xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision 2938ecc85c29202824e83d65af5c3a4fb7b3e5fb)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "x86-instr-info"
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
49 
50 static cl::opt<bool>
51     NoFusing("disable-spill-fusing",
52              cl::desc("Disable fusing of spill code into instructions"),
53              cl::Hidden);
54 static cl::opt<bool>
55 PrintFailedFusing("print-failed-fuse-candidates",
56                   cl::desc("Print instructions that the allocator wants to"
57                            " fuse, but the X86 backend currently can't"),
58                   cl::Hidden);
59 static cl::opt<bool>
60 ReMatPICStubLoad("remat-pic-stub-load",
61                  cl::desc("Re-materialize load from stub in PIC mode"),
62                  cl::init(false), cl::Hidden);
63 static cl::opt<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65                           cl::desc("Clearance between two register writes "
66                                    "for inserting XOR to avoid partial "
67                                    "register update"),
68                           cl::init(64), cl::Hidden);
69 static cl::opt<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71                   cl::desc("How many idle instructions we would like before "
72                            "certain undef register reads"),
73                   cl::init(128), cl::Hidden);
74 
75 
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
78 
79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                                : X86::ADJCALLSTACKDOWN32),
82                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                                : X86::ADJCALLSTACKUP32),
84                       X86::CATCHRET,
85                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86       Subtarget(STI), RI(STI.getTargetTriple()) {
87 }
88 
89 bool
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                     unsigned &SrcReg, unsigned &DstReg,
92                                     unsigned &SubIdx) const {
93   switch (MI.getOpcode()) {
94   default: break;
95   case X86::MOVSX16rr8:
96   case X86::MOVZX16rr8:
97   case X86::MOVSX32rr8:
98   case X86::MOVZX32rr8:
99   case X86::MOVSX64rr8:
100     if (!Subtarget.is64Bit())
101       // It's not always legal to reference the low 8-bit of the larger
102       // register in 32-bit mode.
103       return false;
104     LLVM_FALLTHROUGH;
105   case X86::MOVSX32rr16:
106   case X86::MOVZX32rr16:
107   case X86::MOVSX64rr16:
108   case X86::MOVSX64rr32: {
109     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110       // Be conservative.
111       return false;
112     SrcReg = MI.getOperand(1).getReg();
113     DstReg = MI.getOperand(0).getReg();
114     switch (MI.getOpcode()) {
115     default: llvm_unreachable("Unreachable!");
116     case X86::MOVSX16rr8:
117     case X86::MOVZX16rr8:
118     case X86::MOVSX32rr8:
119     case X86::MOVZX32rr8:
120     case X86::MOVSX64rr8:
121       SubIdx = X86::sub_8bit;
122       break;
123     case X86::MOVSX32rr16:
124     case X86::MOVZX32rr16:
125     case X86::MOVSX64rr16:
126       SubIdx = X86::sub_16bit;
127       break;
128     case X86::MOVSX64rr32:
129       SubIdx = X86::sub_32bit;
130       break;
131     }
132     return true;
133   }
134   }
135   return false;
136 }
137 
138 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139   const MachineFunction *MF = MI.getParent()->getParent();
140   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141 
142   if (isFrameInstr(MI)) {
143     unsigned StackAlign = TFI->getStackAlignment();
144     int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145     SPAdj -= getFrameAdjustment(MI);
146     if (!isFrameSetup(MI))
147       SPAdj = -SPAdj;
148     return SPAdj;
149   }
150 
151   // To know whether a call adjusts the stack, we need information
152   // that is bound to the following ADJCALLSTACKUP pseudo.
153   // Look for the next ADJCALLSTACKUP that follows the call.
154   if (MI.isCall()) {
155     const MachineBasicBlock *MBB = MI.getParent();
156     auto I = ++MachineBasicBlock::const_iterator(MI);
157     for (auto E = MBB->end(); I != E; ++I) {
158       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159           I->isCall())
160         break;
161     }
162 
163     // If we could not find a frame destroy opcode, then it has already
164     // been simplified, so we don't care.
165     if (I->getOpcode() != getCallFrameDestroyOpcode())
166       return 0;
167 
168     return -(I->getOperand(1).getImm());
169   }
170 
171   // Currently handle only PUSHes we can reasonably expect to see
172   // in call sequences
173   switch (MI.getOpcode()) {
174   default:
175     return 0;
176   case X86::PUSH32i8:
177   case X86::PUSH32r:
178   case X86::PUSH32rmm:
179   case X86::PUSH32rmr:
180   case X86::PUSHi32:
181     return 4;
182   case X86::PUSH64i8:
183   case X86::PUSH64r:
184   case X86::PUSH64rmm:
185   case X86::PUSH64rmr:
186   case X86::PUSH64i32:
187     return 8;
188   }
189 }
190 
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194                                   int &FrameIndex) const {
195   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198       MI.getOperand(Op + X86::AddrDisp).isImm() &&
199       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203     return true;
204   }
205   return false;
206 }
207 
208 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209   switch (Opcode) {
210   default:
211     return false;
212   case X86::MOV8rm:
213   case X86::KMOVBkm:
214     MemBytes = 1;
215     return true;
216   case X86::MOV16rm:
217   case X86::KMOVWkm:
218     MemBytes = 2;
219     return true;
220   case X86::MOV32rm:
221   case X86::MOVSSrm:
222   case X86::MOVSSrm_alt:
223   case X86::VMOVSSrm:
224   case X86::VMOVSSrm_alt:
225   case X86::VMOVSSZrm:
226   case X86::VMOVSSZrm_alt:
227   case X86::KMOVDkm:
228     MemBytes = 4;
229     return true;
230   case X86::MOV64rm:
231   case X86::LD_Fp64m:
232   case X86::MOVSDrm:
233   case X86::MOVSDrm_alt:
234   case X86::VMOVSDrm:
235   case X86::VMOVSDrm_alt:
236   case X86::VMOVSDZrm:
237   case X86::VMOVSDZrm_alt:
238   case X86::MMX_MOVD64rm:
239   case X86::MMX_MOVQ64rm:
240   case X86::KMOVQkm:
241     MemBytes = 8;
242     return true;
243   case X86::MOVAPSrm:
244   case X86::MOVUPSrm:
245   case X86::MOVAPDrm:
246   case X86::MOVUPDrm:
247   case X86::MOVDQArm:
248   case X86::MOVDQUrm:
249   case X86::VMOVAPSrm:
250   case X86::VMOVUPSrm:
251   case X86::VMOVAPDrm:
252   case X86::VMOVUPDrm:
253   case X86::VMOVDQArm:
254   case X86::VMOVDQUrm:
255   case X86::VMOVAPSZ128rm:
256   case X86::VMOVUPSZ128rm:
257   case X86::VMOVAPSZ128rm_NOVLX:
258   case X86::VMOVUPSZ128rm_NOVLX:
259   case X86::VMOVAPDZ128rm:
260   case X86::VMOVUPDZ128rm:
261   case X86::VMOVDQU8Z128rm:
262   case X86::VMOVDQU16Z128rm:
263   case X86::VMOVDQA32Z128rm:
264   case X86::VMOVDQU32Z128rm:
265   case X86::VMOVDQA64Z128rm:
266   case X86::VMOVDQU64Z128rm:
267     MemBytes = 16;
268     return true;
269   case X86::VMOVAPSYrm:
270   case X86::VMOVUPSYrm:
271   case X86::VMOVAPDYrm:
272   case X86::VMOVUPDYrm:
273   case X86::VMOVDQAYrm:
274   case X86::VMOVDQUYrm:
275   case X86::VMOVAPSZ256rm:
276   case X86::VMOVUPSZ256rm:
277   case X86::VMOVAPSZ256rm_NOVLX:
278   case X86::VMOVUPSZ256rm_NOVLX:
279   case X86::VMOVAPDZ256rm:
280   case X86::VMOVUPDZ256rm:
281   case X86::VMOVDQU8Z256rm:
282   case X86::VMOVDQU16Z256rm:
283   case X86::VMOVDQA32Z256rm:
284   case X86::VMOVDQU32Z256rm:
285   case X86::VMOVDQA64Z256rm:
286   case X86::VMOVDQU64Z256rm:
287     MemBytes = 32;
288     return true;
289   case X86::VMOVAPSZrm:
290   case X86::VMOVUPSZrm:
291   case X86::VMOVAPDZrm:
292   case X86::VMOVUPDZrm:
293   case X86::VMOVDQU8Zrm:
294   case X86::VMOVDQU16Zrm:
295   case X86::VMOVDQA32Zrm:
296   case X86::VMOVDQU32Zrm:
297   case X86::VMOVDQA64Zrm:
298   case X86::VMOVDQU64Zrm:
299     MemBytes = 64;
300     return true;
301   }
302 }
303 
304 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305   switch (Opcode) {
306   default:
307     return false;
308   case X86::MOV8mr:
309   case X86::KMOVBmk:
310     MemBytes = 1;
311     return true;
312   case X86::MOV16mr:
313   case X86::KMOVWmk:
314     MemBytes = 2;
315     return true;
316   case X86::MOV32mr:
317   case X86::MOVSSmr:
318   case X86::VMOVSSmr:
319   case X86::VMOVSSZmr:
320   case X86::KMOVDmk:
321     MemBytes = 4;
322     return true;
323   case X86::MOV64mr:
324   case X86::ST_FpP64m:
325   case X86::MOVSDmr:
326   case X86::VMOVSDmr:
327   case X86::VMOVSDZmr:
328   case X86::MMX_MOVD64mr:
329   case X86::MMX_MOVQ64mr:
330   case X86::MMX_MOVNTQmr:
331   case X86::KMOVQmk:
332     MemBytes = 8;
333     return true;
334   case X86::MOVAPSmr:
335   case X86::MOVUPSmr:
336   case X86::MOVAPDmr:
337   case X86::MOVUPDmr:
338   case X86::MOVDQAmr:
339   case X86::MOVDQUmr:
340   case X86::VMOVAPSmr:
341   case X86::VMOVUPSmr:
342   case X86::VMOVAPDmr:
343   case X86::VMOVUPDmr:
344   case X86::VMOVDQAmr:
345   case X86::VMOVDQUmr:
346   case X86::VMOVUPSZ128mr:
347   case X86::VMOVAPSZ128mr:
348   case X86::VMOVUPSZ128mr_NOVLX:
349   case X86::VMOVAPSZ128mr_NOVLX:
