NOT16r:
396   case X86::NOT32r:
397   case X86::NOT64r:
398 
399   // Various move instructions used to zero or sign extend things. Note that we
400   // intentionally don't support the _NOREX variants as we can't handle that
401   // register constraint anyways.
402   case X86::MOVSX16rr8:
403   case X86::MOVSX32rr8:
404   case X86::MOVSX32rr16:
405   case X86::MOVSX64rr8:
406   case X86::MOVSX64rr16:
407   case X86::MOVSX64rr32:
408   case X86::MOVZX16rr8:
409   case X86::MOVZX32rr8:
410   case X86::MOVZX32rr16:
411   case X86::MOVZX64rr8:
412   case X86::MOVZX64rr16:
413   case X86::MOV32rr:
414 
415   // Arithmetic instructions that are both constant time and don't set flags.
416   case X86::RORX32ri:
417   case X86::RORX64ri:
418   case X86::SARX32rr:
419   case X86::SARX64rr:
420   case X86::SHLX32rr:
421   case X86::SHLX64rr:
422   case X86::SHRX32rr:
423   case X86::SHRX64rr:
424 
425   // LEA doesn't actually access memory, and its arithmetic is constant time.
426   case X86::LEA16r:
427   case X86::LEA32r:
428   case X86::LEA64_32r:
429   case X86::LEA64r:
430     return true;
431   }
432 }
433 
434 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
435   switch (MI.getOpcode()) {
436   default:
437     // By default, assume that the load will immediately leak.
438     return false;
439 
440   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
441   // However, they set flags and are perhaps the most surprisingly constant
442   // time operations so we call them out here separately.
443   case X86::IMUL16rm:
444   case X86::IMUL16rmi8:
445   case X86::IMUL16rmi:
446   case X86::IMUL32rm:
447   case X86::IMUL32rmi8:
448   case X86::IMUL32rmi:
449   case X86::IMUL64rm:
450   case X86::IMUL64rmi32:
451   case X86::IMUL64rmi8:
452 
453   // Bit scanning and counting instructions that are somewhat surprisingly
454   // constant time as they scan across bits and do other fairly complex
455   // operations like popcnt, but are believed to be constant time on x86.
456   // However, these set flags.
457   case X86::BSF16rm:
458   case X86::BSF32rm:
459   case X86::BSF64rm:
460   case X86::BSR16rm:
461   case X86::BSR32rm:
462   case X86::BSR64rm:
463   case X86::LZCNT16rm:
464   case X86::LZCNT32rm:
465   case X86::LZCNT64rm:
466   case X86::POPCNT16rm:
467   case X86::POPCNT32rm:
468   case X86::POPCNT64rm:
469   case X86::TZCNT16rm:
470   case X86::TZCNT32rm:
471   case X86::TZCNT64rm:
472 
473   // Bit manipulation instructions are effectively combinations of basic
474   // arithmetic ops, and should still execute in constant time. These also
475   // set flags.
476   case X86::BLCFILL32rm:
477   case X86::BLCFILL64rm:
478   case X86::BLCI32rm:
479   case X86::BLCI64rm:
480   case X86::BLCIC32rm:
481   case X86::BLCIC64rm:
482   case X86::BLCMSK32rm:
483   case X86::BLCMSK64rm:
484   case X86::BLCS32rm:
485   case X86::BLCS64rm:
486   case X86::BLSFILL32rm:
487   case X86::BLSFILL64rm:
488   case X86::BLSI32rm:
489   case X86::BLSI64rm:
490   case X86::BLSIC32rm:
491   case X86::BLSIC64rm:
492   case X86::BLSMSK32rm:
493   case X86::BLSMSK64rm:
494   case X86::BLSR32rm:
495   case X86::BLSR64rm:
496   case X86::TZMSK32rm:
497   case X86::TZMSK64rm:
498 
499   // Bit extracting and clearing instructions should execute in constant time,
500   // and set flags.
501   case X86::BEXTR32rm:
502   case X86::BEXTR64rm:
503   case X86::BEXTRI32mi:
504   case X86::BEXTRI64mi:
505   case X86::BZHI32rm:
506   case X86::BZHI64rm:
507 
508   // Basic arithmetic is constant time on the input but does set flags.
509   case X86::ADC8rm:
510   case X86::ADC16rm:
511   case X86::ADC32rm:
512   case X86::ADC64rm:
513   case X86::ADCX32rm:
514   case X86::ADCX64rm:
515   case X86::ADD8rm:
516   case X86::ADD16rm:
517   case X86::ADD32rm:
518   case X86::ADD64rm:
519   case X86::ADOX32rm:
520   case X86::ADOX64rm:
521   case X86::AND8rm:
522   case X86::AND16rm:
523   case X86::AND32rm:
524   case X86::AND64rm:
525   case X86::ANDN32rm:
526   case X86::ANDN64rm:
527   case X86::OR8rm:
528   case X86::OR16rm:
529   case X86::OR32rm:
530   case X86::OR64rm:
531   case X86::SBB8rm:
532   case X86::SBB16rm:
533   case X86::SBB32rm:
534   case X86::SBB64rm:
535   case X86::SUB8rm:
536   case X86::SUB16rm:
537   case X86::SUB32rm:
538   case X86::SUB64rm:
539   case X86::XOR8rm:
540   case X86::XOR16rm:
541   case X86::XOR32rm:
542   case X86::XOR64rm:
543 
544   // Integer multiply w/o affecting flags is still believed to be constant
545   // time on x86. Called out separately as this is among the most surprising
546   // instructions to exhibit that behavior.
547   case X86::MULX32rm:
548   case X86::MULX64rm:
549 
550   // Arithmetic instructions that are both constant time and don't set flags.
551   case X86::RORX32mi:
552   case X86::RORX64mi:
553   case X86::SARX32rm:
554   case X86::SARX64rm:
555   case X86::SHLX32rm:
556   case X86::SHLX64rm:
557   case X86::SHRX32rm:
558   case X86::SHRX64rm:
559 
560   // Conversions are believed to be constant time and don't set flags.
561   case X86::CVTTSD2SI64rm:
562   case X86::VCVTTSD2SI64rm:
563   case X86::VCVTTSD2SI64Zrm:
564   case X86::CVTTSD2SIrm:
565   case X86::VCVTTSD2SIrm:
566   case X86::VCVTTSD2SIZrm:
567   case X86::CVTTSS2SI64rm:
568   case X86::VCVTTSS2SI64rm:
569   case X86::VCVTTSS2SI64Zrm:
570   case X86::CVTTSS2SIrm:
571   case X86::VCVTTSS2SIrm:
572   case X86::VCVTTSS2SIZrm:
573   case X86::CVTSI2SDrm:
574   case X86::VCVTSI2SDrm:
575   case X86::VCVTSI2SDZrm:
576   case X86::CVTSI2SSrm:
577   case X86::VCVTSI2SSrm:
578   case X86::VCVTSI2SSZrm:
579   case X86::CVTSI642SDrm:
580   case X86::VCVTSI642SDrm:
581   case X86::VCVTSI642SDZrm:
582   case X86::CVTSI642SSrm:
583   case X86::VCVTSI642SSrm:
584   case X86::VCVTSI642SSZrm:
585   case X86::CVTSS2SDrm:
586   case X86::VCVTSS2SDrm:
587   case X86::VCVTSS2SDZrm:
588   case X86::CVTSD2SSrm:
589   case X86::VCVTSD2SSrm:
590   case X86::VCVTSD2SSZrm:
591   // AVX512 added unsigned integer conversions.
592   case X86::VCVTTSD2USI64Zrm:
593   case X86::VCVTTSD2USIZrm:
594   case X86::VCVTTSS2USI64Zrm:
595   case X86::VCVTTSS2USIZrm:
596   case X86::VCVTUSI2SDZrm:
597   case X86::VCVTUSI642SDZrm:
598   case X86::VCVTUSI2SSZrm:
599   case X86::VCVTUSI642SSZrm:
600 
601   // Loads to register don't set flags.
602   case X86::MOV8rm:
603   case X86::MOV8rm_NOREX:
604   case X86::MOV16rm:
605   case X86::MOV32rm:
606   case X86::MOV64rm:
607   case X86::MOVSX16rm8:
608   case X86::MOVSX32rm16:
609   case X86::MOVSX32rm8:
610   case X86::MOVSX32rm8_NOREX:
611   case X86::MOVSX64rm16:
612   case X86::MOVSX64rm32:
613   case X86::MOVSX64rm8:
614   case X86::MOVZX16rm8:
615   case X86::MOVZX32rm16:
616   case X86::MOVZX32rm8:
617   case X86::MOVZX32rm8_NOREX:
618   case X86::MOVZX64rm16:
619   case X86::MOVZX64rm8:
620     return true;
621   }
622 }
623 
624 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
625   const MachineFunction *MF = MI.getParent()->getParent();
626   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
627 
628   if (isFrameInstr(MI)) {
629     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
630     SPAdj -= getFrameAdjustment(MI);
631     if (!isFrameSetup(MI))
632       SPAdj = -SPAdj;
633     return SPAdj;
634   }
635 
636   // To know whether a call adjusts the stack, we need information
637   // that is bound to the following ADJCALLSTACKUP pseudo.
638   // Look for the next ADJCALLSTACKUP that follows the call.
639   if (MI.isCall()) {
640     const MachineBasicBlock *MBB = MI.getParent();
641     auto I = ++MachineBasicBlock::const_iterator(MI);
642     for (auto E = MBB->end(); I != E; ++I) {
643       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
644           I->isCall())
645         break;
646     }
647 
648     // If we could not find a frame destroy opcode, then it has already
649     // been simplified, so we don't care.
650     if (I->getOpcode() != getCallFrameDestroyOpcode())
651       return 0;
652 
653     return -(I->getOperand(1).getImm());
654   }
655 
656   // Currently handle only PUSHes we can reasonably expect to see
657   // in call sequences
658   switch (MI.getOpcode()) {
659   default:
660     return 0;
661   case X86::PUSH32i8:
662   case X86::PUSH32r:
663   case X86::PUSH32rmm:
664   case X86::PUSH32rmr:
665   case X86::PUSHi32:
666     return 4;
667   case X86::PUSH64i8:
668   case X86::PUSH64r:
669   case X86::PUSH64rmm:
670   case X86::PUSH64rmr:
671   case X86::PUSH64i32:
672     return 8;
673   }
674 }
675 
676 /// Return true and the FrameIndex if the specified
677 /// operand and follow operands form a reference to the stack frame.
678 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
679                                   int &FrameIndex) const {
680   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
681       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
682       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
683       MI.getOperand(Op + X86::AddrDisp).isImm() &&
684       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
685       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
686       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
687     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
688     return true;
689   }
690   return false;
691 }
692 
693 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
694   switch (Opcode) {
695   default:
696     return false;
697   case X86::MOV8rm:
698   case X86::KMOVBkm:
699     MemBytes = 1;
700     return true;
701   case X86::MOV16rm:
702   case X86::KMOVWkm:
703   case X86::VMOVSHZrm:
704   case X86::VMOVSHZrm_alt:
705     MemBytes = 2;
706     return true;
707   case X86::MOV32rm:
708   case X86::MOVSSrm:
709   case X86::MOVSSrm_alt:
710   case X86::VMOVSSrm:
711   case X86::VMOVSSrm_alt:
712   case X86::VMOVSSZrm:
713   case X86::VMOVSSZrm_alt:
714   case X86::KMOVDkm:
715     MemBytes = 4;
716     return true;
717   case X86::MOV64rm:
718   case X86::LD_Fp64m:
719   case X86::MOVSDrm:
720   case X86::MOVSDrm_alt:
721   case X86::VMOVSDrm:
722   case X86::VMOVSDrm_alt:
723   case X86::VMOVSDZrm:
724   case X86::VMOVSDZrm_alt:
725   case X86::MMX_MOVD64rm:
726   case X86::MMX_MOVQ64rm:
727   case X86::KMOVQkm:
728     MemBytes = 8;
729     return true;
730   case X86::MOVAPSrm:
731   case X86::MOVUPSrm:
732   case X86::MOVAPDrm:
733   case X86::MOVUPDrm:
734   case X86::MOVDQArm:
735   case X86::MOVDQUrm:
736   case X86::VMOVAPSrm:
737   case X86::VMOVUPSrm:
738   case X86::VMOVAPDrm:
739   case X86::VMOVUPDrm:
740   case X86::VMOVDQArm:
741   case X86::VMOVDQUrm:
742   case X86::VMOVAPSZ128rm:
743   case X86::VMOVUPSZ128rm:
744   case X86::VMOVAPSZ128rm_NOVLX:
745   case X86::VMOVUPSZ128rm_NOVLX:
746   case X86::VMOVAPDZ128rm:
747   case X86::VMOVUPDZ128rm:
748   case X86::VMOVDQU8Z128rm:
749   case X86::VMOVDQU16Z128rm:
750   case X86::VMOVDQA32Z128rm:
751   case X86::VMOVDQU32Z128rm:
752   case X86::VMOVDQA64Z128rm:
753   case X86::VMOVDQU64Z128rm:
754     MemBytes = 16;
755     return true;
756   case X86::VMOVAPSYrm:
757   case X86::VMOVUPSYrm:
758   case X86::VMOVAPDYrm:
759   case X86::VMOVUPDYrm:
760   case X86::VMOVDQAYrm:
761   case X86::VMOVDQUYrm:
762   case X86::VMOVAPSZ256rm:
763   case X86::VMOVUPSZ256rm:
764   case X86::VMOVAPSZ256rm_NOVLX:
765   case X86::VMOVUPSZ256rm_NOVLX:
766   case X86::VMOVAPDZ256rm:
767   case X86::VMOVUPDZ256rm:
768   case X86::VMOVDQU8Z256rm:
769   case X86::VMOVDQU16Z256rm:
770   case X86::VMOVDQA32Z256rm:
771   case X86::VMOVDQU32Z256rm:
772   case X86::VMOVDQA64Z256rm:
773   case X86::VMOVDQU64Z256rm:
774     MemBytes = 32;
775     return true;
776   case X86::VMOVAPSZrm:
777   case X86::VMOVUPSZrm:
778   case X86::VMOVAPDZrm:
779   case X86::VMOVUPDZrm:
780   case X86::VMOVDQU8Zrm:
781   case X86::VMOVDQU16Zrm:
782   case X86::VMOVDQA32Zrm:
783   case X86::VMOVDQU32Zrm:
784   case X86::VMOVDQA64Zrm:
785   case X86::VMOVDQU64Zrm:
786     MemBytes = 64;
787     return true;
788   }
789 }
790 
791 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
792   switch (Opcode) {
793   default:
794     return false;
795   case X86::MOV8mr:
796   case X86::KMOVBmk:
797     MemBytes = 1;
798     return true;
799   case X86::MOV16mr:
800   case X86::KMOVWmk:
801   case X86::VMOVSHZmr:
802     MemBytes = 2;
803     return true;
804   case X86::MOV32mr:
805   case X86::MOVSSmr:
806   case X86::VMOVSSmr:
807   case X86::VMOVSSZmr:
808   case X86::KMOVDmk:
809     MemBytes = 4;
810     return true;
811   case X86::MOV64mr:
812   case X86::ST_FpP64m:
813   case X86::MOVSDmr:
814   case X86::VMOVSDmr:
815   case X86::VMOVSDZmr:
816   case X86::MMX_MOVD64mr:
817   case X86::MMX_MOVQ64mr:
818   case X86::MMX_MOVNTQmr:
819   case X86::KMOVQmk:
820     MemBytes = 8;
821     return true;
822   case X86::MOVAPSmr:
823   case X86::MOVUPSmr:
824   case X86::MOVAPDmr:
825   case X86::MOVUPDmr:
826   case X86::MOVDQAmr:
827   case X86::MOVDQUmr:
828   case X86::VMOVAPSmr:
829   case X86::VMOVUPSmr:
830   case X86::VMOVAPDmr:
831   case X86::VMOVUPDmr:
832   case X86::VMOVDQAmr:
833   case X86::VMOVDQUmr:
834   case X86::VMOVUPSZ128mr:
835   case X86::VMOVAPSZ128mr:
836   case X86::VMOVUPSZ128mr_NOVLX:
837   case X86::VMOVAPSZ128mr_NOVLX:
838   case X86::VMOVUPDZ128mr:
839   case X86::VMOVAPDZ128mr:
840   case X86::VMOVDQA32Z128mr:
841   case X86::VMOVDQU32Z128mr:
842   case X86::VMOVDQA64Z128mr:
843   case X86::VMOVDQU64Z128mr:
844   case X86::VMOVDQU8Z128mr:
845   case X86::VMOVDQU16Z128mr:
846     MemBytes = 16;
847     return true;
848   case X86::VMOVUPSYmr:
849   case X86::VMOVAPSYmr:
850   case X86::VMOVUPDYmr:
851   case X86::VMOVAPDYmr:
852   case X86::VMOVDQUYmr:
853   case X86::VMOVDQAYmr:
854   case X86::VMOVUPSZ256mr:
855   case X86::VMOVAPSZ256mr:
856   case X86::VMOVUPSZ256mr_NOVLX:
857   case X86::VMOVAPSZ256mr_NOVLX:
858   case X86::VMOVUPDZ256mr:
859   case X86::VMOVAPDZ256mr:
860   case X86::VMOVDQU8Z256mr:
861   case X86::VMOVDQU16Z256mr:
862   case X86::VMOVDQA32Z256mr:
863   case X86::VMOVDQU32Z256mr:
864   case X86::VMOVDQA64Z256mr:
865   case X86::VMOVDQU64Z256mr:
866     MemBytes = 32;
867     return true;
868   case X86::VMOVUPSZmr:
869   case X86::VMOVAPSZmr:
870   case X86::VMOVUPDZmr:
871   case X86::VMOVAPDZmr:
872   case X86::VMOVDQU8Zmr:
873   case X86::VMOVDQU16Zmr:
874   case X86::VMOVDQA32Zmr:
875   case X86::VMOVDQU32Zmr:
876   case X86::VMOVDQA64Zmr:
877   case X86::VMOVDQU64Zmr:
878     MemBytes = 64;
879     return true;
880   }
881   return false;
882 }
883 
884 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
885                                            int &FrameIndex) const {
886   unsigned Dummy;
887   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
888 }
889 
890 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
891                                            int &FrameIndex,
892                                            unsigned &MemBytes) const {
893   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
894     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
895       return MI.getOperand(0).getReg();
896   return 0;
897 }
898 
899 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
900                                                  int &FrameIndex) const {
901   unsigned Dummy;
902   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
903     unsigned Reg;
904     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
905       return Reg;
906     // Check for post-frame index elimination operations
907     SmallVector<const MachineMemOperand *, 1> Accesses;
908     if (hasLoadFromStackSlot(MI, Accesses)) {
909       FrameIndex =
910           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
911               ->getFrameIndex();
912       return MI.getOperand(0).getReg();
913     }
914   }
915   return 0;
916 }
917 
918 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
919                                           int &FrameIndex) const {
920   unsigned Dummy;
921   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
922 }
923 
924 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
925                                           int &FrameIndex,
926                                           unsigned &MemBytes) const {
927   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
928     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
929         isFrameOperand(MI, 0, FrameIndex))
930       return MI.getOperand(X86::AddrNumOperands).getReg();
931   return 0;
932 }
933 
934 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
935                                                 int &FrameIndex) const {
936   unsigned Dummy;
937   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
938     unsigned Reg;
939     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
940       return Reg;
941     // Check for post-frame index elimination operations
942     SmallVector<const MachineMemOperand *, 1> Accesses;
943     if (hasStoreToStackSlot(MI, Accesses)) {
944       FrameIndex =
945           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
946               ->getFrameIndex();
947       return MI.getOperand(X86::AddrNumOperands).getReg();
948     }
949   }
950   return 0;
951 }
952 
953 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
954 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
955   // Don't waste compile time scanning use-def chains of physregs.
956   if (!BaseReg.isVirtual())
957     return false;
958   bool isPICBase = false;
959   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
960          E = MRI.def_instr_end(); I != E; ++I) {
961     MachineInstr *DefMI = &*I;
962     if (DefMI->getOpcode() != X86::MOVPC32r)
963       return false;
964     assert(!isPICBase && "More than one PIC base?");
965     isPICBase = true;
966   }
967   return isPICBase;
968 }
969 
970 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
971                                                      AAResults *AA) const {
972   switch (MI.getOpcode()) {
973   default:
974     // This function should only be called for opcodes with the ReMaterializable
975     // flag set.
976     llvm_unreachable("Unknown rematerializable operation!");
977     break;
978 
979   case X86::LOAD_STACK_GUARD:
980   case X86::AVX1_SETALLONES:
981   case X86::AVX2_SETALLONES:
982   case X86::AVX512_128_SET0:
983   case X86::AVX512_256_SET0:
984   case X86::AVX512_512_SET0:
985   case X86::AVX512_512_SETALLONES:
986   case X86::AVX512_FsFLD0SD:
987   case X86::AVX512_FsFLD0SH:
988   case X86::AVX512_FsFLD0SS:
989   case X86::AVX512_FsFLD0F128:
990   case X86::AVX_SET0:
991   case X86::FsFLD0SD:
992   case X86::FsFLD0SS:
993   case X86::FsFLD0F128:
994   case X86::KSET0D:
995   case X86::KSET0Q:
996   case X86::KSET0W:
997   case X86::KSET1D:
998   case X86::KSET1Q:
999   case X86::KSET1W:
1000   case X86::MMX_SET0:
1001   case X86::MOV32ImmSExti8:
1002   case X86::MOV32r0:
1003   case X86::MOV32r1:
1004   case X86::MOV32r_1:
1005   case X86::MOV32ri64:
1006   case X86::MOV64ImmSExti8:
1007   case X86::V_SET0:
1008   case X86::V_SETALLONES:
1009   case X86::MOV16ri:
1010   case X86::MOV32ri:
1011   case X86::MOV64ri:
1012   case X86::MOV64ri32:
1013   case X86::MOV8ri:
1014   case X86::PTILEZEROV:
1015     return true;
1016 
1017   case X86::MOV8rm:
1018   case X86::MOV8rm_NOREX:
1019   case X86::MOV16rm:
1020   case X86::MOV32rm:
1021   case X86::MOV64rm:
1022   case X86::MOVSSrm:
1023   case X86::MOVSSrm_alt:
1024   case X86::MOVSDrm:
1025   case X86::MOVSDrm_alt:
1026   case X86::MOVAPSrm:
1027   case X86::MOVUPSrm:
1028   case X86::MOVAPDrm:
1029   case X86::MOVUPDrm:
1030   case X86::MOVDQArm:
1031   case X86::MOVDQUrm:
1032   case X86::VMOVSSrm:
1033   case X86::VMOVSSrm_alt:
1034   case X86::VMOVSDrm:
1035   case X86::VMOVSDrm_alt:
1036   case X86::VMOVAPSrm:
1037   case X86::VMOVUPSrm:
1038   case X86::VMOVAPDrm:
1039   case X86::VMOVUPDrm:
1040   case X86::VMOVDQArm:
1041   case X86::VMOVDQUrm:
1042   case X86::VMOVAPSYrm:
1043   case X86::VMOVUPSYrm:
1044   case X86::VMOVAPDYrm:
1045   case X86::VMOVUPDYrm:
1046   case X86::VMOVDQAYrm:
1047   case X86::VMOVDQUYrm:
1048   case X86::MMX_MOVD64rm:
1049   case X86::MMX_MOVQ64rm:
1050   // AVX-512
1051   case X86::VMOVSSZrm:
1052   case X86::VMOVSSZrm_alt:
1053   case X86::VMOVSDZrm:
1054   case X86::VMOVSDZrm_alt:
1055   case X86::VMOVSHZrm:
1056   case X86::VMOVSHZrm_alt:
1057   case X86::VMOVAPDZ128rm:
1058   case X86::VMOVAPDZ256rm:
1059   case X86::VMOVAPDZrm:
1060   case X86::VMOVAPSZ128rm:
1061   case X86::VMOVAPSZ256rm:
1062   case X86::VMOVAPSZ128rm_NOVLX:
1063   case X86::VMOVAPSZ256rm_NOVLX:
1064   case X86::VMOVAPSZrm:
1065   case X86::VMOVDQA32Z128rm:
1066   case X86::VMOVDQA32Z256rm:
1067   case X86::VMOVDQA32Zrm:
1068   case X86::VMOVDQA64Z128rm:
1069   case X86::VMOVDQA64Z256rm:
1070   case X86::VMOVDQA64Zrm:
1071   case X86::VMOVDQU16Z128rm:
1072   case X86::VMOVDQU16Z256rm:
1073   case X86::VMOVDQU16Zrm:
1074   case X86::VMOVDQU32Z128rm:
1075   case X86::VMOVDQU32Z256rm:
1076   case X86::VMOVDQU32Zrm:
1077   case X86::VMOVDQU64Z128rm:
1078   case X86::VMOVDQU64Z256rm:
1079   case X86::VMOVDQU64Zrm:
1080   case X86::VMOVDQU8Z128rm:
1081   case X86::VMOVDQU8Z256rm:
1082   case X86::VMOVDQU8Zrm:
1083   case X86::VMOVUPDZ128rm:
1084   case X86::VMOVUPDZ256rm:
1085   case X86::VMOVUPDZrm:
1086   case X86::VMOVUPSZ128rm:
1087   case X86::VMOVUPSZ256rm:
1088   case X86::VMOVUPSZ128rm_NOVLX:
1089   case X86::VMOVUPSZ256rm_NOVLX:
1090   case X86::VMOVUPSZrm: {
1091     // Loads from constant pools are trivially rematerializable.
1092     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
1093         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1094         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1095         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1096         MI.isDereferenceableInvariantLoad(AA)) {
1097       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1098       if (BaseReg == 0 || BaseReg == X86::RIP)
1099         return true;
1100       // Allow re-materialization of PIC load.
1101       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
1102         return false;
1103       const MachineFunction &MF = *MI.getParent()->getParent();
1104       const MachineRegisterInfo &MRI = MF.getRegInfo();
1105       return regIsPICBase(BaseReg, MRI);
1106     }
1107     return false;
1108   }
1109 
1110   case X86::LEA32r:
1111   case X86::LEA64r: {
1112     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1113         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1114         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1115         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
1116       // lea fi#, lea GV, etc. are all rematerializable.
1117       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
1118         return true;
1119       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1120       if (BaseReg == 0)
1121         return true;
1122       // Allow re-materialization of lea PICBase + x.
1123       const MachineFunction &MF = *MI.getParent()->getParent();
1124       const MachineRegisterInfo &MRI = MF.getRegInfo();
1125       return regIsPICBase(BaseReg, MRI);
1126     }
1127     return false;
1128   }
1129   }
1130 }
1131 
1132 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1133                                  MachineBasicBlock::iterator I,
1134                                  Register DestReg, unsigned SubIdx,
1135                                  const MachineInstr &Orig,
1136                                  const TargetRegisterInfo &TRI) const {
1137   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
1138   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
1139                             MachineBasicBlock::LQR_Dead) {
1140     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
1141     // effects.
1142     int Value;
1143     switch (Orig.getOpcode()) {
1144     case X86::MOV32r0:  Value = 0; break;
1145     case X86::MOV32r1:  Value = 1; break;
1146     case X86::MOV32r_1: Value = -1; break;
1147     default:
1148       llvm_unreachable("Unexpected instruction!");
1149     }
1150 
1151     const DebugLoc &DL = Orig.getDebugLoc();
1152     BuildMI(MBB, I, DL, get(X86::MOV32ri))
1153         .add(Orig.getOperand(0))
1154         .addImm(Value);
1155   } else {
1156     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1157     MBB.insert(I, MI);
1158   }
1159 
1160   MachineInstr &NewMI = *std::prev(I);
1161   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1162 }
1163 
1164 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1165 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1166   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1167     MachineOperand &MO = MI.getOperand(i);
1168     if (MO.isReg() && MO.isDef() &&
1169         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1170       return true;
1171     }
1172   }
1173   return false;
1174 }
1175 
1176 /// Check whether the shift count for a machine operand is non-zero.
1177 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1178                                               unsigned ShiftAmtOperandIdx) {
1179   // The shift count is six bits with the REX.W prefix and five bits without.
1180   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1181   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1182   return Imm & ShiftCountMask;
1183 }
1184 
1185 /// Check whether the given shift count is appropriate
1186 /// can be represented by a LEA instruction.
1187 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1188   // Left shift instructions can be transformed into load-effective-address
1189   // instructions if we can encode them appropriately.
1190   // A LEA instruction utilizes a SIB byte to encode its scale factor.
1191   // The SIB.scale field is two bits wide which means that we can encode any
1192   // shift amount less than 4.
1193   return ShAmt < 4 && ShAmt > 0;
1194 }
1195 
1196 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1197                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1198                                   bool &isKill, MachineOperand &ImplicitOp,
1199                                   LiveVariables *LV, LiveIntervals *LIS) const {
1200   MachineFunction &MF = *MI.getParent()->getParent();
1201   const TargetRegisterClass *RC;
1202   if (AllowSP) {
1203     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1204   } else {
1205     RC = Opc != X86::LEA32r ?
1206       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1207   }
1208   Register SrcReg = Src.getReg();
1209   isKill = MI.killsRegister(SrcReg);
1210 
1211   // For both LEA64 and LEA32 the register already has essentially the right
1212   // type (32-bit or 64-bit) we may just need to forbid SP.
1213   if (Opc != X86::LEA64_32r) {
1214     NewSrc = SrcReg;
1215     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1216 
1217     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1218       return false;
1219 
1220     return true;
1221   }
1222 
1223   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1224   // another we need to add 64-bit registers to the final MI.
1225   if (SrcReg.isPhysical()) {
1226     ImplicitOp = Src;
1227     ImplicitOp.setImplicit();
1228 
1229     NewSrc = getX86SubSuperRegister(SrcReg, 64);
1230     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1231   } else {
1232     // Virtual register of the wrong class, we have to create a temporary 64-bit
1233     // vreg to feed into the LEA.
1234     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1235     MachineInstr *Copy =
1236         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1237             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1238             .addReg(SrcReg, getKillRegState(isKill));
1239 
1240     // Which is obviously going to be dead after we're done with it.
1241     isKill = true;
1242 
1243     if (LV)
1244       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1245 
1246     if (LIS) {
1247       SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1248       SlotIndex Idx = LIS->getInstructionIndex(MI);
1249       LiveInterval &LI = LIS->getInterval(SrcReg);
1250       LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1251       if (S->end.getBaseIndex() == Idx)
1252         S->end = CopyIdx.getRegSlot();
1253     }
1254   }
1255 
1256   // We've set all the parameters without issue.
1257   return true;
1258 }
1259 
1260 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1261                                                          MachineInstr &MI,
1262                                                          LiveVariables *LV,
1263                                                          LiveIntervals *LIS,
1264                                                          bool Is8BitOp) const {
1265   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1266   MachineBasicBlock &MBB = *MI.getParent();
1267   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1268   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1269               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1270          "Unexpected type for LEA transform");
1271 
1272   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1273   // something like this:
1274   //   Opcode = X86::LEA32r;
1275   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1276   //   OutRegLEA =
1277   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1278   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1279   if (!Subtarget.is64Bit())
1280     return nullptr;
1281 
1282   unsigned Opcode = X86::LEA64_32r;
1283   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1284   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1285   Register InRegLEA2;
1286 
1287   // Build and insert into an implicit UNDEF value. This is OK because
1288   // we will be shifting and then extracting the lower 8/16-bits.
1289   // This has the potential to cause partial register stall. e.g.
1290   //   movw    (%rbp,%rcx,2), %dx
1291   //   leal    -65(%rdx), %esi
1292   // But testing has shown this *does* help performance in 64-bit mode (at
1293   // least on modern x86 machines).
1294   MachineBasicBlock::iterator MBBI = MI.getIterator();
1295   Register Dest = MI.getOperand(0).getReg();
1296   Register Src = MI.getOperand(1).getReg();
1297   Register Src2;
1298   bool IsDead = MI.getOperand(0).isDead();
1299   bool IsKill = MI.getOperand(1).isKill();
1300   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1301   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1302   MachineInstr *ImpDef =
1303       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1304   MachineInstr *InsMI =
1305       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1306           .addReg(InRegLEA, RegState::Define, SubReg)
1307           .addReg(Src, getKillRegState(IsKill));
1308   MachineInstr *ImpDef2 = nullptr;
1309   MachineInstr *InsMI2 = nullptr;
1310 
1311   MachineInstrBuilder MIB =
1312       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1313   switch (MIOpc) {
1314   default: llvm_unreachable("Unreachable!");
1315   case X86::SHL8ri:
1316   case X86::SHL16ri: {
1317     unsigned ShAmt = MI.getOperand(2).getImm();
1318     MIB.addReg(0).addImm(1ULL << ShAmt)
1319        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
1320     break;
1321   }
1322   case X86::INC8r:
1323   case X86::INC16r:
1324     addRegOffset(MIB, InRegLEA, true, 1);
1325     break;
1326   case X86::DEC8r:
1327   case X86::DEC16r:
1328     addRegOffset(MIB, InRegLEA, true, -1);
1329     break;
1330   case X86::ADD8ri:
1331   case X86::ADD8ri_DB:
1332   case X86::ADD16ri:
1333   case X86::ADD16ri8:
1334   case X86::ADD16ri_DB:
1335   case X86::ADD16ri8_DB:
1336     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1337     break;
1338   case X86::ADD8rr:
1339   case X86::ADD8rr_DB:
1340   case X86::ADD16rr:
1341   case X86::ADD16rr_DB: {
1342     Src2 = MI.getOperand(2).getReg();
1343     bool IsKill2 = MI.getOperand(2).isKill();
1344     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1345     if (Src == Src2) {
1346       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1347       // just a single insert_subreg.
1348       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1349     } else {
1350       if (Subtarget.is64Bit())
1351         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1352       else
1353         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1354       // Build and insert into an implicit UNDEF value. This is OK because
1355       // we will be shifting and then extracting the lower 8/16-bits.
1356       ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1357                         InRegLEA2);
1358       InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1359                    .addReg(InRegLEA2, RegState::Define, SubReg)
1360                    .addReg(Src2, getKillRegState(IsKill2));
1361       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1362     }
1363     if (LV && IsKill2 && InsMI2)
1364       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1365     break;
1366   }
1367   }
1368 
1369   MachineInstr *NewMI = MIB;
1370   MachineInstr *ExtMI =
1371       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1372           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1373           .addReg(OutRegLEA, RegState::Kill, SubReg);
1374 
1375   if (LV) {
1376     // Update live variables.
1377     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1378     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1379     if (IsKill)
1380       LV->replaceKillInstruction(Src, MI, *InsMI);
1381     if (IsDead)
1382       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1383   }
1384 
1385   if (LIS) {
1386     LIS->InsertMachineInstrInMaps(*ImpDef);
1387     SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1388     if (ImpDef2)
1389       LIS->InsertMachineInstrInMaps(*ImpDef2);
1390     SlotIndex Ins2Idx;
1391     if (InsMI2)
1392       Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1393     SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1394     SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1395     LIS->getInterval(InRegLEA);
1396     LIS->getInterval(OutRegLEA);
1397     if (InRegLEA2)
1398       LIS->getInterval(InRegLEA2);
1399 
1400     // Move the use of Src up to InsMI.
1401     LiveInterval &SrcLI = LIS->getInterval(Src);
1402     LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1403     if (SrcSeg->end == NewIdx.getRegSlot())
1404       SrcSeg->end = InsIdx.getRegSlot();
1405 
1406     if (InsMI2) {
1407       // Move the use of Src2 up to InsMI2.
1408       LiveInterval &Src2LI = LIS->getInterval(Src2);
1409       LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1410       if (Src2Seg->end == NewIdx.getRegSlot())
1411         Src2Seg->end = Ins2Idx.getRegSlot();
1412     }
1413 
1414     // Move the definition of Dest down to ExtMI.
1415     LiveInterval &DestLI = LIS->getInterval(Dest);
1416     LiveRange::Segment *DestSeg =
1417         DestLI.getSegmentContaining(NewIdx.getRegSlot());
1418     assert(DestSeg->start == NewIdx.getRegSlot() &&
1419            DestSeg->valno->def == NewIdx.getRegSlot());
1420     DestSeg->start = ExtIdx.getRegSlot();
1421     DestSeg->valno->def = ExtIdx.getRegSlot();
1422   }
1423 
1424   return ExtMI;
1425 }
1426 
1427 /// This method must be implemented by targets that
1428 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1429 /// may be able to convert a two-address instruction into a true
1430 /// three-address instruction on demand.  This allows the X86 target (for
1431 /// example) to convert ADD and SHL instructions into LEA instructions if they
1432 /// would require register copies due to two-addressness.
1433 ///
1434 /// This method returns a null pointer if the transformation cannot be
1435 /// performed, otherwise it returns the new instruction.
1436 ///
1437 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1438                                                   LiveVariables *LV,
1439                                                   LiveIntervals *LIS) const {
1440   // The following opcodes also sets the condition code register(s). Only
1441   // convert them to equivalent lea if the condition code register def's
1442   // are dead!
1443   if (hasLiveCondCodeDef(MI))
1444     return nullptr;
1445 
1446   MachineFunction &MF = *MI.getParent()->getParent();
1447   // All instructions input are two-addr instructions.  Get the known operands.
1448   const MachineOperand &Dest = MI.getOperand(0);
1449   const MachineOperand &Src = MI.getOperand(1);
1450 
1451   // Ideally, operations with undef should be folded before we get here, but we
1452   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1453   // Without this, we have to forward undef state to new register operands to
1454   // avoid machine verifier errors.
1455   if (Src.isUndef())
1456     return nullptr;
1457   if (MI.getNumOperands() > 2)
1458     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1459       return nullptr;
1460 
1461   MachineInstr *NewMI = nullptr;
1462   Register SrcReg, SrcReg2;
1463   bool Is64Bit = Subtarget.is64Bit();
1464 
1465   bool Is8BitOp = false;
1466   unsigned MIOpc = MI.getOpcode();
1467   switch (MIOpc) {
1468   default: llvm_unreachable("Unreachable!");
1469   case X86::SHL64ri: {
1470     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1471     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1472     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1473 
1474     // LEA can't handle RSP.
1475     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1476                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1477       return nullptr;
1478 
1479     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1480                 .add(Dest)
1481                 .addReg(0)
1482                 .addImm(1ULL << ShAmt)
1483                 .add(Src)
1484                 .addImm(0)
1485                 .addReg(0);
1486     break;
1487   }
1488   case X86::SHL32ri: {
1489     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1490     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1491     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1492 
1493     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1494 
1495     // LEA can't handle ESP.
