xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineCombinerPattern.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/StackMaps.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <optional>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86-instr-info"
52 
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "X86GenInstrInfo.inc"
55 
56 static cl::opt<bool>
57     NoFusing("disable-spill-fusing",
58              cl::desc("Disable fusing of spill code into instructions"),
59              cl::Hidden);
60 static cl::opt<bool>
61     PrintFailedFusing("print-failed-fuse-candidates",
62                       cl::desc("Print instructions that the allocator wants to"
63                                " fuse, but the X86 backend currently can't"),
64                       cl::Hidden);
65 static cl::opt<bool>
66     ReMatPICStubLoad("remat-pic-stub-load",
67                      cl::desc("Re-materialize load from stub in PIC mode"),
68                      cl::init(false), cl::Hidden);
69 static cl::opt<unsigned>
70     PartialRegUpdateClearance("partial-reg-update-clearance",
71                               cl::desc("Clearance between two register writes "
72                                        "for inserting XOR to avoid partial "
73                                        "register update"),
74                               cl::init(64), cl::Hidden);
75 static cl::opt<unsigned> UndefRegClearance(
76     "undef-reg-clearance",
77     cl::desc("How many idle instructions we would like before "
78              "certain undef register reads"),
79     cl::init(128), cl::Hidden);
80 
81 // Pin the vtable to this file.
82 void X86InstrInfo::anchor() {}
83 
84 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
85     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
86                                                : X86::ADJCALLSTACKDOWN32),
87                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
88                                                : X86::ADJCALLSTACKUP32),
89                       X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90       Subtarget(STI), RI(STI.getTargetTriple()) {}
91 
92 const TargetRegisterClass *
93 X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
94                           const TargetRegisterInfo *TRI,
95                           const MachineFunction &MF) const {
96   auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF);
97   // If the target does not have egpr, then r16-r31 will be resereved for all
98   // instructions.
99   if (!RC || !Subtarget.hasEGPR())
100     return RC;
101 
102   if (X86II::canUseApxExtendedReg(MCID))
103     return RC;
104 
105   switch (RC->getID()) {
106   default:
107     return RC;
108   case X86::GR8RegClassID:
109     return &X86::GR8_NOREX2RegClass;
110   case X86::GR16RegClassID:
111     return &X86::GR16_NOREX2RegClass;
112   case X86::GR32RegClassID:
113     return &X86::GR32_NOREX2RegClass;
114   case X86::GR64RegClassID:
115     return &X86::GR64_NOREX2RegClass;
116   case X86::GR32_NOSPRegClassID:
117     return &X86::GR32_NOREX2_NOSPRegClass;
118   case X86::GR64_NOSPRegClassID:
119     return &X86::GR64_NOREX2_NOSPRegClass;
120   }
121 }
122 
123 bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
124                                          Register &SrcReg, Register &DstReg,
125                                          unsigned &SubIdx) const {
126   switch (MI.getOpcode()) {
127   default:
128     break;
129   case X86::MOVSX16rr8:
130   case X86::MOVZX16rr8:
131   case X86::MOVSX32rr8:
132   case X86::MOVZX32rr8:
133   case X86::MOVSX64rr8:
134     if (!Subtarget.is64Bit())
135       // It's not always legal to reference the low 8-bit of the larger
136       // register in 32-bit mode.
137       return false;
138     [[fallthrough]];
139   case X86::MOVSX32rr16:
140   case X86::MOVZX32rr16:
141   case X86::MOVSX64rr16:
142   case X86::MOVSX64rr32: {
143     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
144       // Be conservative.
145       return false;
146     SrcReg = MI.getOperand(1).getReg();
147     DstReg = MI.getOperand(0).getReg();
148     switch (MI.getOpcode()) {
149     default:
150       llvm_unreachable("Unreachable!");
151     case X86::MOVSX16rr8:
152     case X86::MOVZX16rr8:
153     case X86::MOVSX32rr8:
154     case X86::MOVZX32rr8:
155     case X86::MOVSX64rr8:
156       SubIdx = X86::sub_8bit;
157       break;
158     case X86::MOVSX32rr16:
159     case X86::MOVZX32rr16:
160     case X86::MOVSX64rr16:
161       SubIdx = X86::sub_16bit;
162       break;
163     case X86::MOVSX64rr32:
164       SubIdx = X86::sub_32bit;
165       break;
166     }
167     return true;
168   }
169   }
170   return false;
171 }
172 
173 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
174   if (MI.mayLoad() || MI.mayStore())
175     return false;
176 
177   // Some target-independent operations that trivially lower to data-invariant
178   // instructions.
179   if (MI.isCopyLike() || MI.isInsertSubreg())
180     return true;
181 
182   unsigned Opcode = MI.getOpcode();
183   using namespace X86;
184   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
185   // However, they set flags and are perhaps the most surprisingly constant
186   // time operations so we call them out here separately.
187   if (isIMUL(Opcode))
188     return true;
189   // Bit scanning and counting instructions that are somewhat surprisingly
190   // constant time as they scan across bits and do other fairly complex
191   // operations like popcnt, but are believed to be constant time on x86.
192   // However, these set flags.
193   if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
194       isTZCNT(Opcode))
195     return true;
196   // Bit manipulation instructions are effectively combinations of basic
197   // arithmetic ops, and should still execute in constant time. These also
198   // set flags.
199   if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
200       isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
201       isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
202       isTZMSK(Opcode))
203     return true;
204   // Bit extracting and clearing instructions should execute in constant time,
205   // and set flags.
206   if (isBEXTR(Opcode) || isBZHI(Opcode))
207     return true;
208   // Shift and rotate.
209   if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
210       isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
211     return true;
212   // Basic arithmetic is constant time on the input but does set flags.
213   if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
214       isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
215     return true;
216   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
217   if (isANDN(Opcode))
218     return true;
219   // Unary arithmetic operations.
220   if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
221     return true;
222   // Unlike other arithmetic, NOT doesn't set EFLAGS.
223   if (isNOT(Opcode))
224     return true;
225   // Various move instructions used to zero or sign extend things. Note that we
226   // intentionally don't support the _NOREX variants as we can't handle that
227   // register constraint anyways.
228   if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
229     return true;
230   // Arithmetic instructions that are both constant time and don't set flags.
231   if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
232     return true;
233   // LEA doesn't actually access memory, and its arithmetic is constant time.
234   if (isLEA(Opcode))
235     return true;
236   // By default, assume that the instruction is not data invariant.
237   return false;
238 }
239 
240 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
241   switch (MI.getOpcode()) {
242   default:
243     // By default, assume that the load will immediately leak.
244     return false;
245 
246   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
247   // However, they set flags and are perhaps the most surprisingly constant
248   // time operations so we call them out here separately.
249   case X86::IMUL16rm:
250   case X86::IMUL16rmi:
251   case X86::IMUL32rm:
252   case X86::IMUL32rmi:
253   case X86::IMUL64rm:
254   case X86::IMUL64rmi32:
255 
256   // Bit scanning and counting instructions that are somewhat surprisingly
257   // constant time as they scan across bits and do other fairly complex
258   // operations like popcnt, but are believed to be constant time on x86.
259   // However, these set flags.
260   case X86::BSF16rm:
261   case X86::BSF32rm:
262   case X86::BSF64rm:
263   case X86::BSR16rm:
264   case X86::BSR32rm:
265   case X86::BSR64rm:
266   case X86::LZCNT16rm:
267   case X86::LZCNT32rm:
268   case X86::LZCNT64rm:
269   case X86::POPCNT16rm:
270   case X86::POPCNT32rm:
271   case X86::POPCNT64rm:
272   case X86::TZCNT16rm:
273   case X86::TZCNT32rm:
274   case X86::TZCNT64rm:
275 
276   // Bit manipulation instructions are effectively combinations of basic
277   // arithmetic ops, and should still execute in constant time. These also
278   // set flags.
279   case X86::BLCFILL32rm:
280   case X86::BLCFILL64rm:
281   case X86::BLCI32rm:
282   case X86::BLCI64rm:
283   case X86::BLCIC32rm:
284   case X86::BLCIC64rm:
285   case X86::BLCMSK32rm:
286   case X86::BLCMSK64rm:
287   case X86::BLCS32rm:
288   case X86::BLCS64rm:
289   case X86::BLSFILL32rm:
290   case X86::BLSFILL64rm:
291   case X86::BLSI32rm:
292   case X86::BLSI64rm:
293   case X86::BLSIC32rm:
294   case X86::BLSIC64rm:
295   case X86::BLSMSK32rm:
296   case X86::BLSMSK64rm:
297   case X86::BLSR32rm:
298   case X86::BLSR64rm:
299   case X86::TZMSK32rm:
300   case X86::TZMSK64rm:
301 
302   // Bit extracting and clearing instructions should execute in constant time,
303   // and set flags.
304   case X86::BEXTR32rm:
305   case X86::BEXTR64rm:
306   case X86::BEXTRI32mi:
307   case X86::BEXTRI64mi:
308   case X86::BZHI32rm:
309   case X86::BZHI64rm:
310 
311   // Basic arithmetic is constant time on the input but does set flags.
312   case X86::ADC8rm:
313   case X86::ADC16rm:
314   case X86::ADC32rm:
315   case X86::ADC64rm:
316   case X86::ADD8rm:
317   case X86::ADD16rm:
318   case X86::ADD32rm:
319   case X86::ADD64rm:
320   case X86::AND8rm:
321   case X86::AND16rm:
322   case X86::AND32rm:
323   case X86::AND64rm:
324   case X86::ANDN32rm:
325   case X86::ANDN64rm:
326   case X86::OR8rm:
327   case X86::OR16rm:
328   case X86::OR32rm:
329   case X86::OR64rm:
330   case X86::SBB8rm:
331   case X86::SBB16rm:
332   case X86::SBB32rm:
333   case X86::SBB64rm:
334   case X86::SUB8rm:
335   case X86::SUB16rm:
336   case X86::SUB32rm:
337   case X86::SUB64rm:
338   case X86::XOR8rm:
339   case X86::XOR16rm:
340   case X86::XOR32rm:
341   case X86::XOR64rm:
342 
343   // Integer multiply w/o affecting flags is still believed to be constant
344   // time on x86. Called out separately as this is among the most surprising
345   // instructions to exhibit that behavior.
346   case X86::MULX32rm:
347   case X86::MULX64rm:
348 
349   // Arithmetic instructions that are both constant time and don't set flags.
350   case X86::RORX32mi:
351   case X86::RORX64mi:
352   case X86::SARX32rm:
353   case X86::SARX64rm:
354   case X86::SHLX32rm:
355   case X86::SHLX64rm:
356   case X86::SHRX32rm:
357   case X86::SHRX64rm:
358 
359   // Conversions are believed to be constant time and don't set flags.
360   case X86::CVTTSD2SI64rm:
361   case X86::VCVTTSD2SI64rm:
362   case X86::VCVTTSD2SI64Zrm:
363   case X86::CVTTSD2SIrm:
364   case X86::VCVTTSD2SIrm:
365   case X86::VCVTTSD2SIZrm:
366   case X86::CVTTSS2SI64rm:
367   case X86::VCVTTSS2SI64rm:
368   case X86::VCVTTSS2SI64Zrm:
369   case X86::CVTTSS2SIrm:
370   case X86::VCVTTSS2SIrm:
371   case X86::VCVTTSS2SIZrm:
372   case X86::CVTSI2SDrm:
373   case X86::VCVTSI2SDrm:
374   case X86::VCVTSI2SDZrm:
375   case X86::CVTSI2SSrm:
376   case X86::VCVTSI2SSrm:
377   case X86::VCVTSI2SSZrm:
378   case X86::CVTSI642SDrm:
379   case X86::VCVTSI642SDrm:
380   case X86::VCVTSI642SDZrm:
381   case X86::CVTSI642SSrm:
382   case X86::VCVTSI642SSrm:
383   case X86::VCVTSI642SSZrm:
384   case X86::CVTSS2SDrm:
385   case X86::VCVTSS2SDrm:
386   case X86::VCVTSS2SDZrm:
387   case X86::CVTSD2SSrm:
388   case X86::VCVTSD2SSrm:
389   case X86::VCVTSD2SSZrm:
390   // AVX512 added unsigned integer conversions.
391   case X86::VCVTTSD2USI64Zrm:
392   case X86::VCVTTSD2USIZrm:
393   case X86::VCVTTSS2USI64Zrm:
394   case X86::VCVTTSS2USIZrm:
395   case X86::VCVTUSI2SDZrm:
396   case X86::VCVTUSI642SDZrm:
397   case X86::VCVTUSI2SSZrm:
398   case X86::VCVTUSI642SSZrm:
399 
400   // Loads to register don't set flags.
401   case X86::MOV8rm:
402   case X86::MOV8rm_NOREX:
403   case X86::MOV16rm:
404   case X86::MOV32rm:
405   case X86::MOV64rm:
406   case X86::MOVSX16rm8:
407   case X86::MOVSX32rm16:
408   case X86::MOVSX32rm8:
409   case X86::MOVSX32rm8_NOREX:
410   case X86::MOVSX64rm16:
411   case X86::MOVSX64rm32:
412   case X86::MOVSX64rm8:
413   case X86::MOVZX16rm8:
414   case X86::MOVZX32rm16:
415   case X86::MOVZX32rm8:
416   case X86::MOVZX32rm8_NOREX:
417   case X86::MOVZX64rm16:
418   case X86::MOVZX64rm8:
419     return true;
420   }
421 }
422 
423 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
424   const MachineFunction *MF = MI.getParent()->getParent();
425   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
426 
427   if (isFrameInstr(MI)) {
428     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
429     SPAdj -= getFrameAdjustment(MI);
430     if (!isFrameSetup(MI))
431       SPAdj = -SPAdj;
432     return SPAdj;
433   }
434 
435   // To know whether a call adjusts the stack, we need information
436   // that is bound to the following ADJCALLSTACKUP pseudo.
437   // Look for the next ADJCALLSTACKUP that follows the call.
438   if (MI.isCall()) {
439     const MachineBasicBlock *MBB = MI.getParent();
440     auto I = ++MachineBasicBlock::const_iterator(MI);
441     for (auto E = MBB->end(); I != E; ++I) {
442       if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall())
443         break;
444     }
445 
446     // If we could not find a frame destroy opcode, then it has already
447     // been simplified, so we don't care.
448     if (I->getOpcode() != getCallFrameDestroyOpcode())
449       return 0;
450 
451     return -(I->getOperand(1).getImm());
452   }
453 
454   // Currently handle only PUSHes we can reasonably expect to see
455   // in call sequences
456   switch (MI.getOpcode()) {
457   default:
458     return 0;
459   case X86::PUSH32r:
460   case X86::PUSH32rmm:
461   case X86::PUSH32rmr:
462   case X86::PUSH32i:
463     return 4;
464   case X86::PUSH64r:
465   case X86::PUSH64rmm:
466   case X86::PUSH64rmr:
467   case X86::PUSH64i32:
468     return 8;
469   }
470 }
471 
472 /// Return true and the FrameIndex if the specified
473 /// operand and follow operands form a reference to the stack frame.
474 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
475                                   int &FrameIndex) const {
476   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
477       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
478       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
479       MI.getOperand(Op + X86::AddrDisp).isImm() &&
480       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
481       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
482       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
483     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
484     return true;
485   }
486   return false;
487 }
488 
489 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
490   switch (Opcode) {
491   default:
492     return false;
493   case X86::MOV8rm:
494   case X86::KMOVBkm:
495   case X86::KMOVBkm_EVEX:
496     MemBytes = 1;
497     return true;
498   case X86::MOV16rm:
499   case X86::KMOVWkm:
500   case X86::KMOVWkm_EVEX:
501   case X86::VMOVSHZrm:
502   case X86::VMOVSHZrm_alt:
503     MemBytes = 2;
504     return true;
505   case X86::MOV32rm:
506   case X86::MOVSSrm:
507   case X86::MOVSSrm_alt:
508   case X86::VMOVSSrm:
509   case X86::VMOVSSrm_alt:
510   case X86::VMOVSSZrm:
511   case X86::VMOVSSZrm_alt:
512   case X86::KMOVDkm:
513   case X86::KMOVDkm_EVEX:
514     MemBytes = 4;
515     return true;
516   case X86::MOV64rm:
517   case X86::LD_Fp64m:
518   case X86::MOVSDrm:
519   case X86::MOVSDrm_alt:
520   case X86::VMOVSDrm:
521   case X86::VMOVSDrm_alt:
522   case X86::VMOVSDZrm:
523   case X86::VMOVSDZrm_alt:
524   case X86::MMX_MOVD64rm:
525   case X86::MMX_MOVQ64rm:
526   case X86::KMOVQkm:
527   case X86::KMOVQkm_EVEX:
528     MemBytes = 8;
529     return true;
530   case X86::MOVAPSrm:
531   case X86::MOVUPSrm:
532   case X86::MOVAPDrm:
533   case X86::MOVUPDrm:
534   case X86::MOVDQArm:
535   case X86::MOVDQUrm:
536   case X86::VMOVAPSrm:
537   case X86::VMOVUPSrm:
538   case X86::VMOVAPDrm:
539   case X86::VMOVUPDrm:
540   case X86::VMOVDQArm:
541   case X86::VMOVDQUrm:
542   case X86::VMOVAPSZ128rm:
543   case X86::VMOVUPSZ128rm:
544   case X86::VMOVAPSZ128rm_NOVLX:
545   case X86::VMOVUPSZ128rm_NOVLX:
546   case X86::VMOVAPDZ128rm:
547   case X86::VMOVUPDZ128rm:
548   case X86::VMOVDQU8Z128rm:
549   case X86::VMOVDQU16Z128rm:
550   case X86::VMOVDQA32Z128rm:
551   case X86::VMOVDQU32Z128rm:
552   case X86::VMOVDQA64Z128rm:
553   case X86::VMOVDQU64Z128rm:
554     MemBytes = 16;
555     return true;
556   case X86::VMOVAPSYrm:
557   case X86::VMOVUPSYrm:
558   case X86::VMOVAPDYrm:
559   case X86::VMOVUPDYrm:
560   case X86::VMOVDQAYrm:
561   case X86::VMOVDQUYrm:
562   case X86::VMOVAPSZ256rm:
563   case X86::VMOVUPSZ256rm:
564   case X86::VMOVAPSZ256rm_NOVLX:
565   case X86::VMOVUPSZ256rm_NOVLX:
566   case X86::VMOVAPDZ256rm:
567   case X86::VMOVUPDZ256rm:
568   case X86::VMOVDQU8Z256rm:
569   case X86::VMOVDQU16Z256rm:
570   case X86::VMOVDQA32Z256rm:
571   case X86::VMOVDQU32Z256rm:
572   case X86::VMOVDQA64Z256rm:
573   case X86::VMOVDQU64Z256rm:
574     MemBytes = 32;
575     return true;
576   case X86::VMOVAPSZrm:
577   case X86::VMOVUPSZrm:
578   case X86::VMOVAPDZrm:
579   case X86::VMOVUPDZrm:
580   case X86::VMOVDQU8Zrm:
581   case X86::VMOVDQU16Zrm:
582   case X86::VMOVDQA32Zrm:
583   case X86::VMOVDQU32Zrm:
584   case X86::VMOVDQA64Zrm:
585   case X86::VMOVDQU64Zrm:
586     MemBytes = 64;
587     return true;
588   }
589 }
590 
591 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
592   switch (Opcode) {
593   default:
594     return false;
595   case X86::MOV8mr:
596   case X86::KMOVBmk:
597   case X86::KMOVBmk_EVEX:
598     MemBytes = 1;
599     return true;
600   case X86::MOV16mr:
601   case X86::KMOVWmk:
602   case X86::KMOVWmk_EVEX:
603   case X86::VMOVSHZmr:
604     MemBytes = 2;
605     return true;
606   case X86::MOV32mr:
607   case X86::MOVSSmr:
608   case X86::VMOVSSmr:
609   case X86::VMOVSSZmr:
610   case X86::KMOVDmk:
611   case X86::KMOVDmk_EVEX:
612     MemBytes = 4;
613     return true;
614   case X86::MOV64mr:
615   case X86::ST_FpP64m:
616   case X86::MOVSDmr:
617   case X86::VMOVSDmr:
618   case X86::VMOVSDZmr:
619   case X86::MMX_MOVD64mr:
620   case X86::MMX_MOVQ64mr:
621   case X86::MMX_MOVNTQmr:
622   case X86::KMOVQmk:
623   case X86::KMOVQmk_EVEX:
624     MemBytes = 8;
625     return true;
626   case X86::MOVAPSmr:
627   case X86::MOVUPSmr:
628   case X86::MOVAPDmr:
629   case X86::MOVUPDmr:
630   case X86::MOVDQAmr:
631   case X86::MOVDQUmr:
632   case X86::VMOVAPSmr:
633   case X86::VMOVUPSmr:
634   case X86::VMOVAPDmr:
635   case X86::VMOVUPDmr:
636   case X86::VMOVDQAmr:
637   case X86::VMOVDQUmr:
638   case X86::VMOVUPSZ128mr:
639   case X86::VMOVAPSZ128mr:
640   case X86::VMOVUPSZ128mr_NOVLX:
641   case X86::VMOVAPSZ128mr_NOVLX:
642   case X86::VMOVUPDZ128mr:
643   case X86::VMOVAPDZ128mr:
644   case X86::VMOVDQA32Z128mr:
645   case X86::VMOVDQU32Z128mr:
646   case X86::VMOVDQA64Z128mr:
647   case X86::VMOVDQU64Z128mr:
648   case X86::VMOVDQU8Z128mr:
649   case X86::VMOVDQU16Z128mr:
650     MemBytes = 16;
651     return true;
652   case X86::VMOVUPSYmr:
653   case X86::VMOVAPSYmr:
654   case X86::VMOVUPDYmr:
655   case X86::VMOVAPDYmr:
656   case X86::VMOVDQUYmr:
657   case X86::VMOVDQAYmr:
658   case X86::VMOVUPSZ256mr:
659   case X86::VMOVAPSZ256mr:
660   case X86::VMOVUPSZ256mr_NOVLX:
661   case X86::VMOVAPSZ256mr_NOVLX:
662   case X86::VMOVUPDZ256mr:
663   case X86::VMOVAPDZ256mr:
664   case X86::VMOVDQU8Z256mr:
665   case X86::VMOVDQU16Z256mr:
666   case X86::VMOVDQA32Z256mr:
667   case X86::VMOVDQU32Z256mr:
668   case X86::VMOVDQA64Z256mr:
669   case X86::VMOVDQU64Z256mr:
670     MemBytes = 32;
671     return true;
672   case X86::VMOVUPSZmr:
673   case X86::VMOVAPSZmr:
674   case X86::VMOVUPDZmr:
675   case X86::VMOVAPDZmr:
676   case X86::VMOVDQU8Zmr:
677   case X86::VMOVDQU16Zmr:
678   case X86::VMOVDQA32Zmr:
679   case X86::VMOVDQU32Zmr:
680   case X86::VMOVDQA64Zmr:
681   case X86::VMOVDQU64Zmr:
682     MemBytes = 64;
683     return true;
684   }
685   return false;
686 }
687 
688 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
689                                            int &FrameIndex) const {
690   unsigned Dummy;
691   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
692 }
693 
694 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
695                                            int &FrameIndex,
696                                            unsigned &MemBytes) const {
697   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
698     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
699       return MI.getOperand(0).getReg();
700   return 0;
701 }
702 
703 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
704                                                  int &FrameIndex) const {
705   unsigned Dummy;
706   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
707     unsigned Reg;
708     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
709       return Reg;
710     // Check for post-frame index elimination operations
711     SmallVector<const MachineMemOperand *, 1> Accesses;
712     if (hasLoadFromStackSlot(MI, Accesses)) {
713       FrameIndex =
714           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
715               ->getFrameIndex();
716       return MI.getOperand(0).getReg();
717     }
718   }
719   return 0;
720 }
721 
722 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
723                                           int &FrameIndex) const {
724   unsigned Dummy;
725   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
726 }
727 
728 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
729                                           int &FrameIndex,
730                                           unsigned &MemBytes) const {
731   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
732     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
733         isFrameOperand(MI, 0, FrameIndex))
734       return MI.getOperand(X86::AddrNumOperands).getReg();
735   return 0;
736 }
737 
738 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
739                                                 int &FrameIndex) const {
740   unsigned Dummy;
741   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
742     unsigned Reg;
743     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
744       return Reg;
745     // Check for post-frame index elimination operations
746     SmallVector<const MachineMemOperand *, 1> Accesses;
747     if (hasStoreToStackSlot(MI, Accesses)) {
748       FrameIndex =
749           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
750               ->getFrameIndex();
751       return MI.getOperand(X86::AddrNumOperands).getReg();
752     }
753   }
754   return 0;
755 }
756 
757 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
758 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
759   // Don't waste compile time scanning use-def chains of physregs.
760   if (!BaseReg.isVirtual())
761     return false;
762   bool isPICBase = false;
763   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
764                                                E = MRI.def_instr_end();
765        I != E; ++I) {
766     MachineInstr *DefMI = &*I;
767     if (DefMI->getOpcode() != X86::MOVPC32r)
768       return false;
769     assert(!isPICBase && "More than one PIC base?");
770     isPICBase = true;
771   }
772   return isPICBase;
773 }
774 
775 bool X86InstrInfo::isReallyTriviallyReMaterializable(
776     const MachineInstr &MI) const {
777   switch (MI.getOpcode()) {
778   default:
779     // This function should only be called for opcodes with the ReMaterializable
780     // flag set.
781     llvm_unreachable("Unknown rematerializable operation!");
782     break;
783   case X86::IMPLICIT_DEF:
784     // Defer to generic logic.
785     break;
786   case X86::LOAD_STACK_GUARD:
787   case X86::LD_Fp032:
788   case X86::LD_Fp064:
789   case X86::LD_Fp080:
790   case X86::LD_Fp132:
791   case X86::LD_Fp164:
792   case X86::LD_Fp180:
793   case X86::AVX1_SETALLONES:
794   case X86::AVX2_SETALLONES:
795   case X86::AVX512_128_SET0:
796   case X86::AVX512_256_SET0:
797   case X86::AVX512_512_SET0:
798   case X86::AVX512_512_SETALLONES:
799   case X86::AVX512_FsFLD0SD:
800   case X86::AVX512_FsFLD0SH:
801   case X86::AVX512_FsFLD0SS:
802   case X86::AVX512_FsFLD0F128:
803   case X86::AVX_SET0:
804   case X86::FsFLD0SD:
805   case X86::FsFLD0SS:
806   case X86::FsFLD0SH:
807   case X86::FsFLD0F128:
808   case X86::KSET0D:
809   case X86::KSET0Q:
810   case X86::KSET0W:
811   case X86::KSET1D:
812   case X86::KSET1Q:
813   case X86::KSET1W:
814   case X86::MMX_SET0:
815   case X86::MOV32ImmSExti8:
816   case X86::MOV32r0:
817   case X86::MOV32r1:
818   case X86::MOV32r_1:
819   case X86::MOV32ri64:
820   case X86::MOV64ImmSExti8:
821   case X86::V_SET0:
822   case X86::V_SETALLONES:
823   case X86::MOV16ri:
824   case X86::MOV32ri:
825   case X86::MOV64ri:
826   case X86::MOV64ri32:
827   case X86::MOV8ri:
828   case X86::PTILEZEROV:
829     return true;
830 
831   case X86::MOV8rm:
832   case X86::MOV8rm_NOREX:
833   case X86::MOV16rm:
834   case X86::MOV32rm:
835   case X86::MOV64rm:
836   case X86::MOVSSrm:
837   case X86::MOVSSrm_alt:
838   case X86::MOVSDrm:
839   case X86::MOVSDrm_alt:
840   case X86::MOVAPSrm:
841   case X86::MOVUPSrm:
842   case X86::MOVAPDrm:
843   case X86::MOVUPDrm:
844   case X86::MOVDQArm:
845   case X86::MOVDQUrm:
846   case X86::VMOVSSrm:
847   case X86::VMOVSSrm_alt:
848   case X86::VMOVSDrm:
849   case X86::VMOVSDrm_alt:
850   case X86::VMOVAPSrm:
851   case X86::VMOVUPSrm:
852   case X86::VMOVAPDrm:
853   case X86::VMOVUPDrm:
854   case X86::VMOVDQArm:
855   case X86::VMOVDQUrm:
856   case X86::VMOVAPSYrm:
857   case X86::VMOVUPSYrm:
858   case X86::VMOVAPDYrm:
859   case X86::VMOVUPDYrm:
860   case X86::VMOVDQAYrm:
861   case X86::VMOVDQUYrm:
862   case X86::MMX_MOVD64rm:
863   case X86::MMX_MOVQ64rm:
864   // AVX-512
865   case X86::VMOVSSZrm:
866   case X86::VMOVSSZrm_alt:
867   case X86::VMOVSDZrm:
868   case X86::VMOVSDZrm_alt:
869   case X86::VMOVSHZrm:
870   case X86::VMOVSHZrm_alt:
871   case X86::VMOVAPDZ128rm:
872   case X86::VMOVAPDZ256rm:
873   case X86::VMOVAPDZrm:
874   case X86::VMOVAPSZ128rm:
875   case X86::VMOVAPSZ256rm:
876   case X86::VMOVAPSZ128rm_NOVLX:
877   case X86::VMOVAPSZ256rm_NOVLX:
878   case X86::VMOVAPSZrm:
879   case X86::VMOVDQA32Z128rm:
880   case X86::VMOVDQA32Z256rm:
881   case X86::VMOVDQA32Zrm:
882   case X86::VMOVDQA64Z128rm:
883   case X86::VMOVDQA64Z256rm:
884   case X86::VMOVDQA64Zrm:
885   case X86::VMOVDQU16Z128rm:
886   case X86::VMOVDQU16Z256rm:
887   case X86::VMOVDQU16Zrm:
888   case X86::VMOVDQU32Z128rm:
889   case X86::VMOVDQU32Z256rm:
890   case X86::VMOVDQU32Zrm:
891   case X86::VMOVDQU64Z128rm:
892   case X86::VMOVDQU64Z256rm:
893   case X86::VMOVDQU64Zrm:
894   case X86::VMOVDQU8Z128rm:
895   case X86::VMOVDQU8Z256rm:
896   case X86::VMOVDQU8Zrm:
897   case X86::VMOVUPDZ128rm:
898   case X86::VMOVUPDZ256rm:
899   case X86::VMOVUPDZrm:
900   case X86::VMOVUPSZ128rm:
901   case X86::VMOVUPSZ256rm:
902   case X86::VMOVUPSZ128rm_NOVLX:
903   case X86::VMOVUPSZ256rm_NOVLX:
904   case X86::VMOVUPSZrm: {
905     // Loads from constant pools are trivially rematerializable.
906     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
907         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
908         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
909         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
910         MI.isDereferenceableInvariantLoad()) {
911       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
912       if (BaseReg == 0 || BaseReg == X86::RIP)
913         return true;
914       // Allow re-materialization of PIC load.
915       if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) {
916         const MachineFunction &MF = *MI.getParent()->getParent();
917         const MachineRegisterInfo &MRI = MF.getRegInfo();
918         if (regIsPICBase(BaseReg, MRI))
919           return true;
920       }
921     }
922     break;
923   }
924 
925   case X86::LEA32r:
926   case X86::LEA64r: {
927     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
928         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
929         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
930         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
931       // lea fi#, lea GV, etc. are all rematerializable.
932       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
933         return true;
934       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
935       if (BaseReg == 0)
936         return true;
937       // Allow re-materialization of lea PICBase + x.
938       const MachineFunction &MF = *MI.getParent()->getParent();
939       const MachineRegisterInfo &MRI = MF.getRegInfo();
940       if (regIsPICBase(BaseReg, MRI))
941         return true;
942     }
943     break;
944   }
945   }
946   return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
947 }
948 
949 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
950                                  MachineBasicBlock::iterator I,
951                                  Register DestReg, unsigned SubIdx,
952                                  const MachineInstr &Orig,
953                                  const TargetRegisterInfo &TRI) const {
954   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
955   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
956                             MachineBasicBlock::LQR_Dead) {
957     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
958     // effects.
959     int Value;
960     switch (Orig.getOpcode()) {
961     case X86::MOV32r0:
962       Value = 0;
963       break;
964     case X86::MOV32r1:
965       Value = 1;
966       break;
967     case X86::MOV32r_1:
968       Value = -1;
969       break;
970     default:
971       llvm_unreachable("Unexpected instruction!");
972     }
973 
974     const DebugLoc &DL = Orig.getDebugLoc();
975     BuildMI(MBB, I, DL, get(X86::MOV32ri))
976         .add(Orig.getOperand(0))
977         .addImm(Value);
978   } else {
979     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
980     MBB.insert(I, MI);
981   }
982 
983   MachineInstr &NewMI = *std::prev(I);
984   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
985 }
986 
987 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
988 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
989   for (const MachineOperand &MO : MI.operands()) {
990     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
991         !MO.isDead()) {
992       return true;
993     }
994   }
995   return false;
996 }
997 
998 /// Check whether the shift count for a machine operand is non-zero.
999 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1000                                               unsigned ShiftAmtOperandIdx) {
1001   // The shift count is six bits with the REX.W prefix and five bits without.
1002   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1003   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1004   return Imm & ShiftCountMask;
1005 }
1006 
1007 /// Check whether the given shift count is appropriate
1008 /// can be represented by a LEA instruction.
1009 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1010   // Left shift instructions can be transformed into load-effective-address
1011   // instructions if we can encode them appropriately.
1012   // A LEA instruction utilizes a SIB byte to encode its scale factor.
1013   // The SIB.scale field is two bits wide which means that we can encode any
1014   // shift amount less than 4.
1015   return ShAmt < 4 && ShAmt > 0;
1016 }
1017 
1018 static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
1019                                    MachineInstr &CmpValDefInstr,
1020                                    const MachineRegisterInfo *MRI,
1021                                    MachineInstr **AndInstr,
1022                                    const TargetRegisterInfo *TRI,
1023                                    bool &NoSignFlag, bool &ClearsOverflowFlag) {
1024   if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
1025         CmpInstr.getOpcode() == X86::TEST64rr) &&
1026       !(CmpValDefInstr.getOpcode() == X86::COPY &&
1027         CmpInstr.getOpcode() == X86::TEST16rr))
1028     return false;
1029 
1030   // CmpInstr is a TEST16rr/TEST64rr instruction, and
1031   // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1032   // registers are identical.
1033   assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
1034          "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1035          "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1036          "same.");
1037 
1038   // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1039   // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1040   // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1041   // redundant.
1042   assert(
1043       (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
1044       "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1045       "is a user of COPY sub16bit.");
1046   MachineInstr *VregDefInstr = nullptr;
1047   if (CmpInstr.getOpcode() == X86::TEST16rr) {
1048     if (!CmpValDefInstr.getOperand(1).getReg().isVirtual())
1049       return false;
1050     VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg());
1051     if (!VregDefInstr)
1052       return false;
1053     // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1054     // size, others 32/64 bit ops would test higher bits which test16rr don't
1055     // want to.
1056     if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1057            VregDefInstr->getOpcode() == X86::AND64ri32) &&
1058           isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1059       return false;
1060   }
1061 
1062   if (CmpInstr.getOpcode() == X86::TEST64rr) {
1063     // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1064     // typically 0.
1065     if (CmpValDefInstr.getOperand(1).getImm() != 0)
1066       return false;
1067 
1068     // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1069     // sub_32bit or sub_xmm.
1070     if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1071       return false;
1072 
1073     VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1074   }
1075 
1076   assert(VregDefInstr && "Must have a definition (SSA)");
1077 
1078   // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1079   // to simplify the subsequent analysis.
1080   //
1081   // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1082   // `CmpValDefInstr.getParent()`, this could be handled.
1083   if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1084     return false;
1085 
1086   if (X86::isAND(VregDefInstr->getOpcode())) {
1087     // Get a sequence of instructions like
1088     //   %reg = and* ...                    // Set EFLAGS
1089     //   ...                                // EFLAGS not changed
1090     //   %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1091     //   test64rr %extended_reg, %extended_reg, implicit-def $eflags
1092     // or
1093     //   %reg = and32* ...
1094     //   ...                         // EFLAGS not changed.
1095     //   %src_reg = copy %reg.sub_16bit:gr32
1096     //   test16rr %src_reg, %src_reg, implicit-def $eflags
1097     //
1098     // If subsequent readers use a subset of bits that don't change
1099     // after `and*` instructions, it's likely that the test64rr could
1100     // be optimized away.
1101     for (const MachineInstr &Instr :
1102          make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1103                     MachineBasicBlock::iterator(CmpValDefInstr))) {
1104       // There are instructions between 'VregDefInstr' and
1105       // 'CmpValDefInstr' that modifies EFLAGS.
1106       if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1107         return false;
1108     }
1109 
1110     *AndInstr = VregDefInstr;
1111 
1112     // AND instruction will essentially update SF and clear OF, so
1113     // NoSignFlag should be false in the sense that SF is modified by `AND`.
1114     //
1115     // However, the implementation artifically sets `NoSignFlag` to true
1116     // to poison the SF bit; that is to say, if SF is looked at later, the
1117     // optimization (to erase TEST64rr) will be disabled.
1118     //
1119     // The reason to poison SF bit is that SF bit value could be different
1120     // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1121     // and is known to be 0 as a result of `TEST64rr`.
1122     //
1123     // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1124     // the AND instruction and using the static information to guide peephole
1125     // optimization if possible. For example, it's possible to fold a
1126     // conditional move into a copy if the relevant EFLAG bits could be deduced
1127     // from an immediate operand of and operation.
1128     //
1129     NoSignFlag = true;
1130     // ClearsOverflowFlag is true for AND operation (no surprise).
1131     ClearsOverflowFlag = true;
1132     return true;
1133   }
1134   return false;
1135 }
1136 
1137 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1138                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1139                                   bool &isKill, MachineOperand &ImplicitOp,
1140                                   LiveVariables *LV, LiveIntervals *LIS) const {
1141   MachineFunction &MF = *MI.getParent()->getParent();
1142   const TargetRegisterClass *RC;
1143   if (AllowSP) {
1144     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1145   } else {
1146     RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1147   }
1148   Register SrcReg = Src.getReg();
1149   isKill = MI.killsRegister(SrcReg);
1150 
1151   // For both LEA64 and LEA32 the register already has essentially the right
1152   // type (32-bit or 64-bit) we may just need to forbid SP.
1153   if (Opc != X86::LEA64_32r) {
1154     NewSrc = SrcReg;
1155     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1156 
1157     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1158       return false;
1159 
1160     return true;
1161   }
1162 
1163   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1164   // another we need to add 64-bit registers to the final MI.
1165   if (SrcReg.isPhysical()) {
1166     ImplicitOp = Src;
1167     ImplicitOp.setImplicit();
1168 
1169     NewSrc = getX86SubSuperRegister(SrcReg, 64);
1170     assert(NewSrc.isValid() && "Invalid Operand");
1171     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1172   } else {
1173     // Virtual register of the wrong class, we have to create a temporary 64-bit
1174     // vreg to feed into the LEA.
1175     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1176     MachineInstr *Copy =
1177         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1178             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1179             .addReg(SrcReg, getKillRegState(isKill));
1180 
1181     // Which is obviously going to be dead after we're done with it.
1182     isKill = true;
1183 
1184     if (LV)
1185       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1186 
1187     if (LIS) {
1188       SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1189       SlotIndex Idx = LIS->getInstructionIndex(MI);
1190       LiveInterval &LI = LIS->getInterval(SrcReg);
1191       LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1192       if (S->end.getBaseIndex() == Idx)
1193         S->end = CopyIdx.getRegSlot();
1194     }
1195   }
1196 
1197   // We've set all the parameters without issue.
1198   return true;
1199 }
1200 
1201 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1202                                                          MachineInstr &MI,
1203                                                          LiveVariables *LV,
1204                                                          LiveIntervals *LIS,
1205                                                          bool Is8BitOp) const {
1206   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1207   MachineBasicBlock &MBB = *MI.getParent();
1208   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1209   assert((Is8BitOp ||
1210           RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1211               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1212          "Unexpected type for LEA transform");
1213 
1214   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1215   // something like this:
1216   //   Opcode = X86::LEA32r;
1217   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1218   //   OutRegLEA =
1219   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1220   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1221   if (!Subtarget.is64Bit())
1222     return nullptr;
1223 
1224   unsigned Opcode = X86::LEA64_32r;
1225   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1226   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1227   Register InRegLEA2;
1228 
1229   // Build and insert into an implicit UNDEF value. This is OK because
1230   // we will be shifting and then extracting the lower 8/16-bits.
1231   // This has the potential to cause partial register stall. e.g.
1232   //   movw    (%rbp,%rcx,2), %dx
1233   //   leal    -65(%rdx), %esi
1234   // But testing has shown this *does* help performance in 64-bit mode (at
1235   // least on modern x86 machines).
1236   MachineBasicBlock::iterator MBBI = MI.getIterator();
1237   Register Dest = MI.getOperand(0).getReg();
1238   Register Src = MI.getOperand(1).getReg();
1239   Register Src2;
1240   bool IsDead = MI.getOperand(0).isDead();
1241   bool IsKill = MI.getOperand(1).isKill();
1242   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1243   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1244   MachineInstr *ImpDef =
1245       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1246   MachineInstr *InsMI =
1247       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1248           .addReg(InRegLEA, RegState::Define, SubReg)
1249           .addReg(Src, getKillRegState(IsKill));
1250   MachineInstr *ImpDef2 = nullptr;
1251   MachineInstr *InsMI2 = nullptr;
1252 
1253   MachineInstrBuilder MIB =
1254       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1255   switch (MIOpc) {
1256   default:
1257     llvm_unreachable("Unreachable!");
1258   case X86::SHL8ri:
1259   case X86::SHL16ri: {
1260     unsigned ShAmt = MI.getOperand(2).getImm();
1261     MIB.addReg(0)
1262         .addImm(1LL << ShAmt)
1263         .addReg(InRegLEA, RegState::Kill)
1264         .addImm(0)
1265         .addReg(0);
1266     break;
1267   }
1268   case X86::INC8r:
1269   case X86::INC16r:
1270     addRegOffset(MIB, InRegLEA, true, 1);
1271     break;
1272   case X86::DEC8r:
1273   case X86::DEC16r:
1274     addRegOffset(MIB, InRegLEA, true, -1);
1275     break;
1276   case X86::ADD8ri:
1277   case X86::ADD8ri_DB:
1278   case X86::ADD16ri:
1279   case X86::ADD16ri_DB:
1280     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1281     break;
1282   case X86::ADD8rr:
1283   case X86::ADD8rr_DB:
1284   case X86::ADD16rr:
1285   case X86::ADD16rr_DB: {
1286     Src2 = MI.getOperand(2).getReg();
1287     bool IsKill2 = MI.getOperand(2).isKill();
1288     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1289     if (Src == Src2) {
1290       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1291       // just a single insert_subreg.
1292       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1293     } else {
1294       if (Subtarget.is64Bit())
1295         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1296       else
1297         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1298       // Build and insert into an implicit UNDEF value. This is OK because
1299       // we will be shifting and then extracting the lower 8/16-bits.
1300       ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1301                         InRegLEA2);
1302       InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1303                    .addReg(InRegLEA2, RegState::Define, SubReg)
1304                    .addReg(Src2, getKillRegState(IsKill2));
1305       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1306     }
1307     if (LV && IsKill2 && InsMI2)
1308       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1309     break;
1310   }
1311   }
1312 
1313   MachineInstr *NewMI = MIB;
1314   MachineInstr *ExtMI =
1315       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1316           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1317           .addReg(OutRegLEA, RegState::Kill, SubReg);
1318 
1319   if (LV) {
1320     // Update live variables.
1321     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1322     if (InRegLEA2)
1323       LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1324     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1325     if (IsKill)
1326       LV->replaceKillInstruction(Src, MI, *InsMI);
1327     if (IsDead)
1328       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1329   }
1330 
1331   if (LIS) {
1332     LIS->InsertMachineInstrInMaps(*ImpDef);
1333     SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1334     if (ImpDef2)
1335       LIS->InsertMachineInstrInMaps(*ImpDef2);
1336     SlotIndex Ins2Idx;
1337     if (InsMI2)
1338       Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1339     SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1340     SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1341     LIS->getInterval(InRegLEA);
1342     LIS->getInterval(OutRegLEA);
1343     if (InRegLEA2)
1344       LIS->getInterval(InRegLEA2);
1345 
1346     // Move the use of Src up to InsMI.
1347     LiveInterval &SrcLI = LIS->getInterval(Src);
1348     LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1349     if (SrcSeg->end == NewIdx.getRegSlot())
1350       SrcSeg->end = InsIdx.getRegSlot();
1351 
1352     if (InsMI2) {
1353       // Move the use of Src2 up to InsMI2.
1354       LiveInterval &Src2LI = LIS->getInterval(Src2);
1355       LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1356       if (Src2Seg->end == NewIdx.getRegSlot())
1357         Src2Seg->end = Ins2Idx.getRegSlot();
1358     }
1359 
1360     // Move the definition of Dest down to ExtMI.
1361     LiveInterval &DestLI = LIS->getInterval(Dest);
1362     LiveRange::Segment *DestSeg =
1363         DestLI.getSegmentContaining(NewIdx.getRegSlot());
1364     assert(DestSeg->start == NewIdx.getRegSlot() &&
1365            DestSeg->valno->def == NewIdx.getRegSlot());
1366     DestSeg->start = ExtIdx.getRegSlot();
1367     DestSeg->valno->def = ExtIdx.getRegSlot();
1368   }
1369 
1370   return ExtMI;
1371 }
1372 
1373 /// This method must be implemented by targets that
1374 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1375 /// may be able to convert a two-address instruction into a true
1376 /// three-address instruction on demand.  This allows the X86 target (for
1377 /// example) to convert ADD and SHL instructions into LEA instructions if they
1378 /// would require register copies due to two-addressness.
1379 ///
1380 /// This method returns a null pointer if the transformation cannot be
1381 /// performed, otherwise it returns the new instruction.
1382 ///
1383 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1384                                                   LiveVariables *LV,
1385                                                   LiveIntervals *LIS) const {
1386   // The following opcodes also sets the condition code register(s). Only
1387   // convert them to equivalent lea if the condition code register def's
1388   // are dead!
1389   if (hasLiveCondCodeDef(MI))
1390     return nullptr;
1391 
1392   MachineFunction &MF = *MI.getParent()->getParent();
1393   // All instructions input are two-addr instructions.  Get the known operands.
1394   const MachineOperand &Dest = MI.getOperand(0);
1395   const MachineOperand &Src = MI.getOperand(1);
1396 
1397   // Ideally, operations with undef should be folded before we get here, but we
1398   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1399   // Without this, we have to forward undef state to new register operands to
1400   // avoid machine verifier errors.
1401   if (Src.isUndef())
1402     return nullptr;
1403   if (MI.getNumOperands() > 2)
1404     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1405       return nullptr;
1406 
1407   MachineInstr *NewMI = nullptr;
1408   Register SrcReg, SrcReg2;
1409   bool Is64Bit = Subtarget.is64Bit();
1410 
1411   bool Is8BitOp = false;
1412   unsigned NumRegOperands = 2;
1413   unsigned MIOpc = MI.getOpcode();
1414   switch (MIOpc) {
1415   default:
1416     llvm_unreachable("Unreachable!");
1417   case X86::SHL64ri: {
1418     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1419     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1420     if (!isTruncatedShiftCountForLEA(ShAmt))
1421       return nullptr;
1422 
1423     // LEA can't handle RSP.
1424     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1425                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1426       return nullptr;
1427 
1428     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1429                 .add(Dest)
1430                 .addReg(0)
1431                 .addImm(1LL << ShAmt)
1432                 .add(Src)
1433                 .addImm(0)
1434                 .addReg(0);
1435     break;
1436   }
1437   case X86::SHL32ri: {
1438     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1439     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1440     if (!isTruncatedShiftCountForLEA(ShAmt))
1441       return nullptr;
1442 
1443     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1444 
1445     // LEA can't handle ESP.
1446     bool isKill;
1447     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1448     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1449                         ImplicitOp, LV, LIS))
1450       return nullptr;
1451 
1452     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1453                                   .add(Dest)
1454                                   .addReg(0)
1455                                   .addImm(1LL << ShAmt)
1456                                   .addReg(SrcReg, getKillRegState(isKill))
1457                                   .addImm(0)
1458                                   .addReg(0);
1459     if (ImplicitOp.getReg() != 0)
1460       MIB.add(ImplicitOp);
1461     NewMI = MIB;
1462 
1463     // Add kills if classifyLEAReg created a new register.
1464     if (LV && SrcReg != Src.getReg())
1465       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1466     break;
1467   }
1468   case X86::SHL8ri:
1469     Is8BitOp = true;
1470     [[fallthrough]];
1471   case X86::SHL16ri: {
1472     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1473     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1474     if (!isTruncatedShiftCountForLEA(ShAmt))
1475       return nullptr;
1476     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1477   }
1478   case X86::INC64r:
1479   case X86::INC32r: {
1480     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1481     unsigned Opc = MIOpc == X86::INC64r
1482                        ? X86::LEA64r
1483                        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1484     bool isKill;
1485     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1486     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1487                         ImplicitOp, LV, LIS))
1488       return nullptr;
1489 
1490     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1491                                   .add(Dest)
1492                                   .addReg(SrcReg, getKillRegState(isKill));
1493     if (ImplicitOp.getReg() != 0)
1494       MIB.add(ImplicitOp);
1495 
1496     NewMI = addOffset(MIB, 1);
1497 
1498     // Add kills if classifyLEAReg created a new register.