350   case X86::VMOVUPDZ128mr:
351   case X86::VMOVAPDZ128mr:
352   case X86::VMOVDQA32Z128mr:
353   case X86::VMOVDQU32Z128mr:
354   case X86::VMOVDQA64Z128mr:
355   case X86::VMOVDQU64Z128mr:
356   case X86::VMOVDQU8Z128mr:
357   case X86::VMOVDQU16Z128mr:
358     MemBytes = 16;
359     return true;
360   case X86::VMOVUPSYmr:
361   case X86::VMOVAPSYmr:
362   case X86::VMOVUPDYmr:
363   case X86::VMOVAPDYmr:
364   case X86::VMOVDQUYmr:
365   case X86::VMOVDQAYmr:
366   case X86::VMOVUPSZ256mr:
367   case X86::VMOVAPSZ256mr:
368   case X86::VMOVUPSZ256mr_NOVLX:
369   case X86::VMOVAPSZ256mr_NOVLX:
370   case X86::VMOVUPDZ256mr:
371   case X86::VMOVAPDZ256mr:
372   case X86::VMOVDQU8Z256mr:
373   case X86::VMOVDQU16Z256mr:
374   case X86::VMOVDQA32Z256mr:
375   case X86::VMOVDQU32Z256mr:
376   case X86::VMOVDQA64Z256mr:
377   case X86::VMOVDQU64Z256mr:
378     MemBytes = 32;
379     return true;
380   case X86::VMOVUPSZmr:
381   case X86::VMOVAPSZmr:
382   case X86::VMOVUPDZmr:
383   case X86::VMOVAPDZmr:
384   case X86::VMOVDQU8Zmr:
385   case X86::VMOVDQU16Zmr:
386   case X86::VMOVDQA32Zmr:
387   case X86::VMOVDQU32Zmr:
388   case X86::VMOVDQA64Zmr:
389   case X86::VMOVDQU64Zmr:
390     MemBytes = 64;
391     return true;
392   }
393   return false;
394 }
395 
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397                                            int &FrameIndex) const {
398   unsigned Dummy;
399   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400 }
401 
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403                                            int &FrameIndex,
404                                            unsigned &MemBytes) const {
405   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407       return MI.getOperand(0).getReg();
408   return 0;
409 }
410 
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412                                                  int &FrameIndex) const {
413   unsigned Dummy;
414   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415     unsigned Reg;
416     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417       return Reg;
418     // Check for post-frame index elimination operations
419     SmallVector<const MachineMemOperand *, 1> Accesses;
420     if (hasLoadFromStackSlot(MI, Accesses)) {
421       FrameIndex =
422           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423               ->getFrameIndex();
424       return 1;
425     }
426   }
427   return 0;
428 }
429 
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431                                           int &FrameIndex) const {
432   unsigned Dummy;
433   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434 }
435 
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437                                           int &FrameIndex,
438                                           unsigned &MemBytes) const {
439   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441         isFrameOperand(MI, 0, FrameIndex))
442       return MI.getOperand(X86::AddrNumOperands).getReg();
443   return 0;
444 }
445 
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447                                                 int &FrameIndex) const {
448   unsigned Dummy;
449   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450     unsigned Reg;
451     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452       return Reg;
453     // Check for post-frame index elimination operations
454     SmallVector<const MachineMemOperand *, 1> Accesses;
455     if (hasStoreToStackSlot(MI, Accesses)) {
456       FrameIndex =
457           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458               ->getFrameIndex();
459       return 1;
460     }
461   }
462   return 0;
463 }
464 
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467   // Don't waste compile time scanning use-def chains of physregs.
468   if (!Register::isVirtualRegister(BaseReg))
469     return false;
470   bool isPICBase = false;
471   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472          E = MRI.def_instr_end(); I != E; ++I) {
473     MachineInstr *DefMI = &*I;
474     if (DefMI->getOpcode() != X86::MOVPC32r)
475       return false;
476     assert(!isPICBase && "More than one PIC base?");
477     isPICBase = true;
478   }
479   return isPICBase;
480 }
481 
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483                                                      AAResults *AA) const {
484   switch (MI.getOpcode()) {
485   default:
486     // This function should only be called for opcodes with the ReMaterializable
487     // flag set.
488     llvm_unreachable("Unknown rematerializable operation!");
489     break;
490 
491   case X86::LOAD_STACK_GUARD:
492   case X86::AVX1_SETALLONES:
493   case X86::AVX2_SETALLONES:
494   case X86::AVX512_128_SET0:
495   case X86::AVX512_256_SET0:
496   case X86::AVX512_512_SET0:
497   case X86::AVX512_512_SETALLONES:
498   case X86::AVX512_FsFLD0SD:
499   case X86::AVX512_FsFLD0SS:
500   case X86::AVX512_FsFLD0F128:
501   case X86::AVX_SET0:
502   case X86::FsFLD0SD:
503   case X86::FsFLD0SS:
504   case X86::FsFLD0F128:
505   case X86::KSET0D:
506   case X86::KSET0Q:
507   case X86::KSET0W:
508   case X86::KSET1D:
509   case X86::KSET1Q:
510   case X86::KSET1W:
511   case X86::MMX_SET0:
512   case X86::MOV32ImmSExti8:
513   case X86::MOV32r0:
514   case X86::MOV32r1:
515   case X86::MOV32r_1:
516   case X86::MOV32ri64:
517   case X86::MOV64ImmSExti8:
518   case X86::V_SET0:
519   case X86::V_SETALLONES:
520   case X86::MOV16ri:
521   case X86::MOV32ri:
522   case X86::MOV64ri:
523   case X86::MOV64ri32:
524   case X86::MOV8ri:
525     return true;
526 
527   case X86::MOV8rm:
528   case X86::MOV8rm_NOREX:
529   case X86::MOV16rm:
530   case X86::MOV32rm:
531   case X86::MOV64rm:
532   case X86::MOVSSrm:
533   case X86::MOVSSrm_alt:
534   case X86::MOVSDrm:
535   case X86::MOVSDrm_alt:
536   case X86::MOVAPSrm:
537   case X86::MOVUPSrm:
538   case X86::MOVAPDrm:
539   case X86::MOVUPDrm:
540   case X86::MOVDQArm:
541   case X86::MOVDQUrm:
542   case X86::VMOVSSrm:
543   case X86::VMOVSSrm_alt:
544   case X86::VMOVSDrm:
545   case X86::VMOVSDrm_alt:
546   case X86::VMOVAPSrm:
547   case X86::VMOVUPSrm:
548   case X86::VMOVAPDrm:
549   case X86::VMOVUPDrm:
550   case X86::VMOVDQArm:
551   case X86::VMOVDQUrm:
552   case X86::VMOVAPSYrm:
553   case X86::VMOVUPSYrm:
554   case X86::VMOVAPDYrm:
555   case X86::VMOVUPDYrm:
556   case X86::VMOVDQAYrm:
557   case X86::VMOVDQUYrm:
558   case X86::MMX_MOVD64rm:
559   case X86::MMX_MOVQ64rm:
560   // AVX-512
561   case X86::VMOVSSZrm:
562   case X86::VMOVSSZrm_alt:
563   case X86::VMOVSDZrm:
564   case X86::VMOVSDZrm_alt:
565   case X86::VMOVAPDZ128rm:
566   case X86::VMOVAPDZ256rm:
567   case X86::VMOVAPDZrm:
568   case X86::VMOVAPSZ128rm:
569   case X86::VMOVAPSZ256rm:
570   case X86::VMOVAPSZ128rm_NOVLX:
571   case X86::VMOVAPSZ256rm_NOVLX:
572   case X86::VMOVAPSZrm:
573   case X86::VMOVDQA32Z128rm:
574   case X86::VMOVDQA32Z256rm:
575   case X86::VMOVDQA32Zrm:
576   case X86::VMOVDQA64Z128rm:
577   case X86::VMOVDQA64Z256rm:
578   case X86::VMOVDQA64Zrm:
579   case X86::VMOVDQU16Z128rm:
580   case X86::VMOVDQU16Z256rm:
581   case X86::VMOVDQU16Zrm:
582   case X86::VMOVDQU32Z128rm:
583   case X86::VMOVDQU32Z256rm:
584   case X86::VMOVDQU32Zrm:
585   case X86::VMOVDQU64Z128rm:
586   case X86::VMOVDQU64Z256rm:
587   case X86::VMOVDQU64Zrm:
588   case X86::VMOVDQU8Z128rm:
589   case X86::VMOVDQU8Z256rm:
590   case X86::VMOVDQU8Zrm:
591   case X86::VMOVUPDZ128rm:
592   case X86::VMOVUPDZ256rm:
593   case X86::VMOVUPDZrm:
594   case X86::VMOVUPSZ128rm:
595   case X86::VMOVUPSZ256rm:
596   case X86::VMOVUPSZ128rm_NOVLX:
597   case X86::VMOVUPSZ256rm_NOVLX:
598   case X86::VMOVUPSZrm: {
599     // Loads from constant pools are trivially rematerializable.
600     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
601         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
602         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
603         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
604         MI.isDereferenceableInvariantLoad(AA)) {
605       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
606       if (BaseReg == 0 || BaseReg == X86::RIP)
607         return true;
608       // Allow re-materialization of PIC load.
609       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
610         return false;
611       const MachineFunction &MF = *MI.getParent()->getParent();
612       const MachineRegisterInfo &MRI = MF.getRegInfo();
613       return regIsPICBase(BaseReg, MRI);
614     }
615     return false;
616   }
617 
618   case X86::LEA32r:
619   case X86::LEA64r: {
620     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
621         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
622         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
623         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
624       // lea fi#, lea GV, etc. are all rematerializable.
625       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
626         return true;
627       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
628       if (BaseReg == 0)
629         return true;
630       // Allow re-materialization of lea PICBase + x.