1496     bool isKill;
1497     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1498     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1499                         ImplicitOp, LV, LIS))
1500       return nullptr;
1501 
1502     MachineInstrBuilder MIB =
1503         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1504             .add(Dest)
1505             .addReg(0)
1506             .addImm(1ULL << ShAmt)
1507             .addReg(SrcReg, getKillRegState(isKill))
1508             .addImm(0)
1509             .addReg(0);
1510     if (ImplicitOp.getReg() != 0)
1511       MIB.add(ImplicitOp);
1512     NewMI = MIB;
1513 
1514     break;
1515   }
1516   case X86::SHL8ri:
1517     Is8BitOp = true;
1518     LLVM_FALLTHROUGH;
1519   case X86::SHL16ri: {
1520     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1521     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1522     if (!isTruncatedShiftCountForLEA(ShAmt))
1523       return nullptr;
1524     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1525   }
1526   case X86::INC64r:
1527   case X86::INC32r: {
1528     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1529     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1530         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1531     bool isKill;
1532     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1533     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1534                         ImplicitOp, LV, LIS))
1535       return nullptr;
1536 
1537     MachineInstrBuilder MIB =
1538         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1539             .add(Dest)
1540             .addReg(SrcReg, getKillRegState(isKill));
1541     if (ImplicitOp.getReg() != 0)
1542       MIB.add(ImplicitOp);
1543 
1544     NewMI = addOffset(MIB, 1);
1545     break;
1546   }
1547   case X86::DEC64r:
1548   case X86::DEC32r: {
1549     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1550     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1551         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1552 
1553     bool isKill;
1554     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1555     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1556                         ImplicitOp, LV, LIS))
1557       return nullptr;
1558 
1559     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1560                                   .add(Dest)
1561                                   .addReg(SrcReg, getKillRegState(isKill));
1562     if (ImplicitOp.getReg() != 0)
1563       MIB.add(ImplicitOp);
1564 
1565     NewMI = addOffset(MIB, -1);
1566 
1567     break;
1568   }
1569   case X86::DEC8r:
1570   case X86::INC8r:
1571     Is8BitOp = true;
1572     LLVM_FALLTHROUGH;
1573   case X86::DEC16r:
1574   case X86::INC16r:
1575     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1576   case X86::ADD64rr:
1577   case X86::ADD64rr_DB:
1578   case X86::ADD32rr:
1579   case X86::ADD32rr_DB: {
1580     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1581     unsigned Opc;
1582     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1583       Opc = X86::LEA64r;
1584     else
1585       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1586 
1587     const MachineOperand &Src2 = MI.getOperand(2);
1588     bool isKill2;
1589     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1590     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1591                         ImplicitOp2, LV, LIS))
1592       return nullptr;
1593 
1594     bool isKill;
1595     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1596     if (Src.getReg() == Src2.getReg()) {
1597       // Don't call classify LEAReg a second time on the same register, in case
1598       // the first call inserted a COPY from Src2 and marked it as killed.
1599       isKill = isKill2;
1600       SrcReg = SrcReg2;
1601     } else {
1602       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1603                           ImplicitOp, LV, LIS))
1604         return nullptr;
1605     }
1606 
1607     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1608     if (ImplicitOp.getReg() != 0)
1609       MIB.add(ImplicitOp);
1610     if (ImplicitOp2.getReg() != 0)
1611       MIB.add(ImplicitOp2);
1612 
1613     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1614     if (LV && Src2.isKill())
1615       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1616     break;
1617   }
1618   case X86::ADD8rr:
1619   case X86::ADD8rr_DB:
1620     Is8BitOp = true;
1621     LLVM_FALLTHROUGH;
1622   case X86::ADD16rr:
1623   case X86::ADD16rr_DB:
1624     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1625   case X86::ADD64ri32:
1626   case X86::ADD64ri8:
1627   case X86::ADD64ri32_DB:
1628   case X86::ADD64ri8_DB:
1629     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1630     NewMI = addOffset(
1631         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1632         MI.getOperand(2));
1633     break;
1634   case X86::ADD32ri:
1635   case X86::ADD32ri8:
1636   case X86::ADD32ri_DB:
1637   case X86::ADD32ri8_DB: {
1638     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1639     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1640 
1641     bool isKill;
1642     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1643     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1644                         ImplicitOp, LV, LIS))
1645       return nullptr;
1646 
1647     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1648                                   .add(Dest)
1649                                   .addReg(SrcReg, getKillRegState(isKill));
1650     if (ImplicitOp.getReg() != 0)
1651       MIB.add(ImplicitOp);
1652 
1653     NewMI = addOffset(MIB, MI.getOperand(2));
1654     break;
1655   }
1656   case X86::ADD8ri:
1657   case X86::ADD8ri_DB:
1658     Is8BitOp = true;
1659     LLVM_FALLTHROUGH;
1660   case X86::ADD16ri:
1661   case X86::ADD16ri8:
1662   case X86::ADD16ri_DB:
1663   case X86::ADD16ri8_DB:
1664     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1665   case X86::SUB8ri:
1666   case X86::SUB16ri8:
1667   case X86::SUB16ri:
1668     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1669     return nullptr;
1670   case X86::SUB32ri8:
1671   case X86::SUB32ri: {
1672     if (!MI.getOperand(2).isImm())
1673       return nullptr;
1674     int64_t Imm = MI.getOperand(2).getImm();
1675     if (!isInt<32>(-Imm))
1676       return nullptr;
1677 
1678     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1679     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1680 
1681     bool isKill;
1682     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1683     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1684                         ImplicitOp, LV, LIS))
1685       return nullptr;
1686 
1687     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1688                                   .add(Dest)
1689                                   .addReg(SrcReg, getKillRegState(isKill));
1690     if (ImplicitOp.getReg() != 0)
1691       MIB.add(ImplicitOp);
1692 
1693     NewMI = addOffset(MIB, -Imm);
1694     break;
1695   }
1696 
1697   case X86::SUB64ri8:
1698   case X86::SUB64ri32: {
1699     if (!MI.getOperand(2).isImm())
1700       return nullptr;
1701     int64_t Imm = MI.getOperand(2).getImm();
1702     if (!isInt<32>(-Imm))
1703       return nullptr;
1704 
1705     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1706 
1707     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1708                                       get(X86::LEA64r)).add(Dest).add(Src);
1709     NewMI = addOffset(MIB, -Imm);
1710     break;
1711   }
1712 
1713   case X86::VMOVDQU8Z128rmk:
1714   case X86::VMOVDQU8Z256rmk:
1715   case X86::VMOVDQU8Zrmk:
1716   case X86::VMOVDQU16Z128rmk:
1717   case X86::VMOVDQU16Z256rmk:
1718   case X86::VMOVDQU16Zrmk:
1719   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1720   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1721   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1722   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1723   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1724   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1725   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1726   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1727   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1728   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1729   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1730   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1731   case X86::VBROADCASTSDZ256rmk:
1732   case X86::VBROADCASTSDZrmk:
1733   case X86::VBROADCASTSSZ128rmk:
1734   case X86::VBROADCASTSSZ256rmk:
1735   case X86::VBROADCASTSSZrmk:
1736   case X86::VPBROADCASTDZ128rmk:
1737   case X86::VPBROADCASTDZ256rmk:
1738   case X86::VPBROADCASTDZrmk:
1739   case X86::VPBROADCASTQZ128rmk:
1740   case X86::VPBROADCASTQZ256rmk:
1741   case X86::VPBROADCASTQZrmk: {
1742     unsigned Opc;
1743     switch (MIOpc) {
1744     default: llvm_unreachable("Unreachable!");
1745     case X86::VMOVDQU8Z128rmk:     Opc = X86::VPBLENDMBZ128rmk; break;
1746     case X86::VMOVDQU8Z256rmk:     Opc = X86::VPBLENDMBZ256rmk; break;
1747     case X86::VMOVDQU8Zrmk:        Opc = X86::VPBLENDMBZrmk;    break;
1748     case X86::VMOVDQU16Z128rmk:    Opc = X86::VPBLENDMWZ128rmk; break;
1749     case X86::VMOVDQU16Z256rmk:    Opc = X86::VPBLENDMWZ256rmk; break;
1750     case X86::VMOVDQU16Zrmk:       Opc = X86::VPBLENDMWZrmk;    break;
1751     case X86::VMOVDQU32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1752     case X86::VMOVDQU32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1753     case X86::VMOVDQU32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1754     case X86::VMOVDQU64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1755     case X86::VMOVDQU64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1756     case X86::VMOVDQU64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1757     case X86::VMOVUPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1758     case X86::VMOVUPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1759     case X86::VMOVUPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1760     case X86::VMOVUPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1761     case X86::VMOVUPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1762     case X86::VMOVUPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1763     case X86::VMOVDQA32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1764     case X86::VMOVDQA32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1765     case X86::VMOVDQA32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1766     case X86::VMOVDQA64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1767     case X86::VMOVDQA64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1768     case X86::VMOVDQA64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1769     case X86::VMOVAPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1770     case X86::VMOVAPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1771     case X86::VMOVAPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1772     case X86::VMOVAPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1773     case X86::VMOVAPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1774     case X86::VMOVAPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1775     case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1776     case X86::VBROADCASTSDZrmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1777     case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1778     case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1779     case X86::VBROADCASTSSZrmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1780     case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1781     case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1782     case X86::VPBROADCASTDZrmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1783     case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1784     case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1785     case X86::VPBROADCASTQZrmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1786     }
1787 
1788     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1789               .add(Dest)
1790               .add(MI.getOperand(2))
1791               .add(Src)
1792               .add(MI.getOperand(3))
1793               .add(MI.getOperand(4))
1794               .add(MI.getOperand(5))
1795               .add(MI.getOperand(6))
1796               .add(MI.getOperand(7));
1797     break;
1798   }
1799 
1800   case X86::VMOVDQU8Z128rrk:
1801   case X86::VMOVDQU8Z256rrk:
1802   case X86::VMOVDQU8Zrrk:
1803   case X86::VMOVDQU16Z128rrk:
1804   case X86::VMOVDQU16Z256rrk:
1805   case X86::VMOVDQU16Zrrk:
1806   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1807   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1808   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1809   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1810   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1811   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1812   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1813   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1814   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1815   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1816   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1817   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1818     unsigned Opc;
1819     switch (MIOpc) {
1820     default: llvm_unreachable("Unreachable!");
1821     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1822     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1823     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1824     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1825     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1826     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1827     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1828     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1829     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1830     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1831     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1832     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1833     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1834     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1835     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1836     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1837     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1838     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1839     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1840     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1841     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1842     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1843     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1844     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1845     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1846     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1847     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1848     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1849     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1850     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1851     }
1852 
1853     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1854               .add(Dest)
1855               .add(MI.getOperand(2))
1856               .add(Src)
1857               .add(MI.getOperand(3));
1858     break;
1859   }
1860   }
1861 
1862   if (!NewMI) return nullptr;
1863 
1864   if (LV) {  // Update live variables
1865     if (Src.isKill())
1866       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1867     if (Dest.isDead())
1868       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1869   }
1870 
1871   MachineBasicBlock &MBB = *MI.getParent();
1872   MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1873 
1874   if (LIS) {
1875     LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1876     if (SrcReg)
1877       LIS->getInterval(SrcReg);
1878     if (SrcReg2)
1879       LIS->getInterval(SrcReg2);
1880   }
1881 
1882   return NewMI;
1883 }
1884 
1885 /// This determines which of three possible cases of a three source commute
1886 /// the source indexes correspond to taking into account any mask operands.
1887 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1888 /// possible.
1889 /// Case 0 - Possible to commute the first and second operands.
1890 /// Case 1 - Possible to commute the first and third operands.
1891 /// Case 2 - Possible to commute the second and third operands.
1892 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1893                                        unsigned SrcOpIdx2) {
1894   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1895   if (SrcOpIdx1 > SrcOpIdx2)
1896     std::swap(SrcOpIdx1, SrcOpIdx2);
1897 
1898   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1899   if (X86II::isKMasked(TSFlags)) {
1900     Op2++;
1901     Op3++;
1902   }
1903 
1904   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1905     return 0;
1906   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1907     return 1;
1908   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1909     return 2;
1910   llvm_unreachable("Unknown three src commute case.");
1911 }
1912 
1913 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1914     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1915     const X86InstrFMA3Group &FMA3Group) const {
1916 
1917   unsigned Opc = MI.getOpcode();
1918 
1919   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1920   // analysis. The commute optimization is legal only if all users of FMA*_Int
1921   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1922   // not implemented yet. So, just return 0 in that case.
1923   // When such analysis are available this place will be the right place for
1924   // calling it.
1925   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1926          "Intrinsic instructions can't commute operand 1");
1927 
1928   // Determine which case this commute is or if it can't be done.
1929   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1930                                          SrcOpIdx2);
1931   assert(Case < 3 && "Unexpected case number!");
1932 
1933   // Define the FMA forms mapping array that helps to map input FMA form
1934   // to output FMA form to preserve the operation semantics after
1935   // commuting the operands.
1936   const unsigned Form132Index = 0;
1937   const unsigned Form213Index = 1;
1938   const unsigned Form231Index = 2;
1939   static const unsigned FormMapping[][3] = {
1940     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1941     // FMA132 A, C, b; ==> FMA231 C, A, b;
1942     // FMA213 B, A, c; ==> FMA213 A, B, c;
1943     // FMA231 C, A, b; ==> FMA132 A, C, b;
1944     { Form231Index, Form213Index, Form132Index },
1945     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1946     // FMA132 A, c, B; ==> FMA132 B, c, A;
1947     // FMA213 B, a, C; ==> FMA231 C, a, B;
1948     // FMA231 C, a, B; ==> FMA213 B, a, C;
1949     { Form132Index, Form231Index, Form213Index },
1950     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1951     // FMA132 a, C, B; ==> FMA213 a, B, C;
1952     // FMA213 b, A, C; ==> FMA132 b, C, A;
1953     // FMA231 c, A, B; ==> FMA231 c, B, A;
1954     { Form213Index, Form132Index, Form231Index }
1955   };
1956 
1957   unsigned FMAForms[3];
1958   FMAForms[0] = FMA3Group.get132Opcode();
1959   FMAForms[1] = FMA3Group.get213Opcode();
1960   FMAForms[2] = FMA3Group.get231Opcode();
1961   unsigned FormIndex;
1962   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1963     if (Opc == FMAForms[FormIndex])
1964       break;
1965 
1966   // Everything is ready, just adjust the FMA opcode and return it.
1967   FormIndex = FormMapping[Case][FormIndex];
1968   return FMAForms[FormIndex];
1969 }
1970 
1971 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1972                              unsigned SrcOpIdx2) {
1973   // Determine which case this commute is or if it can't be done.
1974   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1975                                          SrcOpIdx2);
1976   assert(Case < 3 && "Unexpected case value!");
1977 
1978   // For each case we need to swap two pairs of bits in the final immediate.
1979   static const uint8_t SwapMasks[3][4] = {
1980     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1981     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1982     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1983   };
1984 
1985   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1986   // Clear out the bits we are swapping.
1987   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1988                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1989   // If the immediate had a bit of the pair set, then set the opposite bit.
1990   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1991   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1992   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1993   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1994   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1995 }
1996 
1997 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1998 // commuted.
1999 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2000 #define VPERM_CASES(Suffix) \
2001   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
2002   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
2003   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
2004   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
2005   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
2006   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
2007   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
2008   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
2009   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
2010   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
2011   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
2012   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
2013 
2014 #define VPERM_CASES_BROADCAST(Suffix) \
2015   VPERM_CASES(Suffix) \
2016   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
2017   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
2018   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
2019   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
2020   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
2021   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
2022 
2023   switch (Opcode) {
2024   default: return false;
2025   VPERM_CASES(B)
2026   VPERM_CASES_BROADCAST(D)
2027   VPERM_CASES_BROADCAST(PD)
2028   VPERM_CASES_BROADCAST(PS)
2029   VPERM_CASES_BROADCAST(Q)
2030   VPERM_CASES(W)
2031     return true;
2032   }
2033 #undef VPERM_CASES_BROADCAST
2034 #undef VPERM_CASES
2035 }
2036 
2037 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2038 // from the I opcode to the T opcode and vice versa.
2039 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2040 #define VPERM_CASES(Orig, New) \
2041   case X86::Orig##128rr:    return X86::New##128rr;   \
2042   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
2043   case X86::Orig##128rm:    return X86::New##128rm;   \
2044   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
2045   case X86::Orig##256rr:    return X86::New##256rr;   \
2046   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
2047   case X86::Orig##256rm:    return X86::New##256rm;   \
2048   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
2049   case X86::Orig##rr:       return X86::New##rr;      \
2050   case X86::Orig##rrkz:     return X86::New##rrkz;    \
2051   case X86::Orig##rm:       return X86::New##rm;      \
2052   case X86::Orig##rmkz:     return X86::New##rmkz;
2053 
2054 #define VPERM_CASES_BROADCAST(Orig, New) \
2055   VPERM_CASES(Orig, New) \
2056   case X86::Orig##128rmb:   return X86::New##128rmb;   \
2057   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
2058   case X86::Orig##256rmb:   return X86::New##256rmb;   \
2059   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
2060   case X86::Orig##rmb:      return X86::New##rmb;      \
2061   case X86::Orig##rmbkz:    return X86::New##rmbkz;
2062 
2063   switch (Opcode) {
2064   VPERM_CASES(VPERMI2B, VPERMT2B)
2065   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
2066   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2067   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2068   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
2069   VPERM_CASES(VPERMI2W, VPERMT2W)
2070   VPERM_CASES(VPERMT2B, VPERMI2B)
2071   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
2072   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2073   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2074   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
2075   VPERM_CASES(VPERMT2W, VPERMI2W)
2076   }
2077 
2078   llvm_unreachable("Unreachable!");
2079 #undef VPERM_CASES_BROADCAST
2080 #undef VPERM_CASES
2081 }
2082 
2083 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2084                                                    unsigned OpIdx1,
2085                                                    unsigned OpIdx2) const {
2086   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2087     if (NewMI)
2088       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2089     return MI;
2090   };
2091 
2092   switch (MI.getOpcode()) {
2093   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2094   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2095   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2096   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2097   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2098   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2099     unsigned Opc;
2100     unsigned Size;
2101     switch (MI.getOpcode()) {
2102     default: llvm_unreachable("Unreachable!");
2103     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2104     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2105     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2106     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2107     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2108     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2109     }
2110     unsigned Amt = MI.getOperand(3).getImm();
2111     auto &WorkingMI = cloneIfNew(MI);
2112     WorkingMI.setDesc(get(Opc));
2113     WorkingMI.getOperand(3).setImm(Size - Amt);
2114     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2115                                                    OpIdx1, OpIdx2);
2116   }
2117   case X86::PFSUBrr:
2118   case X86::PFSUBRrr: {
2119     // PFSUB  x, y: x = x - y
2120     // PFSUBR x, y: x = y - x
2121     unsigned Opc =
2122         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2123     auto &WorkingMI = cloneIfNew(MI);
2124     WorkingMI.setDesc(get(Opc));
2125     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2126                                                    OpIdx1, OpIdx2);
2127   }
2128   case X86::BLENDPDrri:
2129   case X86::BLENDPSrri:
2130   case X86::VBLENDPDrri:
2131   case X86::VBLENDPSrri:
2132     // If we're optimizing for size, try to use MOVSD/MOVSS.
2133     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2134       unsigned Mask, Opc;
2135       switch (MI.getOpcode()) {
2136       default: llvm_unreachable("Unreachable!");
2137       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
2138       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
2139       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2140       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2141       }
2142       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2143         auto &WorkingMI = cloneIfNew(MI);
2144         WorkingMI.setDesc(get(Opc));
2145         WorkingMI.RemoveOperand(3);
2146         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2147                                                        /*NewMI=*/false,
2148                                                        OpIdx1, OpIdx2);
2149       }
2150     }
2151     LLVM_FALLTHROUGH;
2152   case X86::PBLENDWrri:
2153   case X86::VBLENDPDYrri:
2154   case X86::VBLENDPSYrri:
2155   case X86::VPBLENDDrri:
2156   case X86::VPBLENDWrri:
2157   case X86::VPBLENDDYrri:
2158   case X86::VPBLENDWYrri:{
2159     int8_t Mask;
2160     switch (MI.getOpcode()) {
2161     default: llvm_unreachable("Unreachable!");
2162     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
2163     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
2164     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
2165     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
2166     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
2167     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
2168     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
2169     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
2170     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
2171     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
2172     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
2173     }
2174     // Only the least significant bits of Imm are used.
2175     // Using int8_t to ensure it will be sign extended to the int64_t that
2176     // setImm takes in order to match isel behavior.
2177     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2178     auto &WorkingMI = cloneIfNew(MI);
2179     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2180     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2181                                                    OpIdx1, OpIdx2);
2182   }
2183   case X86::INSERTPSrr:
2184   case X86::VINSERTPSrr:
2185   case X86::VINSERTPSZrr: {
2186     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2187     unsigned ZMask = Imm & 15;
2188     unsigned DstIdx = (Imm >> 4) & 3;
2189     unsigned SrcIdx = (Imm >> 6) & 3;
2190 
2191     // We can commute insertps if we zero 2 of the elements, the insertion is
2192     // "inline" and we don't override the insertion with a zero.
2193     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2194         countPopulation(ZMask) == 2) {
2195       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2196       assert(AltIdx < 4 && "Illegal insertion index");
2197       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2198       auto &WorkingMI = cloneIfNew(MI);
2199       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2200       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2201                                                      OpIdx1, OpIdx2);
2202     }
2203     return nullptr;
2204   }
2205   case X86::MOVSDrr:
2206   case X86::MOVSSrr:
2207   case X86::VMOVSDrr:
2208   case X86::VMOVSSrr:{
2209     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2210     if (Subtarget.hasSSE41()) {
2211       unsigned Mask, Opc;
2212       switch (MI.getOpcode()) {
2213       default: llvm_unreachable("Unreachable!");
2214       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
2215       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
2216       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2217       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2218       }
2219 
2220       auto &WorkingMI = cloneIfNew(MI);
2221       WorkingMI.setDesc(get(Opc));
2222       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2223       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2224                                                      OpIdx1, OpIdx2);
2225     }
2226 
2227     // Convert to SHUFPD.
2228     assert(MI.getOpcode() == X86::MOVSDrr &&
2229            "Can only commute MOVSDrr without SSE4.1");
2230 
2231     auto &WorkingMI = cloneIfNew(MI);
2232     WorkingMI.setDesc(get(X86::SHUFPDrri));
2233     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2234     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2235                                                    OpIdx1, OpIdx2);
2236   }
2237   case X86::SHUFPDrri: {
2238     // Commute to MOVSD.
2239     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2240     auto &WorkingMI = cloneIfNew(MI);
2241     WorkingMI.setDesc(get(X86::MOVSDrr));
2242     WorkingMI.RemoveOperand(3);
2243     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2244                                                    OpIdx1, OpIdx2);
2245   }
2246   case X86::PCLMULQDQrr:
2247   case X86::VPCLMULQDQrr:
2248   case X86::VPCLMULQDQYrr:
2249   case X86::VPCLMULQDQZrr:
2250   case X86::VPCLMULQDQZ128rr:
2251   case X86::VPCLMULQDQZ256rr: {
2252     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2253     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2254     unsigned Imm = MI.getOperand(3).getImm();
2255     unsigned Src1Hi = Imm & 0x01;
2256     unsigned Src2Hi = Imm & 0x10;
2257     auto &WorkingMI = cloneIfNew(MI);
2258     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2259     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2260                                                    OpIdx1, OpIdx2);
2261   }
2262   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
2263   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
2264   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
2265   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
2266   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
2267   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
2268   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
2269   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
2270   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
2271   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
2272   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
2273   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
2274   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2275   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2276   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
2277   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2278   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2279   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
2280   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2281   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2282   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
2283   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2284   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2285   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
2286     // Flip comparison mode immediate (if necessary).
2287     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2288     Imm = X86::getSwappedVPCMPImm(Imm);
2289     auto &WorkingMI = cloneIfNew(MI);
2290     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2291     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2292                                                    OpIdx1, OpIdx2);
2293   }
2294   case X86::VPCOMBri: case X86::VPCOMUBri:
2295   case X86::VPCOMDri: case X86::VPCOMUDri:
2296   case X86::VPCOMQri: case X86::VPCOMUQri:
2297   case X86::VPCOMWri: case X86::VPCOMUWri: {
2298     // Flip comparison mode immediate (if necessary).
2299     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2300     Imm = X86::getSwappedVPCOMImm(Imm);
2301     auto &WorkingMI = cloneIfNew(MI);
2302     WorkingMI.getOperand(3).setImm(Imm);
2303     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2304                                                    OpIdx1, OpIdx2);
2305   }
2306   case X86::VCMPSDZrr:
2307   case X86::VCMPSSZrr:
2308   case X86::VCMPPDZrri:
2309   case X86::VCMPPSZrri:
2310   case X86::VCMPSHZrr:
2311   case X86::VCMPPHZrri:
2312   case X86::VCMPPHZ128rri:
2313   case X86::VCMPPHZ256rri:
2314   case X86::VCMPPDZ128rri:
2315   case X86::VCMPPSZ128rri:
2316   case X86::VCMPPDZ256rri:
2317   case X86::VCMPPSZ256rri:
2318   case X86::VCMPPDZrrik:
2319   case X86::VCMPPSZrrik:
2320   case X86::VCMPPDZ128rrik:
2321   case X86::VCMPPSZ128rrik:
2322   case X86::VCMPPDZ256rrik:
2323   case X86::VCMPPSZ256rrik: {
2324     unsigned Imm =
2325                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2326     Imm = X86::getSwappedVCMPImm(Imm);
2327     auto &WorkingMI = cloneIfNew(MI);
2328     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2329     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2330                                                    OpIdx1, OpIdx2);
2331   }
2332   case X86::VPERM2F128rr:
2333   case X86::VPERM2I128rr: {
2334     // Flip permute source immediate.
2335     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2336     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2337     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2338     auto &WorkingMI = cloneIfNew(MI);
2339     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2340     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2341                                                    OpIdx1, OpIdx2);
2342   }
2343   case X86::MOVHLPSrr:
2344   case X86::UNPCKHPDrr:
2345   case X86::VMOVHLPSrr:
2346   case X86::VUNPCKHPDrr:
2347   case X86::VMOVHLPSZrr:
2348   case X86::VUNPCKHPDZ128rr: {
2349     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2350 
2351     unsigned Opc = MI.getOpcode();
2352     switch (Opc) {
2353     default: llvm_unreachable("Unreachable!");
2354     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
2355     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
2356     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
2357     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
2358     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
2359     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
2360     }
2361     auto &WorkingMI = cloneIfNew(MI);
2362     WorkingMI.setDesc(get(Opc));
2363     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2364                                                    OpIdx1, OpIdx2);
2365   }
2366   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
2367     auto &WorkingMI = cloneIfNew(MI);
2368     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2369     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2370     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2371     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2372                                                    OpIdx1, OpIdx2);
2373   }
2374   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2375   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2376   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2377   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2378   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2379   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2380   case X86::VPTERNLOGDZrrik:
2381   case X86::VPTERNLOGDZ128rrik:
2382   case X86::VPTERNLOGDZ256rrik:
2383   case X86::VPTERNLOGQZrrik:
2384   case X86::VPTERNLOGQZ128rrik:
2385   case X86::VPTERNLOGQZ256rrik:
2386   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2387   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2388   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2389   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2390   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2391   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2392   case X86::VPTERNLOGDZ128rmbi:
2393   case X86::VPTERNLOGDZ256rmbi:
2394   case X86::VPTERNLOGDZrmbi:
2395   case X86::VPTERNLOGQZ128rmbi:
2396   case X86::VPTERNLOGQZ256rmbi:
2397   case X86::VPTERNLOGQZrmbi:
2398   case X86::VPTERNLOGDZ128rmbikz:
2399   case X86::VPTERNLOGDZ256rmbikz:
2400   case X86::VPTERNLOGDZrmbikz:
2401   case X86::VPTERNLOGQZ128rmbikz:
2402   case X86::VPTERNLOGQZ256rmbikz:
2403   case X86::VPTERNLOGQZrmbikz: {
2404     auto &WorkingMI = cloneIfNew(MI);
2405     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2406     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2407                                                    OpIdx1, OpIdx2);
2408   }
2409   default: {
2410     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2411       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2412       auto &WorkingMI = cloneIfNew(MI);
2413       WorkingMI.setDesc(get(Opc));
2414       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2415                                                      OpIdx1, OpIdx2);
2416     }
2417 
2418     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2419                                                       MI.getDesc().TSFlags);
2420     if (FMA3Group) {
2421       unsigned Opc =
2422         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2423       auto &WorkingMI = cloneIfNew(MI);
2424       WorkingMI.setDesc(get(Opc));
2425       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2426                                                      OpIdx1, OpIdx2);
2427     }
2428 
2429     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2430   }
2431   }
2432 }
2433 
2434 bool
2435 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2436                                             unsigned &SrcOpIdx1,
2437                                             unsigned &SrcOpIdx2,
2438                                             bool IsIntrinsic) const {
2439   uint64_t TSFlags = MI.getDesc().TSFlags;
2440 
2441   unsigned FirstCommutableVecOp = 1;
2442   unsigned LastCommutableVecOp = 3;
2443   unsigned KMaskOp = -1U;
2444   if (X86II::isKMasked(TSFlags)) {
2445     // For k-zero-masked operations it is Ok to commute the first vector
2446     // operand. Unless this is an intrinsic instruction.
2447     // For regular k-masked operations a conservative choice is done as the
2448     // elements of the first vector operand, for which the corresponding bit
2449     // in the k-mask operand is set to 0, are copied to the result of the
2450     // instruction.
2451     // TODO/FIXME: The commute still may be legal if it is known that the
2452     // k-mask operand is set to either all ones or all zeroes.
2453     // It is also Ok to commute the 1st operand if all users of MI use only
2454     // the elements enabled by the k-mask operand. For example,
2455     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2456     //                                                     : v1[i];
2457     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2458     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2459 
2460     // The k-mask operand has index = 2 for masked and zero-masked operations.
2461     KMaskOp = 2;
2462 
2463     // The operand with index = 1 is used as a source for those elements for
2464     // which the corresponding bit in the k-mask is set to 0.
2465     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2466       FirstCommutableVecOp = 3;
2467 
2468     LastCommutableVecOp++;
2469   } else if (IsIntrinsic) {
2470     // Commuting the first operand of an intrinsic instruction isn't possible
2471     // unless we can prove that only the lowest element of the result is used.
2472     FirstCommutableVecOp = 2;
2473   }
2474 
2475   if (isMem(MI, LastCommutableVecOp))
2476     LastCommutableVecOp--;
2477 
2478   // Only the first RegOpsNum operands are commutable.
2479   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2480   // that the operand is not specified/fixed.
2481   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2482       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2483        SrcOpIdx1 == KMaskOp))
2484     return false;
2485   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2486       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2487        SrcOpIdx2 == KMaskOp))
2488     return false;
2489 
2490   // Look for two different register operands assumed to be commutable
2491   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2492   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2493       SrcOpIdx2 == CommuteAnyOperandIndex) {
2494     unsigned CommutableOpIdx2 = SrcOpIdx2;
2495 
2496     // At least one of operands to be commuted is not specified and
2497     // this method is free to choose appropriate commutable operands.
2498     if (SrcOpIdx1 == SrcOpIdx2)
2499       // Both of operands are not fixed. By default set one of commutable
2500       // operands to the last register operand of the instruction.
2501       CommutableOpIdx2 = LastCommutableVecOp;
2502     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2503       // Only one of operands is not fixed.
2504       CommutableOpIdx2 = SrcOpIdx1;
2505 
2506     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2507     // operand and assign its index to CommutableOpIdx1.
2508     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2509 
2510     unsigned CommutableOpIdx1;
2511     for (CommutableOpIdx1 = LastCommutableVecOp;
2512          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2513       // Just ignore and skip the k-mask operand.
2514       if (CommutableOpIdx1 == KMaskOp)
2515         continue;
2516 
2517       // The commuted operands must have different registers.
2518       // Otherwise, the commute transformation does not change anything and
2519       // is useless then.
2520       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2521         break;
2522     }
2523 
2524     // No appropriate commutable operands were found.
2525     if (CommutableOpIdx1 < FirstCommutableVecOp)
2526       return false;
2527 
2528     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2529     // to return those values.
2530     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2531                               CommutableOpIdx1, CommutableOpIdx2))
2532       return false;
2533   }
2534 
2535   return true;
2536 }
2537 
2538 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2539                                          unsigned &SrcOpIdx1,
2540                                          unsigned &SrcOpIdx2) const {
2541   const MCInstrDesc &Desc = MI.getDesc();
2542   if (!Desc.isCommutable())
2543     return false;
2544 
2545   switch (MI.getOpcode()) {
2546   case X86::CMPSDrr:
2547   case X86::CMPSSrr:
2548   case X86::CMPPDrri:
2549   case X86::CMPPSrri:
2550   case X86::VCMPSDrr:
2551   case X86::VCMPSSrr:
2552   case X86::VCMPPDrri:
2553   case X86::VCMPPSrri:
2554   case X86::VCMPPDYrri:
2555   case X86::VCMPPSYrri:
2556   case X86::VCMPSDZrr:
2557   case X86::VCMPSSZrr:
2558   case X86::VCMPPDZrri:
2559   case X86::VCMPPSZrri:
2560   case X86::VCMPSHZrr:
2561   case X86::VCMPPHZrri:
2562   case X86::VCMPPHZ128rri:
2563   case X86::VCMPPHZ256rri:
2564   case X86::VCMPPDZ128rri:
2565   case X86::VCMPPSZ128rri:
2566   case X86::VCMPPDZ256rri:
2567   case X86::VCMPPSZ256rri:
2568   case X86::VCMPPDZrrik:
2569   case X86::VCMPPSZrrik:
2570   case X86::VCMPPDZ128rrik:
2571   case X86::VCMPPSZ128rrik:
2572   case X86::VCMPPDZ256rrik:
2573   case X86::VCMPPSZ256rrik: {
2574     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2575 
2576     // Float comparison can be safely commuted for
2577     // Ordered/Unordered/Equal/NotEqual tests
2578     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2579     switch (Imm) {
2580     default:
2581       // EVEX versions can be commuted.
2582       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2583         break;
2584       return false;
2585     case 0x00: // EQUAL
2586     case 0x03: // UNORDERED
2587     case 0x04: // NOT EQUAL
2588     case 0x07: // ORDERED
2589       break;
2590     }
2591 
2592     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2593     // when masked).
2594     // Assign them to the returned operand indices here.
2595     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2596                                 2 + OpOffset);
2597   }
2598   case X86::MOVSSrr:
2599     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2600     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2601     // AVX implies sse4.1.
2602     if (Subtarget.hasSSE41())
2603       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2604     return false;
2605   case X86::SHUFPDrri:
2606     // We can commute this to MOVSD.
2607     if (MI.getOperand(3).getImm() == 0x02)
2608       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2609     return false;
2610   case X86::MOVHLPSrr:
2611   case X86::UNPCKHPDrr:
2612   case X86::VMOVHLPSrr:
2613   case X86::VUNPCKHPDrr:
2614   case X86::VMOVHLPSZrr:
2615   case X86::VUNPCKHPDZ128rr:
2616     if (Subtarget.hasSSE2())
2617       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2618     return false;
2619   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2620   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2621   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2622   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2623   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2624   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2625   case X86::VPTERNLOGDZrrik:
2626   case X86::VPTERNLOGDZ128rrik:
2627   case X86::VPTERNLOGDZ256rrik:
2628   case X86::VPTERNLOGQZrrik:
2629   case X86::VPTERNLOGQZ128rrik:
2630   case X86::VPTERNLOGQZ256rrik:
2631   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2632   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2633   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2634   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2635   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2636   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2637   case X86::VPTERNLOGDZ128rmbi:
2638   case X86::VPTERNLOGDZ256rmbi:
2639   case X86::VPTERNLOGDZrmbi:
2640   case X86::VPTERNLOGQZ128rmbi:
2641   case X86::VPTERNLOGQZ256rmbi:
2642   case X86::VPTERNLOGQZrmbi:
2643   case X86::VPTERNLOGDZ128rmbikz:
2644   case X86::VPTERNLOGDZ256rmbikz:
2645   case X86::VPTERNLOGDZrmbikz:
2646   case X86::VPTERNLOGQZ128rmbikz:
2647   case X86::VPTERNLOGQZ256rmbikz:
2648   case X86::VPTERNLOGQZrmbikz:
2649     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2650   case X86::VPDPWSSDYrr:
2651   case X86::VPDPWSSDrr:
2652   case X86::VPDPWSSDSYrr:
2653   case X86::VPDPWSSDSrr:
2654   case X86::VPDPWSSDZ128r:
2655   case X86::VPDPWSSDZ128rk:
2656   case X86::VPDPWSSDZ128rkz:
2657   case X86::VPDPWSSDZ256r:
2658   case X86::VPDPWSSDZ256rk:
2659   case X86::VPDPWSSDZ256rkz:
2660   case X86::VPDPWSSDZr:
2661   case X86::VPDPWSSDZrk:
2662   case X86::VPDPWSSDZrkz:
2663   case X86::VPDPWSSDSZ128r:
2664   case X86::VPDPWSSDSZ128rk:
2665   case X86::VPDPWSSDSZ128rkz:
2666   case X86::VPDPWSSDSZ256r:
2667   case X86::VPDPWSSDSZ256rk:
2668   case X86::VPDPWSSDSZ256rkz:
2669   case X86::VPDPWSSDSZr:
2670   case X86::VPDPWSSDSZrk:
2671   case X86::VPDPWSSDSZrkz:
2672   case X86::VPMADD52HUQZ128r:
2673   case X86::VPMADD52HUQZ128rk:
2674   case X86::VPMADD52HUQZ128rkz:
2675   case X86::VPMADD52HUQZ256r:
2676   case X86::VPMADD52HUQZ256rk:
2677   case X86::VPMADD52HUQZ256rkz:
2678   case X86::VPMADD52HUQZr:
2679   case X86::VPMADD52HUQZrk:
2680   case X86::VPMADD52HUQZrkz:
2681   case X86::VPMADD52LUQZ128r:
2682   case X86::VPMADD52LUQZ128rk:
2683   case X86::VPMADD52LUQZ128rkz:
2684   case X86::VPMADD52LUQZ256r:
2685   case X86::VPMADD52LUQZ256rk:
2686   case X86::VPMADD52LUQZ256rkz:
2687   case X86::VPMADD52LUQZr:
2688   case X86::VPMADD52LUQZrk:
2689   case X86::VPMADD52LUQZrkz:
2690   case X86::VFMADDCPHZr:
2691   case X86::VFMADDCPHZrk:
2692   case X86::VFMADDCPHZrkz:
2693   case X86::VFMADDCPHZ128r:
2694   case X86::VFMADDCPHZ128rk:
2695   case X86::VFMADDCPHZ128rkz:
2696   case X86::VFMADDCPHZ256r:
2697   case X86::VFMADDCPHZ256rk:
2698   case X86::VFMADDCPHZ256rkz:
2699   case X86::VFMADDCSHZr:
2700   case X86::VFMADDCSHZrk:
2701   case X86::VFMADDCSHZrkz: {
2702     unsigned CommutableOpIdx1 = 2;
2703     unsigned CommutableOpIdx2 = 3;
2704     if (X86II::isKMasked(Desc.TSFlags)) {
2705       // Skip the mask register.