1499     if (LV && SrcReg != Src.getReg())
1500       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1501     break;
1502   }
1503   case X86::DEC64r:
1504   case X86::DEC32r: {
1505     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1506     unsigned Opc = MIOpc == X86::DEC64r
1507                        ? X86::LEA64r
1508                        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1509 
1510     bool isKill;
1511     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1512     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1513                         ImplicitOp, LV, LIS))
1514       return nullptr;
1515 
1516     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1517                                   .add(Dest)
1518                                   .addReg(SrcReg, getKillRegState(isKill));
1519     if (ImplicitOp.getReg() != 0)
1520       MIB.add(ImplicitOp);
1521 
1522     NewMI = addOffset(MIB, -1);
1523 
1524     // Add kills if classifyLEAReg created a new register.
1525     if (LV && SrcReg != Src.getReg())
1526       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1527     break;
1528   }
1529   case X86::DEC8r:
1530   case X86::INC8r:
1531     Is8BitOp = true;
1532     [[fallthrough]];
1533   case X86::DEC16r:
1534   case X86::INC16r:
1535     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1536   case X86::ADD64rr:
1537   case X86::ADD64rr_DB:
1538   case X86::ADD32rr:
1539   case X86::ADD32rr_DB: {
1540     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1541     unsigned Opc;
1542     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1543       Opc = X86::LEA64r;
1544     else
1545       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1546 
1547     const MachineOperand &Src2 = MI.getOperand(2);
1548     bool isKill2;
1549     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1550     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1551                         ImplicitOp2, LV, LIS))
1552       return nullptr;
1553 
1554     bool isKill;
1555     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1556     if (Src.getReg() == Src2.getReg()) {
1557       // Don't call classify LEAReg a second time on the same register, in case
1558       // the first call inserted a COPY from Src2 and marked it as killed.
1559       isKill = isKill2;
1560       SrcReg = SrcReg2;
1561     } else {
1562       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1563                           ImplicitOp, LV, LIS))
1564         return nullptr;
1565     }
1566 
1567     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1568     if (ImplicitOp.getReg() != 0)
1569       MIB.add(ImplicitOp);
1570     if (ImplicitOp2.getReg() != 0)
1571       MIB.add(ImplicitOp2);
1572 
1573     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1574 
1575     // Add kills if classifyLEAReg created a new register.
1576     if (LV) {
1577       if (SrcReg2 != Src2.getReg())
1578         LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1579       if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1580         LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1581     }
1582     NumRegOperands = 3;
1583     break;
1584   }
1585   case X86::ADD8rr:
1586   case X86::ADD8rr_DB:
1587     Is8BitOp = true;
1588     [[fallthrough]];
1589   case X86::ADD16rr:
1590   case X86::ADD16rr_DB:
1591     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1592   case X86::ADD64ri32:
1593   case X86::ADD64ri32_DB:
1594     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1595     NewMI = addOffset(
1596         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1597         MI.getOperand(2));
1598     break;
1599   case X86::ADD32ri:
1600   case X86::ADD32ri_DB: {
1601     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1602     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1603 
1604     bool isKill;
1605     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1606     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1607                         ImplicitOp, LV, LIS))
1608       return nullptr;
1609 
1610     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1611                                   .add(Dest)
1612                                   .addReg(SrcReg, getKillRegState(isKill));
1613     if (ImplicitOp.getReg() != 0)
1614       MIB.add(ImplicitOp);
1615 
1616     NewMI = addOffset(MIB, MI.getOperand(2));
1617 
1618     // Add kills if classifyLEAReg created a new register.
1619     if (LV && SrcReg != Src.getReg())
1620       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1621     break;
1622   }
1623   case X86::ADD8ri:
1624   case X86::ADD8ri_DB:
1625     Is8BitOp = true;
1626     [[fallthrough]];
1627   case X86::ADD16ri:
1628   case X86::ADD16ri_DB:
1629     return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1630   case X86::SUB8ri:
1631   case X86::SUB16ri:
1632     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1633     return nullptr;
1634   case X86::SUB32ri: {
1635     if (!MI.getOperand(2).isImm())
1636       return nullptr;
1637     int64_t Imm = MI.getOperand(2).getImm();
1638     if (!isInt<32>(-Imm))
1639       return nullptr;
1640 
1641     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1642     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1643 
1644     bool isKill;
1645     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1646     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1647                         ImplicitOp, LV, LIS))
1648       return nullptr;
1649 
1650     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1651                                   .add(Dest)
1652                                   .addReg(SrcReg, getKillRegState(isKill));
1653     if (ImplicitOp.getReg() != 0)
1654       MIB.add(ImplicitOp);
1655 
1656     NewMI = addOffset(MIB, -Imm);
1657 
1658     // Add kills if classifyLEAReg created a new register.
1659     if (LV && SrcReg != Src.getReg())
1660       LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1661     break;
1662   }
1663 
1664   case X86::SUB64ri32: {
1665     if (!MI.getOperand(2).isImm())
1666       return nullptr;
1667     int64_t Imm = MI.getOperand(2).getImm();
1668     if (!isInt<32>(-Imm))
1669       return nullptr;
1670 
1671     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1672 
1673     MachineInstrBuilder MIB =
1674         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src);
1675     NewMI = addOffset(MIB, -Imm);
1676     break;
1677   }
1678 
1679   case X86::VMOVDQU8Z128rmk:
1680   case X86::VMOVDQU8Z256rmk:
1681   case X86::VMOVDQU8Zrmk:
1682   case X86::VMOVDQU16Z128rmk:
1683   case X86::VMOVDQU16Z256rmk:
1684   case X86::VMOVDQU16Zrmk:
1685   case X86::VMOVDQU32Z128rmk:
1686   case X86::VMOVDQA32Z128rmk:
1687   case X86::VMOVDQU32Z256rmk:
1688   case X86::VMOVDQA32Z256rmk:
1689   case X86::VMOVDQU32Zrmk:
1690   case X86::VMOVDQA32Zrmk:
1691   case X86::VMOVDQU64Z128rmk:
1692   case X86::VMOVDQA64Z128rmk:
1693   case X86::VMOVDQU64Z256rmk:
1694   case X86::VMOVDQA64Z256rmk:
1695   case X86::VMOVDQU64Zrmk:
1696   case X86::VMOVDQA64Zrmk:
1697   case X86::VMOVUPDZ128rmk:
1698   case X86::VMOVAPDZ128rmk:
1699   case X86::VMOVUPDZ256rmk:
1700   case X86::VMOVAPDZ256rmk:
1701   case X86::VMOVUPDZrmk:
1702   case X86::VMOVAPDZrmk:
1703   case X86::VMOVUPSZ128rmk:
1704   case X86::VMOVAPSZ128rmk:
1705   case X86::VMOVUPSZ256rmk:
1706   case X86::VMOVAPSZ256rmk:
1707   case X86::VMOVUPSZrmk:
1708   case X86::VMOVAPSZrmk:
1709   case X86::VBROADCASTSDZ256rmk:
1710   case X86::VBROADCASTSDZrmk:
1711   case X86::VBROADCASTSSZ128rmk:
1712   case X86::VBROADCASTSSZ256rmk:
1713   case X86::VBROADCASTSSZrmk:
1714   case X86::VPBROADCASTDZ128rmk:
1715   case X86::VPBROADCASTDZ256rmk:
1716   case X86::VPBROADCASTDZrmk:
1717   case X86::VPBROADCASTQZ128rmk:
1718   case X86::VPBROADCASTQZ256rmk:
1719   case X86::VPBROADCASTQZrmk: {
1720     unsigned Opc;
1721     switch (MIOpc) {
1722     default:
1723       llvm_unreachable("Unreachable!");
1724     case X86::VMOVDQU8Z128rmk:
1725       Opc = X86::VPBLENDMBZ128rmk;
1726       break;
1727     case X86::VMOVDQU8Z256rmk:
1728       Opc = X86::VPBLENDMBZ256rmk;
1729       break;
1730     case X86::VMOVDQU8Zrmk:
1731       Opc = X86::VPBLENDMBZrmk;
1732       break;
1733     case X86::VMOVDQU16Z128rmk:
1734       Opc = X86::VPBLENDMWZ128rmk;
1735       break;
1736     case X86::VMOVDQU16Z256rmk:
1737       Opc = X86::VPBLENDMWZ256rmk;
1738       break;
1739     case X86::VMOVDQU16Zrmk:
1740       Opc = X86::VPBLENDMWZrmk;
1741       break;
1742     case X86::VMOVDQU32Z128rmk:
1743       Opc = X86::VPBLENDMDZ128rmk;
1744       break;
1745     case X86::VMOVDQU32Z256rmk:
1746       Opc = X86::VPBLENDMDZ256rmk;
1747       break;
1748     case X86::VMOVDQU32Zrmk:
1749       Opc = X86::VPBLENDMDZrmk;
1750       break;
1751     case X86::VMOVDQU64Z128rmk:
1752       Opc = X86::VPBLENDMQZ128rmk;
1753       break;
1754     case X86::VMOVDQU64Z256rmk:
1755       Opc = X86::VPBLENDMQZ256rmk;
1756       break;
1757     case X86::VMOVDQU64Zrmk:
1758       Opc = X86::VPBLENDMQZrmk;
1759       break;
1760     case X86::VMOVUPDZ128rmk:
1761       Opc = X86::VBLENDMPDZ128rmk;
1762       break;
1763     case X86::VMOVUPDZ256rmk:
1764       Opc = X86::VBLENDMPDZ256rmk;
1765       break;
1766     case X86::VMOVUPDZrmk:
1767       Opc = X86::VBLENDMPDZrmk;
1768       break;
1769     case X86::VMOVUPSZ128rmk:
1770       Opc = X86::VBLENDMPSZ128rmk;
1771       break;
1772     case X86::VMOVUPSZ256rmk:
1773       Opc = X86::VBLENDMPSZ256rmk;
1774       break;
1775     case X86::VMOVUPSZrmk:
1776       Opc = X86::VBLENDMPSZrmk;
1777       break;
1778     case X86::VMOVDQA32Z128rmk:
1779       Opc = X86::VPBLENDMDZ128rmk;
1780       break;
1781     case X86::VMOVDQA32Z256rmk:
1782       Opc = X86::VPBLENDMDZ256rmk;
1783       break;
1784     case X86::VMOVDQA32Zrmk:
1785       Opc = X86::VPBLENDMDZrmk;
1786       break;
1787     case X86::VMOVDQA64Z128rmk:
1788       Opc = X86::VPBLENDMQZ128rmk;
1789       break;
1790     case X86::VMOVDQA64Z256rmk:
1791       Opc = X86::VPBLENDMQZ256rmk;
1792       break;
1793     case X86::VMOVDQA64Zrmk:
1794       Opc = X86::VPBLENDMQZrmk;
1795       break;
1796     case X86::VMOVAPDZ128rmk:
1797       Opc = X86::VBLENDMPDZ128rmk;
1798       break;
1799     case X86::VMOVAPDZ256rmk:
1800       Opc = X86::VBLENDMPDZ256rmk;
1801       break;
1802     case X86::VMOVAPDZrmk:
1803       Opc = X86::VBLENDMPDZrmk;
1804       break;
1805     case X86::VMOVAPSZ128rmk:
1806       Opc = X86::VBLENDMPSZ128rmk;
1807       break;
1808     case X86::VMOVAPSZ256rmk:
1809       Opc = X86::VBLENDMPSZ256rmk;
1810       break;
1811     case X86::VMOVAPSZrmk:
1812       Opc = X86::VBLENDMPSZrmk;
1813       break;
1814     case X86::VBROADCASTSDZ256rmk:
1815       Opc = X86::VBLENDMPDZ256rmbk;
1816       break;
1817     case X86::VBROADCASTSDZrmk:
1818       Opc = X86::VBLENDMPDZrmbk;
1819       break;
1820     case X86::VBROADCASTSSZ128rmk:
1821       Opc = X86::VBLENDMPSZ128rmbk;
1822       break;
1823     case X86::VBROADCASTSSZ256rmk:
1824       Opc = X86::VBLENDMPSZ256rmbk;
1825       break;
1826     case X86::VBROADCASTSSZrmk:
1827       Opc = X86::VBLENDMPSZrmbk;
1828       break;
1829     case X86::VPBROADCASTDZ128rmk:
1830       Opc = X86::VPBLENDMDZ128rmbk;
1831       break;
1832     case X86::VPBROADCASTDZ256rmk:
1833       Opc = X86::VPBLENDMDZ256rmbk;
1834       break;
1835     case X86::VPBROADCASTDZrmk:
1836       Opc = X86::VPBLENDMDZrmbk;
1837       break;
1838     case X86::VPBROADCASTQZ128rmk:
1839       Opc = X86::VPBLENDMQZ128rmbk;
1840       break;
1841     case X86::VPBROADCASTQZ256rmk:
1842       Opc = X86::VPBLENDMQZ256rmbk;
1843       break;
1844     case X86::VPBROADCASTQZrmk:
1845       Opc = X86::VPBLENDMQZrmbk;
1846       break;
1847     }
1848 
1849     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1850                 .add(Dest)
1851                 .add(MI.getOperand(2))
1852                 .add(Src)
1853                 .add(MI.getOperand(3))
1854                 .add(MI.getOperand(4))
1855                 .add(MI.getOperand(5))
1856                 .add(MI.getOperand(6))
1857                 .add(MI.getOperand(7));
1858     NumRegOperands = 4;
1859     break;
1860   }
1861 
1862   case X86::VMOVDQU8Z128rrk:
1863   case X86::VMOVDQU8Z256rrk:
1864   case X86::VMOVDQU8Zrrk:
1865   case X86::VMOVDQU16Z128rrk:
1866   case X86::VMOVDQU16Z256rrk:
1867   case X86::VMOVDQU16Zrrk:
1868   case X86::VMOVDQU32Z128rrk:
1869   case X86::VMOVDQA32Z128rrk:
1870   case X86::VMOVDQU32Z256rrk:
1871   case X86::VMOVDQA32Z256rrk:
1872   case X86::VMOVDQU32Zrrk:
1873   case X86::VMOVDQA32Zrrk:
1874   case X86::VMOVDQU64Z128rrk:
1875   case X86::VMOVDQA64Z128rrk:
1876   case X86::VMOVDQU64Z256rrk:
1877   case X86::VMOVDQA64Z256rrk:
1878   case X86::VMOVDQU64Zrrk:
1879   case X86::VMOVDQA64Zrrk:
1880   case X86::VMOVUPDZ128rrk:
1881   case X86::VMOVAPDZ128rrk:
1882   case X86::VMOVUPDZ256rrk:
1883   case X86::VMOVAPDZ256rrk:
1884   case X86::VMOVUPDZrrk:
1885   case X86::VMOVAPDZrrk:
1886   case X86::VMOVUPSZ128rrk:
1887   case X86::VMOVAPSZ128rrk:
1888   case X86::VMOVUPSZ256rrk:
1889   case X86::VMOVAPSZ256rrk:
1890   case X86::VMOVUPSZrrk:
1891   case X86::VMOVAPSZrrk: {
1892     unsigned Opc;
1893     switch (MIOpc) {
1894     default:
1895       llvm_unreachable("Unreachable!");
1896     case X86::VMOVDQU8Z128rrk:
1897       Opc = X86::VPBLENDMBZ128rrk;
1898       break;
1899     case X86::VMOVDQU8Z256rrk:
1900       Opc = X86::VPBLENDMBZ256rrk;
1901       break;
1902     case X86::VMOVDQU8Zrrk:
1903       Opc = X86::VPBLENDMBZrrk;
1904       break;
1905     case X86::VMOVDQU16Z128rrk:
1906       Opc = X86::VPBLENDMWZ128rrk;
1907       break;
1908     case X86::VMOVDQU16Z256rrk:
1909       Opc = X86::VPBLENDMWZ256rrk;
1910       break;
1911     case X86::VMOVDQU16Zrrk:
1912       Opc = X86::VPBLENDMWZrrk;
1913       break;
1914     case X86::VMOVDQU32Z128rrk:
1915       Opc = X86::VPBLENDMDZ128rrk;
1916       break;
1917     case X86::VMOVDQU32Z256rrk:
1918       Opc = X86::VPBLENDMDZ256rrk;
1919       break;
1920     case X86::VMOVDQU32Zrrk:
1921       Opc = X86::VPBLENDMDZrrk;
1922       break;
1923     case X86::VMOVDQU64Z128rrk:
1924       Opc = X86::VPBLENDMQZ128rrk;
1925       break;
1926     case X86::VMOVDQU64Z256rrk:
1927       Opc = X86::VPBLENDMQZ256rrk;
1928       break;
1929     case X86::VMOVDQU64Zrrk:
1930       Opc = X86::VPBLENDMQZrrk;
1931       break;
1932     case X86::VMOVUPDZ128rrk:
1933       Opc = X86::VBLENDMPDZ128rrk;
1934       break;
1935     case X86::VMOVUPDZ256rrk:
1936       Opc = X86::VBLENDMPDZ256rrk;
1937       break;
1938     case X86::VMOVUPDZrrk:
1939       Opc = X86::VBLENDMPDZrrk;
1940       break;
1941     case X86::VMOVUPSZ128rrk:
1942       Opc = X86::VBLENDMPSZ128rrk;
1943       break;
1944     case X86::VMOVUPSZ256rrk:
1945       Opc = X86::VBLENDMPSZ256rrk;
1946       break;
1947     case X86::VMOVUPSZrrk:
1948       Opc = X86::VBLENDMPSZrrk;
1949       break;
1950     case X86::VMOVDQA32Z128rrk:
1951       Opc = X86::VPBLENDMDZ128rrk;
1952       break;
1953     case X86::VMOVDQA32Z256rrk:
1954       Opc = X86::VPBLENDMDZ256rrk;
1955       break;
1956     case X86::VMOVDQA32Zrrk:
1957       Opc = X86::VPBLENDMDZrrk;
1958       break;
1959     case X86::VMOVDQA64Z128rrk:
1960       Opc = X86::VPBLENDMQZ128rrk;
1961       break;
1962     case X86::VMOVDQA64Z256rrk:
1963       Opc = X86::VPBLENDMQZ256rrk;
1964       break;
1965     case X86::VMOVDQA64Zrrk:
1966       Opc = X86::VPBLENDMQZrrk;
1967       break;
1968     case X86::VMOVAPDZ128rrk:
1969       Opc = X86::VBLENDMPDZ128rrk;
1970       break;
1971     case X86::VMOVAPDZ256rrk:
1972       Opc = X86::VBLENDMPDZ256rrk;
1973       break;
1974     case X86::VMOVAPDZrrk:
1975       Opc = X86::VBLENDMPDZrrk;
1976       break;
1977     case X86::VMOVAPSZ128rrk:
1978       Opc = X86::VBLENDMPSZ128rrk;
1979       break;
1980     case X86::VMOVAPSZ256rrk:
1981       Opc = X86::VBLENDMPSZ256rrk;
1982       break;
1983     case X86::VMOVAPSZrrk:
1984       Opc = X86::VBLENDMPSZrrk;
1985       break;
1986     }
1987 
1988     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1989                 .add(Dest)
1990                 .add(MI.getOperand(2))
1991                 .add(Src)
1992                 .add(MI.getOperand(3));
1993     NumRegOperands = 4;
1994     break;
1995   }
1996   }
1997 
1998   if (!NewMI)
1999     return nullptr;
2000 
2001   if (LV) { // Update live variables
2002     for (unsigned I = 0; I < NumRegOperands; ++I) {
2003       MachineOperand &Op = MI.getOperand(I);
2004       if (Op.isReg() && (Op.isDead() || Op.isKill()))
2005         LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
2006     }
2007   }
2008 
2009   MachineBasicBlock &MBB = *MI.getParent();
2010   MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
2011 
2012   if (LIS) {
2013     LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
2014     if (SrcReg)
2015       LIS->getInterval(SrcReg);
2016     if (SrcReg2)
2017       LIS->getInterval(SrcReg2);
2018   }
2019 
2020   return NewMI;
2021 }
2022 
2023 /// This determines which of three possible cases of a three source commute
2024 /// the source indexes correspond to taking into account any mask operands.
2025 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2026 /// possible.
2027 /// Case 0 - Possible to commute the first and second operands.
2028 /// Case 1 - Possible to commute the first and third operands.
2029 /// Case 2 - Possible to commute the second and third operands.
2030 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
2031                                        unsigned SrcOpIdx2) {
2032   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2033   if (SrcOpIdx1 > SrcOpIdx2)
2034     std::swap(SrcOpIdx1, SrcOpIdx2);
2035 
2036   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2037   if (X86II::isKMasked(TSFlags)) {
2038     Op2++;
2039     Op3++;
2040   }
2041 
2042   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2043     return 0;
2044   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2045     return 1;
2046   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2047     return 2;
2048   llvm_unreachable("Unknown three src commute case.");
2049 }
2050 
2051 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
2052     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
2053     const X86InstrFMA3Group &FMA3Group) const {
2054 
2055   unsigned Opc = MI.getOpcode();
2056 
2057   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2058   // analysis. The commute optimization is legal only if all users of FMA*_Int
2059   // use only the lowest element of the FMA*_Int instruction. Such analysis are
2060   // not implemented yet. So, just return 0 in that case.
2061   // When such analysis are available this place will be the right place for
2062   // calling it.
2063   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
2064          "Intrinsic instructions can't commute operand 1");
2065 
2066   // Determine which case this commute is or if it can't be done.
2067   unsigned Case =
2068       getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2069   assert(Case < 3 && "Unexpected case number!");
2070 
2071   // Define the FMA forms mapping array that helps to map input FMA form
2072   // to output FMA form to preserve the operation semantics after
2073   // commuting the operands.
2074   const unsigned Form132Index = 0;
2075   const unsigned Form213Index = 1;
2076   const unsigned Form231Index = 2;
2077   static const unsigned FormMapping[][3] = {
2078       // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2079       // FMA132 A, C, b; ==> FMA231 C, A, b;
2080       // FMA213 B, A, c; ==> FMA213 A, B, c;
2081       // FMA231 C, A, b; ==> FMA132 A, C, b;
2082       {Form231Index, Form213Index, Form132Index},
2083       // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2084       // FMA132 A, c, B; ==> FMA132 B, c, A;
2085       // FMA213 B, a, C; ==> FMA231 C, a, B;
2086       // FMA231 C, a, B; ==> FMA213 B, a, C;
2087       {Form132Index, Form231Index, Form213Index},
2088       // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2089       // FMA132 a, C, B; ==> FMA213 a, B, C;
2090       // FMA213 b, A, C; ==> FMA132 b, C, A;
2091       // FMA231 c, A, B; ==> FMA231 c, B, A;
2092       {Form213Index, Form132Index, Form231Index}};
2093 
2094   unsigned FMAForms[3];
2095   FMAForms[0] = FMA3Group.get132Opcode();
2096   FMAForms[1] = FMA3Group.get213Opcode();
2097   FMAForms[2] = FMA3Group.get231Opcode();
2098 
2099   // Everything is ready, just adjust the FMA opcode and return it.
2100   for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2101     if (Opc == FMAForms[FormIndex])
2102       return FMAForms[FormMapping[Case][FormIndex]];
2103 
2104   llvm_unreachable("Illegal FMA3 format");
2105 }
2106 
2107 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
2108                              unsigned SrcOpIdx2) {
2109   // Determine which case this commute is or if it can't be done.
2110   unsigned Case =
2111       getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2112   assert(Case < 3 && "Unexpected case value!");
2113 
2114   // For each case we need to swap two pairs of bits in the final immediate.
2115   static const uint8_t SwapMasks[3][4] = {
2116       {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2117       {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2118       {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2119   };
2120 
2121   uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2122   // Clear out the bits we are swapping.
2123   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2124                            SwapMasks[Case][2] | SwapMasks[Case][3]);
2125   // If the immediate had a bit of the pair set, then set the opposite bit.
2126   if (Imm & SwapMasks[Case][0])
2127     NewImm |= SwapMasks[Case][1];
2128   if (Imm & SwapMasks[Case][1])
2129     NewImm |= SwapMasks[Case][0];
2130   if (Imm & SwapMasks[Case][2])
2131     NewImm |= SwapMasks[Case][3];
2132   if (Imm & SwapMasks[Case][3])
2133     NewImm |= SwapMasks[Case][2];
2134   MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm);
2135 }
2136 
2137 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2138 // commuted.
2139 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2140 #define VPERM_CASES(Suffix)                                                    \
2141   case X86::VPERMI2##Suffix##Z128rr:                                           \
2142   case X86::VPERMT2##Suffix##Z128rr:                                           \
2143   case X86::VPERMI2##Suffix##Z256rr:                                           \
2144   case X86::VPERMT2##Suffix##Z256rr:                                           \
2145   case X86::VPERMI2##Suffix##Zrr:                                              \
2146   case X86::VPERMT2##Suffix##Zrr:                                              \
2147   case X86::VPERMI2##Suffix##Z128rm:                                           \
2148   case X86::VPERMT2##Suffix##Z128rm:                                           \
2149   case X86::VPERMI2##Suffix##Z256rm:                                           \
2150   case X86::VPERMT2##Suffix##Z256rm:                                           \
2151   case X86::VPERMI2##Suffix##Zrm:                                              \
2152   case X86::VPERMT2##Suffix##Zrm:                                              \
2153   case X86::VPERMI2##Suffix##Z128rrkz:                                         \
2154   case X86::VPERMT2##Suffix##Z128rrkz:                                         \
2155   case X86::VPERMI2##Suffix##Z256rrkz:                                         \
2156   case X86::VPERMT2##Suffix##Z256rrkz:                                         \
2157   case X86::VPERMI2##Suffix##Zrrkz:                                            \
2158   case X86::VPERMT2##Suffix##Zrrkz:                                            \
2159   case X86::VPERMI2##Suffix##Z128rmkz:                                         \
2160   case X86::VPERMT2##Suffix##Z128rmkz:                                         \
2161   case X86::VPERMI2##Suffix##Z256rmkz:                                         \
2162   case X86::VPERMT2##Suffix##Z256rmkz:                                         \
2163   case X86::VPERMI2##Suffix##Zrmkz:                                            \
2164   case X86::VPERMT2##Suffix##Zrmkz:
2165 
2166 #define VPERM_CASES_BROADCAST(Suffix)                                          \
2167   VPERM_CASES(Suffix)                                                          \
2168   case X86::VPERMI2##Suffix##Z128rmb:                                          \
2169   case X86::VPERMT2##Suffix##Z128rmb:                                          \
2170   case X86::VPERMI2##Suffix##Z256rmb:                                          \
2171   case X86::VPERMT2##Suffix##Z256rmb:                                          \
2172   case X86::VPERMI2##Suffix##Zrmb:                                             \
2173   case X86::VPERMT2##Suffix##Zrmb:                                             \
2174   case X86::VPERMI2##Suffix##Z128rmbkz:                                        \
2175   case X86::VPERMT2##Suffix##Z128rmbkz:                                        \
2176   case X86::VPERMI2##Suffix##Z256rmbkz:                                        \
2177   case X86::VPERMT2##Suffix##Z256rmbkz:                                        \
2178   case X86::VPERMI2##Suffix##Zrmbkz:                                           \
2179   case X86::VPERMT2##Suffix##Zrmbkz:
2180 
2181   switch (Opcode) {
2182   default:
2183     return false;
2184     VPERM_CASES(B)
2185     VPERM_CASES_BROADCAST(D)
2186     VPERM_CASES_BROADCAST(PD)
2187     VPERM_CASES_BROADCAST(PS)
2188     VPERM_CASES_BROADCAST(Q)
2189     VPERM_CASES(W)
2190     return true;
2191   }
2192 #undef VPERM_CASES_BROADCAST
2193 #undef VPERM_CASES
2194 }
2195 
2196 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2197 // from the I opcode to the T opcode and vice versa.
2198 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2199 #define VPERM_CASES(Orig, New)                                                 \
2200   case X86::Orig##Z128rr:                                                      \
2201     return X86::New##Z128rr;                                                   \
2202   case X86::Orig##Z128rrkz:                                                    \
2203     return X86::New##Z128rrkz;                                                 \
2204   case X86::Orig##Z128rm:                                                      \
2205     return X86::New##Z128rm;                                                   \
2206   case X86::Orig##Z128rmkz:                                                    \
2207     return X86::New##Z128rmkz;                                                 \
2208   case X86::Orig##Z256rr:                                                      \
2209     return X86::New##Z256rr;                                                   \
2210   case X86::Orig##Z256rrkz:                                                    \
2211     return X86::New##Z256rrkz;                                                 \
2212   case X86::Orig##Z256rm:                                                      \
2213     return X86::New##Z256rm;                                                   \
2214   case X86::Orig##Z256rmkz:                                                    \
2215     return X86::New##Z256rmkz;                                                 \
2216   case X86::Orig##Zrr:                                                         \
2217     return X86::New##Zrr;                                                      \
2218   case X86::Orig##Zrrkz:                                                       \
2219     return X86::New##Zrrkz;                                                    \
2220   case X86::Orig##Zrm:                                                         \
2221     return X86::New##Zrm;                                                      \
2222   case X86::Orig##Zrmkz:                                                       \
2223     return X86::New##Zrmkz;
2224 
2225 #define VPERM_CASES_BROADCAST(Orig, New)                                       \
2226   VPERM_CASES(Orig, New)                                                       \
2227   case X86::Orig##Z128rmb:                                                     \
2228     return X86::New##Z128rmb;                                                  \
2229   case X86::Orig##Z128rmbkz:                                                   \
2230     return X86::New##Z128rmbkz;                                                \
2231   case X86::Orig##Z256rmb:                                                     \
2232     return X86::New##Z256rmb;                                                  \
2233   case X86::Orig##Z256rmbkz:                                                   \
2234     return X86::New##Z256rmbkz;                                                \
2235   case X86::Orig##Zrmb:                                                        \
2236     return X86::New##Zrmb;                                                     \
2237   case X86::Orig##Zrmbkz:                                                      \
2238     return X86::New##Zrmbkz;
2239 
2240   switch (Opcode) {
2241     VPERM_CASES(VPERMI2B, VPERMT2B)
2242     VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
2243     VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2244     VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2245     VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
2246     VPERM_CASES(VPERMI2W, VPERMT2W)
2247     VPERM_CASES(VPERMT2B, VPERMI2B)
2248     VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2249     VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2250     VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2251     VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2252     VPERM_CASES(VPERMT2W, VPERMI2W)
2253   }
2254 
2255   llvm_unreachable("Unreachable!");
2256 #undef VPERM_CASES_BROADCAST
2257 #undef VPERM_CASES
2258 }
2259 
2260 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2261                                                    unsigned OpIdx1,
2262                                                    unsigned OpIdx2) const {
2263   auto CloneIfNew = [&](MachineInstr &MI) {
2264     return std::exchange(NewMI, false)
2265                ? MI.getParent()->getParent()->CloneMachineInstr(&MI)
2266                : &MI;
2267   };
2268   MachineInstr *WorkingMI = nullptr;
2269   unsigned Opc = MI.getOpcode();
2270 
2271   switch (Opc) {
2272   // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2273   case X86::SHRD16rri8:
2274   case X86::SHLD16rri8:
2275   case X86::SHRD32rri8:
2276   case X86::SHLD32rri8:
2277   case X86::SHRD64rri8:
2278   case X86::SHLD64rri8:
2279   case X86::SHRD16rri8_ND:
2280   case X86::SHLD16rri8_ND:
2281   case X86::SHRD32rri8_ND:
2282   case X86::SHLD32rri8_ND:
2283   case X86::SHRD64rri8_ND:
2284   case X86::SHLD64rri8_ND: {
2285     unsigned Size;
2286     switch (Opc) {
2287     default:
2288       llvm_unreachable("Unreachable!");
2289     case X86::SHRD16rri8:
2290       Size = 16;
2291       Opc = X86::SHLD16rri8;
2292       break;
2293     case X86::SHLD16rri8:
2294       Size = 16;
2295       Opc = X86::SHRD16rri8;
2296       break;
2297     case X86::SHRD32rri8:
2298       Size = 32;
2299       Opc = X86::SHLD32rri8;
2300       break;
2301     case X86::SHLD32rri8:
2302       Size = 32;
2303       Opc = X86::SHRD32rri8;
2304       break;
2305     case X86::SHRD64rri8:
2306       Size = 64;
2307       Opc = X86::SHLD64rri8;
2308       break;
2309     case X86::SHLD64rri8:
2310       Size = 64;
2311       Opc = X86::SHRD64rri8;
2312       break;
2313     case X86::SHRD16rri8_ND:
2314       Size = 16;
2315       Opc = X86::SHLD16rri8_ND;
2316       break;
2317     case X86::SHLD16rri8_ND:
2318       Size = 16;
2319       Opc = X86::SHRD16rri8_ND;
2320       break;
2321     case X86::SHRD32rri8_ND:
2322       Size = 32;
2323       Opc = X86::SHLD32rri8_ND;
2324       break;
2325     case X86::SHLD32rri8_ND:
2326       Size = 32;
2327       Opc = X86::SHRD32rri8_ND;
2328       break;
2329     case X86::SHRD64rri8_ND:
2330       Size = 64;
2331       Opc = X86::SHLD64rri8_ND;
2332       break;
2333     case X86::SHLD64rri8_ND:
2334       Size = 64;
2335       Opc = X86::SHRD64rri8_ND;
2336       break;
2337     }
2338     WorkingMI = CloneIfNew(MI);
2339     WorkingMI->setDesc(get(Opc));
2340     WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm());
2341     break;
2342   }
2343   case X86::PFSUBrr:
2344   case X86::PFSUBRrr:
2345     // PFSUB  x, y: x = x - y
2346     // PFSUBR x, y: x = y - x
2347     WorkingMI = CloneIfNew(MI);
2348     WorkingMI->setDesc(
2349         get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2350     break;
2351   case X86::BLENDPDrri:
2352   case X86::BLENDPSrri:
2353   case X86::VBLENDPDrri:
2354   case X86::VBLENDPSrri:
2355     // If we're optimizing for size, try to use MOVSD/MOVSS.
2356     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2357       unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F;
2358       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2359 #define FROM_TO(FROM, TO)                                                      \
2360   case X86::FROM:                                                              \
2361     Opc = X86::TO;                                                             \
2362     break;
2363         switch (Opc) {
2364         default:
2365           llvm_unreachable("Unreachable!");
2366         FROM_TO(BLENDPDrri, MOVSDrr)
2367         FROM_TO(BLENDPSrri, MOVSSrr)
2368         FROM_TO(VBLENDPDrri, VMOVSDrr)
2369         FROM_TO(VBLENDPSrri, VMOVSSrr)
2370         }
2371         WorkingMI = CloneIfNew(MI);
2372         WorkingMI->setDesc(get(Opc));
2373         WorkingMI->removeOperand(3);
2374         break;
2375       }
2376 #undef FROM_TO
2377     }
2378     [[fallthrough]];
2379   case X86::PBLENDWrri:
2380   case X86::VBLENDPDYrri:
2381   case X86::VBLENDPSYrri:
2382   case X86::VPBLENDDrri:
2383   case X86::VPBLENDWrri:
2384   case X86::VPBLENDDYrri:
2385   case X86::VPBLENDWYrri: {
2386     int8_t Mask;
2387     switch (Opc) {
2388     default:
2389       llvm_unreachable("Unreachable!");
2390     case X86::BLENDPDrri:
2391       Mask = (int8_t)0x03;
2392       break;
2393     case X86::BLENDPSrri:
2394       Mask = (int8_t)0x0F;
2395       break;
2396     case X86::PBLENDWrri:
2397       Mask = (int8_t)0xFF;
2398       break;
2399     case X86::VBLENDPDrri:
2400       Mask = (int8_t)0x03;
2401       break;
2402     case X86::VBLENDPSrri:
2403       Mask = (int8_t)0x0F;
2404       break;
2405     case X86::VBLENDPDYrri:
2406       Mask = (int8_t)0x0F;
2407       break;
2408     case X86::VBLENDPSYrri:
2409       Mask = (int8_t)0xFF;
2410       break;
2411     case X86::VPBLENDDrri:
2412       Mask = (int8_t)0x0F;
2413       break;
2414     case X86::VPBLENDWrri:
2415       Mask = (int8_t)0xFF;
2416       break;
2417     case X86::VPBLENDDYrri:
2418       Mask = (int8_t)0xFF;
2419       break;
2420     case X86::VPBLENDWYrri:
2421       Mask = (int8_t)0xFF;
2422       break;
2423     }
2424     // Only the least significant bits of Imm are used.
2425     // Using int8_t to ensure it will be sign extended to the int64_t that
2426     // setImm takes in order to match isel behavior.
2427     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2428     WorkingMI = CloneIfNew(MI);
2429     WorkingMI->getOperand(3).setImm(Mask ^ Imm);
2430     break;
2431   }
2432   case X86::INSERTPSrr:
2433   case X86::VINSERTPSrr:
2434   case X86::VINSERTPSZrr: {
2435     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2436     unsigned ZMask = Imm & 15;
2437     unsigned DstIdx = (Imm >> 4) & 3;
2438     unsigned SrcIdx = (Imm >> 6) & 3;
2439 
2440     // We can commute insertps if we zero 2 of the elements, the insertion is
2441     // "inline" and we don't override the insertion with a zero.
2442     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2443         llvm::popcount(ZMask) == 2) {
2444       unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15);
2445       assert(AltIdx < 4 && "Illegal insertion index");
2446       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2447       WorkingMI = CloneIfNew(MI);
2448       WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2449       break;
2450     }
2451     return nullptr;
2452   }
2453   case X86::MOVSDrr:
2454   case X86::MOVSSrr:
2455   case X86::VMOVSDrr:
2456   case X86::VMOVSSrr: {
2457     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2458     if (Subtarget.hasSSE41()) {
2459       unsigned Mask;
2460       switch (Opc) {
2461       default:
2462         llvm_unreachable("Unreachable!");
2463       case X86::MOVSDrr:
2464         Opc = X86::BLENDPDrri;
2465         Mask = 0x02;
2466         break;
2467       case X86::MOVSSrr:
2468         Opc = X86::BLENDPSrri;
2469         Mask = 0x0E;
2470         break;
2471       case X86::VMOVSDrr:
2472         Opc = X86::VBLENDPDrri;
2473         Mask = 0x02;
2474         break;
2475       case X86::VMOVSSrr:
2476         Opc = X86::VBLENDPSrri;
2477         Mask = 0x0E;
2478         break;
2479       }
2480 
2481       WorkingMI = CloneIfNew(MI);
2482       WorkingMI->setDesc(get(Opc));
2483       WorkingMI->addOperand(MachineOperand::CreateImm(Mask));
2484       break;
2485     }
2486 
2487     WorkingMI = CloneIfNew(MI);
2488     WorkingMI->setDesc(get(X86::SHUFPDrri));
2489     WorkingMI->addOperand(MachineOperand::CreateImm(0x02));
2490     break;
2491   }
2492   case X86::SHUFPDrri: {
2493     // Commute to MOVSD.
2494     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2495     WorkingMI = CloneIfNew(MI);
2496     WorkingMI->setDesc(get(X86::MOVSDrr));
2497     WorkingMI->removeOperand(3);
2498     break;
2499   }
2500   case X86::PCLMULQDQrr:
2501   case X86::VPCLMULQDQrr:
2502   case X86::VPCLMULQDQYrr:
2503   case X86::VPCLMULQDQZrr:
2504   case X86::VPCLMULQDQZ128rr:
2505   case X86::VPCLMULQDQZ256rr: {
2506     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2507     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2508     unsigned Imm = MI.getOperand(3).getImm();
2509     unsigned Src1Hi = Imm & 0x01;
2510     unsigned Src2Hi = Imm & 0x10;
2511     WorkingMI = CloneIfNew(MI);
2512     WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2513     break;
2514   }
2515   case X86::VPCMPBZ128rri:
2516   case X86::VPCMPUBZ128rri:
2517   case X86::VPCMPBZ256rri:
2518   case X86::VPCMPUBZ256rri:
2519   case X86::VPCMPBZrri:
2520   case X86::VPCMPUBZrri:
2521   case X86::VPCMPDZ128rri:
2522   case X86::VPCMPUDZ128rri:
2523   case X86::VPCMPDZ256rri:
2524   case X86::VPCMPUDZ256rri:
2525   case X86::VPCMPDZrri:
2526   case X86::VPCMPUDZrri:
2527   case X86::VPCMPQZ128rri:
2528   case X86::VPCMPUQZ128rri:
2529   case X86::VPCMPQZ256rri:
2530   case X86::VPCMPUQZ256rri:
2531   case X86::VPCMPQZrri:
2532   case X86::VPCMPUQZrri:
2533   case X86::VPCMPWZ128rri:
2534   case X86::VPCMPUWZ128rri:
2535   case X86::VPCMPWZ256rri:
2536   case X86::VPCMPUWZ256rri:
2537   case X86::VPCMPWZrri:
2538   case X86::VPCMPUWZrri:
2539   case X86::VPCMPBZ128rrik:
2540   case X86::VPCMPUBZ128rrik:
2541   case X86::VPCMPBZ256rrik:
2542   case X86::VPCMPUBZ256rrik:
2543   case X86::VPCMPBZrrik:
2544   case X86::VPCMPUBZrrik:
2545   case X86::VPCMPDZ128rrik:
2546   case X86::VPCMPUDZ128rrik:
2547   case X86::VPCMPDZ256rrik:
2548   case X86::VPCMPUDZ256rrik:
2549   case X86::VPCMPDZrrik:
2550   case X86::VPCMPUDZrrik:
2551   case X86::VPCMPQZ128rrik:
2552   case X86::VPCMPUQZ128rrik:
2553   case X86::VPCMPQZ256rrik:
2554   case X86::VPCMPUQZ256rrik:
2555   case X86::VPCMPQZrrik:
2556   case X86::VPCMPUQZrrik:
2557   case X86::VPCMPWZ128rrik:
2558   case X86::VPCMPUWZ128rrik:
2559   case X86::VPCMPWZ256rrik:
2560   case X86::VPCMPUWZ256rrik:
2561   case X86::VPCMPWZrrik:
2562   case X86::VPCMPUWZrrik:
2563     WorkingMI = CloneIfNew(MI);
2564     // Flip comparison mode immediate (if necessary).
2565     WorkingMI->getOperand(MI.getNumOperands() - 1)
2566         .setImm(X86::getSwappedVPCMPImm(
2567             MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7));
2568     break;
2569   case X86::VPCOMBri:
2570   case X86::VPCOMUBri:
2571   case X86::VPCOMDri:
2572   case X86::VPCOMUDri:
2573   case X86::VPCOMQri:
2574   case X86::VPCOMUQri:
2575   case X86::VPCOMWri:
2576   case X86::VPCOMUWri:
2577     WorkingMI = CloneIfNew(MI);
2578     // Flip comparison mode immediate (if necessary).
2579     WorkingMI->getOperand(3).setImm(
2580         X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7));
2581     break;
2582   case X86::VCMPSDZrr:
2583   case X86::VCMPSSZrr:
2584   case X86::VCMPPDZrri:
2585   case X86::VCMPPSZrri:
2586   case X86::VCMPSHZrr:
2587   case X86::VCMPPHZrri:
2588   case X86::VCMPPHZ128rri:
2589   case X86::VCMPPHZ256rri:
2590   case X86::VCMPPDZ128rri:
2591   case X86::VCMPPSZ128rri:
2592   case X86::VCMPPDZ256rri:
2593   case X86::VCMPPSZ256rri:
2594   case X86::VCMPPDZrrik:
2595   case X86::VCMPPSZrrik:
2596   case X86::VCMPPDZ128rrik:
2597   case X86::VCMPPSZ128rrik:
2598   case X86::VCMPPDZ256rrik:
2599   case X86::VCMPPSZ256rrik:
2600     WorkingMI = CloneIfNew(MI);
2601     WorkingMI->getOperand(MI.getNumExplicitOperands() - 1)
2602         .setImm(X86::getSwappedVCMPImm(
2603             MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2604     break;
2605   case X86::VPERM2F128rr:
2606   case X86::VPERM2I128rr:
2607     // Flip permute source immediate.
2608     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2609     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2610     WorkingMI = CloneIfNew(MI);
2611     WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22);
2612     break;
2613   case X86::MOVHLPSrr:
2614   case X86::UNPCKHPDrr:
2615   case X86::VMOVHLPSrr:
2616   case X86::VUNPCKHPDrr:
2617   case X86::VMOVHLPSZrr:
2618   case X86::VUNPCKHPDZ128rr:
2619     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2620 
2621     switch (Opc) {
2622     default:
2623       llvm_unreachable("Unreachable!");
2624     case X86::MOVHLPSrr:
2625       Opc = X86::UNPCKHPDrr;
2626       break;
2627     case X86::UNPCKHPDrr:
2628       Opc = X86::MOVHLPSrr;
2629       break;
2630     case X86::VMOVHLPSrr:
2631       Opc = X86::VUNPCKHPDrr;
2632       break;
2633     case X86::VUNPCKHPDrr:
2634       Opc = X86::VMOVHLPSrr;
2635       break;
2636     case X86::VMOVHLPSZrr:
2637       Opc = X86::VUNPCKHPDZ128rr;
2638       break;
2639     case X86::VUNPCKHPDZ128rr:
2640       Opc = X86::VMOVHLPSZrr;
2641       break;
2642     }
2643     WorkingMI = CloneIfNew(MI);
2644     WorkingMI->setDesc(get(Opc));
2645     break;
2646   case X86::CMOV16rr:
2647   case X86::CMOV32rr:
2648   case X86::CMOV64rr: {
2649     WorkingMI = CloneIfNew(MI);
2650     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2651     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2652     WorkingMI->getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2653     break;
2654   }
2655   case X86::VPTERNLOGDZrri:
2656   case X86::VPTERNLOGDZrmi:
2657   case X86::VPTERNLOGDZ128rri:
2658   case X86::VPTERNLOGDZ128rmi:
2659   case X86::VPTERNLOGDZ256rri:
2660   case X86::VPTERNLOGDZ256rmi:
2661   case X86::VPTERNLOGQZrri:
2662   case X86::VPTERNLOGQZrmi:
2663   case X86::VPTERNLOGQZ128rri:
2664   case X86::VPTERNLOGQZ128rmi:
2665   case X86::VPTERNLOGQZ256rri:
2666   case X86::VPTERNLOGQZ256rmi:
2667   case X86::VPTERNLOGDZrrik:
2668   case X86::VPTERNLOGDZ128rrik:
2669   case X86::VPTERNLOGDZ256rrik:
2670   case X86::VPTERNLOGQZrrik:
2671   case X86::VPTERNLOGQZ128rrik:
2672   case X86::VPTERNLOGQZ256rrik:
2673   case X86::VPTERNLOGDZrrikz:
2674   case X86::VPTERNLOGDZrmikz:
2675   case X86::VPTERNLOGDZ128rrikz:
2676   case X86::VPTERNLOGDZ128rmikz:
2677   case X86::VPTERNLOGDZ256rrikz:
2678   case X86::VPTERNLOGDZ256rmikz:
2679   case X86::VPTERNLOGQZrrikz:
2680   case X86::VPTERNLOGQZrmikz:
2681   case X86::VPTERNLOGQZ128rrikz:
2682   case X86::VPTERNLOGQZ128rmikz:
2683   case X86::VPTERNLOGQZ256rrikz:
2684   case X86::VPTERNLOGQZ256rmikz:
2685   case X86::VPTERNLOGDZ128rmbi:
2686   case X86::VPTERNLOGDZ256rmbi:
2687   case X86::VPTERNLOGDZrmbi:
2688   case X86::VPTERNLOGQZ128rmbi:
2689   case X86::VPTERNLOGQZ256rmbi:
2690   case X86::VPTERNLOGQZrmbi:
2691   case X86::VPTERNLOGDZ128rmbikz:
2692   case X86::VPTERNLOGDZ256rmbikz:
2693   case X86::VPTERNLOGDZrmbikz:
2694   case X86::VPTERNLOGQZ128rmbikz:
2695   case X86::VPTERNLOGQZ256rmbikz:
2696   case X86::VPTERNLOGQZrmbikz: {
2697     WorkingMI = CloneIfNew(MI);
2698     commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2);
2699     break;
2700   }
2701   default:
2702     if (isCommutableVPERMV3Instruction(Opc)) {
2703       WorkingMI = CloneIfNew(MI);
2704       WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc)));
2705       break;
2706     }
2707 
2708     if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) {
2709       WorkingMI = CloneIfNew(MI);
2710       WorkingMI->setDesc(
2711           get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group)));
2712       break;
2713     }
2714   }
2715   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2716 }
2717 
2718 bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2719                                                  unsigned &SrcOpIdx1,
2720                                                  unsigned &SrcOpIdx2,
2721                                                  bool IsIntrinsic) const {
2722   uint64_t TSFlags = MI.getDesc().TSFlags;
2723 
2724   unsigned FirstCommutableVecOp = 1;
2725   unsigned LastCommutableVecOp = 3;
2726   unsigned KMaskOp = -1U;
2727   if (X86II::isKMasked(TSFlags)) {
2728     // For k-zero-masked operations it is Ok to commute the first vector
2729     // operand. Unless this is an intrinsic instruction.
2730     // For regular k-masked operations a conservative choice is done as the
2731     // elements of the first vector operand, for which the corresponding bit
2732     // in the k-mask operand is set to 0, are copied to the result of the
2733     // instruction.
2734     // TODO/FIXME: The commute still may be legal if it is known that the
2735     // k-mask operand is set to either all ones or all zeroes.
2736     // It is also Ok to commute the 1st operand if all users of MI use only
2737     // the elements enabled by the k-mask operand. For example,
2738     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2739     //                                                     : v1[i];
2740     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2741     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2742 
2743     // The k-mask operand has index = 2 for masked and zero-masked operations.
2744     KMaskOp = 2;
2745 
2746     // The operand with index = 1 is used as a source for those elements for
2747     // which the corresponding bit in the k-mask is set to 0.