631       const MachineFunction &MF = *MI.getParent()->getParent();
632       const MachineRegisterInfo &MRI = MF.getRegInfo();
633       return regIsPICBase(BaseReg, MRI);
634     }
635     return false;
636   }
637   }
638 }
639 
640 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
641                                  MachineBasicBlock::iterator I,
642                                  unsigned DestReg, unsigned SubIdx,
643                                  const MachineInstr &Orig,
644                                  const TargetRegisterInfo &TRI) const {
645   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
646   if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
647     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
648     // effects.
649     int Value;
650     switch (Orig.getOpcode()) {
651     case X86::MOV32r0:  Value = 0; break;
652     case X86::MOV32r1:  Value = 1; break;
653     case X86::MOV32r_1: Value = -1; break;
654     default:
655       llvm_unreachable("Unexpected instruction!");
656     }
657 
658     const DebugLoc &DL = Orig.getDebugLoc();
659     BuildMI(MBB, I, DL, get(X86::MOV32ri))
660         .add(Orig.getOperand(0))
661         .addImm(Value);
662   } else {
663     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
664     MBB.insert(I, MI);
665   }
666 
667   MachineInstr &NewMI = *std::prev(I);
668   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
669 }
670 
671 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
672 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
673   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
674     MachineOperand &MO = MI.getOperand(i);
675     if (MO.isReg() && MO.isDef() &&
676         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
677       return true;
678     }
679   }
680   return false;
681 }
682 
683 /// Check whether the shift count for a machine operand is non-zero.
684 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
685                                               unsigned ShiftAmtOperandIdx) {
686   // The shift count is six bits with the REX.W prefix and five bits without.
687   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
688   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
689   return Imm & ShiftCountMask;
690 }
691 
692 /// Check whether the given shift count is appropriate
693 /// can be represented by a LEA instruction.
694 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
695   // Left shift instructions can be transformed into load-effective-address
696   // instructions if we can encode them appropriately.
697   // A LEA instruction utilizes a SIB byte to encode its scale factor.
698   // The SIB.scale field is two bits wide which means that we can encode any
699   // shift amount less than 4.
700   return ShAmt < 4 && ShAmt > 0;
701 }
702 
703 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
704                                   unsigned Opc, bool AllowSP, Register &NewSrc,
705                                   bool &isKill, MachineOperand &ImplicitOp,
706                                   LiveVariables *LV) const {
707   MachineFunction &MF = *MI.getParent()->getParent();
708   const TargetRegisterClass *RC;
709   if (AllowSP) {
710     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
711   } else {
712     RC = Opc != X86::LEA32r ?
713       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
714   }
715   Register SrcReg = Src.getReg();
716 
717   // For both LEA64 and LEA32 the register already has essentially the right
718   // type (32-bit or 64-bit) we may just need to forbid SP.
719   if (Opc != X86::LEA64_32r) {
720     NewSrc = SrcReg;
721     isKill = Src.isKill();
722     assert(!Src.isUndef() && "Undef op doesn't need optimization");
723 
724     if (Register::isVirtualRegister(NewSrc) &&
725         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
726       return false;
727 
728     return true;
729   }
730 
731   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
732   // another we need to add 64-bit registers to the final MI.
733   if (Register::isPhysicalRegister(SrcReg)) {
734     ImplicitOp = Src;
735     ImplicitOp.setImplicit();
736 
737     NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
738     isKill = Src.isKill();
739     assert(!Src.isUndef() && "Undef op doesn't need optimization");
740   } else {
741     // Virtual register of the wrong class, we have to create a temporary 64-bit
742     // vreg to feed into the LEA.
743     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
744     MachineInstr *Copy =
745         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
746             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
747             .add(Src);
748 
749     // Which is obviously going to be dead after we're done with it.
750     isKill = true;
751 
752     if (LV)
753       LV->replaceKillInstruction(SrcReg, MI, *Copy);
754   }
755 
756   // We've set all the parameters without issue.
757   return true;
758 }
759 
760 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
761     unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
762     LiveVariables *LV, bool Is8BitOp) const {
763   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
764   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
765   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
766               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
767          "Unexpected type for LEA transform");
768 
769   // TODO: For a 32-bit target, we need to adjust the LEA variables with
770   // something like this:
771   //   Opcode = X86::LEA32r;
772   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
773   //   OutRegLEA =
774   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
775   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
776   if (!Subtarget.is64Bit())
777     return nullptr;
778 
779   unsigned Opcode = X86::LEA64_32r;
780   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
781   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
782 
783   // Build and insert into an implicit UNDEF value. This is OK because
784   // we will be shifting and then extracting the lower 8/16-bits.
785   // This has the potential to cause partial register stall. e.g.
786   //   movw    (%rbp,%rcx,2), %dx
787   //   leal    -65(%rdx), %esi
788   // But testing has shown this *does* help performance in 64-bit mode (at
789   // least on modern x86 machines).
790   MachineBasicBlock::iterator MBBI = MI.getIterator();
791   Register Dest = MI.getOperand(0).getReg();
792   Register Src = MI.getOperand(1).getReg();
793   bool IsDead = MI.getOperand(0).isDead();
794   bool IsKill = MI.getOperand(1).isKill();
795   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
796   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
797   BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
798   MachineInstr *InsMI =
799       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
800           .addReg(InRegLEA, RegState::Define, SubReg)
801           .addReg(Src, getKillRegState(IsKill));
802 
803   MachineInstrBuilder MIB =
804       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
805   switch (MIOpc) {
806   default: llvm_unreachable("Unreachable!");
807   case X86::SHL8ri:
808   case X86::SHL16ri: {
809     unsigned ShAmt = MI.getOperand(2).getImm();
810     MIB.addReg(0).addImm(1ULL << ShAmt)
811        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
812     break;
813   }
814   case X86::INC8r:
815   case X86::INC16r:
816     addRegOffset(MIB, InRegLEA, true, 1);
817     break;
818   case X86::DEC8r:
819   case X86::DEC16r:
820     addRegOffset(MIB, InRegLEA, true, -1);
821     break;
822   case X86::ADD8ri:
823   case X86::ADD8ri_DB:
824   case X86::ADD16ri:
825   case X86::ADD16ri8:
826   case X86::ADD16ri_DB:
827   case X86::ADD16ri8_DB:
828     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
829     break;
830   case X86::ADD8rr:
831   case X86::ADD8rr_DB:
832   case X86::ADD16rr:
833   case X86::ADD16rr_DB: {
834     Register Src2 = MI.getOperand(2).getReg();
835     bool IsKill2 = MI.getOperand(2).isKill();
836     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
837     unsigned InRegLEA2 = 0;
838     MachineInstr *InsMI2 = nullptr;
839     if (Src == Src2) {
840       // ADD8rr/ADD16rr killed %reg1028, %reg1028
841       // just a single insert_subreg.
842       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
843     } else {
844       if (Subtarget.is64Bit())
845         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
846       else
847         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
848       // Build and insert into an implicit UNDEF value. This is OK because
849       // we will be shifting and then extracting the lower 8/16-bits.
850       BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
851       InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
852                    .addReg(InRegLEA2, RegState::Define, SubReg)
853                    .addReg(Src2, getKillRegState(IsKill2));
854       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
855     }
856     if (LV && IsKill2 && InsMI2)
857       LV->replaceKillInstruction(Src2, MI, *InsMI2);
858     break;
859   }
860   }
861 
862   MachineInstr *NewMI = MIB;
863   MachineInstr *ExtMI =
864       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
865           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
866           .addReg(OutRegLEA, RegState::Kill, SubReg);
867 
868   if (LV) {
869     // Update live variables.
870     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
871     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
872     if (IsKill)
873       LV->replaceKillInstruction(Src, MI, *InsMI);
874     if (IsDead)
875       LV->replaceKillInstruction(Dest, MI, *ExtMI);
876   }
877 
878   return ExtMI;
879 }
880 
881 /// This method must be implemented by targets that
882 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
883 /// may be able to convert a two-address instruction into a true
884 /// three-address instruction on demand.  This allows the X86 target (for
885 /// example) to convert ADD and SHL instructions into LEA instructions if they
886 /// would require register copies due to two-addressness.
887 ///
888 /// This method returns a null pointer if the transformation cannot be
889 /// performed, otherwise it returns the new instruction.
890 ///
891 MachineInstr *
892 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
893                                     MachineInstr &MI, LiveVariables *LV) const {
894   // The following opcodes also sets the condition code register(s). Only
895   // convert them to equivalent lea if the condition code register def's
896   // are dead!
897   if (hasLiveCondCodeDef(MI))
898     return nullptr;
899 
900   MachineFunction &MF = *MI.getParent()->getParent();
901   // All instructions input are two-addr instructions.  Get the known operands.
902   const MachineOperand &Dest = MI.getOperand(0);
903   const MachineOperand &Src = MI.getOperand(1);
904 
905   // Ideally, operations with undef should be folded before we get here, but we
906   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
907   // Without this, we have to forward undef state to new register operands to
908   // avoid machine verifier errors.
909   if (Src.isUndef())
910     return nullptr;
911   if (MI.getNumOperands() > 2)
912     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
913       return nullptr;
914 
915   MachineInstr *NewMI = nullptr;
916   bool Is64Bit = Subtarget.is64Bit();
917 
918   bool Is8BitOp = false;
919   unsigned MIOpc = MI.getOpcode();
920   switch (MIOpc) {
921   default: llvm_unreachable("Unreachable!");
922   case X86::SHL64ri: {
923     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
924     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
925     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
926 
927     // LEA can't handle RSP.
928     if (Register::isVirtualRegister(Src.getReg()) &&
929         !MF.getRegInfo().constrainRegClass(Src.getReg(),
930                                            &X86::GR64_NOSPRegClass))
931       return nullptr;
932 
933     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
934                 .add(Dest)
935                 .addReg(0)
936                 .addImm(1ULL << ShAmt)
937                 .add(Src)
938                 .addImm(0)
939                 .addReg(0);
940     break;
941   }
942   case X86::SHL32ri: {
943     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
944     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
945     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
946 
947     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
948 
949     // LEA can't handle ESP.