2706       ++CommutableOpIdx1;
2707       ++CommutableOpIdx2;
2708     }
2709     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2710                               CommutableOpIdx1, CommutableOpIdx2))
2711       return false;
2712     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2713         !MI.getOperand(SrcOpIdx2).isReg())
2714       // No idea.
2715       return false;
2716     return true;
2717   }
2718 
2719   default:
2720     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2721                                                       MI.getDesc().TSFlags);
2722     if (FMA3Group)
2723       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2724                                            FMA3Group->isIntrinsic());
2725 
2726     // Handled masked instructions since we need to skip over the mask input
2727     // and the preserved input.
2728     if (X86II::isKMasked(Desc.TSFlags)) {
2729       // First assume that the first input is the mask operand and skip past it.
2730       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2731       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2732       // Check if the first input is tied. If there isn't one then we only
2733       // need to skip the mask operand which we did above.
2734       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2735                                              MCOI::TIED_TO) != -1)) {
2736         // If this is zero masking instruction with a tied operand, we need to
2737         // move the first index back to the first input since this must
2738         // be a 3 input instruction and we want the first two non-mask inputs.
2739         // Otherwise this is a 2 input instruction with a preserved input and
2740         // mask, so we need to move the indices to skip one more input.
2741         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2742           ++CommutableOpIdx1;
2743           ++CommutableOpIdx2;
2744         } else {
2745           --CommutableOpIdx1;
2746         }
2747       }
2748 
2749       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2750                                 CommutableOpIdx1, CommutableOpIdx2))
2751         return false;
2752 
2753       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2754           !MI.getOperand(SrcOpIdx2).isReg())
2755         // No idea.
2756         return false;
2757       return true;
2758     }
2759 
2760     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2761   }
2762   return false;
2763 }
2764 
2765 static bool isConvertibleLEA(MachineInstr *MI) {
2766   unsigned Opcode = MI->getOpcode();
2767   if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2768       Opcode != X86::LEA64_32r)
2769     return false;
2770 
2771   const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2772   const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2773   const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2774 
2775   if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2776       Scale.getImm() > 1)
2777     return false;
2778 
2779   return true;
2780 }
2781 
2782 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2783   // Currently we're interested in following sequence only.
2784   //   r3 = lea r1, r2
2785   //   r5 = add r3, r4
2786   // Both r3 and r4 are killed in add, we hope the add instruction has the
2787   // operand order
2788   //   r5 = add r4, r3
2789   // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2790   unsigned Opcode = MI.getOpcode();
2791   if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2792     return false;
2793 
2794   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2795   Register Reg1 = MI.getOperand(1).getReg();
2796   Register Reg2 = MI.getOperand(2).getReg();
2797 
2798   // Check if Reg1 comes from LEA in the same MBB.
2799   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2800     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2801       Commute = true;
2802       return true;
2803     }
2804   }
2805 
2806   // Check if Reg2 comes from LEA in the same MBB.
2807   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2808     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2809       Commute = false;
2810       return true;
2811     }
2812   }
2813 
2814   return false;
2815 }
2816 
2817 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2818   switch (MI.getOpcode()) {
2819   default: return X86::COND_INVALID;
2820   case X86::JCC_1:
2821     return static_cast<X86::CondCode>(
2822         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2823   }
2824 }
2825 
2826 /// Return condition code of a SETCC opcode.
2827 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2828   switch (MI.getOpcode()) {
2829   default: return X86::COND_INVALID;
2830   case X86::SETCCr: case X86::SETCCm:
2831     return static_cast<X86::CondCode>(
2832         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2833   }
2834 }
2835 
2836 /// Return condition code of a CMov opcode.
2837 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2838   switch (MI.getOpcode()) {
2839   default: return X86::COND_INVALID;
2840   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2841   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2842     return static_cast<X86::CondCode>(
2843         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2844   }
2845 }
2846 
2847 /// Return the inverse of the specified condition,
2848 /// e.g. turning COND_E to COND_NE.
2849 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2850   switch (CC) {
2851   default: llvm_unreachable("Illegal condition code!");
2852   case X86::COND_E:  return X86::COND_NE;
2853   case X86::COND_NE: return X86::COND_E;
2854   case X86::COND_L:  return X86::COND_GE;
2855   case X86::COND_LE: return X86::COND_G;
2856   case X86::COND_G:  return X86::COND_LE;
2857   case X86::COND_GE: return X86::COND_L;
2858   case X86::COND_B:  return X86::COND_AE;
2859   case X86::COND_BE: return X86::COND_A;
2860   case X86::COND_A:  return X86::COND_BE;
2861   case X86::COND_AE: return X86::COND_B;
2862   case X86::COND_S:  return X86::COND_NS;
2863   case X86::COND_NS: return X86::COND_S;
2864   case X86::COND_P:  return X86::COND_NP;
2865   case X86::COND_NP: return X86::COND_P;
2866   case X86::COND_O:  return X86::COND_NO;
2867   case X86::COND_NO: return X86::COND_O;
2868   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2869   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2870   }
2871 }
2872 
2873 /// Assuming the flags are set by MI(a,b), return the condition code if we
2874 /// modify the instructions such that flags are set by MI(b,a).
2875 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2876   switch (CC) {
2877   default: return X86::COND_INVALID;
2878   case X86::COND_E:  return X86::COND_E;
2879   case X86::COND_NE: return X86::COND_NE;
2880   case X86::COND_L:  return X86::COND_G;
2881   case X86::COND_LE: return X86::COND_GE;
2882   case X86::COND_G:  return X86::COND_L;
2883   case X86::COND_GE: return X86::COND_LE;
2884   case X86::COND_B:  return X86::COND_A;
2885   case X86::COND_BE: return X86::COND_AE;
2886   case X86::COND_A:  return X86::COND_B;
2887   case X86::COND_AE: return X86::COND_BE;
2888   }
2889 }
2890 
2891 std::pair<X86::CondCode, bool>
2892 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2893   X86::CondCode CC = X86::COND_INVALID;
2894   bool NeedSwap = false;
2895   switch (Predicate) {
2896   default: break;
2897   // Floating-point Predicates
2898   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2899   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2900   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2901   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2902   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2903   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2904   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2905   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2906   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2907   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2908   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2909   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2910   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2911   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2912 
2913   // Integer Predicates
2914   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2915   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2916   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2917   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2918   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2919   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2920   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2921   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2922   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2923   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2924   }
2925 
2926   return std::make_pair(CC, NeedSwap);
2927 }
2928 
2929 /// Return a cmov opcode for the given register size in bytes, and operand type.
2930 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2931   switch(RegBytes) {
2932   default: llvm_unreachable("Illegal register size!");
2933   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2934   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2935   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2936   }
2937 }
2938 
2939 /// Get the VPCMP immediate for the given condition.
2940 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2941   switch (CC) {
2942   default: llvm_unreachable("Unexpected SETCC condition");
2943   case ISD::SETNE:  return 4;
2944   case ISD::SETEQ:  return 0;
2945   case ISD::SETULT:
2946   case ISD::SETLT: return 1;
2947   case ISD::SETUGT:
2948   case ISD::SETGT: return 6;
2949   case ISD::SETUGE:
2950   case ISD::SETGE: return 5;
2951   case ISD::SETULE:
2952   case ISD::SETLE: return 2;
2953   }
2954 }
2955 
2956 /// Get the VPCMP immediate if the operands are swapped.
2957 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2958   switch (Imm) {
2959   default: llvm_unreachable("Unreachable!");
2960   case 0x01: Imm = 0x06; break; // LT  -> NLE
2961   case 0x02: Imm = 0x05; break; // LE  -> NLT
2962   case 0x05: Imm = 0x02; break; // NLT -> LE
2963   case 0x06: Imm = 0x01; break; // NLE -> LT
2964   case 0x00: // EQ
2965   case 0x03: // FALSE
2966   case 0x04: // NE
2967   case 0x07: // TRUE
2968     break;
2969   }
2970 
2971   return Imm;
2972 }
2973 
2974 /// Get the VPCOM immediate if the operands are swapped.
2975 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2976   switch (Imm) {
2977   default: llvm_unreachable("Unreachable!");
2978   case 0x00: Imm = 0x02; break; // LT -> GT
2979   case 0x01: Imm = 0x03; break; // LE -> GE
2980   case 0x02: Imm = 0x00; break; // GT -> LT
2981   case 0x03: Imm = 0x01; break; // GE -> LE
2982   case 0x04: // EQ
2983   case 0x05: // NE
2984   case 0x06: // FALSE
2985   case 0x07: // TRUE
2986     break;
2987   }
2988 
2989   return Imm;
2990 }
2991 
2992 /// Get the VCMP immediate if the operands are swapped.
2993 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2994   // Only need the lower 2 bits to distinquish.
2995   switch (Imm & 0x3) {
2996   default: llvm_unreachable("Unreachable!");
2997   case 0x00: case 0x03:
2998     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2999     break;
3000   case 0x01: case 0x02:
3001     // Need to toggle bits 3:0. Bit 4 stays the same.
3002     Imm ^= 0xf;
3003     break;
3004   }
3005 
3006   return Imm;
3007 }
3008 
3009 /// Return true if the Reg is X87 register.
3010 static bool isX87Reg(unsigned Reg) {
3011   return (Reg == X86::FPCW || Reg == X86::FPSW ||
3012           (Reg >= X86::ST0 && Reg <= X86::ST7));
3013 }
3014 
3015 /// check if the instruction is X87 instruction
3016 bool X86::isX87Instruction(MachineInstr &MI) {
3017   for (const MachineOperand &MO : MI.operands()) {
3018     if (!MO.isReg())
3019       continue;
3020     if (isX87Reg(MO.getReg()))
3021       return true;
3022   }
3023   return false;
3024 }
3025 
3026 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
3027   switch (MI.getOpcode()) {
3028   case X86::TCRETURNdi:
3029   case X86::TCRETURNri:
3030   case X86::TCRETURNmi:
3031   case X86::TCRETURNdi64:
3032   case X86::TCRETURNri64:
3033   case X86::TCRETURNmi64:
3034     return true;
3035   default:
3036     return false;
3037   }
3038 }
3039 
3040 bool X86InstrInfo::canMakeTailCallConditional(
3041     SmallVectorImpl<MachineOperand> &BranchCond,
3042     const MachineInstr &TailCall) const {
3043   if (TailCall.getOpcode() != X86::TCRETURNdi &&
3044       TailCall.getOpcode() != X86::TCRETURNdi64) {
3045     // Only direct calls can be done with a conditional branch.
3046     return false;
3047   }
3048 
3049   const MachineFunction *MF = TailCall.getParent()->getParent();
3050   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3051     // Conditional tail calls confuse the Win64 unwinder.
3052     return false;
3053   }
3054 
3055   assert(BranchCond.size() == 1);
3056   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3057     // Can't make a conditional tail call with this condition.
3058     return false;
3059   }
3060 
3061   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3062   if (X86FI->getTCReturnAddrDelta() != 0 ||
3063       TailCall.getOperand(1).getImm() != 0) {
3064     // A conditional tail call cannot do any stack adjustment.
3065     return false;
3066   }
3067 
3068   return true;
3069 }
3070 
3071 void X86InstrInfo::replaceBranchWithTailCall(
3072     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3073     const MachineInstr &TailCall) const {
3074   assert(canMakeTailCallConditional(BranchCond, TailCall));
3075 
3076   MachineBasicBlock::iterator I = MBB.end();
3077   while (I != MBB.begin()) {
3078     --I;
3079     if (I->isDebugInstr())
3080       continue;
3081     if (!I->isBranch())
3082       assert(0 && "Can't find the branch to replace!");
3083 
3084     X86::CondCode CC = X86::getCondFromBranch(*I);
3085     assert(BranchCond.size() == 1);
3086     if (CC != BranchCond[0].getImm())
3087       continue;
3088 
3089     break;
3090   }
3091 
3092   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3093                                                          : X86::TCRETURNdi64cc;
3094 
3095   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3096   MIB->addOperand(TailCall.getOperand(0)); // Destination.
3097   MIB.addImm(0); // Stack offset (not used).
3098   MIB->addOperand(BranchCond[0]); // Condition.
3099   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3100 
3101   // Add implicit uses and defs of all live regs potentially clobbered by the
3102   // call. This way they still appear live across the call.
3103   LivePhysRegs LiveRegs(getRegisterInfo());
3104   LiveRegs.addLiveOuts(MBB);
3105   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3106   LiveRegs.stepForward(*MIB, Clobbers);
3107   for (const auto &C : Clobbers) {
3108     MIB.addReg(C.first, RegState::Implicit);
3109     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3110   }
3111 
3112   I->eraseFromParent();
3113 }
3114 
3115 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3116 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3117 // fallthrough MBB cannot be identified.
3118 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3119                                             MachineBasicBlock *TBB) {
3120   // Look for non-EHPad successors other than TBB. If we find exactly one, it
3121   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3122   // and fallthrough MBB. If we find more than one, we cannot identify the
3123   // fallthrough MBB and should return nullptr.
3124   MachineBasicBlock *FallthroughBB = nullptr;
3125   for (MachineBasicBlock *Succ : MBB->successors()) {
3126     if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3127       continue;
3128     // Return a nullptr if we found more than one fallthrough successor.
3129     if (FallthroughBB && FallthroughBB != TBB)
3130       return nullptr;
3131     FallthroughBB = Succ;
3132   }
3133   return FallthroughBB;
3134 }
3135 
3136 bool X86InstrInfo::AnalyzeBranchImpl(
3137     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3138     SmallVectorImpl<MachineOperand> &Cond,
3139     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3140 
3141   // Start from the bottom of the block and work up, examining the
3142   // terminator instructions.
3143   MachineBasicBlock::iterator I = MBB.end();
3144   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3145   while (I != MBB.begin()) {
3146     --I;
3147     if (I->isDebugInstr())
3148       continue;
3149 
3150     // Working from the bottom, when we see a non-terminator instruction, we're
3151     // done.
3152     if (!isUnpredicatedTerminator(*I))
3153       break;
3154 
3155     // A terminator that isn't a branch can't easily be handled by this
3156     // analysis.
3157     if (!I->isBranch())
3158       return true;
3159 
3160     // Handle unconditional branches.
3161     if (I->getOpcode() == X86::JMP_1) {
3162       UnCondBrIter = I;
3163 
3164       if (!AllowModify) {
3165         TBB = I->getOperand(0).getMBB();
3166         continue;
3167       }
3168 
3169       // If the block has any instructions after a JMP, delete them.
3170       while (std::next(I) != MBB.end())
3171         std::next(I)->eraseFromParent();
3172 
3173       Cond.clear();
3174       FBB = nullptr;
3175 
3176       // Delete the JMP if it's equivalent to a fall-through.
3177       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3178         TBB = nullptr;
3179         I->eraseFromParent();
3180         I = MBB.end();
3181         UnCondBrIter = MBB.end();
3182         continue;
3183       }
3184 
3185       // TBB is used to indicate the unconditional destination.
3186       TBB = I->getOperand(0).getMBB();
3187       continue;
3188     }
3189 
3190     // Handle conditional branches.
3191     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3192     if (BranchCode == X86::COND_INVALID)
3193       return true;  // Can't handle indirect branch.
3194 
3195     // In practice we should never have an undef eflags operand, if we do
3196     // abort here as we are not prepared to preserve the flag.
3197     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3198       return true;
3199 
3200     // Working from the bottom, handle the first conditional branch.
3201     if (Cond.empty()) {
3202       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3203       if (AllowModify && UnCondBrIter != MBB.end() &&
3204           MBB.isLayoutSuccessor(TargetBB)) {
3205         // If we can modify the code and it ends in something like:
3206         //
3207         //     jCC L1
3208         //     jmp L2
3209         //   L1:
3210         //     ...
3211         //   L2:
3212         //
3213         // Then we can change this to:
3214         //
3215         //     jnCC L2
3216         //   L1:
3217         //     ...
3218         //   L2:
3219         //
3220         // Which is a bit more efficient.
3221         // We conditionally jump to the fall-through block.
3222         BranchCode = GetOppositeBranchCondition(BranchCode);
3223         MachineBasicBlock::iterator OldInst = I;
3224 
3225         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3226           .addMBB(UnCondBrIter->getOperand(0).getMBB())
3227           .addImm(BranchCode);
3228         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3229           .addMBB(TargetBB);
3230 
3231         OldInst->eraseFromParent();
3232         UnCondBrIter->eraseFromParent();
3233 
3234         // Restart the analysis.
3235         UnCondBrIter = MBB.end();
3236         I = MBB.end();
3237         continue;
3238       }
3239 
3240       FBB = TBB;
3241       TBB = I->getOperand(0).getMBB();
3242       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3243       CondBranches.push_back(&*I);
3244       continue;
3245     }
3246 
3247     // Handle subsequent conditional branches. Only handle the case where all
3248     // conditional branches branch to the same destination and their condition
3249     // opcodes fit one of the special multi-branch idioms.
3250     assert(Cond.size() == 1);
3251     assert(TBB);
3252 
3253     // If the conditions are the same, we can leave them alone.
3254     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3255     auto NewTBB = I->getOperand(0).getMBB();
3256     if (OldBranchCode == BranchCode && TBB == NewTBB)
3257       continue;
3258 
3259     // If they differ, see if they fit one of the known patterns. Theoretically,
3260     // we could handle more patterns here, but we shouldn't expect to see them
3261     // if instruction selection has done a reasonable job.
3262     if (TBB == NewTBB &&
3263                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3264                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3265       BranchCode = X86::COND_NE_OR_P;
3266     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3267                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3268       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3269         return true;
3270 
3271       // X86::COND_E_AND_NP usually has two different branch destinations.
3272       //
3273       // JP B1
3274       // JE B2
3275       // JMP B1
3276       // B1:
3277       // B2:
3278       //
3279       // Here this condition branches to B2 only if NP && E. It has another
3280       // equivalent form:
3281       //
3282       // JNE B1
3283       // JNP B2
3284       // JMP B1
3285       // B1:
3286       // B2:
3287       //
3288       // Similarly it branches to B2 only if E && NP. That is why this condition
3289       // is named with COND_E_AND_NP.
3290       BranchCode = X86::COND_E_AND_NP;
3291     } else
3292       return true;
3293 
3294     // Update the MachineOperand.
3295     Cond[0].setImm(BranchCode);
3296     CondBranches.push_back(&*I);
3297   }
3298 
3299   return false;
3300 }
3301 
3302 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3303                                  MachineBasicBlock *&TBB,
3304                                  MachineBasicBlock *&FBB,
3305                                  SmallVectorImpl<MachineOperand> &Cond,
3306                                  bool AllowModify) const {
3307   SmallVector<MachineInstr *, 4> CondBranches;
3308   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3309 }
3310 
3311 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3312                                           MachineBranchPredicate &MBP,
3313                                           bool AllowModify) const {
3314   using namespace std::placeholders;
3315 
3316   SmallVector<MachineOperand, 4> Cond;
3317   SmallVector<MachineInstr *, 4> CondBranches;
3318   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3319                         AllowModify))
3320     return true;
3321 
3322   if (Cond.size() != 1)
3323     return true;
3324 
3325   assert(MBP.TrueDest && "expected!");
3326 
3327   if (!MBP.FalseDest)
3328     MBP.FalseDest = MBB.getNextNode();
3329 
3330   const TargetRegisterInfo *TRI = &getRegisterInfo();
3331 
3332   MachineInstr *ConditionDef = nullptr;
3333   bool SingleUseCondition = true;
3334 
3335   for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3336     if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3337       ConditionDef = &MI;
3338       break;
3339     }
3340 
3341     if (MI.readsRegister(X86::EFLAGS, TRI))
3342       SingleUseCondition = false;
3343   }
3344 
3345   if (!ConditionDef)
3346     return true;
3347 
3348   if (SingleUseCondition) {
3349     for (auto *Succ : MBB.successors())
3350       if (Succ->isLiveIn(X86::EFLAGS))
3351         SingleUseCondition = false;
3352   }
3353 
3354   MBP.ConditionDef = ConditionDef;
3355   MBP.SingleUseCondition = SingleUseCondition;
3356 
3357   // Currently we only recognize the simple pattern:
3358   //
3359   //   test %reg, %reg
3360   //   je %label
3361   //
3362   const unsigned TestOpcode =
3363       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3364 
3365   if (ConditionDef->getOpcode() == TestOpcode &&
3366       ConditionDef->getNumOperands() == 3 &&
3367       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3368       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3369     MBP.LHS = ConditionDef->getOperand(0);
3370     MBP.RHS = MachineOperand::CreateImm(0);
3371     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3372                         ? MachineBranchPredicate::PRED_NE
3373                         : MachineBranchPredicate::PRED_EQ;
3374     return false;
3375   }
3376 
3377   return true;
3378 }
3379 
3380 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3381                                     int *BytesRemoved) const {
3382   assert(!BytesRemoved && "code size not handled");
3383 
3384   MachineBasicBlock::iterator I = MBB.end();
3385   unsigned Count = 0;
3386 
3387   while (I != MBB.begin()) {
3388     --I;
3389     if (I->isDebugInstr())
3390       continue;
3391     if (I->getOpcode() != X86::JMP_1 &&
3392         X86::getCondFromBranch(*I) == X86::COND_INVALID)
3393       break;
3394     // Remove the branch.
3395     I->eraseFromParent();
3396     I = MBB.end();
3397     ++Count;
3398   }
3399 
3400   return Count;
3401 }
3402 
3403 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3404                                     MachineBasicBlock *TBB,
3405                                     MachineBasicBlock *FBB,
3406                                     ArrayRef<MachineOperand> Cond,
3407                                     const DebugLoc &DL,
3408                                     int *BytesAdded) const {
3409   // Shouldn't be a fall through.
3410   assert(TBB && "insertBranch must not be told to insert a fallthrough");
3411   assert((Cond.size() == 1 || Cond.size() == 0) &&
3412          "X86 branch conditions have one component!");
3413   assert(!BytesAdded && "code size not handled");
3414 
3415   if (Cond.empty()) {
3416     // Unconditional branch?
3417     assert(!FBB && "Unconditional branch with multiple successors!");
3418     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3419     return 1;
3420   }
3421 
3422   // If FBB is null, it is implied to be a fall-through block.
3423   bool FallThru = FBB == nullptr;
3424 
3425   // Conditional branch.
3426   unsigned Count = 0;
3427   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3428   switch (CC) {
3429   case X86::COND_NE_OR_P:
3430     // Synthesize NE_OR_P with two branches.
3431     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3432     ++Count;
3433     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3434     ++Count;
3435     break;
3436   case X86::COND_E_AND_NP:
3437     // Use the next block of MBB as FBB if it is null.
3438     if (FBB == nullptr) {
3439       FBB = getFallThroughMBB(&MBB, TBB);
3440       assert(FBB && "MBB cannot be the last block in function when the false "
3441                     "body is a fall-through.");
3442     }
3443     // Synthesize COND_E_AND_NP with two branches.
3444     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3445     ++Count;
3446     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3447     ++Count;
3448     break;
3449   default: {
3450     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3451     ++Count;
3452   }
3453   }
3454   if (!FallThru) {
3455     // Two-way Conditional branch. Insert the second branch.
3456     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3457     ++Count;
3458   }
3459   return Count;
3460 }
3461 
3462 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3463                                    ArrayRef<MachineOperand> Cond,
3464                                    Register DstReg, Register TrueReg,
3465                                    Register FalseReg, int &CondCycles,
3466                                    int &TrueCycles, int &FalseCycles) const {
3467   // Not all subtargets have cmov instructions.
3468   if (!Subtarget.hasCMov())
3469     return false;
3470   if (Cond.size() != 1)
3471     return false;
3472   // We cannot do the composite conditions, at least not in SSA form.
3473   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3474     return false;
3475 
3476   // Check register classes.
3477   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3478   const TargetRegisterClass *RC =
3479     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3480   if (!RC)
3481     return false;
3482 
3483   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3484   if (X86::GR16RegClass.hasSubClassEq(RC) ||
3485       X86::GR32RegClass.hasSubClassEq(RC) ||
3486       X86::GR64RegClass.hasSubClassEq(RC)) {
3487     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3488     // Bridge. Probably Ivy Bridge as well.
3489     CondCycles = 2;
3490     TrueCycles = 2;
3491     FalseCycles = 2;
3492     return true;
3493   }
3494 
3495   // Can't do vectors.
3496   return false;
3497 }
3498 
3499 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3500                                 MachineBasicBlock::iterator I,
3501                                 const DebugLoc &DL, Register DstReg,
3502                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
3503                                 Register FalseReg) const {
3504   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3505   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3506   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3507   assert(Cond.size() == 1 && "Invalid Cond array");
3508   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3509                                     false /*HasMemoryOperand*/);
3510   BuildMI(MBB, I, DL, get(Opc), DstReg)
3511       .addReg(FalseReg)
3512       .addReg(TrueReg)
3513       .addImm(Cond[0].getImm());
3514 }
3515 
3516 /// Test if the given register is a physical h register.
3517 static bool isHReg(unsigned Reg) {
3518   return X86::GR8_ABCD_HRegClass.contains(Reg);
3519 }
3520 
3521 // Try and copy between VR128/VR64 and GR64 registers.
3522 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3523                                         const X86Subtarget &Subtarget) {
3524   bool HasAVX = Subtarget.hasAVX();
3525   bool HasAVX512 = Subtarget.hasAVX512();
3526 
3527   // SrcReg(MaskReg) -> DestReg(GR64)
3528   // SrcReg(MaskReg) -> DestReg(GR32)
3529 
3530   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3531   if (X86::VK16RegClass.contains(SrcReg)) {
3532     if (X86::GR64RegClass.contains(DestReg)) {
3533       assert(Subtarget.hasBWI());
3534       return X86::KMOVQrk;
3535     }
3536     if (X86::GR32RegClass.contains(DestReg))
3537       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3538   }
3539 
3540   // SrcReg(GR64) -> DestReg(MaskReg)
3541   // SrcReg(GR32) -> DestReg(MaskReg)
3542 
3543   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3544   if (X86::VK16RegClass.contains(DestReg)) {
3545     if (X86::GR64RegClass.contains(SrcReg)) {
3546       assert(Subtarget.hasBWI());
3547       return X86::KMOVQkr;
3548     }
3549     if (X86::GR32RegClass.contains(SrcReg))
3550       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3551   }
3552 
3553 
3554   // SrcReg(VR128) -> DestReg(GR64)
3555   // SrcReg(VR64)  -> DestReg(GR64)
3556   // SrcReg(GR64)  -> DestReg(VR128)
3557   // SrcReg(GR64)  -> DestReg(VR64)
3558 
3559   if (X86::GR64RegClass.contains(DestReg)) {
3560     if (X86::VR128XRegClass.contains(SrcReg))
3561       // Copy from a VR128 register to a GR64 register.
3562       return HasAVX512 ? X86::VMOVPQIto64Zrr :
3563              HasAVX    ? X86::VMOVPQIto64rr  :
3564                          X86::MOVPQIto64rr;
3565     if (X86::VR64RegClass.contains(SrcReg))
3566       // Copy from a VR64 register to a GR64 register.
3567       return X86::MMX_MOVD64from64rr;
3568   } else if (X86::GR64RegClass.contains(SrcReg)) {
3569     // Copy from a GR64 register to a VR128 register.
3570     if (X86::VR128XRegClass.contains(DestReg))
3571       return HasAVX512 ? X86::VMOV64toPQIZrr :
3572              HasAVX    ? X86::VMOV64toPQIrr  :
3573                          X86::MOV64toPQIrr;
3574     // Copy from a GR64 register to a VR64 register.
3575     if (X86::VR64RegClass.contains(DestReg))
3576       return X86::MMX_MOVD64to64rr;
3577   }
3578 
3579   // SrcReg(VR128) -> DestReg(GR32)
3580   // SrcReg(GR32)  -> DestReg(VR128)
3581 
3582   if (X86::GR32RegClass.contains(DestReg) &&
3583       X86::VR128XRegClass.contains(SrcReg))
3584     // Copy from a VR128 register to a GR32 register.
3585     return HasAVX512 ? X86::VMOVPDI2DIZrr :
3586            HasAVX    ? X86::VMOVPDI2DIrr  :
3587                        X86::MOVPDI2DIrr;
3588 
3589   if (X86::VR128XRegClass.contains(DestReg) &&
3590       X86::GR32RegClass.contains(SrcReg))
3591     // Copy from a VR128 register to a VR128 register.
3592     return HasAVX512 ? X86::VMOVDI2PDIZrr :
3593            HasAVX    ? X86::VMOVDI2PDIrr  :
3594                        X86::MOVDI2PDIrr;
3595   return 0;
3596 }
3597 
3598 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3599                                MachineBasicBlock::iterator MI,
3600                                const DebugLoc &DL, MCRegister DestReg,
3601                                MCRegister SrcReg, bool KillSrc) const {
3602   // First deal with the normal symmetric copies.
3603   bool HasAVX = Subtarget.hasAVX();
3604   bool HasVLX = Subtarget.hasVLX();
3605   unsigned Opc = 0;
3606   if (X86::GR64RegClass.contains(DestReg, SrcReg))
3607     Opc = X86::MOV64rr;
3608   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3609     Opc = X86::MOV32rr;
3610   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3611     Opc = X86::MOV16rr;
3612   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3613     // Copying to or from a physical H register on x86-64 requires a NOREX
3614     // move.  Otherwise use a normal move.
3615     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3616         Subtarget.is64Bit()) {
3617       Opc = X86::MOV8rr_NOREX;
3618       // Both operands must be encodable without an REX prefix.
3619       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3620              "8-bit H register can not be copied outside GR8_NOREX");
3621     } else
3622       Opc = X86::MOV8rr;
3623   }
3624   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3625     Opc = X86::MMX_MOVQ64rr;
3626   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3627     if (HasVLX)
3628       Opc = X86::VMOVAPSZ128rr;
3629     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3630       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3631     else {
3632       // If this an extended register and we don't have VLX we need to use a
3633       // 512-bit move.
3634       Opc = X86::VMOVAPSZrr;
3635       const TargetRegisterInfo *TRI = &getRegisterInfo();
3636       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3637                                          &X86::VR512RegClass);
3638       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3639                                         &X86::VR512RegClass);
3640     }
3641   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3642     if (HasVLX)
3643       Opc = X86::VMOVAPSZ256rr;
3644     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3645       Opc = X86::VMOVAPSYrr;
3646     else {
3647       // If this an extended register and we don't have VLX we need to use a
3648       // 512-bit move.
3649       Opc = X86::VMOVAPSZrr;
3650       const TargetRegisterInfo *TRI = &getRegisterInfo();
3651       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3652                                          &X86::VR512RegClass);
3653       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3654                                         &X86::VR512RegClass);
3655     }
3656   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3657     Opc = X86::VMOVAPSZrr;
3658   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3659   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3660     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3661   if (!Opc)
3662     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3663 
3664   if (Opc) {
3665     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3666       .addReg(SrcReg, getKillRegState(KillSrc));
3667     return;
3668   }
3669 
3670   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3671     // FIXME: We use a fatal error here because historically LLVM has tried
3672     // lower some of these physreg copies and we want to ensure we get
3673     // reasonable bug reports if someone encounters a case no other testing
3674     // found. This path should be removed after the LLVM 7 release.
3675     report_fatal_error("Unable to copy EFLAGS physical register!");
3676   }
3677 
3678   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3679                     << RI.getName(DestReg) << '\n');
3680   report_fatal_error("Cannot emit physreg copy instruction");
3681 }
3682 
3683 Optional<DestSourcePair>
3684 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3685   if (MI.isMoveReg())
3686     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3687   return None;
3688 }
3689 
3690 static unsigned getLoadStoreRegOpcode(Register Reg,
3691                                       const TargetRegisterClass *RC,
3692                                       bool IsStackAligned,
3693                                       const X86Subtarget &STI, bool load) {
3694   bool HasAVX = STI.hasAVX();
3695   bool HasAVX512 = STI.hasAVX512();
3696   bool HasVLX = STI.hasVLX();
3697 
3698   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3699   default:
3700     llvm_unreachable("Unknown spill size");
3701   case 1:
3702     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3703     if (STI.is64Bit())
3704       // Copying to or from a physical H register on x86-64 requires a NOREX
3705       // move.  Otherwise use a normal move.
3706       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3707         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3708     return load ? X86::MOV8rm : X86::MOV8mr;
3709   case 2:
3710     if (X86::VK16RegClass.hasSubClassEq(RC))
3711       return load ? X86::KMOVWkm : X86::KMOVWmk;
3712     if (X86::FR16XRegClass.hasSubClassEq(RC)) {
3713       assert(STI.hasFP16());
3714       return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3715     }
3716     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3717     return load ? X86::MOV16rm : X86::MOV16mr;
3718   case 4:
3719     if (X86::GR32RegClass.hasSubClassEq(RC))
3720       return load ? X86::MOV32rm : X86::MOV32mr;
3721     if (X86::FR32XRegClass.hasSubClassEq(RC))
3722       return load ?
3723         (HasAVX512 ? X86::VMOVSSZrm_alt :
3724          HasAVX    ? X86::VMOVSSrm_alt :
3725                      X86::MOVSSrm_alt) :
3726         (HasAVX512 ? X86::VMOVSSZmr :
3727          HasAVX    ? X86::VMOVSSmr :
3728                      X86::MOVSSmr);
3729     if (X86::RFP32RegClass.hasSubClassEq(RC))
3730       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3731     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3732       assert(STI.hasBWI() && "KMOVD requires BWI");
3733       return load ? X86::KMOVDkm : X86::KMOVDmk;
3734     }
3735     // All of these mask pair classes have the same spill size, the same kind
3736     // of kmov instructions can be used with all of them.
3737     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3738         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3739         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3740         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3741         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3742       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3743     llvm_unreachable("Unknown 4-byte regclass");
3744   case 8:
3745     if (X86::GR64RegClass.hasSubClassEq(RC))
3746       return load ? X86::MOV64rm : X86::MOV64mr;
3747     if (X86::FR64XRegClass.hasSubClassEq(RC))
3748       return load ?
3749         (HasAVX512 ? X86::VMOVSDZrm_alt :
3750          HasAVX    ? X86::VMOVSDrm_alt :
3751                      X86::MOVSDrm_alt) :
3752         (HasAVX512 ? X86::VMOVSDZmr :
3753          HasAVX    ? X86::VMOVSDmr :
3754                      X86::MOVSDmr);
3755     if (X86::VR64RegClass.hasSubClassEq(RC))
3756       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3757     if (X86::RFP64RegClass.hasSubClassEq(RC))
3758       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3759     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3760       assert(STI.hasBWI() && "KMOVQ requires BWI");
3761       return load ? X86::KMOVQkm : X86::KMOVQmk;
3762     }
3763     llvm_unreachable("Unknown 8-byte regclass");
3764   case 10:
3765     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3766     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3767   case 16: {
3768     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3769       // If stack is realigned we can use aligned stores.
3770       if (IsStackAligned)
3771         return load ?
3772           (HasVLX    ? X86::VMOVAPSZ128rm :
3773            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3774            HasAVX    ? X86::VMOVAPSrm :
3775                        X86::MOVAPSrm):
3776           (HasVLX    ? X86::VMOVAPSZ128mr :
3777            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3778            HasAVX    ? X86::VMOVAPSmr :
3779                        X86::MOVAPSmr);
3780       else
3781         return load ?
3782           (HasVLX    ? X86::VMOVUPSZ128rm :
3783            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3784            HasAVX    ? X86::VMOVUPSrm :
3785                        X86::MOVUPSrm):
3786           (HasVLX    ? X86::VMOVUPSZ128mr :
3787            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3788            HasAVX    ? X86::VMOVUPSmr :
3789                        X86::MOVUPSmr);
3790     }
3791     llvm_unreachable("Unknown 16-byte regclass");
3792   }
3793   case 32:
3794     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3795     // If stack is realigned we can use aligned stores.
3796     if (IsStackAligned)
3797       return load ?
3798         (HasVLX    ? X86::VMOVAPSZ256rm :
3799          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3800                      X86::VMOVAPSYrm) :
3801         (HasVLX    ? X86::VMOVAPSZ256mr :
3802          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3803                      X86::VMOVAPSYmr);
3804     else
3805       return load ?
3806         (HasVLX    ? X86::VMOVUPSZ256rm :
3807          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3808                      X86::VMOVUPSYrm) :
3809         (HasVLX    ? X86::VMOVUPSZ256mr :
3810          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3811                      X86::VMOVUPSYmr);
3812   case 64:
3813     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3814     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3815     if (IsStackAligned)
3816       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3817     else
3818       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3819   }
3820 }
3821 
3822 Optional<ExtAddrMode>
3823 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3824                                       const TargetRegisterInfo *TRI) const {
3825   const MCInstrDesc &Desc = MemI.getDesc();
3826   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3827   if (MemRefBegin < 0)
3828     return None;
3829 
3830   MemRefBegin += X86II::getOperandBias(Desc);
3831 
3832   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3833   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3834     return None;
3835 
3836   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3837   // Displacement can be symbolic
3838   if (!DispMO.isImm())
3839     return None;
3840 
3841   ExtAddrMode AM;
3842   AM.BaseReg = BaseOp.getReg();
3843   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3844   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3845   AM.Displacement = DispMO.getImm();
3846   return AM;
3847 }
3848 
3849 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3850                                            const Register Reg,
3851                                            int64_t &ImmVal) const {
3852   if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3853     return false;
3854   // Mov Src can be a global address.