2748     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2749       FirstCommutableVecOp = 3;
2750 
2751     LastCommutableVecOp++;
2752   } else if (IsIntrinsic) {
2753     // Commuting the first operand of an intrinsic instruction isn't possible
2754     // unless we can prove that only the lowest element of the result is used.
2755     FirstCommutableVecOp = 2;
2756   }
2757 
2758   if (isMem(MI, LastCommutableVecOp))
2759     LastCommutableVecOp--;
2760 
2761   // Only the first RegOpsNum operands are commutable.
2762   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2763   // that the operand is not specified/fixed.
2764   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2765       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2766        SrcOpIdx1 == KMaskOp))
2767     return false;
2768   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2769       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2770        SrcOpIdx2 == KMaskOp))
2771     return false;
2772 
2773   // Look for two different register operands assumed to be commutable
2774   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2775   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2776       SrcOpIdx2 == CommuteAnyOperandIndex) {
2777     unsigned CommutableOpIdx2 = SrcOpIdx2;
2778 
2779     // At least one of operands to be commuted is not specified and
2780     // this method is free to choose appropriate commutable operands.
2781     if (SrcOpIdx1 == SrcOpIdx2)
2782       // Both of operands are not fixed. By default set one of commutable
2783       // operands to the last register operand of the instruction.
2784       CommutableOpIdx2 = LastCommutableVecOp;
2785     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2786       // Only one of operands is not fixed.
2787       CommutableOpIdx2 = SrcOpIdx1;
2788 
2789     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2790     // operand and assign its index to CommutableOpIdx1.
2791     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2792 
2793     unsigned CommutableOpIdx1;
2794     for (CommutableOpIdx1 = LastCommutableVecOp;
2795          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2796       // Just ignore and skip the k-mask operand.
2797       if (CommutableOpIdx1 == KMaskOp)
2798         continue;
2799 
2800       // The commuted operands must have different registers.
2801       // Otherwise, the commute transformation does not change anything and
2802       // is useless then.
2803       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2804         break;
2805     }
2806 
2807     // No appropriate commutable operands were found.
2808     if (CommutableOpIdx1 < FirstCommutableVecOp)
2809       return false;
2810 
2811     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2812     // to return those values.
2813     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2814                               CommutableOpIdx2))
2815       return false;
2816   }
2817 
2818   return true;
2819 }
2820 
2821 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2822                                          unsigned &SrcOpIdx1,
2823                                          unsigned &SrcOpIdx2) const {
2824   const MCInstrDesc &Desc = MI.getDesc();
2825   if (!Desc.isCommutable())
2826     return false;
2827 
2828   switch (MI.getOpcode()) {
2829   case X86::CMPSDrr:
2830   case X86::CMPSSrr:
2831   case X86::CMPPDrri:
2832   case X86::CMPPSrri:
2833   case X86::VCMPSDrr:
2834   case X86::VCMPSSrr:
2835   case X86::VCMPPDrri:
2836   case X86::VCMPPSrri:
2837   case X86::VCMPPDYrri:
2838   case X86::VCMPPSYrri:
2839   case X86::VCMPSDZrr:
2840   case X86::VCMPSSZrr:
2841   case X86::VCMPPDZrri:
2842   case X86::VCMPPSZrri:
2843   case X86::VCMPSHZrr:
2844   case X86::VCMPPHZrri:
2845   case X86::VCMPPHZ128rri:
2846   case X86::VCMPPHZ256rri:
2847   case X86::VCMPPDZ128rri:
2848   case X86::VCMPPSZ128rri:
2849   case X86::VCMPPDZ256rri:
2850   case X86::VCMPPSZ256rri:
2851   case X86::VCMPPDZrrik:
2852   case X86::VCMPPSZrrik:
2853   case X86::VCMPPDZ128rrik:
2854   case X86::VCMPPSZ128rrik:
2855   case X86::VCMPPDZ256rrik:
2856   case X86::VCMPPSZ256rrik: {
2857     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2858 
2859     // Float comparison can be safely commuted for
2860     // Ordered/Unordered/Equal/NotEqual tests
2861     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2862     switch (Imm) {
2863     default:
2864       // EVEX versions can be commuted.
2865       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2866         break;
2867       return false;
2868     case 0x00: // EQUAL
2869     case 0x03: // UNORDERED
2870     case 0x04: // NOT EQUAL
2871     case 0x07: // ORDERED
2872       break;
2873     }
2874 
2875     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2876     // when masked).
2877     // Assign them to the returned operand indices here.
2878     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2879                                 2 + OpOffset);
2880   }
2881   case X86::MOVSSrr:
2882     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2883     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2884     // AVX implies sse4.1.
2885     if (Subtarget.hasSSE41())
2886       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2887     return false;
2888   case X86::SHUFPDrri:
2889     // We can commute this to MOVSD.
2890     if (MI.getOperand(3).getImm() == 0x02)
2891       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2892     return false;
2893   case X86::MOVHLPSrr:
2894   case X86::UNPCKHPDrr:
2895   case X86::VMOVHLPSrr:
2896   case X86::VUNPCKHPDrr:
2897   case X86::VMOVHLPSZrr:
2898   case X86::VUNPCKHPDZ128rr:
2899     if (Subtarget.hasSSE2())
2900       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2901     return false;
2902   case X86::VPTERNLOGDZrri:
2903   case X86::VPTERNLOGDZrmi:
2904   case X86::VPTERNLOGDZ128rri:
2905   case X86::VPTERNLOGDZ128rmi:
2906   case X86::VPTERNLOGDZ256rri:
2907   case X86::VPTERNLOGDZ256rmi:
2908   case X86::VPTERNLOGQZrri:
2909   case X86::VPTERNLOGQZrmi:
2910   case X86::VPTERNLOGQZ128rri:
2911   case X86::VPTERNLOGQZ128rmi:
2912   case X86::VPTERNLOGQZ256rri:
2913   case X86::VPTERNLOGQZ256rmi:
2914   case X86::VPTERNLOGDZrrik:
2915   case X86::VPTERNLOGDZ128rrik:
2916   case X86::VPTERNLOGDZ256rrik:
2917   case X86::VPTERNLOGQZrrik:
2918   case X86::VPTERNLOGQZ128rrik:
2919   case X86::VPTERNLOGQZ256rrik:
2920   case X86::VPTERNLOGDZrrikz:
2921   case X86::VPTERNLOGDZrmikz:
2922   case X86::VPTERNLOGDZ128rrikz:
2923   case X86::VPTERNLOGDZ128rmikz:
2924   case X86::VPTERNLOGDZ256rrikz:
2925   case X86::VPTERNLOGDZ256rmikz:
2926   case X86::VPTERNLOGQZrrikz:
2927   case X86::VPTERNLOGQZrmikz:
2928   case X86::VPTERNLOGQZ128rrikz:
2929   case X86::VPTERNLOGQZ128rmikz:
2930   case X86::VPTERNLOGQZ256rrikz:
2931   case X86::VPTERNLOGQZ256rmikz:
2932   case X86::VPTERNLOGDZ128rmbi:
2933   case X86::VPTERNLOGDZ256rmbi:
2934   case X86::VPTERNLOGDZrmbi:
2935   case X86::VPTERNLOGQZ128rmbi:
2936   case X86::VPTERNLOGQZ256rmbi:
2937   case X86::VPTERNLOGQZrmbi:
2938   case X86::VPTERNLOGDZ128rmbikz:
2939   case X86::VPTERNLOGDZ256rmbikz:
2940   case X86::VPTERNLOGDZrmbikz:
2941   case X86::VPTERNLOGQZ128rmbikz:
2942   case X86::VPTERNLOGQZ256rmbikz:
2943   case X86::VPTERNLOGQZrmbikz:
2944     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2945   case X86::VPDPWSSDYrr:
2946   case X86::VPDPWSSDrr:
2947   case X86::VPDPWSSDSYrr:
2948   case X86::VPDPWSSDSrr:
2949   case X86::VPDPWUUDrr:
2950   case X86::VPDPWUUDYrr:
2951   case X86::VPDPWUUDSrr:
2952   case X86::VPDPWUUDSYrr:
2953   case X86::VPDPBSSDSrr:
2954   case X86::VPDPBSSDSYrr:
2955   case X86::VPDPBSSDrr:
2956   case X86::VPDPBSSDYrr:
2957   case X86::VPDPBUUDSrr:
2958   case X86::VPDPBUUDSYrr:
2959   case X86::VPDPBUUDrr:
2960   case X86::VPDPBUUDYrr:
2961   case X86::VPDPWSSDZ128r:
2962   case X86::VPDPWSSDZ128rk:
2963   case X86::VPDPWSSDZ128rkz:
2964   case X86::VPDPWSSDZ256r:
2965   case X86::VPDPWSSDZ256rk:
2966   case X86::VPDPWSSDZ256rkz:
2967   case X86::VPDPWSSDZr:
2968   case X86::VPDPWSSDZrk:
2969   case X86::VPDPWSSDZrkz:
2970   case X86::VPDPWSSDSZ128r:
2971   case X86::VPDPWSSDSZ128rk:
2972   case X86::VPDPWSSDSZ128rkz:
2973   case X86::VPDPWSSDSZ256r:
2974   case X86::VPDPWSSDSZ256rk:
2975   case X86::VPDPWSSDSZ256rkz:
2976   case X86::VPDPWSSDSZr:
2977   case X86::VPDPWSSDSZrk:
2978   case X86::VPDPWSSDSZrkz:
2979   case X86::VPMADD52HUQrr:
2980   case X86::VPMADD52HUQYrr:
2981   case X86::VPMADD52HUQZ128r:
2982   case X86::VPMADD52HUQZ128rk:
2983   case X86::VPMADD52HUQZ128rkz:
2984   case X86::VPMADD52HUQZ256r:
2985   case X86::VPMADD52HUQZ256rk:
2986   case X86::VPMADD52HUQZ256rkz:
2987   case X86::VPMADD52HUQZr:
2988   case X86::VPMADD52HUQZrk:
2989   case X86::VPMADD52HUQZrkz:
2990   case X86::VPMADD52LUQrr:
2991   case X86::VPMADD52LUQYrr:
2992   case X86::VPMADD52LUQZ128r:
2993   case X86::VPMADD52LUQZ128rk:
2994   case X86::VPMADD52LUQZ128rkz:
2995   case X86::VPMADD52LUQZ256r:
2996   case X86::VPMADD52LUQZ256rk:
2997   case X86::VPMADD52LUQZ256rkz:
2998   case X86::VPMADD52LUQZr:
2999   case X86::VPMADD52LUQZrk:
3000   case X86::VPMADD52LUQZrkz:
3001   case X86::VFMADDCPHZr:
3002   case X86::VFMADDCPHZrk:
3003   case X86::VFMADDCPHZrkz:
3004   case X86::VFMADDCPHZ128r:
3005   case X86::VFMADDCPHZ128rk:
3006   case X86::VFMADDCPHZ128rkz:
3007   case X86::VFMADDCPHZ256r:
3008   case X86::VFMADDCPHZ256rk:
3009   case X86::VFMADDCPHZ256rkz:
3010   case X86::VFMADDCSHZr:
3011   case X86::VFMADDCSHZrk:
3012   case X86::VFMADDCSHZrkz: {
3013     unsigned CommutableOpIdx1 = 2;
3014     unsigned CommutableOpIdx2 = 3;
3015     if (X86II::isKMasked(Desc.TSFlags)) {
3016       // Skip the mask register.
3017       ++CommutableOpIdx1;
3018       ++CommutableOpIdx2;
3019     }
3020     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3021                               CommutableOpIdx2))
3022       return false;
3023     if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
3024       // No idea.
3025       return false;
3026     return true;
3027   }
3028 
3029   default:
3030     const X86InstrFMA3Group *FMA3Group =
3031         getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags);
3032     if (FMA3Group)
3033       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
3034                                            FMA3Group->isIntrinsic());
3035 
3036     // Handled masked instructions since we need to skip over the mask input
3037     // and the preserved input.
3038     if (X86II::isKMasked(Desc.TSFlags)) {
3039       // First assume that the first input is the mask operand and skip past it.
3040       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
3041       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
3042       // Check if the first input is tied. If there isn't one then we only
3043       // need to skip the mask operand which we did above.
3044       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
3045                                              MCOI::TIED_TO) != -1)) {
3046         // If this is zero masking instruction with a tied operand, we need to
3047         // move the first index back to the first input since this must
3048         // be a 3 input instruction and we want the first two non-mask inputs.
3049         // Otherwise this is a 2 input instruction with a preserved input and
3050         // mask, so we need to move the indices to skip one more input.
3051         if (X86II::isKMergeMasked(Desc.TSFlags)) {
3052           ++CommutableOpIdx1;
3053           ++CommutableOpIdx2;
3054         } else {
3055           --CommutableOpIdx1;
3056         }
3057       }
3058 
3059       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3060                                 CommutableOpIdx2))
3061         return false;
3062 
3063       if (!MI.getOperand(SrcOpIdx1).isReg() ||
3064           !MI.getOperand(SrcOpIdx2).isReg())
3065         // No idea.
3066         return false;
3067       return true;
3068     }
3069 
3070     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3071   }
3072   return false;
3073 }
3074 
3075 static bool isConvertibleLEA(MachineInstr *MI) {
3076   unsigned Opcode = MI->getOpcode();
3077   if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3078       Opcode != X86::LEA64_32r)
3079     return false;
3080 
3081   const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
3082   const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
3083   const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
3084 
3085   if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
3086       Scale.getImm() > 1)
3087     return false;
3088 
3089   return true;
3090 }
3091 
3092 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
3093   // Currently we're interested in following sequence only.
3094   //   r3 = lea r1, r2
3095   //   r5 = add r3, r4
3096   // Both r3 and r4 are killed in add, we hope the add instruction has the
3097   // operand order
3098   //   r5 = add r4, r3
3099   // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3100   unsigned Opcode = MI.getOpcode();
3101   if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3102     return false;
3103 
3104   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3105   Register Reg1 = MI.getOperand(1).getReg();
3106   Register Reg2 = MI.getOperand(2).getReg();
3107 
3108   // Check if Reg1 comes from LEA in the same MBB.
3109   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
3110     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3111       Commute = true;
3112       return true;
3113     }
3114   }
3115 
3116   // Check if Reg2 comes from LEA in the same MBB.
3117   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
3118     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3119       Commute = false;
3120       return true;
3121     }
3122   }
3123 
3124   return false;
3125 }
3126 
3127 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
3128   unsigned Opcode = MCID.getOpcode();
3129   if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
3130     return -1;
3131   // Assume that condition code is always the last use operand.
3132   unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
3133   return NumUses - 1;
3134 }
3135 
3136 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
3137   const MCInstrDesc &MCID = MI.getDesc();
3138   int CondNo = getCondSrcNoFromDesc(MCID);
3139   if (CondNo < 0)
3140     return X86::COND_INVALID;
3141   CondNo += MCID.getNumDefs();
3142   return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
3143 }
3144 
3145 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
3146   return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3147                                     : X86::COND_INVALID;
3148 }
3149 
3150 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
3151   return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3152                                       : X86::COND_INVALID;
3153 }
3154 
3155 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
3156   return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3157                                        : X86::COND_INVALID;
3158 }
3159 
3160 /// Return the inverse of the specified condition,
3161 /// e.g. turning COND_E to COND_NE.
3162 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3163   switch (CC) {
3164   default:
3165     llvm_unreachable("Illegal condition code!");
3166   case X86::COND_E:
3167     return X86::COND_NE;
3168   case X86::COND_NE:
3169     return X86::COND_E;
3170   case X86::COND_L:
3171     return X86::COND_GE;
3172   case X86::COND_LE:
3173     return X86::COND_G;
3174   case X86::COND_G:
3175     return X86::COND_LE;
3176   case X86::COND_GE:
3177     return X86::COND_L;
3178   case X86::COND_B:
3179     return X86::COND_AE;
3180   case X86::COND_BE:
3181     return X86::COND_A;
3182   case X86::COND_A:
3183     return X86::COND_BE;
3184   case X86::COND_AE:
3185     return X86::COND_B;
3186   case X86::COND_S:
3187     return X86::COND_NS;
3188   case X86::COND_NS:
3189     return X86::COND_S;
3190   case X86::COND_P:
3191     return X86::COND_NP;
3192   case X86::COND_NP:
3193     return X86::COND_P;
3194   case X86::COND_O:
3195     return X86::COND_NO;
3196   case X86::COND_NO:
3197     return X86::COND_O;
3198   case X86::COND_NE_OR_P:
3199     return X86::COND_E_AND_NP;
3200   case X86::COND_E_AND_NP:
3201     return X86::COND_NE_OR_P;
3202   }
3203 }
3204 
3205 /// Assuming the flags are set by MI(a,b), return the condition code if we
3206 /// modify the instructions such that flags are set by MI(b,a).
3207 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3208   switch (CC) {
3209   default:
3210     return X86::COND_INVALID;
3211   case X86::COND_E:
3212     return X86::COND_E;
3213   case X86::COND_NE:
3214     return X86::COND_NE;
3215   case X86::COND_L:
3216     return X86::COND_G;
3217   case X86::COND_LE:
3218     return X86::COND_GE;
3219   case X86::COND_G:
3220     return X86::COND_L;
3221   case X86::COND_GE:
3222     return X86::COND_LE;
3223   case X86::COND_B:
3224     return X86::COND_A;
3225   case X86::COND_BE:
3226     return X86::COND_AE;
3227   case X86::COND_A:
3228     return X86::COND_B;
3229   case X86::COND_AE:
3230     return X86::COND_BE;
3231   }
3232 }
3233 
3234 std::pair<X86::CondCode, bool>
3235 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
3236   X86::CondCode CC = X86::COND_INVALID;
3237   bool NeedSwap = false;
3238   switch (Predicate) {
3239   default:
3240     break;
3241   // Floating-point Predicates
3242   case CmpInst::FCMP_UEQ:
3243     CC = X86::COND_E;
3244     break;
3245   case CmpInst::FCMP_OLT:
3246     NeedSwap = true;
3247     [[fallthrough]];
3248   case CmpInst::FCMP_OGT:
3249     CC = X86::COND_A;
3250     break;
3251   case CmpInst::FCMP_OLE:
3252     NeedSwap = true;
3253     [[fallthrough]];
3254   case CmpInst::FCMP_OGE:
3255     CC = X86::COND_AE;
3256     break;
3257   case CmpInst::FCMP_UGT:
3258     NeedSwap = true;
3259     [[fallthrough]];
3260   case CmpInst::FCMP_ULT:
3261     CC = X86::COND_B;
3262     break;
3263   case CmpInst::FCMP_UGE:
3264     NeedSwap = true;
3265     [[fallthrough]];
3266   case CmpInst::FCMP_ULE:
3267     CC = X86::COND_BE;
3268     break;
3269   case CmpInst::FCMP_ONE:
3270     CC = X86::COND_NE;
3271     break;
3272   case CmpInst::FCMP_UNO:
3273     CC = X86::COND_P;
3274     break;
3275   case CmpInst::FCMP_ORD:
3276     CC = X86::COND_NP;
3277     break;
3278   case CmpInst::FCMP_OEQ:
3279     [[fallthrough]];
3280   case CmpInst::FCMP_UNE:
3281     CC = X86::COND_INVALID;
3282     break;
3283 
3284   // Integer Predicates
3285   case CmpInst::ICMP_EQ:
3286     CC = X86::COND_E;
3287     break;
3288   case CmpInst::ICMP_NE:
3289     CC = X86::COND_NE;
3290     break;
3291   case CmpInst::ICMP_UGT:
3292     CC = X86::COND_A;
3293     break;
3294   case CmpInst::ICMP_UGE:
3295     CC = X86::COND_AE;
3296     break;
3297   case CmpInst::ICMP_ULT:
3298     CC = X86::COND_B;
3299     break;
3300   case CmpInst::ICMP_ULE:
3301     CC = X86::COND_BE;
3302     break;
3303   case CmpInst::ICMP_SGT:
3304     CC = X86::COND_G;
3305     break;
3306   case CmpInst::ICMP_SGE:
3307     CC = X86::COND_GE;
3308     break;
3309   case CmpInst::ICMP_SLT:
3310     CC = X86::COND_L;
3311     break;
3312   case CmpInst::ICMP_SLE:
3313     CC = X86::COND_LE;
3314     break;
3315   }
3316 
3317   return std::make_pair(CC, NeedSwap);
3318 }
3319 
3320 /// Return a cmov opcode for the given register size in bytes, and operand type.
3321 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
3322   switch (RegBytes) {
3323   default:
3324     llvm_unreachable("Illegal register size!");
3325   case 2:
3326     return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
3327   case 4:
3328     return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
3329   case 8:
3330     return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
3331   }
3332 }
3333 
3334 /// Get the VPCMP immediate for the given condition.
3335 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
3336   switch (CC) {
3337   default:
3338     llvm_unreachable("Unexpected SETCC condition");
3339   case ISD::SETNE:
3340     return 4;
3341   case ISD::SETEQ:
3342     return 0;
3343   case ISD::SETULT:
3344   case ISD::SETLT:
3345     return 1;
3346   case ISD::SETUGT:
3347   case ISD::SETGT:
3348     return 6;
3349   case ISD::SETUGE:
3350   case ISD::SETGE:
3351     return 5;
3352   case ISD::SETULE:
3353   case ISD::SETLE:
3354     return 2;
3355   }
3356 }
3357 
3358 /// Get the VPCMP immediate if the operands are swapped.
3359 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
3360   switch (Imm) {
3361   default:
3362     llvm_unreachable("Unreachable!");
3363   case 0x01:
3364     Imm = 0x06;
3365     break; // LT  -> NLE
3366   case 0x02:
3367     Imm = 0x05;
3368     break; // LE  -> NLT
3369   case 0x05:
3370     Imm = 0x02;
3371     break; // NLT -> LE
3372   case 0x06:
3373     Imm = 0x01;
3374     break;   // NLE -> LT
3375   case 0x00: // EQ
3376   case 0x03: // FALSE
3377   case 0x04: // NE
3378   case 0x07: // TRUE
3379     break;
3380   }
3381 
3382   return Imm;
3383 }
3384 
3385 /// Get the VPCOM immediate if the operands are swapped.
3386 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
3387   switch (Imm) {
3388   default:
3389     llvm_unreachable("Unreachable!");
3390   case 0x00:
3391     Imm = 0x02;
3392     break; // LT -> GT
3393   case 0x01:
3394     Imm = 0x03;
3395     break; // LE -> GE
3396   case 0x02:
3397     Imm = 0x00;
3398     break; // GT -> LT
3399   case 0x03:
3400     Imm = 0x01;
3401     break;   // GE -> LE
3402   case 0x04: // EQ
3403   case 0x05: // NE
3404   case 0x06: // FALSE
3405   case 0x07: // TRUE
3406     break;
3407   }
3408 
3409   return Imm;
3410 }
3411 
3412 /// Get the VCMP immediate if the operands are swapped.
3413 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
3414   // Only need the lower 2 bits to distinquish.
3415   switch (Imm & 0x3) {
3416   default:
3417     llvm_unreachable("Unreachable!");
3418   case 0x00:
3419   case 0x03:
3420     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3421     break;
3422   case 0x01:
3423   case 0x02:
3424     // Need to toggle bits 3:0. Bit 4 stays the same.
3425     Imm ^= 0xf;
3426     break;
3427   }
3428 
3429   return Imm;
3430 }
3431 
3432 /// Return true if the Reg is X87 register.
3433 static bool isX87Reg(unsigned Reg) {
3434   return (Reg == X86::FPCW || Reg == X86::FPSW ||
3435           (Reg >= X86::ST0 && Reg <= X86::ST7));
3436 }
3437 
3438 /// check if the instruction is X87 instruction
3439 bool X86::isX87Instruction(MachineInstr &MI) {
3440   for (const MachineOperand &MO : MI.operands()) {
3441     if (!MO.isReg())
3442       continue;
3443     if (isX87Reg(MO.getReg()))
3444       return true;
3445   }
3446   return false;
3447 }
3448 
3449 int X86::getFirstAddrOperandIdx(const MachineInstr &MI) {
3450   auto IsMemOp = [](const MCOperandInfo &OpInfo) {
3451     return OpInfo.OperandType == MCOI::OPERAND_MEMORY;
3452   };
3453 
3454   const MCInstrDesc &Desc = MI.getDesc();
3455 
3456   // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3457   // instructions (fast case).
3458   if (!X86II::isPseudo(Desc.TSFlags)) {
3459     int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
3460     if (MemRefIdx >= 0)
3461       return MemRefIdx + X86II::getOperandBias(Desc);
3462 #ifdef EXPENSIVE_CHECKS
3463     assert(none_of(Desc.operands(), IsMemOp) &&
3464            "Got false negative from X86II::getMemoryOperandNo()!");
3465 #endif
3466     return -1;
3467   }
3468 
3469   // Otherwise, handle pseudo instructions by examining the type of their
3470   // operands (slow case). An instruction cannot have a memory reference if it
3471   // has fewer than AddrNumOperands (= 5) explicit operands.
3472   unsigned NumOps = Desc.getNumOperands();
3473   if (NumOps < X86::AddrNumOperands) {
3474 #ifdef EXPENSIVE_CHECKS
3475     assert(none_of(Desc.operands(), IsMemOp) &&
3476            "Expected no operands to have OPERAND_MEMORY type!");
3477 #endif
3478     return -1;
3479   }
3480 
3481   // The first operand with type OPERAND_MEMORY indicates the start of a memory
3482   // reference. We expect the following AddrNumOperand-1 operands to also have
3483   // OPERAND_MEMORY type.
3484   for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) {
3485     if (IsMemOp(Desc.operands()[I])) {
3486 #ifdef EXPENSIVE_CHECKS
3487       assert(std::all_of(Desc.operands().begin() + I,
3488                          Desc.operands().begin() + I + X86::AddrNumOperands,
3489                          IsMemOp) &&
3490              "Expected all five operands in the memory reference to have "
3491              "OPERAND_MEMORY type!");
3492 #endif
3493       return I;
3494     }
3495   }
3496 
3497   return -1;
3498 }
3499 
3500 const Constant *X86::getConstantFromPool(const MachineInstr &MI,
3501                                          unsigned OpNo) {
3502   assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) &&
3503          "Unexpected number of operands!");
3504 
3505   const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg);
3506   if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3507     return nullptr;
3508 
3509   const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp);
3510   if (!Disp.isCPI() || Disp.getOffset() != 0)
3511     return nullptr;
3512 
3513   ArrayRef<MachineConstantPoolEntry> Constants =
3514       MI.getParent()->getParent()->getConstantPool()->getConstants();
3515   const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()];
3516 
3517   // Bail if this is a machine constant pool entry, we won't be able to dig out
3518   // anything useful.
3519   if (ConstantEntry.isMachineConstantPoolEntry())
3520     return nullptr;
3521 
3522   return ConstantEntry.Val.ConstVal;
3523 }
3524 
3525 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
3526   switch (MI.getOpcode()) {
3527   case X86::TCRETURNdi:
3528   case X86::TCRETURNri:
3529   case X86::TCRETURNmi:
3530   case X86::TCRETURNdi64:
3531   case X86::TCRETURNri64:
3532   case X86::TCRETURNmi64:
3533     return true;
3534   default:
3535     return false;
3536   }
3537 }
3538 
3539 bool X86InstrInfo::canMakeTailCallConditional(
3540     SmallVectorImpl<MachineOperand> &BranchCond,
3541     const MachineInstr &TailCall) const {
3542 
3543   const MachineFunction *MF = TailCall.getMF();
3544 
3545   if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
3546     // Kernel patches thunk calls in runtime, these should never be conditional.
3547     const MachineOperand &Target = TailCall.getOperand(0);
3548     if (Target.isSymbol()) {
3549       StringRef Symbol(Target.getSymbolName());
3550       // this is currently only relevant to r11/kernel indirect thunk.
3551       if (Symbol.equals("__x86_indirect_thunk_r11"))
3552         return false;
3553     }
3554   }
3555 
3556   if (TailCall.getOpcode() != X86::TCRETURNdi &&
3557       TailCall.getOpcode() != X86::TCRETURNdi64) {
3558     // Only direct calls can be done with a conditional branch.
3559     return false;
3560   }
3561 
3562   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3563     // Conditional tail calls confuse the Win64 unwinder.
3564     return false;
3565   }
3566 
3567   assert(BranchCond.size() == 1);
3568   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3569     // Can't make a conditional tail call with this condition.
3570     return false;
3571   }
3572 
3573   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3574   if (X86FI->getTCReturnAddrDelta() != 0 ||
3575       TailCall.getOperand(1).getImm() != 0) {
3576     // A conditional tail call cannot do any stack adjustment.
3577     return false;
3578   }
3579 
3580   return true;
3581 }
3582 
3583 void X86InstrInfo::replaceBranchWithTailCall(
3584     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3585     const MachineInstr &TailCall) const {
3586   assert(canMakeTailCallConditional(BranchCond, TailCall));
3587 
3588   MachineBasicBlock::iterator I = MBB.end();
3589   while (I != MBB.begin()) {
3590     --I;
3591     if (I->isDebugInstr())
3592       continue;
3593     if (!I->isBranch())
3594       assert(0 && "Can't find the branch to replace!");
3595 
3596     X86::CondCode CC = X86::getCondFromBranch(*I);
3597     assert(BranchCond.size() == 1);
3598     if (CC != BranchCond[0].getImm())
3599       continue;
3600 
3601     break;
3602   }
3603 
3604   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3605                                                          : X86::TCRETURNdi64cc;
3606 
3607   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3608   MIB->addOperand(TailCall.getOperand(0)); // Destination.
3609   MIB.addImm(0);                           // Stack offset (not used).
3610   MIB->addOperand(BranchCond[0]);          // Condition.
3611   MIB.copyImplicitOps(TailCall);           // Regmask and (imp-used) parameters.
3612 
3613   // Add implicit uses and defs of all live regs potentially clobbered by the
3614   // call. This way they still appear live across the call.
3615   LivePhysRegs LiveRegs(getRegisterInfo());
3616   LiveRegs.addLiveOuts(MBB);
3617   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3618   LiveRegs.stepForward(*MIB, Clobbers);
3619   for (const auto &C : Clobbers) {
3620     MIB.addReg(C.first, RegState::Implicit);
3621     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3622   }
3623 
3624   I->eraseFromParent();
3625 }
3626 
3627 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3628 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3629 // fallthrough MBB cannot be identified.
3630 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3631                                             MachineBasicBlock *TBB) {
3632   // Look for non-EHPad successors other than TBB. If we find exactly one, it
3633   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3634   // and fallthrough MBB. If we find more than one, we cannot identify the
3635   // fallthrough MBB and should return nullptr.
3636   MachineBasicBlock *FallthroughBB = nullptr;
3637   for (MachineBasicBlock *Succ : MBB->successors()) {
3638     if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3639       continue;
3640     // Return a nullptr if we found more than one fallthrough successor.
3641     if (FallthroughBB && FallthroughBB != TBB)
3642       return nullptr;
3643     FallthroughBB = Succ;
3644   }
3645   return FallthroughBB;
3646 }
3647 
3648 bool X86InstrInfo::AnalyzeBranchImpl(
3649     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3650     SmallVectorImpl<MachineOperand> &Cond,
3651     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3652 
3653   // Start from the bottom of the block and work up, examining the
3654   // terminator instructions.
3655   MachineBasicBlock::iterator I = MBB.end();
3656   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3657   while (I != MBB.begin()) {
3658     --I;
3659     if (I->isDebugInstr())
3660       continue;
3661 
3662     // Working from the bottom, when we see a non-terminator instruction, we're
3663     // done.
3664     if (!isUnpredicatedTerminator(*I))
3665       break;
3666 
3667     // A terminator that isn't a branch can't easily be handled by this
3668     // analysis.
3669     if (!I->isBranch())
3670       return true;
3671 
3672     // Handle unconditional branches.
3673     if (I->getOpcode() == X86::JMP_1) {
3674       UnCondBrIter = I;
3675 
3676       if (!AllowModify) {
3677         TBB = I->getOperand(0).getMBB();
3678         continue;
3679       }
3680 
3681       // If the block has any instructions after a JMP, delete them.
3682       MBB.erase(std::next(I), MBB.end());
3683 
3684       Cond.clear();
3685       FBB = nullptr;
3686 
3687       // Delete the JMP if it's equivalent to a fall-through.
3688       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3689         TBB = nullptr;
3690         I->eraseFromParent();
3691         I = MBB.end();
3692         UnCondBrIter = MBB.end();
3693         continue;
3694       }
3695 
3696       // TBB is used to indicate the unconditional destination.
3697       TBB = I->getOperand(0).getMBB();
3698       continue;
3699     }
3700 
3701     // Handle conditional branches.
3702     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3703     if (BranchCode == X86::COND_INVALID)
3704       return true; // Can't handle indirect branch.
3705 
3706     // In practice we should never have an undef eflags operand, if we do
3707     // abort here as we are not prepared to preserve the flag.
3708     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3709       return true;
3710 
3711     // Working from the bottom, handle the first conditional branch.
3712     if (Cond.empty()) {
3713       FBB = TBB;
3714       TBB = I->getOperand(0).getMBB();
3715       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3716       CondBranches.push_back(&*I);
3717       continue;
3718     }
3719 
3720     // Handle subsequent conditional branches. Only handle the case where all
3721     // conditional branches branch to the same destination and their condition
3722     // opcodes fit one of the special multi-branch idioms.
3723     assert(Cond.size() == 1);
3724     assert(TBB);
3725 
3726     // If the conditions are the same, we can leave them alone.
3727     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3728     auto NewTBB = I->getOperand(0).getMBB();
3729     if (OldBranchCode == BranchCode && TBB == NewTBB)
3730       continue;
3731 
3732     // If they differ, see if they fit one of the known patterns. Theoretically,
3733     // we could handle more patterns here, but we shouldn't expect to see them
3734     // if instruction selection has done a reasonable job.
3735     if (TBB == NewTBB &&
3736         ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3737          (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3738       BranchCode = X86::COND_NE_OR_P;
3739     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3740                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3741       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3742         return true;
3743 
3744       // X86::COND_E_AND_NP usually has two different branch destinations.
3745       //
3746       // JP B1
3747       // JE B2
3748       // JMP B1
3749       // B1:
3750       // B2:
3751       //
3752       // Here this condition branches to B2 only if NP && E. It has another
3753       // equivalent form:
3754       //
3755       // JNE B1
3756       // JNP B2
3757       // JMP B1
3758       // B1:
3759       // B2:
3760       //
3761       // Similarly it branches to B2 only if E && NP. That is why this condition
3762       // is named with COND_E_AND_NP.
3763       BranchCode = X86::COND_E_AND_NP;
3764     } else
3765       return true;
3766 
3767     // Update the MachineOperand.
3768     Cond[0].setImm(BranchCode);
3769     CondBranches.push_back(&*I);
3770   }
3771 
3772   return false;
3773 }
3774 
3775 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3776                                  MachineBasicBlock *&TBB,
3777                                  MachineBasicBlock *&FBB,
3778                                  SmallVectorImpl<MachineOperand> &Cond,
3779                                  bool AllowModify) const {
3780   SmallVector<MachineInstr *, 4> CondBranches;
3781   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3782 }
3783 
3784 static int getJumpTableIndexFromAddr(const MachineInstr &MI) {
3785   const MCInstrDesc &Desc = MI.getDesc();
3786   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3787   assert(MemRefBegin >= 0 && "instr should have memory operand");
3788   MemRefBegin += X86II::getOperandBias(Desc);
3789 
3790   const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp);
3791   if (!MO.isJTI())
3792     return -1;
3793 
3794   return MO.getIndex();
3795 }
3796 
3797 static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI,
3798                                     Register Reg) {
3799   if (!Reg.isVirtual())
3800     return -1;
3801   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3802   if (MI == nullptr)
3803     return -1;
3804   unsigned Opcode = MI->getOpcode();
3805   if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3806     return -1;
3807   return getJumpTableIndexFromAddr(*MI);
3808 }
3809 
3810 int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const {
3811   unsigned Opcode = MI.getOpcode();
3812   // Switch-jump pattern for non-PIC code looks like:
3813   //   JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3814   if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3815     return getJumpTableIndexFromAddr(MI);
3816   }
3817   // The pattern for PIC code looks like:
3818   //   %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3819   //   %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3820   //   %2 = ADD64rr %1, %0
3821   //   JMP64r %2
3822   if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3823     Register Reg = MI.getOperand(0).getReg();
3824     if (!Reg.isVirtual())
3825       return -1;
3826     const MachineFunction &MF = *MI.getParent()->getParent();
3827     const MachineRegisterInfo &MRI = MF.getRegInfo();
3828     MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3829     if (Add == nullptr)
3830       return -1;
3831     if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
3832       return -1;
3833     int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg());
3834     if (JTI1 >= 0)
3835       return JTI1;
3836     int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg());
3837     if (JTI2 >= 0)
3838       return JTI2;
3839   }
3840   return -1;
3841 }
3842 
3843 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3844                                           MachineBranchPredicate &MBP,
3845                                           bool AllowModify) const {
3846   using namespace std::placeholders;
3847 
3848   SmallVector<MachineOperand, 4> Cond;
3849   SmallVector<MachineInstr *, 4> CondBranches;
3850   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3851                         AllowModify))
3852     return true;
3853 
3854   if (Cond.size() != 1)
3855     return true;
3856 
3857   assert(MBP.TrueDest && "expected!");
3858 
3859   if (!MBP.FalseDest)
3860     MBP.FalseDest = MBB.getNextNode();
3861 
3862   const TargetRegisterInfo *TRI = &getRegisterInfo();
3863 
3864   MachineInstr *ConditionDef = nullptr;
3865   bool SingleUseCondition = true;
3866 
3867   for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3868     if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3869       ConditionDef = &MI;
3870       break;
3871     }
3872 
3873     if (MI.readsRegister(X86::EFLAGS, TRI))
3874       SingleUseCondition = false;
3875   }
3876 
3877   if (!ConditionDef)
3878     return true;
3879 
3880   if (SingleUseCondition) {
3881     for (auto *Succ : MBB.successors())
3882       if (Succ->isLiveIn(X86::EFLAGS))
3883         SingleUseCondition = false;
3884   }
3885 
3886   MBP.ConditionDef = ConditionDef;
3887   MBP.SingleUseCondition = SingleUseCondition;
3888 
3889   // Currently we only recognize the simple pattern:
3890   //
3891   //   test %reg, %reg
3892   //   je %label
3893   //
3894   const unsigned TestOpcode =
3895       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3896 
3897   if (ConditionDef->getOpcode() == TestOpcode &&
3898       ConditionDef->getNumOperands() == 3 &&
3899       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3900       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3901     MBP.LHS = ConditionDef->getOperand(0);
3902     MBP.RHS = MachineOperand::CreateImm(0);
3903     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3904                         ? MachineBranchPredicate::PRED_NE
3905                         : MachineBranchPredicate::PRED_EQ;
3906     return false;
3907   }
3908 
3909   return true;
3910 }
3911 
3912 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3913                                     int *BytesRemoved) const {
3914   assert(!BytesRemoved && "code size not handled");
3915 
3916   MachineBasicBlock::iterator I = MBB.end();
3917   unsigned Count = 0;
3918 
3919   while (I != MBB.begin()) {
3920     --I;
3921     if (I->isDebugInstr())
3922       continue;
3923     if (I->getOpcode() != X86::JMP_1 &&
3924         X86::getCondFromBranch(*I) == X86::COND_INVALID)
3925       break;
3926     // Remove the branch.
3927     I->eraseFromParent();
3928     I = MBB.end();
3929     ++Count;
3930   }
3931 
3932   return Count;
3933 }
3934 
3935 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3936                                     MachineBasicBlock *TBB,
3937                                     MachineBasicBlock *FBB,
3938                                     ArrayRef<MachineOperand> Cond,
3939                                     const DebugLoc &DL, int *BytesAdded) const {
3940   // Shouldn't be a fall through.
3941   assert(TBB && "insertBranch must not be told to insert a fallthrough");
3942   assert((Cond.size() == 1 || Cond.size() == 0) &&
3943          "X86 branch conditions have one component!");
3944   assert(!BytesAdded && "code size not handled");
3945 
3946   if (Cond.empty()) {
3947     // Unconditional branch?
3948     assert(!FBB && "Unconditional branch with multiple successors!");
3949     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3950     return 1;
3951   }
3952 
3953   // If FBB is null, it is implied to be a fall-through block.
3954   bool FallThru = FBB == nullptr;
3955 
3956   // Conditional branch.
3957   unsigned Count = 0;
3958   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3959   switch (CC) {
3960   case X86::COND_NE_OR_P:
3961     // Synthesize NE_OR_P with two branches.
3962     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3963     ++Count;
3964     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3965     ++Count;
3966     break;
3967   case X86::COND_E_AND_NP:
3968     // Use the next block of MBB as FBB if it is null.
3969     if (FBB == nullptr) {
3970       FBB = getFallThroughMBB(&MBB, TBB);
3971       assert(FBB && "MBB cannot be the last block in function when the false "
3972                     "body is a fall-through.");
3973     }
3974     // Synthesize COND_E_AND_NP with two branches.
3975     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3976     ++Count;
3977     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3978     ++Count;
3979     break;
3980   default: {
3981     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3982     ++Count;
3983   }
3984   }
3985   if (!FallThru) {
3986     // Two-way Conditional branch. Insert the second branch.
3987     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3988     ++Count;
3989   }
3990   return Count;
3991 }
3992 
3993 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3994                                    ArrayRef<MachineOperand> Cond,
3995                                    Register DstReg, Register TrueReg,
3996                                    Register FalseReg, int &CondCycles,
3997                                    int &TrueCycles, int &FalseCycles) const {
3998   // Not all subtargets have cmov instructions.
3999   if (!Subtarget.canUseCMOV())
4000     return false;
4001   if (Cond.size() != 1)
4002     return false;
4003   // We cannot do the composite conditions, at least not in SSA form.
4004   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
4005     return false;
4006 
4007   // Check register classes.
4008   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4009   const TargetRegisterClass *RC =
4010       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
4011   if (!RC)
4012     return false;
4013 
4014   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4015   if (X86::GR16RegClass.hasSubClassEq(RC) ||
4016       X86::GR32RegClass.hasSubClassEq(RC) ||
4017       X86::GR64RegClass.hasSubClassEq(RC)) {
4018     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4019     // Bridge. Probably Ivy Bridge as well.
4020     CondCycles = 2;
4021     TrueCycles = 2;
4022     FalseCycles = 2;
4023     return true;
4024   }
4025 
4026   // Can't do vectors.
4027   return false;
4028 }
4029 
4030 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
4031                                 MachineBasicBlock::iterator I,
4032                                 const DebugLoc &DL, Register DstReg,
4033                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
4034                                 Register FalseReg) const {
4035   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4036   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4037   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
4038   assert(Cond.size() == 1 && "Invalid Cond array");
4039   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
4040                                     false /*HasMemoryOperand*/);
4041   BuildMI(MBB, I, DL, get(Opc), DstReg)
4042       .addReg(FalseReg)
4043       .addReg(TrueReg)
4044       .addImm(Cond[0].getImm());
4045 }
4046 
4047 /// Test if the given register is a physical h register.
4048 static bool isHReg(unsigned Reg) {
4049   return X86::GR8_ABCD_HRegClass.contains(Reg);
4050 }
4051 
4052 // Try and copy between VR128/VR64 and GR64 registers.
4053 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
4054                                         const X86Subtarget &Subtarget) {
4055   bool HasAVX = Subtarget.hasAVX();
4056   bool HasAVX512 = Subtarget.hasAVX512();
4057   bool HasEGPR = Subtarget.hasEGPR();
4058 
4059   // SrcReg(MaskReg) -> DestReg(GR64)
4060   // SrcReg(MaskReg) -> DestReg(GR32)
4061 
4062   // All KMASK RegClasses hold the same k registers, can be tested against
4063   // anyone.
4064   if (X86::VK16RegClass.contains(SrcReg)) {
4065     if (X86::GR64RegClass.contains(DestReg)) {
4066       assert(Subtarget.hasBWI());
4067       return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4068     }
4069     if (X86::GR32RegClass.contains(DestReg))
4070       return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4071                                 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4072   }
4073 
4074   // SrcReg(GR64) -> DestReg(MaskReg)
4075   // SrcReg(GR32) -> DestReg(MaskReg)
4076 
4077   // All KMASK RegClasses hold the same k registers, can be tested against
4078   // anyone.
4079   if (X86::VK16RegClass.contains(DestReg)) {
4080     if (X86::GR64RegClass.contains(SrcReg)) {
4081       assert(Subtarget.hasBWI());
4082       return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4083     }
4084     if (X86::GR32RegClass.contains(SrcReg))
4085       return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4086                                 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4087   }
4088 
4089   // SrcReg(VR128) -> DestReg(GR64)
4090   // SrcReg(VR64)  -> DestReg(GR64)
4091   // SrcReg(GR64)  -> DestReg(VR128)
4092   // SrcReg(GR64)  -> DestReg(VR64)
4093 
4094   if (X86::GR64RegClass.contains(DestReg)) {
4095     if (X86::VR128XRegClass.contains(SrcReg))
4096       // Copy from a VR128 register to a GR64 register.
4097       return HasAVX512 ? X86::VMOVPQIto64Zrr
4098              : HasAVX  ? X86::VMOVPQIto64rr
4099                        : X86::MOVPQIto64rr;
4100     if (X86::VR64RegClass.contains(SrcReg))
4101       // Copy from a VR64 register to a GR64 register.
4102       return X86::MMX_MOVD64from64rr;
4103   } else if (X86::GR64RegClass.contains(SrcReg)) {
4104     // Copy from a GR64 register to a VR128 register.
4105     if (X86::VR128XRegClass.contains(DestReg))
4106       return HasAVX512 ? X86::VMOV64toPQIZrr
4107              : HasAVX  ? X86::VMOV64toPQIrr
4108                        : X86::MOV64toPQIrr;
4109     // Copy from a GR64 register to a VR64 register.
4110     if (X86::VR64RegClass.contains(DestReg))
4111       return X86::MMX_MOVD64to64rr;
4112   }
4113 
4114   // SrcReg(VR128) -> DestReg(GR32)
4115   // SrcReg(GR32)  -> DestReg(VR128)
4116 
4117   if (X86::GR32RegClass.contains(DestReg) &&
4118       X86::VR128XRegClass.contains(SrcReg))
4119     // Copy from a VR128 register to a GR32 register.
4120     return HasAVX512 ? X86::VMOVPDI2DIZrr
4121            : HasAVX  ? X86::VMOVPDI2DIrr
4122                      : X86::MOVPDI2DIrr;
4123 
4124   if (X86::VR128XRegClass.contains(DestReg) &&
4125       X86::GR32RegClass.contains(SrcReg))
4126     // Copy from a VR128 register to a VR128 register.
4127     return HasAVX512 ? X86::VMOVDI2PDIZrr
4128            : HasAVX  ? X86::VMOVDI2PDIrr
4129                      : X86::MOVDI2PDIrr;
4130   return 0;
4131 }
4132 
4133 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
4134                                MachineBasicBlock::iterator MI,
4135                                const DebugLoc &DL, MCRegister DestReg,
4136                                MCRegister SrcReg, bool KillSrc) const {
4137   // First deal with the normal symmetric copies.
4138   bool HasAVX = Subtarget.hasAVX();
4139   bool HasVLX = Subtarget.hasVLX();
4140   bool HasEGPR = Subtarget.hasEGPR();
4141   unsigned Opc = 0;
4142   if (X86::GR64RegClass.contains(DestReg, SrcReg))
4143     Opc = X86::MOV64rr;
4144   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4145     Opc = X86::MOV32rr;
4146   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4147     Opc = X86::MOV16rr;
4148   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4149     // Copying to or from a physical H register on x86-64 requires a NOREX
4150     // move.  Otherwise use a normal move.
4151     if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) {
4152       Opc = X86::MOV8rr_NOREX;
4153       // Both operands must be encodable without an REX prefix.
4154       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4155              "8-bit H register can not be copied outside GR8_NOREX");
4156     } else
4157       Opc = X86::MOV8rr;
4158   } else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4159     Opc = X86::MMX_MOVQ64rr;
4160   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
4161     if (HasVLX)
4162       Opc = X86::VMOVAPSZ128rr;
4163     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4164       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4165     else {
4166       // If this an extended register and we don't have VLX we need to use a
4167       // 512-bit move.
4168       Opc = X86::VMOVAPSZrr;
4169       const TargetRegisterInfo *TRI = &getRegisterInfo();
4170       DestReg =
4171           TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4172       SrcReg =
4173           TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4174     }
4175   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
4176     if (HasVLX)
4177       Opc = X86::VMOVAPSZ256rr;
4178     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4179       Opc = X86::VMOVAPSYrr;
4180     else {
4181       // If this an extended register and we don't have VLX we need to use a
4182       // 512-bit move.
4183       Opc = X86::VMOVAPSZrr;
4184       const TargetRegisterInfo *TRI = &getRegisterInfo();
4185       DestReg =
4186           TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4187       SrcReg =
4188           TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4189     }
4190   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
4191     Opc = X86::VMOVAPSZrr;
4192   // All KMASK RegClasses hold the same k registers, can be tested against
4193   // anyone.
4194   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
4195     Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4196                              : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4197   if (!Opc)
4198     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4199 
4200   if (Opc) {
4201     BuildMI(MBB, MI, DL, get(Opc), DestReg)
4202         .addReg(SrcReg, getKillRegState(KillSrc));
4203     return;
4204   }
4205 
4206   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4207     // FIXME: We use a fatal error here because historically LLVM has tried
4208     // lower some of these physreg copies and we want to ensure we get
4209     // reasonable bug reports if someone encounters a case no other testing
4210     // found. This path should be removed after the LLVM 7 release.