950     bool isKill;
951     Register SrcReg;
952     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
953     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
954                         SrcReg, isKill, ImplicitOp, LV))
955       return nullptr;
956 
957     MachineInstrBuilder MIB =
958         BuildMI(MF, MI.getDebugLoc(), get(Opc))
959             .add(Dest)
960             .addReg(0)
961             .addImm(1ULL << ShAmt)
962             .addReg(SrcReg, getKillRegState(isKill))
963             .addImm(0)
964             .addReg(0);
965     if (ImplicitOp.getReg() != 0)
966       MIB.add(ImplicitOp);
967     NewMI = MIB;
968 
969     break;
970   }
971   case X86::SHL8ri:
972     Is8BitOp = true;
973     LLVM_FALLTHROUGH;
974   case X86::SHL16ri: {
975     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
976     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
977     if (!isTruncatedShiftCountForLEA(ShAmt))
978       return nullptr;
979     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
980   }
981   case X86::INC64r:
982   case X86::INC32r: {
983     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
984     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
985         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
986     bool isKill;
987     Register SrcReg;
988     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
989     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
990                         ImplicitOp, LV))
991       return nullptr;
992 
993     MachineInstrBuilder MIB =
994         BuildMI(MF, MI.getDebugLoc(), get(Opc))
995             .add(Dest)
996             .addReg(SrcReg, getKillRegState(isKill));
997     if (ImplicitOp.getReg() != 0)
998       MIB.add(ImplicitOp);
999 
1000     NewMI = addOffset(MIB, 1);
1001     break;
1002   }
1003   case X86::DEC64r:
1004   case X86::DEC32r: {
1005     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1006     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1007         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1008 
1009     bool isKill;
1010     Register SrcReg;
1011     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1012     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1013                         ImplicitOp, LV))
1014       return nullptr;
1015 
1016     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1017                                   .add(Dest)
1018                                   .addReg(SrcReg, getKillRegState(isKill));
1019     if (ImplicitOp.getReg() != 0)
1020       MIB.add(ImplicitOp);
1021 
1022     NewMI = addOffset(MIB, -1);
1023 
1024     break;
1025   }
1026   case X86::DEC8r:
1027   case X86::INC8r:
1028     Is8BitOp = true;
1029     LLVM_FALLTHROUGH;
1030   case X86::DEC16r:
1031   case X86::INC16r:
1032     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1033   case X86::ADD64rr:
1034   case X86::ADD64rr_DB:
1035   case X86::ADD32rr:
1036   case X86::ADD32rr_DB: {
1037     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1038     unsigned Opc;
1039     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1040       Opc = X86::LEA64r;
1041     else
1042       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1043 
1044     bool isKill;
1045     Register SrcReg;
1046     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1047     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1048                         SrcReg, isKill, ImplicitOp, LV))
1049       return nullptr;
1050 
1051     const MachineOperand &Src2 = MI.getOperand(2);
1052     bool isKill2;
1053     Register SrcReg2;
1054     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1055     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1056                         SrcReg2, isKill2, ImplicitOp2, LV))
1057       return nullptr;
1058 
1059     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1060     if (ImplicitOp.getReg() != 0)
1061       MIB.add(ImplicitOp);
1062     if (ImplicitOp2.getReg() != 0)
1063       MIB.add(ImplicitOp2);
1064 
1065     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1066     if (LV && Src2.isKill())
1067       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1068     break;
1069   }
1070   case X86::ADD8rr:
1071   case X86::ADD8rr_DB:
1072     Is8BitOp = true;
1073     LLVM_FALLTHROUGH;
1074   case X86::ADD16rr:
1075   case X86::ADD16rr_DB:
1076     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1077   case X86::ADD64ri32:
1078   case X86::ADD64ri8:
1079   case X86::ADD64ri32_DB:
1080   case X86::ADD64ri8_DB:
1081     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1082     NewMI = addOffset(
1083         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1084         MI.getOperand(2));
1085     break;
1086   case X86::ADD32ri:
1087   case X86::ADD32ri8:
1088   case X86::ADD32ri_DB:
1089   case X86::ADD32ri8_DB: {
1090     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1091     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1092 
1093     bool isKill;
1094     Register SrcReg;
1095     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1096     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1097                         SrcReg, isKill, ImplicitOp, LV))
1098       return nullptr;
1099 
1100     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1101                                   .add(Dest)
1102                                   .addReg(SrcReg, getKillRegState(isKill));
1103     if (ImplicitOp.getReg() != 0)
1104       MIB.add(ImplicitOp);
1105 
1106     NewMI = addOffset(MIB, MI.getOperand(2));
1107     break;
1108   }
1109   case X86::ADD8ri:
1110   case X86::ADD8ri_DB:
1111     Is8BitOp = true;
1112     LLVM_FALLTHROUGH;
1113   case X86::ADD16ri:
1114   case X86::ADD16ri8:
1115   case X86::ADD16ri_DB:
1116   case X86::ADD16ri8_DB:
1117     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1118   case X86::SUB8ri:
1119   case X86::SUB16ri8:
1120   case X86::SUB16ri:
1121     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1122     return nullptr;
1123   case X86::SUB32ri8:
1124   case X86::SUB32ri: {
1125     if (!MI.getOperand(2).isImm())
1126       return nullptr;
1127     int64_t Imm = MI.getOperand(2).getImm();
1128     if (!isInt<32>(-Imm))
1129       return nullptr;
1130 
1131     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1132     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1133 
1134     bool isKill;
1135     Register SrcReg;
1136     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1137     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1138                         SrcReg, isKill, ImplicitOp, LV))
1139       return nullptr;
1140 
1141     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1142                                   .add(Dest)
1143                                   .addReg(SrcReg, getKillRegState(isKill));
1144     if (ImplicitOp.getReg() != 0)
1145       MIB.add(ImplicitOp);
1146 
1147     NewMI = addOffset(MIB, -Imm);
1148     break;
1149   }
1150 
1151   case X86::SUB64ri8:
1152   case X86::SUB64ri32: {
1153     if (!MI.getOperand(2).isImm())
1154       return nullptr;
1155     int64_t Imm = MI.getOperand(2).getImm();
1156     if (!isInt<32>(-Imm))
1157       return nullptr;
1158 
1159     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1160 
1161     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1162                                       get(X86::LEA64r)).add(Dest).add(Src);
1163     NewMI = addOffset(MIB, -Imm);
1164     break;
1165   }
1166 
1167   case X86::VMOVDQU8Z128rmk:
1168   case X86::VMOVDQU8Z256rmk:
1169   case X86::VMOVDQU8Zrmk:
1170   case X86::VMOVDQU16Z128rmk:
1171   case X86::VMOVDQU16Z256rmk:
1172   case X86::VMOVDQU16Zrmk:
1173   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1176   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1179   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1180   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1181   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1182   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1183   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1184   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1185   case X86::VBROADCASTSDZ256mk:
1186   case X86::VBROADCASTSDZmk:
1187   case X86::VBROADCASTSSZ128mk:
1188   case X86::VBROADCASTSSZ256mk:
1189   case X86::VBROADCASTSSZmk:
1190   case X86::VPBROADCASTDZ128mk:
1191   case X86::VPBROADCASTDZ256mk:
1192   case X86::VPBROADCASTDZmk:
1193   case X86::VPBROADCASTQZ128mk:
1194   case X86::VPBROADCASTQZ256mk:
1195   case X86::VPBROADCASTQZmk: {
1196     unsigned Opc;
1197     switch (MIOpc) {
1198     default: llvm_unreachable("Unreachable!");
1199     case X86::VMOVDQU8Z128rmk:    Opc = X86::VPBLENDMBZ128rmk; break;
1200     case X86::VMOVDQU8Z256rmk:    Opc = X86::VPBLENDMBZ256rmk; break;
1201     case X86::VMOVDQU8Zrmk:       Opc = X86::VPBLENDMBZrmk;    break;
1202     case X86::VMOVDQU16Z128rmk:   Opc = X86::VPBLENDMWZ128rmk; break;
1203     case X86::VMOVDQU16Z256rmk:   Opc = X86::VPBLENDMWZ256rmk; break;
1204     case X86::VMOVDQU16Zrmk:      Opc = X86::VPBLENDMWZrmk;    break;
1205     case X86::VMOVDQU32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1206     case X86::VMOVDQU32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1207     case X86::VMOVDQU32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1208     case X86::VMOVDQU64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1209     case X86::VMOVDQU64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1210     case X86::VMOVDQU64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1211     case X86::VMOVUPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1212     case X86::VMOVUPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1213     case X86::VMOVUPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1214     case X86::VMOVUPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1215     case X86::VMOVUPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1216     case X86::VMOVUPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1217     case X86::VMOVDQA32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1218     case X86::VMOVDQA32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1219     case X86::VMOVDQA32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1220     case X86::VMOVDQA64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1221     case X86::VMOVDQA64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1222     case X86::VMOVDQA64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1223     case X86::VMOVAPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1224     case X86::VMOVAPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1225     case X86::VMOVAPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1226     case X86::VMOVAPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1227     case X86::VMOVAPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1228     case X86::VMOVAPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1229     case X86::VBROADCASTSDZ256mk: Opc = X86::VBLENDMPDZ256rmbk; break;
1230     case X86::VBROADCASTSDZmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1231     case X86::VBROADCASTSSZ128mk: Opc = X86::VBLENDMPSZ128rmbk; break;
1232     case X86::VBROADCASTSSZ256mk: Opc = X86::VBLENDMPSZ256rmbk; break;
1233     case X86::VBROADCASTSSZmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1234     case X86::VPBROADCASTDZ128mk: Opc = X86::VPBLENDMDZ128rmbk; break;
1235     case X86::VPBROADCASTDZ256mk: Opc = X86::VPBLENDMDZ256rmbk; break;
1236     case X86::VPBROADCASTDZmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1237     case X86::VPBROADCASTQZ128mk: Opc = X86::VPBLENDMQZ128rmbk; break;
1238     case X86::VPBROADCASTQZ256mk: Opc = X86::VPBLENDMQZ256rmbk; break;
1239     case X86::VPBROADCASTQZmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1240     }
1241 
1242     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1243               .add(Dest)
1244               .add(MI.getOperand(2))
1245               .add(Src)
1246               .add(MI.getOperand(3))
1247               .add(MI.getOperand(4))
1248               .add(MI.getOperand(5))
1249               .add(MI.getOperand(6))
1250               .add(MI.getOperand(7));
1251     break;
1252   }
1253 
1254   case X86::VMOVDQU8Z128rrk:
1255   case X86::VMOVDQU8Z256rrk:
1256   case X86::VMOVDQU8Zrrk:
1257   case X86::VMOVDQU16Z128rrk:
1258   case X86::VMOVDQU16Z256rrk:
1259   case X86::VMOVDQU16Zrrk:
1260   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1261   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1262   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1263   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1264   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1265   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1266   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1267   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1268   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1269   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1270   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1271   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1272     unsigned Opc;
1273     switch (MIOpc) {
1274     default: llvm_unreachable("Unreachable!");
1275     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1276     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1277     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1278     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1279     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1280     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1281     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1282     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1283     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1284     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1285     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1286     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1287     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1288     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1289     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1290     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1291     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1292     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1293     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1294     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1295     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1296     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1297     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1298     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1299     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1300     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1301     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1302     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1303     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1304     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1305     }
1306 
1307     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1308               .add(Dest)
1309               .add(MI.getOperand(2))
1310               .add(Src)
1311               .add(MI.getOperand(3));
1312     break;
1313   }
1314   }
1315 
1316   if (!NewMI) return nullptr;
1317 
1318   if (LV) {  // Update live variables
1319     if (Src.isKill())
1320       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1321     if (Dest.isDead())
1322       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1323   }
1324 
1325   MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1326   return NewMI;
1327 }
1328 
1329 /// This determines which of three possible cases of a three source commute
1330 /// the source indexes correspond to taking into account any mask operands.