3855   if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3856     return false;
3857   ImmVal = MI.getOperand(1).getImm();
3858   return true;
3859 }
3860 
3861 bool X86InstrInfo::preservesZeroValueInReg(
3862     const MachineInstr *MI, const Register NullValueReg,
3863     const TargetRegisterInfo *TRI) const {
3864   if (!MI->modifiesRegister(NullValueReg, TRI))
3865     return true;
3866   switch (MI->getOpcode()) {
3867   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3868   // X.
3869   case X86::SHR64ri:
3870   case X86::SHR32ri:
3871   case X86::SHL64ri:
3872   case X86::SHL32ri:
3873     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3874            "expected for shift opcode!");
3875     return MI->getOperand(0).getReg() == NullValueReg &&
3876            MI->getOperand(1).getReg() == NullValueReg;
3877   // Zero extend of a sub-reg of NullValueReg into itself does not change the
3878   // null value.
3879   case X86::MOV32rr:
3880     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3881       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3882     });
3883   default:
3884     return false;
3885   }
3886   llvm_unreachable("Should be handled above!");
3887 }
3888 
3889 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3890     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3891     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3892     const TargetRegisterInfo *TRI) const {
3893   const MCInstrDesc &Desc = MemOp.getDesc();
3894   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3895   if (MemRefBegin < 0)
3896     return false;
3897 
3898   MemRefBegin += X86II::getOperandBias(Desc);
3899 
3900   const MachineOperand *BaseOp =
3901       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3902   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3903     return false;
3904 
3905   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3906     return false;
3907 
3908   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3909       X86::NoRegister)
3910     return false;
3911 
3912   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3913 
3914   // Displacement can be symbolic
3915   if (!DispMO.isImm())
3916     return false;
3917 
3918   Offset = DispMO.getImm();
3919 
3920   if (!BaseOp->isReg())
3921     return false;
3922 
3923   OffsetIsScalable = false;
3924   // FIXME: Relying on memoperands() may not be right thing to do here. Check
3925   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3926   // there is no use of `Width` for X86 back-end at the moment.
3927   Width =
3928       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3929   BaseOps.push_back(BaseOp);
3930   return true;
3931 }
3932 
3933 static unsigned getStoreRegOpcode(Register SrcReg,
3934                                   const TargetRegisterClass *RC,
3935                                   bool IsStackAligned,
3936                                   const X86Subtarget &STI) {
3937   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3938 }
3939 
3940 static unsigned getLoadRegOpcode(Register DestReg,
3941                                  const TargetRegisterClass *RC,
3942                                  bool IsStackAligned, const X86Subtarget &STI) {
3943   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3944 }
3945 
3946 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3947                                        MachineBasicBlock::iterator MI,
3948                                        Register SrcReg, bool isKill, int FrameIdx,
3949                                        const TargetRegisterClass *RC,
3950                                        const TargetRegisterInfo *TRI) const {
3951   const MachineFunction &MF = *MBB.getParent();
3952   const MachineFrameInfo &MFI = MF.getFrameInfo();
3953   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3954          "Stack slot too small for store");
3955   if (RC->getID() == X86::TILERegClassID) {
3956     unsigned Opc = X86::TILESTORED;
3957     // tilestored %tmm, (%sp, %idx)
3958     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3959     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3960     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3961     MachineInstr *NewMI =
3962         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3963             .addReg(SrcReg, getKillRegState(isKill));
3964     MachineOperand &MO = NewMI->getOperand(2);
3965     MO.setReg(VirtReg);
3966     MO.setIsKill(true);
3967   } else {
3968     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3969     bool isAligned =
3970         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3971         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3972     unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3973     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3974         .addReg(SrcReg, getKillRegState(isKill));
3975   }
3976 }
3977 
3978 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3979                                         MachineBasicBlock::iterator MI,
3980                                         Register DestReg, int FrameIdx,
3981                                         const TargetRegisterClass *RC,
3982                                         const TargetRegisterInfo *TRI) const {
3983   if (RC->getID() == X86::TILERegClassID) {
3984     unsigned Opc = X86::TILELOADD;
3985     // tileloadd (%sp, %idx), %tmm
3986     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3987     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3988     MachineInstr *NewMI =
3989         BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3990     NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3991                               FrameIdx);
3992     MachineOperand &MO = NewMI->getOperand(3);
3993     MO.setReg(VirtReg);
3994     MO.setIsKill(true);
3995   } else {
3996     const MachineFunction &MF = *MBB.getParent();
3997     const MachineFrameInfo &MFI = MF.getFrameInfo();
3998     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3999     bool isAligned =
4000         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4001         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4002     unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4003     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4004                       FrameIdx);
4005   }
4006 }
4007 
4008 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
4009                                   Register &SrcReg2, int64_t &CmpMask,
4010                                   int64_t &CmpValue) const {
4011   switch (MI.getOpcode()) {
4012   default: break;
4013   case X86::CMP64ri32:
4014   case X86::CMP64ri8:
4015   case X86::CMP32ri:
4016   case X86::CMP32ri8:
4017   case X86::CMP16ri:
4018   case X86::CMP16ri8:
4019   case X86::CMP8ri:
4020     SrcReg = MI.getOperand(0).getReg();
4021     SrcReg2 = 0;
4022     if (MI.getOperand(1).isImm()) {
4023       CmpMask = ~0;
4024       CmpValue = MI.getOperand(1).getImm();
4025     } else {
4026       CmpMask = CmpValue = 0;
4027     }
4028     return true;
4029   // A SUB can be used to perform comparison.
4030   case X86::SUB64rm:
4031   case X86::SUB32rm:
4032   case X86::SUB16rm:
4033   case X86::SUB8rm:
4034     SrcReg = MI.getOperand(1).getReg();
4035     SrcReg2 = 0;
4036     CmpMask = 0;
4037     CmpValue = 0;
4038     return true;
4039   case X86::SUB64rr:
4040   case X86::SUB32rr:
4041   case X86::SUB16rr:
4042   case X86::SUB8rr:
4043     SrcReg = MI.getOperand(1).getReg();
4044     SrcReg2 = MI.getOperand(2).getReg();
4045     CmpMask = 0;
4046     CmpValue = 0;
4047     return true;
4048   case X86::SUB64ri32:
4049   case X86::SUB64ri8:
4050   case X86::SUB32ri:
4051   case X86::SUB32ri8:
4052   case X86::SUB16ri:
4053   case X86::SUB16ri8:
4054   case X86::SUB8ri:
4055     SrcReg = MI.getOperand(1).getReg();
4056     SrcReg2 = 0;
4057     if (MI.getOperand(2).isImm()) {
4058       CmpMask = ~0;
4059       CmpValue = MI.getOperand(2).getImm();
4060     } else {
4061       CmpMask = CmpValue = 0;
4062     }
4063     return true;
4064   case X86::CMP64rr:
4065   case X86::CMP32rr:
4066   case X86::CMP16rr:
4067   case X86::CMP8rr:
4068     SrcReg = MI.getOperand(0).getReg();
4069     SrcReg2 = MI.getOperand(1).getReg();
4070     CmpMask = 0;
4071     CmpValue = 0;
4072     return true;
4073   case X86::TEST8rr:
4074   case X86::TEST16rr:
4075   case X86::TEST32rr:
4076   case X86::TEST64rr:
4077     SrcReg = MI.getOperand(0).getReg();
4078     if (MI.getOperand(1).getReg() != SrcReg)
4079       return false;
4080     // Compare against zero.
4081     SrcReg2 = 0;
4082     CmpMask = ~0;
4083     CmpValue = 0;
4084     return true;
4085   }
4086   return false;
4087 }
4088 
4089 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4090                                         Register SrcReg, Register SrcReg2,
4091                                         int64_t ImmMask, int64_t ImmValue,
4092                                         const MachineInstr &OI, bool *IsSwapped,
4093                                         int64_t *ImmDelta) const {
4094   switch (OI.getOpcode()) {
4095   case X86::CMP64rr:
4096   case X86::CMP32rr:
4097   case X86::CMP16rr:
4098   case X86::CMP8rr:
4099   case X86::SUB64rr:
4100   case X86::SUB32rr:
4101   case X86::SUB16rr:
4102   case X86::SUB8rr: {
4103     Register OISrcReg;
4104     Register OISrcReg2;
4105     int64_t OIMask;
4106     int64_t OIValue;
4107     if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4108         OIMask != ImmMask || OIValue != ImmValue)
4109       return false;
4110     if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4111       *IsSwapped = false;
4112       return true;
4113     }
4114     if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4115       *IsSwapped = true;
4116       return true;
4117     }
4118     return false;
4119   }
4120   case X86::CMP64ri32:
4121   case X86::CMP64ri8:
4122   case X86::CMP32ri:
4123   case X86::CMP32ri8:
4124   case X86::CMP16ri:
4125   case X86::CMP16ri8:
4126   case X86::CMP8ri:
4127   case X86::SUB64ri32:
4128   case X86::SUB64ri8:
4129   case X86::SUB32ri:
4130   case X86::SUB32ri8:
4131   case X86::SUB16ri:
4132   case X86::SUB16ri8:
4133   case X86::SUB8ri:
4134   case X86::TEST64rr:
4135   case X86::TEST32rr:
4136   case X86::TEST16rr:
4137   case X86::TEST8rr: {
4138     if (ImmMask != 0) {
4139       Register OISrcReg;
4140       Register OISrcReg2;
4141       int64_t OIMask;
4142       int64_t OIValue;
4143       if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4144           SrcReg == OISrcReg && ImmMask == OIMask) {
4145         if (OIValue == ImmValue) {
4146           *ImmDelta = 0;
4147           return true;
4148         } else if (static_cast<uint64_t>(ImmValue) ==
4149                    static_cast<uint64_t>(OIValue) - 1) {
4150           *ImmDelta = -1;
4151           return true;
4152         } else if (static_cast<uint64_t>(ImmValue) ==
4153                    static_cast<uint64_t>(OIValue) + 1) {
4154           *ImmDelta = 1;
4155           return true;
4156         } else {
4157           return false;
4158         }
4159       }
4160     }
4161     return FlagI.isIdenticalTo(OI);
4162   }
4163   default:
4164     return false;
4165   }
4166 }
4167 
4168 /// Check whether the definition can be converted
4169 /// to remove a comparison against zero.
4170 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4171                                     bool &ClearsOverflowFlag) {
4172   NoSignFlag = false;
4173   ClearsOverflowFlag = false;
4174 
4175   switch (MI.getOpcode()) {
4176   default: return false;
4177 
4178   // The shift instructions only modify ZF if their shift count is non-zero.
4179   // N.B.: The processor truncates the shift count depending on the encoding.
4180   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4181   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4182      return getTruncatedShiftCount(MI, 2) != 0;
4183 
4184   // Some left shift instructions can be turned into LEA instructions but only
4185   // if their flags aren't used. Avoid transforming such instructions.
4186   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4187     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4188     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4189     return ShAmt != 0;
4190   }
4191 
4192   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4193   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4194      return getTruncatedShiftCount(MI, 3) != 0;
4195 
4196   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4197   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4198   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4199   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4200   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4201   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4202   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4203   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4204   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4205   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4206   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4207   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4208   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4209   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
4210   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
4211   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
4212   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
4213   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4214   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
4215   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
4216   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
4217   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
4218   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4219   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4220   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4221   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4222   case X86::LZCNT16rr: case X86::LZCNT16rm:
4223   case X86::LZCNT32rr: case X86::LZCNT32rm:
4224   case X86::LZCNT64rr: case X86::LZCNT64rm:
4225   case X86::POPCNT16rr:case X86::POPCNT16rm:
4226   case X86::POPCNT32rr:case X86::POPCNT32rm:
4227   case X86::POPCNT64rr:case X86::POPCNT64rm:
4228   case X86::TZCNT16rr: case X86::TZCNT16rm:
4229   case X86::TZCNT32rr: case X86::TZCNT32rm:
4230   case X86::TZCNT64rr: case X86::TZCNT64rm:
4231     return true;
4232   case X86::AND64ri32:   case X86::AND64ri8:  case X86::AND32ri:
4233   case X86::AND32ri8:    case X86::AND16ri:   case X86::AND16ri8:
4234   case X86::AND8ri:      case X86::AND64rr:   case X86::AND32rr:
4235   case X86::AND16rr:     case X86::AND8rr:    case X86::AND64rm:
4236   case X86::AND32rm:     case X86::AND16rm:   case X86::AND8rm:
4237   case X86::XOR64ri32:   case X86::XOR64ri8:  case X86::XOR32ri:
4238   case X86::XOR32ri8:    case X86::XOR16ri:   case X86::XOR16ri8:
4239   case X86::XOR8ri:      case X86::XOR64rr:   case X86::XOR32rr:
4240   case X86::XOR16rr:     case X86::XOR8rr:    case X86::XOR64rm:
4241   case X86::XOR32rm:     case X86::XOR16rm:   case X86::XOR8rm:
4242   case X86::OR64ri32:    case X86::OR64ri8:   case X86::OR32ri:
4243   case X86::OR32ri8:     case X86::OR16ri:    case X86::OR16ri8:
4244   case X86::OR8ri:       case X86::OR64rr:    case X86::OR32rr:
4245   case X86::OR16rr:      case X86::OR8rr:     case X86::OR64rm:
4246   case X86::OR32rm:      case X86::OR16rm:    case X86::OR8rm:
4247   case X86::ANDN32rr:    case X86::ANDN32rm:
4248   case X86::ANDN64rr:    case X86::ANDN64rm:
4249   case X86::BLSI32rr:    case X86::BLSI32rm:
4250   case X86::BLSI64rr:    case X86::BLSI64rm:
4251   case X86::BLSMSK32rr:  case X86::BLSMSK32rm:
4252   case X86::BLSMSK64rr:  case X86::BLSMSK64rm:
4253   case X86::BLSR32rr:    case X86::BLSR32rm:
4254   case X86::BLSR64rr:    case X86::BLSR64rm:
4255   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4256   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4257   case X86::BLCI32rr:    case X86::BLCI32rm:
4258   case X86::BLCI64rr:    case X86::BLCI64rm:
4259   case X86::BLCIC32rr:   case X86::BLCIC32rm:
4260   case X86::BLCIC64rr:   case X86::BLCIC64rm:
4261   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
4262   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
4263   case X86::BLCS32rr:    case X86::BLCS32rm:
4264   case X86::BLCS64rr:    case X86::BLCS64rm:
4265   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4266   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4267   case X86::BLSIC32rr:   case X86::BLSIC32rm:
4268   case X86::BLSIC64rr:   case X86::BLSIC64rm:
4269   case X86::BZHI32rr:    case X86::BZHI32rm:
4270   case X86::BZHI64rr:    case X86::BZHI64rm:
4271   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
4272   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
4273   case X86::TZMSK32rr:   case X86::TZMSK32rm:
4274   case X86::TZMSK64rr:   case X86::TZMSK64rm:
4275     // These instructions clear the overflow flag just like TEST.
4276     // FIXME: These are not the only instructions in this switch that clear the
4277     // overflow flag.
4278     ClearsOverflowFlag = true;
4279     return true;
4280   case X86::BEXTR32rr:   case X86::BEXTR64rr:
4281   case X86::BEXTR32rm:   case X86::BEXTR64rm:
4282   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
4283   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
4284     // BEXTR doesn't update the sign flag so we can't use it. It does clear
4285     // the overflow flag, but that's not useful without the sign flag.
4286     NoSignFlag = true;
4287     return true;
4288   }
4289 }
4290 
4291 /// Check whether the use can be converted to remove a comparison against zero.
4292 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4293   switch (MI.getOpcode()) {
4294   default: return X86::COND_INVALID;
4295   case X86::NEG8r:
4296   case X86::NEG16r:
4297   case X86::NEG32r:
4298   case X86::NEG64r:
4299     return X86::COND_AE;
4300   case X86::LZCNT16rr:
4301   case X86::LZCNT32rr:
4302   case X86::LZCNT64rr:
4303     return X86::COND_B;
4304   case X86::POPCNT16rr:
4305   case X86::POPCNT32rr:
4306   case X86::POPCNT64rr:
4307     return X86::COND_E;
4308   case X86::TZCNT16rr:
4309   case X86::TZCNT32rr:
4310   case X86::TZCNT64rr:
4311     return X86::COND_B;
4312   case X86::BSF16rr:
4313   case X86::BSF32rr:
4314   case X86::BSF64rr:
4315   case X86::BSR16rr:
4316   case X86::BSR32rr:
4317   case X86::BSR64rr:
4318     return X86::COND_E;
4319   case X86::BLSI32rr:
4320   case X86::BLSI64rr:
4321     return X86::COND_AE;
4322   case X86::BLSR32rr:
4323   case X86::BLSR64rr:
4324   case X86::BLSMSK32rr:
4325   case X86::BLSMSK64rr:
4326     return X86::COND_B;
4327   // TODO: TBM instructions.
4328   }
4329 }
4330 
4331 /// Check if there exists an earlier instruction that
4332 /// operates on the same source operands and sets flags in the same way as
4333 /// Compare; remove Compare if possible.
4334 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4335                                         Register SrcReg2, int64_t CmpMask,
4336                                         int64_t CmpValue,
4337                                         const MachineRegisterInfo *MRI) const {
4338   // Check whether we can replace SUB with CMP.
4339   switch (CmpInstr.getOpcode()) {
4340   default: break;
4341   case X86::SUB64ri32:
4342   case X86::SUB64ri8:
4343   case X86::SUB32ri:
4344   case X86::SUB32ri8:
4345   case X86::SUB16ri:
4346   case X86::SUB16ri8:
4347   case X86::SUB8ri:
4348   case X86::SUB64rm:
4349   case X86::SUB32rm:
4350   case X86::SUB16rm:
4351   case X86::SUB8rm:
4352   case X86::SUB64rr:
4353   case X86::SUB32rr:
4354   case X86::SUB16rr:
4355   case X86::SUB8rr: {
4356     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4357       return false;
4358     // There is no use of the destination register, we can replace SUB with CMP.
4359     unsigned NewOpcode = 0;
4360     switch (CmpInstr.getOpcode()) {
4361     default: llvm_unreachable("Unreachable!");
4362     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4363     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4364     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4365     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4366     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4367     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4368     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4369     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4370     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4371     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4372     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4373     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4374     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4375     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4376     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4377     }
4378     CmpInstr.setDesc(get(NewOpcode));
4379     CmpInstr.RemoveOperand(0);
4380     // Mutating this instruction invalidates any debug data associated with it.
4381     CmpInstr.dropDebugNumber();
4382     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4383     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4384         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4385       return false;
4386   }
4387   }
4388 
4389   // The following code tries to remove the comparison by re-using EFLAGS
4390   // from earlier instructions.
4391 
4392   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4393 
4394   // Transformation currently requires SSA values.
4395   if (SrcReg2.isPhysical())
4396     return false;
4397   MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4398   assert(SrcRegDef && "Must have a definition (SSA)");
4399 
4400   MachineInstr *MI = nullptr;
4401   MachineInstr *Sub = nullptr;
4402   MachineInstr *Movr0Inst = nullptr;
4403   bool NoSignFlag = false;
4404   bool ClearsOverflowFlag = false;
4405   bool ShouldUpdateCC = false;
4406   bool IsSwapped = false;
4407   X86::CondCode NewCC = X86::COND_INVALID;
4408   int64_t ImmDelta = 0;
4409 
4410   // Search backward from CmpInstr for the next instruction defining EFLAGS.
4411   const TargetRegisterInfo *TRI = &getRegisterInfo();
4412   MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4413   MachineBasicBlock::reverse_iterator From =
4414       std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4415   for (MachineBasicBlock *MBB = &CmpMBB;;) {
4416     for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4417       // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4418       //     %eax = addl ...
4419       //     ...                // EFLAGS not changed
4420       //     testl %eax, %eax   // <-- can be removed
4421       if (&Inst == SrcRegDef) {
4422         if (IsCmpZero &&
4423             isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4424           MI = &Inst;
4425           break;
4426         }
4427         // Cannot find other candidates before definition of SrcReg.
4428         return false;
4429       }
4430 
4431       if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4432         // Try to use EFLAGS produced by an instruction reading %SrcReg.
4433         // Example:
4434         //      %eax = ...
4435         //      ...
4436         //      popcntl %eax
4437         //      ...                 // EFLAGS not changed
4438         //      testl %eax, %eax    // <-- can be removed
4439         if (IsCmpZero) {
4440           NewCC = isUseDefConvertible(Inst);
4441           if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4442               Inst.getOperand(1).getReg() == SrcReg) {
4443             ShouldUpdateCC = true;
4444             MI = &Inst;
4445             break;
4446           }
4447         }
4448 
4449         // Try to use EFLAGS from an instruction with similar flag results.
4450         // Example:
4451         //     sub x, y  or  cmp x, y
4452         //     ...           // EFLAGS not changed
4453         //     cmp x, y      // <-- can be removed
4454         if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4455                                  Inst, &IsSwapped, &ImmDelta)) {
4456           Sub = &Inst;
4457           break;
4458         }
4459 
4460         // MOV32r0 is implemented with xor which clobbers condition code. It is
4461         // safe to move up, if the definition to EFLAGS is dead and earlier
4462         // instructions do not read or write EFLAGS.
4463         if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4464             Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4465           Movr0Inst = &Inst;
4466           continue;
4467         }
4468 
4469         // Cannot do anything for any other EFLAG changes.
4470         return false;
4471       }
4472     }
4473 
4474     if (MI || Sub)
4475       break;
4476 
4477     // Reached begin of basic block. Continue in predecessor if there is
4478     // exactly one.
4479     if (MBB->pred_size() != 1)
4480       return false;
4481     MBB = *MBB->pred_begin();
4482     From = MBB->rbegin();
4483   }
4484 
4485   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4486   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4487   // If we are done with the basic block, we need to check whether EFLAGS is
4488   // live-out.
4489   bool FlagsMayLiveOut = true;
4490   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4491   MachineBasicBlock::iterator AfterCmpInstr =
4492       std::next(MachineBasicBlock::iterator(CmpInstr));
4493   for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4494     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4495     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4496     // We should check the usage if this instruction uses and updates EFLAGS.
4497     if (!UseEFLAGS && ModifyEFLAGS) {
4498       // It is safe to remove CmpInstr if EFLAGS is updated again.
4499       FlagsMayLiveOut = false;
4500       break;
4501     }
4502     if (!UseEFLAGS && !ModifyEFLAGS)
4503       continue;
4504 
4505     // EFLAGS is used by this instruction.
4506     X86::CondCode OldCC = X86::COND_INVALID;
4507     if (MI || IsSwapped || ImmDelta != 0) {
4508       // We decode the condition code from opcode.
4509       if (Instr.isBranch())
4510         OldCC = X86::getCondFromBranch(Instr);
4511       else {
4512         OldCC = X86::getCondFromSETCC(Instr);
4513         if (OldCC == X86::COND_INVALID)
4514           OldCC = X86::getCondFromCMov(Instr);
4515       }
4516       if (OldCC == X86::COND_INVALID) return false;
4517     }
4518     X86::CondCode ReplacementCC = X86::COND_INVALID;
4519     if (MI) {
4520       switch (OldCC) {
4521       default: break;
4522       case X86::COND_A: case X86::COND_AE:
4523       case X86::COND_B: case X86::COND_BE:
4524         // CF is used, we can't perform this optimization.
4525         return false;
4526       case X86::COND_G: case X86::COND_GE:
4527       case X86::COND_L: case X86::COND_LE:
4528       case X86::COND_O: case X86::COND_NO:
4529         // If OF is used, the instruction needs to clear it like CmpZero does.
4530         if (!ClearsOverflowFlag)
4531           return false;
4532         break;
4533       case X86::COND_S: case X86::COND_NS:
4534         // If SF is used, but the instruction doesn't update the SF, then we
4535         // can't do the optimization.
4536         if (NoSignFlag)
4537           return false;
4538         break;
4539       }
4540 
4541       // If we're updating the condition code check if we have to reverse the
4542       // condition.
4543       if (ShouldUpdateCC)
4544         switch (OldCC) {
4545         default:
4546           return false;
4547         case X86::COND_E:
4548           ReplacementCC = NewCC;
4549           break;
4550         case X86::COND_NE:
4551           ReplacementCC = GetOppositeBranchCondition(NewCC);
4552           break;
4553         }
4554     } else if (IsSwapped) {
4555       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4556       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4557       // We swap the condition code and synthesize the new opcode.
4558       ReplacementCC = getSwappedCondition(OldCC);
4559       if (ReplacementCC == X86::COND_INVALID) return false;
4560       ShouldUpdateCC = true;
4561     } else if (ImmDelta != 0) {
4562       unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4563       // Shift amount for min/max constants to adjust for 8/16/32 instruction
4564       // sizes.
4565       switch (OldCC) {
4566       case X86::COND_L: // x <s (C + 1)  -->  x <=s C
4567         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4568           return false;
4569         ReplacementCC = X86::COND_LE;
4570         break;
4571       case X86::COND_B: // x <u (C + 1)  -->  x <=u C
4572         if (ImmDelta != 1 || CmpValue == 0)
4573           return false;
4574         ReplacementCC = X86::COND_BE;
4575         break;
4576       case X86::COND_GE: // x >=s (C + 1)  -->  x >s C
4577         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4578           return false;
4579         ReplacementCC = X86::COND_G;
4580         break;
4581       case X86::COND_AE: // x >=u (C + 1)  -->  x >u C
4582         if (ImmDelta != 1 || CmpValue == 0)
4583           return false;
4584         ReplacementCC = X86::COND_A;
4585         break;
4586       case X86::COND_G: // x >s (C - 1)  -->  x >=s C
4587         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4588           return false;
4589         ReplacementCC = X86::COND_GE;
4590         break;
4591       case X86::COND_A: // x >u (C - 1)  -->  x >=u C
4592         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4593           return false;
4594         ReplacementCC = X86::COND_AE;
4595         break;
4596       case X86::COND_LE: // x <=s (C - 1)  -->  x <s C
4597         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4598           return false;
4599         ReplacementCC = X86::COND_L;
4600         break;
4601       case X86::COND_BE: // x <=u (C - 1)  -->  x <u C
4602         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4603           return false;
4604         ReplacementCC = X86::COND_B;
4605         break;
4606       default:
4607         return false;
4608       }
4609       ShouldUpdateCC = true;
4610     }
4611 
4612     if (ShouldUpdateCC && ReplacementCC != OldCC) {
4613       // Push the MachineInstr to OpsToUpdate.
4614       // If it is safe to remove CmpInstr, the condition code of these
4615       // instructions will be modified.
4616       OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4617     }
4618     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4619       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4620       FlagsMayLiveOut = false;
4621       break;
4622     }
4623   }
4624 
4625   // If we have to update users but EFLAGS is live-out abort, since we cannot
4626   // easily find all of the users.
4627   if (ShouldUpdateCC && FlagsMayLiveOut) {
4628     for (MachineBasicBlock *Successor : CmpMBB.successors())
4629       if (Successor->isLiveIn(X86::EFLAGS))
4630         return false;
4631   }
4632 
4633   // The instruction to be updated is either Sub or MI.
4634   assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
4635   Sub = MI != nullptr ? MI : Sub;
4636   MachineBasicBlock *SubBB = Sub->getParent();
4637   // Move Movr0Inst to the appropriate place before Sub.
4638   if (Movr0Inst) {
4639     // Only move within the same block so we don't accidentally move to a
4640     // block with higher execution frequency.
4641     if (&CmpMBB != SubBB)
4642       return false;
4643     // Look backwards until we find a def that doesn't use the current EFLAGS.
4644     MachineBasicBlock::reverse_iterator InsertI = Sub,
4645                                         InsertE = Sub->getParent()->rend();
4646     for (; InsertI != InsertE; ++InsertI) {
4647       MachineInstr *Instr = &*InsertI;
4648       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4649           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4650         Movr0Inst->getParent()->remove(Movr0Inst);
4651         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4652                                    Movr0Inst);
4653         break;
4654       }
4655     }
4656     if (InsertI == InsertE)
4657       return false;
4658   }
4659 
4660   // Make sure Sub instruction defines EFLAGS and mark the def live.
4661   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4662   assert(FlagDef && "Unable to locate a def EFLAGS operand");
4663   FlagDef->setIsDead(false);
4664 
4665   CmpInstr.eraseFromParent();
4666 
4667   // Modify the condition code of instructions in OpsToUpdate.
4668   for (auto &Op : OpsToUpdate) {
4669     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4670         .setImm(Op.second);
4671   }
4672   // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4673   for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4674        MBB = *MBB->pred_begin()) {
4675     assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
4676     if (!MBB->isLiveIn(X86::EFLAGS))
4677       MBB->addLiveIn(X86::EFLAGS);
4678   }
4679   return true;
4680 }
4681 
4682 /// Try to remove the load by folding it to a register
4683 /// operand at the use. We fold the load instructions if load defines a virtual
4684 /// register, the virtual register is used once in the same BB, and the
4685 /// instructions in-between do not load or store, and have no side effects.
4686 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4687                                               const MachineRegisterInfo *MRI,
4688                                               Register &FoldAsLoadDefReg,
4689                                               MachineInstr *&DefMI) const {
4690   // Check whether we can move DefMI here.
4691   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4692   assert(DefMI);
4693   bool SawStore = false;
4694   if (!DefMI->isSafeToMove(nullptr, SawStore))
4695     return nullptr;
4696 
4697   // Collect information about virtual register operands of MI.
4698   SmallVector<unsigned, 1> SrcOperandIds;
4699   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4700     MachineOperand &MO = MI.getOperand(i);
4701     if (!MO.isReg())
4702       continue;
4703     Register Reg = MO.getReg();
4704     if (Reg != FoldAsLoadDefReg)
4705       continue;
4706     // Do not fold if we have a subreg use or a def.
4707     if (MO.getSubReg() || MO.isDef())
4708       return nullptr;
4709     SrcOperandIds.push_back(i);
4710   }
4711   if (SrcOperandIds.empty())
4712     return nullptr;
4713 
4714   // Check whether we can fold the def into SrcOperandId.
4715   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4716     FoldAsLoadDefReg = 0;
4717     return FoldMI;
4718   }
4719 
4720   return nullptr;
4721 }
4722 
4723 /// Expand a single-def pseudo instruction to a two-addr
4724 /// instruction with two undef reads of the register being defined.
4725 /// This is used for mapping:
4726 ///   %xmm4 = V_SET0
4727 /// to:
4728 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
4729 ///
4730 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4731                              const MCInstrDesc &Desc) {
4732   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4733   Register Reg = MIB.getReg(0);
4734   MIB->setDesc(Desc);
4735 
4736   // MachineInstr::addOperand() will insert explicit operands before any
4737   // implicit operands.
4738   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4739   // But we don't trust that.
4740   assert(MIB.getReg(1) == Reg &&
4741          MIB.getReg(2) == Reg && "Misplaced operand");
4742   return true;
4743 }
4744 
4745 /// Expand a single-def pseudo instruction to a two-addr
4746 /// instruction with two %k0 reads.
4747 /// This is used for mapping:
4748 ///   %k4 = K_SET1
4749 /// to:
4750 ///   %k4 = KXNORrr %k0, %k0
4751 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4752                             Register Reg) {
4753   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4754   MIB->setDesc(Desc);
4755   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4756   return true;
4757 }
4758 
4759 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4760                           bool MinusOne) {
4761   MachineBasicBlock &MBB = *MIB->getParent();
4762   const DebugLoc &DL = MIB->getDebugLoc();
4763   Register Reg = MIB.getReg(0);
4764 
4765   // Insert the XOR.
4766   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4767       .addReg(Reg, RegState::Undef)
4768       .addReg(Reg, RegState::Undef);
4769 
4770   // Turn the pseudo into an INC or DEC.
4771   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4772   MIB.addReg(Reg);
4773 
4774   return true;
4775 }
4776 
4777 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4778                                const TargetInstrInfo &TII,
4779                                const X86Subtarget &Subtarget) {
4780   MachineBasicBlock &MBB = *MIB->getParent();
4781   const DebugLoc &DL = MIB->getDebugLoc();
4782   int64_t Imm = MIB->getOperand(1).getImm();
4783   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4784   MachineBasicBlock::iterator I = MIB.getInstr();
4785 
4786   int StackAdjustment;
4787 
4788   if (Subtarget.is64Bit()) {
4789     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4790            MIB->getOpcode() == X86::MOV32ImmSExti8);
4791 
4792     // Can't use push/pop lowering if the function might write to the red zone.
4793     X86MachineFunctionInfo *X86FI =
4794         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4795     if (X86FI->getUsesRedZone()) {
4796       MIB->setDesc(TII.get(MIB->getOpcode() ==
4797                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4798       return true;
4799     }
4800 
4801     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4802     // widen the register if necessary.
4803     StackAdjustment = 8;
4804     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4805     MIB->setDesc(TII.get(X86::POP64r));
4806     MIB->getOperand(0)
4807         .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4808   } else {
4809     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4810     StackAdjustment = 4;
4811     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4812     MIB->setDesc(TII.get(X86::POP32r));
4813   }
4814   MIB->RemoveOperand(1);
4815   MIB->addImplicitDefUseOperands(*MBB.getParent());
4816 
4817   // Build CFI if necessary.
4818   MachineFunction &MF = *MBB.getParent();
4819   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4820   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4821   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4822   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4823   if (EmitCFI) {
4824     TFL->BuildCFI(MBB, I, DL,
4825         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4826     TFL->BuildCFI(MBB, std::next(I), DL,
4827         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4828   }
4829 
4830   return true;
4831 }
4832 
4833 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4834 // code sequence is needed for other targets.
4835 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4836                                  const TargetInstrInfo &TII) {
4837   MachineBasicBlock &MBB = *MIB->getParent();
4838   const DebugLoc &DL = MIB->getDebugLoc();
4839   Register Reg = MIB.getReg(0);
4840   const GlobalValue *GV =
4841       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4842   auto Flags = MachineMemOperand::MOLoad |
4843                MachineMemOperand::MODereferenceable |
4844                MachineMemOperand::MOInvariant;
4845   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4846       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4847   MachineBasicBlock::iterator I = MIB.getInstr();
4848 
4849   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4850       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4851       .addMemOperand(MMO);
4852   MIB->setDebugLoc(DL);
4853   MIB->setDesc(TII.get(X86::MOV64rm));
4854   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4855 }
4856 
4857 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4858   MachineBasicBlock &MBB = *MIB->getParent();
4859   MachineFunction &MF = *MBB.getParent();
4860   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4861   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4862   unsigned XorOp =
4863       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4864   MIB->setDesc(TII.get(XorOp));
4865   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4866   return true;
4867 }
4868 
4869 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4870 // but not VLX. If it uses an extended register we need to use an instruction
4871 // that loads the lower 128/256-bit, but is available with only AVX512F.
4872 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4873                             const TargetRegisterInfo *TRI,
4874                             const MCInstrDesc &LoadDesc,
4875                             const MCInstrDesc &BroadcastDesc,
4876                             unsigned SubIdx) {
4877   Register DestReg = MIB.getReg(0);
4878   // Check if DestReg is XMM16-31 or YMM16-31.
4879   if (TRI->getEncodingValue(DestReg) < 16) {
4880     // We can use a normal VEX encoded load.
4881     MIB->setDesc(LoadDesc);
4882   } else {
4883     // Use a 128/256-bit VBROADCAST instruction.
4884     MIB->setDesc(BroadcastDesc);
4885     // Change the destination to a 512-bit register.
4886     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4887     MIB->getOperand(0).setReg(DestReg);
4888   }
4889   return true;
4890 }
4891 
4892 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4893 // but not VLX. If it uses an extended register we need to use an instruction
4894 // that stores the lower 128/256-bit, but is available with only AVX512F.
4895 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4896                              const TargetRegisterInfo *TRI,
4897                              const MCInstrDesc &StoreDesc,
4898                              const MCInstrDesc &ExtractDesc,
4899                              unsigned SubIdx) {
4900   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4901   // Check if DestReg is XMM16-31 or YMM16-31.
4902   if (TRI->getEncodingValue(SrcReg) < 16) {
4903     // We can use a normal VEX encoded store.
4904     MIB->setDesc(StoreDesc);
4905   } else {
4906     // Use a VEXTRACTF instruction.
4907     MIB->setDesc(ExtractDesc);
4908     // Change the destination to a 512-bit register.
4909     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4910     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4911     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4912   }
4913 
4914   return true;
4915 }
4916 
4917 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4918   MIB->setDesc(Desc);
4919   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4920   // Temporarily remove the immediate so we can add another source register.
4921   MIB->RemoveOperand(2);
4922   // Add the register. Don't copy the kill flag if there is one.
4923   MIB.addReg(MIB.getReg(1),
4924              getUndefRegState(MIB->getOperand(1).isUndef()));
4925   // Add back the immediate.
4926   MIB.addImm(ShiftAmt);
4927   return true;
4928 }
4929 
4930 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4931   bool HasAVX = Subtarget.hasAVX();
4932   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4933   switch (MI.getOpcode()) {
4934   case X86::MOV32r0:
4935     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4936   case X86::MOV32r1:
4937     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4938   case X86::MOV32r_1:
4939     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4940   case X86::MOV32ImmSExti8:
4941   case X86::MOV64ImmSExti8:
4942     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4943   case X86::SETB_C32r:
4944     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4945   case X86::SETB_C64r:
4946     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4947   case X86::MMX_SET0:
4948     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4949   case X86::V_SET0:
4950   case X86::FsFLD0SS:
4951   case X86::FsFLD0SD:
4952   case X86::FsFLD0F128:
4953     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4954   case X86::AVX_SET0: {
4955     assert(HasAVX && "AVX not supported");
4956     const TargetRegisterInfo *TRI = &getRegisterInfo();
4957     Register SrcReg = MIB.getReg(0);
4958     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4959     MIB->getOperand(0).setReg(XReg);
4960     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4961     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4962     return true;
4963   }
4964   case X86::AVX512_128_SET0:
4965   case X86::AVX512_FsFLD0SH:
4966   case X86::AVX512_FsFLD0SS:
4967   case X86::AVX512_FsFLD0SD:
4968   case X86::AVX512_FsFLD0F128: {
4969     bool HasVLX = Subtarget.hasVLX();
4970     Register SrcReg = MIB.getReg(0);
4971     const TargetRegisterInfo *TRI = &getRegisterInfo();
4972     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4973       return Expand2AddrUndef(MIB,
4974                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4975     // Extended register without VLX. Use a larger XOR.