4211     report_fatal_error("Unable to copy EFLAGS physical register!");
4212   }
4213 
4214   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
4215                     << RI.getName(DestReg) << '\n');
4216   report_fatal_error("Cannot emit physreg copy instruction");
4217 }
4218 
4219 std::optional<DestSourcePair>
4220 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
4221   if (MI.isMoveReg()) {
4222     // FIXME: Dirty hack for apparent invariant that doesn't hold when
4223     // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4224     // were asserted as 0 are now undef.
4225     if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg())
4226       return std::nullopt;
4227 
4228     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
4229   }
4230   return std::nullopt;
4231 }
4232 
4233 static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
4234   if (STI.hasFP16())
4235     return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4236   if (Load)
4237     return STI.hasAVX512() ? X86::VMOVSSZrm
4238            : STI.hasAVX()  ? X86::VMOVSSrm
4239                            : X86::MOVSSrm;
4240   else
4241     return STI.hasAVX512() ? X86::VMOVSSZmr
4242            : STI.hasAVX()  ? X86::VMOVSSmr
4243                            : X86::MOVSSmr;
4244 }
4245 
4246 static unsigned getLoadStoreRegOpcode(Register Reg,
4247                                       const TargetRegisterClass *RC,
4248                                       bool IsStackAligned,
4249                                       const X86Subtarget &STI, bool Load) {
4250   bool HasAVX = STI.hasAVX();
4251   bool HasAVX512 = STI.hasAVX512();
4252   bool HasVLX = STI.hasVLX();
4253   bool HasEGPR = STI.hasEGPR();
4254 
4255   assert(RC != nullptr && "Invalid target register class");
4256   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
4257   default:
4258     llvm_unreachable("Unknown spill size");
4259   case 1:
4260     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4261     if (STI.is64Bit())
4262       // Copying to or from a physical H register on x86-64 requires a NOREX
4263       // move.  Otherwise use a normal move.
4264       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4265         return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4266     return Load ? X86::MOV8rm : X86::MOV8mr;
4267   case 2:
4268     if (X86::VK16RegClass.hasSubClassEq(RC))
4269       return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4270                   : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4271     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4272     return Load ? X86::MOV16rm : X86::MOV16mr;
4273   case 4:
4274     if (X86::GR32RegClass.hasSubClassEq(RC))
4275       return Load ? X86::MOV32rm : X86::MOV32mr;
4276     if (X86::FR32XRegClass.hasSubClassEq(RC))
4277       return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4278                      : HasAVX  ? X86::VMOVSSrm_alt
4279                                : X86::MOVSSrm_alt)
4280                   : (HasAVX512 ? X86::VMOVSSZmr
4281                      : HasAVX  ? X86::VMOVSSmr
4282                                : X86::MOVSSmr);
4283     if (X86::RFP32RegClass.hasSubClassEq(RC))
4284       return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4285     if (X86::VK32RegClass.hasSubClassEq(RC)) {
4286       assert(STI.hasBWI() && "KMOVD requires BWI");
4287       return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4288                   : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4289     }
4290     // All of these mask pair classes have the same spill size, the same kind
4291     // of kmov instructions can be used with all of them.
4292     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4293         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4294         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4295         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4296         X86::VK16PAIRRegClass.hasSubClassEq(RC))
4297       return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4298     if (X86::FR16RegClass.hasSubClassEq(RC) ||
4299         X86::FR16XRegClass.hasSubClassEq(RC))
4300       return getLoadStoreOpcodeForFP16(Load, STI);
4301     llvm_unreachable("Unknown 4-byte regclass");
4302   case 8:
4303     if (X86::GR64RegClass.hasSubClassEq(RC))
4304       return Load ? X86::MOV64rm : X86::MOV64mr;
4305     if (X86::FR64XRegClass.hasSubClassEq(RC))
4306       return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4307                      : HasAVX  ? X86::VMOVSDrm_alt
4308                                : X86::MOVSDrm_alt)
4309                   : (HasAVX512 ? X86::VMOVSDZmr
4310                      : HasAVX  ? X86::VMOVSDmr
4311                                : X86::MOVSDmr);
4312     if (X86::VR64RegClass.hasSubClassEq(RC))
4313       return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4314     if (X86::RFP64RegClass.hasSubClassEq(RC))
4315       return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4316     if (X86::VK64RegClass.hasSubClassEq(RC)) {
4317       assert(STI.hasBWI() && "KMOVQ requires BWI");
4318       return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4319                   : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4320     }
4321     llvm_unreachable("Unknown 8-byte regclass");
4322   case 10:
4323     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4324     return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4325   case 16: {
4326     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4327       // If stack is realigned we can use aligned stores.
4328       if (IsStackAligned)
4329         return Load ? (HasVLX      ? X86::VMOVAPSZ128rm
4330                        : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4331                        : HasAVX    ? X86::VMOVAPSrm
4332                                    : X86::MOVAPSrm)
4333                     : (HasVLX      ? X86::VMOVAPSZ128mr
4334                        : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4335                        : HasAVX    ? X86::VMOVAPSmr
4336                                    : X86::MOVAPSmr);
4337       else
4338         return Load ? (HasVLX      ? X86::VMOVUPSZ128rm
4339                        : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4340                        : HasAVX    ? X86::VMOVUPSrm
4341                                    : X86::MOVUPSrm)
4342                     : (HasVLX      ? X86::VMOVUPSZ128mr
4343                        : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4344                        : HasAVX    ? X86::VMOVUPSmr
4345                                    : X86::MOVUPSmr);
4346     }
4347     llvm_unreachable("Unknown 16-byte regclass");
4348   }
4349   case 32:
4350     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
4351     // If stack is realigned we can use aligned stores.
4352     if (IsStackAligned)
4353       return Load ? (HasVLX      ? X86::VMOVAPSZ256rm
4354                      : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4355                                  : X86::VMOVAPSYrm)
4356                   : (HasVLX      ? X86::VMOVAPSZ256mr
4357                      : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4358                                  : X86::VMOVAPSYmr);
4359     else
4360       return Load ? (HasVLX      ? X86::VMOVUPSZ256rm
4361                      : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4362                                  : X86::VMOVUPSYrm)
4363                   : (HasVLX      ? X86::VMOVUPSZ256mr
4364                      : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4365                                  : X86::VMOVUPSYmr);
4366   case 64:
4367     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4368     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
4369     if (IsStackAligned)
4370       return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4371     else
4372       return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4373   case 1024:
4374     assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
4375     assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4376 #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4377     return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
4378                 : GET_EGPR_IF_ENABLED(X86::TILESTORED);
4379 #undef GET_EGPR_IF_ENABLED
4380   }
4381 }
4382 
4383 std::optional<ExtAddrMode>
4384 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
4385                                       const TargetRegisterInfo *TRI) const {
4386   const MCInstrDesc &Desc = MemI.getDesc();
4387   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4388   if (MemRefBegin < 0)
4389     return std::nullopt;
4390 
4391   MemRefBegin += X86II::getOperandBias(Desc);
4392 
4393   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
4394   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
4395     return std::nullopt;
4396 
4397   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
4398   // Displacement can be symbolic
4399   if (!DispMO.isImm())
4400     return std::nullopt;
4401 
4402   ExtAddrMode AM;
4403   AM.BaseReg = BaseOp.getReg();
4404   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
4405   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
4406   AM.Displacement = DispMO.getImm();
4407   return AM;
4408 }
4409 
4410 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
4411                                      StringRef &ErrInfo) const {
4412   std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
4413   if (!AMOrNone)
4414     return true;
4415 
4416   ExtAddrMode AM = *AMOrNone;
4417   assert(AM.Form == ExtAddrMode::Formula::Basic);
4418   if (AM.ScaledReg != X86::NoRegister) {
4419     switch (AM.Scale) {
4420     case 1:
4421     case 2:
4422     case 4:
4423     case 8:
4424       break;
4425     default:
4426       ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
4427       return false;
4428     }
4429   }
4430   if (!isInt<32>(AM.Displacement)) {
4431     ErrInfo = "Displacement in address must fit into 32-bit signed "
4432               "integer";
4433     return false;
4434   }
4435 
4436   return true;
4437 }
4438 
4439 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
4440                                            const Register Reg,
4441                                            int64_t &ImmVal) const {
4442   Register MovReg = Reg;
4443   const MachineInstr *MovMI = &MI;
4444 
4445   // Follow use-def for SUBREG_TO_REG to find the real move immediate
4446   // instruction. It is quite common for x86-64.
4447   if (MI.isSubregToReg()) {
4448     // We use following pattern to setup 64b immediate.
4449     //      %8:gr32 = MOV32r0 implicit-def dead $eflags
4450     //      %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4451     if (!MI.getOperand(1).isImm())
4452       return false;
4453     unsigned FillBits = MI.getOperand(1).getImm();
4454     unsigned SubIdx = MI.getOperand(3).getImm();
4455     MovReg = MI.getOperand(2).getReg();
4456     if (SubIdx != X86::sub_32bit || FillBits != 0)
4457       return false;
4458     const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4459     MovMI = MRI.getUniqueVRegDef(MovReg);
4460     if (!MovMI)
4461       return false;
4462   }
4463 
4464   if (MovMI->getOpcode() == X86::MOV32r0 &&
4465       MovMI->getOperand(0).getReg() == MovReg) {
4466     ImmVal = 0;
4467     return true;
4468   }
4469 
4470   if (MovMI->getOpcode() != X86::MOV32ri &&
4471       MovMI->getOpcode() != X86::MOV64ri &&
4472       MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri)
4473     return false;
4474   // Mov Src can be a global address.
4475   if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg)
4476     return false;
4477   ImmVal = MovMI->getOperand(1).getImm();
4478   return true;
4479 }
4480 
4481 bool X86InstrInfo::preservesZeroValueInReg(
4482     const MachineInstr *MI, const Register NullValueReg,
4483     const TargetRegisterInfo *TRI) const {
4484   if (!MI->modifiesRegister(NullValueReg, TRI))
4485     return true;
4486   switch (MI->getOpcode()) {
4487   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4488   // X.
4489   case X86::SHR64ri:
4490   case X86::SHR32ri:
4491   case X86::SHL64ri:
4492   case X86::SHL32ri:
4493     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
4494            "expected for shift opcode!");
4495     return MI->getOperand(0).getReg() == NullValueReg &&
4496            MI->getOperand(1).getReg() == NullValueReg;
4497   // Zero extend of a sub-reg of NullValueReg into itself does not change the
4498   // null value.
4499   case X86::MOV32rr:
4500     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
4501       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
4502     });
4503   default:
4504     return false;
4505   }
4506   llvm_unreachable("Should be handled above!");
4507 }
4508 
4509 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
4510     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
4511     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
4512     const TargetRegisterInfo *TRI) const {
4513   const MCInstrDesc &Desc = MemOp.getDesc();
4514   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4515   if (MemRefBegin < 0)
4516     return false;
4517 
4518   MemRefBegin += X86II::getOperandBias(Desc);
4519 
4520   const MachineOperand *BaseOp =
4521       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
4522   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
4523     return false;
4524 
4525   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4526     return false;
4527 
4528   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4529       X86::NoRegister)
4530     return false;
4531 
4532   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
4533 
4534   // Displacement can be symbolic
4535   if (!DispMO.isImm())
4536     return false;
4537 
4538   Offset = DispMO.getImm();
4539 
4540   if (!BaseOp->isReg())
4541     return false;
4542 
4543   OffsetIsScalable = false;
4544   // FIXME: Relying on memoperands() may not be right thing to do here. Check
4545   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4546   // there is no use of `Width` for X86 back-end at the moment.
4547   Width =
4548       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
4549   BaseOps.push_back(BaseOp);
4550   return true;
4551 }
4552 
4553 static unsigned getStoreRegOpcode(Register SrcReg,
4554                                   const TargetRegisterClass *RC,
4555                                   bool IsStackAligned,
4556                                   const X86Subtarget &STI) {
4557   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
4558 }
4559 
4560 static unsigned getLoadRegOpcode(Register DestReg,
4561                                  const TargetRegisterClass *RC,
4562                                  bool IsStackAligned, const X86Subtarget &STI) {
4563   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
4564 }
4565 
4566 static bool isAMXOpcode(unsigned Opc) {
4567   switch (Opc) {
4568   default:
4569     return false;
4570   case X86::TILELOADD:
4571   case X86::TILESTORED:
4572   case X86::TILELOADD_EVEX:
4573   case X86::TILESTORED_EVEX:
4574     return true;
4575   }
4576 }
4577 
4578 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB,
4579                                     MachineBasicBlock::iterator MI,
4580                                     unsigned Opc, Register Reg, int FrameIdx,
4581                                     bool isKill) const {
4582   switch (Opc) {
4583   default:
4584     llvm_unreachable("Unexpected special opcode!");
4585   case X86::TILESTORED:
4586   case X86::TILESTORED_EVEX: {
4587     // tilestored %tmm, (%sp, %idx)
4588     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4589     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4590     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4591     MachineInstr *NewMI =
4592         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4593             .addReg(Reg, getKillRegState(isKill));
4594     MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg);
4595     MO.setReg(VirtReg);
4596     MO.setIsKill(true);
4597     break;
4598   }
4599   case X86::TILELOADD:
4600   case X86::TILELOADD_EVEX: {
4601     // tileloadd (%sp, %idx), %tmm
4602     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
4603     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4604     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4605     MachineInstr *NewMI = addFrameReference(
4606         BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4607     MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg);
4608     MO.setReg(VirtReg);
4609     MO.setIsKill(true);
4610     break;
4611   }
4612   }
4613 }
4614 
4615 void X86InstrInfo::storeRegToStackSlot(
4616     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
4617     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4618     const TargetRegisterInfo *TRI, Register VReg) const {
4619   const MachineFunction &MF = *MBB.getParent();
4620   const MachineFrameInfo &MFI = MF.getFrameInfo();
4621   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4622          "Stack slot too small for store");
4623 
4624   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4625   bool isAligned =
4626       (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4627       (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4628 
4629   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4630   if (isAMXOpcode(Opc))
4631     loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
4632   else
4633     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4634         .addReg(SrcReg, getKillRegState(isKill));
4635 }
4636 
4637 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4638                                         MachineBasicBlock::iterator MI,
4639                                         Register DestReg, int FrameIdx,
4640                                         const TargetRegisterClass *RC,
4641                                         const TargetRegisterInfo *TRI,
4642                                         Register VReg) const {
4643   const MachineFunction &MF = *MBB.getParent();
4644   const MachineFrameInfo &MFI = MF.getFrameInfo();
4645   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4646          "Load size exceeds stack slot");
4647   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4648   bool isAligned =
4649       (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4650       (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4651 
4652   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4653   if (isAMXOpcode(Opc))
4654     loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
4655   else
4656     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4657                       FrameIdx);
4658 }
4659 
4660 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
4661                                   Register &SrcReg2, int64_t &CmpMask,
4662                                   int64_t &CmpValue) const {
4663   switch (MI.getOpcode()) {
4664   default:
4665     break;
4666   case X86::CMP64ri32:
4667   case X86::CMP32ri:
4668   case X86::CMP16ri:
4669   case X86::CMP8ri:
4670     SrcReg = MI.getOperand(0).getReg();
4671     SrcReg2 = 0;
4672     if (MI.getOperand(1).isImm()) {
4673       CmpMask = ~0;
4674       CmpValue = MI.getOperand(1).getImm();
4675     } else {
4676       CmpMask = CmpValue = 0;
4677     }
4678     return true;
4679   // A SUB can be used to perform comparison.
4680   case X86::SUB64rm:
4681   case X86::SUB32rm:
4682   case X86::SUB16rm:
4683   case X86::SUB8rm:
4684     SrcReg = MI.getOperand(1).getReg();
4685     SrcReg2 = 0;
4686     CmpMask = 0;
4687     CmpValue = 0;
4688     return true;
4689   case X86::SUB64rr:
4690   case X86::SUB32rr:
4691   case X86::SUB16rr:
4692   case X86::SUB8rr:
4693     SrcReg = MI.getOperand(1).getReg();
4694     SrcReg2 = MI.getOperand(2).getReg();
4695     CmpMask = 0;
4696     CmpValue = 0;
4697     return true;
4698   case X86::SUB64ri32:
4699   case X86::SUB32ri:
4700   case X86::SUB16ri:
4701   case X86::SUB8ri:
4702     SrcReg = MI.getOperand(1).getReg();
4703     SrcReg2 = 0;
4704     if (MI.getOperand(2).isImm()) {
4705       CmpMask = ~0;
4706       CmpValue = MI.getOperand(2).getImm();
4707     } else {
4708       CmpMask = CmpValue = 0;
4709     }
4710     return true;
4711   case X86::CMP64rr:
4712   case X86::CMP32rr:
4713   case X86::CMP16rr:
4714   case X86::CMP8rr:
4715     SrcReg = MI.getOperand(0).getReg();
4716     SrcReg2 = MI.getOperand(1).getReg();
4717     CmpMask = 0;
4718     CmpValue = 0;
4719     return true;
4720   case X86::TEST8rr:
4721   case X86::TEST16rr:
4722   case X86::TEST32rr:
4723   case X86::TEST64rr:
4724     SrcReg = MI.getOperand(0).getReg();
4725     if (MI.getOperand(1).getReg() != SrcReg)
4726       return false;
4727     // Compare against zero.
4728     SrcReg2 = 0;
4729     CmpMask = ~0;
4730     CmpValue = 0;
4731     return true;
4732   }
4733   return false;
4734 }
4735 
4736 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4737                                         Register SrcReg, Register SrcReg2,
4738                                         int64_t ImmMask, int64_t ImmValue,
4739                                         const MachineInstr &OI, bool *IsSwapped,
4740                                         int64_t *ImmDelta) const {
4741   switch (OI.getOpcode()) {
4742   case X86::CMP64rr:
4743   case X86::CMP32rr:
4744   case X86::CMP16rr:
4745   case X86::CMP8rr:
4746   case X86::SUB64rr:
4747   case X86::SUB32rr:
4748   case X86::SUB16rr:
4749   case X86::SUB8rr: {
4750     Register OISrcReg;
4751     Register OISrcReg2;
4752     int64_t OIMask;
4753     int64_t OIValue;
4754     if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4755         OIMask != ImmMask || OIValue != ImmValue)
4756       return false;
4757     if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4758       *IsSwapped = false;
4759       return true;
4760     }
4761     if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4762       *IsSwapped = true;
4763       return true;
4764     }
4765     return false;
4766   }
4767   case X86::CMP64ri32:
4768   case X86::CMP32ri:
4769   case X86::CMP16ri:
4770   case X86::CMP8ri:
4771   case X86::SUB64ri32:
4772   case X86::SUB32ri:
4773   case X86::SUB16ri:
4774   case X86::SUB8ri:
4775   case X86::TEST64rr:
4776   case X86::TEST32rr:
4777   case X86::TEST16rr:
4778   case X86::TEST8rr: {
4779     if (ImmMask != 0) {
4780       Register OISrcReg;
4781       Register OISrcReg2;
4782       int64_t OIMask;
4783       int64_t OIValue;
4784       if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4785           SrcReg == OISrcReg && ImmMask == OIMask) {
4786         if (OIValue == ImmValue) {
4787           *ImmDelta = 0;
4788           return true;
4789         } else if (static_cast<uint64_t>(ImmValue) ==
4790                    static_cast<uint64_t>(OIValue) - 1) {
4791           *ImmDelta = -1;
4792           return true;
4793         } else if (static_cast<uint64_t>(ImmValue) ==
4794                    static_cast<uint64_t>(OIValue) + 1) {
4795           *ImmDelta = 1;
4796           return true;
4797         } else {
4798           return false;
4799         }
4800       }
4801     }
4802     return FlagI.isIdenticalTo(OI);
4803   }
4804   default:
4805     return false;
4806   }
4807 }
4808 
4809 /// Check whether the definition can be converted
4810 /// to remove a comparison against zero.
4811 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4812                                     bool &ClearsOverflowFlag) {
4813   NoSignFlag = false;
4814   ClearsOverflowFlag = false;
4815 
4816   // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4817   // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4818   // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4819   // on the EFLAGS modification of ADD actually happening in the final binary.
4820   if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4821     unsigned Flags = MI.getOperand(5).getTargetFlags();
4822     if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4823         Flags == X86II::MO_GOTNTPOFF)
4824       return false;
4825   }
4826 
4827   switch (MI.getOpcode()) {
4828   default:
4829     return false;
4830 
4831   // The shift instructions only modify ZF if their shift count is non-zero.
4832   // N.B.: The processor truncates the shift count depending on the encoding.
4833   case X86::SAR8ri:
4834   case X86::SAR16ri:
4835   case X86::SAR32ri:
4836   case X86::SAR64ri:
4837   case X86::SHR8ri:
4838   case X86::SHR16ri:
4839   case X86::SHR32ri:
4840   case X86::SHR64ri:
4841     return getTruncatedShiftCount(MI, 2) != 0;
4842 
4843   // Some left shift instructions can be turned into LEA instructions but only
4844   // if their flags aren't used. Avoid transforming such instructions.
4845   case X86::SHL8ri:
4846   case X86::SHL16ri:
4847   case X86::SHL32ri:
4848   case X86::SHL64ri: {
4849     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4850     if (isTruncatedShiftCountForLEA(ShAmt))
4851       return false;
4852     return ShAmt != 0;
4853   }
4854 
4855   case X86::SHRD16rri8:
4856   case X86::SHRD32rri8:
4857   case X86::SHRD64rri8:
4858   case X86::SHLD16rri8:
4859   case X86::SHLD32rri8:
4860   case X86::SHLD64rri8:
4861     return getTruncatedShiftCount(MI, 3) != 0;
4862 
4863   case X86::SUB64ri32:
4864   case X86::SUB32ri:
4865   case X86::SUB16ri:
4866   case X86::SUB8ri:
4867   case X86::SUB64rr:
4868   case X86::SUB32rr:
4869   case X86::SUB16rr:
4870   case X86::SUB8rr:
4871   case X86::SUB64rm:
4872   case X86::SUB32rm:
4873   case X86::SUB16rm:
4874   case X86::SUB8rm:
4875   case X86::DEC64r:
4876   case X86::DEC32r:
4877   case X86::DEC16r:
4878   case X86::DEC8r:
4879   case X86::ADD64ri32:
4880   case X86::ADD32ri:
4881   case X86::ADD16ri:
4882   case X86::ADD8ri:
4883   case X86::ADD64rr:
4884   case X86::ADD32rr:
4885   case X86::ADD16rr:
4886   case X86::ADD8rr:
4887   case X86::ADD64rm:
4888   case X86::ADD32rm:
4889   case X86::ADD16rm:
4890   case X86::ADD8rm:
4891   case X86::INC64r:
4892   case X86::INC32r:
4893   case X86::INC16r:
4894   case X86::INC8r:
4895   case X86::ADC64ri32:
4896   case X86::ADC32ri:
4897   case X86::ADC16ri:
4898   case X86::ADC8ri:
4899   case X86::ADC64rr:
4900   case X86::ADC32rr:
4901   case X86::ADC16rr:
4902   case X86::ADC8rr:
4903   case X86::ADC64rm:
4904   case X86::ADC32rm:
4905   case X86::ADC16rm:
4906   case X86::ADC8rm:
4907   case X86::SBB64ri32:
4908   case X86::SBB32ri:
4909   case X86::SBB16ri:
4910   case X86::SBB8ri:
4911   case X86::SBB64rr:
4912   case X86::SBB32rr:
4913   case X86::SBB16rr:
4914   case X86::SBB8rr:
4915   case X86::SBB64rm:
4916   case X86::SBB32rm:
4917   case X86::SBB16rm:
4918   case X86::SBB8rm:
4919   case X86::NEG8r:
4920   case X86::NEG16r:
4921   case X86::NEG32r:
4922   case X86::NEG64r:
4923   case X86::LZCNT16rr:
4924   case X86::LZCNT16rm:
4925   case X86::LZCNT32rr:
4926   case X86::LZCNT32rm:
4927   case X86::LZCNT64rr:
4928   case X86::LZCNT64rm:
4929   case X86::POPCNT16rr:
4930   case X86::POPCNT16rm:
4931   case X86::POPCNT32rr:
4932   case X86::POPCNT32rm:
4933   case X86::POPCNT64rr:
4934   case X86::POPCNT64rm:
4935   case X86::TZCNT16rr:
4936   case X86::TZCNT16rm:
4937   case X86::TZCNT32rr:
4938   case X86::TZCNT32rm:
4939   case X86::TZCNT64rr:
4940   case X86::TZCNT64rm:
4941     return true;
4942   case X86::AND64ri32:
4943   case X86::AND32ri:
4944   case X86::AND16ri:
4945   case X86::AND8ri:
4946   case X86::AND64rr:
4947   case X86::AND32rr:
4948   case X86::AND16rr:
4949   case X86::AND8rr:
4950   case X86::AND64rm:
4951   case X86::AND32rm:
4952   case X86::AND16rm:
4953   case X86::AND8rm:
4954   case X86::XOR64ri32:
4955   case X86::XOR32ri:
4956   case X86::XOR16ri:
4957   case X86::XOR8ri:
4958   case X86::XOR64rr:
4959   case X86::XOR32rr:
4960   case X86::XOR16rr:
4961   case X86::XOR8rr:
4962   case X86::XOR64rm:
4963   case X86::XOR32rm:
4964   case X86::XOR16rm:
4965   case X86::XOR8rm:
4966   case X86::OR64ri32:
4967   case X86::OR32ri:
4968   case X86::OR16ri:
4969   case X86::OR8ri:
4970   case X86::OR64rr:
4971   case X86::OR32rr:
4972   case X86::OR16rr:
4973   case X86::OR8rr:
4974   case X86::OR64rm:
4975   case X86::OR32rm:
4976   case X86::OR16rm:
4977   case X86::OR8rm:
4978   case X86::ANDN32rr:
4979   case X86::ANDN32rm:
4980   case X86::ANDN64rr:
4981   case X86::ANDN64rm:
4982   case X86::BLSI32rr:
4983   case X86::BLSI32rm:
4984   case X86::BLSI64rr:
4985   case X86::BLSI64rm:
4986   case X86::BLSMSK32rr:
4987   case X86::BLSMSK32rm:
4988   case X86::BLSMSK64rr:
4989   case X86::BLSMSK64rm:
4990   case X86::BLSR32rr:
4991   case X86::BLSR32rm:
4992   case X86::BLSR64rr:
4993   case X86::BLSR64rm:
4994   case X86::BLCFILL32rr:
4995   case X86::BLCFILL32rm:
4996   case X86::BLCFILL64rr:
4997   case X86::BLCFILL64rm:
4998   case X86::BLCI32rr:
4999   case X86::BLCI32rm:
5000   case X86::BLCI64rr:
5001   case X86::BLCI64rm:
5002   case X86::BLCIC32rr:
5003   case X86::BLCIC32rm:
5004   case X86::BLCIC64rr:
5005   case X86::BLCIC64rm:
5006   case X86::BLCMSK32rr:
5007   case X86::BLCMSK32rm:
5008   case X86::BLCMSK64rr:
5009   case X86::BLCMSK64rm:
5010   case X86::BLCS32rr:
5011   case X86::BLCS32rm:
5012   case X86::BLCS64rr:
5013   case X86::BLCS64rm:
5014   case X86::BLSFILL32rr:
5015   case X86::BLSFILL32rm:
5016   case X86::BLSFILL64rr:
5017   case X86::BLSFILL64rm:
5018   case X86::BLSIC32rr:
5019   case X86::BLSIC32rm:
5020   case X86::BLSIC64rr:
5021   case X86::BLSIC64rm:
5022   case X86::BZHI32rr:
5023   case X86::BZHI32rm:
5024   case X86::BZHI64rr:
5025   case X86::BZHI64rm:
5026   case X86::T1MSKC32rr:
5027   case X86::T1MSKC32rm:
5028   case X86::T1MSKC64rr:
5029   case X86::T1MSKC64rm:
5030   case X86::TZMSK32rr:
5031   case X86::TZMSK32rm:
5032   case X86::TZMSK64rr:
5033   case X86::TZMSK64rm:
5034     // These instructions clear the overflow flag just like TEST.
5035     // FIXME: These are not the only instructions in this switch that clear the
5036     // overflow flag.
5037     ClearsOverflowFlag = true;
5038     return true;
5039   case X86::BEXTR32rr:
5040   case X86::BEXTR64rr:
5041   case X86::BEXTR32rm:
5042   case X86::BEXTR64rm:
5043   case X86::BEXTRI32ri:
5044   case X86::BEXTRI32mi:
5045   case X86::BEXTRI64ri:
5046   case X86::BEXTRI64mi:
5047     // BEXTR doesn't update the sign flag so we can't use it. It does clear
5048     // the overflow flag, but that's not useful without the sign flag.
5049     NoSignFlag = true;
5050     return true;
5051   }
5052 }
5053 
5054 /// Check whether the use can be converted to remove a comparison against zero.
5055 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
5056   switch (MI.getOpcode()) {
5057   default:
5058     return X86::COND_INVALID;
5059   case X86::NEG8r:
5060   case X86::NEG16r:
5061   case X86::NEG32r:
5062   case X86::NEG64r:
5063     return X86::COND_AE;
5064   case X86::LZCNT16rr:
5065   case X86::LZCNT32rr:
5066   case X86::LZCNT64rr:
5067     return X86::COND_B;
5068   case X86::POPCNT16rr:
5069   case X86::POPCNT32rr:
5070   case X86::POPCNT64rr:
5071     return X86::COND_E;
5072   case X86::TZCNT16rr:
5073   case X86::TZCNT32rr:
5074   case X86::TZCNT64rr:
5075     return X86::COND_B;
5076   case X86::BSF16rr:
5077   case X86::BSF32rr:
5078   case X86::BSF64rr:
5079   case X86::BSR16rr:
5080   case X86::BSR32rr:
5081   case X86::BSR64rr:
5082     return X86::COND_E;
5083   case X86::BLSI32rr:
5084   case X86::BLSI64rr:
5085     return X86::COND_AE;
5086   case X86::BLSR32rr:
5087   case X86::BLSR64rr:
5088   case X86::BLSMSK32rr:
5089   case X86::BLSMSK64rr:
5090     return X86::COND_B;
5091     // TODO: TBM instructions.
5092   }
5093 }
5094 
5095 /// Check if there exists an earlier instruction that
5096 /// operates on the same source operands and sets flags in the same way as
5097 /// Compare; remove Compare if possible.
5098 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
5099                                         Register SrcReg2, int64_t CmpMask,
5100                                         int64_t CmpValue,
5101                                         const MachineRegisterInfo *MRI) const {
5102   // Check whether we can replace SUB with CMP.
5103   switch (CmpInstr.getOpcode()) {
5104   default:
5105     break;
5106   case X86::SUB64ri32:
5107   case X86::SUB32ri:
5108   case X86::SUB16ri:
5109   case X86::SUB8ri:
5110   case X86::SUB64rm:
5111   case X86::SUB32rm:
5112   case X86::SUB16rm:
5113   case X86::SUB8rm:
5114   case X86::SUB64rr:
5115   case X86::SUB32rr:
5116   case X86::SUB16rr:
5117   case X86::SUB8rr: {
5118     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
5119       return false;
5120     // There is no use of the destination register, we can replace SUB with CMP.
5121     unsigned NewOpcode = 0;
5122     switch (CmpInstr.getOpcode()) {
5123     default:
5124       llvm_unreachable("Unreachable!");
5125     case X86::SUB64rm:
5126       NewOpcode = X86::CMP64rm;
5127       break;
5128     case X86::SUB32rm:
5129       NewOpcode = X86::CMP32rm;
5130       break;
5131     case X86::SUB16rm:
5132       NewOpcode = X86::CMP16rm;
5133       break;
5134     case X86::SUB8rm:
5135       NewOpcode = X86::CMP8rm;
5136       break;
5137     case X86::SUB64rr:
5138       NewOpcode = X86::CMP64rr;
5139       break;
5140     case X86::SUB32rr:
5141       NewOpcode = X86::CMP32rr;
5142       break;
5143     case X86::SUB16rr:
5144       NewOpcode = X86::CMP16rr;
5145       break;
5146     case X86::SUB8rr:
5147       NewOpcode = X86::CMP8rr;
5148       break;
5149     case X86::SUB64ri32:
5150       NewOpcode = X86::CMP64ri32;
5151       break;
5152     case X86::SUB32ri:
5153       NewOpcode = X86::CMP32ri;
5154       break;
5155     case X86::SUB16ri:
5156       NewOpcode = X86::CMP16ri;
5157       break;
5158     case X86::SUB8ri:
5159       NewOpcode = X86::CMP8ri;
5160       break;
5161     }
5162     CmpInstr.setDesc(get(NewOpcode));
5163     CmpInstr.removeOperand(0);
5164     // Mutating this instruction invalidates any debug data associated with it.
5165     CmpInstr.dropDebugNumber();
5166     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5167     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5168         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5169       return false;
5170   }
5171   }
5172 
5173   // The following code tries to remove the comparison by re-using EFLAGS
5174   // from earlier instructions.
5175 
5176   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5177 
5178   // Transformation currently requires SSA values.
5179   if (SrcReg2.isPhysical())
5180     return false;
5181   MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
5182   assert(SrcRegDef && "Must have a definition (SSA)");
5183 
5184   MachineInstr *MI = nullptr;
5185   MachineInstr *Sub = nullptr;
5186   MachineInstr *Movr0Inst = nullptr;
5187   bool NoSignFlag = false;
5188   bool ClearsOverflowFlag = false;
5189   bool ShouldUpdateCC = false;
5190   bool IsSwapped = false;
5191   X86::CondCode NewCC = X86::COND_INVALID;
5192   int64_t ImmDelta = 0;
5193 
5194   // Search backward from CmpInstr for the next instruction defining EFLAGS.
5195   const TargetRegisterInfo *TRI = &getRegisterInfo();
5196   MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
5197   MachineBasicBlock::reverse_iterator From =
5198       std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
5199   for (MachineBasicBlock *MBB = &CmpMBB;;) {
5200     for (MachineInstr &Inst : make_range(From, MBB->rend())) {
5201       // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5202       //     %eax = addl ...
5203       //     ...                // EFLAGS not changed
5204       //     testl %eax, %eax   // <-- can be removed
5205       if (&Inst == SrcRegDef) {
5206         if (IsCmpZero &&
5207             isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
5208           MI = &Inst;
5209           break;
5210         }
5211 
5212         // Look back for the following pattern, in which case the
5213         // test16rr/test64rr instruction could be erased.
5214         //
5215         // Example for test16rr:
5216         //  %reg = and32ri %in_reg, 5
5217         //  ...                         // EFLAGS not changed.
5218         //  %src_reg = copy %reg.sub_16bit:gr32
5219         //  test16rr %src_reg, %src_reg, implicit-def $eflags
5220         // Example for test64rr:
5221         //  %reg = and32ri %in_reg, 5
5222         //  ...                         // EFLAGS not changed.
5223         //  %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5224         //  test64rr %src_reg, %src_reg, implicit-def $eflags
5225         MachineInstr *AndInstr = nullptr;
5226         if (IsCmpZero &&
5227             findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
5228                                    NoSignFlag, ClearsOverflowFlag)) {
5229           assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
5230           MI = AndInstr;
5231           break;
5232         }
5233         // Cannot find other candidates before definition of SrcReg.
5234         return false;
5235       }
5236 
5237       if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
5238         // Try to use EFLAGS produced by an instruction reading %SrcReg.
5239         // Example:
5240         //      %eax = ...
5241         //      ...
5242         //      popcntl %eax
5243         //      ...                 // EFLAGS not changed
5244         //      testl %eax, %eax    // <-- can be removed
5245         if (IsCmpZero) {
5246           NewCC = isUseDefConvertible(Inst);
5247           if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
5248               Inst.getOperand(1).getReg() == SrcReg) {
5249             ShouldUpdateCC = true;
5250             MI = &Inst;
5251             break;
5252           }
5253         }
5254 
5255         // Try to use EFLAGS from an instruction with similar flag results.
5256         // Example:
5257         //     sub x, y  or  cmp x, y
5258         //     ...           // EFLAGS not changed
5259         //     cmp x, y      // <-- can be removed
5260         if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
5261                                  Inst, &IsSwapped, &ImmDelta)) {
5262           Sub = &Inst;
5263           break;
5264         }
5265 
5266         // MOV32r0 is implemented with xor which clobbers condition code. It is
5267         // safe to move up, if the definition to EFLAGS is dead and earlier
5268         // instructions do not read or write EFLAGS.
5269         if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
5270             Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
5271           Movr0Inst = &Inst;
5272           continue;
5273         }
5274 
5275         // Cannot do anything for any other EFLAG changes.
5276         return false;
5277       }
5278     }
5279 
5280     if (MI || Sub)
5281       break;
5282 
5283     // Reached begin of basic block. Continue in predecessor if there is
5284     // exactly one.
5285     if (MBB->pred_size() != 1)
5286       return false;
5287     MBB = *MBB->pred_begin();
5288     From = MBB->rbegin();
5289   }
5290 
5291   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5292   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5293   // If we are done with the basic block, we need to check whether EFLAGS is
5294   // live-out.
5295   bool FlagsMayLiveOut = true;
5296   SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate;
5297   MachineBasicBlock::iterator AfterCmpInstr =
5298       std::next(MachineBasicBlock::iterator(CmpInstr));
5299   for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
5300     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5301     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5302     // We should check the usage if this instruction uses and updates EFLAGS.
5303     if (!UseEFLAGS && ModifyEFLAGS) {
5304       // It is safe to remove CmpInstr if EFLAGS is updated again.
5305       FlagsMayLiveOut = false;
5306       break;
5307     }
5308     if (!UseEFLAGS && !ModifyEFLAGS)
5309       continue;
5310 
5311     // EFLAGS is used by this instruction.
5312     X86::CondCode OldCC = X86::getCondFromMI(Instr);
5313     if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
5314       return false;
5315 
5316     X86::CondCode ReplacementCC = X86::COND_INVALID;
5317     if (MI) {
5318       switch (OldCC) {
5319       default:
5320         break;
5321       case X86::COND_A:
5322       case X86::COND_AE:
5323       case X86::COND_B:
5324       case X86::COND_BE:
5325         // CF is used, we can't perform this optimization.
5326         return false;
5327       case X86::COND_G:
5328       case X86::COND_GE:
5329       case X86::COND_L:
5330       case X86::COND_LE:
5331         // If SF is used, but the instruction doesn't update the SF, then we
5332         // can't do the optimization.
5333         if (NoSignFlag)
5334           return false;
5335         [[fallthrough]];
5336       case X86::COND_O:
5337       case X86::COND_NO:
5338         // If OF is used, the instruction needs to clear it like CmpZero does.
5339         if (!ClearsOverflowFlag)
5340           return false;
5341         break;
5342       case X86::COND_S:
5343       case X86::COND_NS:
5344         // If SF is used, but the instruction doesn't update the SF, then we
5345         // can't do the optimization.
5346         if (NoSignFlag)
5347           return false;
5348         break;
5349       }
5350 
5351       // If we're updating the condition code check if we have to reverse the
5352       // condition.
5353       if (ShouldUpdateCC)
5354         switch (OldCC) {
5355         default:
5356           return false;
5357         case X86::COND_E:
5358           ReplacementCC = NewCC;
5359           break;
5360         case X86::COND_NE:
5361           ReplacementCC = GetOppositeBranchCondition(NewCC);
5362           break;
5363         }
5364     } else if (IsSwapped) {
5365       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5366       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5367       // We swap the condition code and synthesize the new opcode.
5368       ReplacementCC = getSwappedCondition(OldCC);
5369       if (ReplacementCC == X86::COND_INVALID)
5370         return false;
5371       ShouldUpdateCC = true;
5372     } else if (ImmDelta != 0) {
5373       unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
5374       // Shift amount for min/max constants to adjust for 8/16/32 instruction
5375       // sizes.
5376       switch (OldCC) {
5377       case X86::COND_L: // x <s (C + 1)  -->  x <=s C
5378         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5379           return false;
5380         ReplacementCC = X86::COND_LE;
5381         break;
5382       case X86::COND_B: // x <u (C + 1)  -->  x <=u C
5383         if (ImmDelta != 1 || CmpValue == 0)
5384           return false;
5385         ReplacementCC = X86::COND_BE;
5386         break;
5387       case X86::COND_GE: // x >=s (C + 1)  -->  x >s C
5388         if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5389           return false;
5390         ReplacementCC = X86::COND_G;
5391         break;
5392       case X86::COND_AE: // x >=u (C + 1)  -->  x >u C
5393         if (ImmDelta != 1 || CmpValue == 0)
5394           return false;
5395         ReplacementCC = X86::COND_A;
5396         break;
5397       case X86::COND_G: // x >s (C - 1)  -->  x >=s C
5398         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5399           return false;
5400         ReplacementCC = X86::COND_GE;
5401         break;
5402       case X86::COND_A: // x >u (C - 1)  -->  x >=u C
5403         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5404           return false;
5405         ReplacementCC = X86::COND_AE;
5406         break;
5407       case X86::COND_LE: // x <=s (C - 1)  -->  x <s C
5408         if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5409           return false;
5410         ReplacementCC = X86::COND_L;
5411         break;
5412       case X86::COND_BE: // x <=u (C - 1)  -->  x <u C
5413         if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5414           return false;
5415         ReplacementCC = X86::COND_B;
5416         break;
5417       default:
5418         return false;
5419       }
5420       ShouldUpdateCC = true;
5421     }
5422 
5423     if (ShouldUpdateCC && ReplacementCC != OldCC) {
5424       // Push the MachineInstr to OpsToUpdate.
5425       // If it is safe to remove CmpInstr, the condition code of these
5426       // instructions will be modified.
5427       OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
5428     }
5429     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5430       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5431       FlagsMayLiveOut = false;
5432       break;
5433     }
5434   }
5435 
5436   // If we have to update users but EFLAGS is live-out abort, since we cannot
5437   // easily find all of the users.
5438   if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5439     for (MachineBasicBlock *Successor : CmpMBB.successors())
5440       if (Successor->isLiveIn(X86::EFLAGS))
5441         return false;
5442   }
5443 
5444   // The instruction to be updated is either Sub or MI.
5445   assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
5446   Sub = MI != nullptr ? MI : Sub;
5447   MachineBasicBlock *SubBB = Sub->getParent();
5448   // Move Movr0Inst to the appropriate place before Sub.
5449   if (Movr0Inst) {
5450     // Only move within the same block so we don't accidentally move to a
5451     // block with higher execution frequency.
5452     if (&CmpMBB != SubBB)
5453       return false;
5454     // Look backwards until we find a def that doesn't use the current EFLAGS.
5455     MachineBasicBlock::reverse_iterator InsertI = Sub,
5456                                         InsertE = Sub->getParent()->rend();
5457     for (; InsertI != InsertE; ++InsertI) {
5458       MachineInstr *Instr = &*InsertI;
5459       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5460           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5461         Movr0Inst->getParent()->remove(Movr0Inst);
5462         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
5463                                    Movr0Inst);
5464         break;
5465       }
5466     }
5467     if (InsertI == InsertE)
5468       return false;
5469   }
5470 
5471   // Make sure Sub instruction defines EFLAGS and mark the def live.
5472   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
5473   assert(FlagDef && "Unable to locate a def EFLAGS operand");
5474   FlagDef->setIsDead(false);
5475 
5476   CmpInstr.eraseFromParent();
5477 
5478   // Modify the condition code of instructions in OpsToUpdate.
5479   for (auto &Op : OpsToUpdate) {
5480     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
5481         .setImm(Op.second);
5482   }
5483   // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5484   for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
5485        MBB = *MBB->pred_begin()) {
5486     assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
5487     if (!MBB->isLiveIn(X86::EFLAGS))
5488       MBB->addLiveIn(X86::EFLAGS);
5489   }
5490   return true;
5491 }
5492 
5493 /// Try to remove the load by folding it to a register
5494 /// operand at the use. We fold the load instructions if load defines a virtual
5495 /// register, the virtual register is used once in the same BB, and the
5496 /// instructions in-between do not load or store, and have no side effects.
5497 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
5498                                               const MachineRegisterInfo *MRI,
5499                                               Register &FoldAsLoadDefReg,
5500                                               MachineInstr *&DefMI) const {
5501   // Check whether we can move DefMI here.
5502   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
5503   assert(DefMI);
5504   bool SawStore = false;
5505   if (!DefMI->isSafeToMove(nullptr, SawStore))
5506     return nullptr;
5507 
5508   // Collect information about virtual register operands of MI.
5509   SmallVector<unsigned, 1> SrcOperandIds;
5510   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5511     MachineOperand &MO = MI.getOperand(i);
5512     if (!MO.isReg())
5513       continue;
5514     Register Reg = MO.getReg();
5515     if (Reg != FoldAsLoadDefReg)
5516       continue;
5517     // Do not fold if we have a subreg use or a def.
5518     if (MO.getSubReg() || MO.isDef())
5519       return nullptr;
5520     SrcOperandIds.push_back(i);
5521   }
5522   if (SrcOperandIds.empty())
5523     return nullptr;
5524 
5525   // Check whether we can fold the def into SrcOperandId.
5526   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
5527     FoldAsLoadDefReg = 0;
5528     return FoldMI;
5529   }
5530 
5531   return nullptr;
5532 }
5533 
5534 /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5535 ///     ADD32rr  ==>  ADD32ri
5536 /// ShiftRotate will be set to true if the Opcode is shift or rotate.
5537 /// If the ALUri can be further changed to COPY when the immediate is 0, set
5538 /// CanConvert2Copy to true.
5539 static unsigned ConvertALUrr2ALUri(unsigned Opcode, bool &CanConvert2Copy,
5540                                    bool &ShiftRotate) {
5541   CanConvert2Copy = false;
5542   ShiftRotate = false;
5543   unsigned NewOpcode = 0;
5544   switch (Opcode) {
5545   case X86::ADD64rr:
5546     NewOpcode = X86::ADD64ri32;
5547     CanConvert2Copy = true;
5548     break;
5549   case X86::ADC64rr:
5550     NewOpcode = X86::ADC64ri32;
5551     break;
5552   case X86::SUB64rr:
5553     NewOpcode = X86::SUB64ri32;
5554     CanConvert2Copy = true;
5555     break;
5556   case X86::SBB64rr:
5557     NewOpcode = X86::SBB64ri32;
5558     break;
5559   case X86::AND64rr:
5560     NewOpcode = X86::AND64ri32;
5561     break;
5562   case X86::OR64rr:
5563     NewOpcode = X86::OR64ri32;
5564     CanConvert2Copy = true;
5565     break;
5566   case X86::XOR64rr:
5567     NewOpcode = X86::XOR64ri32;
5568     CanConvert2Copy = true;
5569     break;
5570   case X86::TEST64rr:
5571     NewOpcode = X86::TEST64ri32;
5572     break;
5573   case X86::CMP64rr:
5574     NewOpcode = X86::CMP64ri32;
5575     break;
5576   case X86::SHR64rCL:
5577     NewOpcode = X86::SHR64ri;
5578     ShiftRotate = true;
5579     break;
5580   case X86::SHL64rCL:
5581     NewOpcode = X86::SHL64ri;
5582     ShiftRotate = true;
5583     break;
5584   case X86::SAR64rCL:
5585     NewOpcode = X86::SAR64ri;
5586     ShiftRotate = true;
5587     break;
5588   case X86::ROL64rCL:
5589     NewOpcode = X86::ROL64ri;
5590     ShiftRotate = true;
5591     break;
5592   case X86::ROR64rCL:
5593     NewOpcode = X86::ROR64ri;
5594     ShiftRotate = true;
5595     break;
5596   case X86::RCL64rCL:
5597     NewOpcode = X86::RCL64ri;
5598     ShiftRotate = true;
5599     break;
5600   case X86::RCR64rCL:
5601     NewOpcode = X86::RCR64ri;
5602     ShiftRotate = true;
5603     break;
5604   case X86::ADD32rr:
5605     NewOpcode = X86::ADD32ri;
5606     CanConvert2Copy = true;
5607     break;
5608   case X86::ADC32rr:
5609     NewOpcode = X86::ADC32ri;
5610     break;
5611   case X86::SUB32rr:
5612     NewOpcode = X86::SUB32ri;
5613     CanConvert2Copy = true;
5614     break;
5615   case X86::SBB32rr:
5616     NewOpcode = X86::SBB32ri;
5617     break;
5618   case X86::AND32rr:
5619     NewOpcode = X86::AND32ri;
5620     break;
5621   case X86::OR32rr:
5622     NewOpcode = X86::OR32ri;
5623     CanConvert2Copy = true;
5624     break;
5625   case X86::XOR32rr:
5626     NewOpcode = X86::XOR32ri;
5627     CanConvert2Copy = true;
5628     break;
5629   case X86::TEST32rr:
5630     NewOpcode = X86::TEST32ri;
5631     break;
5632   case X86::CMP32rr:
5633     NewOpcode = X86::CMP32ri;
5634     break;
5635   case X86::SHR32rCL:
5636     NewOpcode = X86::SHR32ri;
5637     ShiftRotate = true;
5638     break;
5639   case X86::SHL32rCL:
5640     NewOpcode = X86::SHL32ri;
5641     ShiftRotate = true;
5642     break;
5643   case X86::SAR32rCL:
5644     NewOpcode = X86::SAR32ri;
5645     ShiftRotate = true;
5646     break;
5647   case X86::ROL32rCL:
5648     NewOpcode = X86::ROL32ri;
5649     ShiftRotate = true;
5650     break;
5651   case X86::ROR32rCL:
5652     NewOpcode = X86::ROR32ri;
5653     ShiftRotate = true;
5654     break;
5655   case X86::RCL32rCL:
5656     NewOpcode = X86::RCL32ri;
5657     ShiftRotate = true;
5658     break;
5659   case X86::RCR32rCL:
5660     NewOpcode = X86::RCR32ri;
5661     ShiftRotate = true;
5662     break;
5663   }
5664   return NewOpcode;
5665 }
5666 
5667 /// Real implementation of FoldImmediate.