1331 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1332 /// possible.
1333 /// Case 0 - Possible to commute the first and second operands.
1334 /// Case 1 - Possible to commute the first and third operands.
1335 /// Case 2 - Possible to commute the second and third operands.
1336 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1337                                        unsigned SrcOpIdx2) {
1338   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1339   if (SrcOpIdx1 > SrcOpIdx2)
1340     std::swap(SrcOpIdx1, SrcOpIdx2);
1341 
1342   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1343   if (X86II::isKMasked(TSFlags)) {
1344     Op2++;
1345     Op3++;
1346   }
1347 
1348   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1349     return 0;
1350   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1351     return 1;
1352   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1353     return 2;
1354   llvm_unreachable("Unknown three src commute case.");
1355 }
1356 
1357 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1358     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1359     const X86InstrFMA3Group &FMA3Group) const {
1360 
1361   unsigned Opc = MI.getOpcode();
1362 
1363   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1364   // analysis. The commute optimization is legal only if all users of FMA*_Int
1365   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1366   // not implemented yet. So, just return 0 in that case.
1367   // When such analysis are available this place will be the right place for
1368   // calling it.
1369   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1370          "Intrinsic instructions can't commute operand 1");
1371 
1372   // Determine which case this commute is or if it can't be done.
1373   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1374                                          SrcOpIdx2);
1375   assert(Case < 3 && "Unexpected case number!");
1376 
1377   // Define the FMA forms mapping array that helps to map input FMA form
1378   // to output FMA form to preserve the operation semantics after
1379   // commuting the operands.
1380   const unsigned Form132Index = 0;
1381   const unsigned Form213Index = 1;
1382   const unsigned Form231Index = 2;
1383   static const unsigned FormMapping[][3] = {
1384     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1385     // FMA132 A, C, b; ==> FMA231 C, A, b;
1386     // FMA213 B, A, c; ==> FMA213 A, B, c;
1387     // FMA231 C, A, b; ==> FMA132 A, C, b;
1388     { Form231Index, Form213Index, Form132Index },
1389     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1390     // FMA132 A, c, B; ==> FMA132 B, c, A;
1391     // FMA213 B, a, C; ==> FMA231 C, a, B;
1392     // FMA231 C, a, B; ==> FMA213 B, a, C;
1393     { Form132Index, Form231Index, Form213Index },
1394     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1395     // FMA132 a, C, B; ==> FMA213 a, B, C;
1396     // FMA213 b, A, C; ==> FMA132 b, C, A;
1397     // FMA231 c, A, B; ==> FMA231 c, B, A;
1398     { Form213Index, Form132Index, Form231Index }
1399   };
1400 
1401   unsigned FMAForms[3];
1402   FMAForms[0] = FMA3Group.get132Opcode();
1403   FMAForms[1] = FMA3Group.get213Opcode();
1404   FMAForms[2] = FMA3Group.get231Opcode();
1405   unsigned FormIndex;
1406   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1407     if (Opc == FMAForms[FormIndex])
1408       break;
1409 
1410   // Everything is ready, just adjust the FMA opcode and return it.
1411   FormIndex = FormMapping[Case][FormIndex];
1412   return FMAForms[FormIndex];
1413 }
1414 
1415 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1416                              unsigned SrcOpIdx2) {
1417   // Determine which case this commute is or if it can't be done.
1418   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1419                                          SrcOpIdx2);
1420   assert(Case < 3 && "Unexpected case value!");
1421 
1422   // For each case we need to swap two pairs of bits in the final immediate.
1423   static const uint8_t SwapMasks[3][4] = {
1424     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1425     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1426     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1427   };
1428 
1429   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1430   // Clear out the bits we are swapping.
1431   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1432                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1433   // If the immediate had a bit of the pair set, then set the opposite bit.
1434   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1435   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1436   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1437   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1438   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1439 }
1440 
1441 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1442 // commuted.
1443 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1444 #define VPERM_CASES(Suffix) \
1445   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1446   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1447   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1448   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1449   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1450   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1451   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1452   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1453   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1454   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1455   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1456   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1457 
1458 #define VPERM_CASES_BROADCAST(Suffix) \
1459   VPERM_CASES(Suffix) \
1460   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1461   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1462   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1463   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1464   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1465   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1466 
1467   switch (Opcode) {
1468   default: return false;
1469   VPERM_CASES(B)
1470   VPERM_CASES_BROADCAST(D)
1471   VPERM_CASES_BROADCAST(PD)
1472   VPERM_CASES_BROADCAST(PS)
1473   VPERM_CASES_BROADCAST(Q)
1474   VPERM_CASES(W)
1475     return true;
1476   }
1477 #undef VPERM_CASES_BROADCAST
1478 #undef VPERM_CASES
1479 }
1480 
1481 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1482 // from the I opcode to the T opcode and vice versa.
1483 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1484 #define VPERM_CASES(Orig, New) \
1485   case X86::Orig##128rr:    return X86::New##128rr;   \
1486   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1487   case X86::Orig##128rm:    return X86::New##128rm;   \
1488   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1489   case X86::Orig##256rr:    return X86::New##256rr;   \
1490   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1491   case X86::Orig##256rm:    return X86::New##256rm;   \
1492   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1493   case X86::Orig##rr:       return X86::New##rr;      \
1494   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1495   case X86::Orig##rm:       return X86::New##rm;      \
1496   case X86::Orig##rmkz:     return X86::New##rmkz;
1497 
1498 #define VPERM_CASES_BROADCAST(Orig, New) \
1499   VPERM_CASES(Orig, New) \
1500   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1501   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1502   case X86::Orig##256rmb:   return X86::New##256rmb;   \
1503   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1504   case X86::Orig##rmb:      return X86::New##rmb;      \
1505   case X86::Orig##rmbkz:    return X86::New##rmbkz;
1506 
1507   switch (Opcode) {
1508   VPERM_CASES(VPERMI2B, VPERMT2B)
1509   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1510   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1511   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1512   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1513   VPERM_CASES(VPERMI2W, VPERMT2W)
1514   VPERM_CASES(VPERMT2B, VPERMI2B)
1515   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1516   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1517   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1518   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1519   VPERM_CASES(VPERMT2W, VPERMI2W)
1520   }
1521 
1522   llvm_unreachable("Unreachable!");
1523 #undef VPERM_CASES_BROADCAST
1524 #undef VPERM_CASES
1525 }
1526 
1527 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1528                                                    unsigned OpIdx1,
1529                                                    unsigned OpIdx2) const {
1530   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1531     if (NewMI)
1532       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1533     return MI;
1534   };
1535 
1536   switch (MI.getOpcode()) {
1537   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1538   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1539   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1540   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1541   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1542   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1543     unsigned Opc;
1544     unsigned Size;
1545     switch (MI.getOpcode()) {
1546     default: llvm_unreachable("Unreachable!");
1547     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1548     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1549     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1550     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1551     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1552     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1553     }
1554     unsigned Amt = MI.getOperand(3).getImm();
1555     auto &WorkingMI = cloneIfNew(MI);
1556     WorkingMI.setDesc(get(Opc));
1557     WorkingMI.getOperand(3).setImm(Size - Amt);
1558     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1559                                                    OpIdx1, OpIdx2);
1560   }
1561   case X86::PFSUBrr:
1562   case X86::PFSUBRrr: {
1563     // PFSUB  x, y: x = x - y
1564     // PFSUBR x, y: x = y - x
1565     unsigned Opc =
1566         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1567     auto &WorkingMI = cloneIfNew(MI);
1568     WorkingMI.setDesc(get(Opc));
1569     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1570                                                    OpIdx1, OpIdx2);
1571   }
1572   case X86::BLENDPDrri:
1573   case X86::BLENDPSrri:
1574   case X86::VBLENDPDrri:
1575   case X86::VBLENDPSrri:
1576     // If we're optimizing for size, try to use MOVSD/MOVSS.
1577     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1578       unsigned Mask, Opc;
1579       switch (MI.getOpcode()) {
1580       default: llvm_unreachable("Unreachable!");
1581       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1582       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1583       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1584       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1585       }
1586       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1587         auto &WorkingMI = cloneIfNew(MI);
1588         WorkingMI.setDesc(get(Opc));
1589         WorkingMI.RemoveOperand(3);
1590         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1591                                                        /*NewMI=*/false,
1592                                                        OpIdx1, OpIdx2);
1593       }
1594     }
1595     LLVM_FALLTHROUGH;
1596   case X86::PBLENDWrri:
1597   case X86::VBLENDPDYrri:
1598   case X86::VBLENDPSYrri:
1599   case X86::VPBLENDDrri:
1600   case X86::VPBLENDWrri:
1601   case X86::VPBLENDDYrri:
1602   case X86::VPBLENDWYrri:{
1603     int8_t Mask;
1604     switch (MI.getOpcode()) {
1605     default: llvm_unreachable("Unreachable!");
1606     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1607     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1608     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1609     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1610     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1611     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1612     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1613     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1614     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1615     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1616     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1617     }
1618     // Only the least significant bits of Imm are used.