4976     SrcReg =
4977         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4978     MIB->getOperand(0).setReg(SrcReg);
4979     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4980   }
4981   case X86::AVX512_256_SET0:
4982   case X86::AVX512_512_SET0: {
4983     bool HasVLX = Subtarget.hasVLX();
4984     Register SrcReg = MIB.getReg(0);
4985     const TargetRegisterInfo *TRI = &getRegisterInfo();
4986     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4987       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4988       MIB->getOperand(0).setReg(XReg);
4989       Expand2AddrUndef(MIB,
4990                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4991       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4992       return true;
4993     }
4994     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4995       // No VLX so we must reference a zmm.
4996       unsigned ZReg =
4997         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4998       MIB->getOperand(0).setReg(ZReg);
4999     }
5000     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
5001   }
5002   case X86::V_SETALLONES:
5003     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
5004   case X86::AVX2_SETALLONES:
5005     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
5006   case X86::AVX1_SETALLONES: {
5007     Register Reg = MIB.getReg(0);
5008     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
5009     MIB->setDesc(get(X86::VCMPPSYrri));
5010     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
5011     return true;
5012   }
5013   case X86::AVX512_512_SETALLONES: {
5014     Register Reg = MIB.getReg(0);
5015     MIB->setDesc(get(X86::VPTERNLOGDZrri));
5016     // VPTERNLOGD needs 3 register inputs and an immediate.
5017     // 0xff will return 1s for any input.
5018     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
5019        .addReg(Reg, RegState::Undef).addImm(0xff);
5020     return true;
5021   }
5022   case X86::AVX512_512_SEXT_MASK_32:
5023   case X86::AVX512_512_SEXT_MASK_64: {
5024     Register Reg = MIB.getReg(0);
5025     Register MaskReg = MIB.getReg(1);
5026     unsigned MaskState = getRegState(MIB->getOperand(1));
5027     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
5028                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
5029     MI.RemoveOperand(1);
5030     MIB->setDesc(get(Opc));
5031     // VPTERNLOG needs 3 register inputs and an immediate.
5032     // 0xff will return 1s for any input.
5033     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
5034        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
5035     return true;
5036   }
5037   case X86::VMOVAPSZ128rm_NOVLX:
5038     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
5039                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
5040   case X86::VMOVUPSZ128rm_NOVLX:
5041     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
5042                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
5043   case X86::VMOVAPSZ256rm_NOVLX:
5044     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
5045                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
5046   case X86::VMOVUPSZ256rm_NOVLX:
5047     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
5048                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
5049   case X86::VMOVAPSZ128mr_NOVLX:
5050     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
5051                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5052   case X86::VMOVUPSZ128mr_NOVLX:
5053     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
5054                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5055   case X86::VMOVAPSZ256mr_NOVLX:
5056     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
5057                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5058   case X86::VMOVUPSZ256mr_NOVLX:
5059     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
5060                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5061   case X86::MOV32ri64: {
5062     Register Reg = MIB.getReg(0);
5063     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
5064     MI.setDesc(get(X86::MOV32ri));
5065     MIB->getOperand(0).setReg(Reg32);
5066     MIB.addReg(Reg, RegState::ImplicitDefine);
5067     return true;
5068   }
5069 
5070   // KNL does not recognize dependency-breaking idioms for mask registers,
5071   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5072   // Using %k0 as the undef input register is a performance heuristic based
5073   // on the assumption that %k0 is used less frequently than the other mask
5074   // registers, since it is not usable as a write mask.
5075   // FIXME: A more advanced approach would be to choose the best input mask
5076   // register based on context.
5077   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5078   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5079   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5080   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5081   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5082   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5083   case TargetOpcode::LOAD_STACK_GUARD:
5084     expandLoadStackGuard(MIB, *this);
5085     return true;
5086   case X86::XOR64_FP:
5087   case X86::XOR32_FP:
5088     return expandXorFP(MIB, *this);
5089   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
5090   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
5091   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
5092   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
5093   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
5094   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
5095   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
5096   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
5097   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
5098   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
5099   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
5100   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
5101   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
5102   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
5103   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
5104   }
5105   return false;
5106 }
5107 
5108 /// Return true for all instructions that only update
5109 /// the first 32 or 64-bits of the destination register and leave the rest
5110 /// unmodified. This can be used to avoid folding loads if the instructions
5111 /// only update part of the destination register, and the non-updated part is
5112 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5113 /// instructions breaks the partial register dependency and it can improve
5114 /// performance. e.g.:
5115 ///
5116 ///   movss (%rdi), %xmm0
5117 ///   cvtss2sd %xmm0, %xmm0
5118 ///
5119 /// Instead of
5120 ///   cvtss2sd (%rdi), %xmm0
5121 ///
5122 /// FIXME: This should be turned into a TSFlags.
5123 ///
5124 static bool hasPartialRegUpdate(unsigned Opcode,
5125                                 const X86Subtarget &Subtarget,
5126                                 bool ForLoadFold = false) {
5127   switch (Opcode) {
5128   case X86::CVTSI2SSrr:
5129   case X86::CVTSI2SSrm:
5130   case X86::CVTSI642SSrr:
5131   case X86::CVTSI642SSrm:
5132   case X86::CVTSI2SDrr:
5133   case X86::CVTSI2SDrm:
5134   case X86::CVTSI642SDrr:
5135   case X86::CVTSI642SDrm:
5136     // Load folding won't effect the undef register update since the input is
5137     // a GPR.
5138     return !ForLoadFold;
5139   case X86::CVTSD2SSrr:
5140   case X86::CVTSD2SSrm:
5141   case X86::CVTSS2SDrr:
5142   case X86::CVTSS2SDrm:
5143   case X86::MOVHPDrm:
5144   case X86::MOVHPSrm:
5145   case X86::MOVLPDrm:
5146   case X86::MOVLPSrm:
5147   case X86::RCPSSr:
5148   case X86::RCPSSm:
5149   case X86::RCPSSr_Int:
5150   case X86::RCPSSm_Int:
5151   case X86::ROUNDSDr:
5152   case X86::ROUNDSDm:
5153   case X86::ROUNDSSr:
5154   case X86::ROUNDSSm:
5155   case X86::RSQRTSSr:
5156   case X86::RSQRTSSm:
5157   case X86::RSQRTSSr_Int:
5158   case X86::RSQRTSSm_Int:
5159   case X86::SQRTSSr:
5160   case X86::SQRTSSm:
5161   case X86::SQRTSSr_Int:
5162   case X86::SQRTSSm_Int:
5163   case X86::SQRTSDr:
5164   case X86::SQRTSDm:
5165   case X86::SQRTSDr_Int:
5166   case X86::SQRTSDm_Int:
5167     return true;
5168   // GPR
5169   case X86::POPCNT32rm:
5170   case X86::POPCNT32rr:
5171   case X86::POPCNT64rm:
5172   case X86::POPCNT64rr:
5173     return Subtarget.hasPOPCNTFalseDeps();
5174   case X86::LZCNT32rm:
5175   case X86::LZCNT32rr:
5176   case X86::LZCNT64rm:
5177   case X86::LZCNT64rr:
5178   case X86::TZCNT32rm:
5179   case X86::TZCNT32rr:
5180   case X86::TZCNT64rm:
5181   case X86::TZCNT64rr:
5182     return Subtarget.hasLZCNTFalseDeps();
5183   }
5184 
5185   return false;
5186 }
5187 
5188 /// Inform the BreakFalseDeps pass how many idle
5189 /// instructions we would like before a partial register update.
5190 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5191     const MachineInstr &MI, unsigned OpNum,
5192     const TargetRegisterInfo *TRI) const {
5193   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5194     return 0;
5195 
5196   // If MI is marked as reading Reg, the partial register update is wanted.
5197   const MachineOperand &MO = MI.getOperand(0);
5198   Register Reg = MO.getReg();
5199   if (Reg.isVirtual()) {
5200     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5201       return 0;
5202   } else {
5203     if (MI.readsRegister(Reg, TRI))
5204       return 0;
5205   }
5206 
5207   // If any instructions in the clearance range are reading Reg, insert a
5208   // dependency breaking instruction, which is inexpensive and is likely to
5209   // be hidden in other instruction's cycles.
5210   return PartialRegUpdateClearance;
5211 }
5212 
5213 // Return true for any instruction the copies the high bits of the first source
5214 // operand into the unused high bits of the destination operand.
5215 // Also returns true for instructions that have two inputs where one may
5216 // be undef and we want it to use the same register as the other input.
5217 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5218                               bool ForLoadFold = false) {
5219   // Set the OpNum parameter to the first source operand.
5220   switch (Opcode) {
5221   case X86::MMX_PUNPCKHBWirr:
5222   case X86::MMX_PUNPCKHWDirr:
5223   case X86::MMX_PUNPCKHDQirr:
5224   case X86::MMX_PUNPCKLBWirr:
5225   case X86::MMX_PUNPCKLWDirr:
5226   case X86::MMX_PUNPCKLDQirr:
5227   case X86::MOVHLPSrr:
5228   case X86::PACKSSWBrr:
5229   case X86::PACKUSWBrr:
5230   case X86::PACKSSDWrr:
5231   case X86::PACKUSDWrr:
5232   case X86::PUNPCKHBWrr:
5233   case X86::PUNPCKLBWrr:
5234   case X86::PUNPCKHWDrr:
5235   case X86::PUNPCKLWDrr:
5236   case X86::PUNPCKHDQrr:
5237   case X86::PUNPCKLDQrr:
5238   case X86::PUNPCKHQDQrr:
5239   case X86::PUNPCKLQDQrr:
5240   case X86::SHUFPDrri:
5241   case X86::SHUFPSrri:
5242     // These instructions are sometimes used with an undef first or second
5243     // source. Return true here so BreakFalseDeps will assign this source to the
5244     // same register as the first source to avoid a false dependency.
5245     // Operand 1 of these instructions is tied so they're separate from their
5246     // VEX counterparts.
5247     return OpNum == 2 && !ForLoadFold;
5248 
5249   case X86::VMOVLHPSrr:
5250   case X86::VMOVLHPSZrr:
5251   case X86::VPACKSSWBrr:
5252   case X86::VPACKUSWBrr:
5253   case X86::VPACKSSDWrr:
5254   case X86::VPACKUSDWrr:
5255   case X86::VPACKSSWBZ128rr:
5256   case X86::VPACKUSWBZ128rr:
5257   case X86::VPACKSSDWZ128rr:
5258   case X86::VPACKUSDWZ128rr:
5259   case X86::VPERM2F128rr:
5260   case X86::VPERM2I128rr:
5261   case X86::VSHUFF32X4Z256rri:
5262   case X86::VSHUFF32X4Zrri:
5263   case X86::VSHUFF64X2Z256rri:
5264   case X86::VSHUFF64X2Zrri:
5265   case X86::VSHUFI32X4Z256rri:
5266   case X86::VSHUFI32X4Zrri:
5267   case X86::VSHUFI64X2Z256rri:
5268   case X86::VSHUFI64X2Zrri:
5269   case X86::VPUNPCKHBWrr:
5270   case X86::VPUNPCKLBWrr:
5271   case X86::VPUNPCKHBWYrr:
5272   case X86::VPUNPCKLBWYrr:
5273   case X86::VPUNPCKHBWZ128rr:
5274   case X86::VPUNPCKLBWZ128rr:
5275   case X86::VPUNPCKHBWZ256rr:
5276   case X86::VPUNPCKLBWZ256rr:
5277   case X86::VPUNPCKHBWZrr:
5278   case X86::VPUNPCKLBWZrr:
5279   case X86::VPUNPCKHWDrr:
5280   case X86::VPUNPCKLWDrr:
5281   case X86::VPUNPCKHWDYrr:
5282   case X86::VPUNPCKLWDYrr:
5283   case X86::VPUNPCKHWDZ128rr:
5284   case X86::VPUNPCKLWDZ128rr:
5285   case X86::VPUNPCKHWDZ256rr:
5286   case X86::VPUNPCKLWDZ256rr:
5287   case X86::VPUNPCKHWDZrr:
5288   case X86::VPUNPCKLWDZrr:
5289   case X86::VPUNPCKHDQrr:
5290   case X86::VPUNPCKLDQrr:
5291   case X86::VPUNPCKHDQYrr:
5292   case X86::VPUNPCKLDQYrr:
5293   case X86::VPUNPCKHDQZ128rr:
5294   case X86::VPUNPCKLDQZ128rr:
5295   case X86::VPUNPCKHDQZ256rr:
5296   case X86::VPUNPCKLDQZ256rr:
5297   case X86::VPUNPCKHDQZrr:
5298   case X86::VPUNPCKLDQZrr:
5299   case X86::VPUNPCKHQDQrr:
5300   case X86::VPUNPCKLQDQrr:
5301   case X86::VPUNPCKHQDQYrr:
5302   case X86::VPUNPCKLQDQYrr:
5303   case X86::VPUNPCKHQDQZ128rr:
5304   case X86::VPUNPCKLQDQZ128rr:
5305   case X86::VPUNPCKHQDQZ256rr:
5306   case X86::VPUNPCKLQDQZ256rr:
5307   case X86::VPUNPCKHQDQZrr:
5308   case X86::VPUNPCKLQDQZrr:
5309     // These instructions are sometimes used with an undef first or second
5310     // source. Return true here so BreakFalseDeps will assign this source to the
5311     // same register as the first source to avoid a false dependency.
5312     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5313 
5314   case X86::VCVTSI2SSrr:
5315   case X86::VCVTSI2SSrm:
5316   case X86::VCVTSI2SSrr_Int:
5317   case X86::VCVTSI2SSrm_Int:
5318   case X86::VCVTSI642SSrr:
5319   case X86::VCVTSI642SSrm:
5320   case X86::VCVTSI642SSrr_Int:
5321   case X86::VCVTSI642SSrm_Int:
5322   case X86::VCVTSI2SDrr:
5323   case X86::VCVTSI2SDrm:
5324   case X86::VCVTSI2SDrr_Int:
5325   case X86::VCVTSI2SDrm_Int:
5326   case X86::VCVTSI642SDrr:
5327   case X86::VCVTSI642SDrm:
5328   case X86::VCVTSI642SDrr_Int:
5329   case X86::VCVTSI642SDrm_Int:
5330   // AVX-512
5331   case X86::VCVTSI2SSZrr:
5332   case X86::VCVTSI2SSZrm:
5333   case X86::VCVTSI2SSZrr_Int:
5334   case X86::VCVTSI2SSZrrb_Int:
5335   case X86::VCVTSI2SSZrm_Int:
5336   case X86::VCVTSI642SSZrr:
5337   case X86::VCVTSI642SSZrm:
5338   case X86::VCVTSI642SSZrr_Int:
5339   case X86::VCVTSI642SSZrrb_Int:
5340   case X86::VCVTSI642SSZrm_Int:
5341   case X86::VCVTSI2SDZrr:
5342   case X86::VCVTSI2SDZrm:
5343   case X86::VCVTSI2SDZrr_Int:
5344   case X86::VCVTSI2SDZrm_Int:
5345   case X86::VCVTSI642SDZrr:
5346   case X86::VCVTSI642SDZrm:
5347   case X86::VCVTSI642SDZrr_Int:
5348   case X86::VCVTSI642SDZrrb_Int:
5349   case X86::VCVTSI642SDZrm_Int:
5350   case X86::VCVTUSI2SSZrr:
5351   case X86::VCVTUSI2SSZrm:
5352   case X86::VCVTUSI2SSZrr_Int:
5353   case X86::VCVTUSI2SSZrrb_Int:
5354   case X86::VCVTUSI2SSZrm_Int:
5355   case X86::VCVTUSI642SSZrr:
5356   case X86::VCVTUSI642SSZrm:
5357   case X86::VCVTUSI642SSZrr_Int:
5358   case X86::VCVTUSI642SSZrrb_Int:
5359   case X86::VCVTUSI642SSZrm_Int:
5360   case X86::VCVTUSI2SDZrr:
5361   case X86::VCVTUSI2SDZrm:
5362   case X86::VCVTUSI2SDZrr_Int:
5363   case X86::VCVTUSI2SDZrm_Int:
5364   case X86::VCVTUSI642SDZrr:
5365   case X86::VCVTUSI642SDZrm:
5366   case X86::VCVTUSI642SDZrr_Int:
5367   case X86::VCVTUSI642SDZrrb_Int:
5368   case X86::VCVTUSI642SDZrm_Int:
5369   case X86::VCVTSI2SHZrr:
5370   case X86::VCVTSI2SHZrm:
5371   case X86::VCVTSI2SHZrr_Int:
5372   case X86::VCVTSI2SHZrrb_Int:
5373   case X86::VCVTSI2SHZrm_Int:
5374   case X86::VCVTSI642SHZrr:
5375   case X86::VCVTSI642SHZrm:
5376   case X86::VCVTSI642SHZrr_Int:
5377   case X86::VCVTSI642SHZrrb_Int:
5378   case X86::VCVTSI642SHZrm_Int:
5379   case X86::VCVTUSI2SHZrr:
5380   case X86::VCVTUSI2SHZrm:
5381   case X86::VCVTUSI2SHZrr_Int:
5382   case X86::VCVTUSI2SHZrrb_Int:
5383   case X86::VCVTUSI2SHZrm_Int:
5384   case X86::VCVTUSI642SHZrr:
5385   case X86::VCVTUSI642SHZrm:
5386   case X86::VCVTUSI642SHZrr_Int:
5387   case X86::VCVTUSI642SHZrrb_Int:
5388   case X86::VCVTUSI642SHZrm_Int:
5389     // Load folding won't effect the undef register update since the input is
5390     // a GPR.
5391     return OpNum == 1 && !ForLoadFold;
5392   case X86::VCVTSD2SSrr:
5393   case X86::VCVTSD2SSrm:
5394   case X86::VCVTSD2SSrr_Int:
5395   case X86::VCVTSD2SSrm_Int:
5396   case X86::VCVTSS2SDrr:
5397   case X86::VCVTSS2SDrm:
5398   case X86::VCVTSS2SDrr_Int:
5399   case X86::VCVTSS2SDrm_Int:
5400   case X86::VRCPSSr:
5401   case X86::VRCPSSr_Int:
5402   case X86::VRCPSSm:
5403   case X86::VRCPSSm_Int:
5404   case X86::VROUNDSDr:
5405   case X86::VROUNDSDm:
5406   case X86::VROUNDSDr_Int:
5407   case X86::VROUNDSDm_Int:
5408   case X86::VROUNDSSr:
5409   case X86::VROUNDSSm:
5410   case X86::VROUNDSSr_Int:
5411   case X86::VROUNDSSm_Int:
5412   case X86::VRSQRTSSr:
5413   case X86::VRSQRTSSr_Int:
5414   case X86::VRSQRTSSm:
5415   case X86::VRSQRTSSm_Int:
5416   case X86::VSQRTSSr:
5417   case X86::VSQRTSSr_Int:
5418   case X86::VSQRTSSm:
5419   case X86::VSQRTSSm_Int:
5420   case X86::VSQRTSDr:
5421   case X86::VSQRTSDr_Int:
5422   case X86::VSQRTSDm:
5423   case X86::VSQRTSDm_Int:
5424   // AVX-512
5425   case X86::VCVTSD2SSZrr:
5426   case X86::VCVTSD2SSZrr_Int:
5427   case X86::VCVTSD2SSZrrb_Int:
5428   case X86::VCVTSD2SSZrm:
5429   case X86::VCVTSD2SSZrm_Int:
5430   case X86::VCVTSS2SDZrr:
5431   case X86::VCVTSS2SDZrr_Int:
5432   case X86::VCVTSS2SDZrrb_Int:
5433   case X86::VCVTSS2SDZrm:
5434   case X86::VCVTSS2SDZrm_Int:
5435   case X86::VGETEXPSDZr:
5436   case X86::VGETEXPSDZrb:
5437   case X86::VGETEXPSDZm:
5438   case X86::VGETEXPSSZr:
5439   case X86::VGETEXPSSZrb:
5440   case X86::VGETEXPSSZm:
5441   case X86::VGETMANTSDZrri:
5442   case X86::VGETMANTSDZrrib:
5443   case X86::VGETMANTSDZrmi:
5444   case X86::VGETMANTSSZrri:
5445   case X86::VGETMANTSSZrrib:
5446   case X86::VGETMANTSSZrmi:
5447   case X86::VRNDSCALESDZr:
5448   case X86::VRNDSCALESDZr_Int:
5449   case X86::VRNDSCALESDZrb_Int:
5450   case X86::VRNDSCALESDZm:
5451   case X86::VRNDSCALESDZm_Int:
5452   case X86::VRNDSCALESSZr:
5453   case X86::VRNDSCALESSZr_Int:
5454   case X86::VRNDSCALESSZrb_Int:
5455   case X86::VRNDSCALESSZm:
5456   case X86::VRNDSCALESSZm_Int:
5457   case X86::VRCP14SDZrr:
5458   case X86::VRCP14SDZrm:
5459   case X86::VRCP14SSZrr:
5460   case X86::VRCP14SSZrm:
5461   case X86::VRCPSHZrr:
5462   case X86::VRCPSHZrm:
5463   case X86::VRSQRTSHZrr:
5464   case X86::VRSQRTSHZrm:
5465   case X86::VREDUCESHZrmi:
5466   case X86::VREDUCESHZrri:
5467   case X86::VREDUCESHZrrib:
5468   case X86::VGETEXPSHZr:
5469   case X86::VGETEXPSHZrb:
5470   case X86::VGETEXPSHZm:
5471   case X86::VGETMANTSHZrri:
5472   case X86::VGETMANTSHZrrib:
5473   case X86::VGETMANTSHZrmi:
5474   case X86::VRNDSCALESHZr:
5475   case X86::VRNDSCALESHZr_Int:
5476   case X86::VRNDSCALESHZrb_Int:
5477   case X86::VRNDSCALESHZm:
5478   case X86::VRNDSCALESHZm_Int:
5479   case X86::VSQRTSHZr:
5480   case X86::VSQRTSHZr_Int:
5481   case X86::VSQRTSHZrb_Int:
5482   case X86::VSQRTSHZm:
5483   case X86::VSQRTSHZm_Int:
5484   case X86::VRCP28SDZr:
5485   case X86::VRCP28SDZrb:
5486   case X86::VRCP28SDZm:
5487   case X86::VRCP28SSZr:
5488   case X86::VRCP28SSZrb:
5489   case X86::VRCP28SSZm:
5490   case X86::VREDUCESSZrmi:
5491   case X86::VREDUCESSZrri:
5492   case X86::VREDUCESSZrrib:
5493   case X86::VRSQRT14SDZrr:
5494   case X86::VRSQRT14SDZrm:
5495   case X86::VRSQRT14SSZrr:
5496   case X86::VRSQRT14SSZrm:
5497   case X86::VRSQRT28SDZr:
5498   case X86::VRSQRT28SDZrb:
5499   case X86::VRSQRT28SDZm:
5500   case X86::VRSQRT28SSZr:
5501   case X86::VRSQRT28SSZrb:
5502   case X86::VRSQRT28SSZm:
5503   case X86::VSQRTSSZr:
5504   case X86::VSQRTSSZr_Int:
5505   case X86::VSQRTSSZrb_Int:
5506   case X86::VSQRTSSZm:
5507   case X86::VSQRTSSZm_Int:
5508   case X86::VSQRTSDZr:
5509   case X86::VSQRTSDZr_Int:
5510   case X86::VSQRTSDZrb_Int:
5511   case X86::VSQRTSDZm:
5512   case X86::VSQRTSDZm_Int:
5513   case X86::VCVTSD2SHZrr:
5514   case X86::VCVTSD2SHZrr_Int:
5515   case X86::VCVTSD2SHZrrb_Int:
5516   case X86::VCVTSD2SHZrm:
5517   case X86::VCVTSD2SHZrm_Int:
5518   case X86::VCVTSS2SHZrr:
5519   case X86::VCVTSS2SHZrr_Int:
5520   case X86::VCVTSS2SHZrrb_Int:
5521   case X86::VCVTSS2SHZrm:
5522   case X86::VCVTSS2SHZrm_Int:
5523   case X86::VCVTSH2SDZrr:
5524   case X86::VCVTSH2SDZrr_Int:
5525   case X86::VCVTSH2SDZrrb_Int:
5526   case X86::VCVTSH2SDZrm:
5527   case X86::VCVTSH2SDZrm_Int:
5528   case X86::VCVTSH2SSZrr:
5529   case X86::VCVTSH2SSZrr_Int:
5530   case X86::VCVTSH2SSZrrb_Int:
5531   case X86::VCVTSH2SSZrm:
5532   case X86::VCVTSH2SSZrm_Int:
5533     return OpNum == 1;
5534   case X86::VMOVSSZrrk:
5535   case X86::VMOVSDZrrk:
5536     return OpNum == 3 && !ForLoadFold;
5537   case X86::VMOVSSZrrkz:
5538   case X86::VMOVSDZrrkz:
5539     return OpNum == 2 && !ForLoadFold;
5540   }
5541 
5542   return false;
5543 }
5544 
5545 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5546 /// before certain undef register reads.
5547 ///
5548 /// This catches the VCVTSI2SD family of instructions:
5549 ///
5550 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5551 ///
5552 /// We should to be careful *not* to catch VXOR idioms which are presumably
5553 /// handled specially in the pipeline:
5554 ///
5555 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5556 ///
5557 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5558 /// high bits that are passed-through are not live.
5559 unsigned
5560 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5561                                    const TargetRegisterInfo *TRI) const {
5562   const MachineOperand &MO = MI.getOperand(OpNum);
5563   if (Register::isPhysicalRegister(MO.getReg()) &&
5564       hasUndefRegUpdate(MI.getOpcode(), OpNum))
5565     return UndefRegClearance;
5566 
5567   return 0;
5568 }
5569 
5570 void X86InstrInfo::breakPartialRegDependency(
5571     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5572   Register Reg = MI.getOperand(OpNum).getReg();
5573   // If MI kills this register, the false dependence is already broken.
5574   if (MI.killsRegister(Reg, TRI))
5575     return;
5576 
5577   if (X86::VR128RegClass.contains(Reg)) {
5578     // These instructions are all floating point domain, so xorps is the best
5579     // choice.
5580     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5581     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5582         .addReg(Reg, RegState::Undef)
5583         .addReg(Reg, RegState::Undef);
5584     MI.addRegisterKilled(Reg, TRI, true);
5585   } else if (X86::VR256RegClass.contains(Reg)) {
5586     // Use vxorps to clear the full ymm register.
5587     // It wants to read and write the xmm sub-register.
5588     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5589     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5590         .addReg(XReg, RegState::Undef)
5591         .addReg(XReg, RegState::Undef)
5592         .addReg(Reg, RegState::ImplicitDefine);
5593     MI.addRegisterKilled(Reg, TRI, true);
5594   } else if (X86::GR64RegClass.contains(Reg)) {
5595     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5596     // as well.
5597     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5598     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5599         .addReg(XReg, RegState::Undef)
5600         .addReg(XReg, RegState::Undef)
5601         .addReg(Reg, RegState::ImplicitDefine);
5602     MI.addRegisterKilled(Reg, TRI, true);
5603   } else if (X86::GR32RegClass.contains(Reg)) {
5604     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5605         .addReg(Reg, RegState::Undef)
5606         .addReg(Reg, RegState::Undef);
5607     MI.addRegisterKilled(Reg, TRI, true);
5608   }
5609 }
5610 
5611 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5612                         int PtrOffset = 0) {
5613   unsigned NumAddrOps = MOs.size();
5614 
5615   if (NumAddrOps < 4) {
5616     // FrameIndex only - add an immediate offset (whether its zero or not).
5617     for (unsigned i = 0; i != NumAddrOps; ++i)
5618       MIB.add(MOs[i]);
5619     addOffset(MIB, PtrOffset);
5620   } else {
5621     // General Memory Addressing - we need to add any offset to an existing
5622     // offset.
5623     assert(MOs.size() == 5 && "Unexpected memory operand list length");
5624     for (unsigned i = 0; i != NumAddrOps; ++i) {
5625       const MachineOperand &MO = MOs[i];
5626       if (i == 3 && PtrOffset != 0) {
5627         MIB.addDisp(MO, PtrOffset);
5628       } else {
5629         MIB.add(MO);
5630       }
5631     }
5632   }
5633 }
5634 
5635 static void updateOperandRegConstraints(MachineFunction &MF,
5636                                         MachineInstr &NewMI,
5637                                         const TargetInstrInfo &TII) {
5638   MachineRegisterInfo &MRI = MF.getRegInfo();
5639   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5640 
5641   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5642     MachineOperand &MO = NewMI.getOperand(Idx);
5643     // We only need to update constraints on virtual register operands.
5644     if (!MO.isReg())
5645       continue;
5646     Register Reg = MO.getReg();
5647     if (!Reg.isVirtual())
5648       continue;
5649 
5650     auto *NewRC = MRI.constrainRegClass(
5651         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5652     if (!NewRC) {
5653       LLVM_DEBUG(
5654           dbgs() << "WARNING: Unable to update register constraint for operand "
5655                  << Idx << " of instruction:\n";
5656           NewMI.dump(); dbgs() << "\n");
5657     }
5658   }
5659 }
5660 
5661 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5662                                      ArrayRef<MachineOperand> MOs,
5663                                      MachineBasicBlock::iterator InsertPt,
5664                                      MachineInstr &MI,
5665                                      const TargetInstrInfo &TII) {
5666   // Create the base instruction with the memory operand as the first part.
5667   // Omit the implicit operands, something BuildMI can't do.
5668   MachineInstr *NewMI =
5669       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5670   MachineInstrBuilder MIB(MF, NewMI);
5671   addOperands(MIB, MOs);
5672 
5673   // Loop over the rest of the ri operands, converting them over.
5674   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5675   for (unsigned i = 0; i != NumOps; ++i) {
5676     MachineOperand &MO = MI.getOperand(i + 2);
5677     MIB.add(MO);
5678   }
5679   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
5680     MachineOperand &MO = MI.getOperand(i);
5681     MIB.add(MO);
5682   }
5683 
5684   updateOperandRegConstraints(MF, *NewMI, TII);
5685 
5686   MachineBasicBlock *MBB = InsertPt->getParent();
5687   MBB->insert(InsertPt, NewMI);
5688 
5689   return MIB;
5690 }
5691 
5692 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5693                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
5694                               MachineBasicBlock::iterator InsertPt,
5695                               MachineInstr &MI, const TargetInstrInfo &TII,
5696                               int PtrOffset = 0) {
5697   // Omit the implicit operands, something BuildMI can't do.
5698   MachineInstr *NewMI =
5699       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5700   MachineInstrBuilder MIB(MF, NewMI);
5701 
5702   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5703     MachineOperand &MO = MI.getOperand(i);
5704     if (i == OpNo) {
5705       assert(MO.isReg() && "Expected to fold into reg operand!");
5706       addOperands(MIB, MOs, PtrOffset);
5707     } else {
5708       MIB.add(MO);
5709     }
5710   }
5711 
5712   updateOperandRegConstraints(MF, *NewMI, TII);
5713 
5714   // Copy the NoFPExcept flag from the instruction we're fusing.
5715   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5716     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5717 
5718   MachineBasicBlock *MBB = InsertPt->getParent();
5719   MBB->insert(InsertPt, NewMI);
5720 
5721   return MIB;
5722 }
5723 
5724 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5725                                 ArrayRef<MachineOperand> MOs,
5726                                 MachineBasicBlock::iterator InsertPt,
5727                                 MachineInstr &MI) {
5728   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5729                                     MI.getDebugLoc(), TII.get(Opcode));
5730   addOperands(MIB, MOs);
5731   return MIB.addImm(0);
5732 }
5733 
5734 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5735     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5736     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5737     unsigned Size, Align Alignment) const {
5738   switch (MI.getOpcode()) {
5739   case X86::INSERTPSrr:
5740   case X86::VINSERTPSrr:
5741   case X86::VINSERTPSZrr:
5742     // Attempt to convert the load of inserted vector into a fold load
5743     // of a single float.
5744     if (OpNum == 2) {
5745       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5746       unsigned ZMask = Imm & 15;
5747       unsigned DstIdx = (Imm >> 4) & 3;
5748       unsigned SrcIdx = (Imm >> 6) & 3;
5749 
5750       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5751       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5752       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5753       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5754         int PtrOffset = SrcIdx * 4;
5755         unsigned NewImm = (DstIdx << 4) | ZMask;
5756         unsigned NewOpCode =
5757             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5758             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
5759                                                     X86::INSERTPSrm;
5760         MachineInstr *NewMI =
5761             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5762         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5763         return NewMI;
5764       }
5765     }
5766     break;
5767   case X86::MOVHLPSrr:
5768   case X86::VMOVHLPSrr:
5769   case X86::VMOVHLPSZrr:
5770     // Move the upper 64-bits of the second operand to the lower 64-bits.
5771     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5772     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5773     if (OpNum == 2) {
5774       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5775       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5776       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5777       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5778         unsigned NewOpCode =
5779             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5780             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
5781                                                    X86::MOVLPSrm;
5782         MachineInstr *NewMI =
5783             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5784         return NewMI;
5785       }
5786     }
5787     break;
5788   case X86::UNPCKLPDrr:
5789     // If we won't be able to fold this to the memory form of UNPCKL, use
5790     // MOVHPD instead. Done as custom because we can't have this in the load
5791     // table twice.
5792     if (OpNum == 2) {
5793       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5794       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5795       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5796       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
5797         MachineInstr *NewMI =
5798             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
5799         return NewMI;
5800       }
5801     }
5802     break;
5803   }
5804 
5805   return nullptr;
5806 }
5807 
5808 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
5809                                                MachineInstr &MI) {
5810   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
5811       !MI.getOperand(1).isReg())
5812     return false;
5813 
5814   // The are two cases we need to handle depending on where in the pipeline
5815   // the folding attempt is being made.
5816   // -Register has the undef flag set.
5817   // -Register is produced by the IMPLICIT_DEF instruction.
5818 
5819   if (MI.getOperand(1).isUndef())
5820     return true;
5821 
5822   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5823   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
5824   return VRegDef && VRegDef->isImplicitDef();
5825 }
5826 
5827 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5828     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5829     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5830     unsigned Size, Align Alignment, bool AllowCommute) const {
5831   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
5832   bool isTwoAddrFold = false;
5833 
5834   // For CPUs that favor the register form of a call or push,
5835   // do not fold loads into calls or pushes, unless optimizing for size
5836   // aggressively.
5837   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
5838       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
5839        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
5840        MI.getOpcode() == X86::PUSH64r))
5841     return nullptr;
5842 
5843   // Avoid partial and undef register update stalls unless optimizing for size.
5844   if (!MF.getFunction().hasOptSize() &&
5845       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5846        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5847     return nullptr;
5848 
5849   unsigned NumOps = MI.getDesc().getNumOperands();
5850   bool isTwoAddr =
5851       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5852 
5853   // FIXME: AsmPrinter doesn't know how to handle
5854   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5855   if (MI.getOpcode() == X86::ADD32ri &&
5856       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5857     return nullptr;
5858 
5859   // GOTTPOFF relocation loads can only be folded into add instructions.
5860   // FIXME: Need to exclude other relocations that only support specific
5861   // instructions.
5862   if (MOs.size() == X86::AddrNumOperands &&
5863       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
5864       MI.getOpcode() != X86::ADD64rr)
5865     return nullptr;
5866 
5867   MachineInstr *NewMI = nullptr;
5868 
5869   // Attempt to fold any custom cases we have.
5870   if (MachineInstr *CustomMI = foldMemoryOperandCustom(
5871           MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
5872     return CustomMI;
5873 
5874   const X86MemoryFoldTableEntry *I = nullptr;
5875 
5876   // Folding a memory location into the two-address part of a two-address
5877   // instruction is different than folding it other places.  It requires
5878   // replacing the *two* registers with the memory location.
5879   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
5880       MI.getOperand(1).isReg() &&
5881       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
5882     I = lookupTwoAddrFoldTable(MI.getOpcode());
5883     isTwoAddrFold = true;
5884   } else {
5885     if (OpNum == 0) {
5886       if (MI.getOpcode() == X86::MOV32r0) {
5887         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5888         if (NewMI)
5889           return NewMI;
5890       }
5891     }
5892 
5893     I = lookupFoldTable(MI.getOpcode(), OpNum);
5894   }
5895 
5896   if (I != nullptr) {
5897     unsigned Opcode = I->DstOp;
5898     bool FoldedLoad =
5899         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
5900     bool FoldedStore =
5901         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
5902     MaybeAlign MinAlign =
5903         decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
5904     if (MinAlign && Alignment < *MinAlign)
5905       return nullptr;
5906     bool NarrowToMOV32rm = false;
5907     if (Size) {
5908       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5909       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
5910                                                   &RI, MF);
5911       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5912       // Check if it's safe to fold the load. If the size of the object is
5913       // narrower than the load width, then it's not.
5914       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5915       if (FoldedLoad && Size < RCSize) {
5916         // If this is a 64-bit load, but the spill slot is 32, then we can do
5917         // a 32-bit load which is implicitly zero-extended. This likely is
5918         // due to live interval analysis remat'ing a load from stack slot.
5919         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5920           return nullptr;
5921         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
5922           return nullptr;
5923         Opcode = X86::MOV32rm;
5924         NarrowToMOV32rm = true;
5925       }
5926       // For stores, make sure the size of the object is equal to the size of
5927       // the store. If the object is larger, the extra bits would be garbage. If
5928       // the object is smaller we might overwrite another object or fault.
5929       if (FoldedStore && Size != RCSize)
5930         return nullptr;
5931     }
5932 
5933     if (isTwoAddrFold)
5934       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5935     else
5936       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5937 
5938     if (NarrowToMOV32rm) {
5939       // If this is the special case where we use a MOV32rm to load a 32-bit
5940       // value and zero-extend the top bits. Change the destination register
5941       // to a 32-bit one.
5942       Register DstReg = NewMI->getOperand(0).getReg();
5943       if (DstReg.isPhysical())
5944         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5945       else
5946         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5947     }
5948     return NewMI;
5949   }
5950 
5951   // If the instruction and target operand are commutable, commute the
5952   // instruction and try again.
5953   if (AllowCommute) {
5954     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5955     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5956       bool HasDef = MI.getDesc().getNumDefs();
5957       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
5958       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
5959       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
5960       bool Tied1 =
5961           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5962       bool Tied2 =
5963           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5964 
5965       // If either of the commutable operands are tied to the destination
5966       // then we can not commute + fold.
5967       if ((HasDef && Reg0 == Reg1 && Tied1) ||
5968           (HasDef && Reg0 == Reg2 && Tied2))
5969         return nullptr;
5970 
5971       MachineInstr *CommutedMI =
5972           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5973       if (!CommutedMI) {
5974         // Unable to commute.