5668 /// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5669 /// If MakeChange is true, this function tries to replace Reg by ImmVal in
5670 /// UseMI. If MakeChange is false, just check if folding is possible.
5671 /// Return true if folding is successful or possible.
5672 bool X86InstrInfo::FoldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI,
5673                                      Register Reg, int64_t ImmVal,
5674                                      MachineRegisterInfo *MRI,
5675                                      bool MakeChange) const {
5676   bool Modified = false;
5677   bool ShiftRotate = false;
5678   // When ImmVal is 0, some instructions can be changed to COPY.
5679   bool CanChangeToCopy = false;
5680   unsigned Opc = UseMI.getOpcode();
5681 
5682   // 64 bit operations accept sign extended 32 bit immediates.
5683   // 32 bit operations accept all 32 bit immediates, so we don't need to check
5684   // them.
5685   const TargetRegisterClass *RC = nullptr;
5686   if (Reg.isVirtual())
5687     RC = MRI->getRegClass(Reg);
5688   if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5689       (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5690     if (!isInt<32>(ImmVal))
5691       return false;
5692   }
5693 
5694   if (UseMI.findRegisterUseOperand(Reg)->getSubReg())
5695     return false;
5696   // Immediate has larger code size than register. So avoid folding the
5697   // immediate if it has more than 1 use and we are optimizing for size.
5698   if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() &&
5699       !MRI->hasOneNonDBGUse(Reg))
5700     return false;
5701 
5702   unsigned NewOpc;
5703   if (Opc == TargetOpcode::COPY) {
5704     Register ToReg = UseMI.getOperand(0).getReg();
5705     const TargetRegisterClass *RC = nullptr;
5706     if (ToReg.isVirtual())
5707       RC = MRI->getRegClass(ToReg);
5708     bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5709                    (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg));
5710     bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5711                    (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg));
5712     bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5713                   (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg));
5714 
5715     if (ImmVal == 0) {
5716       // We have MOV32r0 only.
5717       if (!GR32Reg)
5718         return false;
5719     }
5720 
5721     if (GR64Reg) {
5722       if (isUInt<32>(ImmVal))
5723         NewOpc = X86::MOV32ri64;
5724       else
5725         NewOpc = X86::MOV64ri;
5726     } else if (GR32Reg) {
5727       NewOpc = X86::MOV32ri;
5728       if (ImmVal == 0) {
5729         // MOV32r0 clobbers EFLAGS.
5730         const TargetRegisterInfo *TRI = &getRegisterInfo();
5731         if (UseMI.getParent()->computeRegisterLiveness(
5732                 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead)
5733           return false;
5734 
5735         // MOV32r0 is different than other cases because it doesn't encode the
5736         // immediate in the instruction. So we directly modify it here.
5737         if (!MakeChange)
5738           return true;
5739         UseMI.setDesc(get(X86::MOV32r0));
5740         UseMI.removeOperand(UseMI.findRegisterUseOperandIdx(Reg));
5741         UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true,
5742                                                    /*isImp=*/true,
5743                                                    /*isKill=*/false,
5744                                                    /*isDead=*/true));
5745         Modified = true;
5746       }
5747     } else if (GR8Reg)
5748       NewOpc = X86::MOV8ri;
5749     else
5750       return false;
5751   } else
5752     NewOpc = ConvertALUrr2ALUri(Opc, CanChangeToCopy, ShiftRotate);
5753 
5754   if (!NewOpc)
5755     return false;
5756 
5757   // For SUB instructions the immediate can only be the second source operand.
5758   if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5759        NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri) &&
5760       UseMI.findRegisterUseOperandIdx(Reg) != 2)
5761     return false;
5762   // For CMP instructions the immediate can only be at index 1.
5763   if ((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) &&
5764       UseMI.findRegisterUseOperandIdx(Reg) != 1)
5765     return false;
5766 
5767   if (ShiftRotate) {
5768     unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg);
5769     if (RegIdx < 2)
5770       return false;
5771     if (!isInt<8>(ImmVal))
5772       return false;
5773     assert(Reg == X86::CL);
5774 
5775     if (!MakeChange)
5776       return true;
5777     UseMI.setDesc(get(NewOpc));
5778     UseMI.removeOperand(RegIdx);
5779     UseMI.addOperand(MachineOperand::CreateImm(ImmVal));
5780     // Reg is physical register $cl, so we don't know if DefMI is dead through
5781     // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5782     // the dead physical register define instruction.
5783     return true;
5784   }
5785 
5786   if (!MakeChange)
5787     return true;
5788 
5789   if (!Modified) {
5790     // Modify the instruction.
5791     if (ImmVal == 0 && CanChangeToCopy &&
5792         UseMI.registerDefIsDead(X86::EFLAGS)) {
5793       //          %100 = add %101, 0
5794       //    ==>
5795       //          %100 = COPY %101
5796       UseMI.setDesc(get(TargetOpcode::COPY));
5797       UseMI.removeOperand(UseMI.findRegisterUseOperandIdx(Reg));
5798       UseMI.removeOperand(UseMI.findRegisterDefOperandIdx(X86::EFLAGS));
5799       UseMI.untieRegOperand(0);
5800       UseMI.clearFlag(MachineInstr::MIFlag::NoSWrap);
5801       UseMI.clearFlag(MachineInstr::MIFlag::NoUWrap);
5802     } else {
5803       unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5804       unsigned ImmOpNum = 2;
5805       if (!UseMI.getOperand(0).isDef()) {
5806         Op1 = 0; // TEST, CMP
5807         ImmOpNum = 1;
5808       }
5809       if (Opc == TargetOpcode::COPY)
5810         ImmOpNum = 1;
5811       if (findCommutedOpIndices(UseMI, Op1, Op2) &&
5812           UseMI.getOperand(Op1).getReg() == Reg)
5813         commuteInstruction(UseMI);
5814 
5815       assert(UseMI.getOperand(ImmOpNum).getReg() == Reg);
5816       UseMI.setDesc(get(NewOpc));
5817       UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal);
5818     }
5819   }
5820 
5821   if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg))
5822     DefMI->eraseFromBundle();
5823 
5824   return true;
5825 }
5826 
5827 /// FoldImmediate - 'Reg' is known to be defined by a move immediate
5828 /// instruction, try to fold the immediate into the use instruction.
5829 bool X86InstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
5830                                  Register Reg, MachineRegisterInfo *MRI) const {
5831   int64_t ImmVal;
5832   if (!getConstValDefinedInReg(DefMI, Reg, ImmVal))
5833     return false;
5834 
5835   return FoldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true);
5836 }
5837 
5838 /// Expand a single-def pseudo instruction to a two-addr
5839 /// instruction with two undef reads of the register being defined.
5840 /// This is used for mapping:
5841 ///   %xmm4 = V_SET0
5842 /// to:
5843 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
5844 ///
5845 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
5846                              const MCInstrDesc &Desc) {
5847   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5848   Register Reg = MIB.getReg(0);
5849   MIB->setDesc(Desc);
5850 
5851   // MachineInstr::addOperand() will insert explicit operands before any
5852   // implicit operands.
5853   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5854   // But we don't trust that.
5855   assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand");
5856   return true;
5857 }
5858 
5859 /// Expand a single-def pseudo instruction to a two-addr
5860 /// instruction with two %k0 reads.
5861 /// This is used for mapping:
5862 ///   %k4 = K_SET1
5863 /// to:
5864 ///   %k4 = KXNORrr %k0, %k0
5865 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
5866                             Register Reg) {
5867   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5868   MIB->setDesc(Desc);
5869   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5870   return true;
5871 }
5872 
5873 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
5874                           bool MinusOne) {
5875   MachineBasicBlock &MBB = *MIB->getParent();
5876   const DebugLoc &DL = MIB->getDebugLoc();
5877   Register Reg = MIB.getReg(0);
5878 
5879   // Insert the XOR.
5880   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5881       .addReg(Reg, RegState::Undef)
5882       .addReg(Reg, RegState::Undef);
5883 
5884   // Turn the pseudo into an INC or DEC.
5885   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5886   MIB.addReg(Reg);
5887 
5888   return true;
5889 }
5890 
5891 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
5892                                const TargetInstrInfo &TII,
5893                                const X86Subtarget &Subtarget) {
5894   MachineBasicBlock &MBB = *MIB->getParent();
5895   const DebugLoc &DL = MIB->getDebugLoc();
5896   int64_t Imm = MIB->getOperand(1).getImm();
5897   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
5898   MachineBasicBlock::iterator I = MIB.getInstr();
5899 
5900   int StackAdjustment;
5901 
5902   if (Subtarget.is64Bit()) {
5903     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
5904            MIB->getOpcode() == X86::MOV32ImmSExti8);
5905 
5906     // Can't use push/pop lowering if the function might write to the red zone.
5907     X86MachineFunctionInfo *X86FI =
5908         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
5909     if (X86FI->getUsesRedZone()) {
5910       MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8
5911                                ? X86::MOV32ri
5912                                : X86::MOV64ri));
5913       return true;
5914     }
5915 
5916     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
5917     // widen the register if necessary.
5918     StackAdjustment = 8;
5919     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
5920     MIB->setDesc(TII.get(X86::POP64r));
5921     MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
5922   } else {
5923     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
5924     StackAdjustment = 4;
5925     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
5926     MIB->setDesc(TII.get(X86::POP32r));
5927   }
5928   MIB->removeOperand(1);
5929   MIB->addImplicitDefUseOperands(*MBB.getParent());
5930 
5931   // Build CFI if necessary.
5932   MachineFunction &MF = *MBB.getParent();
5933   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
5934   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
5935   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
5936   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
5937   if (EmitCFI) {
5938     TFL->BuildCFI(
5939         MBB, I, DL,
5940         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
5941     TFL->BuildCFI(
5942         MBB, std::next(I), DL,
5943         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
5944   }
5945 
5946   return true;
5947 }
5948 
5949 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
5950 // code sequence is needed for other targets.
5951 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
5952                                  const TargetInstrInfo &TII) {
5953   MachineBasicBlock &MBB = *MIB->getParent();
5954   const DebugLoc &DL = MIB->getDebugLoc();
5955   Register Reg = MIB.getReg(0);
5956   const GlobalValue *GV =
5957       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
5958   auto Flags = MachineMemOperand::MOLoad |
5959                MachineMemOperand::MODereferenceable |
5960                MachineMemOperand::MOInvariant;
5961   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
5962       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
5963   MachineBasicBlock::iterator I = MIB.getInstr();
5964 
5965   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg)
5966       .addReg(X86::RIP)
5967       .addImm(1)
5968       .addReg(0)
5969       .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL)
5970       .addReg(0)
5971       .addMemOperand(MMO);
5972   MIB->setDebugLoc(DL);
5973   MIB->setDesc(TII.get(X86::MOV64rm));
5974   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
5975 }
5976 
5977 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
5978   MachineBasicBlock &MBB = *MIB->getParent();
5979   MachineFunction &MF = *MBB.getParent();
5980   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
5981   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
5982   unsigned XorOp =
5983       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
5984   MIB->setDesc(TII.get(XorOp));
5985   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
5986   return true;
5987 }
5988 
5989 // This is used to handle spills for 128/256-bit registers when we have AVX512,
5990 // but not VLX. If it uses an extended register we need to use an instruction
5991 // that loads the lower 128/256-bit, but is available with only AVX512F.
5992 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
5993                             const TargetRegisterInfo *TRI,
5994                             const MCInstrDesc &LoadDesc,
5995                             const MCInstrDesc &BroadcastDesc, unsigned SubIdx) {
5996   Register DestReg = MIB.getReg(0);
5997   // Check if DestReg is XMM16-31 or YMM16-31.
5998   if (TRI->getEncodingValue(DestReg) < 16) {
5999     // We can use a normal VEX encoded load.
6000     MIB->setDesc(LoadDesc);
6001   } else {
6002     // Use a 128/256-bit VBROADCAST instruction.
6003     MIB->setDesc(BroadcastDesc);
6004     // Change the destination to a 512-bit register.
6005     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
6006     MIB->getOperand(0).setReg(DestReg);
6007   }
6008   return true;
6009 }
6010 
6011 // This is used to handle spills for 128/256-bit registers when we have AVX512,
6012 // but not VLX. If it uses an extended register we need to use an instruction
6013 // that stores the lower 128/256-bit, but is available with only AVX512F.
6014 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
6015                              const TargetRegisterInfo *TRI,
6016                              const MCInstrDesc &StoreDesc,
6017                              const MCInstrDesc &ExtractDesc, unsigned SubIdx) {
6018   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
6019   // Check if DestReg is XMM16-31 or YMM16-31.
6020   if (TRI->getEncodingValue(SrcReg) < 16) {
6021     // We can use a normal VEX encoded store.
6022     MIB->setDesc(StoreDesc);
6023   } else {
6024     // Use a VEXTRACTF instruction.
6025     MIB->setDesc(ExtractDesc);
6026     // Change the destination to a 512-bit register.
6027     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
6028     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
6029     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
6030   }
6031 
6032   return true;
6033 }
6034 
6035 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
6036   MIB->setDesc(Desc);
6037   int64_t ShiftAmt = MIB->getOperand(2).getImm();
6038   // Temporarily remove the immediate so we can add another source register.
6039   MIB->removeOperand(2);
6040   // Add the register. Don't copy the kill flag if there is one.
6041   MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef()));
6042   // Add back the immediate.
6043   MIB.addImm(ShiftAmt);
6044   return true;
6045 }
6046 
6047 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
6048   bool HasAVX = Subtarget.hasAVX();
6049   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
6050   switch (MI.getOpcode()) {
6051   case X86::MOV32r0:
6052     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
6053   case X86::MOV32r1:
6054     return expandMOV32r1(MIB, *this, /*MinusOne=*/false);
6055   case X86::MOV32r_1:
6056     return expandMOV32r1(MIB, *this, /*MinusOne=*/true);
6057   case X86::MOV32ImmSExti8:
6058   case X86::MOV64ImmSExti8:
6059     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
6060   case X86::SETB_C32r:
6061     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
6062   case X86::SETB_C64r:
6063     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
6064   case X86::MMX_SET0:
6065     return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
6066   case X86::V_SET0:
6067   case X86::FsFLD0SS:
6068   case X86::FsFLD0SD:
6069   case X86::FsFLD0SH:
6070   case X86::FsFLD0F128:
6071     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
6072   case X86::AVX_SET0: {
6073     assert(HasAVX && "AVX not supported");
6074     const TargetRegisterInfo *TRI = &getRegisterInfo();
6075     Register SrcReg = MIB.getReg(0);
6076     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6077     MIB->getOperand(0).setReg(XReg);
6078     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
6079     MIB.addReg(SrcReg, RegState::ImplicitDefine);
6080     return true;
6081   }
6082   case X86::AVX512_128_SET0:
6083   case X86::AVX512_FsFLD0SH:
6084   case X86::AVX512_FsFLD0SS:
6085   case X86::AVX512_FsFLD0SD:
6086   case X86::AVX512_FsFLD0F128: {
6087     bool HasVLX = Subtarget.hasVLX();
6088     Register SrcReg = MIB.getReg(0);
6089     const TargetRegisterInfo *TRI = &getRegisterInfo();
6090     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
6091       return Expand2AddrUndef(MIB,
6092                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6093     // Extended register without VLX. Use a larger XOR.
6094     SrcReg =
6095         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6096     MIB->getOperand(0).setReg(SrcReg);
6097     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6098   }
6099   case X86::AVX512_256_SET0:
6100   case X86::AVX512_512_SET0: {
6101     bool HasVLX = Subtarget.hasVLX();
6102     Register SrcReg = MIB.getReg(0);
6103     const TargetRegisterInfo *TRI = &getRegisterInfo();
6104     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
6105       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6106       MIB->getOperand(0).setReg(XReg);
6107       Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6108       MIB.addReg(SrcReg, RegState::ImplicitDefine);
6109       return true;
6110     }
6111     if (MI.getOpcode() == X86::AVX512_256_SET0) {
6112       // No VLX so we must reference a zmm.
6113       unsigned ZReg =
6114           TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6115       MIB->getOperand(0).setReg(ZReg);
6116     }
6117     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6118   }
6119   case X86::V_SETALLONES:
6120     return Expand2AddrUndef(MIB,
6121                             get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6122   case X86::AVX2_SETALLONES:
6123     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
6124   case X86::AVX1_SETALLONES: {
6125     Register Reg = MIB.getReg(0);
6126     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6127     MIB->setDesc(get(X86::VCMPPSYrri));
6128     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
6129     return true;
6130   }
6131   case X86::AVX512_512_SETALLONES: {
6132     Register Reg = MIB.getReg(0);
6133     MIB->setDesc(get(X86::VPTERNLOGDZrri));
6134     // VPTERNLOGD needs 3 register inputs and an immediate.
6135     // 0xff will return 1s for any input.
6136     MIB.addReg(Reg, RegState::Undef)
6137         .addReg(Reg, RegState::Undef)
6138         .addReg(Reg, RegState::Undef)
6139         .addImm(0xff);
6140     return true;
6141   }
6142   case X86::AVX512_512_SEXT_MASK_32:
6143   case X86::AVX512_512_SEXT_MASK_64: {
6144     Register Reg = MIB.getReg(0);
6145     Register MaskReg = MIB.getReg(1);
6146     unsigned MaskState = getRegState(MIB->getOperand(1));
6147     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6148                        ? X86::VPTERNLOGQZrrikz
6149                        : X86::VPTERNLOGDZrrikz;
6150     MI.removeOperand(1);
6151     MIB->setDesc(get(Opc));
6152     // VPTERNLOG needs 3 register inputs and an immediate.
6153     // 0xff will return 1s for any input.
6154     MIB.addReg(Reg, RegState::Undef)
6155         .addReg(MaskReg, MaskState)
6156         .addReg(Reg, RegState::Undef)
6157         .addReg(Reg, RegState::Undef)
6158         .addImm(0xff);
6159     return true;
6160   }
6161   case X86::VMOVAPSZ128rm_NOVLX:
6162     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
6163                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6164   case X86::VMOVUPSZ128rm_NOVLX:
6165     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
6166                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6167   case X86::VMOVAPSZ256rm_NOVLX:
6168     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
6169                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6170   case X86::VMOVUPSZ256rm_NOVLX:
6171     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
6172                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6173   case X86::VMOVAPSZ128mr_NOVLX:
6174     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
6175                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6176   case X86::VMOVUPSZ128mr_NOVLX:
6177     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
6178                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6179   case X86::VMOVAPSZ256mr_NOVLX:
6180     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
6181                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6182   case X86::VMOVUPSZ256mr_NOVLX:
6183     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
6184                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6185   case X86::MOV32ri64: {
6186     Register Reg = MIB.getReg(0);
6187     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6188     MI.setDesc(get(X86::MOV32ri));
6189     MIB->getOperand(0).setReg(Reg32);
6190     MIB.addReg(Reg, RegState::ImplicitDefine);
6191     return true;
6192   }
6193 
6194   case X86::RDFLAGS32:
6195   case X86::RDFLAGS64: {
6196     unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64;
6197     MachineBasicBlock &MBB = *MIB->getParent();
6198 
6199     MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(),
6200                                   get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6201                               .getInstr();
6202 
6203     // Permit reads of the EFLAGS and DF registers without them being defined.
6204     // This intrinsic exists to read external processor state in flags, such as
6205     // the trap flag, interrupt flag, and direction flag, none of which are
6206     // modeled by the backend.
6207     assert(NewMI->getOperand(2).getReg() == X86::EFLAGS &&
6208            "Unexpected register in operand! Should be EFLAGS.");
6209     NewMI->getOperand(2).setIsUndef();
6210     assert(NewMI->getOperand(3).getReg() == X86::DF &&
6211            "Unexpected register in operand! Should be DF.");
6212     NewMI->getOperand(3).setIsUndef();
6213 
6214     MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r));
6215     return true;
6216   }
6217 
6218   case X86::WRFLAGS32:
6219   case X86::WRFLAGS64: {
6220     unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64;
6221     MachineBasicBlock &MBB = *MIB->getParent();
6222 
6223     BuildMI(MBB, MI, MIB->getDebugLoc(),
6224             get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6225         .addReg(MI.getOperand(0).getReg());
6226     BuildMI(MBB, MI, MIB->getDebugLoc(),
6227             get(Is64Bit ? X86::POPF64 : X86::POPF32));
6228     MI.eraseFromParent();
6229     return true;
6230   }
6231 
6232   // KNL does not recognize dependency-breaking idioms for mask registers,
6233   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6234   // Using %k0 as the undef input register is a performance heuristic based
6235   // on the assumption that %k0 is used less frequently than the other mask
6236   // registers, since it is not usable as a write mask.
6237   // FIXME: A more advanced approach would be to choose the best input mask
6238   // register based on context.
6239   case X86::KSET0W:
6240     return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
6241   case X86::KSET0D:
6242     return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
6243   case X86::KSET0Q:
6244     return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
6245   case X86::KSET1W:
6246     return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
6247   case X86::KSET1D:
6248     return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
6249   case X86::KSET1Q:
6250     return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
6251   case TargetOpcode::LOAD_STACK_GUARD:
6252     expandLoadStackGuard(MIB, *this);
6253     return true;
6254   case X86::XOR64_FP:
6255   case X86::XOR32_FP:
6256     return expandXorFP(MIB, *this);
6257   case X86::SHLDROT32ri:
6258     return expandSHXDROT(MIB, get(X86::SHLD32rri8));
6259   case X86::SHLDROT64ri:
6260     return expandSHXDROT(MIB, get(X86::SHLD64rri8));
6261   case X86::SHRDROT32ri:
6262     return expandSHXDROT(MIB, get(X86::SHRD32rri8));
6263   case X86::SHRDROT64ri:
6264     return expandSHXDROT(MIB, get(X86::SHRD64rri8));
6265   case X86::ADD8rr_DB:
6266     MIB->setDesc(get(X86::OR8rr));
6267     break;
6268   case X86::ADD16rr_DB:
6269     MIB->setDesc(get(X86::OR16rr));
6270     break;
6271   case X86::ADD32rr_DB:
6272     MIB->setDesc(get(X86::OR32rr));
6273     break;
6274   case X86::ADD64rr_DB:
6275     MIB->setDesc(get(X86::OR64rr));
6276     break;
6277   case X86::ADD8ri_DB:
6278     MIB->setDesc(get(X86::OR8ri));
6279     break;
6280   case X86::ADD16ri_DB:
6281     MIB->setDesc(get(X86::OR16ri));
6282     break;
6283   case X86::ADD32ri_DB:
6284     MIB->setDesc(get(X86::OR32ri));
6285     break;
6286   case X86::ADD64ri32_DB:
6287     MIB->setDesc(get(X86::OR64ri32));
6288     break;
6289   }
6290   return false;
6291 }
6292 
6293 /// Return true for all instructions that only update
6294 /// the first 32 or 64-bits of the destination register and leave the rest
6295 /// unmodified. This can be used to avoid folding loads if the instructions
6296 /// only update part of the destination register, and the non-updated part is
6297 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6298 /// instructions breaks the partial register dependency and it can improve
6299 /// performance. e.g.:
6300 ///
6301 ///   movss (%rdi), %xmm0
6302 ///   cvtss2sd %xmm0, %xmm0
6303 ///
6304 /// Instead of
6305 ///   cvtss2sd (%rdi), %xmm0
6306 ///
6307 /// FIXME: This should be turned into a TSFlags.
6308 ///
6309 static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget,
6310                                 bool ForLoadFold = false) {
6311   switch (Opcode) {
6312   case X86::CVTSI2SSrr:
6313   case X86::CVTSI2SSrm:
6314   case X86::CVTSI642SSrr:
6315   case X86::CVTSI642SSrm:
6316   case X86::CVTSI2SDrr:
6317   case X86::CVTSI2SDrm:
6318   case X86::CVTSI642SDrr:
6319   case X86::CVTSI642SDrm:
6320     // Load folding won't effect the undef register update since the input is
6321     // a GPR.
6322     return !ForLoadFold;
6323   case X86::CVTSD2SSrr:
6324   case X86::CVTSD2SSrm:
6325   case X86::CVTSS2SDrr:
6326   case X86::CVTSS2SDrm:
6327   case X86::MOVHPDrm:
6328   case X86::MOVHPSrm:
6329   case X86::MOVLPDrm:
6330   case X86::MOVLPSrm:
6331   case X86::RCPSSr:
6332   case X86::RCPSSm:
6333   case X86::RCPSSr_Int:
6334   case X86::RCPSSm_Int:
6335   case X86::ROUNDSDr:
6336   case X86::ROUNDSDm:
6337   case X86::ROUNDSSr:
6338   case X86::ROUNDSSm:
6339   case X86::RSQRTSSr:
6340   case X86::RSQRTSSm:
6341   case X86::RSQRTSSr_Int:
6342   case X86::RSQRTSSm_Int:
6343   case X86::SQRTSSr:
6344   case X86::SQRTSSm:
6345   case X86::SQRTSSr_Int:
6346   case X86::SQRTSSm_Int:
6347   case X86::SQRTSDr:
6348   case X86::SQRTSDm:
6349   case X86::SQRTSDr_Int:
6350   case X86::SQRTSDm_Int:
6351     return true;
6352   case X86::VFCMULCPHZ128rm:
6353   case X86::VFCMULCPHZ128rmb:
6354   case X86::VFCMULCPHZ128rmbkz:
6355   case X86::VFCMULCPHZ128rmkz:
6356   case X86::VFCMULCPHZ128rr:
6357   case X86::VFCMULCPHZ128rrkz:
6358   case X86::VFCMULCPHZ256rm:
6359   case X86::VFCMULCPHZ256rmb:
6360   case X86::VFCMULCPHZ256rmbkz:
6361   case X86::VFCMULCPHZ256rmkz:
6362   case X86::VFCMULCPHZ256rr:
6363   case X86::VFCMULCPHZ256rrkz:
6364   case X86::VFCMULCPHZrm:
6365   case X86::VFCMULCPHZrmb:
6366   case X86::VFCMULCPHZrmbkz:
6367   case X86::VFCMULCPHZrmkz:
6368   case X86::VFCMULCPHZrr:
6369   case X86::VFCMULCPHZrrb:
6370   case X86::VFCMULCPHZrrbkz:
6371   case X86::VFCMULCPHZrrkz:
6372   case X86::VFMULCPHZ128rm:
6373   case X86::VFMULCPHZ128rmb:
6374   case X86::VFMULCPHZ128rmbkz:
6375   case X86::VFMULCPHZ128rmkz:
6376   case X86::VFMULCPHZ128rr:
6377   case X86::VFMULCPHZ128rrkz:
6378   case X86::VFMULCPHZ256rm:
6379   case X86::VFMULCPHZ256rmb:
6380   case X86::VFMULCPHZ256rmbkz:
6381   case X86::VFMULCPHZ256rmkz:
6382   case X86::VFMULCPHZ256rr:
6383   case X86::VFMULCPHZ256rrkz:
6384   case X86::VFMULCPHZrm:
6385   case X86::VFMULCPHZrmb:
6386   case X86::VFMULCPHZrmbkz:
6387   case X86::VFMULCPHZrmkz:
6388   case X86::VFMULCPHZrr:
6389   case X86::VFMULCPHZrrb:
6390   case X86::VFMULCPHZrrbkz:
6391   case X86::VFMULCPHZrrkz:
6392   case X86::VFCMULCSHZrm:
6393   case X86::VFCMULCSHZrmkz:
6394   case X86::VFCMULCSHZrr:
6395   case X86::VFCMULCSHZrrb:
6396   case X86::VFCMULCSHZrrbkz:
6397   case X86::VFCMULCSHZrrkz:
6398   case X86::VFMULCSHZrm:
6399   case X86::VFMULCSHZrmkz:
6400   case X86::VFMULCSHZrr:
6401   case X86::VFMULCSHZrrb:
6402   case X86::VFMULCSHZrrbkz:
6403   case X86::VFMULCSHZrrkz:
6404     return Subtarget.hasMULCFalseDeps();
6405   case X86::VPERMDYrm:
6406   case X86::VPERMDYrr:
6407   case X86::VPERMQYmi:
6408   case X86::VPERMQYri:
6409   case X86::VPERMPSYrm:
6410   case X86::VPERMPSYrr:
6411   case X86::VPERMPDYmi:
6412   case X86::VPERMPDYri:
6413   case X86::VPERMDZ256rm:
6414   case X86::VPERMDZ256rmb:
6415   case X86::VPERMDZ256rmbkz:
6416   case X86::VPERMDZ256rmkz:
6417   case X86::VPERMDZ256rr:
6418   case X86::VPERMDZ256rrkz:
6419   case X86::VPERMDZrm:
6420   case X86::VPERMDZrmb:
6421   case X86::VPERMDZrmbkz:
6422   case X86::VPERMDZrmkz:
6423   case X86::VPERMDZrr:
6424   case X86::VPERMDZrrkz:
6425   case X86::VPERMQZ256mbi:
6426   case X86::VPERMQZ256mbikz:
6427   case X86::VPERMQZ256mi:
6428   case X86::VPERMQZ256mikz:
6429   case X86::VPERMQZ256ri:
6430   case X86::VPERMQZ256rikz:
6431   case X86::VPERMQZ256rm:
6432   case X86::VPERMQZ256rmb:
6433   case X86::VPERMQZ256rmbkz:
6434   case X86::VPERMQZ256rmkz:
6435   case X86::VPERMQZ256rr:
6436   case X86::VPERMQZ256rrkz:
6437   case X86::VPERMQZmbi:
6438   case X86::VPERMQZmbikz:
6439   case X86::VPERMQZmi:
6440   case X86::VPERMQZmikz:
6441   case X86::VPERMQZri:
6442   case X86::VPERMQZrikz:
6443   case X86::VPERMQZrm:
6444   case X86::VPERMQZrmb:
6445   case X86::VPERMQZrmbkz:
6446   case X86::VPERMQZrmkz:
6447   case X86::VPERMQZrr:
6448   case X86::VPERMQZrrkz:
6449   case X86::VPERMPSZ256rm:
6450   case X86::VPERMPSZ256rmb:
6451   case X86::VPERMPSZ256rmbkz:
6452   case X86::VPERMPSZ256rmkz:
6453   case X86::VPERMPSZ256rr:
6454   case X86::VPERMPSZ256rrkz:
6455   case X86::VPERMPSZrm:
6456   case X86::VPERMPSZrmb:
6457   case X86::VPERMPSZrmbkz:
6458   case X86::VPERMPSZrmkz:
6459   case X86::VPERMPSZrr:
6460   case X86::VPERMPSZrrkz:
6461   case X86::VPERMPDZ256mbi:
6462   case X86::VPERMPDZ256mbikz:
6463   case X86::VPERMPDZ256mi:
6464   case X86::VPERMPDZ256mikz:
6465   case X86::VPERMPDZ256ri:
6466   case X86::VPERMPDZ256rikz:
6467   case X86::VPERMPDZ256rm:
6468   case X86::VPERMPDZ256rmb:
6469   case X86::VPERMPDZ256rmbkz:
6470   case X86::VPERMPDZ256rmkz:
6471   case X86::VPERMPDZ256rr:
6472   case X86::VPERMPDZ256rrkz:
6473   case X86::VPERMPDZmbi:
6474   case X86::VPERMPDZmbikz:
6475   case X86::VPERMPDZmi:
6476   case X86::VPERMPDZmikz:
6477   case X86::VPERMPDZri:
6478   case X86::VPERMPDZrikz:
6479   case X86::VPERMPDZrm:
6480   case X86::VPERMPDZrmb:
6481   case X86::VPERMPDZrmbkz:
6482   case X86::VPERMPDZrmkz:
6483   case X86::VPERMPDZrr:
6484   case X86::VPERMPDZrrkz:
6485     return Subtarget.hasPERMFalseDeps();
6486   case X86::VRANGEPDZ128rmbi:
6487   case X86::VRANGEPDZ128rmbikz:
6488   case X86::VRANGEPDZ128rmi:
6489   case X86::VRANGEPDZ128rmikz:
6490   case X86::VRANGEPDZ128rri:
6491   case X86::VRANGEPDZ128rrikz:
6492   case X86::VRANGEPDZ256rmbi:
6493   case X86::VRANGEPDZ256rmbikz:
6494   case X86::VRANGEPDZ256rmi:
6495   case X86::VRANGEPDZ256rmikz:
6496   case X86::VRANGEPDZ256rri:
6497   case X86::VRANGEPDZ256rrikz:
6498   case X86::VRANGEPDZrmbi:
6499   case X86::VRANGEPDZrmbikz:
6500   case X86::VRANGEPDZrmi:
6501   case X86::VRANGEPDZrmikz:
6502   case X86::VRANGEPDZrri:
6503   case X86::VRANGEPDZrrib:
6504   case X86::VRANGEPDZrribkz:
6505   case X86::VRANGEPDZrrikz:
6506   case X86::VRANGEPSZ128rmbi:
6507   case X86::VRANGEPSZ128rmbikz:
6508   case X86::VRANGEPSZ128rmi:
6509   case X86::VRANGEPSZ128rmikz:
6510   case X86::VRANGEPSZ128rri:
6511   case X86::VRANGEPSZ128rrikz:
6512   case X86::VRANGEPSZ256rmbi:
6513   case X86::VRANGEPSZ256rmbikz:
6514   case X86::VRANGEPSZ256rmi:
6515   case X86::VRANGEPSZ256rmikz:
6516   case X86::VRANGEPSZ256rri:
6517   case X86::VRANGEPSZ256rrikz:
6518   case X86::VRANGEPSZrmbi:
6519   case X86::VRANGEPSZrmbikz:
6520   case X86::VRANGEPSZrmi:
6521   case X86::VRANGEPSZrmikz:
6522   case X86::VRANGEPSZrri:
6523   case X86::VRANGEPSZrrib:
6524   case X86::VRANGEPSZrribkz:
6525   case X86::VRANGEPSZrrikz:
6526   case X86::VRANGESDZrmi:
6527   case X86::VRANGESDZrmikz:
6528   case X86::VRANGESDZrri:
6529   case X86::VRANGESDZrrib:
6530   case X86::VRANGESDZrribkz:
6531   case X86::VRANGESDZrrikz:
6532   case X86::VRANGESSZrmi:
6533   case X86::VRANGESSZrmikz:
6534   case X86::VRANGESSZrri:
6535   case X86::VRANGESSZrrib:
6536   case X86::VRANGESSZrribkz:
6537   case X86::VRANGESSZrrikz:
6538     return Subtarget.hasRANGEFalseDeps();
6539   case X86::VGETMANTSSZrmi:
6540   case X86::VGETMANTSSZrmikz:
6541   case X86::VGETMANTSSZrri:
6542   case X86::VGETMANTSSZrrib:
6543   case X86::VGETMANTSSZrribkz:
6544   case X86::VGETMANTSSZrrikz:
6545   case X86::VGETMANTSDZrmi:
6546   case X86::VGETMANTSDZrmikz:
6547   case X86::VGETMANTSDZrri:
6548   case X86::VGETMANTSDZrrib:
6549   case X86::VGETMANTSDZrribkz:
6550   case X86::VGETMANTSDZrrikz:
6551   case X86::VGETMANTSHZrmi:
6552   case X86::VGETMANTSHZrmikz:
6553   case X86::VGETMANTSHZrri:
6554   case X86::VGETMANTSHZrrib:
6555   case X86::VGETMANTSHZrribkz:
6556   case X86::VGETMANTSHZrrikz:
6557   case X86::VGETMANTPSZ128rmbi:
6558   case X86::VGETMANTPSZ128rmbikz:
6559   case X86::VGETMANTPSZ128rmi:
6560   case X86::VGETMANTPSZ128rmikz:
6561   case X86::VGETMANTPSZ256rmbi:
6562   case X86::VGETMANTPSZ256rmbikz:
6563   case X86::VGETMANTPSZ256rmi:
6564   case X86::VGETMANTPSZ256rmikz:
6565   case X86::VGETMANTPSZrmbi:
6566   case X86::VGETMANTPSZrmbikz:
6567   case X86::VGETMANTPSZrmi:
6568   case X86::VGETMANTPSZrmikz:
6569   case X86::VGETMANTPDZ128rmbi:
6570   case X86::VGETMANTPDZ128rmbikz:
6571   case X86::VGETMANTPDZ128rmi:
6572   case X86::VGETMANTPDZ128rmikz:
6573   case X86::VGETMANTPDZ256rmbi:
6574   case X86::VGETMANTPDZ256rmbikz:
6575   case X86::VGETMANTPDZ256rmi:
6576   case X86::VGETMANTPDZ256rmikz:
6577   case X86::VGETMANTPDZrmbi:
6578   case X86::VGETMANTPDZrmbikz:
6579   case X86::VGETMANTPDZrmi:
6580   case X86::VGETMANTPDZrmikz:
6581     return Subtarget.hasGETMANTFalseDeps();
6582   case X86::VPMULLQZ128rm:
6583   case X86::VPMULLQZ128rmb:
6584   case X86::VPMULLQZ128rmbkz:
6585   case X86::VPMULLQZ128rmkz:
6586   case X86::VPMULLQZ128rr:
6587   case X86::VPMULLQZ128rrkz:
6588   case X86::VPMULLQZ256rm:
6589   case X86::VPMULLQZ256rmb:
6590   case X86::VPMULLQZ256rmbkz:
6591   case X86::VPMULLQZ256rmkz:
6592   case X86::VPMULLQZ256rr:
6593   case X86::VPMULLQZ256rrkz:
6594   case X86::VPMULLQZrm:
6595   case X86::VPMULLQZrmb:
6596   case X86::VPMULLQZrmbkz:
6597   case X86::VPMULLQZrmkz:
6598   case X86::VPMULLQZrr:
6599   case X86::VPMULLQZrrkz:
6600     return Subtarget.hasMULLQFalseDeps();
6601   // GPR
6602   case X86::POPCNT32rm:
6603   case X86::POPCNT32rr:
6604   case X86::POPCNT64rm:
6605   case X86::POPCNT64rr:
6606     return Subtarget.hasPOPCNTFalseDeps();
6607   case X86::LZCNT32rm:
6608   case X86::LZCNT32rr:
6609   case X86::LZCNT64rm:
6610   case X86::LZCNT64rr:
6611   case X86::TZCNT32rm:
6612   case X86::TZCNT32rr:
6613   case X86::TZCNT64rm:
6614   case X86::TZCNT64rr:
6615     return Subtarget.hasLZCNTFalseDeps();
6616   }
6617 
6618   return false;
6619 }
6620 
6621 /// Inform the BreakFalseDeps pass how many idle
6622 /// instructions we would like before a partial register update.
6623 unsigned X86InstrInfo::getPartialRegUpdateClearance(
6624     const MachineInstr &MI, unsigned OpNum,
6625     const TargetRegisterInfo *TRI) const {
6626   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
6627     return 0;
6628 
6629   // If MI is marked as reading Reg, the partial register update is wanted.
6630   const MachineOperand &MO = MI.getOperand(0);
6631   Register Reg = MO.getReg();
6632   if (Reg.isVirtual()) {
6633     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
6634       return 0;
6635   } else {
6636     if (MI.readsRegister(Reg, TRI))
6637       return 0;
6638   }
6639 
6640   // If any instructions in the clearance range are reading Reg, insert a
6641   // dependency breaking instruction, which is inexpensive and is likely to
6642   // be hidden in other instruction's cycles.
6643   return PartialRegUpdateClearance;
6644 }
6645 
6646 // Return true for any instruction the copies the high bits of the first source
6647 // operand into the unused high bits of the destination operand.
6648 // Also returns true for instructions that have two inputs where one may
6649 // be undef and we want it to use the same register as the other input.
6650 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
6651                               bool ForLoadFold = false) {
6652   // Set the OpNum parameter to the first source operand.
6653   switch (Opcode) {
6654   case X86::MMX_PUNPCKHBWrr:
6655   case X86::MMX_PUNPCKHWDrr:
6656   case X86::MMX_PUNPCKHDQrr:
6657   case X86::MMX_PUNPCKLBWrr:
6658   case X86::MMX_PUNPCKLWDrr:
6659   case X86::MMX_PUNPCKLDQrr:
6660   case X86::MOVHLPSrr:
6661   case X86::PACKSSWBrr:
6662   case X86::PACKUSWBrr:
6663   case X86::PACKSSDWrr:
6664   case X86::PACKUSDWrr:
6665   case X86::PUNPCKHBWrr:
6666   case X86::PUNPCKLBWrr:
6667   case X86::PUNPCKHWDrr:
6668   case X86::PUNPCKLWDrr:
6669   case X86::PUNPCKHDQrr:
6670   case X86::PUNPCKLDQrr:
6671   case X86::PUNPCKHQDQrr:
6672   case X86::PUNPCKLQDQrr:
6673   case X86::SHUFPDrri:
6674   case X86::SHUFPSrri:
6675     // These instructions are sometimes used with an undef first or second
6676     // source. Return true here so BreakFalseDeps will assign this source to the
6677     // same register as the first source to avoid a false dependency.
6678     // Operand 1 of these instructions is tied so they're separate from their
6679     // VEX counterparts.
6680     return OpNum == 2 && !ForLoadFold;
6681 
6682   case X86::VMOVLHPSrr:
6683   case X86::VMOVLHPSZrr:
6684   case X86::VPACKSSWBrr:
6685   case X86::VPACKUSWBrr:
6686   case X86::VPACKSSDWrr:
6687   case X86::VPACKUSDWrr:
6688   case X86::VPACKSSWBZ128rr:
6689   case X86::VPACKUSWBZ128rr:
6690   case X86::VPACKSSDWZ128rr:
6691   case X86::VPACKUSDWZ128rr:
6692   case X86::VPERM2F128rr:
6693   case X86::VPERM2I128rr:
6694   case X86::VSHUFF32X4Z256rri:
6695   case X86::VSHUFF32X4Zrri:
6696   case X86::VSHUFF64X2Z256rri:
6697   case X86::VSHUFF64X2Zrri:
6698   case X86::VSHUFI32X4Z256rri:
6699   case X86::VSHUFI32X4Zrri:
6700   case X86::VSHUFI64X2Z256rri:
6701   case X86::VSHUFI64X2Zrri:
6702   case X86::VPUNPCKHBWrr:
6703   case X86::VPUNPCKLBWrr:
6704   case X86::VPUNPCKHBWYrr:
6705   case X86::VPUNPCKLBWYrr:
6706   case X86::VPUNPCKHBWZ128rr:
6707   case X86::VPUNPCKLBWZ128rr:
6708   case X86::VPUNPCKHBWZ256rr:
6709   case X86::VPUNPCKLBWZ256rr:
6710   case X86::VPUNPCKHBWZrr:
6711   case X86::VPUNPCKLBWZrr:
6712   case X86::VPUNPCKHWDrr:
6713   case X86::VPUNPCKLWDrr:
6714   case X86::VPUNPCKHWDYrr:
6715   case X86::VPUNPCKLWDYrr:
6716   case X86::VPUNPCKHWDZ128rr:
6717   case X86::VPUNPCKLWDZ128rr:
6718   case X86::VPUNPCKHWDZ256rr:
6719   case X86::VPUNPCKLWDZ256rr:
6720   case X86::VPUNPCKHWDZrr:
6721   case X86::VPUNPCKLWDZrr:
6722   case X86::VPUNPCKHDQrr:
6723   case X86::VPUNPCKLDQrr:
6724   case X86::VPUNPCKHDQYrr:
6725   case X86::VPUNPCKLDQYrr:
6726   case X86::VPUNPCKHDQZ128rr:
6727   case X86::VPUNPCKLDQZ128rr:
6728   case X86::VPUNPCKHDQZ256rr:
6729   case X86::VPUNPCKLDQZ256rr:
6730   case X86::VPUNPCKHDQZrr:
6731   case X86::VPUNPCKLDQZrr:
6732   case X86::VPUNPCKHQDQrr:
6733   case X86::VPUNPCKLQDQrr:
6734   case X86::VPUNPCKHQDQYrr:
6735   case X86::VPUNPCKLQDQYrr:
6736   case X86::VPUNPCKHQDQZ128rr:
6737   case X86::VPUNPCKLQDQZ128rr:
6738   case X86::VPUNPCKHQDQZ256rr:
6739   case X86::VPUNPCKLQDQZ256rr:
6740   case X86::VPUNPCKHQDQZrr:
6741   case X86::VPUNPCKLQDQZrr:
6742     // These instructions are sometimes used with an undef first or second
6743     // source. Return true here so BreakFalseDeps will assign this source to the
6744     // same register as the first source to avoid a false dependency.
6745     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6746 
6747   case X86::VCVTSI2SSrr:
6748   case X86::VCVTSI2SSrm:
6749   case X86::VCVTSI2SSrr_Int:
6750   case X86::VCVTSI2SSrm_Int:
6751   case X86::VCVTSI642SSrr:
6752   case X86::VCVTSI642SSrm:
6753   case X86::VCVTSI642SSrr_Int:
6754   case X86::VCVTSI642SSrm_Int:
6755   case X86::VCVTSI2SDrr:
6756   case X86::VCVTSI2SDrm:
6757   case X86::VCVTSI2SDrr_Int:
6758   case X86::VCVTSI2SDrm_Int:
6759   case X86::VCVTSI642SDrr:
6760   case X86::VCVTSI642SDrm:
6761   case X86::VCVTSI642SDrr_Int:
6762   case X86::VCVTSI642SDrm_Int:
6763   // AVX-512
6764   case X86::VCVTSI2SSZrr:
6765   case X86::VCVTSI2SSZrm:
6766   case X86::VCVTSI2SSZrr_Int:
6767   case X86::VCVTSI2SSZrrb_Int:
6768   case X86::VCVTSI2SSZrm_Int:
6769   case X86::VCVTSI642SSZrr:
6770   case X86::VCVTSI642SSZrm:
6771   case X86::VCVTSI642SSZrr_Int:
6772   case X86::VCVTSI642SSZrrb_Int:
6773   case X86::VCVTSI642SSZrm_Int:
6774   case X86::VCVTSI2SDZrr:
6775   case X86::VCVTSI2SDZrm:
6776   case X86::VCVTSI2SDZrr_Int:
6777   case X86::VCVTSI2SDZrm_Int:
6778   case X86::VCVTSI642SDZrr:
6779   case X86::VCVTSI642SDZrm:
6780   case X86::VCVTSI642SDZrr_Int:
6781   case X86::VCVTSI642SDZrrb_Int:
6782   case X86::VCVTSI642SDZrm_Int:
6783   case X86::VCVTUSI2SSZrr:
6784   case X86::VCVTUSI2SSZrm:
6785   case X86::VCVTUSI2SSZrr_Int:
6786   case X86::VCVTUSI2SSZrrb_Int:
6787   case X86::VCVTUSI2SSZrm_Int:
6788   case X86::VCVTUSI642SSZrr:
6789   case X86::VCVTUSI642SSZrm:
6790   case X86::VCVTUSI642SSZrr_Int:
6791   case X86::VCVTUSI642SSZrrb_Int:
6792   case X86::VCVTUSI642SSZrm_Int:
6793   case X86::VCVTUSI2SDZrr:
6794   case X86::VCVTUSI2SDZrm:
6795   case X86::VCVTUSI2SDZrr_Int:
6796   case X86::VCVTUSI2SDZrm_Int:
6797   case X86::VCVTUSI642SDZrr:
6798   case X86::VCVTUSI642SDZrm:
6799   case X86::VCVTUSI642SDZrr_Int:
6800   case X86::VCVTUSI642SDZrrb_Int:
6801   case X86::VCVTUSI642SDZrm_Int:
6802   case X86::VCVTSI2SHZrr:
6803   case X86::VCVTSI2SHZrm:
6804   case X86::VCVTSI2SHZrr_Int:
6805   case X86::VCVTSI2SHZrrb_Int:
6806   case X86::VCVTSI2SHZrm_Int:
6807   case X86::VCVTSI642SHZrr:
6808   case X86::VCVTSI642SHZrm:
6809   case X86::VCVTSI642SHZrr_Int:
6810   case X86::VCVTSI642SHZrrb_Int:
6811   case X86::VCVTSI642SHZrm_Int:
6812   case X86::VCVTUSI2SHZrr:
6813   case X86::VCVTUSI2SHZrm:
6814   case X86::VCVTUSI2SHZrr_Int:
6815   case X86::VCVTUSI2SHZrrb_Int:
6816   case X86::VCVTUSI2SHZrm_Int:
6817   case X86::VCVTUSI642SHZrr:
6818   case X86::VCVTUSI642SHZrm:
6819   case X86::VCVTUSI642SHZrr_Int:
6820   case X86::VCVTUSI642SHZrrb_Int:
6821   case X86::VCVTUSI642SHZrm_Int:
6822     // Load folding won't effect the undef register update since the input is
6823     // a GPR.