1619     // Using int8_t to ensure it will be sign extended to the int64_t that
1620     // setImm takes in order to match isel behavior.
1621     int8_t Imm = MI.getOperand(3).getImm() & Mask;
1622     auto &WorkingMI = cloneIfNew(MI);
1623     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1624     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1625                                                    OpIdx1, OpIdx2);
1626   }
1627   case X86::INSERTPSrr:
1628   case X86::VINSERTPSrr:
1629   case X86::VINSERTPSZrr: {
1630     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1631     unsigned ZMask = Imm & 15;
1632     unsigned DstIdx = (Imm >> 4) & 3;
1633     unsigned SrcIdx = (Imm >> 6) & 3;
1634 
1635     // We can commute insertps if we zero 2 of the elements, the insertion is
1636     // "inline" and we don't override the insertion with a zero.
1637     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1638         countPopulation(ZMask) == 2) {
1639       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1640       assert(AltIdx < 4 && "Illegal insertion index");
1641       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1642       auto &WorkingMI = cloneIfNew(MI);
1643       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1644       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1645                                                      OpIdx1, OpIdx2);
1646     }
1647     return nullptr;
1648   }
1649   case X86::MOVSDrr:
1650   case X86::MOVSSrr:
1651   case X86::VMOVSDrr:
1652   case X86::VMOVSSrr:{
1653     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1654     if (Subtarget.hasSSE41()) {
1655       unsigned Mask, Opc;
1656       switch (MI.getOpcode()) {
1657       default: llvm_unreachable("Unreachable!");
1658       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1659       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1660       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1661       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1662       }
1663 
1664       auto &WorkingMI = cloneIfNew(MI);
1665       WorkingMI.setDesc(get(Opc));
1666       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1667       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1668                                                      OpIdx1, OpIdx2);
1669     }
1670 
1671     // Convert to SHUFPD.
1672     assert(MI.getOpcode() == X86::MOVSDrr &&
1673            "Can only commute MOVSDrr without SSE4.1");
1674 
1675     auto &WorkingMI = cloneIfNew(MI);
1676     WorkingMI.setDesc(get(X86::SHUFPDrri));
1677     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1678     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1679                                                    OpIdx1, OpIdx2);
1680   }
1681   case X86::SHUFPDrri: {
1682     // Commute to MOVSD.
1683     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1684     auto &WorkingMI = cloneIfNew(MI);
1685     WorkingMI.setDesc(get(X86::MOVSDrr));
1686     WorkingMI.RemoveOperand(3);
1687     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688                                                    OpIdx1, OpIdx2);
1689   }
1690   case X86::PCLMULQDQrr:
1691   case X86::VPCLMULQDQrr:
1692   case X86::VPCLMULQDQYrr:
1693   case X86::VPCLMULQDQZrr:
1694   case X86::VPCLMULQDQZ128rr:
1695   case X86::VPCLMULQDQZ256rr: {
1696     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1697     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1698     unsigned Imm = MI.getOperand(3).getImm();
1699     unsigned Src1Hi = Imm & 0x01;
1700     unsigned Src2Hi = Imm & 0x10;
1701     auto &WorkingMI = cloneIfNew(MI);
1702     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1703     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1704                                                    OpIdx1, OpIdx2);
1705   }
1706   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1707   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1708   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1709   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1710   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1711   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1712   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1713   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1714   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1715   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1716   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1717   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1718   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1719   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1720   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1721   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1722   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1723   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1724   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1725   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1726   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1727   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1728   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1729   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1730     // Flip comparison mode immediate (if necessary).
1731     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1732     Imm = X86::getSwappedVPCMPImm(Imm);
1733     auto &WorkingMI = cloneIfNew(MI);
1734     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1735     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1736                                                    OpIdx1, OpIdx2);
1737   }
1738   case X86::VPCOMBri: case X86::VPCOMUBri:
1739   case X86::VPCOMDri: case X86::VPCOMUDri:
1740   case X86::VPCOMQri: case X86::VPCOMUQri:
1741   case X86::VPCOMWri: case X86::VPCOMUWri: {
1742     // Flip comparison mode immediate (if necessary).
1743     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1744     Imm = X86::getSwappedVPCOMImm(Imm);
1745     auto &WorkingMI = cloneIfNew(MI);
1746     WorkingMI.getOperand(3).setImm(Imm);
1747     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1748                                                    OpIdx1, OpIdx2);
1749   }
1750   case X86::VCMPSDZrr:
1751   case X86::VCMPSSZrr:
1752   case X86::VCMPPDZrri:
1753   case X86::VCMPPSZrri:
1754   case X86::VCMPPDZ128rri:
1755   case X86::VCMPPSZ128rri:
1756   case X86::VCMPPDZ256rri:
1757   case X86::VCMPPSZ256rri:
1758   case X86::VCMPPDZrrik:
1759   case X86::VCMPPSZrrik:
1760   case X86::VCMPPDZ128rrik:
1761   case X86::VCMPPSZ128rrik:
1762   case X86::VCMPPDZ256rrik:
1763   case X86::VCMPPSZ256rrik: {
1764     unsigned Imm =
1765                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
1766     Imm = X86::getSwappedVCMPImm(Imm);
1767     auto &WorkingMI = cloneIfNew(MI);
1768     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
1769     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1770                                                    OpIdx1, OpIdx2);
1771   }
1772   case X86::VPERM2F128rr:
1773   case X86::VPERM2I128rr: {
1774     // Flip permute source immediate.
1775     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1776     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1777     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1778     auto &WorkingMI = cloneIfNew(MI);
1779     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1780     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1781                                                    OpIdx1, OpIdx2);
1782   }
1783   case X86::MOVHLPSrr:
1784   case X86::UNPCKHPDrr:
1785   case X86::VMOVHLPSrr:
1786   case X86::VUNPCKHPDrr:
1787   case X86::VMOVHLPSZrr:
1788   case X86::VUNPCKHPDZ128rr: {
1789     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1790 
1791     unsigned Opc = MI.getOpcode();
1792     switch (Opc) {
1793     default: llvm_unreachable("Unreachable!");
1794     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1795     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1796     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1797     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1798     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1799     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1800     }
1801     auto &WorkingMI = cloneIfNew(MI);
1802     WorkingMI.setDesc(get(Opc));
1803     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1804                                                    OpIdx1, OpIdx2);
1805   }
1806   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1807     auto &WorkingMI = cloneIfNew(MI);
1808     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1809     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1810     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1811     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1812                                                    OpIdx1, OpIdx2);
1813   }
1814   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1815   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1816   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1817   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1818   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1819   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1820   case X86::VPTERNLOGDZrrik:
1821   case X86::VPTERNLOGDZ128rrik:
1822   case X86::VPTERNLOGDZ256rrik:
1823   case X86::VPTERNLOGQZrrik:
1824   case X86::VPTERNLOGQZ128rrik:
1825   case X86::VPTERNLOGQZ256rrik:
1826   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1827   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1828   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1829   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1830   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1831   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1832   case X86::VPTERNLOGDZ128rmbi:
1833   case X86::VPTERNLOGDZ256rmbi:
1834   case X86::VPTERNLOGDZrmbi:
1835   case X86::VPTERNLOGQZ128rmbi:
1836   case X86::VPTERNLOGQZ256rmbi:
1837   case X86::VPTERNLOGQZrmbi:
1838   case X86::VPTERNLOGDZ128rmbikz:
1839   case X86::VPTERNLOGDZ256rmbikz:
1840   case X86::VPTERNLOGDZrmbikz:
1841   case X86::VPTERNLOGQZ128rmbikz:
1842   case X86::VPTERNLOGQZ256rmbikz:
1843   case X86::VPTERNLOGQZrmbikz: {
1844     auto &WorkingMI = cloneIfNew(MI);
1845     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1846     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1847                                                    OpIdx1, OpIdx2);
1848   }
1849   default: {
1850     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1851       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1852       auto &WorkingMI = cloneIfNew(MI);
1853       WorkingMI.setDesc(get(Opc));
1854       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1855                                                      OpIdx1, OpIdx2);
1856     }
1857 
1858     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1859                                                       MI.getDesc().TSFlags);
1860     if (FMA3Group) {
1861       unsigned Opc =
1862         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1863       auto &WorkingMI = cloneIfNew(MI);
1864       WorkingMI.setDesc(get(Opc));
1865       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1866                                                      OpIdx1, OpIdx2);
1867     }
1868 
1869     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1870   }
1871   }
1872 }
1873 
1874 bool
1875 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1876                                             unsigned &SrcOpIdx1,
1877                                             unsigned &SrcOpIdx2,
1878                                             bool IsIntrinsic) const {
1879   uint64_t TSFlags = MI.getDesc().TSFlags;
1880 
1881   unsigned FirstCommutableVecOp = 1;
1882   unsigned LastCommutableVecOp = 3;
1883   unsigned KMaskOp = -1U;
1884   if (X86II::isKMasked(TSFlags)) {
1885     // For k-zero-masked operations it is Ok to commute the first vector
1886     // operand.
1887     // For regular k-masked operations a conservative choice is done as the
1888     // elements of the first vector operand, for which the corresponding bit
1889     // in the k-mask operand is set to 0, are copied to the result of the
1890     // instruction.
1891     // TODO/FIXME: The commute still may be legal if it is known that the
1892     // k-mask operand is set to either all ones or all zeroes.
1893     // It is also Ok to commute the 1st operand if all users of MI use only
1894     // the elements enabled by the k-mask operand. For example,
1895     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1896     //                                                     : v1[i];
1897     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1898     //                                  // Ok, to commute v1 in FMADD213PSZrk.
1899 
1900     // The k-mask operand has index = 2 for masked and zero-masked operations.