5975         return nullptr;
5976       }
5977       if (CommutedMI != &MI) {
5978         // New instruction. We can't fold from this.
5979         CommutedMI->eraseFromParent();
5980         return nullptr;
5981       }
5982 
5983       // Attempt to fold with the commuted version of the instruction.
5984       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
5985                                     Alignment, /*AllowCommute=*/false);
5986       if (NewMI)
5987         return NewMI;
5988 
5989       // Folding failed again - undo the commute before returning.
5990       MachineInstr *UncommutedMI =
5991           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5992       if (!UncommutedMI) {
5993         // Unable to commute.
5994         return nullptr;
5995       }
5996       if (UncommutedMI != &MI) {
5997         // New instruction. It doesn't need to be kept.
5998         UncommutedMI->eraseFromParent();
5999         return nullptr;
6000       }
6001 
6002       // Return here to prevent duplicate fuse failure report.
6003       return nullptr;
6004     }
6005   }
6006 
6007   // No fusion
6008   if (PrintFailedFusing && !MI.isCopy())
6009     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
6010   return nullptr;
6011 }
6012 
6013 MachineInstr *
6014 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
6015                                     ArrayRef<unsigned> Ops,
6016                                     MachineBasicBlock::iterator InsertPt,
6017                                     int FrameIndex, LiveIntervals *LIS,
6018                                     VirtRegMap *VRM) const {
6019   // Check switch flag
6020   if (NoFusing)
6021     return nullptr;
6022 
6023   // Avoid partial and undef register update stalls unless optimizing for size.
6024   if (!MF.getFunction().hasOptSize() &&
6025       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6026        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6027     return nullptr;
6028 
6029   // Don't fold subreg spills, or reloads that use a high subreg.
6030   for (auto Op : Ops) {
6031     MachineOperand &MO = MI.getOperand(Op);
6032     auto SubReg = MO.getSubReg();
6033     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
6034       return nullptr;
6035   }
6036 
6037   const MachineFrameInfo &MFI = MF.getFrameInfo();
6038   unsigned Size = MFI.getObjectSize(FrameIndex);
6039   Align Alignment = MFI.getObjectAlign(FrameIndex);
6040   // If the function stack isn't realigned we don't want to fold instructions
6041   // that need increased alignment.
6042   if (!RI.hasStackRealignment(MF))
6043     Alignment =
6044         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
6045   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6046     unsigned NewOpc = 0;
6047     unsigned RCSize = 0;
6048     switch (MI.getOpcode()) {
6049     default: return nullptr;
6050     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
6051     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
6052     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
6053     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
6054     }
6055     // Check if it's safe to fold the load. If the size of the object is
6056     // narrower than the load width, then it's not.
6057     if (Size < RCSize)
6058       return nullptr;
6059     // Change to CMPXXri r, 0 first.
6060     MI.setDesc(get(NewOpc));
6061     MI.getOperand(1).ChangeToImmediate(0);
6062   } else if (Ops.size() != 1)
6063     return nullptr;
6064 
6065   return foldMemoryOperandImpl(MF, MI, Ops[0],
6066                                MachineOperand::CreateFI(FrameIndex), InsertPt,
6067                                Size, Alignment, /*AllowCommute=*/true);
6068 }
6069 
6070 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
6071 /// because the latter uses contents that wouldn't be defined in the folded
6072 /// version.  For instance, this transformation isn't legal:
6073 ///   movss (%rdi), %xmm0
6074 ///   addps %xmm0, %xmm0
6075 /// ->
6076 ///   addps (%rdi), %xmm0
6077 ///
6078 /// But this one is:
6079 ///   movss (%rdi), %xmm0
6080 ///   addss %xmm0, %xmm0
6081 /// ->
6082 ///   addss (%rdi), %xmm0
6083 ///
6084 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
6085                                              const MachineInstr &UserMI,
6086                                              const MachineFunction &MF) {
6087   unsigned Opc = LoadMI.getOpcode();
6088   unsigned UserOpc = UserMI.getOpcode();
6089   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6090   const TargetRegisterClass *RC =
6091       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
6092   unsigned RegSize = TRI.getRegSizeInBits(*RC);
6093 
6094   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
6095        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
6096        Opc == X86::VMOVSSZrm_alt) &&
6097       RegSize > 32) {
6098     // These instructions only load 32 bits, we can't fold them if the
6099     // destination register is wider than 32 bits (4 bytes), and its user
6100     // instruction isn't scalar (SS).
6101     switch (UserOpc) {
6102     case X86::CVTSS2SDrr_Int:
6103     case X86::VCVTSS2SDrr_Int:
6104     case X86::VCVTSS2SDZrr_Int:
6105     case X86::VCVTSS2SDZrr_Intk:
6106     case X86::VCVTSS2SDZrr_Intkz:
6107     case X86::CVTSS2SIrr_Int:     case X86::CVTSS2SI64rr_Int:
6108     case X86::VCVTSS2SIrr_Int:    case X86::VCVTSS2SI64rr_Int:
6109     case X86::VCVTSS2SIZrr_Int:   case X86::VCVTSS2SI64Zrr_Int:
6110     case X86::CVTTSS2SIrr_Int:    case X86::CVTTSS2SI64rr_Int:
6111     case X86::VCVTTSS2SIrr_Int:   case X86::VCVTTSS2SI64rr_Int:
6112     case X86::VCVTTSS2SIZrr_Int:  case X86::VCVTTSS2SI64Zrr_Int:
6113     case X86::VCVTSS2USIZrr_Int:  case X86::VCVTSS2USI64Zrr_Int:
6114     case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
6115     case X86::RCPSSr_Int:   case X86::VRCPSSr_Int:
6116     case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
6117     case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
6118     case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
6119     case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
6120     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
6121     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
6122     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
6123     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
6124     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
6125     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
6126     case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
6127     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
6128     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
6129     case X86::VCMPSSZrr_Intk:
6130     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
6131     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
6132     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
6133     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
6134     case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
6135     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
6136     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
6137     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
6138     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
6139     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
6140     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
6141     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
6142     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
6143     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
6144     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
6145     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
6146     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
6147     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
6148     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
6149     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
6150     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
6151     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
6152     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
6153     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
6154     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
6155     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
6156     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
6157     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
6158     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
6159     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
6160     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
6161     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
6162     case X86::VFIXUPIMMSSZrri:
6163     case X86::VFIXUPIMMSSZrrik:
6164     case X86::VFIXUPIMMSSZrrikz:
6165     case X86::VFPCLASSSSZrr:
6166     case X86::VFPCLASSSSZrrk:
6167     case X86::VGETEXPSSZr:
6168     case X86::VGETEXPSSZrk:
6169     case X86::VGETEXPSSZrkz:
6170     case X86::VGETMANTSSZrri:
6171     case X86::VGETMANTSSZrrik:
6172     case X86::VGETMANTSSZrrikz:
6173     case X86::VRANGESSZrri:
6174     case X86::VRANGESSZrrik:
6175     case X86::VRANGESSZrrikz:
6176     case X86::VRCP14SSZrr:
6177     case X86::VRCP14SSZrrk:
6178     case X86::VRCP14SSZrrkz:
6179     case X86::VRCP28SSZr:
6180     case X86::VRCP28SSZrk:
6181     case X86::VRCP28SSZrkz:
6182     case X86::VREDUCESSZrri:
6183     case X86::VREDUCESSZrrik:
6184     case X86::VREDUCESSZrrikz:
6185     case X86::VRNDSCALESSZr_Int:
6186     case X86::VRNDSCALESSZr_Intk:
6187     case X86::VRNDSCALESSZr_Intkz:
6188     case X86::VRSQRT14SSZrr:
6189     case X86::VRSQRT14SSZrrk:
6190     case X86::VRSQRT14SSZrrkz:
6191     case X86::VRSQRT28SSZr:
6192     case X86::VRSQRT28SSZrk:
6193     case X86::VRSQRT28SSZrkz:
6194     case X86::VSCALEFSSZrr:
6195     case X86::VSCALEFSSZrrk:
6196     case X86::VSCALEFSSZrrkz:
6197       return false;
6198     default:
6199       return true;
6200     }
6201   }
6202 
6203   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6204        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6205        Opc == X86::VMOVSDZrm_alt) &&
6206       RegSize > 64) {
6207     // These instructions only load 64 bits, we can't fold them if the
6208     // destination register is wider than 64 bits (8 bytes), and its user
6209     // instruction isn't scalar (SD).
6210     switch (UserOpc) {
6211     case X86::CVTSD2SSrr_Int:
6212     case X86::VCVTSD2SSrr_Int:
6213     case X86::VCVTSD2SSZrr_Int:
6214     case X86::VCVTSD2SSZrr_Intk:
6215     case X86::VCVTSD2SSZrr_Intkz:
6216     case X86::CVTSD2SIrr_Int:     case X86::CVTSD2SI64rr_Int:
6217     case X86::VCVTSD2SIrr_Int:    case X86::VCVTSD2SI64rr_Int:
6218     case X86::VCVTSD2SIZrr_Int:   case X86::VCVTSD2SI64Zrr_Int:
6219     case X86::CVTTSD2SIrr_Int:    case X86::CVTTSD2SI64rr_Int:
6220     case X86::VCVTTSD2SIrr_Int:   case X86::VCVTTSD2SI64rr_Int:
6221     case X86::VCVTTSD2SIZrr_Int:  case X86::VCVTTSD2SI64Zrr_Int:
6222     case X86::VCVTSD2USIZrr_Int:  case X86::VCVTSD2USI64Zrr_Int:
6223     case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6224     case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6225     case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6226     case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6227     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6228     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6229     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6230     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6231     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6232     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6233     case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6234     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6235     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6236     case X86::VCMPSDZrr_Intk:
6237     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6238     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6239     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6240     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6241     case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6242     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6243     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
6244     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
6245     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
6246     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
6247     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
6248     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
6249     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
6250     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
6251     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6252     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6253     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6254     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6255     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6256     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6257     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6258     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6259     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6260     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6261     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6262     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6263     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6264     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6265     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6266     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6267     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6268     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6269     case X86::VFIXUPIMMSDZrri:
6270     case X86::VFIXUPIMMSDZrrik:
6271     case X86::VFIXUPIMMSDZrrikz:
6272     case X86::VFPCLASSSDZrr:
6273     case X86::VFPCLASSSDZrrk:
6274     case X86::VGETEXPSDZr:
6275     case X86::VGETEXPSDZrk:
6276     case X86::VGETEXPSDZrkz:
6277     case X86::VGETMANTSDZrri:
6278     case X86::VGETMANTSDZrrik:
6279     case X86::VGETMANTSDZrrikz:
6280     case X86::VRANGESDZrri:
6281     case X86::VRANGESDZrrik:
6282     case X86::VRANGESDZrrikz:
6283     case X86::VRCP14SDZrr:
6284     case X86::VRCP14SDZrrk:
6285     case X86::VRCP14SDZrrkz:
6286     case X86::VRCP28SDZr:
6287     case X86::VRCP28SDZrk:
6288     case X86::VRCP28SDZrkz:
6289     case X86::VREDUCESDZrri:
6290     case X86::VREDUCESDZrrik:
6291     case X86::VREDUCESDZrrikz:
6292     case X86::VRNDSCALESDZr_Int:
6293     case X86::VRNDSCALESDZr_Intk:
6294     case X86::VRNDSCALESDZr_Intkz:
6295     case X86::VRSQRT14SDZrr:
6296     case X86::VRSQRT14SDZrrk:
6297     case X86::VRSQRT14SDZrrkz:
6298     case X86::VRSQRT28SDZr:
6299     case X86::VRSQRT28SDZrk:
6300     case X86::VRSQRT28SDZrkz:
6301     case X86::VSCALEFSDZrr:
6302     case X86::VSCALEFSDZrrk:
6303     case X86::VSCALEFSDZrrkz:
6304       return false;
6305     default:
6306       return true;
6307     }
6308   }
6309 
6310   if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6311     // These instructions only load 16 bits, we can't fold them if the
6312     // destination register is wider than 16 bits (2 bytes), and its user
6313     // instruction isn't scalar (SH).
6314     switch (UserOpc) {
6315     case X86::VADDSHZrr_Int:
6316     case X86::VCMPSHZrr_Int:
6317     case X86::VDIVSHZrr_Int:
6318     case X86::VMAXSHZrr_Int:
6319     case X86::VMINSHZrr_Int:
6320     case X86::VMULSHZrr_Int:
6321     case X86::VSUBSHZrr_Int:
6322     case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6323     case X86::VCMPSHZrr_Intk:
6324     case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6325     case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6326     case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6327     case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6328     case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6329     case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6330     case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6331     case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6332     case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6333     case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6334     case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6335     case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6336     case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6337     case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6338     case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6339     case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6340     case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6341     case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6342     case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6343     case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6344     case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6345     case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6346     case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6347       return false;
6348     default:
6349       return true;
6350     }
6351   }
6352 
6353   return false;
6354 }
6355 
6356 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6357     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6358     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6359     LiveIntervals *LIS) const {
6360 
6361   // TODO: Support the case where LoadMI loads a wide register, but MI
6362   // only uses a subreg.
6363   for (auto Op : Ops) {
6364     if (MI.getOperand(Op).getSubReg())
6365       return nullptr;
6366   }
6367 
6368   // If loading from a FrameIndex, fold directly from the FrameIndex.
6369   unsigned NumOps = LoadMI.getDesc().getNumOperands();
6370   int FrameIndex;
6371   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6372     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6373       return nullptr;
6374     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6375   }
6376 
6377   // Check switch flag
6378   if (NoFusing) return nullptr;
6379 
6380   // Avoid partial and undef register update stalls unless optimizing for size.
6381   if (!MF.getFunction().hasOptSize() &&
6382       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6383        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6384     return nullptr;
6385 
6386   // Determine the alignment of the load.
6387   Align Alignment;
6388   if (LoadMI.hasOneMemOperand())
6389     Alignment = (*LoadMI.memoperands_begin())->getAlign();
6390   else
6391     switch (LoadMI.getOpcode()) {
6392     case X86::AVX512_512_SET0:
6393     case X86::AVX512_512_SETALLONES:
6394       Alignment = Align(64);
6395       break;
6396     case X86::AVX2_SETALLONES:
6397     case X86::AVX1_SETALLONES:
6398     case X86::AVX_SET0:
6399     case X86::AVX512_256_SET0:
6400       Alignment = Align(32);
6401       break;
6402     case X86::V_SET0:
6403     case X86::V_SETALLONES:
6404     case X86::AVX512_128_SET0:
6405     case X86::FsFLD0F128:
6406     case X86::AVX512_FsFLD0F128:
6407       Alignment = Align(16);
6408       break;
6409     case X86::MMX_SET0:
6410     case X86::FsFLD0SD:
6411     case X86::AVX512_FsFLD0SD:
6412       Alignment = Align(8);
6413       break;
6414     case X86::FsFLD0SS:
6415     case X86::AVX512_FsFLD0SS:
6416       Alignment = Align(4);
6417       break;
6418     case X86::AVX512_FsFLD0SH:
6419       Alignment = Align(2);
6420       break;
6421     default:
6422       return nullptr;
6423     }
6424   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6425     unsigned NewOpc = 0;
6426     switch (MI.getOpcode()) {
6427     default: return nullptr;
6428     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
6429     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6430     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6431     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6432     }
6433     // Change to CMPXXri r, 0 first.
6434     MI.setDesc(get(NewOpc));
6435     MI.getOperand(1).ChangeToImmediate(0);
6436   } else if (Ops.size() != 1)
6437     return nullptr;
6438 
6439   // Make sure the subregisters match.
6440   // Otherwise we risk changing the size of the load.
6441   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6442     return nullptr;
6443 
6444   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6445   switch (LoadMI.getOpcode()) {
6446   case X86::MMX_SET0:
6447   case X86::V_SET0:
6448   case X86::V_SETALLONES:
6449   case X86::AVX2_SETALLONES:
6450   case X86::AVX1_SETALLONES:
6451   case X86::AVX_SET0:
6452   case X86::AVX512_128_SET0:
6453   case X86::AVX512_256_SET0:
6454   case X86::AVX512_512_SET0:
6455   case X86::AVX512_512_SETALLONES:
6456   case X86::AVX512_FsFLD0SH:
6457   case X86::FsFLD0SD:
6458   case X86::AVX512_FsFLD0SD:
6459   case X86::FsFLD0SS:
6460   case X86::AVX512_FsFLD0SS:
6461   case X86::FsFLD0F128:
6462   case X86::AVX512_FsFLD0F128: {
6463     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6464     // Create a constant-pool entry and operands to load from it.
6465 
6466     // Medium and large mode can't fold loads this way.
6467     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6468         MF.getTarget().getCodeModel() != CodeModel::Kernel)
6469       return nullptr;
6470 
6471     // x86-32 PIC requires a PIC base register for constant pools.
6472     unsigned PICBase = 0;
6473     // Since we're using Small or Kernel code model, we can always use
6474     // RIP-relative addressing for a smaller encoding.
6475     if (Subtarget.is64Bit()) {
6476       PICBase = X86::RIP;
6477     } else if (MF.getTarget().isPositionIndependent()) {
6478       // FIXME: PICBase = getGlobalBaseReg(&MF);
6479       // This doesn't work for several reasons.
6480       // 1. GlobalBaseReg may have been spilled.
6481       // 2. It may not be live at MI.
6482       return nullptr;
6483     }
6484 
6485     // Create a constant-pool entry.
6486     MachineConstantPool &MCP = *MF.getConstantPool();
6487     Type *Ty;
6488     unsigned Opc = LoadMI.getOpcode();
6489     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6490       Ty = Type::getFloatTy(MF.getFunction().getContext());
6491     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6492       Ty = Type::getDoubleTy(MF.getFunction().getContext());
6493     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6494       Ty = Type::getFP128Ty(MF.getFunction().getContext());
6495     else if (Opc == X86::AVX512_FsFLD0SH)
6496       Ty = Type::getHalfTy(MF.getFunction().getContext());
6497     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6498       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6499                                 16);
6500     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6501              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6502       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6503                                 8);
6504     else if (Opc == X86::MMX_SET0)
6505       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6506                                 2);
6507     else
6508       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6509                                 4);
6510 
6511     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6512                       Opc == X86::AVX512_512_SETALLONES ||
6513                       Opc == X86::AVX1_SETALLONES);
6514     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6515                                     Constant::getNullValue(Ty);
6516     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6517 
6518     // Create operands to load from the constant pool entry.
6519     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6520     MOs.push_back(MachineOperand::CreateImm(1));
6521     MOs.push_back(MachineOperand::CreateReg(0, false));
6522     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6523     MOs.push_back(MachineOperand::CreateReg(0, false));
6524     break;
6525   }
6526   default: {
6527     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6528       return nullptr;
6529 
6530     // Folding a normal load. Just copy the load's address operands.
6531     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6532                LoadMI.operands_begin() + NumOps);
6533     break;
6534   }
6535   }
6536   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6537                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
6538 }
6539 
6540 static SmallVector<MachineMemOperand *, 2>
6541 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6542   SmallVector<MachineMemOperand *, 2> LoadMMOs;
6543 
6544   for (MachineMemOperand *MMO : MMOs) {
6545     if (!MMO->isLoad())
6546       continue;
6547 
6548     if (!MMO->isStore()) {
6549       // Reuse the MMO.
6550       LoadMMOs.push_back(MMO);
6551     } else {
6552       // Clone the MMO and unset the store flag.
6553       LoadMMOs.push_back(MF.getMachineMemOperand(
6554           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6555     }
6556   }
6557 
6558   return LoadMMOs;
6559 }
6560 
6561 static SmallVector<MachineMemOperand *, 2>
6562 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6563   SmallVector<MachineMemOperand *, 2> StoreMMOs;
6564 
6565   for (MachineMemOperand *MMO : MMOs) {
6566     if (!MMO->isStore())
6567       continue;
6568 
6569     if (!MMO->isLoad()) {
6570       // Reuse the MMO.
6571       StoreMMOs.push_back(MMO);
6572     } else {
6573       // Clone the MMO and unset the load flag.
6574       StoreMMOs.push_back(MF.getMachineMemOperand(
6575           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6576     }
6577   }
6578 
6579   return StoreMMOs;
6580 }
6581 
6582 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6583                                    const TargetRegisterClass *RC,
6584                                    const X86Subtarget &STI) {
6585   assert(STI.hasAVX512() && "Expected at least AVX512!");
6586   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6587   assert((SpillSize == 64 || STI.hasVLX()) &&
6588          "Can't broadcast less than 64 bytes without AVX512VL!");
6589 
6590   switch (I->Flags & TB_BCAST_MASK) {
6591   default: llvm_unreachable("Unexpected broadcast type!");
6592   case TB_BCAST_D:
6593     switch (SpillSize) {
6594     default: llvm_unreachable("Unknown spill size");
6595     case 16: return X86::VPBROADCASTDZ128rm;
6596     case 32: return X86::VPBROADCASTDZ256rm;
6597     case 64: return X86::VPBROADCASTDZrm;
6598     }
6599     break;
6600   case TB_BCAST_Q:
6601     switch (SpillSize) {
6602     default: llvm_unreachable("Unknown spill size");
6603     case 16: return X86::VPBROADCASTQZ128rm;
6604     case 32: return X86::VPBROADCASTQZ256rm;
6605     case 64: return X86::VPBROADCASTQZrm;
6606     }
6607     break;
6608   case TB_BCAST_SS:
6609     switch (SpillSize) {
6610     default: llvm_unreachable("Unknown spill size");
6611     case 16: return X86::VBROADCASTSSZ128rm;
6612     case 32: return X86::VBROADCASTSSZ256rm;
6613     case 64: return X86::VBROADCASTSSZrm;
6614     }
6615     break;
6616   case TB_BCAST_SD:
6617     switch (SpillSize) {
6618     default: llvm_unreachable("Unknown spill size");
6619     case 16: return X86::VMOVDDUPZ128rm;
6620     case 32: return X86::VBROADCASTSDZ256rm;
6621     case 64: return X86::VBROADCASTSDZrm;
6622     }
6623     break;
6624   }
6625 }
6626 
6627 bool X86InstrInfo::unfoldMemoryOperand(
6628     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6629     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6630   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6631   if (I == nullptr)
6632     return false;
6633   unsigned Opc = I->DstOp;
6634   unsigned Index = I->Flags & TB_INDEX_MASK;
6635   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6636   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6637   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6638   if (UnfoldLoad && !FoldedLoad)
6639     return false;
6640   UnfoldLoad &= FoldedLoad;
6641   if (UnfoldStore && !FoldedStore)
6642     return false;
6643   UnfoldStore &= FoldedStore;
6644 
6645   const MCInstrDesc &MCID = get(Opc);
6646 
6647   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6648   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6649   // TODO: Check if 32-byte or greater accesses are slow too?
6650   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6651       Subtarget.isUnalignedMem16Slow())
6652     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6653     // conservatively assume the address is unaligned. That's bad for
6654     // performance.
6655     return false;
6656   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6657   SmallVector<MachineOperand,2> BeforeOps;
6658   SmallVector<MachineOperand,2> AfterOps;
6659   SmallVector<MachineOperand,4> ImpOps;
6660   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6661     MachineOperand &Op = MI.getOperand(i);
6662     if (i >= Index && i < Index + X86::AddrNumOperands)
6663       AddrOps.push_back(Op);
6664     else if (Op.isReg() && Op.isImplicit())
6665       ImpOps.push_back(Op);
6666     else if (i < Index)
6667       BeforeOps.push_back(Op);
6668     else if (i > Index)
6669       AfterOps.push_back(Op);
6670   }
6671 
6672   // Emit the load or broadcast instruction.
6673   if (UnfoldLoad) {
6674     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6675 
6676     unsigned Opc;
6677     if (FoldedBCast) {
6678       Opc = getBroadcastOpcode(I, RC, Subtarget);
6679     } else {
6680       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6681       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6682       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6683     }
6684 
6685     DebugLoc DL;
6686     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6687     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6688       MIB.add(AddrOps[i]);
6689     MIB.setMemRefs(MMOs);
6690     NewMIs.push_back(MIB);
6691 
6692     if (UnfoldStore) {
6693       // Address operands cannot be marked isKill.
6694       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6695         MachineOperand &MO = NewMIs[0]->getOperand(i);
6696         if (MO.isReg())
6697           MO.setIsKill(false);
6698       }
6699     }
6700   }
6701 
6702   // Emit the data processing instruction.
6703   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6704   MachineInstrBuilder MIB(MF, DataMI);
6705 
6706   if (FoldedStore)
6707     MIB.addReg(Reg, RegState::Define);
6708   for (MachineOperand &BeforeOp : BeforeOps)
6709     MIB.add(BeforeOp);
6710   if (FoldedLoad)
6711     MIB.addReg(Reg);
6712   for (MachineOperand &AfterOp : AfterOps)
6713     MIB.add(AfterOp);
6714   for (MachineOperand &ImpOp : ImpOps) {
6715     MIB.addReg(ImpOp.getReg(),
6716                getDefRegState(ImpOp.isDef()) |
6717                RegState::Implicit |
6718                getKillRegState(ImpOp.isKill()) |
6719                getDeadRegState(ImpOp.isDead()) |
6720                getUndefRegState(ImpOp.isUndef()));
6721   }
6722   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6723   switch (DataMI->getOpcode()) {
6724   default: break;
6725   case X86::CMP64ri32:
6726   case X86::CMP64ri8:
6727   case X86::CMP32ri:
6728   case X86::CMP32ri8:
6729   case X86::CMP16ri:
6730   case X86::CMP16ri8:
6731   case X86::CMP8ri: {
6732     MachineOperand &MO0 = DataMI->getOperand(0);
6733     MachineOperand &MO1 = DataMI->getOperand(1);
6734     if (MO1.isImm() && MO1.getImm() == 0) {
6735       unsigned NewOpc;
6736       switch (DataMI->getOpcode()) {
6737       default: llvm_unreachable("Unreachable!");
6738       case X86::CMP64ri8:
6739       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6740       case X86::CMP32ri8:
6741       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
6742       case X86::CMP16ri8:
6743       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
6744       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
6745       }
6746       DataMI->setDesc(get(NewOpc));
6747       MO1.ChangeToRegister(MO0.getReg(), false);
6748     }
6749   }
6750   }
6751   NewMIs.push_back(DataMI);
6752 
6753   // Emit the store instruction.
6754   if (UnfoldStore) {
6755     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6756     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6757     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6758     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6759     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6760     DebugLoc DL;
6761     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6762     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6763       MIB.add(AddrOps[i]);
6764     MIB.addReg(Reg, RegState::Kill);
6765     MIB.setMemRefs(MMOs);
6766     NewMIs.push_back(MIB);
6767   }
6768 
6769   return true;
6770 }
6771 
6772 bool
6773 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6774                                   SmallVectorImpl<SDNode*> &NewNodes) const {
6775   if (!N->isMachineOpcode())
6776     return false;
6777 
6778   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6779   if (I == nullptr)
6780     return false;
6781   unsigned Opc = I->DstOp;
6782   unsigned Index = I->Flags & TB_INDEX_MASK;
6783   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6784   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6785   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6786   const MCInstrDesc &MCID = get(Opc);
6787   MachineFunction &MF = DAG.getMachineFunction();
6788   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6789   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6790   unsigned NumDefs = MCID.NumDefs;
6791   std::vector<SDValue> AddrOps;
6792   std::vector<SDValue> BeforeOps;
6793   std::vector<SDValue> AfterOps;
6794   SDLoc dl(N);
6795   unsigned NumOps = N->getNumOperands();
6796   for (unsigned i = 0; i != NumOps-1; ++i) {
6797     SDValue Op = N->getOperand(i);
6798     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6799       AddrOps.push_back(Op);
6800     else if (i < Index-NumDefs)
6801       BeforeOps.push_back(Op);
6802     else if (i > Index-NumDefs)
6803       AfterOps.push_back(Op);
6804   }
6805   SDValue Chain = N->getOperand(NumOps-1);
6806   AddrOps.push_back(Chain);
6807 
6808   // Emit the load instruction.
6809   SDNode *Load = nullptr;
6810   if (FoldedLoad) {
6811     EVT VT = *TRI.legalclasstypes_begin(*RC);
6812     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6813     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6814         Subtarget.isUnalignedMem16Slow())
6815       // Do not introduce a slow unaligned load.
6816       return false;
6817     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6818     // memory access is slow above.
6819 
6820     unsigned Opc;
6821     if (FoldedBCast) {
6822       Opc = getBroadcastOpcode(I, RC, Subtarget);
6823     } else {
6824       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6825       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6826       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
6827     }
6828 
6829     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
6830     NewNodes.push_back(Load);
6831 
6832     // Preserve memory reference information.
6833     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
6834   }
6835 
6836   // Emit the data processing instruction.
6837   std::vector<EVT> VTs;
6838   const TargetRegisterClass *DstRC = nullptr;
6839   if (MCID.getNumDefs() > 0) {
6840     DstRC = getRegClass(MCID, 0, &RI, MF);
6841     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
6842   }
6843   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6844     EVT VT = N->getValueType(i);
6845     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6846       VTs.push_back(VT);
6847   }
6848   if (Load)
6849     BeforeOps.push_back(SDValue(Load, 0));
6850   llvm::append_range(BeforeOps, AfterOps);
6851   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6852   switch (Opc) {
6853     default: break;
6854     case X86::CMP64ri32:
6855     case X86::CMP64ri8:
6856     case X86::CMP32ri:
6857     case X86::CMP32ri8:
6858     case X86::CMP16ri:
6859     case X86::CMP16ri8:
6860     case X86::CMP8ri:
6861       if (isNullConstant(BeforeOps[1])) {
6862         switch (Opc) {
6863           default: llvm_unreachable("Unreachable!");
6864           case X86::CMP64ri8:
6865           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
6866           case X86::CMP32ri8:
6867           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
6868           case X86::CMP16ri8:
6869           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
6870           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
6871         }
6872         BeforeOps[1] = BeforeOps[0];
6873       }
6874   }
6875   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6876   NewNodes.push_back(NewNode);
6877 
6878   // Emit the store instruction.
6879   if (FoldedStore) {
6880     AddrOps.pop_back();
6881     AddrOps.push_back(SDValue(NewNode, 0));
6882     AddrOps.push_back(Chain);
6883     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6884     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6885         Subtarget.isUnalignedMem16Slow())
6886       // Do not introduce a slow unaligned store.
6887       return false;
6888     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6889     // memory access is slow above.
6890     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6891     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6892     SDNode *Store =
6893         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6894                            dl, MVT::Other, AddrOps);
6895     NewNodes.push_back(Store);
6896 
6897     // Preserve memory reference information.
6898     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
6899   }
6900 
6901   return true;
6902 }
6903 
6904 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6905                                       bool UnfoldLoad, bool UnfoldStore,
6906                                       unsigned *LoadRegIndex) const {
6907   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
6908   if (I == nullptr)
6909     return 0;
6910   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6911   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6912   if (UnfoldLoad && !FoldedLoad)
6913     return 0;
6914   if (UnfoldStore && !FoldedStore)
6915     return 0;
6916   if (LoadRegIndex)
6917     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
6918   return I->DstOp;
6919 }
6920 
6921 bool
6922 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6923                                      int64_t &Offset1, int64_t &Offset2) const {
6924   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6925     return false;
6926   unsigned Opc1 = Load1->getMachineOpcode();
6927   unsigned Opc2 = Load2->getMachineOpcode();
6928   switch (Opc1) {
6929   default: return false;
6930   case X86::MOV8rm:
6931   case X86::MOV16rm:
6932   case X86::MOV32rm:
6933   case X86::MOV64rm:
6934   case X86::LD_Fp32m:
6935   case X86::LD_Fp64m:
6936   case X86::LD_Fp80m:
6937   case X86::MOVSSrm:
6938   case X86::MOVSSrm_alt:
6939   case X86::MOVSDrm:
6940   case X86::MOVSDrm_alt:
6941   case X86::MMX_MOVD64rm:
6942   case X86::MMX_MOVQ64rm:
6943   case X86::MOVAPSrm:
6944   case X86::MOVUPSrm:
6945   case X86::MOVAPDrm:
6946   case X86::MOVUPDrm:
6947   case X86::MOVDQArm:
6948   case X86::MOVDQUrm:
6949   // AVX load instructions
6950   case X86::VMOVSSrm:
6951   case X86::VMOVSSrm_alt:
6952   case X86::VMOVSDrm:
6953   case X86::VMOVSDrm_alt:
6954   case X86::VMOVAPSrm:
6955   case X86::VMOVUPSrm:
6956   case X86::VMOVAPDrm:
6957   case X86::VMOVUPDrm:
6958   case X86::VMOVDQArm:
6959   case X86::VMOVDQUrm:
6960   case X86::VMOVAPSYrm:
6961   case X86::VMOVUPSYrm:
6962   case X86::VMOVAPDYrm:
6963   case X86::VMOVUPDYrm:
6964   case X86::VMOVDQAYrm:
6965   case X86::VMOVDQUYrm:
6966   // AVX512 load instructions
6967   case X86::VMOVSSZrm:
6968   case X86::VMOVSSZrm_alt:
6969   case X86::VMOVSDZrm:
6970   case X86::VMOVSDZrm_alt:
6971   case X86::VMOVAPSZ128rm:
6972   case X86::VMOVUPSZ128rm:
6973   case X86::VMOVAPSZ128rm_NOVLX:
6974   case X86::VMOVUPSZ128rm_NOVLX:
6975   case X86::VMOVAPDZ128rm:
6976   case X86::VMOVUPDZ128rm:
6977   case X86::VMOVDQU8Z128rm:
6978   case X86::VMOVDQU16Z128rm:
6979   case X86::VMOVDQA32Z128rm:
6980   case X86::VMOVDQU32Z128rm:
6981   case X86::VMOVDQA64Z128rm:
6982   case X86::VMOVDQU64Z128rm:
6983   case X86::VMOVAPSZ256rm:
6984   case X86::VMOVUPSZ256rm:
6985   case X86::VMOVAPSZ256rm_NOVLX:
6986   case X86::VMOVUPSZ256rm_NOVLX:
6987   case X86::VMOVAPDZ256rm:
6988   case X86::VMOVUPDZ256rm:
6989   case X86::VMOVDQU8Z256rm:
6990   case X86::VMOVDQU16Z256rm:
6991   case X86::VMOVDQA32Z256rm:
6992   case X86::VMOVDQU32Z256rm:
6993   case X86::VMOVDQA64Z256rm:
6994   case X86::VMOVDQU64Z256rm:
6995   case X86::VMOVAPSZrm:
6996   case X86::VMOVUPSZrm:
6997   case X86::VMOVAPDZrm:
6998   case X86::VMOVUPDZrm:
6999   case X86::VMOVDQU8Zrm:
7000   case X86::VMOVDQU16Zrm:
7001   case X86::VMOVDQA32Zrm:
7002   case X86::VMOVDQU32Zrm:
7003   case X86::VMOVDQA64Zrm:
7004   case X86::VMOVDQU64Zrm:
7005   case X86::KMOVBkm:
7006   case X86::KMOVWkm:
7007   case X86::KMOVDkm:
7008   case X86::KMOVQkm:
7009     break;
7010   }
7011   switch (Opc2) {
7012   default: return false;
7013   case X86::MOV8rm:
7014   case X86::MOV16rm:
7015   case X86::MOV32rm:
7016   case X86::MOV64rm:
7017   case X86::LD_Fp32m:
7018   case X86::LD_Fp64m:
7019   case X86::LD_Fp80m:
7020   case X86::MOVSSrm:
7021   case X86::MOVSSrm_alt:
7022   case X86::MOVSDrm:
7023   case X86::MOVSDrm_alt:
7024   case X86::MMX_MOVD64rm:
7025   case X86::MMX_MOVQ64rm:
7026   case X86::MOVAPSrm:
7027   case X86::MOVUPSrm:
7028   case X86::MOVAPDrm:
7029   case X86::MOVUPDrm:
7030   case X86::MOVDQArm:
7031   case X86::MOVDQUrm:
7032   // AVX load instructions
7033   case X86::VMOVSSrm:
7034   case X86::VMOVSSrm_alt:
7035   case X86::VMOVSDrm:
7036   case X86::VMOVSDrm_alt:
7037   case X86::VMOVAPSrm:
7038   case X86::VMOVUPSrm:
7039   case X86::VMOVAPDrm:
7040   case X86::VMOVUPDrm:
7041   case X86::VMOVDQArm:
7042   case X86::VMOVDQUrm:
7043   case X86::VMOVAPSYrm:
7044   case X86::VMOVUPSYrm:
7045   case X86::VMOVAPDYrm:
7046   case X86::VMOVUPDYrm:
7047   case X86::VMOVDQAYrm:
7048   case X86::VMOVDQUYrm:
7049   // AVX512 load instructions
7050   case X86::VMOVSSZrm:
7051   case X86::VMOVSSZrm_alt:
7052   case X86::VMOVSDZrm:
7053   case X86::VMOVSDZrm_alt:
7054   case X86::VMOVAPSZ128rm:
7055   case X86::VMOVUPSZ128rm:
7056   case X86::VMOVAPSZ128rm_NOVLX:
7057   case X86::VMOVUPSZ128rm_NOVLX:
7058   case X86::VMOVAPDZ128rm:
7059   case X86::VMOVUPDZ128rm:
7060   case X86::VMOVDQU8Z128rm:
7061   case X86::VMOVDQU16Z128rm:
7062   case X86::VMOVDQA32Z128rm:
7063   case X86::VMOVDQU32Z128rm:
7064   case X86::VMOVDQA64Z128rm:
7065   case X86::VMOVDQU64Z128rm:
7066   case X86::VMOVAPSZ256rm:
7067   case X86::VMOVUPSZ256rm:
7068   case X86::VMOVAPSZ256rm_NOVLX:
7069   case X86::VMOVUPSZ256rm_NOVLX:
7070   case X86::VMOVAPDZ256rm:
7071   case X86::VMOVUPDZ256rm:
7072   case X86::VMOVDQU8Z256rm:
7073   case X86::VMOVDQU16Z256rm:
7074   case X86::VMOVDQA32Z256rm:
7075   case X86::VMOVDQU32Z256rm:
7076   case X86::VMOVDQA64Z256rm:
7077   case X86::VMOVDQU64Z256rm:
7078   case X86::VMOVAPSZrm:
7079   case X86::VMOVUPSZrm:
7080   case X86::VMOVAPDZrm:
7081   case X86::VMOVUPDZrm:
7082   case X86::VMOVDQU8Zrm:
7083   case X86::VMOVDQU16Zrm:
7084   case X86::VMOVDQA32Zrm:
7085   case X86::VMOVDQU32Zrm:
7086   case X86::VMOVDQA64Zrm:
7087   case X86::VMOVDQU64Zrm:
7088   case X86::KMOVBkm:
7089   case X86::KMOVWkm:
7090   case X86::KMOVDkm:
7091   case X86::KMOVQkm:
7092     break;
7093   }
7094 
7095   // Lambda to check if both the loads have the same value for an operand index.