6824     return OpNum == 1 && !ForLoadFold;
6825   case X86::VCVTSD2SSrr:
6826   case X86::VCVTSD2SSrm:
6827   case X86::VCVTSD2SSrr_Int:
6828   case X86::VCVTSD2SSrm_Int:
6829   case X86::VCVTSS2SDrr:
6830   case X86::VCVTSS2SDrm:
6831   case X86::VCVTSS2SDrr_Int:
6832   case X86::VCVTSS2SDrm_Int:
6833   case X86::VRCPSSr:
6834   case X86::VRCPSSr_Int:
6835   case X86::VRCPSSm:
6836   case X86::VRCPSSm_Int:
6837   case X86::VROUNDSDr:
6838   case X86::VROUNDSDm:
6839   case X86::VROUNDSDr_Int:
6840   case X86::VROUNDSDm_Int:
6841   case X86::VROUNDSSr:
6842   case X86::VROUNDSSm:
6843   case X86::VROUNDSSr_Int:
6844   case X86::VROUNDSSm_Int:
6845   case X86::VRSQRTSSr:
6846   case X86::VRSQRTSSr_Int:
6847   case X86::VRSQRTSSm:
6848   case X86::VRSQRTSSm_Int:
6849   case X86::VSQRTSSr:
6850   case X86::VSQRTSSr_Int:
6851   case X86::VSQRTSSm:
6852   case X86::VSQRTSSm_Int:
6853   case X86::VSQRTSDr:
6854   case X86::VSQRTSDr_Int:
6855   case X86::VSQRTSDm:
6856   case X86::VSQRTSDm_Int:
6857   // AVX-512
6858   case X86::VCVTSD2SSZrr:
6859   case X86::VCVTSD2SSZrr_Int:
6860   case X86::VCVTSD2SSZrrb_Int:
6861   case X86::VCVTSD2SSZrm:
6862   case X86::VCVTSD2SSZrm_Int:
6863   case X86::VCVTSS2SDZrr:
6864   case X86::VCVTSS2SDZrr_Int:
6865   case X86::VCVTSS2SDZrrb_Int:
6866   case X86::VCVTSS2SDZrm:
6867   case X86::VCVTSS2SDZrm_Int:
6868   case X86::VGETEXPSDZr:
6869   case X86::VGETEXPSDZrb:
6870   case X86::VGETEXPSDZm:
6871   case X86::VGETEXPSSZr:
6872   case X86::VGETEXPSSZrb:
6873   case X86::VGETEXPSSZm:
6874   case X86::VGETMANTSDZrri:
6875   case X86::VGETMANTSDZrrib:
6876   case X86::VGETMANTSDZrmi:
6877   case X86::VGETMANTSSZrri:
6878   case X86::VGETMANTSSZrrib:
6879   case X86::VGETMANTSSZrmi:
6880   case X86::VRNDSCALESDZr:
6881   case X86::VRNDSCALESDZr_Int:
6882   case X86::VRNDSCALESDZrb_Int:
6883   case X86::VRNDSCALESDZm:
6884   case X86::VRNDSCALESDZm_Int:
6885   case X86::VRNDSCALESSZr:
6886   case X86::VRNDSCALESSZr_Int:
6887   case X86::VRNDSCALESSZrb_Int:
6888   case X86::VRNDSCALESSZm:
6889   case X86::VRNDSCALESSZm_Int:
6890   case X86::VRCP14SDZrr:
6891   case X86::VRCP14SDZrm:
6892   case X86::VRCP14SSZrr:
6893   case X86::VRCP14SSZrm:
6894   case X86::VRCPSHZrr:
6895   case X86::VRCPSHZrm:
6896   case X86::VRSQRTSHZrr:
6897   case X86::VRSQRTSHZrm:
6898   case X86::VREDUCESHZrmi:
6899   case X86::VREDUCESHZrri:
6900   case X86::VREDUCESHZrrib:
6901   case X86::VGETEXPSHZr:
6902   case X86::VGETEXPSHZrb:
6903   case X86::VGETEXPSHZm:
6904   case X86::VGETMANTSHZrri:
6905   case X86::VGETMANTSHZrrib:
6906   case X86::VGETMANTSHZrmi:
6907   case X86::VRNDSCALESHZr:
6908   case X86::VRNDSCALESHZr_Int:
6909   case X86::VRNDSCALESHZrb_Int:
6910   case X86::VRNDSCALESHZm:
6911   case X86::VRNDSCALESHZm_Int:
6912   case X86::VSQRTSHZr:
6913   case X86::VSQRTSHZr_Int:
6914   case X86::VSQRTSHZrb_Int:
6915   case X86::VSQRTSHZm:
6916   case X86::VSQRTSHZm_Int:
6917   case X86::VRCP28SDZr:
6918   case X86::VRCP28SDZrb:
6919   case X86::VRCP28SDZm:
6920   case X86::VRCP28SSZr:
6921   case X86::VRCP28SSZrb:
6922   case X86::VRCP28SSZm:
6923   case X86::VREDUCESSZrmi:
6924   case X86::VREDUCESSZrri:
6925   case X86::VREDUCESSZrrib:
6926   case X86::VRSQRT14SDZrr:
6927   case X86::VRSQRT14SDZrm:
6928   case X86::VRSQRT14SSZrr:
6929   case X86::VRSQRT14SSZrm:
6930   case X86::VRSQRT28SDZr:
6931   case X86::VRSQRT28SDZrb:
6932   case X86::VRSQRT28SDZm:
6933   case X86::VRSQRT28SSZr:
6934   case X86::VRSQRT28SSZrb:
6935   case X86::VRSQRT28SSZm:
6936   case X86::VSQRTSSZr:
6937   case X86::VSQRTSSZr_Int:
6938   case X86::VSQRTSSZrb_Int:
6939   case X86::VSQRTSSZm:
6940   case X86::VSQRTSSZm_Int:
6941   case X86::VSQRTSDZr:
6942   case X86::VSQRTSDZr_Int:
6943   case X86::VSQRTSDZrb_Int:
6944   case X86::VSQRTSDZm:
6945   case X86::VSQRTSDZm_Int:
6946   case X86::VCVTSD2SHZrr:
6947   case X86::VCVTSD2SHZrr_Int:
6948   case X86::VCVTSD2SHZrrb_Int:
6949   case X86::VCVTSD2SHZrm:
6950   case X86::VCVTSD2SHZrm_Int:
6951   case X86::VCVTSS2SHZrr:
6952   case X86::VCVTSS2SHZrr_Int:
6953   case X86::VCVTSS2SHZrrb_Int:
6954   case X86::VCVTSS2SHZrm:
6955   case X86::VCVTSS2SHZrm_Int:
6956   case X86::VCVTSH2SDZrr:
6957   case X86::VCVTSH2SDZrr_Int:
6958   case X86::VCVTSH2SDZrrb_Int:
6959   case X86::VCVTSH2SDZrm:
6960   case X86::VCVTSH2SDZrm_Int:
6961   case X86::VCVTSH2SSZrr:
6962   case X86::VCVTSH2SSZrr_Int:
6963   case X86::VCVTSH2SSZrrb_Int:
6964   case X86::VCVTSH2SSZrm:
6965   case X86::VCVTSH2SSZrm_Int:
6966     return OpNum == 1;
6967   case X86::VMOVSSZrrk:
6968   case X86::VMOVSDZrrk:
6969     return OpNum == 3 && !ForLoadFold;
6970   case X86::VMOVSSZrrkz:
6971   case X86::VMOVSDZrrkz:
6972     return OpNum == 2 && !ForLoadFold;
6973   }
6974 
6975   return false;
6976 }
6977 
6978 /// Inform the BreakFalseDeps pass how many idle instructions we would like
6979 /// before certain undef register reads.
6980 ///
6981 /// This catches the VCVTSI2SD family of instructions:
6982 ///
6983 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
6984 ///
6985 /// We should to be careful *not* to catch VXOR idioms which are presumably
6986 /// handled specially in the pipeline:
6987 ///
6988 /// vxorps undef %xmm1, undef %xmm1, %xmm1
6989 ///
6990 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
6991 /// high bits that are passed-through are not live.
6992 unsigned
6993 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
6994                                    const TargetRegisterInfo *TRI) const {
6995   const MachineOperand &MO = MI.getOperand(OpNum);
6996   if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
6997     return UndefRegClearance;
6998 
6999   return 0;
7000 }
7001 
7002 void X86InstrInfo::breakPartialRegDependency(
7003     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
7004   Register Reg = MI.getOperand(OpNum).getReg();
7005   // If MI kills this register, the false dependence is already broken.
7006   if (MI.killsRegister(Reg, TRI))
7007     return;
7008 
7009   if (X86::VR128RegClass.contains(Reg)) {
7010     // These instructions are all floating point domain, so xorps is the best
7011     // choice.
7012     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
7013     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
7014         .addReg(Reg, RegState::Undef)
7015         .addReg(Reg, RegState::Undef);
7016     MI.addRegisterKilled(Reg, TRI, true);
7017   } else if (X86::VR256RegClass.contains(Reg)) {
7018     // Use vxorps to clear the full ymm register.
7019     // It wants to read and write the xmm sub-register.
7020     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7021     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
7022         .addReg(XReg, RegState::Undef)
7023         .addReg(XReg, RegState::Undef)
7024         .addReg(Reg, RegState::ImplicitDefine);
7025     MI.addRegisterKilled(Reg, TRI, true);
7026   } else if (X86::VR128XRegClass.contains(Reg)) {
7027     // Only handle VLX targets.
7028     if (!Subtarget.hasVLX())
7029       return;
7030     // Since vxorps requires AVX512DQ, vpxord should be the best choice.
7031     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
7032         .addReg(Reg, RegState::Undef)
7033         .addReg(Reg, RegState::Undef);
7034     MI.addRegisterKilled(Reg, TRI, true);
7035   } else if (X86::VR256XRegClass.contains(Reg) ||
7036              X86::VR512RegClass.contains(Reg)) {
7037     // Only handle VLX targets.
7038     if (!Subtarget.hasVLX())
7039       return;
7040     // Use vpxord to clear the full ymm/zmm register.
7041     // It wants to read and write the xmm sub-register.
7042     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7043     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
7044         .addReg(XReg, RegState::Undef)
7045         .addReg(XReg, RegState::Undef)
7046         .addReg(Reg, RegState::ImplicitDefine);
7047     MI.addRegisterKilled(Reg, TRI, true);
7048   } else if (X86::GR64RegClass.contains(Reg)) {
7049     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
7050     // as well.
7051     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
7052     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
7053         .addReg(XReg, RegState::Undef)
7054         .addReg(XReg, RegState::Undef)
7055         .addReg(Reg, RegState::ImplicitDefine);
7056     MI.addRegisterKilled(Reg, TRI, true);
7057   } else if (X86::GR32RegClass.contains(Reg)) {
7058     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
7059         .addReg(Reg, RegState::Undef)
7060         .addReg(Reg, RegState::Undef);
7061     MI.addRegisterKilled(Reg, TRI, true);
7062   }
7063 }
7064 
7065 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
7066                         int PtrOffset = 0) {
7067   unsigned NumAddrOps = MOs.size();
7068 
7069   if (NumAddrOps < 4) {
7070     // FrameIndex only - add an immediate offset (whether its zero or not).
7071     for (unsigned i = 0; i != NumAddrOps; ++i)
7072       MIB.add(MOs[i]);
7073     addOffset(MIB, PtrOffset);
7074   } else {
7075     // General Memory Addressing - we need to add any offset to an existing
7076     // offset.
7077     assert(MOs.size() == 5 && "Unexpected memory operand list length");
7078     for (unsigned i = 0; i != NumAddrOps; ++i) {
7079       const MachineOperand &MO = MOs[i];
7080       if (i == 3 && PtrOffset != 0) {
7081         MIB.addDisp(MO, PtrOffset);
7082       } else {
7083         MIB.add(MO);
7084       }
7085     }
7086   }
7087 }
7088 
7089 static void updateOperandRegConstraints(MachineFunction &MF,
7090                                         MachineInstr &NewMI,
7091                                         const TargetInstrInfo &TII) {
7092   MachineRegisterInfo &MRI = MF.getRegInfo();
7093   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
7094 
7095   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
7096     MachineOperand &MO = NewMI.getOperand(Idx);
7097     // We only need to update constraints on virtual register operands.
7098     if (!MO.isReg())
7099       continue;
7100     Register Reg = MO.getReg();
7101     if (!Reg.isVirtual())
7102       continue;
7103 
7104     auto *NewRC = MRI.constrainRegClass(
7105         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
7106     if (!NewRC) {
7107       LLVM_DEBUG(
7108           dbgs() << "WARNING: Unable to update register constraint for operand "
7109                  << Idx << " of instruction:\n";
7110           NewMI.dump(); dbgs() << "\n");
7111     }
7112   }
7113 }
7114 
7115 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
7116                                      ArrayRef<MachineOperand> MOs,
7117                                      MachineBasicBlock::iterator InsertPt,
7118                                      MachineInstr &MI,
7119                                      const TargetInstrInfo &TII) {
7120   // Create the base instruction with the memory operand as the first part.
7121   // Omit the implicit operands, something BuildMI can't do.
7122   MachineInstr *NewMI =
7123       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7124   MachineInstrBuilder MIB(MF, NewMI);
7125   addOperands(MIB, MOs);
7126 
7127   // Loop over the rest of the ri operands, converting them over.
7128   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
7129   for (unsigned i = 0; i != NumOps; ++i) {
7130     MachineOperand &MO = MI.getOperand(i + 2);
7131     MIB.add(MO);
7132   }
7133   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
7134     MIB.add(MO);
7135 
7136   updateOperandRegConstraints(MF, *NewMI, TII);
7137 
7138   MachineBasicBlock *MBB = InsertPt->getParent();
7139   MBB->insert(InsertPt, NewMI);
7140 
7141   return MIB;
7142 }
7143 
7144 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
7145                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
7146                               MachineBasicBlock::iterator InsertPt,
7147                               MachineInstr &MI, const TargetInstrInfo &TII,
7148                               int PtrOffset = 0) {
7149   // Omit the implicit operands, something BuildMI can't do.
7150   MachineInstr *NewMI =
7151       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7152   MachineInstrBuilder MIB(MF, NewMI);
7153 
7154   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7155     MachineOperand &MO = MI.getOperand(i);
7156     if (i == OpNo) {
7157       assert(MO.isReg() && "Expected to fold into reg operand!");
7158       addOperands(MIB, MOs, PtrOffset);
7159     } else {
7160       MIB.add(MO);
7161     }
7162   }
7163 
7164   updateOperandRegConstraints(MF, *NewMI, TII);
7165 
7166   // Copy the NoFPExcept flag from the instruction we're fusing.
7167   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
7168     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
7169 
7170   MachineBasicBlock *MBB = InsertPt->getParent();
7171   MBB->insert(InsertPt, NewMI);
7172 
7173   return MIB;
7174 }
7175 
7176 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
7177                                 ArrayRef<MachineOperand> MOs,
7178                                 MachineBasicBlock::iterator InsertPt,
7179                                 MachineInstr &MI) {
7180   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
7181                                     MI.getDebugLoc(), TII.get(Opcode));
7182   addOperands(MIB, MOs);
7183   return MIB.addImm(0);
7184 }
7185 
7186 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
7187     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7188     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7189     unsigned Size, Align Alignment) const {
7190   switch (MI.getOpcode()) {
7191   case X86::INSERTPSrr:
7192   case X86::VINSERTPSrr:
7193   case X86::VINSERTPSZrr:
7194     // Attempt to convert the load of inserted vector into a fold load
7195     // of a single float.
7196     if (OpNum == 2) {
7197       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
7198       unsigned ZMask = Imm & 15;
7199       unsigned DstIdx = (Imm >> 4) & 3;
7200       unsigned SrcIdx = (Imm >> 6) & 3;
7201 
7202       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7203       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7204       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7205       if ((Size == 0 || Size >= 16) && RCSize >= 16 &&
7206           (MI.getOpcode() != X86::INSERTPSrr || Alignment >= Align(4))) {
7207         int PtrOffset = SrcIdx * 4;
7208         unsigned NewImm = (DstIdx << 4) | ZMask;
7209         unsigned NewOpCode =
7210             (MI.getOpcode() == X86::VINSERTPSZrr)  ? X86::VINSERTPSZrm
7211             : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm
7212                                                    : X86::INSERTPSrm;
7213         MachineInstr *NewMI =
7214             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
7215         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
7216         return NewMI;
7217       }
7218     }
7219     break;
7220   case X86::MOVHLPSrr:
7221   case X86::VMOVHLPSrr:
7222   case X86::VMOVHLPSZrr:
7223     // Move the upper 64-bits of the second operand to the lower 64-bits.
7224     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7225     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7226     if (OpNum == 2) {
7227       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7228       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7229       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7230       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
7231         unsigned NewOpCode =
7232             (MI.getOpcode() == X86::VMOVHLPSZrr)  ? X86::VMOVLPSZ128rm
7233             : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7234                                                   : X86::MOVLPSrm;
7235         MachineInstr *NewMI =
7236             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
7237         return NewMI;
7238       }
7239     }
7240     break;
7241   case X86::UNPCKLPDrr:
7242     // If we won't be able to fold this to the memory form of UNPCKL, use
7243     // MOVHPD instead. Done as custom because we can't have this in the load
7244     // table twice.
7245     if (OpNum == 2) {
7246       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7247       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7248       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7249       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
7250         MachineInstr *NewMI =
7251             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
7252         return NewMI;
7253       }
7254     }
7255     break;
7256   }
7257 
7258   return nullptr;
7259 }
7260 
7261 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
7262                                                MachineInstr &MI) {
7263   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) ||
7264       !MI.getOperand(1).isReg())
7265     return false;
7266 
7267   // The are two cases we need to handle depending on where in the pipeline
7268   // the folding attempt is being made.
7269   // -Register has the undef flag set.
7270   // -Register is produced by the IMPLICIT_DEF instruction.
7271 
7272   if (MI.getOperand(1).isUndef())
7273     return true;
7274 
7275   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7276   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
7277   return VRegDef && VRegDef->isImplicitDef();
7278 }
7279 
7280 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7281     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7282     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
7283     unsigned Size, Align Alignment, bool AllowCommute) const {
7284   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7285   bool isTwoAddrFold = false;
7286 
7287   // For CPUs that favor the register form of a call or push,
7288   // do not fold loads into calls or pushes, unless optimizing for size
7289   // aggressively.
7290   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
7291       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
7292        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
7293        MI.getOpcode() == X86::PUSH64r))
7294     return nullptr;
7295 
7296   // Avoid partial and undef register update stalls unless optimizing for size.
7297   if (!MF.getFunction().hasOptSize() &&
7298       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7299        shouldPreventUndefRegUpdateMemFold(MF, MI)))
7300     return nullptr;
7301 
7302   unsigned NumOps = MI.getDesc().getNumOperands();
7303   bool isTwoAddr =
7304       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
7305 
7306   // FIXME: AsmPrinter doesn't know how to handle
7307   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7308   if (MI.getOpcode() == X86::ADD32ri &&
7309       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
7310     return nullptr;
7311 
7312   // GOTTPOFF relocation loads can only be folded into add instructions.
7313   // FIXME: Need to exclude other relocations that only support specific
7314   // instructions.
7315   if (MOs.size() == X86::AddrNumOperands &&
7316       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
7317       MI.getOpcode() != X86::ADD64rr)
7318     return nullptr;
7319 
7320   // Don't fold loads into indirect calls that need a KCFI check as we'll
7321   // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7322   if (MI.isCall() && MI.getCFIType())
7323     return nullptr;
7324 
7325   MachineInstr *NewMI = nullptr;
7326 
7327   // Attempt to fold any custom cases we have.
7328   if (MachineInstr *CustomMI = foldMemoryOperandCustom(
7329           MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
7330     return CustomMI;
7331 
7332   const X86FoldTableEntry *I = nullptr;
7333 
7334   // Folding a memory location into the two-address part of a two-address
7335   // instruction is different than folding it other places.  It requires
7336   // replacing the *two* registers with the memory location.
7337   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
7338       MI.getOperand(1).isReg() &&
7339       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
7340     I = lookupTwoAddrFoldTable(MI.getOpcode());
7341     isTwoAddrFold = true;
7342   } else {
7343     if (OpNum == 0) {
7344       if (MI.getOpcode() == X86::MOV32r0) {
7345         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
7346         if (NewMI)
7347           return NewMI;
7348       }
7349     }
7350 
7351     I = lookupFoldTable(MI.getOpcode(), OpNum);
7352   }
7353 
7354   if (I != nullptr) {
7355     unsigned Opcode = I->DstOp;
7356     bool FoldedLoad =
7357         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
7358     bool FoldedStore =
7359         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
7360     if (Alignment <
7361         Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)))
7362       return nullptr;
7363     bool NarrowToMOV32rm = false;
7364     if (Size) {
7365       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7366       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7367       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7368       // Check if it's safe to fold the load. If the size of the object is
7369       // narrower than the load width, then it's not.
7370       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7371       if (FoldedLoad && Size < RCSize) {
7372         // If this is a 64-bit load, but the spill slot is 32, then we can do
7373         // a 32-bit load which is implicitly zero-extended. This likely is
7374         // due to live interval analysis remat'ing a load from stack slot.
7375         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
7376           return nullptr;
7377         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
7378           return nullptr;
7379         Opcode = X86::MOV32rm;
7380         NarrowToMOV32rm = true;
7381       }
7382       // For stores, make sure the size of the object is equal to the size of
7383       // the store. If the object is larger, the extra bits would be garbage. If
7384       // the object is smaller we might overwrite another object or fault.
7385       if (FoldedStore && Size != RCSize)
7386         return nullptr;
7387     }
7388 
7389     if (isTwoAddrFold)
7390       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
7391     else
7392       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
7393 
7394     if (NarrowToMOV32rm) {
7395       // If this is the special case where we use a MOV32rm to load a 32-bit
7396       // value and zero-extend the top bits. Change the destination register
7397       // to a 32-bit one.
7398       Register DstReg = NewMI->getOperand(0).getReg();
7399       if (DstReg.isPhysical())
7400         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
7401       else
7402         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
7403     }
7404     return NewMI;
7405   }
7406 
7407   // If the instruction and target operand are commutable, commute the
7408   // instruction and try again.
7409   if (AllowCommute) {
7410     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
7411     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
7412       bool HasDef = MI.getDesc().getNumDefs();
7413       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
7414       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
7415       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
7416       bool Tied1 =
7417           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
7418       bool Tied2 =
7419           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
7420 
7421       // If either of the commutable operands are tied to the destination
7422       // then we can not commute + fold.
7423       if ((HasDef && Reg0 == Reg1 && Tied1) ||
7424           (HasDef && Reg0 == Reg2 && Tied2))
7425         return nullptr;
7426 
7427       MachineInstr *CommutedMI =
7428           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
7429       if (!CommutedMI) {
7430         // Unable to commute.
7431         return nullptr;
7432       }
7433       if (CommutedMI != &MI) {
7434         // New instruction. We can't fold from this.
7435         CommutedMI->eraseFromParent();
7436         return nullptr;
7437       }
7438 
7439       // Attempt to fold with the commuted version of the instruction.
7440       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
7441                                     Alignment, /*AllowCommute=*/false);
7442       if (NewMI)
7443         return NewMI;
7444 
7445       // Folding failed again - undo the commute before returning.
7446       MachineInstr *UncommutedMI =
7447           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
7448       if (!UncommutedMI) {
7449         // Unable to commute.
7450         return nullptr;
7451       }
7452       if (UncommutedMI != &MI) {
7453         // New instruction. It doesn't need to be kept.
7454         UncommutedMI->eraseFromParent();
7455         return nullptr;
7456       }
7457 
7458       // Return here to prevent duplicate fuse failure report.
7459       return nullptr;
7460     }
7461   }
7462 
7463   // No fusion
7464   if (PrintFailedFusing && !MI.isCopy())
7465     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
7466   return nullptr;
7467 }
7468 
7469 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7470     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7471     MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
7472     VirtRegMap *VRM) const {
7473   // Check switch flag
7474   if (NoFusing)
7475     return nullptr;
7476 
7477   // Avoid partial and undef register update stalls unless optimizing for size.
7478   if (!MF.getFunction().hasOptSize() &&
7479       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7480        shouldPreventUndefRegUpdateMemFold(MF, MI)))
7481     return nullptr;
7482 
7483   // Don't fold subreg spills, or reloads that use a high subreg.
7484   for (auto Op : Ops) {
7485     MachineOperand &MO = MI.getOperand(Op);
7486     auto SubReg = MO.getSubReg();
7487     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
7488       return nullptr;
7489   }
7490 
7491   const MachineFrameInfo &MFI = MF.getFrameInfo();
7492   unsigned Size = MFI.getObjectSize(FrameIndex);
7493   Align Alignment = MFI.getObjectAlign(FrameIndex);
7494   // If the function stack isn't realigned we don't want to fold instructions
7495   // that need increased alignment.
7496   if (!RI.hasStackRealignment(MF))
7497     Alignment =
7498         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
7499   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7500     unsigned NewOpc = 0;
7501     unsigned RCSize = 0;
7502     switch (MI.getOpcode()) {
7503     default:
7504       return nullptr;
7505     case X86::TEST8rr:
7506       NewOpc = X86::CMP8ri;
7507       RCSize = 1;
7508       break;
7509     case X86::TEST16rr:
7510       NewOpc = X86::CMP16ri;
7511       RCSize = 2;
7512       break;
7513     case X86::TEST32rr:
7514       NewOpc = X86::CMP32ri;
7515       RCSize = 4;
7516       break;
7517     case X86::TEST64rr:
7518       NewOpc = X86::CMP64ri32;
7519       RCSize = 8;
7520       break;
7521     }
7522     // Check if it's safe to fold the load. If the size of the object is
7523     // narrower than the load width, then it's not.
7524     if (Size < RCSize)
7525       return nullptr;
7526     // Change to CMPXXri r, 0 first.
7527     MI.setDesc(get(NewOpc));
7528     MI.getOperand(1).ChangeToImmediate(0);
7529   } else if (Ops.size() != 1)
7530     return nullptr;
7531 
7532   return foldMemoryOperandImpl(MF, MI, Ops[0],
7533                                MachineOperand::CreateFI(FrameIndex), InsertPt,
7534                                Size, Alignment, /*AllowCommute=*/true);
7535 }
7536 
7537 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7538 /// because the latter uses contents that wouldn't be defined in the folded
7539 /// version.  For instance, this transformation isn't legal:
7540 ///   movss (%rdi), %xmm0
7541 ///   addps %xmm0, %xmm0
7542 /// ->
7543 ///   addps (%rdi), %xmm0
7544 ///
7545 /// But this one is:
7546 ///   movss (%rdi), %xmm0
7547 ///   addss %xmm0, %xmm0
7548 /// ->
7549 ///   addss (%rdi), %xmm0
7550 ///
7551 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
7552                                              const MachineInstr &UserMI,
7553                                              const MachineFunction &MF) {
7554   unsigned Opc = LoadMI.getOpcode();
7555   unsigned UserOpc = UserMI.getOpcode();
7556   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7557   const TargetRegisterClass *RC =
7558       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
7559   unsigned RegSize = TRI.getRegSizeInBits(*RC);
7560 
7561   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
7562        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
7563        Opc == X86::VMOVSSZrm_alt) &&
7564       RegSize > 32) {
7565     // These instructions only load 32 bits, we can't fold them if the
7566     // destination register is wider than 32 bits (4 bytes), and its user
7567     // instruction isn't scalar (SS).
7568     switch (UserOpc) {
7569     case X86::CVTSS2SDrr_Int:
7570     case X86::VCVTSS2SDrr_Int:
7571     case X86::VCVTSS2SDZrr_Int:
7572     case X86::VCVTSS2SDZrr_Intk:
7573     case X86::VCVTSS2SDZrr_Intkz:
7574     case X86::CVTSS2SIrr_Int:
7575     case X86::CVTSS2SI64rr_Int:
7576     case X86::VCVTSS2SIrr_Int:
7577     case X86::VCVTSS2SI64rr_Int:
7578     case X86::VCVTSS2SIZrr_Int:
7579     case X86::VCVTSS2SI64Zrr_Int:
7580     case X86::CVTTSS2SIrr_Int:
7581     case X86::CVTTSS2SI64rr_Int:
7582     case X86::VCVTTSS2SIrr_Int:
7583     case X86::VCVTTSS2SI64rr_Int:
7584     case X86::VCVTTSS2SIZrr_Int:
7585     case X86::VCVTTSS2SI64Zrr_Int:
7586     case X86::VCVTSS2USIZrr_Int:
7587     case X86::VCVTSS2USI64Zrr_Int:
7588     case X86::VCVTTSS2USIZrr_Int:
7589     case X86::VCVTTSS2USI64Zrr_Int:
7590     case X86::RCPSSr_Int:
7591     case X86::VRCPSSr_Int:
7592     case X86::RSQRTSSr_Int:
7593     case X86::VRSQRTSSr_Int:
7594     case X86::ROUNDSSr_Int:
7595     case X86::VROUNDSSr_Int:
7596     case X86::COMISSrr_Int:
7597     case X86::VCOMISSrr_Int:
7598     case X86::VCOMISSZrr_Int:
7599     case X86::UCOMISSrr_Int:
7600     case X86::VUCOMISSrr_Int:
7601     case X86::VUCOMISSZrr_Int:
7602     case X86::ADDSSrr_Int:
7603     case X86::VADDSSrr_Int:
7604     case X86::VADDSSZrr_Int:
7605     case X86::CMPSSrr_Int:
7606     case X86::VCMPSSrr_Int:
7607     case X86::VCMPSSZrr_Int:
7608     case X86::DIVSSrr_Int:
7609     case X86::VDIVSSrr_Int:
7610     case X86::VDIVSSZrr_Int:
7611     case X86::MAXSSrr_Int:
7612     case X86::VMAXSSrr_Int:
7613     case X86::VMAXSSZrr_Int:
7614     case X86::MINSSrr_Int:
7615     case X86::VMINSSrr_Int:
7616     case X86::VMINSSZrr_Int:
7617     case X86::MULSSrr_Int:
7618     case X86::VMULSSrr_Int:
7619     case X86::VMULSSZrr_Int:
7620     case X86::SQRTSSr_Int:
7621     case X86::VSQRTSSr_Int:
7622     case X86::VSQRTSSZr_Int:
7623     case X86::SUBSSrr_Int:
7624     case X86::VSUBSSrr_Int:
7625     case X86::VSUBSSZrr_Int:
7626     case X86::VADDSSZrr_Intk:
7627     case X86::VADDSSZrr_Intkz:
7628     case X86::VCMPSSZrr_Intk:
7629     case X86::VDIVSSZrr_Intk:
7630     case X86::VDIVSSZrr_Intkz:
7631     case X86::VMAXSSZrr_Intk:
7632     case X86::VMAXSSZrr_Intkz:
7633     case X86::VMINSSZrr_Intk:
7634     case X86::VMINSSZrr_Intkz:
7635     case X86::VMULSSZrr_Intk:
7636     case X86::VMULSSZrr_Intkz:
7637     case X86::VSQRTSSZr_Intk:
7638     case X86::VSQRTSSZr_Intkz:
7639     case X86::VSUBSSZrr_Intk:
7640     case X86::VSUBSSZrr_Intkz:
7641     case X86::VFMADDSS4rr_Int:
7642     case X86::VFNMADDSS4rr_Int:
7643     case X86::VFMSUBSS4rr_Int:
7644     case X86::VFNMSUBSS4rr_Int:
7645     case X86::VFMADD132SSr_Int:
7646     case X86::VFNMADD132SSr_Int:
7647     case X86::VFMADD213SSr_Int:
7648     case X86::VFNMADD213SSr_Int:
7649     case X86::VFMADD231SSr_Int:
7650     case X86::VFNMADD231SSr_Int:
7651     case X86::VFMSUB132SSr_Int:
7652     case X86::VFNMSUB132SSr_Int:
7653     case X86::VFMSUB213SSr_Int:
7654     case X86::VFNMSUB213SSr_Int:
7655     case X86::VFMSUB231SSr_Int:
7656     case X86::VFNMSUB231SSr_Int:
7657     case X86::VFMADD132SSZr_Int:
7658     case X86::VFNMADD132SSZr_Int:
7659     case X86::VFMADD213SSZr_Int:
7660     case X86::VFNMADD213SSZr_Int:
7661     case X86::VFMADD231SSZr_Int:
7662     case X86::VFNMADD231SSZr_Int:
7663     case X86::VFMSUB132SSZr_Int:
7664     case X86::VFNMSUB132SSZr_Int:
7665     case X86::VFMSUB213SSZr_Int:
7666     case X86::VFNMSUB213SSZr_Int:
7667     case X86::VFMSUB231SSZr_Int:
7668     case X86::VFNMSUB231SSZr_Int:
7669     case X86::VFMADD132SSZr_Intk:
7670     case X86::VFNMADD132SSZr_Intk:
7671     case X86::VFMADD213SSZr_Intk:
7672     case X86::VFNMADD213SSZr_Intk:
7673     case X86::VFMADD231SSZr_Intk:
7674     case X86::VFNMADD231SSZr_Intk:
7675     case X86::VFMSUB132SSZr_Intk:
7676     case X86::VFNMSUB132SSZr_Intk:
7677     case X86::VFMSUB213SSZr_Intk:
7678     case X86::VFNMSUB213SSZr_Intk:
7679     case X86::VFMSUB231SSZr_Intk:
7680     case X86::VFNMSUB231SSZr_Intk:
7681     case X86::VFMADD132SSZr_Intkz:
7682     case X86::VFNMADD132SSZr_Intkz:
7683     case X86::VFMADD213SSZr_Intkz:
7684     case X86::VFNMADD213SSZr_Intkz:
7685     case X86::VFMADD231SSZr_Intkz:
7686     case X86::VFNMADD231SSZr_Intkz:
7687     case X86::VFMSUB132SSZr_Intkz:
7688     case X86::VFNMSUB132SSZr_Intkz:
7689     case X86::VFMSUB213SSZr_Intkz:
7690     case X86::VFNMSUB213SSZr_Intkz:
7691     case X86::VFMSUB231SSZr_Intkz:
7692     case X86::VFNMSUB231SSZr_Intkz:
7693     case X86::VFIXUPIMMSSZrri:
7694     case X86::VFIXUPIMMSSZrrik:
7695     case X86::VFIXUPIMMSSZrrikz:
7696     case X86::VFPCLASSSSZrr:
7697     case X86::VFPCLASSSSZrrk:
7698     case X86::VGETEXPSSZr:
7699     case X86::VGETEXPSSZrk:
7700     case X86::VGETEXPSSZrkz:
7701     case X86::VGETMANTSSZrri:
7702     case X86::VGETMANTSSZrrik:
7703     case X86::VGETMANTSSZrrikz:
7704     case X86::VRANGESSZrri:
7705     case X86::VRANGESSZrrik:
7706     case X86::VRANGESSZrrikz:
7707     case X86::VRCP14SSZrr:
7708     case X86::VRCP14SSZrrk:
7709     case X86::VRCP14SSZrrkz:
7710     case X86::VRCP28SSZr:
7711     case X86::VRCP28SSZrk:
7712     case X86::VRCP28SSZrkz:
7713     case X86::VREDUCESSZrri:
7714     case X86::VREDUCESSZrrik:
7715     case X86::VREDUCESSZrrikz:
7716     case X86::VRNDSCALESSZr_Int:
7717     case X86::VRNDSCALESSZr_Intk:
7718     case X86::VRNDSCALESSZr_Intkz:
7719     case X86::VRSQRT14SSZrr:
7720     case X86::VRSQRT14SSZrrk:
7721     case X86::VRSQRT14SSZrrkz:
7722     case X86::VRSQRT28SSZr:
7723     case X86::VRSQRT28SSZrk:
7724     case X86::VRSQRT28SSZrkz:
7725     case X86::VSCALEFSSZrr:
7726     case X86::VSCALEFSSZrrk:
7727     case X86::VSCALEFSSZrrkz:
7728       return false;
7729     default:
7730       return true;
7731     }
7732   }
7733 
7734   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
7735        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
7736        Opc == X86::VMOVSDZrm_alt) &&
7737       RegSize > 64) {
7738     // These instructions only load 64 bits, we can't fold them if the
7739     // destination register is wider than 64 bits (8 bytes), and its user
7740     // instruction isn't scalar (SD).
7741     switch (UserOpc) {
7742     case X86::CVTSD2SSrr_Int:
7743     case X86::VCVTSD2SSrr_Int:
7744     case X86::VCVTSD2SSZrr_Int:
7745     case X86::VCVTSD2SSZrr_Intk:
7746     case X86::VCVTSD2SSZrr_Intkz:
7747     case X86::CVTSD2SIrr_Int:
7748     case X86::CVTSD2SI64rr_Int:
7749     case X86::VCVTSD2SIrr_Int:
7750     case X86::VCVTSD2SI64rr_Int:
7751     case X86::VCVTSD2SIZrr_Int:
7752     case X86::VCVTSD2SI64Zrr_Int:
7753     case X86::CVTTSD2SIrr_Int:
7754     case X86::CVTTSD2SI64rr_Int:
7755     case X86::VCVTTSD2SIrr_Int:
7756     case X86::VCVTTSD2SI64rr_Int:
7757     case X86::VCVTTSD2SIZrr_Int:
7758     case X86::VCVTTSD2SI64Zrr_Int:
7759     case X86::VCVTSD2USIZrr_Int:
7760     case X86::VCVTSD2USI64Zrr_Int:
7761     case X86::VCVTTSD2USIZrr_Int:
7762     case X86::VCVTTSD2USI64Zrr_Int:
7763     case X86::ROUNDSDr_Int:
7764     case X86::VROUNDSDr_Int:
7765     case X86::COMISDrr_Int:
7766     case X86::VCOMISDrr_Int:
7767     case X86::VCOMISDZrr_Int:
7768     case X86::UCOMISDrr_Int:
7769     case X86::VUCOMISDrr_Int:
7770     case X86::VUCOMISDZrr_Int:
7771     case X86::ADDSDrr_Int:
7772     case X86::VADDSDrr_Int:
7773     case X86::VADDSDZrr_Int:
7774     case X86::CMPSDrr_Int:
7775     case X86::VCMPSDrr_Int:
7776     case X86::VCMPSDZrr_Int:
7777     case X86::DIVSDrr_Int:
7778     case X86::VDIVSDrr_Int:
7779     case X86::VDIVSDZrr_Int:
7780     case X86::MAXSDrr_Int:
7781     case X86::VMAXSDrr_Int:
7782     case X86::VMAXSDZrr_Int:
7783     case X86::MINSDrr_Int:
7784     case X86::VMINSDrr_Int:
7785     case X86::VMINSDZrr_Int:
7786     case X86::MULSDrr_Int:
7787     case X86::VMULSDrr_Int:
7788     case X86::VMULSDZrr_Int:
7789     case X86::SQRTSDr_Int:
7790     case X86::VSQRTSDr_Int:
7791     case X86::VSQRTSDZr_Int:
7792     case X86::SUBSDrr_Int:
7793     case X86::VSUBSDrr_Int:
7794     case X86::VSUBSDZrr_Int:
7795     case X86::VADDSDZrr_Intk:
7796     case X86::VADDSDZrr_Intkz:
7797     case X86::VCMPSDZrr_Intk:
7798     case X86::VDIVSDZrr_Intk:
7799     case X86::VDIVSDZrr_Intkz:
7800     case X86::VMAXSDZrr_Intk:
7801     case X86::VMAXSDZrr_Intkz:
7802     case X86::VMINSDZrr_Intk:
7803     case X86::VMINSDZrr_Intkz:
7804     case X86::VMULSDZrr_Intk:
7805     case X86::VMULSDZrr_Intkz:
7806     case X86::VSQRTSDZr_Intk:
7807     case X86::VSQRTSDZr_Intkz:
7808     case X86::VSUBSDZrr_Intk:
7809     case X86::VSUBSDZrr_Intkz:
7810     case X86::VFMADDSD4rr_Int:
7811     case X86::VFNMADDSD4rr_Int:
7812     case X86::VFMSUBSD4rr_Int:
7813     case X86::VFNMSUBSD4rr_Int:
7814     case X86::VFMADD132SDr_Int:
7815     case X86::VFNMADD132SDr_Int:
7816     case X86::VFMADD213SDr_Int:
7817     case X86::VFNMADD213SDr_Int:
7818     case X86::VFMADD231SDr_Int:
7819     case X86::VFNMADD231SDr_Int:
7820     case X86::VFMSUB132SDr_Int:
7821     case X86::VFNMSUB132SDr_Int:
7822     case X86::VFMSUB213SDr_Int:
7823     case X86::VFNMSUB213SDr_Int:
7824     case X86::VFMSUB231SDr_Int:
7825     case X86::VFNMSUB231SDr_Int:
7826     case X86::VFMADD132SDZr_Int:
7827     case X86::VFNMADD132SDZr_Int:
7828     case X86::VFMADD213SDZr_Int:
7829     case X86::VFNMADD213SDZr_Int:
7830     case X86::VFMADD231SDZr_Int:
7831     case X86::VFNMADD231SDZr_Int:
7832     case X86::VFMSUB132SDZr_Int:
7833     case X86::VFNMSUB132SDZr_Int:
7834     case X86::VFMSUB213SDZr_Int:
7835     case X86::VFNMSUB213SDZr_Int:
7836     case X86::VFMSUB231SDZr_Int:
7837     case X86::VFNMSUB231SDZr_Int:
7838     case X86::VFMADD132SDZr_Intk:
7839     case X86::VFNMADD132SDZr_Intk:
7840     case X86::VFMADD213SDZr_Intk:
7841     case X86::VFNMADD213SDZr_Intk:
7842     case X86::VFMADD231SDZr_Intk:
7843     case X86::VFNMADD231SDZr_Intk:
7844     case X86::VFMSUB132SDZr_Intk:
7845     case X86::VFNMSUB132SDZr_Intk:
7846     case X86::VFMSUB213SDZr_Intk:
7847     case X86::VFNMSUB213SDZr_Intk:
7848     case X86::VFMSUB231SDZr_Intk:
7849     case X86::VFNMSUB231SDZr_Intk:
7850     case X86::VFMADD132SDZr_Intkz:
7851     case X86::VFNMADD132SDZr_Intkz:
7852     case X86::VFMADD213SDZr_Intkz:
7853     case X86::VFNMADD213SDZr_Intkz:
7854     case X86::VFMADD231SDZr_Intkz:
7855     case X86::VFNMADD231SDZr_Intkz:
7856     case X86::VFMSUB132SDZr_Intkz:
7857     case X86::VFNMSUB132SDZr_Intkz:
7858     case X86::VFMSUB213SDZr_Intkz:
7859     case X86::VFNMSUB213SDZr_Intkz:
7860     case X86::VFMSUB231SDZr_Intkz:
7861     case X86::VFNMSUB231SDZr_Intkz:
7862     case X86::VFIXUPIMMSDZrri:
7863     case X86::VFIXUPIMMSDZrrik:
7864     case X86::VFIXUPIMMSDZrrikz:
7865     case X86::VFPCLASSSDZrr:
7866     case X86::VFPCLASSSDZrrk:
7867     case X86::VGETEXPSDZr:
7868     case X86::VGETEXPSDZrk:
7869     case X86::VGETEXPSDZrkz:
7870     case X86::VGETMANTSDZrri:
7871     case X86::VGETMANTSDZrrik:
7872     case X86::VGETMANTSDZrrikz:
7873     case X86::VRANGESDZrri:
7874     case X86::VRANGESDZrrik:
7875     case X86::VRANGESDZrrikz:
7876     case X86::VRCP14SDZrr:
7877     case X86::VRCP14SDZrrk:
7878     case X86::VRCP14SDZrrkz:
7879     case X86::VRCP28SDZr:
7880     case X86::VRCP28SDZrk:
7881     case X86::VRCP28SDZrkz:
7882     case X86::VREDUCESDZrri:
7883     case X86::VREDUCESDZrrik:
7884     case X86::VREDUCESDZrrikz:
7885     case X86::VRNDSCALESDZr_Int:
7886     case X86::VRNDSCALESDZr_Intk:
7887     case X86::VRNDSCALESDZr_Intkz:
7888     case X86::VRSQRT14SDZrr:
7889     case X86::VRSQRT14SDZrrk:
7890     case X86::VRSQRT14SDZrrkz:
7891     case X86::VRSQRT28SDZr:
7892     case X86::VRSQRT28SDZrk:
7893     case X86::VRSQRT28SDZrkz:
7894     case X86::VSCALEFSDZrr:
7895     case X86::VSCALEFSDZrrk:
7896     case X86::VSCALEFSDZrrkz:
7897       return false;
7898     default:
7899       return true;
7900     }
7901   }
7902 
7903   if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
7904     // These instructions only load 16 bits, we can't fold them if the
7905     // destination register is wider than 16 bits (2 bytes), and its user
7906     // instruction isn't scalar (SH).
7907     switch (UserOpc) {
7908     case X86::VADDSHZrr_Int:
7909     case X86::VCMPSHZrr_Int:
7910     case X86::VDIVSHZrr_Int:
7911     case X86::VMAXSHZrr_Int:
7912     case X86::VMINSHZrr_Int:
7913     case X86::VMULSHZrr_Int:
7914     case X86::VSUBSHZrr_Int:
7915     case X86::VADDSHZrr_Intk:
7916     case X86::VADDSHZrr_Intkz:
7917     case X86::VCMPSHZrr_Intk:
7918     case X86::VDIVSHZrr_Intk:
7919     case X86::VDIVSHZrr_Intkz:
7920     case X86::VMAXSHZrr_Intk:
7921     case X86::VMAXSHZrr_Intkz:
7922     case X86::VMINSHZrr_Intk:
7923     case X86::VMINSHZrr_Intkz:
7924     case X86::VMULSHZrr_Intk:
7925     case X86::VMULSHZrr_Intkz:
7926     case X86::VSUBSHZrr_Intk:
7927     case X86::VSUBSHZrr_Intkz:
7928     case X86::VFMADD132SHZr_Int:
7929     case X86::VFNMADD132SHZr_Int:
7930     case X86::VFMADD213SHZr_Int:
7931     case X86::VFNMADD213SHZr_Int:
7932     case X86::VFMADD231SHZr_Int:
7933     case X86::VFNMADD231SHZr_Int:
7934     case X86::VFMSUB132SHZr_Int:
7935     case X86::VFNMSUB132SHZr_Int:
7936     case X86::VFMSUB213SHZr_Int:
7937     case X86::VFNMSUB213SHZr_Int:
7938     case X86::VFMSUB231SHZr_Int:
7939     case X86::VFNMSUB231SHZr_Int:
7940     case X86::VFMADD132SHZr_Intk:
7941     case X86::VFNMADD132SHZr_Intk:
7942     case X86::VFMADD213SHZr_Intk:
7943     case X86::VFNMADD213SHZr_Intk:
7944     case X86::VFMADD231SHZr_Intk:
7945     case X86::VFNMADD231SHZr_Intk:
7946     case X86::VFMSUB132SHZr_Intk:
7947     case X86::VFNMSUB132SHZr_Intk:
7948     case X86::VFMSUB213SHZr_Intk:
7949     case X86::VFNMSUB213SHZr_Intk:
7950     case X86::VFMSUB231SHZr_Intk:
7951     case X86::VFNMSUB231SHZr_Intk:
7952     case X86::VFMADD132SHZr_Intkz:
7953     case X86::VFNMADD132SHZr_Intkz:
7954     case X86::VFMADD213SHZr_Intkz:
7955     case X86::VFNMADD213SHZr_Intkz:
7956     case X86::VFMADD231SHZr_Intkz:
7957     case X86::VFNMADD231SHZr_Intkz:
7958     case X86::VFMSUB132SHZr_Intkz:
7959     case X86::VFNMSUB132SHZr_Intkz:
7960     case X86::VFMSUB213SHZr_Intkz:
7961     case X86::VFNMSUB213SHZr_Intkz:
7962     case X86::VFMSUB231SHZr_Intkz:
7963     case X86::VFNMSUB231SHZr_Intkz:
7964       return false;
7965     default:
7966       return true;
7967     }
7968   }
7969 
7970   return false;
7971 }
7972 
7973 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
7974     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
7975     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
7976     LiveIntervals *LIS) const {
7977 
7978   // TODO: Support the case where LoadMI loads a wide register, but MI
7979   // only uses a subreg.
7980   for (auto Op : Ops) {
7981     if (MI.getOperand(Op).getSubReg())
7982       return nullptr;
7983   }
7984 
7985   // If loading from a FrameIndex, fold directly from the FrameIndex.
7986   unsigned NumOps = LoadMI.getDesc().getNumOperands();
7987   int FrameIndex;
7988   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
7989     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
7990       return nullptr;
7991     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
7992   }
7993 
7994   // Check switch flag
7995   if (NoFusing)
7996     return nullptr;
7997 
7998   // Avoid partial and undef register update stalls unless optimizing for size.
7999   if (!MF.getFunction().hasOptSize() &&
8000       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
8001        shouldPreventUndefRegUpdateMemFold(MF, MI)))
8002     return nullptr;
8003 
8004   // Determine the alignment of the load.
8005   Align Alignment;
8006   if (LoadMI.hasOneMemOperand())
8007     Alignment = (*LoadMI.memoperands_begin())->getAlign();
8008   else
8009     switch (LoadMI.getOpcode()) {
8010     case X86::AVX512_512_SET0:
8011     case X86::AVX512_512_SETALLONES:
8012       Alignment = Align(64);
8013       break;
8014     case X86::AVX2_SETALLONES:
8015     case X86::AVX1_SETALLONES:
8016     case X86::AVX_SET0:
8017     case X86::AVX512_256_SET0:
8018       Alignment = Align(32);
8019       break;
8020     case X86::V_SET0:
8021     case X86::V_SETALLONES:
8022     case X86::AVX512_128_SET0:
8023     case X86::FsFLD0F128:
8024     case X86::AVX512_FsFLD0F128:
8025       Alignment = Align(16);
8026       break;
8027     case X86::MMX_SET0:
8028     case X86::FsFLD0SD:
8029     case X86::AVX512_FsFLD0SD:
8030       Alignment = Align(8);
8031       break;
8032     case X86::FsFLD0SS:
8033     case X86::AVX512_FsFLD0SS:
8034       Alignment = Align(4);
8035       break;
8036     case X86::FsFLD0SH:
8037     case X86::AVX512_FsFLD0SH:
8038       Alignment = Align(2);
8039       break;
8040     default:
8041       return nullptr;
8042     }
8043   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8044     unsigned NewOpc = 0;
8045     switch (MI.getOpcode()) {
8046     default:
8047       return nullptr;
8048     case X86::TEST8rr:
8049       NewOpc = X86::CMP8ri;
8050       break;
8051     case X86::TEST16rr:
8052       NewOpc = X86::CMP16ri;
8053       break;
8054     case X86::TEST32rr:
8055       NewOpc = X86::CMP32ri;
8056       break;
8057     case X86::TEST64rr:
8058       NewOpc = X86::CMP64ri32;
8059       break;
8060     }
8061     // Change to CMPXXri r, 0 first.