1901     KMaskOp = 2;
1902 
1903     // The operand with index = 1 is used as a source for those elements for
1904     // which the corresponding bit in the k-mask is set to 0.
1905     if (X86II::isKMergeMasked(TSFlags))
1906       FirstCommutableVecOp = 3;
1907 
1908     LastCommutableVecOp++;
1909   } else if (IsIntrinsic) {
1910     // Commuting the first operand of an intrinsic instruction isn't possible
1911     // unless we can prove that only the lowest element of the result is used.
1912     FirstCommutableVecOp = 2;
1913   }
1914 
1915   if (isMem(MI, LastCommutableVecOp))
1916     LastCommutableVecOp--;
1917 
1918   // Only the first RegOpsNum operands are commutable.
1919   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1920   // that the operand is not specified/fixed.
1921   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1922       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1923        SrcOpIdx1 == KMaskOp))
1924     return false;
1925   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1926       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1927        SrcOpIdx2 == KMaskOp))
1928     return false;
1929 
1930   // Look for two different register operands assumed to be commutable
1931   // regardless of the FMA opcode. The FMA opcode is adjusted later.
1932   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1933       SrcOpIdx2 == CommuteAnyOperandIndex) {
1934     unsigned CommutableOpIdx2 = SrcOpIdx2;
1935 
1936     // At least one of operands to be commuted is not specified and
1937     // this method is free to choose appropriate commutable operands.
1938     if (SrcOpIdx1 == SrcOpIdx2)
1939       // Both of operands are not fixed. By default set one of commutable
1940       // operands to the last register operand of the instruction.
1941       CommutableOpIdx2 = LastCommutableVecOp;
1942     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1943       // Only one of operands is not fixed.
1944       CommutableOpIdx2 = SrcOpIdx1;
1945 
1946     // CommutableOpIdx2 is well defined now. Let's choose another commutable
1947     // operand and assign its index to CommutableOpIdx1.
1948     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1949 
1950     unsigned CommutableOpIdx1;
1951     for (CommutableOpIdx1 = LastCommutableVecOp;
1952          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1953       // Just ignore and skip the k-mask operand.
1954       if (CommutableOpIdx1 == KMaskOp)
1955         continue;
1956 
1957       // The commuted operands must have different registers.
1958       // Otherwise, the commute transformation does not change anything and
1959       // is useless then.
1960       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1961         break;
1962     }
1963 
1964     // No appropriate commutable operands were found.
1965     if (CommutableOpIdx1 < FirstCommutableVecOp)
1966       return false;
1967 
1968     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1969     // to return those values.
1970     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1971                               CommutableOpIdx1, CommutableOpIdx2))
1972       return false;
1973   }
1974 
1975   return true;
1976 }
1977 
1978 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1979                                          unsigned &SrcOpIdx1,
1980                                          unsigned &SrcOpIdx2) const {
1981   const MCInstrDesc &Desc = MI.getDesc();
1982   if (!Desc.isCommutable())
1983     return false;
1984 
1985   switch (MI.getOpcode()) {
1986   case X86::CMPSDrr:
1987   case X86::CMPSSrr:
1988   case X86::CMPPDrri:
1989   case X86::CMPPSrri:
1990   case X86::VCMPSDrr:
1991   case X86::VCMPSSrr:
1992   case X86::VCMPPDrri:
1993   case X86::VCMPPSrri:
1994   case X86::VCMPPDYrri:
1995   case X86::VCMPPSYrri:
1996   case X86::VCMPSDZrr:
1997   case X86::VCMPSSZrr:
1998   case X86::VCMPPDZrri:
1999   case X86::VCMPPSZrri:
2000   case X86::VCMPPDZ128rri:
2001   case X86::VCMPPSZ128rri:
2002   case X86::VCMPPDZ256rri:
2003   case X86::VCMPPSZ256rri:
2004   case X86::VCMPPDZrrik:
2005   case X86::VCMPPSZrrik:
2006   case X86::VCMPPDZ128rrik:
2007   case X86::VCMPPSZ128rrik:
2008   case X86::VCMPPDZ256rrik:
2009   case X86::VCMPPSZ256rrik: {
2010     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2011 
2012     // Float comparison can be safely commuted for
2013     // Ordered/Unordered/Equal/NotEqual tests
2014     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2015     switch (Imm) {
2016     default:
2017       // EVEX versions can be commuted.
2018       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2019         break;
2020       return false;
2021     case 0x00: // EQUAL
2022     case 0x03: // UNORDERED
2023     case 0x04: // NOT EQUAL
2024     case 0x07: // ORDERED
2025       break;
2026     }
2027 
2028     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2029     // when masked).
2030     // Assign them to the returned operand indices here.
2031     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2032                                 2 + OpOffset);
2033   }
2034   case X86::MOVSSrr:
2035     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2036     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2037     // AVX implies sse4.1.
2038     if (Subtarget.hasSSE41())
2039       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040     return false;
2041   case X86::SHUFPDrri:
2042     // We can commute this to MOVSD.
2043     if (MI.getOperand(3).getImm() == 0x02)
2044       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2045     return false;
2046   case X86::MOVHLPSrr:
2047   case X86::UNPCKHPDrr:
2048   case X86::VMOVHLPSrr:
2049   case X86::VUNPCKHPDrr:
2050   case X86::VMOVHLPSZrr:
2051   case X86::VUNPCKHPDZ128rr:
2052     if (Subtarget.hasSSE2())
2053       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2054     return false;
2055   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2056   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2057   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2058   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2059   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2060   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2061   case X86::VPTERNLOGDZrrik:
2062   case X86::VPTERNLOGDZ128rrik:
2063   case X86::VPTERNLOGDZ256rrik:
2064   case X86::VPTERNLOGQZrrik:
2065   case X86::VPTERNLOGQZ128rrik:
2066   case X86::VPTERNLOGQZ256rrik:
2067   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2068   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2069   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2070   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2071   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2072   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2073   case X86::VPTERNLOGDZ128rmbi:
2074   case X86::VPTERNLOGDZ256rmbi:
2075   case X86::VPTERNLOGDZrmbi:
2076   case X86::VPTERNLOGQZ128rmbi:
2077   case X86::VPTERNLOGQZ256rmbi:
2078   case X86::VPTERNLOGQZrmbi:
2079   case X86::VPTERNLOGDZ128rmbikz:
2080   case X86::VPTERNLOGDZ256rmbikz:
2081   case X86::VPTERNLOGDZrmbikz:
2082   case X86::VPTERNLOGQZ128rmbikz:
2083   case X86::VPTERNLOGQZ256rmbikz:
2084   case X86::VPTERNLOGQZrmbikz:
2085     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2086   case X86::VPDPWSSDZ128r:
2087   case X86::VPDPWSSDZ128rk:
2088   case X86::VPDPWSSDZ128rkz:
2089   case X86::VPDPWSSDZ256r:
2090   case X86::VPDPWSSDZ256rk:
2091   case X86::VPDPWSSDZ256rkz:
2092   case X86::VPDPWSSDZr:
2093   case X86::VPDPWSSDZrk:
2094   case X86::VPDPWSSDZrkz:
2095   case X86::VPDPWSSDSZ128r:
2096   case X86::VPDPWSSDSZ128rk:
2097   case X86::VPDPWSSDSZ128rkz:
2098   case X86::VPDPWSSDSZ256r:
2099   case X86::VPDPWSSDSZ256rk:
2100   case X86::VPDPWSSDSZ256rkz:
2101   case X86::VPDPWSSDSZr:
2102   case X86::VPDPWSSDSZrk:
2103   case X86::VPDPWSSDSZrkz:
2104   case X86::VPMADD52HUQZ128r:
2105   case X86::VPMADD52HUQZ128rk:
2106   case X86::VPMADD52HUQZ128rkz:
2107   case X86::VPMADD52HUQZ256r:
2108   case X86::VPMADD52HUQZ256rk:
2109   case X86::VPMADD52HUQZ256rkz:
2110   case X86::VPMADD52HUQZr:
2111   case X86::VPMADD52HUQZrk:
2112   case X86::VPMADD52HUQZrkz:
2113   case X86::VPMADD52LUQZ128r:
2114   case X86::VPMADD52LUQZ128rk:
2115   case X86::VPMADD52LUQZ128rkz:
2116   case X86::VPMADD52LUQZ256r:
2117   case X86::VPMADD52LUQZ256rk:
2118   case X86::VPMADD52LUQZ256rkz:
2119   case X86::VPMADD52LUQZr:
2120   case X86::VPMADD52LUQZrk:
2121   case X86::VPMADD52LUQZrkz: {
2122     unsigned CommutableOpIdx1 = 2;
2123     unsigned CommutableOpIdx2 = 3;
2124     if (X86II::isKMasked(Desc.TSFlags)) {
2125       // Skip the mask register.
2126       ++CommutableOpIdx1;
2127       ++CommutableOpIdx2;
2128     }
2129     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2130                               CommutableOpIdx1, CommutableOpIdx2))
2131       return false;
2132     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2133         !MI.getOperand(SrcOpIdx2).isReg())
2134       // No idea.
2135       return false;
2136     return true;
2137   }
2138 
2139   default:
2140     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2141                                                       MI.getDesc().TSFlags);
2142     if (FMA3Group)
2143       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2144                                            FMA3Group->isIntrinsic());
2145 
2146     // Handled masked instructions since we need to skip over the mask input
2147     // and the preserved input.
2148     if (X86II::isKMasked(Desc.TSFlags)) {
2149       // First assume that the first input is the mask operand and skip past it.
2150       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2151       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2152       // Check if the first input is tied. If there isn't one then we only
2153       // need to skip the mask operand which we did above.
2154       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2155                                              MCOI::TIED_TO) != -1)) {
2156         // If this is zero masking instruction with a tied operand, we need to
2157         // move the first index back to the first input since this must
2158         // be a 3 input instruction and we want the first two non-mask inputs.
2159         // Otherwise this is a 2 input instruction with a preserved input and
2160         // mask, so we need to move the indices to skip one more input.