7096   auto HasSameOp = [&](int I) {
7097     return Load1->getOperand(I) == Load2->getOperand(I);
7098   };
7099 
7100   // All operands except the displacement should match.
7101   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
7102       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
7103     return false;
7104 
7105   // Chain Operand must be the same.
7106   if (!HasSameOp(5))
7107     return false;
7108 
7109   // Now let's examine if the displacements are constants.
7110   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
7111   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
7112   if (!Disp1 || !Disp2)
7113     return false;
7114 
7115   Offset1 = Disp1->getSExtValue();
7116   Offset2 = Disp2->getSExtValue();
7117   return true;
7118 }
7119 
7120 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
7121                                            int64_t Offset1, int64_t Offset2,
7122                                            unsigned NumLoads) const {
7123   assert(Offset2 > Offset1);
7124   if ((Offset2 - Offset1) / 8 > 64)
7125     return false;
7126 
7127   unsigned Opc1 = Load1->getMachineOpcode();
7128   unsigned Opc2 = Load2->getMachineOpcode();
7129   if (Opc1 != Opc2)
7130     return false;  // FIXME: overly conservative?
7131 
7132   switch (Opc1) {
7133   default: break;
7134   case X86::LD_Fp32m:
7135   case X86::LD_Fp64m:
7136   case X86::LD_Fp80m:
7137   case X86::MMX_MOVD64rm:
7138   case X86::MMX_MOVQ64rm:
7139     return false;
7140   }
7141 
7142   EVT VT = Load1->getValueType(0);
7143   switch (VT.getSimpleVT().SimpleTy) {
7144   default:
7145     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
7146     // have 16 of them to play with.
7147     if (Subtarget.is64Bit()) {
7148       if (NumLoads >= 3)
7149         return false;
7150     } else if (NumLoads) {
7151       return false;
7152     }
7153     break;
7154   case MVT::i8:
7155   case MVT::i16:
7156   case MVT::i32:
7157   case MVT::i64:
7158   case MVT::f32:
7159   case MVT::f64:
7160     if (NumLoads)
7161       return false;
7162     break;
7163   }
7164 
7165   return true;
7166 }
7167 
7168 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7169                                         const MachineBasicBlock *MBB,
7170                                         const MachineFunction &MF) const {
7171 
7172   // ENDBR instructions should not be scheduled around.
7173   unsigned Opcode = MI.getOpcode();
7174   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7175       Opcode == X86::LDTILECFG)
7176     return true;
7177 
7178   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7179 }
7180 
7181 bool X86InstrInfo::
7182 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7183   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
7184   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7185   Cond[0].setImm(GetOppositeBranchCondition(CC));
7186   return false;
7187 }
7188 
7189 bool X86InstrInfo::
7190 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7191   // FIXME: Return false for x87 stack register classes for now. We can't
7192   // allow any loads of these registers before FpGet_ST0_80.
7193   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7194            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7195            RC == &X86::RFP80RegClass);
7196 }
7197 
7198 /// Return a virtual register initialized with the
7199 /// the global base register value. Output instructions required to
7200 /// initialize the register in the function entry block, if necessary.
7201 ///
7202 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7203 ///
7204 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7205   assert((!Subtarget.is64Bit() ||
7206           MF->getTarget().getCodeModel() == CodeModel::Medium ||
7207           MF->getTarget().getCodeModel() == CodeModel::Large) &&
7208          "X86-64 PIC uses RIP relative addressing");
7209 
7210   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7211   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7212   if (GlobalBaseReg != 0)
7213     return GlobalBaseReg;
7214 
7215   // Create the register. The code to initialize it is inserted
7216   // later, by the CGBR pass (below).
7217   MachineRegisterInfo &RegInfo = MF->getRegInfo();
7218   GlobalBaseReg = RegInfo.createVirtualRegister(
7219       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7220   X86FI->setGlobalBaseReg(GlobalBaseReg);
7221   return GlobalBaseReg;
7222 }
7223 
7224 // These are the replaceable SSE instructions. Some of these have Int variants
7225 // that we don't include here. We don't want to replace instructions selected
7226 // by intrinsics.
7227 static const uint16_t ReplaceableInstrs[][3] = {
7228   //PackedSingle     PackedDouble    PackedInt
7229   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
7230   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
7231   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
7232   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
7233   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
7234   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
7235   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
7236   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
7237   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
7238   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7239   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
7240   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7241   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
7242   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
7243   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
7244   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
7245   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
7246   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
7247   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
7248   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
7249   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
7250   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7251   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7252   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7253   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7254   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7255   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7256   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7257   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7258   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7259   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7260   // AVX 128-bit support
7261   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
7262   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
7263   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
7264   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
7265   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
7266   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
7267   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
7268   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
7269   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
7270   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7271   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
7272   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7273   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7274   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
7275   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
7276   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
7277   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
7278   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
7279   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
7280   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
7281   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
7282   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7283   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7284   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7285   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7286   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7287   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7288   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7289   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7290   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7291   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7292   // AVX 256-bit support
7293   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
7294   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
7295   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
7296   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
7297   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
7298   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
7299   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
7300   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
7301   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
7302   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
7303   // AVX512 support
7304   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
7305   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7306   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7307   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
7308   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
7309   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
7310   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
7311   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
7312   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
7313   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
7314   { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7315   { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7316   { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7317   { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7318   { X86::VBROADCASTSSZrr,   X86::VBROADCASTSSZrr,   X86::VPBROADCASTDZrr },
7319   { X86::VBROADCASTSSZrm,   X86::VBROADCASTSSZrm,   X86::VPBROADCASTDZrm },
7320   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128rr },
7321   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128rm },
7322   { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7323   { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7324   { X86::VBROADCASTSDZrr,   X86::VBROADCASTSDZrr,   X86::VPBROADCASTQZrr },
7325   { X86::VBROADCASTSDZrm,   X86::VBROADCASTSDZrm,   X86::VPBROADCASTQZrm },
7326   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
7327   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
7328   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
7329   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
7330   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
7331   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
7332   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
7333   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
7334   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7335   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7336   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7337   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7338   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
7339   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
7340   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
7341   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
7342   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
7343   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
7344   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
7345   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
7346   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7347   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7348   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7349   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7350   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
7351   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
7352   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
7353   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
7354   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
7355   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
7356   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
7357   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
7358   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
7359   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
7360   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
7361   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
7362   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
7363   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
7364   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
7365   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
7366   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
7367   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
7368   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
7369   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
7370   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
7371   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
7372   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
7373   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
7374   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
7375   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
7376   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
7377   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
7378   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
7379   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
7380   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
7381   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
7382   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
7383   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
7384   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
7385   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
7386   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
7387   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
7388   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
7389   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
7390   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
7391   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
7392   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
7393   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
7394   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
7395   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
7396 };
7397 
7398 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7399   //PackedSingle       PackedDouble       PackedInt
7400   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
7401   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
7402   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
7403   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
7404   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
7405   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
7406   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
7407   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
7408   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
7409   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
7410   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7411   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7412   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
7413   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
7414   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7415   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7416   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7417   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7418   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
7419   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
7420   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
7421   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
7422   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
7423   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
7424   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
7425   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
7426   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
7427   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
7428   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
7429   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
7430   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
7431 };
7432 
7433 static const uint16_t ReplaceableInstrsFP[][3] = {
7434   //PackedSingle         PackedDouble
7435   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
7436   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
7437   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
7438   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
7439   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
7440   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
7441   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7442   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7443   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7444 };
7445 
7446 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7447   //PackedSingle       PackedDouble       PackedInt
7448   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7449   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7450   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
7451   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
7452 };
7453 
7454 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7455   // Two integer columns for 64-bit and 32-bit elements.
7456   //PackedSingle        PackedDouble        PackedInt             PackedInt
7457   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
7458   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
7459   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
7460   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
7461   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
7462   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
7463   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
7464   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
7465   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
7466   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
7467   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
7468   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
7469   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
7470   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
7471   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
7472 };
7473 
7474 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7475   // Two integer columns for 64-bit and 32-bit elements.
7476   //PackedSingle        PackedDouble        PackedInt           PackedInt
7477   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7478   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7479   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7480   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7481   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7482   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7483   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7484   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7485   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7486   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7487   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7488   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7489   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7490   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7491   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7492   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7493   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
7494   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
7495   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
7496   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
7497   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
7498   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
7499   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
7500   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
7501 };
7502 
7503 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7504   // Two integer columns for 64-bit and 32-bit elements.
7505   //PackedSingle          PackedDouble
7506   //PackedInt             PackedInt
7507   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
7508     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
7509   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7510     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7511   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
7512     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
7513   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7514     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7515   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
7516     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
7517   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
7518     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
7519   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
7520     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
7521   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
7522     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
7523   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
7524     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
7525   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
7526     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
7527   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
7528     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
7529   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
7530     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
7531   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
7532     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
7533   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
7534     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
7535   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
7536     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
7537   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
7538     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
7539   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
7540     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
7541   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7542     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7543   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
7544     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
7545   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7546     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7547   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
7548     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
7549   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
7550     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
7551   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
7552     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
7553   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
7554     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
7555   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
7556     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
7557   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
7558     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
7559   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
7560     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
7561   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
7562     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
7563   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
7564     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
7565   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
7566     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
7567   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
7568     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
7569   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
7570     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
7571   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
7572     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
7573   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
7574     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
7575   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
7576     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
7577   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
7578     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
7579   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
7580     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
7581   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
7582     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
7583   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
7584     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
7585   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
7586     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
7587   { X86::VORPSZrmk,       X86::VORPDZrmk,
7588     X86::VPORQZrmk,       X86::VPORDZrmk       },
7589   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
7590     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
7591   { X86::VORPSZrrk,       X86::VORPDZrrk,
7592     X86::VPORQZrrk,       X86::VPORDZrrk       },
7593   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
7594     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
7595   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
7596     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
7597   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
7598     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
7599   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
7600     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
7601   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
7602     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
7603   // Broadcast loads can be handled the same as masked operations to avoid
7604   // changing element size.
7605   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
7606     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
7607   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
7608     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
7609   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
7610     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
7611   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
7612     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
7613   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
7614     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
7615   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
7616     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
7617   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
7618     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
7619   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
7620     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
7621   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
7622     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
7623   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7624     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7625   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7626     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7627   { X86::VORPSZrmb,       X86::VORPDZrmb,
7628     X86::VPORQZrmb,       X86::VPORDZrmb       },
7629   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
7630     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
7631   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7632     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7633   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
7634     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
7635   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
7636     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
7637   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
7638     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
7639   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7640     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7641   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
7642     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
7643   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
7644     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
7645   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
7646     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
7647   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
7648     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
7649   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7650     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7651   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7652     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7653   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
7654     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
7655   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
7656     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
7657   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7658     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7659   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7660     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7661   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
7662     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
7663   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7664     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7665   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7666     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7667   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7668     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7669   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
7670     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
7671   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7672     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7673   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
7674     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
7675   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7676     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7677   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7678     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7679   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
7680     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
7681   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
7682     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
7683 };
7684 
7685 // NOTE: These should only be used by the custom domain methods.
7686 static const uint16_t ReplaceableBlendInstrs[][3] = {
7687   //PackedSingle             PackedDouble             PackedInt
7688   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
7689   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
7690   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
7691   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
7692   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
7693   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
7694 };
7695 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7696   //PackedSingle             PackedDouble             PackedInt
7697   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
7698   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
7699   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
7700   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
7701 };
7702 
7703 // Special table for changing EVEX logic instructions to VEX.
7704 // TODO: Should we run EVEX->VEX earlier?
7705 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7706   // Two integer columns for 64-bit and 32-bit elements.
7707   //PackedSingle     PackedDouble     PackedInt           PackedInt
7708   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7709   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7710   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7711   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7712   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7713   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7714   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7715   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7716   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7717   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7718   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7719   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7720   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7721   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7722   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7723   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7724 };
7725 
7726 // FIXME: Some shuffle and unpack instructions have equivalents in different
7727 // domains, but they require a bit more work than just switching opcodes.
7728 
7729 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7730                               ArrayRef<uint16_t[3]> Table) {
7731   for (const uint16_t (&Row)[3] : Table)
7732     if (Row[domain-1] == opcode)
7733       return Row;
7734   return nullptr;
7735 }
7736 
7737 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7738                                     ArrayRef<uint16_t[4]> Table) {
7739   // If this is the integer domain make sure to check both integer columns.
7740   for (const uint16_t (&Row)[4] : Table)
7741     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7742       return Row;
7743   return nullptr;
7744 }
7745 
7746 // Helper to attempt to widen/narrow blend masks.
7747 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7748                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
7749   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
7750          "Illegal blend mask scale");
7751   unsigned NewMask = 0;
7752 
7753   if ((OldWidth % NewWidth) == 0) {
7754     unsigned Scale = OldWidth / NewWidth;
7755     unsigned SubMask = (1u << Scale) - 1;
7756     for (unsigned i = 0; i != NewWidth; ++i) {
7757       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7758       if (Sub == SubMask)
7759         NewMask |= (1u << i);
7760       else if (Sub != 0x0)
7761         return false;
7762     }
7763   } else {
7764     unsigned Scale = NewWidth / OldWidth;
7765     unsigned SubMask = (1u << Scale) - 1;
7766     for (unsigned i = 0; i != OldWidth; ++i) {
7767       if (OldMask & (1 << i)) {
7768         NewMask |= (SubMask << (i * Scale));
7769       }
7770     }
7771   }
7772 
7773   if (pNewMask)
7774     *pNewMask = NewMask;
7775   return true;
7776 }
7777 
7778 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7779   unsigned Opcode = MI.getOpcode();
7780   unsigned NumOperands = MI.getDesc().getNumOperands();
7781 
7782   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7783     uint16_t validDomains = 0;
7784     if (MI.getOperand(NumOperands - 1).isImm()) {
7785       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
7786       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
7787         validDomains |= 0x2; // PackedSingle
7788       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
7789         validDomains |= 0x4; // PackedDouble
7790       if (!Is256 || Subtarget.hasAVX2())
7791         validDomains |= 0x8; // PackedInt
7792     }
7793     return validDomains;
7794   };
7795 
7796   switch (Opcode) {
7797   case X86::BLENDPDrmi:
7798   case X86::BLENDPDrri:
7799   case X86::VBLENDPDrmi:
7800   case X86::VBLENDPDrri:
7801     return GetBlendDomains(2, false);
7802   case X86::VBLENDPDYrmi:
7803   case X86::VBLENDPDYrri:
7804     return GetBlendDomains(4, true);
7805   case X86::BLENDPSrmi:
7806   case X86::BLENDPSrri:
7807   case X86::VBLENDPSrmi:
7808   case X86::VBLENDPSrri:
7809   case X86::VPBLENDDrmi:
7810   case X86::VPBLENDDrri:
7811     return GetBlendDomains(4, false);
7812   case X86::VBLENDPSYrmi:
7813   case X86::VBLENDPSYrri:
7814   case X86::VPBLENDDYrmi:
7815   case X86::VPBLENDDYrri:
7816     return GetBlendDomains(8, true);
7817   case X86::PBLENDWrmi:
7818   case X86::PBLENDWrri:
7819   case X86::VPBLENDWrmi:
7820   case X86::VPBLENDWrri:
7821   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7822   case X86::VPBLENDWYrmi:
7823   case X86::VPBLENDWYrri:
7824     return GetBlendDomains(8, false);
7825   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7826   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7827   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7828   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7829   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7830   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7831   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7832   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7833   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7834   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7835   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7836   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7837   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7838   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7839   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7840   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
7841     // If we don't have DQI see if we can still switch from an EVEX integer
7842     // instruction to a VEX floating point instruction.
7843     if (Subtarget.hasDQI())
7844       return 0;
7845 
7846     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
7847       return 0;
7848     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
7849       return 0;
7850     // Register forms will have 3 operands. Memory form will have more.
7851     if (NumOperands == 3 &&
7852         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
7853       return 0;
7854 
7855     // All domains are valid.
7856     return 0xe;
7857   case X86::MOVHLPSrr:
7858     // We can swap domains when both inputs are the same register.
7859     // FIXME: This doesn't catch all the cases we would like. If the input
7860     // register isn't KILLed by the instruction, the two address instruction
7861     // pass puts a COPY on one input. The other input uses the original
7862     // register. This prevents the same physical register from being used by
7863     // both inputs.
7864     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7865         MI.getOperand(0).getSubReg() == 0 &&
7866         MI.getOperand(1).getSubReg() == 0 &&
7867         MI.getOperand(2).getSubReg() == 0)
7868       return 0x6;
7869     return 0;
7870   case X86::SHUFPDrri:
7871     return 0x6;
7872   }
7873   return 0;
7874 }
7875 
7876 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
7877                                             unsigned Domain) const {
7878   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
7879   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7880   assert(dom && "Not an SSE instruction");
7881 
7882   unsigned Opcode = MI.getOpcode();
7883   unsigned NumOperands = MI.getDesc().getNumOperands();
7884 
7885   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
7886     if (MI.getOperand(NumOperands - 1).isImm()) {
7887       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
7888       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
7889       unsigned NewImm = Imm;
7890 
7891       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
7892       if (!table)
7893         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7894 
7895       if (Domain == 1) { // PackedSingle
7896         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7897       } else if (Domain == 2) { // PackedDouble
7898         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
7899       } else if (Domain == 3) { // PackedInt
7900         if (Subtarget.hasAVX2()) {
7901           // If we are already VPBLENDW use that, else use VPBLENDD.
7902           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
7903             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7904             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7905           }
7906         } else {
7907           assert(!Is256 && "128-bit vector expected");
7908           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
7909         }
7910       }
7911 
7912       assert(table && table[Domain - 1] && "Unknown domain op");
7913       MI.setDesc(get(table[Domain - 1]));
7914       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
7915     }
7916     return true;
7917   };
7918 
7919   switch (Opcode) {
7920   case X86::BLENDPDrmi:
7921   case X86::BLENDPDrri:
7922   case X86::VBLENDPDrmi:
7923   case X86::VBLENDPDrri:
7924     return SetBlendDomain(2, false);
7925   case X86::VBLENDPDYrmi:
7926   case X86::VBLENDPDYrri:
7927     return SetBlendDomain(4, true);
7928   case X86::BLENDPSrmi:
7929   case X86::BLENDPSrri:
7930   case X86::VBLENDPSrmi:
7931   case X86::VBLENDPSrri:
7932   case X86::VPBLENDDrmi:
7933   case X86::VPBLENDDrri:
7934     return SetBlendDomain(4, false);
7935   case X86::VBLENDPSYrmi:
7936   case X86::VBLENDPSYrri:
7937   case X86::VPBLENDDYrmi:
7938   case X86::VPBLENDDYrri:
7939     return SetBlendDomain(8, true);
7940   case X86::PBLENDWrmi:
7941   case X86::PBLENDWrri:
7942   case X86::VPBLENDWrmi:
7943   case X86::VPBLENDWrri:
7944     return SetBlendDomain(8, false);
7945   case X86::VPBLENDWYrmi:
7946   case X86::VPBLENDWYrri:
7947     return SetBlendDomain(16, true);
7948   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7949   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7950   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7951   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7952   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7953   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7954   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7955   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7956   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7957   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7958   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7959   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7960   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7961   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7962   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7963   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
7964     // Without DQI, convert EVEX instructions to VEX instructions.
7965     if (Subtarget.hasDQI())
7966       return false;
7967 
7968     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
7969                                          ReplaceableCustomAVX512LogicInstrs);
7970     assert(table && "Instruction not found in table?");
7971     // Don't change integer Q instructions to D instructions and
7972     // use D intructions if we started with a PS instruction.
7973     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7974       Domain = 4;
7975     MI.setDesc(get(table[Domain - 1]));
7976     return true;
7977   }
7978   case X86::UNPCKHPDrr:
7979   case X86::MOVHLPSrr:
7980     // We just need to commute the instruction which will switch the domains.
7981     if (Domain != dom && Domain != 3 &&
7982         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7983         MI.getOperand(0).getSubReg() == 0 &&
7984         MI.getOperand(1).getSubReg() == 0 &&
7985         MI.getOperand(2).getSubReg() == 0) {
7986       commuteInstruction(MI, false);
7987       return true;
7988     }
7989     // We must always return true for MOVHLPSrr.
7990     if (Opcode == X86::MOVHLPSrr)
7991       return true;
7992     break;
7993   case X86::SHUFPDrri: {
7994     if (Domain == 1) {
7995       unsigned Imm = MI.getOperand(3).getImm();
7996       unsigned NewImm = 0x44;
7997       if (Imm & 1) NewImm |= 0x0a;
7998       if (Imm & 2) NewImm |= 0xa0;
7999       MI.getOperand(3).setImm(NewImm);
8000       MI.setDesc(get(X86::SHUFPSrri));
8001     }
8002     return true;
8003   }
8004   }
8005   return false;
8006 }
8007 
8008 std::pair<uint16_t, uint16_t>
8009 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
8010   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8011   unsigned opcode = MI.getOpcode();
8012   uint16_t validDomains = 0;
8013   if (domain) {
8014     // Attempt to match for custom instructions.
8015     validDomains = getExecutionDomainCustom(MI);
8016     if (validDomains)
8017       return std::make_pair(domain, validDomains);
8018 
8019     if (lookup(opcode, domain, ReplaceableInstrs)) {
8020       validDomains = 0xe;
8021     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
8022       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
8023     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
8024       validDomains = 0x6;
8025     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
8026       // Insert/extract instructions should only effect domain if AVX2
8027       // is enabled.
8028       if (!Subtarget.hasAVX2())
8029         return std::make_pair(0, 0);
8030       validDomains = 0xe;
8031     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
8032       validDomains = 0xe;
8033     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
8034                                                   ReplaceableInstrsAVX512DQ)) {
8035       validDomains = 0xe;
8036     } else if (Subtarget.hasDQI()) {
8037       if (const uint16_t *table = lookupAVX512(opcode, domain,
8038                                              ReplaceableInstrsAVX512DQMasked)) {
8039         if (domain == 1 || (domain == 3 && table[3] == opcode))
8040           validDomains = 0xa;
8041         else
8042           validDomains = 0xc;
8043       }
8044     }
8045   }
8046   return std::make_pair(domain, validDomains);
8047 }
8048 
8049 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
8050   assert(Domain>0 && Domain<4 && "Invalid execution domain");
8051   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8052   assert(dom && "Not an SSE instruction");
8053 
8054   // Attempt to match for custom instructions.
8055   if (setExecutionDomainCustom(MI, Domain))
8056     return;
8057 
8058   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
8059   if (!table) { // try the other table
8060     assert((Subtarget.hasAVX2() || Domain < 3) &&
8061            "256-bit vector operations only available in AVX2");
8062     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
8063   }
8064   if (!table) { // try the FP table
8065     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
8066     assert((!table || Domain < 3) &&
8067            "Can only select PackedSingle or PackedDouble");
8068   }
8069   if (!table) { // try the other table
8070     assert(Subtarget.hasAVX2() &&
8071            "256-bit insert/extract only available in AVX2");
8072     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
8073   }
8074   if (!table) { // try the AVX512 table
8075     assert(Subtarget.hasAVX512() && "Requires AVX-512");
8076     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
8077     // Don't change integer Q instructions to D instructions.
8078     if (table && Domain == 3 && table[3] == MI.getOpcode())
8079       Domain = 4;
8080   }
8081   if (!table) { // try the AVX512DQ table
8082     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8083     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
8084     // Don't change integer Q instructions to D instructions and
8085     // use D instructions if we started with a PS instruction.
8086     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8087       Domain = 4;
8088   }
8089   if (!table) { // try the AVX512DQMasked table
8090     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8091     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
8092     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8093       Domain = 4;
8094   }
8095   assert(table && "Cannot change domain");
8096   MI.setDesc(get(table[Domain - 1]));
8097 }
8098 
8099 /// Return the noop instruction to use for a noop.
8100 MCInst X86InstrInfo::getNop() const {
8101   MCInst Nop;
8102   Nop.setOpcode(X86::NOOP);
8103   return Nop;
8104 }
8105 
8106 bool X86InstrInfo::isHighLatencyDef(int opc) const {
8107   switch (opc) {
8108   default: return false;
8109   case X86::DIVPDrm:
8110   case X86::DIVPDrr:
8111   case X86::DIVPSrm:
8112   case X86::DIVPSrr:
8113   case X86::DIVSDrm:
8114   case X86::DIVSDrm_Int:
8115   case X86::DIVSDrr:
8116   case X86::DIVSDrr_Int:
8117   case X86::DIVSSrm:
8118   case X86::DIVSSrm_Int:
8119   case X86::DIVSSrr:
8120   case X86::DIVSSrr_Int:
8121   case X86::SQRTPDm:
8122   case X86::SQRTPDr:
8123   case X86::SQRTPSm:
8124   case X86::SQRTPSr:
8125   case X86::SQRTSDm:
8126   case X86::SQRTSDm_Int:
8127   case X86::SQRTSDr:
8128   case X86::SQRTSDr_Int:
8129   case X86::SQRTSSm:
8130   case X86::SQRTSSm_Int:
8131   case X86::SQRTSSr:
8132   case X86::SQRTSSr_Int:
8133   // AVX instructions with high latency
8134   case X86::VDIVPDrm:
8135   case X86::VDIVPDrr:
8136   case X86::VDIVPDYrm:
8137   case X86::VDIVPDYrr:
8138   case X86::VDIVPSrm:
8139   case X86::VDIVPSrr:
8140   case X86::VDIVPSYrm:
8141   case X86::VDIVPSYrr:
8142   case X86::VDIVSDrm:
8143   case X86::VDIVSDrm_Int:
8144   case X86::VDIVSDrr:
8145   case X86::VDIVSDrr_Int:
8146   case X86::VDIVSSrm:
8147   case X86::VDIVSSrm_Int:
8148   case X86::VDIVSSrr:
8149   case X86::VDIVSSrr_Int:
8150   case X86::VSQRTPDm:
8151   case X86::VSQRTPDr:
8152   case X86::VSQRTPDYm:
8153   case X86::VSQRTPDYr:
8154   case X86::VSQRTPSm:
8155   case X86::VSQRTPSr:
8156   case X86::VSQRTPSYm:
8157   case X86::VSQRTPSYr:
8158   case X86::VSQRTSDm:
8159   case X86::VSQRTSDm_Int:
8160   case X86::VSQRTSDr:
8161   case X86::VSQRTSDr_Int:
8162   case X86::VSQRTSSm:
8163   case X86::VSQRTSSm_Int:
8164   case X86::VSQRTSSr:
8165   case X86::VSQRTSSr_Int:
8166   // AVX512 instructions with high latency
8167   case X86::VDIVPDZ128rm:
8168   case X86::VDIVPDZ128rmb:
8169   case X86::VDIVPDZ128rmbk:
8170   case X86::VDIVPDZ128rmbkz:
8171   case X86::VDIVPDZ128rmk:
8172   case X86::VDIVPDZ128rmkz:
8173   case X86::VDIVPDZ128rr:
8174   case X86::VDIVPDZ128rrk:
8175   case X86::VDIVPDZ128rrkz:
8176   case X86::VDIVPDZ256rm:
8177   case X86::VDIVPDZ256rmb:
8178   case X86::VDIVPDZ256rmbk:
8179   case X86::VDIVPDZ256rmbkz:
8180   case X86::VDIVPDZ256rmk:
8181   case X86::VDIVPDZ256rmkz:
8182   case X86::VDIVPDZ256rr:
8183   case X86::VDIVPDZ256rrk:
8184   case X86::VDIVPDZ256rrkz:
8185   case X86::VDIVPDZrrb:
8186   case X86::VDIVPDZrrbk:
8187   case X86::VDIVPDZrrbkz:
8188   case X86::VDIVPDZrm:
8189   case X86::VDIVPDZrmb:
8190   case X86::VDIVPDZrmbk:
8191   case X86::VDIVPDZrmbkz:
8192   case X86::VDIVPDZrmk:
8193   case X86::VDIVPDZrmkz:
8194   case X86::VDIVPDZrr:
8195   case X86::VDIVPDZrrk:
8196   case X86::VDIVPDZrrkz:
8197   case X86::VDIVPSZ128rm:
8198   case X86::VDIVPSZ128rmb:
8199   case X86::VDIVPSZ128rmbk:
8200   case X86::VDIVPSZ128rmbkz:
8201   case X86::VDIVPSZ128rmk:
8202   case X86::VDIVPSZ128rmkz:
8203   case X86::VDIVPSZ128rr:
8204   case X86::VDIVPSZ128rrk:
8205   case X86::VDIVPSZ128rrkz:
8206   case X86::VDIVPSZ256rm:
8207   case X86::VDIVPSZ256rmb:
8208   case X86::VDIVPSZ256rmbk:
8209   case X86::VDIVPSZ256rmbkz:
8210   case X86::VDIVPSZ256rmk:
8211   case X86::VDIVPSZ256rmkz:
8212   case X86::VDIVPSZ256rr:
8213   case X86::VDIVPSZ256rrk:
8214   case X86::VDIVPSZ256rrkz:
8215   case X86::VDIVPSZrrb:
8216   case X86::VDIVPSZrrbk:
8217   case X86::VDIVPSZrrbkz:
8218   case X86::VDIVPSZrm:
8219   case X86::VDIVPSZrmb:
8220   case X86::VDIVPSZrmbk:
8221   case X86::VDIVPSZrmbkz:
8222   case X86::VDIVPSZrmk:
8223   case X86::VDIVPSZrmkz:
8224   case X86::VDIVPSZrr:
8225   case X86::VDIVPSZrrk:
8226   case X86::VDIVPSZrrkz:
8227   case X86::VDIVSDZrm:
8228   case X86::VDIVSDZrr:
8229   case X86::VDIVSDZrm_Int:
8230   case X86::VDIVSDZrm_Intk:
8231   case X86::VDIVSDZrm_Intkz:
8232   case X86::VDIVSDZrr_Int:
8233   case X86::VDIVSDZrr_Intk:
8234   case X86::VDIVSDZrr_Intkz:
8235   case X86::VDIVSDZrrb_Int:
8236   case X86::VDIVSDZrrb_Intk:
8237   case X86::VDIVSDZrrb_Intkz:
8238   case X86::VDIVSSZrm:
8239   case X86::VDIVSSZrr:
8240   case X86::VDIVSSZrm_Int:
8241   case X86::VDIVSSZrm_Intk:
8242   case X86::VDIVSSZrm_Intkz:
8243   case X86::VDIVSSZrr_Int:
8244   case X86::VDIVSSZrr_Intk:
8245   case X86::VDIVSSZrr_Intkz:
8246   case X86::VDIVSSZrrb_Int:
8247   case X86::VDIVSSZrrb_Intk:
8248   case X86::VDIVSSZrrb_Intkz:
8249   case X86::VSQRTPDZ128m:
8250   case X86::VSQRTPDZ128mb:
8251   case X86::VSQRTPDZ128mbk:
8252   case X86::VSQRTPDZ128mbkz:
8253   case X86::VSQRTPDZ128mk:
8254   case X86::VSQRTPDZ128mkz:
8255   case X86::VSQRTPDZ128r:
8256   case X86::VSQRTPDZ128rk:
8257   case X86::VSQRTPDZ128rkz:
8258   case X86::VSQRTPDZ256m:
8259   case X86::VSQRTPDZ256mb:
8260   case X86::VSQRTPDZ256mbk:
8261   case X86::VSQRTPDZ256mbkz:
8262   case X86::VSQRTPDZ256mk:
8263   case X86::VSQRTPDZ256mkz:
8264   case X86::VSQRTPDZ256r:
8265   case X86::VSQRTPDZ256rk:
8266   case X86::VSQRTPDZ256rkz:
8267   case X86::VSQRTPDZm:
8268   case X86::VSQRTPDZmb:
8269   case X86::VSQRTPDZmbk:
8270   case X86::VSQRTPDZmbkz:
8271   case X86::VSQRTPDZmk:
8272   case X86::VSQRTPDZmkz:
8273   case X86::VSQRTPDZr:
8274   case X86::VSQRTPDZrb:
8275   case X86::VSQRTPDZrbk:
8276   case X86::VSQRTPDZrbkz:
8277   case X86::VSQRTPDZrk:
8278   case X86::VSQRTPDZrkz:
8279   case X86::VSQRTPSZ128m:
8280   case X86::VSQRTPSZ128mb:
8281   case X86::VSQRTPSZ128mbk:
8282   case X86::VSQRTPSZ128mbkz:
8283   case X86::VSQRTPSZ128mk:
8284   case X86::VSQRTPSZ128mkz:
8285   case X86::VSQRTPSZ128r:
8286   case X86::VSQRTPSZ128rk:
8287   case X86::VSQRTPSZ128rkz:
8288   case X86::VSQRTPSZ256m:
8289   case X86::VSQRTPSZ256mb:
8290   case X86::VSQRTPSZ256mbk:
8291   case X86::VSQRTPSZ256mbkz:
8292   case X86::VSQRTPSZ256mk:
8293   case X86::VSQRTPSZ256mkz:
8294   case X86::VSQRTPSZ256r:
8295   case X86::VSQRTPSZ256rk:
8296   case X86::VSQRTPSZ256rkz:
8297   case X86::VSQRTPSZm:
8298   case X86::VSQRTPSZmb:
8299   case X86::VSQRTPSZmbk:
8300   case X86::VSQRTPSZmbkz:
8301   case X86::VSQRTPSZmk:
8302   case X86::VSQRTPSZmkz:
8303   case X86::VSQRTPSZr:
8304   case X86::VSQRTPSZrb:
8305   case X86::VSQRTPSZrbk:
8306   case X86::VSQRTPSZrbkz:
8307   case X86::VSQRTPSZrk:
8308   case X86::VSQRTPSZrkz:
8309   case X86::VSQRTSDZm:
8310   case X86::VSQRTSDZm_Int:
8311   case X86::VSQRTSDZm_Intk:
8312   case X86::VSQRTSDZm_Intkz:
8313   case X86::VSQRTSDZr:
8314   case X86::VSQRTSDZr_Int:
8315   case X86::VSQRTSDZr_Intk:
8316   case X86::VSQRTSDZr_Intkz:
8317   case X86::VSQRTSDZrb_Int:
8318   case X86::VSQRTSDZrb_Intk:
8319   case X86::VSQRTSDZrb_Intkz:
8320   case X86::VSQRTSSZm:
8321   case X86::VSQRTSSZm_Int:
8322   case X86::VSQRTSSZm_Intk:
8323   case X86::VSQRTSSZm_Intkz:
8324   case X86::VSQRTSSZr:
8325   case X86::VSQRTSSZr_Int:
8326   case X86::VSQRTSSZr_Intk:
8327   case X86::VSQRTSSZr_Intkz:
8328   case X86::VSQRTSSZrb_Int:
8329   case X86::VSQRTSSZrb_Intk:
8330   case X86::VSQRTSSZrb_Intkz:
8331 
8332   case X86::VGATHERDPDYrm:
8333   case X86::VGATHERDPDZ128rm:
8334   case X86::VGATHERDPDZ256rm:
8335   case X86::VGATHERDPDZrm:
8336   case X86::VGATHERDPDrm:
8337   case X86::VGATHERDPSYrm:
8338   case X86::VGATHERDPSZ128rm:
8339   case X86::VGATHERDPSZ256rm:
8340   case X86::VGATHERDPSZrm:
8341   case X86::VGATHERDPSrm:
8342   case X86::VGATHERPF0DPDm:
8343   case X86::VGATHERPF0DPSm:
8344   case X86::VGATHERPF0QPDm:
8345   case X86::VGATHERPF0QPSm:
8346   case X86::VGATHERPF1DPDm:
8347   case X86::VGATHERPF1DPSm:
8348   case X86::VGATHERPF1QPDm:
8349   case X86::VGATHERPF1QPSm:
8350   case X86::VGATHERQPDYrm:
8351   case X86::VGATHERQPDZ128rm:
8352   case X86::VGATHERQPDZ256rm:
8353   case X86::VGATHERQPDZrm:
8354   case X86::VGATHERQPDrm:
8355   case X86::VGATHERQPSYrm:
8356   case X86::VGATHERQPSZ128rm:
8357   case X86::VGATHERQPSZ256rm:
8358   case X86::VGATHERQPSZrm:
8359   case X86::VGATHERQPSrm:
8360   case X86::VPGATHERDDYrm:
8361   case X86::VPGATHERDDZ128rm:
8362   case X86::VPGATHERDDZ256rm:
8363   case X86::VPGATHERDDZrm:
8364   case X86::VPGATHERDDrm:
8365   case X86::VPGATHERDQYrm:
8366   case X86::VPGATHERDQZ128rm:
8367   case X86::VPGATHERDQZ256rm:
8368   case X86::VPGATHERDQZrm:
8369   case X86::VPGATHERDQrm:
8370   case X86::VPGATHERQDYrm:
8371   case X86::VPGATHERQDZ128rm:
8372   case X86::VPGATHERQDZ256rm:
8373   case X86::VPGATHERQDZrm:
8374   case X86::VPGATHERQDrm:
8375   case X86::VPGATHERQQYrm:
8376   case X86::VPGATHERQQZ128rm:
8377   case X86::VPGATHERQQZ256rm:
8378   case X86::VPGATHERQQZrm:
8379   case X86::VPGATHERQQrm:
8380   case X86::VSCATTERDPDZ128mr:
8381   case X86::VSCATTERDPDZ256mr:
8382   case X86::VSCATTERDPDZmr:
8383   case X86::VSCATTERDPSZ128mr:
8384   case X86::VSCATTERDPSZ256mr:
8385   case X86::VSCATTERDPSZmr:
8386   case X86::VSCATTERPF0DPDm:
8387   case X86::VSCATTERPF0DPSm:
8388   case X86::VSCATTERPF0QPDm:
8389   case X86::VSCATTERPF0QPSm:
8390   case X86::VSCATTERPF1DPDm:
8391   case X86::VSCATTERPF1DPSm:
8392   case X86::VSCATTERPF1QPDm:
8393   case X86::VSCATTERPF1QPSm:
8394   case X86::VSCATTERQPDZ128mr:
8395   case X86::VSCATTERQPDZ256mr:
8396   case X86::VSCATTERQPDZmr:
8397   case X86::VSCATTERQPSZ128mr:
8398   case X86::VSCATTERQPSZ256mr:
8399   case X86::VSCATTERQPSZmr:
8400   case X86::VPSCATTERDDZ128mr:
8401   case X86::VPSCATTERDDZ256mr:
8402   case X86::VPSCATTERDDZmr:
8403   case X86::VPSCATTERDQZ128mr:
8404   case X86::VPSCATTERDQZ256mr:
8405   case X86::VPSCATTERDQZmr:
8406   case X86::VPSCATTERQDZ128mr:
8407   case X86::VPSCATTERQDZ256mr:
8408   case X86::VPSCATTERQDZmr:
8409   case X86::VPSCATTERQQZ128mr:
8410   case X86::VPSCATTERQQZ256mr:
8411   case X86::VPSCATTERQQZmr:
8412     return true;
8413   }
8414 }
8415 
8416 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8417                                          const MachineRegisterInfo *MRI,
8418                                          const MachineInstr &DefMI,
8419                                          unsigned DefIdx,
8420                                          const MachineInstr &UseMI,
8421                                          unsigned UseIdx) const {
8422   return isHighLatencyDef(DefMI.getOpcode());
8423 }
8424 
8425 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8426                                            const MachineBasicBlock *MBB) const {
8427   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8428          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8429 
8430   // Integer binary math/logic instructions have a third source operand:
8431   // the EFLAGS register. That operand must be both defined here and never
8432   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8433   // not change anything because rearranging the operands could affect other
8434   // instructions that depend on the exact status flags (zero, sign, etc.)