8062     MI.setDesc(get(NewOpc));
8063     MI.getOperand(1).ChangeToImmediate(0);
8064   } else if (Ops.size() != 1)
8065     return nullptr;
8066 
8067   // Make sure the subregisters match.
8068   // Otherwise we risk changing the size of the load.
8069   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
8070     return nullptr;
8071 
8072   SmallVector<MachineOperand, X86::AddrNumOperands> MOs;
8073   switch (LoadMI.getOpcode()) {
8074   case X86::MMX_SET0:
8075   case X86::V_SET0:
8076   case X86::V_SETALLONES:
8077   case X86::AVX2_SETALLONES:
8078   case X86::AVX1_SETALLONES:
8079   case X86::AVX_SET0:
8080   case X86::AVX512_128_SET0:
8081   case X86::AVX512_256_SET0:
8082   case X86::AVX512_512_SET0:
8083   case X86::AVX512_512_SETALLONES:
8084   case X86::FsFLD0SH:
8085   case X86::AVX512_FsFLD0SH:
8086   case X86::FsFLD0SD:
8087   case X86::AVX512_FsFLD0SD:
8088   case X86::FsFLD0SS:
8089   case X86::AVX512_FsFLD0SS:
8090   case X86::FsFLD0F128:
8091   case X86::AVX512_FsFLD0F128: {
8092     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8093     // Create a constant-pool entry and operands to load from it.
8094 
8095     // Large code model can't fold loads this way.
8096     if (MF.getTarget().getCodeModel() == CodeModel::Large)
8097       return nullptr;
8098 
8099     // x86-32 PIC requires a PIC base register for constant pools.
8100     unsigned PICBase = 0;
8101     // Since we're using Small or Kernel code model, we can always use
8102     // RIP-relative addressing for a smaller encoding.
8103     if (Subtarget.is64Bit()) {
8104       PICBase = X86::RIP;
8105     } else if (MF.getTarget().isPositionIndependent()) {
8106       // FIXME: PICBase = getGlobalBaseReg(&MF);
8107       // This doesn't work for several reasons.
8108       // 1. GlobalBaseReg may have been spilled.
8109       // 2. It may not be live at MI.
8110       return nullptr;
8111     }
8112 
8113     // Create a constant-pool entry.
8114     MachineConstantPool &MCP = *MF.getConstantPool();
8115     Type *Ty;
8116     unsigned Opc = LoadMI.getOpcode();
8117     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
8118       Ty = Type::getFloatTy(MF.getFunction().getContext());
8119     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
8120       Ty = Type::getDoubleTy(MF.getFunction().getContext());
8121     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
8122       Ty = Type::getFP128Ty(MF.getFunction().getContext());
8123     else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
8124       Ty = Type::getHalfTy(MF.getFunction().getContext());
8125     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
8126       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8127                                 16);
8128     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
8129              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
8130       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8131                                 8);
8132     else if (Opc == X86::MMX_SET0)
8133       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8134                                 2);
8135     else
8136       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
8137                                 4);
8138 
8139     bool IsAllOnes =
8140         (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
8141          Opc == X86::AVX512_512_SETALLONES || Opc == X86::AVX1_SETALLONES);
8142     const Constant *C =
8143         IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty);
8144     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8145 
8146     // Create operands to load from the constant pool entry.
8147     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
8148     MOs.push_back(MachineOperand::CreateImm(1));
8149     MOs.push_back(MachineOperand::CreateReg(0, false));
8150     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
8151     MOs.push_back(MachineOperand::CreateReg(0, false));
8152     break;
8153   }
8154   default: {
8155     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8156       return nullptr;
8157 
8158     // Folding a normal load. Just copy the load's address operands.
8159     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
8160                LoadMI.operands_begin() + NumOps);
8161     break;
8162   }
8163   }
8164   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
8165                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
8166 }
8167 
8168 static SmallVector<MachineMemOperand *, 2>
8169 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8170   SmallVector<MachineMemOperand *, 2> LoadMMOs;
8171 
8172   for (MachineMemOperand *MMO : MMOs) {
8173     if (!MMO->isLoad())
8174       continue;
8175 
8176     if (!MMO->isStore()) {
8177       // Reuse the MMO.
8178       LoadMMOs.push_back(MMO);
8179     } else {
8180       // Clone the MMO and unset the store flag.
8181       LoadMMOs.push_back(MF.getMachineMemOperand(
8182           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
8183     }
8184   }
8185 
8186   return LoadMMOs;
8187 }
8188 
8189 static SmallVector<MachineMemOperand *, 2>
8190 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
8191   SmallVector<MachineMemOperand *, 2> StoreMMOs;
8192 
8193   for (MachineMemOperand *MMO : MMOs) {
8194     if (!MMO->isStore())
8195       continue;
8196 
8197     if (!MMO->isLoad()) {
8198       // Reuse the MMO.
8199       StoreMMOs.push_back(MMO);
8200     } else {
8201       // Clone the MMO and unset the load flag.
8202       StoreMMOs.push_back(MF.getMachineMemOperand(
8203           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
8204     }
8205   }
8206 
8207   return StoreMMOs;
8208 }
8209 
8210 static unsigned getBroadcastOpcode(const X86FoldTableEntry *I,
8211                                    const TargetRegisterClass *RC,
8212                                    const X86Subtarget &STI) {
8213   assert(STI.hasAVX512() && "Expected at least AVX512!");
8214   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
8215   assert((SpillSize == 64 || STI.hasVLX()) &&
8216          "Can't broadcast less than 64 bytes without AVX512VL!");
8217 
8218   switch (I->Flags & TB_BCAST_MASK) {
8219   default:
8220     llvm_unreachable("Unexpected broadcast type!");
8221   case TB_BCAST_D:
8222     switch (SpillSize) {
8223     default:
8224       llvm_unreachable("Unknown spill size");
8225     case 16:
8226       return X86::VPBROADCASTDZ128rm;
8227     case 32:
8228       return X86::VPBROADCASTDZ256rm;
8229     case 64:
8230       return X86::VPBROADCASTDZrm;
8231     }
8232     break;
8233   case TB_BCAST_Q:
8234     switch (SpillSize) {
8235     default:
8236       llvm_unreachable("Unknown spill size");
8237     case 16:
8238       return X86::VPBROADCASTQZ128rm;
8239     case 32:
8240       return X86::VPBROADCASTQZ256rm;
8241     case 64:
8242       return X86::VPBROADCASTQZrm;
8243     }
8244     break;
8245   case TB_BCAST_SS:
8246     switch (SpillSize) {
8247     default:
8248       llvm_unreachable("Unknown spill size");
8249     case 16:
8250       return X86::VBROADCASTSSZ128rm;
8251     case 32:
8252       return X86::VBROADCASTSSZ256rm;
8253     case 64:
8254       return X86::VBROADCASTSSZrm;
8255     }
8256     break;
8257   case TB_BCAST_SD:
8258     switch (SpillSize) {
8259     default:
8260       llvm_unreachable("Unknown spill size");
8261     case 16:
8262       return X86::VMOVDDUPZ128rm;
8263     case 32:
8264       return X86::VBROADCASTSDZ256rm;
8265     case 64:
8266       return X86::VBROADCASTSDZrm;
8267     }
8268     break;
8269   }
8270 }
8271 
8272 bool X86InstrInfo::unfoldMemoryOperand(
8273     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
8274     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8275   const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
8276   if (I == nullptr)
8277     return false;
8278   unsigned Opc = I->DstOp;
8279   unsigned Index = I->Flags & TB_INDEX_MASK;
8280   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8281   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8282   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
8283   if (UnfoldLoad && !FoldedLoad)
8284     return false;
8285   UnfoldLoad &= FoldedLoad;
8286   if (UnfoldStore && !FoldedStore)
8287     return false;
8288   UnfoldStore &= FoldedStore;
8289 
8290   const MCInstrDesc &MCID = get(Opc);
8291 
8292   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8293   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8294   // TODO: Check if 32-byte or greater accesses are slow too?
8295   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8296       Subtarget.isUnalignedMem16Slow())
8297     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8298     // conservatively assume the address is unaligned. That's bad for
8299     // performance.
8300     return false;
8301   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
8302   SmallVector<MachineOperand, 2> BeforeOps;
8303   SmallVector<MachineOperand, 2> AfterOps;
8304   SmallVector<MachineOperand, 4> ImpOps;
8305   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8306     MachineOperand &Op = MI.getOperand(i);
8307     if (i >= Index && i < Index + X86::AddrNumOperands)
8308       AddrOps.push_back(Op);
8309     else if (Op.isReg() && Op.isImplicit())
8310       ImpOps.push_back(Op);
8311     else if (i < Index)
8312       BeforeOps.push_back(Op);
8313     else if (i > Index)
8314       AfterOps.push_back(Op);
8315   }
8316 
8317   // Emit the load or broadcast instruction.
8318   if (UnfoldLoad) {
8319     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
8320 
8321     unsigned Opc;
8322     if (FoldedBCast) {
8323       Opc = getBroadcastOpcode(I, RC, Subtarget);
8324     } else {
8325       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8326       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8327       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
8328     }
8329 
8330     DebugLoc DL;
8331     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
8332     for (const MachineOperand &AddrOp : AddrOps)
8333       MIB.add(AddrOp);
8334     MIB.setMemRefs(MMOs);
8335     NewMIs.push_back(MIB);
8336 
8337     if (UnfoldStore) {
8338       // Address operands cannot be marked isKill.
8339       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8340         MachineOperand &MO = NewMIs[0]->getOperand(i);
8341         if (MO.isReg())
8342           MO.setIsKill(false);
8343       }
8344     }
8345   }
8346 
8347   // Emit the data processing instruction.
8348   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
8349   MachineInstrBuilder MIB(MF, DataMI);
8350 
8351   if (FoldedStore)
8352     MIB.addReg(Reg, RegState::Define);
8353   for (MachineOperand &BeforeOp : BeforeOps)
8354     MIB.add(BeforeOp);
8355   if (FoldedLoad)
8356     MIB.addReg(Reg);
8357   for (MachineOperand &AfterOp : AfterOps)
8358     MIB.add(AfterOp);
8359   for (MachineOperand &ImpOp : ImpOps) {
8360     MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) |
8361                                    RegState::Implicit |
8362                                    getKillRegState(ImpOp.isKill()) |
8363                                    getDeadRegState(ImpOp.isDead()) |
8364                                    getUndefRegState(ImpOp.isUndef()));
8365   }
8366   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8367   switch (DataMI->getOpcode()) {
8368   default:
8369     break;
8370   case X86::CMP64ri32:
8371   case X86::CMP32ri:
8372   case X86::CMP16ri:
8373   case X86::CMP8ri: {
8374     MachineOperand &MO0 = DataMI->getOperand(0);
8375     MachineOperand &MO1 = DataMI->getOperand(1);
8376     if (MO1.isImm() && MO1.getImm() == 0) {
8377       unsigned NewOpc;
8378       switch (DataMI->getOpcode()) {
8379       default:
8380         llvm_unreachable("Unreachable!");
8381       case X86::CMP64ri32:
8382         NewOpc = X86::TEST64rr;
8383         break;
8384       case X86::CMP32ri:
8385         NewOpc = X86::TEST32rr;
8386         break;
8387       case X86::CMP16ri:
8388         NewOpc = X86::TEST16rr;
8389         break;
8390       case X86::CMP8ri:
8391         NewOpc = X86::TEST8rr;
8392         break;
8393       }
8394       DataMI->setDesc(get(NewOpc));
8395       MO1.ChangeToRegister(MO0.getReg(), false);
8396     }
8397   }
8398   }
8399   NewMIs.push_back(DataMI);
8400 
8401   // Emit the store instruction.
8402   if (UnfoldStore) {
8403     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
8404     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
8405     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
8406     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8407     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
8408     DebugLoc DL;
8409     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
8410     for (const MachineOperand &AddrOp : AddrOps)
8411       MIB.add(AddrOp);
8412     MIB.addReg(Reg, RegState::Kill);
8413     MIB.setMemRefs(MMOs);
8414     NewMIs.push_back(MIB);
8415   }
8416 
8417   return true;
8418 }
8419 
8420 bool X86InstrInfo::unfoldMemoryOperand(
8421     SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const {
8422   if (!N->isMachineOpcode())
8423     return false;
8424 
8425   const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
8426   if (I == nullptr)
8427     return false;
8428   unsigned Opc = I->DstOp;
8429   unsigned Index = I->Flags & TB_INDEX_MASK;
8430   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8431   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8432   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
8433   const MCInstrDesc &MCID = get(Opc);
8434   MachineFunction &MF = DAG.getMachineFunction();
8435   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8436   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8437   unsigned NumDefs = MCID.NumDefs;
8438   std::vector<SDValue> AddrOps;
8439   std::vector<SDValue> BeforeOps;
8440   std::vector<SDValue> AfterOps;
8441   SDLoc dl(N);
8442   unsigned NumOps = N->getNumOperands();
8443   for (unsigned i = 0; i != NumOps - 1; ++i) {
8444     SDValue Op = N->getOperand(i);
8445     if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands)
8446       AddrOps.push_back(Op);
8447     else if (i < Index - NumDefs)
8448       BeforeOps.push_back(Op);
8449     else if (i > Index - NumDefs)
8450       AfterOps.push_back(Op);
8451   }
8452   SDValue Chain = N->getOperand(NumOps - 1);
8453   AddrOps.push_back(Chain);
8454 
8455   // Emit the load instruction.
8456   SDNode *Load = nullptr;
8457   if (FoldedLoad) {
8458     EVT VT = *TRI.legalclasstypes_begin(*RC);
8459     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8460     if (MMOs.empty() && RC == &X86::VR128RegClass &&
8461         Subtarget.isUnalignedMem16Slow())
8462       // Do not introduce a slow unaligned load.
8463       return false;
8464     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8465     // memory access is slow above.
8466 
8467     unsigned Opc;
8468     if (FoldedBCast) {
8469       Opc = getBroadcastOpcode(I, RC, Subtarget);
8470     } else {
8471       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8472       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8473       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
8474     }
8475 
8476     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
8477     NewNodes.push_back(Load);
8478 
8479     // Preserve memory reference information.
8480     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
8481   }
8482 
8483   // Emit the data processing instruction.
8484   std::vector<EVT> VTs;
8485   const TargetRegisterClass *DstRC = nullptr;
8486   if (MCID.getNumDefs() > 0) {
8487     DstRC = getRegClass(MCID, 0, &RI, MF);
8488     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
8489   }
8490   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
8491     EVT VT = N->getValueType(i);
8492     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
8493       VTs.push_back(VT);
8494   }
8495   if (Load)
8496     BeforeOps.push_back(SDValue(Load, 0));
8497   llvm::append_range(BeforeOps, AfterOps);
8498   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8499   switch (Opc) {
8500   default:
8501     break;
8502   case X86::CMP64ri32:
8503   case X86::CMP32ri:
8504   case X86::CMP16ri:
8505   case X86::CMP8ri:
8506     if (isNullConstant(BeforeOps[1])) {
8507       switch (Opc) {
8508       default:
8509         llvm_unreachable("Unreachable!");
8510       case X86::CMP64ri32:
8511         Opc = X86::TEST64rr;
8512         break;
8513       case X86::CMP32ri:
8514         Opc = X86::TEST32rr;
8515         break;
8516       case X86::CMP16ri:
8517         Opc = X86::TEST16rr;
8518         break;
8519       case X86::CMP8ri:
8520         Opc = X86::TEST8rr;
8521         break;
8522       }
8523       BeforeOps[1] = BeforeOps[0];
8524     }
8525   }
8526   SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
8527   NewNodes.push_back(NewNode);
8528 
8529   // Emit the store instruction.
8530   if (FoldedStore) {
8531     AddrOps.pop_back();
8532     AddrOps.push_back(SDValue(NewNode, 0));
8533     AddrOps.push_back(Chain);
8534     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8535     if (MMOs.empty() && RC == &X86::VR128RegClass &&
8536         Subtarget.isUnalignedMem16Slow())
8537       // Do not introduce a slow unaligned store.
8538       return false;
8539     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8540     // memory access is slow above.
8541     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8542     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8543     SDNode *Store =
8544         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
8545                            dl, MVT::Other, AddrOps);
8546     NewNodes.push_back(Store);
8547 
8548     // Preserve memory reference information.
8549     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
8550   }
8551 
8552   return true;
8553 }
8554 
8555 unsigned
8556 X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad,
8557                                          bool UnfoldStore,
8558                                          unsigned *LoadRegIndex) const {
8559   const X86FoldTableEntry *I = lookupUnfoldTable(Opc);
8560   if (I == nullptr)
8561     return 0;
8562   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8563   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8564   if (UnfoldLoad && !FoldedLoad)
8565     return 0;
8566   if (UnfoldStore && !FoldedStore)
8567     return 0;
8568   if (LoadRegIndex)
8569     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
8570   return I->DstOp;
8571 }
8572 
8573 bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
8574                                            int64_t &Offset1,
8575                                            int64_t &Offset2) const {
8576   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
8577     return false;
8578 
8579   auto IsLoadOpcode = [&](unsigned Opcode) {
8580     switch (Opcode) {
8581     default:
8582       return false;
8583     case X86::MOV8rm:
8584     case X86::MOV16rm:
8585     case X86::MOV32rm:
8586     case X86::MOV64rm:
8587     case X86::LD_Fp32m:
8588     case X86::LD_Fp64m:
8589     case X86::LD_Fp80m:
8590     case X86::MOVSSrm:
8591     case X86::MOVSSrm_alt:
8592     case X86::MOVSDrm:
8593     case X86::MOVSDrm_alt:
8594     case X86::MMX_MOVD64rm:
8595     case X86::MMX_MOVQ64rm:
8596     case X86::MOVAPSrm:
8597     case X86::MOVUPSrm:
8598     case X86::MOVAPDrm:
8599     case X86::MOVUPDrm:
8600     case X86::MOVDQArm:
8601     case X86::MOVDQUrm:
8602     // AVX load instructions
8603     case X86::VMOVSSrm:
8604     case X86::VMOVSSrm_alt:
8605     case X86::VMOVSDrm:
8606     case X86::VMOVSDrm_alt:
8607     case X86::VMOVAPSrm:
8608     case X86::VMOVUPSrm:
8609     case X86::VMOVAPDrm:
8610     case X86::VMOVUPDrm:
8611     case X86::VMOVDQArm:
8612     case X86::VMOVDQUrm:
8613     case X86::VMOVAPSYrm:
8614     case X86::VMOVUPSYrm:
8615     case X86::VMOVAPDYrm:
8616     case X86::VMOVUPDYrm:
8617     case X86::VMOVDQAYrm:
8618     case X86::VMOVDQUYrm:
8619     // AVX512 load instructions
8620     case X86::VMOVSSZrm:
8621     case X86::VMOVSSZrm_alt:
8622     case X86::VMOVSDZrm:
8623     case X86::VMOVSDZrm_alt:
8624     case X86::VMOVAPSZ128rm:
8625     case X86::VMOVUPSZ128rm:
8626     case X86::VMOVAPSZ128rm_NOVLX:
8627     case X86::VMOVUPSZ128rm_NOVLX:
8628     case X86::VMOVAPDZ128rm:
8629     case X86::VMOVUPDZ128rm:
8630     case X86::VMOVDQU8Z128rm:
8631     case X86::VMOVDQU16Z128rm:
8632     case X86::VMOVDQA32Z128rm:
8633     case X86::VMOVDQU32Z128rm:
8634     case X86::VMOVDQA64Z128rm:
8635     case X86::VMOVDQU64Z128rm:
8636     case X86::VMOVAPSZ256rm:
8637     case X86::VMOVUPSZ256rm:
8638     case X86::VMOVAPSZ256rm_NOVLX:
8639     case X86::VMOVUPSZ256rm_NOVLX:
8640     case X86::VMOVAPDZ256rm:
8641     case X86::VMOVUPDZ256rm:
8642     case X86::VMOVDQU8Z256rm:
8643     case X86::VMOVDQU16Z256rm:
8644     case X86::VMOVDQA32Z256rm:
8645     case X86::VMOVDQU32Z256rm:
8646     case X86::VMOVDQA64Z256rm:
8647     case X86::VMOVDQU64Z256rm:
8648     case X86::VMOVAPSZrm:
8649     case X86::VMOVUPSZrm:
8650     case X86::VMOVAPDZrm:
8651     case X86::VMOVUPDZrm:
8652     case X86::VMOVDQU8Zrm:
8653     case X86::VMOVDQU16Zrm:
8654     case X86::VMOVDQA32Zrm:
8655     case X86::VMOVDQU32Zrm:
8656     case X86::VMOVDQA64Zrm:
8657     case X86::VMOVDQU64Zrm:
8658     case X86::KMOVBkm:
8659     case X86::KMOVBkm_EVEX:
8660     case X86::KMOVWkm:
8661     case X86::KMOVWkm_EVEX:
8662     case X86::KMOVDkm:
8663     case X86::KMOVDkm_EVEX:
8664     case X86::KMOVQkm:
8665     case X86::KMOVQkm_EVEX:
8666       return true;
8667     }
8668   };
8669 
8670   if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
8671       !IsLoadOpcode(Load2->getMachineOpcode()))
8672     return false;
8673 
8674   // Lambda to check if both the loads have the same value for an operand index.
8675   auto HasSameOp = [&](int I) {
8676     return Load1->getOperand(I) == Load2->getOperand(I);
8677   };
8678 
8679   // All operands except the displacement should match.
8680   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
8681       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
8682     return false;
8683 
8684   // Chain Operand must be the same.
8685   if (!HasSameOp(5))
8686     return false;
8687 
8688   // Now let's examine if the displacements are constants.
8689   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
8690   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
8691   if (!Disp1 || !Disp2)
8692     return false;
8693 
8694   Offset1 = Disp1->getSExtValue();
8695   Offset2 = Disp2->getSExtValue();
8696   return true;
8697 }
8698 
8699 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
8700                                            int64_t Offset1, int64_t Offset2,
8701                                            unsigned NumLoads) const {
8702   assert(Offset2 > Offset1);
8703   if ((Offset2 - Offset1) / 8 > 64)
8704     return false;
8705 
8706   unsigned Opc1 = Load1->getMachineOpcode();
8707   unsigned Opc2 = Load2->getMachineOpcode();
8708   if (Opc1 != Opc2)
8709     return false; // FIXME: overly conservative?
8710 
8711   switch (Opc1) {
8712   default:
8713     break;
8714   case X86::LD_Fp32m:
8715   case X86::LD_Fp64m:
8716   case X86::LD_Fp80m:
8717   case X86::MMX_MOVD64rm:
8718   case X86::MMX_MOVQ64rm:
8719     return false;
8720   }
8721 
8722   EVT VT = Load1->getValueType(0);
8723   switch (VT.getSimpleVT().SimpleTy) {
8724   default:
8725     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8726     // have 16 of them to play with.
8727     if (Subtarget.is64Bit()) {
8728       if (NumLoads >= 3)
8729         return false;
8730     } else if (NumLoads) {
8731       return false;
8732     }
8733     break;
8734   case MVT::i8:
8735   case MVT::i16:
8736   case MVT::i32:
8737   case MVT::i64:
8738   case MVT::f32:
8739   case MVT::f64:
8740     if (NumLoads)
8741       return false;
8742     break;
8743   }
8744 
8745   return true;
8746 }
8747 
8748 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
8749                                         const MachineBasicBlock *MBB,
8750                                         const MachineFunction &MF) const {
8751 
8752   // ENDBR instructions should not be scheduled around.
8753   unsigned Opcode = MI.getOpcode();
8754   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8755       Opcode == X86::PLDTILECFGV)
8756     return true;
8757 
8758   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
8759 }
8760 
8761 bool X86InstrInfo::reverseBranchCondition(
8762     SmallVectorImpl<MachineOperand> &Cond) const {
8763   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
8764   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
8765   Cond[0].setImm(GetOppositeBranchCondition(CC));
8766   return false;
8767 }
8768 
8769 bool X86InstrInfo::isSafeToMoveRegClassDefs(
8770     const TargetRegisterClass *RC) const {
8771   // FIXME: Return false for x87 stack register classes for now. We can't
8772   // allow any loads of these registers before FpGet_ST0_80.
8773   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
8774            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
8775            RC == &X86::RFP80RegClass);
8776 }
8777 
8778 /// Return a virtual register initialized with the
8779 /// the global base register value. Output instructions required to
8780 /// initialize the register in the function entry block, if necessary.
8781 ///
8782 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
8783 ///
8784 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
8785   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
8786   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8787   if (GlobalBaseReg != 0)
8788     return GlobalBaseReg;
8789 
8790   // Create the register. The code to initialize it is inserted
8791   // later, by the CGBR pass (below).
8792   MachineRegisterInfo &RegInfo = MF->getRegInfo();
8793   GlobalBaseReg = RegInfo.createVirtualRegister(
8794       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
8795   X86FI->setGlobalBaseReg(GlobalBaseReg);
8796   return GlobalBaseReg;
8797 }
8798 
8799 // FIXME: Some shuffle and unpack instructions have equivalents in different
8800 // domains, but they require a bit more work than just switching opcodes.
8801 
8802 static const uint16_t *lookup(unsigned opcode, unsigned domain,
8803                               ArrayRef<uint16_t[3]> Table) {
8804   for (const uint16_t(&Row)[3] : Table)
8805     if (Row[domain - 1] == opcode)
8806       return Row;
8807   return nullptr;
8808 }
8809 
8810 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
8811                                     ArrayRef<uint16_t[4]> Table) {
8812   // If this is the integer domain make sure to check both integer columns.
8813   for (const uint16_t(&Row)[4] : Table)
8814     if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
8815       return Row;
8816   return nullptr;
8817 }
8818 
8819 // Helper to attempt to widen/narrow blend masks.
8820 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
8821                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
8822   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
8823          "Illegal blend mask scale");
8824   unsigned NewMask = 0;
8825 
8826   if ((OldWidth % NewWidth) == 0) {
8827     unsigned Scale = OldWidth / NewWidth;
8828     unsigned SubMask = (1u << Scale) - 1;
8829     for (unsigned i = 0; i != NewWidth; ++i) {
8830       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
8831       if (Sub == SubMask)
8832         NewMask |= (1u << i);
8833       else if (Sub != 0x0)
8834         return false;
8835     }
8836   } else {
8837     unsigned Scale = NewWidth / OldWidth;
8838     unsigned SubMask = (1u << Scale) - 1;
8839     for (unsigned i = 0; i != OldWidth; ++i) {
8840       if (OldMask & (1 << i)) {
8841         NewMask |= (SubMask << (i * Scale));
8842       }
8843     }
8844   }
8845 
8846   if (pNewMask)
8847     *pNewMask = NewMask;
8848   return true;
8849 }
8850 
8851 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
8852   unsigned Opcode = MI.getOpcode();
8853   unsigned NumOperands = MI.getDesc().getNumOperands();
8854 
8855   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8856     uint16_t validDomains = 0;
8857     if (MI.getOperand(NumOperands - 1).isImm()) {
8858       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8859       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8860         validDomains |= 0x2; // PackedSingle
8861       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8862         validDomains |= 0x4; // PackedDouble
8863       if (!Is256 || Subtarget.hasAVX2())
8864         validDomains |= 0x8; // PackedInt
8865     }
8866     return validDomains;
8867   };
8868 
8869   switch (Opcode) {
8870   case X86::BLENDPDrmi:
8871   case X86::BLENDPDrri:
8872   case X86::VBLENDPDrmi:
8873   case X86::VBLENDPDrri:
8874     return GetBlendDomains(2, false);
8875   case X86::VBLENDPDYrmi:
8876   case X86::VBLENDPDYrri:
8877     return GetBlendDomains(4, true);
8878   case X86::BLENDPSrmi:
8879   case X86::BLENDPSrri:
8880   case X86::VBLENDPSrmi:
8881   case X86::VBLENDPSrri:
8882   case X86::VPBLENDDrmi:
8883   case X86::VPBLENDDrri:
8884     return GetBlendDomains(4, false);
8885   case X86::VBLENDPSYrmi:
8886   case X86::VBLENDPSYrri:
8887   case X86::VPBLENDDYrmi:
8888   case X86::VPBLENDDYrri:
8889     return GetBlendDomains(8, true);
8890   case X86::PBLENDWrmi:
8891   case X86::PBLENDWrri:
8892   case X86::VPBLENDWrmi:
8893   case X86::VPBLENDWrri:
8894   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8895   case X86::VPBLENDWYrmi:
8896   case X86::VPBLENDWYrri:
8897     return GetBlendDomains(8, false);
8898   case X86::VPANDDZ128rr:
8899   case X86::VPANDDZ128rm:
8900   case X86::VPANDDZ256rr:
8901   case X86::VPANDDZ256rm:
8902   case X86::VPANDQZ128rr:
8903   case X86::VPANDQZ128rm:
8904   case X86::VPANDQZ256rr:
8905   case X86::VPANDQZ256rm:
8906   case X86::VPANDNDZ128rr:
8907   case X86::VPANDNDZ128rm:
8908   case X86::VPANDNDZ256rr:
8909   case X86::VPANDNDZ256rm:
8910   case X86::VPANDNQZ128rr:
8911   case X86::VPANDNQZ128rm:
8912   case X86::VPANDNQZ256rr:
8913   case X86::VPANDNQZ256rm:
8914   case X86::VPORDZ128rr:
8915   case X86::VPORDZ128rm:
8916   case X86::VPORDZ256rr:
8917   case X86::VPORDZ256rm:
8918   case X86::VPORQZ128rr:
8919   case X86::VPORQZ128rm:
8920   case X86::VPORQZ256rr:
8921   case X86::VPORQZ256rm:
8922   case X86::VPXORDZ128rr:
8923   case X86::VPXORDZ128rm:
8924   case X86::VPXORDZ256rr:
8925   case X86::VPXORDZ256rm:
8926   case X86::VPXORQZ128rr:
8927   case X86::VPXORQZ128rm:
8928   case X86::VPXORQZ256rr:
8929   case X86::VPXORQZ256rm:
8930     // If we don't have DQI see if we can still switch from an EVEX integer
8931     // instruction to a VEX floating point instruction.
8932     if (Subtarget.hasDQI())
8933       return 0;
8934 
8935     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
8936       return 0;
8937     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
8938       return 0;
8939     // Register forms will have 3 operands. Memory form will have more.
8940     if (NumOperands == 3 &&
8941         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
8942       return 0;
8943 
8944     // All domains are valid.
8945     return 0xe;
8946   case X86::MOVHLPSrr:
8947     // We can swap domains when both inputs are the same register.
8948     // FIXME: This doesn't catch all the cases we would like. If the input
8949     // register isn't KILLed by the instruction, the two address instruction
8950     // pass puts a COPY on one input. The other input uses the original
8951     // register. This prevents the same physical register from being used by
8952     // both inputs.
8953     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8954         MI.getOperand(0).getSubReg() == 0 &&
8955         MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0)
8956       return 0x6;
8957     return 0;
8958   case X86::SHUFPDrri:
8959     return 0x6;
8960   }
8961   return 0;
8962 }
8963 
8964 #include "X86ReplaceableInstrs.def"
8965 
8966 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8967                                             unsigned Domain) const {
8968   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
8969   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8970   assert(dom && "Not an SSE instruction");
8971 
8972   unsigned Opcode = MI.getOpcode();
8973   unsigned NumOperands = MI.getDesc().getNumOperands();
8974 
8975   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8976     if (MI.getOperand(NumOperands - 1).isImm()) {
8977       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
8978       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8979       unsigned NewImm = Imm;
8980 
8981       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8982       if (!table)
8983         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8984 
8985       if (Domain == 1) { // PackedSingle
8986         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8987       } else if (Domain == 2) { // PackedDouble
8988         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
8989       } else if (Domain == 3) { // PackedInt
8990         if (Subtarget.hasAVX2()) {
8991           // If we are already VPBLENDW use that, else use VPBLENDD.
8992           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8993             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8994             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8995           }
8996         } else {
8997           assert(!Is256 && "128-bit vector expected");
8998           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
8999         }
9000       }
9001 
9002       assert(table && table[Domain - 1] && "Unknown domain op");
9003       MI.setDesc(get(table[Domain - 1]));
9004       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
9005     }
9006     return true;
9007   };
9008 
9009   switch (Opcode) {
9010   case X86::BLENDPDrmi:
9011   case X86::BLENDPDrri:
9012   case X86::VBLENDPDrmi:
9013   case X86::VBLENDPDrri:
9014     return SetBlendDomain(2, false);
9015   case X86::VBLENDPDYrmi:
9016   case X86::VBLENDPDYrri:
9017     return SetBlendDomain(4, true);
9018   case X86::BLENDPSrmi:
9019   case X86::BLENDPSrri:
9020   case X86::VBLENDPSrmi:
9021   case X86::VBLENDPSrri:
9022   case X86::VPBLENDDrmi:
9023   case X86::VPBLENDDrri:
9024     return SetBlendDomain(4, false);
9025   case X86::VBLENDPSYrmi:
9026   case X86::VBLENDPSYrri:
9027   case X86::VPBLENDDYrmi:
9028   case X86::VPBLENDDYrri:
9029     return SetBlendDomain(8, true);
9030   case X86::PBLENDWrmi:
9031   case X86::PBLENDWrri:
9032   case X86::VPBLENDWrmi:
9033   case X86::VPBLENDWrri:
9034     return SetBlendDomain(8, false);
9035   case X86::VPBLENDWYrmi:
9036   case X86::VPBLENDWYrri:
9037     return SetBlendDomain(16, true);
9038   case X86::VPANDDZ128rr:
9039   case X86::VPANDDZ128rm:
9040   case X86::VPANDDZ256rr:
9041   case X86::VPANDDZ256rm:
9042   case X86::VPANDQZ128rr:
9043   case X86::VPANDQZ128rm:
9044   case X86::VPANDQZ256rr:
9045   case X86::VPANDQZ256rm:
9046   case X86::VPANDNDZ128rr:
9047   case X86::VPANDNDZ128rm:
9048   case X86::VPANDNDZ256rr:
9049   case X86::VPANDNDZ256rm:
9050   case X86::VPANDNQZ128rr:
9051   case X86::VPANDNQZ128rm:
9052   case X86::VPANDNQZ256rr:
9053   case X86::VPANDNQZ256rm:
9054   case X86::VPORDZ128rr:
9055   case X86::VPORDZ128rm:
9056   case X86::VPORDZ256rr:
9057   case X86::VPORDZ256rm:
9058   case X86::VPORQZ128rr:
9059   case X86::VPORQZ128rm:
9060   case X86::VPORQZ256rr:
9061   case X86::VPORQZ256rm:
9062   case X86::VPXORDZ128rr:
9063   case X86::VPXORDZ128rm:
9064   case X86::VPXORDZ256rr:
9065   case X86::VPXORDZ256rm:
9066   case X86::VPXORQZ128rr:
9067   case X86::VPXORQZ128rm:
9068   case X86::VPXORQZ256rr:
9069   case X86::VPXORQZ256rm: {
9070     // Without DQI, convert EVEX instructions to VEX instructions.
9071     if (Subtarget.hasDQI())
9072       return false;
9073 
9074     const uint16_t *table =
9075         lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9076     assert(table && "Instruction not found in table?");
9077     // Don't change integer Q instructions to D instructions and
9078     // use D intructions if we started with a PS instruction.
9079     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9080       Domain = 4;
9081     MI.setDesc(get(table[Domain - 1]));
9082     return true;
9083   }
9084   case X86::UNPCKHPDrr:
9085   case X86::MOVHLPSrr:
9086     // We just need to commute the instruction which will switch the domains.
9087     if (Domain != dom && Domain != 3 &&
9088         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9089         MI.getOperand(0).getSubReg() == 0 &&
9090         MI.getOperand(1).getSubReg() == 0 &&
9091         MI.getOperand(2).getSubReg() == 0) {
9092       commuteInstruction(MI, false);
9093       return true;
9094     }
9095     // We must always return true for MOVHLPSrr.
9096     if (Opcode == X86::MOVHLPSrr)
9097       return true;
9098     break;
9099   case X86::SHUFPDrri: {
9100     if (Domain == 1) {
9101       unsigned Imm = MI.getOperand(3).getImm();
9102       unsigned NewImm = 0x44;
9103       if (Imm & 1)
9104         NewImm |= 0x0a;
9105       if (Imm & 2)
9106         NewImm |= 0xa0;
9107       MI.getOperand(3).setImm(NewImm);
9108       MI.setDesc(get(X86::SHUFPSrri));
9109     }
9110     return true;
9111   }
9112   }
9113   return false;
9114 }
9115 
9116 std::pair<uint16_t, uint16_t>
9117 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
9118   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9119   unsigned opcode = MI.getOpcode();
9120   uint16_t validDomains = 0;
9121   if (domain) {
9122     // Attempt to match for custom instructions.
9123     validDomains = getExecutionDomainCustom(MI);
9124     if (validDomains)
9125       return std::make_pair(domain, validDomains);
9126 
9127     if (lookup(opcode, domain, ReplaceableInstrs)) {
9128       validDomains = 0xe;
9129     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9130       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9131     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
9132       validDomains = 0x6;
9133     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9134       // Insert/extract instructions should only effect domain if AVX2
9135       // is enabled.
9136       if (!Subtarget.hasAVX2())
9137         return std::make_pair(0, 0);
9138       validDomains = 0xe;
9139     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9140       validDomains = 0xe;
9141     } else if (Subtarget.hasDQI() &&
9142                lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9143       validDomains = 0xe;
9144     } else if (Subtarget.hasDQI()) {
9145       if (const uint16_t *table =
9146               lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9147         if (domain == 1 || (domain == 3 && table[3] == opcode))
9148           validDomains = 0xa;
9149         else
9150           validDomains = 0xc;
9151       }
9152     }
9153   }
9154   return std::make_pair(domain, validDomains);
9155 }
9156 
9157 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
9158   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9159   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9160   assert(dom && "Not an SSE instruction");
9161 
9162   // Attempt to match for custom instructions.
9163   if (setExecutionDomainCustom(MI, Domain))
9164     return;
9165 
9166   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9167   if (!table) { // try the other table
9168     assert((Subtarget.hasAVX2() || Domain < 3) &&
9169            "256-bit vector operations only available in AVX2");
9170     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9171   }
9172   if (!table) { // try the FP table
9173     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
9174     assert((!table || Domain < 3) &&
9175            "Can only select PackedSingle or PackedDouble");
9176   }
9177   if (!table) { // try the other table
9178     assert(Subtarget.hasAVX2() &&
9179            "256-bit insert/extract only available in AVX2");
9180     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9181   }
9182   if (!table) { // try the AVX512 table
9183     assert(Subtarget.hasAVX512() && "Requires AVX-512");
9184     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9185     // Don't change integer Q instructions to D instructions.
9186     if (table && Domain == 3 && table[3] == MI.getOpcode())
9187       Domain = 4;
9188   }
9189   if (!table) { // try the AVX512DQ table
9190     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9191     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9192     // Don't change integer Q instructions to D instructions and
9193     // use D instructions if we started with a PS instruction.
9194     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9195       Domain = 4;
9196   }
9197   if (!table) { // try the AVX512DQMasked table
9198     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9199     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9200     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9201       Domain = 4;
9202   }
9203   assert(table && "Cannot change domain");
9204   MI.setDesc(get(table[Domain - 1]));
9205 }
9206 
9207 void X86InstrInfo::insertNoop(MachineBasicBlock &MBB,
9208                               MachineBasicBlock::iterator MI) const {
9209   DebugLoc DL;
9210   BuildMI(MBB, MI, DL, get(X86::NOOP));
9211 }
9212 
9213 /// Return the noop instruction to use for a noop.
9214 MCInst X86InstrInfo::getNop() const {
9215   MCInst Nop;
9216   Nop.setOpcode(X86::NOOP);
9217   return Nop;
9218 }
9219 
9220 bool X86InstrInfo::isHighLatencyDef(int opc) const {
9221   switch (opc) {
9222   default:
9223     return false;
9224   case X86::DIVPDrm:
9225   case X86::DIVPDrr:
9226   case X86::DIVPSrm:
9227   case X86::DIVPSrr:
9228   case X86::DIVSDrm:
9229   case X86::DIVSDrm_Int:
9230   case X86::DIVSDrr:
9231   case X86::DIVSDrr_Int:
9232   case X86::DIVSSrm:
9233   case X86::DIVSSrm_Int:
9234   case X86::DIVSSrr:
9235   case X86::DIVSSrr_Int:
9236   case X86::SQRTPDm:
9237   case X86::SQRTPDr:
9238   case X86::SQRTPSm:
9239   case X86::SQRTPSr:
9240   case X86::SQRTSDm:
9241   case X86::SQRTSDm_Int:
9242   case X86::SQRTSDr:
9243   case X86::SQRTSDr_Int:
9244   case X86::SQRTSSm:
9245   case X86::SQRTSSm_Int:
9246   case X86::SQRTSSr:
9247   case X86::SQRTSSr_Int:
9248   // AVX instructions with high latency
9249   case X86::VDIVPDrm:
9250   case X86::VDIVPDrr:
9251   case X86::VDIVPDYrm:
9252   case X86::VDIVPDYrr:
9253   case X86::VDIVPSrm:
9254   case X86::VDIVPSrr:
9255   case X86::VDIVPSYrm:
9256   case X86::VDIVPSYrr:
9257   case X86::VDIVSDrm:
9258   case X86::VDIVSDrm_Int:
9259   case X86::VDIVSDrr:
9260   case X86::VDIVSDrr_Int:
9261   case X86::VDIVSSrm:
9262   case X86::VDIVSSrm_Int:
9263   case X86::VDIVSSrr:
9264   case X86::VDIVSSrr_Int:
9265   case X86::VSQRTPDm:
9266   case X86::VSQRTPDr:
9267   case X86::VSQRTPDYm:
9268   case X86::VSQRTPDYr:
9269   case X86::VSQRTPSm:
9270   case X86::VSQRTPSr:
9271   case X86::VSQRTPSYm:
9272   case X86::VSQRTPSYr:
9273   case X86::VSQRTSDm:
9274   case X86::VSQRTSDm_Int:
9275   case X86::VSQRTSDr:
9276   case X86::VSQRTSDr_Int:
9277   case X86::VSQRTSSm:
9278   case X86::VSQRTSSm_Int:
9279   case X86::VSQRTSSr:
9280   case X86::VSQRTSSr_Int:
9281   // AVX512 instructions with high latency
9282   case X86::VDIVPDZ128rm:
9283   case X86::VDIVPDZ128rmb:
9284   case X86::VDIVPDZ128rmbk:
9285   case X86::VDIVPDZ128rmbkz:
9286   case X86::VDIVPDZ128rmk:
9287   case X86::VDIVPDZ128rmkz:
9288   case X86::VDIVPDZ128rr:
9289   case X86::VDIVPDZ128rrk:
9290   case X86::VDIVPDZ128rrkz:
9291   case X86::VDIVPDZ256rm:
9292   case X86::VDIVPDZ256rmb:
9293   case X86::VDIVPDZ256rmbk:
9294   case X86::VDIVPDZ256rmbkz:
9295   case X86::VDIVPDZ256rmk:
9296   case X86::VDIVPDZ256rmkz:
9297   case X86::VDIVPDZ256rr:
9298   case X86::VDIVPDZ256rrk:
9299   case X86::VDIVPDZ256rrkz:
9300   case X86::VDIVPDZrrb:
9301   case X86::VDIVPDZrrbk:
9302   case X86::VDIVPDZrrbkz:
9303   case X86::VDIVPDZrm:
9304   case X86::VDIVPDZrmb:
9305   case X86::VDIVPDZrmbk:
9306   case X86::VDIVPDZrmbkz:
9307   case X86::VDIVPDZrmk:
9308   case X86::VDIVPDZrmkz:
9309   case X86::VDIVPDZrr:
9310   case X86::VDIVPDZrrk:
9311   case X86::VDIVPDZrrkz:
9312   case X86::VDIVPSZ128rm:
9313   case X86::VDIVPSZ128rmb:
9314   case X86::VDIVPSZ128rmbk:
9315   case X86::VDIVPSZ128rmbkz:
9316   case X86::VDIVPSZ128rmk:
9317   case X86::VDIVPSZ128rmkz:
9318   case X86::VDIVPSZ128rr:
9319   case X86::VDIVPSZ128rrk:
9320   case X86::VDIVPSZ128rrkz:
9321   case X86::VDIVPSZ256rm:
9322   case X86::VDIVPSZ256rmb:
9323   case X86::VDIVPSZ256rmbk:
9324   case X86::VDIVPSZ256rmbkz:
9325   case X86::VDIVPSZ256rmk:
9326   case X86::VDIVPSZ256rmkz:
9327   case X86::VDIVPSZ256rr:
9328   case X86::VDIVPSZ256rrk:
9329   case X86::VDIVPSZ256rrkz:
9330   case X86::VDIVPSZrrb:
9331   case X86::VDIVPSZrrbk:
9332   case X86::VDIVPSZrrbkz:
9333   case X86::VDIVPSZrm:
9334   case X86::VDIVPSZrmb:
9335   case X86::VDIVPSZrmbk:
9336   case X86::VDIVPSZrmbkz:
9337   case X86::VDIVPSZrmk:
9338   case X86::VDIVPSZrmkz:
9339   case X86::VDIVPSZrr:
9340   case X86::VDIVPSZrrk:
9341   case X86::VDIVPSZrrkz:
9342   case X86::VDIVSDZrm:
9343   case X86::VDIVSDZrr:
9344   case X86::VDIVSDZrm_Int:
9345   case X86::VDIVSDZrm_Intk:
9346   case X86::VDIVSDZrm_Intkz:
9347   case X86::VDIVSDZrr_Int:
9348   case X86::VDIVSDZrr_Intk:
9349   case X86::VDIVSDZrr_Intkz:
9350   case X86::VDIVSDZrrb_Int:
9351   case X86::VDIVSDZrrb_Intk:
9352   case X86::VDIVSDZrrb_Intkz:
9353   case X86::VDIVSSZrm:
9354   case X86::VDIVSSZrr:
9355   case X86::VDIVSSZrm_Int:
9356   case X86::VDIVSSZrm_Intk:
9357   case X86::VDIVSSZrm_Intkz:
9358   case X86::VDIVSSZrr_Int:
9359   case X86::VDIVSSZrr_Intk:
9360   case X86::VDIVSSZrr_Intkz:
9361   case X86::VDIVSSZrrb_Int:
9362   case X86::VDIVSSZrrb_Intk:
9363   case X86::VDIVSSZrrb_Intkz:
9364   case X86::VSQRTPDZ128m:
9365   case X86::VSQRTPDZ128mb:
9366   case X86::VSQRTPDZ128mbk:
9367   case X86::VSQRTPDZ128mbkz:
9368   case X86::VSQRTPDZ128mk:
9369   case X86::VSQRTPDZ128mkz:
9370   case X86::VSQRTPDZ128r:
9371   case X86::VSQRTPDZ128rk:
9372   case X86::VSQRTPDZ128rkz:
9373   case X86::VSQRTPDZ256m:
9374   case X86::VSQRTPDZ256mb:
9375   case X86::VSQRTPDZ256mbk:
9376   case X86::VSQRTPDZ256mbkz:
9377   case X86::VSQRTPDZ256mk:
9378   case X86::VSQRTPDZ256mkz:
9379   case X86::VSQRTPDZ256r:
9380   case X86::VSQRTPDZ256rk:
9381   case X86::VSQRTPDZ256rkz:
9382   case X86::VSQRTPDZm:
9383   case X86::VSQRTPDZmb:
9384   case X86::VSQRTPDZmbk:
9385   case X86::VSQRTPDZmbkz:
9386   case X86::VSQRTPDZmk:
9387   case X86::VSQRTPDZmkz:
9388   case X86::VSQRTPDZr:
9389   case X86::VSQRTPDZrb:
9390   case X86::VSQRTPDZrbk:
9391   case X86::VSQRTPDZrbkz:
9392   case X86::VSQRTPDZrk:
9393   case X86::VSQRTPDZrkz:
9394   case X86::VSQRTPSZ128m:
9395   case X86::VSQRTPSZ128mb:
9396   case X86::VSQRTPSZ128mbk:
9397   case X86::VSQRTPSZ128mbkz:
9398   case X86::VSQRTPSZ128mk:
9399   case X86::VSQRTPSZ128mkz:
9400   case X86::VSQRTPSZ128r:
9401   case X86::VSQRTPSZ128rk:
9402   case X86::VSQRTPSZ128rkz:
9403   case X86::VSQRTPSZ256m:
9404   case X86::VSQRTPSZ256mb:
9405   case X86::VSQRTPSZ256mbk:
9406   case X86::VSQRTPSZ256mbkz:
9407   case X86::VSQRTPSZ256mk:
9408   case X86::VSQRTPSZ256mkz:
9409   case X86::VSQRTPSZ256r:
9410   case X86::VSQRTPSZ256rk:
9411   case X86::VSQRTPSZ256rkz:
9412   case X86::VSQRTPSZm:
9413   case X86::VSQRTPSZmb:
9414   case X86::VSQRTPSZmbk:
9415   case X86::VSQRTPSZmbkz:
9416   case X86::VSQRTPSZmk:
9417   case X86::VSQRTPSZmkz:
9418   case X86::VSQRTPSZr:
9419   case X86::VSQRTPSZrb:
9420   case X86::VSQRTPSZrbk:
9421   case X86::VSQRTPSZrbkz:
9422   case X86::VSQRTPSZrk:
9423   case X86::VSQRTPSZrkz:
9424   case X86::VSQRTSDZm:
9425   case X86::VSQRTSDZm_Int:
9426   case X86::VSQRTSDZm_Intk:
9427   case X86::VSQRTSDZm_Intkz:
9428   case X86::VSQRTSDZr:
9429   case X86::VSQRTSDZr_Int:
9430   case X86::VSQRTSDZr_Intk:
9431   case X86::VSQRTSDZr_Intkz:
9432   case X86::VSQRTSDZrb_Int:
9433   case X86::VSQRTSDZrb_Intk:
9434   case X86::VSQRTSDZrb_Intkz:
9435   case X86::VSQRTSSZm:
9436   case X86::VSQRTSSZm_Int:
9437   case X86::VSQRTSSZm_Intk:
9438   case X86::VSQRTSSZm_Intkz:
9439   case X86::VSQRTSSZr:
9440   case X86::VSQRTSSZr_Int:
9441   case X86::VSQRTSSZr_Intk:
9442   case X86::VSQRTSSZr_Intkz:
9443   case X86::VSQRTSSZrb_Int:
9444   case X86::VSQRTSSZrb_Intk:
9445   case X86::VSQRTSSZrb_Intkz:
9446 
9447   case X86::VGATHERDPDYrm:
9448   case X86::VGATHERDPDZ128rm:
9449   case X86::VGATHERDPDZ256rm:
9450   case X86::VGATHERDPDZrm:
9451   case X86::VGATHERDPDrm:
9452   case X86::VGATHERDPSYrm:
9453   case X86::VGATHERDPSZ128rm:
9454   case X86::VGATHERDPSZ256rm:
9455   case X86::VGATHERDPSZrm:
9456   case X86::VGATHERDPSrm:
9457   case X86::VGATHERPF0DPDm:
9458   case X86::VGATHERPF0DPSm:
9459   case X86::VGATHERPF0QPDm:
9460   case X86::VGATHERPF0QPSm:
9461   case X86::VGATHERPF1DPDm:
9462   case X86::VGATHERPF1DPSm:
9463   case X86::VGATHERPF1QPDm:
9464   case X86::VGATHERPF1QPSm:
9465   case X86::VGATHERQPDYrm:
9466   case X86::VGATHERQPDZ128rm:
9467   case X86::VGATHERQPDZ256rm:
9468   case X86::VGATHERQPDZrm:
9469   case X86::VGATHERQPDrm:
9470   case X86::VGATHERQPSYrm:
9471   case X86::VGATHERQPSZ128rm:
9472   case X86::VGATHERQPSZ256rm:
9473   case X86::VGATHERQPSZrm:
9474   case X86::VGATHERQPSrm:
9475   case X86::VPGATHERDDYrm:
9476   case X86::VPGATHERDDZ128rm:
9477   case X86::VPGATHERDDZ256rm:
9478   case X86::VPGATHERDDZrm:
9479   case X86::VPGATHERDDrm:
9480   case X86::VPGATHERDQYrm:
9481   case X86::VPGATHERDQZ128rm:
9482   case X86::VPGATHERDQZ256rm:
9483   case X86::VPGATHERDQZrm:
9484   case X86::VPGATHERDQrm:
9485   case X86::VPGATHERQDYrm:
9486   case X86::VPGATHERQDZ128rm:
9487   case X86::VPGATHERQDZ256rm:
9488   case X86::VPGATHERQDZrm:
9489   case X86::VPGATHERQDrm:
9490   case X86::VPGATHERQQYrm:
9491   case X86::VPGATHERQQZ128rm:
9492   case X86::VPGATHERQQZ256rm:
9493   case X86::VPGATHERQQZrm:
9494   case X86::VPGATHERQQrm:
9495   case X86::VSCATTERDPDZ128mr:
9496   case X86::VSCATTERDPDZ256mr:
9497   case X86::VSCATTERDPDZmr:
9498   case X86::VSCATTERDPSZ128mr:
9499   case X86::VSCATTERDPSZ256mr:
9500   case X86::VSCATTERDPSZmr:
9501   case X86::VSCATTERPF0DPDm:
9502   case X86::VSCATTERPF0DPSm:
9503   case X86::VSCATTERPF0QPDm:
9504   case X86::VSCATTERPF0QPSm:
9505   case X86::VSCATTERPF1DPDm:
9506   case X86::VSCATTERPF1DPSm:
9507   case X86::VSCATTERPF1QPDm:
9508   case X86::VSCATTERPF1QPSm:
9509   case X86::VSCATTERQPDZ128mr:
9510   case X86::VSCATTERQPDZ256mr:
9511   case X86::VSCATTERQPDZmr:
9512   case X86::VSCATTERQPSZ128mr:
9513   case X86::VSCATTERQPSZ256mr:
9514   case X86::VSCATTERQPSZmr:
9515   case X86::VPSCATTERDDZ128mr:
9516   case X86::VPSCATTERDDZ256mr:
9517   case X86::VPSCATTERDDZmr:
9518   case X86::VPSCATTERDQZ128mr:
9519   case X86::VPSCATTERDQZ256mr:
9520   case X86::VPSCATTERDQZmr:
9521   case X86::VPSCATTERQDZ128mr:
9522   case X86::VPSCATTERQDZ256mr:
9523   case X86::VPSCATTERQDZmr:
9524   case X86::VPSCATTERQQZ128mr:
9525   case X86::VPSCATTERQQZ256mr:
9526   case X86::VPSCATTERQQZmr:
9527     return true;
9528   }
9529 }
9530 
9531 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
9532                                          const MachineRegisterInfo *MRI,
9533                                          const MachineInstr &DefMI,
9534                                          unsigned DefIdx,
9535                                          const MachineInstr &UseMI,
9536                                          unsigned UseIdx) const {
9537   return isHighLatencyDef(DefMI.getOpcode());
9538 }
9539 
9540 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
9541                                            const MachineBasicBlock *MBB) const {
9542   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
9543          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
9544 
9545   // Integer binary math/logic instructions have a third source operand:
9546   // the EFLAGS register. That operand must be both defined here and never
9547   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9548   // not change anything because rearranging the operands could affect other
9549   // instructions that depend on the exact status flags (zero, sign, etc.)
9550   // that are set by using these particular operands with this operation.
9551   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
9552   assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?");
9553   if (FlagDef && !FlagDef->isDead())
9554     return false;
9555 
9556   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
9557 }
9558 
9559 // TODO: There are many more machine instruction opcodes to match:
9560 //       1. Other data types (integer, vectors)
9561 //       2. Other math / logic operations (xor, or)
9562 //       3. Other forms of the same operation (intrinsics and other variants)
9563 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
9564                                                bool Invert) const {
9565   if (Invert)
9566     return false;
9567   switch (Inst.getOpcode()) {
9568   case X86::ADD8rr:
9569   case X86::ADD16rr:
9570   case X86::ADD32rr:
9571   case X86::ADD64rr:
9572   case X86::AND8rr:
9573   case X86::AND16rr:
9574   case X86::AND32rr:
9575   case X86::AND64rr:
9576   case X86::OR8rr:
9577   case X86::OR16rr:
9578   case X86::OR32rr:
9579   case X86::OR64rr:
9580   case X86::XOR8rr:
9581   case X86::XOR16rr:
9582   case X86::XOR32rr:
9583   case X86::XOR64rr:
9584   case X86::IMUL16rr:
9585   case X86::IMUL32rr:
9586   case X86::IMUL64rr:
9587   case X86::PANDrr:
9588   case X86::PORrr:
9589   case X86::PXORrr:
9590   case X86::ANDPDrr:
9591   case X86::ANDPSrr:
9592   case X86::ORPDrr:
9593   case X86::ORPSrr:
9594   case X86::XORPDrr:
9595   case X86::XORPSrr:
9596   case X86::PADDBrr:
9597   case X86::PADDWrr:
9598   case X86::PADDDrr:
9599   case X86::PADDQrr:
9600   case X86::PMULLWrr:
9601   case X86::PMULLDrr:
9602   case X86::PMAXSBrr:
9603   case X86::PMAXSDrr:
9604   case X86::PMAXSWrr:
9605   case X86::PMAXUBrr:
9606   case X86::PMAXUDrr:
9607   case X86::PMAXUWrr:
9608   case X86::PMINSBrr:
9609   case X86::PMINSDrr:
9610   case X86::PMINSWrr:
9611   case X86::PMINUBrr:
9612   case X86::PMINUDrr:
9613   case X86::PMINUWrr:
9614   case X86::VPANDrr:
9615   case X86::VPANDYrr:
9616   case X86::VPANDDZ128rr:
9617   case X86::VPANDDZ256rr:
9618   case X86::VPANDDZrr:
9619   case X86::VPANDQZ128rr:
9620   case X86::VPANDQZ256rr:
9621   case X86::VPANDQZrr:
9622   case X86::VPORrr:
9623   case X86::VPORYrr:
9624   case X86::VPORDZ128rr:
9625   case X86::VPORDZ256rr:
9626   case X86::VPORDZrr:
9627   case X86::VPORQZ128rr:
9628   case X86::VPORQZ256rr:
9629   case X86::VPORQZrr:
9630   case X86::VPXORrr:
9631   case X86::VPXORYrr:
9632   case X86::VPXORDZ128rr:
9633   case X86::VPXORDZ256rr:
9634   case X86::VPXORDZrr:
9635   case X86::VPXORQZ128rr:
9636   case X86::VPXORQZ256rr:
9637   case X86::VPXORQZrr:
9638   case X86::VANDPDrr:
9639   case X86::VANDPSrr:
9640   case X86::VANDPDYrr:
9641   case X86::VANDPSYrr:
9642   case X86::VANDPDZ128rr:
9643   case X86::VANDPSZ128rr:
9644   case X86::VANDPDZ256rr:
9645   case X86::VANDPSZ256rr:
9646   case X86::VANDPDZrr:
9647   case X86::VANDPSZrr:
9648   case X86::VORPDrr:
9649   case X86::VORPSrr:
9650   case X86::VORPDYrr:
9651   case X86::VORPSYrr:
9652   case X86::VORPDZ128rr:
9653   case X86::VORPSZ128rr:
9654   case X86::VORPDZ256rr:
9655   case X86::VORPSZ256rr:
9656   case X86::VORPDZrr:
9657   case X86::VORPSZrr:
9658   case X86::VXORPDrr:
9659   case X86::VXORPSrr:
9660   case X86::VXORPDYrr:
9661   case X86::VXORPSYrr:
9662   case X86::VXORPDZ128rr:
9663   case X86::VXORPSZ128rr:
9664   case X86::VXORPDZ256rr:
9665   case X86::VXORPSZ256rr:
9666   case X86::VXORPDZrr:
9667   case X86::VXORPSZrr:
9668   case X86::KADDBrr:
9669   case X86::KADDWrr:
9670   case X86::KADDDrr:
9671   case X86::KADDQrr:
9672   case X86::KANDBrr:
9673   case X86::KANDWrr:
9674   case X86::KANDDrr:
9675   case X86::KANDQrr:
9676   case X86::KORBrr:
9677   case X86::KORWrr:
9678   case X86::KORDrr:
9679   case X86::KORQrr:
9680   case X86::KXORBrr:
9681   case X86::KXORWrr:
9682   case X86::KXORDrr:
9683   case X86::KXORQrr:
9684   case X86::VPADDBrr:
9685   case X86::VPADDWrr:
9686   case X86::VPADDDrr:
9687   case X86::VPADDQrr:
9688   case X86::VPADDBYrr:
9689   case X86::VPADDWYrr:
9690   case X86::VPADDDYrr:
9691   case X86::VPADDQYrr:
9692   case X86::VPADDBZ128rr:
9693   case X86::VPADDWZ128rr:
9694   case X86::VPADDDZ128rr:
9695   case X86::VPADDQZ128rr:
9696   case X86::VPADDBZ256rr:
9697   case X86::VPADDWZ256rr:
9698   case X86::VPADDDZ256rr:
9699   case X86::VPADDQZ256rr:
9700   case X86::VPADDBZrr:
9701   case X86::VPADDWZrr:
9702   case X86::VPADDDZrr:
9703   case X86::VPADDQZrr:
9704   case X86::VPMULLWrr:
9705   case X86::VPMULLWYrr:
9706   case X86::VPMULLWZ128rr:
9707   case X86::VPMULLWZ256rr:
9708   case X86::VPMULLWZrr:
9709   case X86::VPMULLDrr:
9710   case X86::VPMULLDYrr:
9711   case X86::VPMULLDZ128rr:
9712   case X86::VPMULLDZ256rr:
9713   case X86::VPMULLDZrr:
9714   case X86::VPMULLQZ128rr:
9715   case X86::VPMULLQZ256rr:
9716   case X86::VPMULLQZrr:
9717   case X86::VPMAXSBrr:
9718   case X86::VPMAXSBYrr:
9719   case X86::VPMAXSBZ128rr:
9720   case X86::VPMAXSBZ256rr:
9721   case X86::VPMAXSBZrr:
9722   case X86::VPMAXSDrr:
9723   case X86::VPMAXSDYrr:
9724   case X86::VPMAXSDZ128rr:
9725   case X86::VPMAXSDZ256rr:
9726   case X86::VPMAXSDZrr:
9727   case X86::VPMAXSQZ128rr:
9728   case X86::VPMAXSQZ256rr:
9729   case X86::VPMAXSQZrr:
9730   case X86::VPMAXSWrr:
9731   case X86::VPMAXSWYrr:
9732   case X86::VPMAXSWZ128rr:
9733   case X86::VPMAXSWZ256rr:
9734   case X86::VPMAXSWZrr:
9735   case X86::VPMAXUBrr:
9736   case X86::VPMAXUBYrr:
9737   case X86::VPMAXUBZ128rr:
9738   case X86::VPMAXUBZ256rr:
9739   case X86::VPMAXUBZrr:
9740   case X86::VPMAXUDrr:
9741   case X86::VPMAXUDYrr:
9742   case X86::VPMAXUDZ128rr:
9743   case X86::VPMAXUDZ256rr:
9744   case X86::VPMAXUDZrr:
9745   case X86::VPMAXUQZ128rr:
9746   case X86::VPMAXUQZ256rr:
9747   case X86::VPMAXUQZrr:
9748   case X86::VPMAXUWrr:
9749   case X86::VPMAXUWYrr:
9750   case X86::VPMAXUWZ128rr:
9751   case X86::VPMAXUWZ256rr:
9752   case X86::VPMAXUWZrr:
9753   case X86::VPMINSBrr:
9754   case X86::VPMINSBYrr:
9755   case X86::VPMINSBZ128rr:
9756   case X86::VPMINSBZ256rr:
9757   case X86::VPMINSBZrr:
9758   case X86::VPMINSDrr:
9759   case X86::VPMINSDYrr:
9760   case X86::VPMINSDZ128rr:
9761   case X86::VPMINSDZ256rr:
9762   case X86::VPMINSDZrr:
9763   case X86::VPMINSQZ128rr:
9764   case X86::VPMINSQZ256rr:
9765   case X86::VPMINSQZrr:
9766   case X86::VPMINSWrr:
9767   case X86::VPMINSWYrr:
9768   case X86::VPMINSWZ128rr:
9769   case X86::VPMINSWZ256rr:
9770   case X86::VPMINSWZrr:
9771   case X86::VPMINUBrr:
9772   case X86::VPMINUBYrr:
9773   case X86::VPMINUBZ128rr:
9774   case X86::VPMINUBZ256rr:
9775   case X86::VPMINUBZrr:
9776   case X86::VPMINUDrr:
9777   case X86::VPMINUDYrr:
9778   case X86::VPMINUDZ128rr:
9779   case X86::VPMINUDZ256rr:
9780   case X86::VPMINUDZrr:
9781   case X86::VPMINUQZ128rr:
9782   case X86::VPMINUQZ256rr:
9783   case X86::VPMINUQZrr:
9784   case X86::VPMINUWrr:
9785   case X86::VPMINUWYrr:
9786   case X86::VPMINUWZ128rr:
9787   case X86::VPMINUWZ256rr:
9788   case X86::VPMINUWZrr:
9789   // Normal min/max instructions are not commutative because of NaN and signed
9790   // zero semantics, but these are. Thus, there's no need to check for global
9791   // relaxed math; the instructions themselves have the properties we need.
9792   case X86::MAXCPDrr:
9793   case X86::MAXCPSrr:
9794   case X86::MAXCSDrr:
9795   case X86::MAXCSSrr:
9796   case X86::MINCPDrr:
9797   case X86::MINCPSrr:
9798   case X86::MINCSDrr:
9799   case X86::MINCSSrr:
9800   case X86::VMAXCPDrr:
9801   case X86::VMAXCPSrr:
9802   case X86::VMAXCPDYrr:
9803   case X86::VMAXCPSYrr:
9804   case X86::VMAXCPDZ128rr:
9805   case X86::VMAXCPSZ128rr:
9806   case X86::VMAXCPDZ256rr:
9807   case X86::VMAXCPSZ256rr:
9808   case X86::VMAXCPDZrr:
9809   case X86::VMAXCPSZrr:
9810   case X86::VMAXCSDrr:
9811   case X86::VMAXCSSrr:
9812   case X86::VMAXCSDZrr:
9813   case X86::VMAXCSSZrr:
9814   case X86::VMINCPDrr:
9815   case X86::VMINCPSrr:
9816   case X86::VMINCPDYrr:
9817   case X86::VMINCPSYrr:
9818   case X86::VMINCPDZ128rr:
9819   case X86::VMINCPSZ128rr:
9820   case X86::VMINCPDZ256rr:
9821   case X86::VMINCPSZ256rr:
9822   case X86::VMINCPDZrr:
9823   case X86::VMINCPSZrr:
9824   case X86::VMINCSDrr:
9825   case X86::VMINCSSrr:
9826   case X86::VMINCSDZrr:
9827   case X86::VMINCSSZrr:
9828   case X86::VMAXCPHZ128rr:
9829   case X86::VMAXCPHZ256rr:
9830   case X86::VMAXCPHZrr:
9831   case X86::VMAXCSHZrr:
9832   case X86::VMINCPHZ128rr:
9833   case X86::VMINCPHZ256rr:
9834   case X86::VMINCPHZrr:
9835   case X86::VMINCSHZrr:
9836     return true;
9837   case X86::ADDPDrr:
9838   case X86::ADDPSrr:
9839   case X86::ADDSDrr:
9840   case X86::ADDSSrr:
9841   case X86::MULPDrr:
9842   case X86::MULPSrr:
9843   case X86::MULSDrr:
9844   case X86::MULSSrr:
9845   case X86::VADDPDrr:
9846   case X86::VADDPSrr:
9847   case X86::VADDPDYrr:
9848   case X86::VADDPSYrr:
9849   case X86::VADDPDZ128rr:
9850   case X86::VADDPSZ128rr:
9851   case X86::VADDPDZ256rr:
9852   case X86::VADDPSZ256rr:
9853   case X86::VADDPDZrr:
9854   case X86::VADDPSZrr:
9855   case X86::VADDSDrr:
9856   case X86::VADDSSrr:
9857   case X86::VADDSDZrr:
9858   case X86::VADDSSZrr:
9859   case X86::VMULPDrr:
9860   case X86::VMULPSrr:
9861   case X86::VMULPDYrr:
9862   case X86::VMULPSYrr:
9863   case X86::VMULPDZ128rr:
9864   case X86::VMULPSZ128rr:
9865   case X86::VMULPDZ256rr:
9866   case X86::VMULPSZ256rr:
9867   case X86::VMULPDZrr:
9868   case X86::VMULPSZrr:
9869   case X86::VMULSDrr:
9870   case X86::VMULSSrr:
9871   case X86::VMULSDZrr:
9872   case X86::VMULSSZrr:
9873   case X86::VADDPHZ128rr:
9874   case X86::VADDPHZ256rr:
9875   case X86::VADDPHZrr:
9876   case X86::VADDSHZrr:
9877   case X86::VMULPHZ128rr:
9878   case X86::VMULPHZ256rr:
9879   case X86::VMULPHZrr:
9880   case X86::VMULSHZrr:
9881     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
9882            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
9883   default:
9884     return false;
9885   }
9886 }
9887 
9888 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
9889 /// register then, if possible, describe the value in terms of the source
9890 /// register.
9891 static std::optional<ParamLoadedValue>
9892 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
9893                          const TargetRegisterInfo *TRI) {
9894   Register DestReg = MI.getOperand(0).getReg();
9895   Register SrcReg = MI.getOperand(1).getReg();
9896 
9897   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9898 
9899   // If the described register is the destination, just return the source.
9900   if (DestReg == DescribedReg)
9901     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9902 
9903   // If the described register is a sub-register of the destination register,
9904   // then pick out the source register's corresponding sub-register.
9905   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9906     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9907     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9908   }
9909 
9910   // The remaining case to consider is when the described register is a
9911   // super-register of the destination register. MOV8rr and MOV16rr does not
9912   // write to any of the other bytes in the register, meaning that we'd have to
9913   // describe the value using a combination of the source register and the
9914   // non-overlapping bits in the described register, which is not currently
9915   // possible.
9916   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9917       !TRI->isSuperRegister(DestReg, DescribedReg))
9918     return std::nullopt;
9919 
9920   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
9921   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9922 }
9923 
9924 std::optional<ParamLoadedValue>
9925 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9926   const MachineOperand *Op = nullptr;
9927   DIExpression *Expr = nullptr;
9928 
9929   const TargetRegisterInfo *TRI = &getRegisterInfo();
9930 
9931   switch (MI.getOpcode()) {
9932   case X86::LEA32r:
9933   case X86::LEA64r:
9934   case X86::LEA64_32r: {
9935     // We may need to describe a 64-bit parameter with a 32-bit LEA.
9936     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9937       return std::nullopt;
9938 
9939     // Operand 4 could be global address. For now we do not support
9940     // such situation.
9941     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
9942       return std::nullopt;
9943 
9944     const MachineOperand &Op1 = MI.getOperand(1);
9945     const MachineOperand &Op2 = MI.getOperand(3);
9946     assert(Op2.isReg() &&
9947            (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
9948 
9949     // Omit situations like:
9950     // %rsi = lea %rsi, 4, ...
9951     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
9952         Op2.getReg() == MI.getOperand(0).getReg())
9953       return std::nullopt;
9954     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9955               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9956              (Op2.getReg() != X86::NoRegister &&
9957               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9958       return std::nullopt;
9959 
9960     int64_t Coef = MI.getOperand(2).getImm();
9961     int64_t Offset = MI.getOperand(4).getImm();
9962     SmallVector<uint64_t, 8> Ops;
9963 
9964     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9965       Op = &Op1;
9966     } else if (Op1.isFI())
9967       Op = &Op1;
9968 
9969     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9970       Ops.push_back(dwarf::DW_OP_constu);
9971       Ops.push_back(Coef + 1);
9972       Ops.push_back(dwarf::DW_OP_mul);
9973     } else {
9974       if (Op && Op2.getReg() != X86::NoRegister) {
9975         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
9976         if (dwarfReg < 0)
9977           return std::nullopt;
9978         else if (dwarfReg < 32) {
9979           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
9980           Ops.push_back(0);
9981         } else {
9982           Ops.push_back(dwarf::DW_OP_bregx);
9983           Ops.push_back(dwarfReg);
9984           Ops.push_back(0);
9985         }
9986       } else if (!Op) {
9987         assert(Op2.getReg() != X86::NoRegister);
9988         Op = &Op2;
9989       }
9990 
9991       if (Coef > 1) {
9992         assert(Op2.getReg() != X86::NoRegister);
9993         Ops.push_back(dwarf::DW_OP_constu);
9994         Ops.push_back(Coef);
9995         Ops.push_back(dwarf::DW_OP_mul);
9996       }
9997 
9998       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9999           Op2.getReg() != X86::NoRegister) {
10000         Ops.push_back(dwarf::DW_OP_plus);
10001       }
10002     }
10003 
10004     DIExpression::appendOffset(Ops, Offset);
10005     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
10006 
10007     return ParamLoadedValue(*Op, Expr);
10008   }
10009   case X86::MOV8ri:
10010   case X86::MOV16ri:
10011     // TODO: Handle MOV8ri and MOV16ri.
10012     return std::nullopt;
10013   case X86::MOV32ri:
10014   case X86::MOV64ri:
10015   case X86::MOV64ri32:
10016     // MOV32ri may be used for producing zero-extended 32-bit immediates in
10017     // 64-bit parameters, so we need to consider super-registers.
10018     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10019       return std::nullopt;
10020     return ParamLoadedValue(MI.getOperand(1), Expr);
10021   case X86::MOV8rr:
10022   case X86::MOV16rr:
10023   case X86::MOV32rr:
10024   case X86::MOV64rr:
10025     return describeMOVrrLoadedValue(MI, Reg, TRI);
10026   case X86::XOR32rr: {
10027     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10028     // super-registers.
10029     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10030       return std::nullopt;
10031     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
10032       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
10033     return std::nullopt;
10034   }
10035   case X86::MOVSX64rr32: {
10036     // We may need to describe the lower 32 bits of the MOVSX; for example, in
10037     // cases like this:
10038     //
10039     //  $ebx = [...]
10040     //  $rdi = MOVSX64rr32 $ebx
10041     //  $esi = MOV32rr $edi
10042     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
10043       return std::nullopt;
10044 
10045     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
10046 
10047     // If the described register is the destination register we need to
10048     // sign-extend the source register from 32 bits. The other case we handle
10049     // is when the described register is the 32-bit sub-register of the
10050     // destination register, in case we just need to return the source
10051     // register.
10052     if (Reg == MI.getOperand(0).getReg())
10053       Expr = DIExpression::appendExt(Expr, 32, 64, true);
10054     else
10055       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
10056              "Unhandled sub-register case for MOVSX64rr32");
10057 
10058     return ParamLoadedValue(MI.getOperand(1), Expr);
10059   }
10060   default:
10061     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
10062     return TargetInstrInfo::describeLoadedValue(MI, Reg);
10063   }
10064 }
10065 
10066 /// This is an architecture-specific helper function of reassociateOps.
10067 /// Set special operand attributes for new instructions after reassociation.
10068 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
10069                                          MachineInstr &OldMI2,
10070                                          MachineInstr &NewMI1,
10071                                          MachineInstr &NewMI2) const {
10072   // Integer instructions may define an implicit EFLAGS dest register operand.
10073   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
10074   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
10075 
10076   assert(!OldFlagDef1 == !OldFlagDef2 &&
10077          "Unexpected instruction type for reassociation");
10078 
10079   if (!OldFlagDef1 || !OldFlagDef2)
10080     return;
10081 
10082   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
10083          "Must have dead EFLAGS operand in reassociable instruction");
10084 
10085   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
10086   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
10087 
10088   assert(NewFlagDef1 && NewFlagDef2 &&
10089          "Unexpected operand in reassociable instruction");
10090 
10091   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10092   // of this pass or other passes. The EFLAGS operands must be dead in these new
10093   // instructions because the EFLAGS operands in the original instructions must
10094   // be dead in order for reassociation to occur.
10095   NewFlagDef1->setIsDead();
10096   NewFlagDef2->setIsDead();
10097 }
10098 
10099 std::pair<unsigned, unsigned>
10100 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
10101   return std::make_pair(TF, 0u);
10102 }
10103 
10104 ArrayRef<std::pair<unsigned, const char *>>
10105 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
10106   using namespace X86II;
10107   static const std::pair<unsigned, const char *> TargetFlags[] = {
10108       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10109       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10110       {MO_GOT, "x86-got"},
10111       {MO_GOTOFF, "x86-gotoff"},
10112       {MO_GOTPCREL, "x86-gotpcrel"},
10113       {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
10114       {MO_PLT, "x86-plt"},
10115       {MO_TLSGD, "x86-tlsgd"},
10116       {MO_TLSLD, "x86-tlsld"},
10117       {MO_TLSLDM, "x86-tlsldm"},
10118       {MO_GOTTPOFF, "x86-gottpoff"},
10119       {MO_INDNTPOFF, "x86-indntpoff"},
10120       {MO_TPOFF, "x86-tpoff"},
10121       {MO_DTPOFF, "x86-dtpoff"},
10122       {MO_NTPOFF, "x86-ntpoff"},
10123       {MO_GOTNTPOFF, "x86-gotntpoff"},
10124       {MO_DLLIMPORT, "x86-dllimport"},
10125       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10126       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10127       {MO_TLVP, "x86-tlvp"},
10128       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10129       {MO_SECREL, "x86-secrel"},
10130       {MO_COFFSTUB, "x86-coffstub"}};
10131   return ArrayRef(TargetFlags);
10132 }
10133 
10134 namespace {
10135 /// Create Global Base Reg pass. This initializes the PIC
10136 /// global base register for x86-32.
10137 struct CGBR : public MachineFunctionPass {
10138   static char ID;
10139   CGBR() : MachineFunctionPass(ID) {}
10140 
10141   bool runOnMachineFunction(MachineFunction &MF) override {
10142     const X86TargetMachine *TM =
10143         static_cast<const X86TargetMachine *>(&MF.getTarget());
10144     const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10145 
10146     // Only emit a global base reg in PIC mode.
10147     if (!TM->isPositionIndependent())
10148       return false;
10149 
10150     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10151     Register GlobalBaseReg = X86FI->getGlobalBaseReg();
10152 
10153     // If we didn't need a GlobalBaseReg, don't insert code.
10154     if (GlobalBaseReg == 0)
10155       return false;
10156 
10157     // Insert the set of GlobalBaseReg into the first MBB of the function
10158     MachineBasicBlock &FirstMBB = MF.front();
10159     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
10160     DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10161     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10162     const X86InstrInfo *TII = STI.getInstrInfo();
10163 
10164     Register PC;
10165     if (STI.isPICStyleGOT())
10166       PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10167     else
10168       PC = GlobalBaseReg;
10169 
10170     if (STI.is64Bit()) {
10171       if (TM->getCodeModel() == CodeModel::Large) {
10172         // In the large code model, we are aiming for this code, though the
10173         // register allocation may vary:
10174         //   leaq .LN$pb(%rip), %rax
10175         //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10176         //   addq %rcx, %rax
10177         // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10178         Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10179         Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10180         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
10181             .addReg(X86::RIP)
10182             .addImm(0)
10183             .addReg(0)
10184             .addSym(MF.getPICBaseSymbol())
10185             .addReg(0);
10186         std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
10187         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
10188             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10189                                X86II::MO_PIC_BASE_OFFSET);
10190         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
10191             .addReg(PBReg, RegState::Kill)
10192             .addReg(GOTReg, RegState::Kill);
10193       } else {
10194         // In other code models, use a RIP-relative LEA to materialize the
10195         // GOT.
10196         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
10197             .addReg(X86::RIP)
10198             .addImm(0)
10199             .addReg(0)
10200             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10201             .addReg(0);
10202       }
10203     } else {
10204       // Operand of MovePCtoStack is completely ignored by asm printer. It's
10205       // only used in JIT code emission as displacement to pc.
10206       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10207 
10208       // If we're using vanilla 'GOT' PIC style, we should use relative
10209       // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10210       if (STI.isPICStyleGOT()) {
10211         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10212         // %some_register
10213         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10214             .addReg(PC)
10215             .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10216                                X86II::MO_GOT_ABSOLUTE_ADDRESS);
10217       }
10218     }
10219 
10220     return true;
10221   }
10222 
10223   StringRef getPassName() const override {
10224     return "X86 PIC Global Base Reg Initialization";
10225   }
10226 
10227   void getAnalysisUsage(AnalysisUsage &AU) const override {
10228     AU.setPreservesCFG();
10229     MachineFunctionPass::getAnalysisUsage(AU);
10230   }
10231 };
10232 } // namespace
10233 
10234 char CGBR::ID = 0;
10235 FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
10236 
10237 namespace {
10238 struct LDTLSCleanup : public MachineFunctionPass {
10239   static char ID;
10240   LDTLSCleanup() : MachineFunctionPass(ID) {}
10241 
10242   bool runOnMachineFunction(MachineFunction &MF) override {
10243     if (skipFunction(MF.getFunction()))
10244       return false;
10245 
10246     X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
10247     if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10248       // No point folding accesses if there isn't at least two.
10249       return false;
10250     }
10251 
10252     MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
10253     return VisitNode(DT->getRootNode(), 0);
10254   }
10255 
10256   // Visit the dominator subtree rooted at Node in pre-order.
10257   // If TLSBaseAddrReg is non-null, then use that to replace any
10258   // TLS_base_addr instructions. Otherwise, create the register
10259   // when the first such instruction is seen, and then use it
10260   // as we encounter more instructions.
10261   bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
10262     MachineBasicBlock *BB = Node->getBlock();
10263     bool Changed = false;
10264 
10265     // Traverse the current block.
10266     for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10267          ++I) {
10268       switch (I->getOpcode()) {
10269       case X86::TLS_base_addr32:
10270       case X86::TLS_base_addr64:
10271         if (TLSBaseAddrReg)
10272           I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
10273         else
10274           I = SetRegister(*I, &TLSBaseAddrReg);
10275         Changed = true;
10276         break;
10277       default:
10278         break;
10279       }
10280     }
10281 
10282     // Visit the children of this block in the dominator tree.
10283     for (auto &I : *Node) {
10284       Changed |= VisitNode(I, TLSBaseAddrReg);
10285     }
10286 
10287     return Changed;
10288   }
10289 
10290   // Replace the TLS_base_addr instruction I with a copy from
10291   // TLSBaseAddrReg, returning the new instruction.
10292   MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10293                                        unsigned TLSBaseAddrReg) {
10294     MachineFunction *MF = I.getParent()->getParent();
10295     const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10296     const bool is64Bit = STI.is64Bit();
10297     const X86InstrInfo *TII = STI.getInstrInfo();
10298 
10299     // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10300     MachineInstr *Copy =
10301         BuildMI(*I.getParent(), I, I.getDebugLoc(),
10302                 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10303             .addReg(TLSBaseAddrReg);
10304 
10305     // Erase the TLS_base_addr instruction.
10306     I.eraseFromParent();
10307 
10308     return Copy;
10309   }
10310 
10311   // Create a virtual register in *TLSBaseAddrReg, and populate it by
10312   // inserting a copy instruction after I. Returns the new instruction.
10313   MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
10314     MachineFunction *MF = I.getParent()->getParent();
10315     const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10316     const bool is64Bit = STI.is64Bit();
10317     const X86InstrInfo *TII = STI.getInstrInfo();
10318 
10319     // Create a virtual register for the TLS base address.
10320     MachineRegisterInfo &RegInfo = MF->getRegInfo();
10321     *TLSBaseAddrReg = RegInfo.createVirtualRegister(
10322         is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10323 
10324     // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10325     MachineInstr *Next = I.getNextNode();
10326     MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10327                                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10328                              .addReg(is64Bit ? X86::RAX : X86::EAX);
10329 
10330     return Copy;
10331   }
10332 
10333   StringRef getPassName() const override {
10334     return "Local Dynamic TLS Access Clean-up";
10335   }
10336 
10337   void getAnalysisUsage(AnalysisUsage &AU) const override {
10338     AU.setPreservesCFG();
10339     AU.addRequired<MachineDominatorTree>();
10340     MachineFunctionPass::getAnalysisUsage(AU);
10341   }
10342 };
10343 } // namespace
10344 
10345 char LDTLSCleanup::ID = 0;
10346 FunctionPass *llvm::createCleanupLocalDynamicTLSPass() {
10347   return new LDTLSCleanup();
10348 }
10349 
10350 /// Constants defining how certain sequences should be outlined.
10351 ///
10352 /// \p MachineOutlinerDefault implies that the function is called with a call
10353 /// instruction, and a return must be emitted for the outlined function frame.
10354 ///
10355 /// That is,
10356 ///
10357 /// I1                                 OUTLINED_FUNCTION:
10358 /// I2 --> call OUTLINED_FUNCTION       I1
10359 /// I3                                  I2
10360 ///                                     I3
10361 ///                                     ret
10362 ///
10363 /// * Call construction overhead: 1 (call instruction)
10364 /// * Frame construction overhead: 1 (return instruction)
10365 ///
10366 /// \p MachineOutlinerTailCall implies that the function is being tail called.
10367 /// A jump is emitted instead of a call, and the return is already present in
10368 /// the outlined sequence. That is,
10369 ///
10370 /// I1                                 OUTLINED_FUNCTION:
10371 /// I2 --> jmp OUTLINED_FUNCTION       I1
10372 /// ret                                I2
10373 ///                                    ret
10374 ///
10375 /// * Call construction overhead: 1 (jump instruction)
10376 /// * Frame construction overhead: 0 (don't need to return)
10377 ///
10378 enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall };
10379 
10380 std::optional<outliner::OutlinedFunction>
10381 X86InstrInfo::getOutliningCandidateInfo(
10382     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
10383   unsigned SequenceSize = 0;
10384   for (auto &MI : RepeatedSequenceLocs[0]) {
10385     // FIXME: x86 doesn't implement getInstSizeInBytes, so
10386     // we can't tell the cost.  Just assume each instruction
10387     // is one byte.
10388     if (MI.isDebugInstr() || MI.isKill())
10389       continue;
10390     SequenceSize += 1;
10391   }
10392 
10393   // We check to see if CFI Instructions are present, and if they are
10394   // we find the number of CFI Instructions in the candidates.
10395   unsigned CFICount = 0;
10396   for (auto &I : RepeatedSequenceLocs[0]) {
10397     if (I.isCFIInstruction())
10398       CFICount++;
10399   }
10400 
10401   // We compare the number of found CFI Instructions to  the number of CFI
10402   // instructions in the parent function for each candidate.  We must check this
10403   // since if we outline one of the CFI instructions in a function, we have to
10404   // outline them all for correctness. If we do not, the address offsets will be
10405   // incorrect between the two sections of the program.
10406   for (outliner::Candidate &C : RepeatedSequenceLocs) {
10407     std::vector<MCCFIInstruction> CFIInstructions =
10408         C.getMF()->getFrameInstructions();
10409 
10410     if (CFICount > 0 && CFICount != CFIInstructions.size())
10411       return std::nullopt;
10412   }
10413 
10414   // FIXME: Use real size in bytes for call and ret instructions.
10415   if (RepeatedSequenceLocs[0].back().isTerminator()) {
10416     for (outliner::Candidate &C : RepeatedSequenceLocs)
10417       C.setCallInfo(MachineOutlinerTailCall, 1);
10418 
10419     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
10420                                       0, // Number of bytes to emit frame.
10421                                       MachineOutlinerTailCall // Type of frame.
10422     );
10423   }
10424 
10425   if (CFICount > 0)
10426     return std::nullopt;
10427 
10428   for (outliner::Candidate &C : RepeatedSequenceLocs)
10429     C.setCallInfo(MachineOutlinerDefault, 1);
10430 
10431   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
10432                                     MachineOutlinerDefault);
10433 }
10434 
10435 bool X86InstrInfo::isFunctionSafeToOutlineFrom(
10436     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
10437   const Function &F = MF.getFunction();
10438 
10439   // Does the function use a red zone? If it does, then we can't risk messing
10440   // with the stack.
10441   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
10442     // It could have a red zone. If it does, then we don't want to touch it.
10443     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10444     if (!X86FI || X86FI->getUsesRedZone())
10445       return false;
10446   }
10447 
10448   // If we *don't* want to outline from things that could potentially be deduped
10449   // then return false.
10450   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10451     return false;
10452 
10453   // This function is viable for outlining, so return true.
10454   return true;
10455 }
10456 
10457 outliner::InstrType
10458 X86InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
10459                                    unsigned Flags) const {
10460   MachineInstr &MI = *MIT;
10461 
10462   // Is this a terminator for a basic block?
10463   if (MI.isTerminator())
10464     // TargetInstrInfo::getOutliningType has already filtered out anything
10465     // that would break this, so we can allow it here.
10466     return outliner::InstrType::Legal;
10467 
10468   // Don't outline anything that modifies or reads from the stack pointer.
10469   //
10470   // FIXME: There are instructions which are being manually built without
10471   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10472   // able to remove the extra checks once those are fixed up. For example,
10473   // sometimes we might get something like %rax = POP64r 1. This won't be
10474   // caught by modifiesRegister or readsRegister even though the instruction
10475   // really ought to be formed so that modifiesRegister/readsRegister would
10476   // catch it.
10477   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10478       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10479       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10480     return outliner::InstrType::Illegal;
10481 
10482   // Outlined calls change the instruction pointer, so don't read from it.
10483   if (MI.readsRegister(X86::RIP, &RI) ||
10484       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10485       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10486     return outliner::InstrType::Illegal;
10487 
10488   // Don't outline CFI instructions.
10489   if (MI.isCFIInstruction())
10490     return outliner::InstrType::Illegal;
10491 
10492   return outliner::InstrType::Legal;
10493 }
10494 
10495 void X86InstrInfo::buildOutlinedFrame(
10496     MachineBasicBlock &MBB, MachineFunction &MF,
10497     const outliner::OutlinedFunction &OF) const {
10498   // If we're a tail call, we already have a return, so don't do anything.
10499   if (OF.FrameConstructionID == MachineOutlinerTailCall)
10500     return;
10501 
10502   // We're a normal call, so our sequence doesn't have a return instruction.
10503   // Add it in.
10504   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
10505   MBB.insert(MBB.end(), retq);
10506 }
10507 
10508 MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall(
10509     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
10510     MachineFunction &MF, outliner::Candidate &C) const {
10511   // Is it a tail call?
10512   if (C.CallConstructionID == MachineOutlinerTailCall) {
10513     // Yes, just insert a JMP.
10514     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
10515                             .addGlobalAddress(M.getNamedValue(MF.getName())));
10516   } else {
10517     // No, insert a call.
10518     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10519                             .addGlobalAddress(M.getNamedValue(MF.getName())));
10520   }
10521 
10522   return It;
10523 }
10524 
10525 void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB,
10526                                       MachineBasicBlock::iterator Iter,
10527                                       DebugLoc &DL,
10528                                       bool AllowSideEffects) const {
10529   const MachineFunction &MF = *MBB.getParent();
10530   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
10531   const TargetRegisterInfo &TRI = getRegisterInfo();
10532 
10533   if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10534     // FIXME: Should we ignore MMX registers?
10535     return;
10536 
10537   if (TRI.isGeneralPurposeRegister(MF, Reg)) {
10538     // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10539     // upper bits of a 64-bit register automagically.
10540     Reg = getX86SubSuperRegister(Reg, 32);
10541 
10542     if (!AllowSideEffects)
10543       // XOR affects flags, so use a MOV instead.
10544       BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0);
10545     else
10546       BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg)
10547           .addReg(Reg, RegState::Undef)
10548           .addReg(Reg, RegState::Undef);
10549   } else if (X86::VR128RegClass.contains(Reg)) {
10550     // XMM#
10551     if (!ST.hasSSE1())
10552       return;
10553 
10554     // PXOR is safe to use because it doesn't affect flags.
10555     BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg)
10556         .addReg(Reg, RegState::Undef)
10557         .addReg(Reg, RegState::Undef);
10558   } else if (X86::VR256RegClass.contains(Reg)) {
10559     // YMM#
10560     if (!ST.hasAVX())
10561       return;
10562 
10563     // VPXOR is safe to use because it doesn't affect flags.
10564     BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg)
10565         .addReg(Reg, RegState::Undef)
10566         .addReg(Reg, RegState::Undef);
10567   } else if (X86::VR512RegClass.contains(Reg)) {
10568     // ZMM#
10569     if (!ST.hasAVX512())
10570       return;
10571 
10572     // VPXORY is safe to use because it doesn't affect flags.
10573     BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg)
10574         .addReg(Reg, RegState::Undef)
10575         .addReg(Reg, RegState::Undef);
10576   } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) ||
10577              X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) ||
10578              X86::VK16RegClass.contains(Reg)) {
10579     if (!ST.hasVLX())
10580       return;
10581 
10582     // KXOR is safe to use because it doesn't affect flags.
10583     unsigned Op = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
10584     BuildMI(MBB, Iter, DL, get(Op), Reg)
10585         .addReg(Reg, RegState::Undef)
10586         .addReg(Reg, RegState::Undef);
10587   }
10588 }
10589 
10590 bool X86InstrInfo::getMachineCombinerPatterns(
10591     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
10592     bool DoRegPressureReduce) const {
10593   unsigned Opc = Root.getOpcode();
10594   switch (Opc) {
10595   default:
10596     return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
10597                                                        DoRegPressureReduce);
10598   case X86::VPDPWSSDrr:
10599   case X86::VPDPWSSDrm:
10600   case X86::VPDPWSSDYrr:
10601   case X86::VPDPWSSDYrm: {
10602     Patterns.push_back(MachineCombinerPattern::DPWSSD);
10603     return true;
10604   }
10605   case X86::VPDPWSSDZ128r:
10606   case X86::VPDPWSSDZ128m:
10607   case X86::VPDPWSSDZ256r:
10608   case X86::VPDPWSSDZ256m:
10609   case X86::VPDPWSSDZr:
10610   case X86::VPDPWSSDZm: {
10611     if (Subtarget.hasBWI())
10612       Patterns.push_back(MachineCombinerPattern::DPWSSD);
10613     return true;
10614   }
10615   }
10616 }
10617 
10618 static void
10619 genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII,
10620                              SmallVectorImpl<MachineInstr *> &InsInstrs,
10621                              SmallVectorImpl<MachineInstr *> &DelInstrs,
10622                              DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
10623   MachineFunction *MF = Root.getMF();
10624   MachineRegisterInfo &RegInfo = MF->getRegInfo();
10625 
10626   unsigned Opc = Root.getOpcode();
10627   unsigned AddOpc = 0;
10628   unsigned MaddOpc = 0;
10629   switch (Opc) {
10630   default:
10631     assert(false && "It should not reach here");
10632     break;
10633   // vpdpwssd xmm2,xmm3,xmm1
10634   // -->
10635   // vpmaddwd xmm3,xmm3,xmm1
10636   // vpaddd xmm2,xmm2,xmm3
10637   case X86::VPDPWSSDrr:
10638     MaddOpc = X86::VPMADDWDrr;
10639     AddOpc = X86::VPADDDrr;
10640     break;
10641   case X86::VPDPWSSDrm:
10642     MaddOpc = X86::VPMADDWDrm;
10643     AddOpc = X86::VPADDDrr;
10644     break;
10645   case X86::VPDPWSSDZ128r:
10646     MaddOpc = X86::VPMADDWDZ128rr;
10647     AddOpc = X86::VPADDDZ128rr;
10648     break;
10649   case X86::VPDPWSSDZ128m:
10650     MaddOpc = X86::VPMADDWDZ128rm;
10651     AddOpc = X86::VPADDDZ128rr;
10652     break;
10653   // vpdpwssd ymm2,ymm3,ymm1
10654   // -->
10655   // vpmaddwd ymm3,ymm3,ymm1
10656   // vpaddd ymm2,ymm2,ymm3
10657   case X86::VPDPWSSDYrr:
10658     MaddOpc = X86::VPMADDWDYrr;
10659     AddOpc = X86::VPADDDYrr;
10660     break;
10661   case X86::VPDPWSSDYrm:
10662     MaddOpc = X86::VPMADDWDYrm;
10663     AddOpc = X86::VPADDDYrr;
10664     break;
10665   case X86::VPDPWSSDZ256r:
10666     MaddOpc = X86::VPMADDWDZ256rr;
10667     AddOpc = X86::VPADDDZ256rr;
10668     break;
10669   case X86::VPDPWSSDZ256m:
10670     MaddOpc = X86::VPMADDWDZ256rm;
10671     AddOpc = X86::VPADDDZ256rr;
10672     break;
10673   // vpdpwssd zmm2,zmm3,zmm1
10674   // -->
10675   // vpmaddwd zmm3,zmm3,zmm1
10676   // vpaddd zmm2,zmm2,zmm3
10677   case X86::VPDPWSSDZr:
10678     MaddOpc = X86::VPMADDWDZrr;
10679     AddOpc = X86::VPADDDZrr;
10680     break;
10681   case X86::VPDPWSSDZm:
10682     MaddOpc = X86::VPMADDWDZrm;
10683     AddOpc = X86::VPADDDZrr;
10684     break;
10685   }
10686   // Create vpmaddwd.
10687   const TargetRegisterClass *RC =
10688       RegInfo.getRegClass(Root.getOperand(0).getReg());
10689   Register NewReg = RegInfo.createVirtualRegister(RC);
10690   MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root);
10691   Madd->setDesc(TII.get(MaddOpc));
10692   Madd->untieRegOperand(1);
10693   Madd->removeOperand(1);
10694   Madd->getOperand(0).setReg(NewReg);
10695   InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0));
10696   // Create vpaddd.
10697   Register DstReg = Root.getOperand(0).getReg();
10698   bool IsKill = Root.getOperand(1).isKill();
10699   MachineInstr *Add =
10700       BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg)
10701           .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill))
10702           .addReg(Madd->getOperand(0).getReg(), getKillRegState(true));
10703   InsInstrs.push_back(Madd);
10704   InsInstrs.push_back(Add);
10705   DelInstrs.push_back(&Root);
10706 }
10707 
10708 void X86InstrInfo::genAlternativeCodeSequence(
10709     MachineInstr &Root, MachineCombinerPattern Pattern,
10710     SmallVectorImpl<MachineInstr *> &InsInstrs,
10711     SmallVectorImpl<MachineInstr *> &DelInstrs,
10712     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
10713   switch (Pattern) {
10714   default:
10715     // Reassociate instructions.
10716     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
10717                                                 DelInstrs, InstrIdxForVirtReg);
10718     return;
10719   case MachineCombinerPattern::DPWSSD:
10720     genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs,
10721                                  InstrIdxForVirtReg);
10722     return;
10723   }
10724 }
10725 
10726 // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10727 void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
10728                                          int FI) const {
10729   X86AddressMode M;
10730   M.BaseType = X86AddressMode::FrameIndexBase;
10731   M.Base.FrameIndex = FI;
10732   M.getFullAddress(Ops);
10733 }
10734 
10735 #define GET_INSTRINFO_HELPERS
10736 #include "X86GenInstrInfo.inc"
10737