8435   // that are set by using these particular operands with this operation.
8436   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8437   assert((Inst.getNumDefs() == 1 || FlagDef) &&
8438          "Implicit def isn't flags?");
8439   if (FlagDef && !FlagDef->isDead())
8440     return false;
8441 
8442   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8443 }
8444 
8445 // TODO: There are many more machine instruction opcodes to match:
8446 //       1. Other data types (integer, vectors)
8447 //       2. Other math / logic operations (xor, or)
8448 //       3. Other forms of the same operation (intrinsics and other variants)
8449 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8450   switch (Inst.getOpcode()) {
8451   case X86::AND8rr:
8452   case X86::AND16rr:
8453   case X86::AND32rr:
8454   case X86::AND64rr:
8455   case X86::OR8rr:
8456   case X86::OR16rr:
8457   case X86::OR32rr:
8458   case X86::OR64rr:
8459   case X86::XOR8rr:
8460   case X86::XOR16rr:
8461   case X86::XOR32rr:
8462   case X86::XOR64rr:
8463   case X86::IMUL16rr:
8464   case X86::IMUL32rr:
8465   case X86::IMUL64rr:
8466   case X86::PANDrr:
8467   case X86::PORrr:
8468   case X86::PXORrr:
8469   case X86::ANDPDrr:
8470   case X86::ANDPSrr:
8471   case X86::ORPDrr:
8472   case X86::ORPSrr:
8473   case X86::XORPDrr:
8474   case X86::XORPSrr:
8475   case X86::PADDBrr:
8476   case X86::PADDWrr:
8477   case X86::PADDDrr:
8478   case X86::PADDQrr:
8479   case X86::PMULLWrr:
8480   case X86::PMULLDrr:
8481   case X86::PMAXSBrr:
8482   case X86::PMAXSDrr:
8483   case X86::PMAXSWrr:
8484   case X86::PMAXUBrr:
8485   case X86::PMAXUDrr:
8486   case X86::PMAXUWrr:
8487   case X86::PMINSBrr:
8488   case X86::PMINSDrr:
8489   case X86::PMINSWrr:
8490   case X86::PMINUBrr:
8491   case X86::PMINUDrr:
8492   case X86::PMINUWrr:
8493   case X86::VPANDrr:
8494   case X86::VPANDYrr:
8495   case X86::VPANDDZ128rr:
8496   case X86::VPANDDZ256rr:
8497   case X86::VPANDDZrr:
8498   case X86::VPANDQZ128rr:
8499   case X86::VPANDQZ256rr:
8500   case X86::VPANDQZrr:
8501   case X86::VPORrr:
8502   case X86::VPORYrr:
8503   case X86::VPORDZ128rr:
8504   case X86::VPORDZ256rr:
8505   case X86::VPORDZrr:
8506   case X86::VPORQZ128rr:
8507   case X86::VPORQZ256rr:
8508   case X86::VPORQZrr:
8509   case X86::VPXORrr:
8510   case X86::VPXORYrr:
8511   case X86::VPXORDZ128rr:
8512   case X86::VPXORDZ256rr:
8513   case X86::VPXORDZrr:
8514   case X86::VPXORQZ128rr:
8515   case X86::VPXORQZ256rr:
8516   case X86::VPXORQZrr:
8517   case X86::VANDPDrr:
8518   case X86::VANDPSrr:
8519   case X86::VANDPDYrr:
8520   case X86::VANDPSYrr:
8521   case X86::VANDPDZ128rr:
8522   case X86::VANDPSZ128rr:
8523   case X86::VANDPDZ256rr:
8524   case X86::VANDPSZ256rr:
8525   case X86::VANDPDZrr:
8526   case X86::VANDPSZrr:
8527   case X86::VORPDrr:
8528   case X86::VORPSrr:
8529   case X86::VORPDYrr:
8530   case X86::VORPSYrr:
8531   case X86::VORPDZ128rr:
8532   case X86::VORPSZ128rr:
8533   case X86::VORPDZ256rr:
8534   case X86::VORPSZ256rr:
8535   case X86::VORPDZrr:
8536   case X86::VORPSZrr:
8537   case X86::VXORPDrr:
8538   case X86::VXORPSrr:
8539   case X86::VXORPDYrr:
8540   case X86::VXORPSYrr:
8541   case X86::VXORPDZ128rr:
8542   case X86::VXORPSZ128rr:
8543   case X86::VXORPDZ256rr:
8544   case X86::VXORPSZ256rr:
8545   case X86::VXORPDZrr:
8546   case X86::VXORPSZrr:
8547   case X86::KADDBrr:
8548   case X86::KADDWrr:
8549   case X86::KADDDrr:
8550   case X86::KADDQrr:
8551   case X86::KANDBrr:
8552   case X86::KANDWrr:
8553   case X86::KANDDrr:
8554   case X86::KANDQrr:
8555   case X86::KORBrr:
8556   case X86::KORWrr:
8557   case X86::KORDrr:
8558   case X86::KORQrr:
8559   case X86::KXORBrr:
8560   case X86::KXORWrr:
8561   case X86::KXORDrr:
8562   case X86::KXORQrr:
8563   case X86::VPADDBrr:
8564   case X86::VPADDWrr:
8565   case X86::VPADDDrr:
8566   case X86::VPADDQrr:
8567   case X86::VPADDBYrr:
8568   case X86::VPADDWYrr:
8569   case X86::VPADDDYrr:
8570   case X86::VPADDQYrr:
8571   case X86::VPADDBZ128rr:
8572   case X86::VPADDWZ128rr:
8573   case X86::VPADDDZ128rr:
8574   case X86::VPADDQZ128rr:
8575   case X86::VPADDBZ256rr:
8576   case X86::VPADDWZ256rr:
8577   case X86::VPADDDZ256rr:
8578   case X86::VPADDQZ256rr:
8579   case X86::VPADDBZrr:
8580   case X86::VPADDWZrr:
8581   case X86::VPADDDZrr:
8582   case X86::VPADDQZrr:
8583   case X86::VPMULLWrr:
8584   case X86::VPMULLWYrr:
8585   case X86::VPMULLWZ128rr:
8586   case X86::VPMULLWZ256rr:
8587   case X86::VPMULLWZrr:
8588   case X86::VPMULLDrr:
8589   case X86::VPMULLDYrr:
8590   case X86::VPMULLDZ128rr:
8591   case X86::VPMULLDZ256rr:
8592   case X86::VPMULLDZrr:
8593   case X86::VPMULLQZ128rr:
8594   case X86::VPMULLQZ256rr:
8595   case X86::VPMULLQZrr:
8596   case X86::VPMAXSBrr:
8597   case X86::VPMAXSBYrr:
8598   case X86::VPMAXSBZ128rr:
8599   case X86::VPMAXSBZ256rr:
8600   case X86::VPMAXSBZrr:
8601   case X86::VPMAXSDrr:
8602   case X86::VPMAXSDYrr:
8603   case X86::VPMAXSDZ128rr:
8604   case X86::VPMAXSDZ256rr:
8605   case X86::VPMAXSDZrr:
8606   case X86::VPMAXSQZ128rr:
8607   case X86::VPMAXSQZ256rr:
8608   case X86::VPMAXSQZrr:
8609   case X86::VPMAXSWrr:
8610   case X86::VPMAXSWYrr:
8611   case X86::VPMAXSWZ128rr:
8612   case X86::VPMAXSWZ256rr:
8613   case X86::VPMAXSWZrr:
8614   case X86::VPMAXUBrr:
8615   case X86::VPMAXUBYrr:
8616   case X86::VPMAXUBZ128rr:
8617   case X86::VPMAXUBZ256rr:
8618   case X86::VPMAXUBZrr:
8619   case X86::VPMAXUDrr:
8620   case X86::VPMAXUDYrr:
8621   case X86::VPMAXUDZ128rr:
8622   case X86::VPMAXUDZ256rr:
8623   case X86::VPMAXUDZrr:
8624   case X86::VPMAXUQZ128rr:
8625   case X86::VPMAXUQZ256rr:
8626   case X86::VPMAXUQZrr:
8627   case X86::VPMAXUWrr:
8628   case X86::VPMAXUWYrr:
8629   case X86::VPMAXUWZ128rr:
8630   case X86::VPMAXUWZ256rr:
8631   case X86::VPMAXUWZrr:
8632   case X86::VPMINSBrr:
8633   case X86::VPMINSBYrr:
8634   case X86::VPMINSBZ128rr:
8635   case X86::VPMINSBZ256rr:
8636   case X86::VPMINSBZrr:
8637   case X86::VPMINSDrr:
8638   case X86::VPMINSDYrr:
8639   case X86::VPMINSDZ128rr:
8640   case X86::VPMINSDZ256rr:
8641   case X86::VPMINSDZrr:
8642   case X86::VPMINSQZ128rr:
8643   case X86::VPMINSQZ256rr:
8644   case X86::VPMINSQZrr:
8645   case X86::VPMINSWrr:
8646   case X86::VPMINSWYrr:
8647   case X86::VPMINSWZ128rr:
8648   case X86::VPMINSWZ256rr:
8649   case X86::VPMINSWZrr:
8650   case X86::VPMINUBrr:
8651   case X86::VPMINUBYrr:
8652   case X86::VPMINUBZ128rr:
8653   case X86::VPMINUBZ256rr:
8654   case X86::VPMINUBZrr:
8655   case X86::VPMINUDrr:
8656   case X86::VPMINUDYrr:
8657   case X86::VPMINUDZ128rr:
8658   case X86::VPMINUDZ256rr:
8659   case X86::VPMINUDZrr:
8660   case X86::VPMINUQZ128rr:
8661   case X86::VPMINUQZ256rr:
8662   case X86::VPMINUQZrr:
8663   case X86::VPMINUWrr:
8664   case X86::VPMINUWYrr:
8665   case X86::VPMINUWZ128rr:
8666   case X86::VPMINUWZ256rr:
8667   case X86::VPMINUWZrr:
8668   // Normal min/max instructions are not commutative because of NaN and signed
8669   // zero semantics, but these are. Thus, there's no need to check for global
8670   // relaxed math; the instructions themselves have the properties we need.
8671   case X86::MAXCPDrr:
8672   case X86::MAXCPSrr:
8673   case X86::MAXCSDrr:
8674   case X86::MAXCSSrr:
8675   case X86::MINCPDrr:
8676   case X86::MINCPSrr:
8677   case X86::MINCSDrr:
8678   case X86::MINCSSrr:
8679   case X86::VMAXCPDrr:
8680   case X86::VMAXCPSrr:
8681   case X86::VMAXCPDYrr:
8682   case X86::VMAXCPSYrr:
8683   case X86::VMAXCPDZ128rr:
8684   case X86::VMAXCPSZ128rr:
8685   case X86::VMAXCPDZ256rr:
8686   case X86::VMAXCPSZ256rr:
8687   case X86::VMAXCPDZrr:
8688   case X86::VMAXCPSZrr:
8689   case X86::VMAXCSDrr:
8690   case X86::VMAXCSSrr:
8691   case X86::VMAXCSDZrr:
8692   case X86::VMAXCSSZrr:
8693   case X86::VMINCPDrr:
8694   case X86::VMINCPSrr:
8695   case X86::VMINCPDYrr:
8696   case X86::VMINCPSYrr:
8697   case X86::VMINCPDZ128rr:
8698   case X86::VMINCPSZ128rr:
8699   case X86::VMINCPDZ256rr:
8700   case X86::VMINCPSZ256rr:
8701   case X86::VMINCPDZrr:
8702   case X86::VMINCPSZrr:
8703   case X86::VMINCSDrr:
8704   case X86::VMINCSSrr:
8705   case X86::VMINCSDZrr:
8706   case X86::VMINCSSZrr:
8707   case X86::VMAXCPHZ128rr:
8708   case X86::VMAXCPHZ256rr:
8709   case X86::VMAXCPHZrr:
8710   case X86::VMAXCSHZrr:
8711   case X86::VMINCPHZ128rr:
8712   case X86::VMINCPHZ256rr:
8713   case X86::VMINCPHZrr:
8714   case X86::VMINCSHZrr:
8715     return true;
8716   case X86::ADDPDrr:
8717   case X86::ADDPSrr:
8718   case X86::ADDSDrr:
8719   case X86::ADDSSrr:
8720   case X86::MULPDrr:
8721   case X86::MULPSrr:
8722   case X86::MULSDrr:
8723   case X86::MULSSrr:
8724   case X86::VADDPDrr:
8725   case X86::VADDPSrr:
8726   case X86::VADDPDYrr:
8727   case X86::VADDPSYrr:
8728   case X86::VADDPDZ128rr:
8729   case X86::VADDPSZ128rr:
8730   case X86::VADDPDZ256rr:
8731   case X86::VADDPSZ256rr:
8732   case X86::VADDPDZrr:
8733   case X86::VADDPSZrr:
8734   case X86::VADDSDrr:
8735   case X86::VADDSSrr:
8736   case X86::VADDSDZrr:
8737   case X86::VADDSSZrr:
8738   case X86::VMULPDrr:
8739   case X86::VMULPSrr:
8740   case X86::VMULPDYrr:
8741   case X86::VMULPSYrr:
8742   case X86::VMULPDZ128rr:
8743   case X86::VMULPSZ128rr:
8744   case X86::VMULPDZ256rr:
8745   case X86::VMULPSZ256rr:
8746   case X86::VMULPDZrr:
8747   case X86::VMULPSZrr:
8748   case X86::VMULSDrr:
8749   case X86::VMULSSrr:
8750   case X86::VMULSDZrr:
8751   case X86::VMULSSZrr:
8752   case X86::VADDPHZ128rr:
8753   case X86::VADDPHZ256rr:
8754   case X86::VADDPHZrr:
8755   case X86::VADDSHZrr:
8756   case X86::VMULPHZ128rr:
8757   case X86::VMULPHZ256rr:
8758   case X86::VMULPHZrr:
8759   case X86::VMULSHZrr:
8760     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8761            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8762   default:
8763     return false;
8764   }
8765 }
8766 
8767 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8768 /// register then, if possible, describe the value in terms of the source
8769 /// register.
8770 static Optional<ParamLoadedValue>
8771 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8772                          const TargetRegisterInfo *TRI) {
8773   Register DestReg = MI.getOperand(0).getReg();
8774   Register SrcReg = MI.getOperand(1).getReg();
8775 
8776   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8777 
8778   // If the described register is the destination, just return the source.
8779   if (DestReg == DescribedReg)
8780     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8781 
8782   // If the described register is a sub-register of the destination register,
8783   // then pick out the source register's corresponding sub-register.
8784   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
8785     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
8786     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8787   }
8788 
8789   // The remaining case to consider is when the described register is a
8790   // super-register of the destination register. MOV8rr and MOV16rr does not
8791   // write to any of the other bytes in the register, meaning that we'd have to
8792   // describe the value using a combination of the source register and the
8793   // non-overlapping bits in the described register, which is not currently
8794   // possible.
8795   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
8796       !TRI->isSuperRegister(DestReg, DescribedReg))
8797     return None;
8798 
8799   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
8800   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8801 }
8802 
8803 Optional<ParamLoadedValue>
8804 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
8805   const MachineOperand *Op = nullptr;
8806   DIExpression *Expr = nullptr;
8807 
8808   const TargetRegisterInfo *TRI = &getRegisterInfo();
8809 
8810   switch (MI.getOpcode()) {
8811   case X86::LEA32r:
8812   case X86::LEA64r:
8813   case X86::LEA64_32r: {
8814     // We may need to describe a 64-bit parameter with a 32-bit LEA.
8815     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8816       return None;
8817 
8818     // Operand 4 could be global address. For now we do not support
8819     // such situation.
8820     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
8821       return None;
8822 
8823     const MachineOperand &Op1 = MI.getOperand(1);
8824     const MachineOperand &Op2 = MI.getOperand(3);
8825     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
8826                            Register::isPhysicalRegister(Op2.getReg())));
8827 
8828     // Omit situations like:
8829     // %rsi = lea %rsi, 4, ...
8830     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
8831         Op2.getReg() == MI.getOperand(0).getReg())
8832       return None;
8833     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
8834               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
8835              (Op2.getReg() != X86::NoRegister &&
8836               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
8837       return None;
8838 
8839     int64_t Coef = MI.getOperand(2).getImm();
8840     int64_t Offset = MI.getOperand(4).getImm();
8841     SmallVector<uint64_t, 8> Ops;
8842 
8843     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
8844       Op = &Op1;
8845     } else if (Op1.isFI())
8846       Op = &Op1;
8847 
8848     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
8849       Ops.push_back(dwarf::DW_OP_constu);
8850       Ops.push_back(Coef + 1);
8851       Ops.push_back(dwarf::DW_OP_mul);
8852     } else {
8853       if (Op && Op2.getReg() != X86::NoRegister) {
8854         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
8855         if (dwarfReg < 0)
8856           return None;
8857         else if (dwarfReg < 32) {
8858           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
8859           Ops.push_back(0);
8860         } else {
8861           Ops.push_back(dwarf::DW_OP_bregx);
8862           Ops.push_back(dwarfReg);
8863           Ops.push_back(0);
8864         }
8865       } else if (!Op) {
8866         assert(Op2.getReg() != X86::NoRegister);
8867         Op = &Op2;
8868       }
8869 
8870       if (Coef > 1) {
8871         assert(Op2.getReg() != X86::NoRegister);
8872         Ops.push_back(dwarf::DW_OP_constu);
8873         Ops.push_back(Coef);
8874         Ops.push_back(dwarf::DW_OP_mul);
8875       }
8876 
8877       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
8878           Op2.getReg() != X86::NoRegister) {
8879         Ops.push_back(dwarf::DW_OP_plus);
8880       }
8881     }
8882 
8883     DIExpression::appendOffset(Ops, Offset);
8884     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
8885 
8886     return ParamLoadedValue(*Op, Expr);;
8887   }
8888   case X86::MOV8ri:
8889   case X86::MOV16ri:
8890     // TODO: Handle MOV8ri and MOV16ri.
8891     return None;
8892   case X86::MOV32ri:
8893   case X86::MOV64ri:
8894   case X86::MOV64ri32:
8895     // MOV32ri may be used for producing zero-extended 32-bit immediates in
8896     // 64-bit parameters, so we need to consider super-registers.
8897     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8898       return None;
8899     return ParamLoadedValue(MI.getOperand(1), Expr);
8900   case X86::MOV8rr:
8901   case X86::MOV16rr:
8902   case X86::MOV32rr:
8903   case X86::MOV64rr:
8904     return describeMOVrrLoadedValue(MI, Reg, TRI);
8905   case X86::XOR32rr: {
8906     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8907     // super-registers.
8908     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8909       return None;
8910     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
8911       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
8912     return None;
8913   }
8914   case X86::MOVSX64rr32: {
8915     // We may need to describe the lower 32 bits of the MOVSX; for example, in
8916     // cases like this:
8917     //
8918     //  $ebx = [...]
8919     //  $rdi = MOVSX64rr32 $ebx
8920     //  $esi = MOV32rr $edi
8921     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
8922       return None;
8923 
8924     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8925 
8926     // If the described register is the destination register we need to
8927     // sign-extend the source register from 32 bits. The other case we handle
8928     // is when the described register is the 32-bit sub-register of the
8929     // destination register, in case we just need to return the source
8930     // register.
8931     if (Reg == MI.getOperand(0).getReg())
8932       Expr = DIExpression::appendExt(Expr, 32, 64, true);
8933     else
8934       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
8935              "Unhandled sub-register case for MOVSX64rr32");
8936 
8937     return ParamLoadedValue(MI.getOperand(1), Expr);
8938   }
8939   default:
8940     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
8941     return TargetInstrInfo::describeLoadedValue(MI, Reg);
8942   }
8943 }
8944 
8945 /// This is an architecture-specific helper function of reassociateOps.
8946 /// Set special operand attributes for new instructions after reassociation.
8947 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
8948                                          MachineInstr &OldMI2,
8949                                          MachineInstr &NewMI1,
8950                                          MachineInstr &NewMI2) const {
8951   // Propagate FP flags from the original instructions.
8952   // But clear poison-generating flags because those may not be valid now.
8953   // TODO: There should be a helper function for copying only fast-math-flags.
8954   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
8955   NewMI1.setFlags(IntersectedFlags);
8956   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
8957   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
8958   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
8959 
8960   NewMI2.setFlags(IntersectedFlags);
8961   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
8962   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
8963   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
8964 
8965   // Integer instructions may define an implicit EFLAGS dest register operand.
8966   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
8967   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
8968 
8969   assert(!OldFlagDef1 == !OldFlagDef2 &&
8970          "Unexpected instruction type for reassociation");
8971 
8972   if (!OldFlagDef1 || !OldFlagDef2)
8973     return;
8974 
8975   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
8976          "Must have dead EFLAGS operand in reassociable instruction");
8977 
8978   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
8979   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
8980 
8981   assert(NewFlagDef1 && NewFlagDef2 &&
8982          "Unexpected operand in reassociable instruction");
8983 
8984   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8985   // of this pass or other passes. The EFLAGS operands must be dead in these new
8986   // instructions because the EFLAGS operands in the original instructions must
8987   // be dead in order for reassociation to occur.
8988   NewFlagDef1->setIsDead();
8989   NewFlagDef2->setIsDead();
8990 }
8991 
8992 std::pair<unsigned, unsigned>
8993 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8994   return std::make_pair(TF, 0u);
8995 }
8996 
8997 ArrayRef<std::pair<unsigned, const char *>>
8998 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8999   using namespace X86II;
9000   static const std::pair<unsigned, const char *> TargetFlags[] = {
9001       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
9002       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
9003       {MO_GOT, "x86-got"},
9004       {MO_GOTOFF, "x86-gotoff"},
9005       {MO_GOTPCREL, "x86-gotpcrel"},
9006       {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
9007       {MO_PLT, "x86-plt"},
9008       {MO_TLSGD, "x86-tlsgd"},
9009       {MO_TLSLD, "x86-tlsld"},
9010       {MO_TLSLDM, "x86-tlsldm"},
9011       {MO_GOTTPOFF, "x86-gottpoff"},
9012       {MO_INDNTPOFF, "x86-indntpoff"},
9013       {MO_TPOFF, "x86-tpoff"},
9014       {MO_DTPOFF, "x86-dtpoff"},
9015       {MO_NTPOFF, "x86-ntpoff"},
9016       {MO_GOTNTPOFF, "x86-gotntpoff"},
9017       {MO_DLLIMPORT, "x86-dllimport"},
9018       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
9019       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
9020       {MO_TLVP, "x86-tlvp"},
9021       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
9022       {MO_SECREL, "x86-secrel"},
9023       {MO_COFFSTUB, "x86-coffstub"}};
9024   return makeArrayRef(TargetFlags);
9025 }
9026 
9027 namespace {
9028   /// Create Global Base Reg pass. This initializes the PIC
9029   /// global base register for x86-32.
9030   struct CGBR : public MachineFunctionPass {
9031     static char ID;
9032     CGBR() : MachineFunctionPass(ID) {}
9033 
9034     bool runOnMachineFunction(MachineFunction &MF) override {
9035       const X86TargetMachine *TM =
9036         static_cast<const X86TargetMachine *>(&MF.getTarget());
9037       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
9038 
9039       // Don't do anything in the 64-bit small and kernel code models. They use
9040       // RIP-relative addressing for everything.
9041       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
9042                             TM->getCodeModel() == CodeModel::Kernel))
9043         return false;
9044 
9045       // Only emit a global base reg in PIC mode.
9046       if (!TM->isPositionIndependent())
9047         return false;
9048 
9049       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9050       Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9051 
9052       // If we didn't need a GlobalBaseReg, don't insert code.
9053       if (GlobalBaseReg == 0)
9054         return false;
9055 
9056       // Insert the set of GlobalBaseReg into the first MBB of the function
9057       MachineBasicBlock &FirstMBB = MF.front();
9058       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
9059       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
9060       MachineRegisterInfo &RegInfo = MF.getRegInfo();
9061       const X86InstrInfo *TII = STI.getInstrInfo();
9062 
9063       Register PC;
9064       if (STI.isPICStyleGOT())
9065         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
9066       else
9067         PC = GlobalBaseReg;
9068 
9069       if (STI.is64Bit()) {
9070         if (TM->getCodeModel() == CodeModel::Medium) {
9071           // In the medium code model, use a RIP-relative LEA to materialize the
9072           // GOT.
9073           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
9074               .addReg(X86::RIP)
9075               .addImm(0)
9076               .addReg(0)
9077               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
9078               .addReg(0);
9079         } else if (TM->getCodeModel() == CodeModel::Large) {
9080           // In the large code model, we are aiming for this code, though the
9081           // register allocation may vary:
9082           //   leaq .LN$pb(%rip), %rax
9083           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
9084           //   addq %rcx, %rax
9085           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
9086           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9087           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9088           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
9089               .addReg(X86::RIP)
9090               .addImm(0)
9091               .addReg(0)
9092               .addSym(MF.getPICBaseSymbol())
9093               .addReg(0);
9094           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
9095           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
9096               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9097                                  X86II::MO_PIC_BASE_OFFSET);
9098           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
9099               .addReg(PBReg, RegState::Kill)
9100               .addReg(GOTReg, RegState::Kill);
9101         } else {
9102           llvm_unreachable("unexpected code model");
9103         }
9104       } else {
9105         // Operand of MovePCtoStack is completely ignored by asm printer. It's
9106         // only used in JIT code emission as displacement to pc.
9107         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
9108 
9109         // If we're using vanilla 'GOT' PIC style, we should use relative
9110         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
9111         if (STI.isPICStyleGOT()) {
9112           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
9113           // %some_register
9114           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
9115               .addReg(PC)
9116               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9117                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
9118         }
9119       }
9120 
9121       return true;
9122     }
9123 
9124     StringRef getPassName() const override {
9125       return "X86 PIC Global Base Reg Initialization";
9126     }
9127 
9128     void getAnalysisUsage(AnalysisUsage &AU) const override {
9129       AU.setPreservesCFG();
9130       MachineFunctionPass::getAnalysisUsage(AU);
9131     }
9132   };
9133 } // namespace
9134 
9135 char CGBR::ID = 0;
9136 FunctionPass*
9137 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
9138 
9139 namespace {
9140   struct LDTLSCleanup : public MachineFunctionPass {
9141     static char ID;
9142     LDTLSCleanup() : MachineFunctionPass(ID) {}
9143 
9144     bool runOnMachineFunction(MachineFunction &MF) override {
9145       if (skipFunction(MF.getFunction()))
9146         return false;
9147 
9148       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
9149       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
9150         // No point folding accesses if there isn't at least two.
9151         return false;
9152       }
9153 
9154       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
9155       return VisitNode(DT->getRootNode(), 0);
9156     }
9157 
9158     // Visit the dominator subtree rooted at Node in pre-order.
9159     // If TLSBaseAddrReg is non-null, then use that to replace any
9160     // TLS_base_addr instructions. Otherwise, create the register
9161     // when the first such instruction is seen, and then use it
9162     // as we encounter more instructions.
9163     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
9164       MachineBasicBlock *BB = Node->getBlock();
9165       bool Changed = false;
9166 
9167       // Traverse the current block.
9168       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
9169            ++I) {
9170         switch (I->getOpcode()) {
9171           case X86::TLS_base_addr32:
9172           case X86::TLS_base_addr64:
9173             if (TLSBaseAddrReg)
9174               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9175             else
9176               I = SetRegister(*I, &TLSBaseAddrReg);
9177             Changed = true;
9178             break;
9179           default:
9180             break;
9181         }
9182       }
9183 
9184       // Visit the children of this block in the dominator tree.
9185       for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
9186         Changed |= VisitNode(*I, TLSBaseAddrReg);
9187       }
9188 
9189       return Changed;
9190     }
9191 
9192     // Replace the TLS_base_addr instruction I with a copy from
9193     // TLSBaseAddrReg, returning the new instruction.
9194     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9195                                          unsigned TLSBaseAddrReg) {
9196       MachineFunction *MF = I.getParent()->getParent();
9197       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9198       const bool is64Bit = STI.is64Bit();
9199       const X86InstrInfo *TII = STI.getInstrInfo();
9200 
9201       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9202       MachineInstr *Copy =
9203           BuildMI(*I.getParent(), I, I.getDebugLoc(),
9204                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9205               .addReg(TLSBaseAddrReg);
9206 
9207       // Erase the TLS_base_addr instruction.
9208       I.eraseFromParent();
9209 
9210       return Copy;
9211     }
9212 
9213     // Create a virtual register in *TLSBaseAddrReg, and populate it by
9214     // inserting a copy instruction after I. Returns the new instruction.
9215     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9216       MachineFunction *MF = I.getParent()->getParent();
9217       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9218       const bool is64Bit = STI.is64Bit();
9219       const X86InstrInfo *TII = STI.getInstrInfo();
9220 
9221       // Create a virtual register for the TLS base address.
9222       MachineRegisterInfo &RegInfo = MF->getRegInfo();
9223       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9224                                                       ? &X86::GR64RegClass
9225                                                       : &X86::GR32RegClass);
9226 
9227       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9228       MachineInstr *Next = I.getNextNode();
9229       MachineInstr *Copy =
9230           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9231                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9232               .addReg(is64Bit ? X86::RAX : X86::EAX);
9233 
9234       return Copy;
9235     }
9236 
9237     StringRef getPassName() const override {
9238       return "Local Dynamic TLS Access Clean-up";
9239     }
9240 
9241     void getAnalysisUsage(AnalysisUsage &AU) const override {
9242       AU.setPreservesCFG();
9243       AU.addRequired<MachineDominatorTree>();
9244       MachineFunctionPass::getAnalysisUsage(AU);
9245     }
9246   };
9247 }
9248 
9249 char LDTLSCleanup::ID = 0;
9250 FunctionPass*
9251 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9252 
9253 /// Constants defining how certain sequences should be outlined.
9254 ///
9255 /// \p MachineOutlinerDefault implies that the function is called with a call
9256 /// instruction, and a return must be emitted for the outlined function frame.
9257 ///
9258 /// That is,
9259 ///
9260 /// I1                                 OUTLINED_FUNCTION:
9261 /// I2 --> call OUTLINED_FUNCTION       I1
9262 /// I3                                  I2
9263 ///                                     I3
9264 ///                                     ret
9265 ///
9266 /// * Call construction overhead: 1 (call instruction)
9267 /// * Frame construction overhead: 1 (return instruction)
9268 ///
9269 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9270 /// A jump is emitted instead of a call, and the return is already present in
9271 /// the outlined sequence. That is,
9272 ///
9273 /// I1                                 OUTLINED_FUNCTION:
9274 /// I2 --> jmp OUTLINED_FUNCTION       I1
9275 /// ret                                I2
9276 ///                                    ret
9277 ///
9278 /// * Call construction overhead: 1 (jump instruction)
9279 /// * Frame construction overhead: 0 (don't need to return)
9280 ///
9281 enum MachineOutlinerClass {
9282   MachineOutlinerDefault,
9283   MachineOutlinerTailCall
9284 };
9285 
9286 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9287     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9288   unsigned SequenceSize =
9289       std::accumulate(RepeatedSequenceLocs[0].front(),
9290                       std::next(RepeatedSequenceLocs[0].back()), 0,
9291                       [](unsigned Sum, const MachineInstr &MI) {
9292                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
9293                         // we can't tell the cost.  Just assume each instruction
9294                         // is one byte.
9295                         if (MI.isDebugInstr() || MI.isKill())
9296                           return Sum;
9297                         return Sum + 1;
9298                       });
9299 
9300   // We check to see if CFI Instructions are present, and if they are
9301   // we find the number of CFI Instructions in the candidates.
9302   unsigned CFICount = 0;
9303   MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
9304   for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
9305        Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
9306     if (MBBI->isCFIInstruction())
9307       CFICount++;
9308     MBBI++;
9309   }
9310 
9311   // We compare the number of found CFI Instructions to  the number of CFI
9312   // instructions in the parent function for each candidate.  We must check this
9313   // since if we outline one of the CFI instructions in a function, we have to
9314   // outline them all for correctness. If we do not, the address offsets will be
9315   // incorrect between the two sections of the program.
9316   for (outliner::Candidate &C : RepeatedSequenceLocs) {
9317     std::vector<MCCFIInstruction> CFIInstructions =
9318         C.getMF()->getFrameInstructions();
9319 
9320     if (CFICount > 0 && CFICount != CFIInstructions.size())
9321       return outliner::OutlinedFunction();
9322   }
9323 
9324   // FIXME: Use real size in bytes for call and ret instructions.
9325   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9326     for (outliner::Candidate &C : RepeatedSequenceLocs)
9327       C.setCallInfo(MachineOutlinerTailCall, 1);
9328 
9329     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9330                                       0, // Number of bytes to emit frame.
9331                                       MachineOutlinerTailCall // Type of frame.
9332     );
9333   }
9334 
9335   if (CFICount > 0)
9336     return outliner::OutlinedFunction();
9337 
9338   for (outliner::Candidate &C : RepeatedSequenceLocs)
9339     C.setCallInfo(MachineOutlinerDefault, 1);
9340 
9341   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9342                                     MachineOutlinerDefault);
9343 }
9344 
9345 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9346                                            bool OutlineFromLinkOnceODRs) const {
9347   const Function &F = MF.getFunction();
9348 
9349   // Does the function use a red zone? If it does, then we can't risk messing
9350   // with the stack.
9351   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9352     // It could have a red zone. If it does, then we don't want to touch it.
9353     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9354     if (!X86FI || X86FI->getUsesRedZone())
9355       return false;
9356   }
9357 
9358   // If we *don't* want to outline from things that could potentially be deduped
9359   // then return false.
9360   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9361       return false;
9362 
9363   // This function is viable for outlining, so return true.
9364   return true;
9365 }
9366 
9367 outliner::InstrType
9368 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
9369   MachineInstr &MI = *MIT;
9370   // Don't allow debug values to impact outlining type.
9371   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9372     return outliner::InstrType::Invisible;
9373 
9374   // At this point, KILL instructions don't really tell us much so we can go
9375   // ahead and skip over them.
9376   if (MI.isKill())
9377     return outliner::InstrType::Invisible;
9378 
9379   // Is this a tail call? If yes, we can outline as a tail call.
9380   if (isTailCall(MI))
9381     return outliner::InstrType::Legal;
9382 
9383   // Is this the terminator of a basic block?
9384   if (MI.isTerminator() || MI.isReturn()) {
9385 
9386     // Does its parent have any successors in its MachineFunction?
9387     if (MI.getParent()->succ_empty())
9388       return outliner::InstrType::Legal;
9389 
9390     // It does, so we can't tail call it.
9391     return outliner::InstrType::Illegal;
9392   }
9393 
9394   // Don't outline anything that modifies or reads from the stack pointer.
9395   //
9396   // FIXME: There are instructions which are being manually built without
9397   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9398   // able to remove the extra checks once those are fixed up. For example,
9399   // sometimes we might get something like %rax = POP64r 1. This won't be
9400   // caught by modifiesRegister or readsRegister even though the instruction
9401   // really ought to be formed so that modifiesRegister/readsRegister would
9402   // catch it.
9403   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9404       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9405       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9406     return outliner::InstrType::Illegal;
9407 
9408   // Outlined calls change the instruction pointer, so don't read from it.
9409   if (MI.readsRegister(X86::RIP, &RI) ||
9410       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9411       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9412     return outliner::InstrType::Illegal;
9413 
9414   // Positions can't safely be outlined.
9415   if (MI.isPosition())
9416     return outliner::InstrType::Illegal;
9417 
9418   // Make sure none of the operands of this instruction do anything tricky.
9419   for (const MachineOperand &MOP : MI.operands())
9420     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9421         MOP.isTargetIndex())
9422       return outliner::InstrType::Illegal;
9423 
9424   return outliner::InstrType::Legal;
9425 }
9426 
9427 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9428                                           MachineFunction &MF,
9429                                           const outliner::OutlinedFunction &OF)
9430                                           const {
9431   // If we're a tail call, we already have a return, so don't do anything.
9432   if (OF.FrameConstructionID == MachineOutlinerTailCall)
9433     return;
9434 
9435   // We're a normal call, so our sequence doesn't have a return instruction.
9436   // Add it in.
9437   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9438   MBB.insert(MBB.end(), retq);
9439 }
9440 
9441 MachineBasicBlock::iterator
9442 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9443                                  MachineBasicBlock::iterator &It,
9444                                  MachineFunction &MF,
9445                                  const outliner::Candidate &C) const {
9446   // Is it a tail call?
9447   if (C.CallConstructionID == MachineOutlinerTailCall) {
9448     // Yes, just insert a JMP.
9449     It = MBB.insert(It,
9450                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9451                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9452   } else {
9453     // No, insert a call.
9454     It = MBB.insert(It,
9455                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9456                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9457   }
9458 
9459   return It;
9460 }
9461 
9462 #define GET_INSTRINFO_HELPERS
9463 #include "X86GenInstrInfo.inc"
9464