2161         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2162           ++CommutableOpIdx1;
2163           ++CommutableOpIdx2;
2164         } else {
2165           --CommutableOpIdx1;
2166         }
2167       }
2168 
2169       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2170                                 CommutableOpIdx1, CommutableOpIdx2))
2171         return false;
2172 
2173       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2174           !MI.getOperand(SrcOpIdx2).isReg())
2175         // No idea.
2176         return false;
2177       return true;
2178     }
2179 
2180     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2181   }
2182   return false;
2183 }
2184 
2185 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2186   switch (MI.getOpcode()) {
2187   default: return X86::COND_INVALID;
2188   case X86::JCC_1:
2189     return static_cast<X86::CondCode>(
2190         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2191   }
2192 }
2193 
2194 /// Return condition code of a SETCC opcode.
2195 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2196   switch (MI.getOpcode()) {
2197   default: return X86::COND_INVALID;
2198   case X86::SETCCr: case X86::SETCCm:
2199     return static_cast<X86::CondCode>(
2200         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2201   }
2202 }
2203 
2204 /// Return condition code of a CMov opcode.
2205 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2206   switch (MI.getOpcode()) {
2207   default: return X86::COND_INVALID;
2208   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2209   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2210     return static_cast<X86::CondCode>(
2211         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2212   }
2213 }
2214 
2215 /// Return the inverse of the specified condition,
2216 /// e.g. turning COND_E to COND_NE.
2217 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2218   switch (CC) {
2219   default: llvm_unreachable("Illegal condition code!");
2220   case X86::COND_E:  return X86::COND_NE;
2221   case X86::COND_NE: return X86::COND_E;
2222   case X86::COND_L:  return X86::COND_GE;
2223   case X86::COND_LE: return X86::COND_G;
2224   case X86::COND_G:  return X86::COND_LE;
2225   case X86::COND_GE: return X86::COND_L;
2226   case X86::COND_B:  return X86::COND_AE;
2227   case X86::COND_BE: return X86::COND_A;
2228   case X86::COND_A:  return X86::COND_BE;
2229   case X86::COND_AE: return X86::COND_B;
2230   case X86::COND_S:  return X86::COND_NS;
2231   case X86::COND_NS: return X86::COND_S;
2232   case X86::COND_P:  return X86::COND_NP;
2233   case X86::COND_NP: return X86::COND_P;
2234   case X86::COND_O:  return X86::COND_NO;
2235   case X86::COND_NO: return X86::COND_O;
2236   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2237   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2238   }
2239 }
2240 
2241 /// Assuming the flags are set by MI(a,b), return the condition code if we
2242 /// modify the instructions such that flags are set by MI(b,a).
2243 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2244   switch (CC) {
2245   default: return X86::COND_INVALID;
2246   case X86::COND_E:  return X86::COND_E;
2247   case X86::COND_NE: return X86::COND_NE;
2248   case X86::COND_L:  return X86::COND_G;
2249   case X86::COND_LE: return X86::COND_GE;
2250   case X86::COND_G:  return X86::COND_L;
2251   case X86::COND_GE: return X86::COND_LE;
2252   case X86::COND_B:  return X86::COND_A;
2253   case X86::COND_BE: return X86::COND_AE;
2254   case X86::COND_A:  return X86::COND_B;
2255   case X86::COND_AE: return X86::COND_BE;
2256   }
2257 }
2258 
2259 std::pair<X86::CondCode, bool>
2260 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2261   X86::CondCode CC = X86::COND_INVALID;
2262   bool NeedSwap = false;
2263   switch (Predicate) {
2264   default: break;
2265   // Floating-point Predicates
2266   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2267   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2268   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2269   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2270   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2271   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2272   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2273   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2274   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2275   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2276   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2277   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2278   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2279   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2280 
2281   // Integer Predicates
2282   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2283   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2284   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2285   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2286   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2287   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2288   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2289   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2290   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2291   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2292   }
2293 
2294   return std::make_pair(CC, NeedSwap);
2295 }
2296 
2297 /// Return a setcc opcode based on whether it has memory operand.
2298 unsigned X86::getSETOpc(bool HasMemoryOperand) {
2299   return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2300 }
2301 
2302 /// Return a cmov opcode for the given register size in bytes, and operand type.
2303 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2304   switch(RegBytes) {
2305   default: llvm_unreachable("Illegal register size!");
2306   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2307   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2308   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2309   }
2310 }
2311 
2312 /// Get the VPCMP immediate for the given condition.
2313 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2314   switch (CC) {
2315   default: llvm_unreachable("Unexpected SETCC condition");
2316   case ISD::SETNE:  return 4;
2317   case ISD::SETEQ:  return 0;
2318   case ISD::SETULT:
2319   case ISD::SETLT: return 1;
2320   case ISD::SETUGT:
2321   case ISD::SETGT: return 6;
2322   case ISD::SETUGE:
2323   case ISD::SETGE: return 5;
2324   case ISD::SETULE:
2325   case ISD::SETLE: return 2;
2326   }
2327 }
2328 
2329 /// Get the VPCMP immediate if the operands are swapped.
2330 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2331   switch (Imm) {
2332   default: llvm_unreachable("Unreachable!");
2333   case 0x01: Imm = 0x06; break; // LT  -> NLE
2334   case 0x02: Imm = 0x05; break; // LE  -> NLT
2335   case 0x05: Imm = 0x02; break; // NLT -> LE
2336   case 0x06: Imm = 0x01; break; // NLE -> LT
2337   case 0x00: // EQ
2338   case 0x03: // FALSE
2339   case 0x04: // NE
2340   case 0x07: // TRUE
2341     break;
2342   }
2343 
2344   return Imm;
2345 }
2346 
2347 /// Get the VPCOM immediate if the operands are swapped.
2348 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2349   switch (Imm) {
2350   default: llvm_unreachable("Unreachable!");
2351   case 0x00: Imm = 0x02; break; // LT -> GT
2352   case 0x01: Imm = 0x03; break; // LE -> GE
2353   case 0x02: Imm = 0x00; break; // GT -> LT
2354   case 0x03: Imm = 0x01; break; // GE -> LE
2355   case 0x04: // EQ
2356   case 0x05: // NE
2357   case 0x06: // FALSE
2358   case 0x07: // TRUE
2359     break;
2360   }
2361 
2362   return Imm;
2363 }
2364 
2365 /// Get the VCMP immediate if the operands are swapped.
2366 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2367   // Only need the lower 2 bits to distinquish.
2368   switch (Imm & 0x3) {
2369   default: llvm_unreachable("Unreachable!");
2370   case 0x00: case 0x03:
2371     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2372     break;
2373   case 0x01: case 0x02:
2374     // Need to toggle bits 3:0. Bit 4 stays the same.
2375     Imm ^= 0xf;
2376     break;
2377   }
2378 
2379   return Imm;
2380 }
2381 
2382 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2383   if (!MI.isTerminator()) return false;
2384 
2385   // Conditional branch is a special case.
2386   if (MI.isBranch() && !MI.isBarrier())
2387     return true;
2388   if (!MI.isPredicable())
2389     return true;
2390   return !isPredicated(MI);
2391 }
2392 
2393 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2394   switch (MI.getOpcode()) {
2395   case X86::TCRETURNdi:
2396   case X86::TCRETURNri:
2397   case X86::TCRETURNmi:
2398   case X86::TCRETURNdi64:
2399   case X86::TCRETURNri64:
2400   case X86::TCRETURNmi64:
2401     return true;
2402   default:
2403     return false;
2404   }
2405 }
2406 
2407 bool X86InstrInfo::canMakeTailCallConditional(
2408     SmallVectorImpl<MachineOperand> &BranchCond,
2409     const MachineInstr &TailCall) const {
2410   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2411       TailCall.getOpcode() != X86::TCRETURNdi64) {
2412     // Only direct calls can be done with a conditional branch.
2413     return false;
2414   }
2415 
2416   const MachineFunction *MF = TailCall.getParent()->getParent();
2417   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2418     // Conditional tail calls confuse the Win64 unwinder.
2419     return false;
2420   }
2421 
2422   assert(BranchCond.size() == 1);
2423   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2424     // Can't make a conditional tail call with this condition.
2425     return false;
2426   }
2427 
2428   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2429   if (X86FI->getTCReturnAddrDelta() != 0 ||
2430       TailCall.getOperand(1).getImm() != 0) {
2431     // A conditional tail call cannot do any stack adjustment.
2432     return false;
2433   }
2434 
2435   return true;
2436 }
2437 
2438 void X86InstrInfo::replaceBranchWithTailCall(
2439     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2440     const MachineInstr &TailCall) const {
2441   assert(canMakeTailCallConditional(BranchCond, TailCall));
2442 
2443   MachineBasicBlock::iterator I = MBB.end();
2444   while (I != MBB.begin()) {
2445     --I;
2446     if (I->isDebugInstr())
2447       continue;
2448     if (!I->isBranch())
2449       assert(0 && "Can't find the branch to replace!");
2450 
2451     X86::CondCode CC = X86::getCondFromBranch(*I);
2452     assert(BranchCond.size() == 1);
2453     if (CC != BranchCond[0].getImm())
2454       continue;
2455 
2456     break;
2457   }
2458 
2459   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2460                                                          : X86::TCRETURNdi64cc;
2461 
2462   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2463   MIB->addOperand(TailCall.getOperand(0)); // Destination.
2464   MIB.addImm(0); // Stack offset (not used).
2465   MIB->addOperand(BranchCond[0]); // Condition.
2466   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2467 
2468   // Add implicit uses and defs of all live regs potentially clobbered by the
2469   // call. This way they still appear live across the call.
2470   LivePhysRegs LiveRegs(getRegisterInfo());
2471   LiveRegs.addLiveOuts(MBB);
2472   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2473   LiveRegs.stepForward(*MIB, Clobbers);
2474   for (const auto &C : Clobbers) {
2475     MIB.addReg(C.first, RegState::Implicit);
2476     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2477   }
2478 
2479   I->eraseFromParent();
2480 }
2481 
2482 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2483 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2484 // fallthrough MBB cannot be identified.
2485 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2486                                             MachineBasicBlock *TBB) {
2487   // Look for non-EHPad successors other than TBB. If we find exactly one, it
2488   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2489   // and fallthrough MBB. If we find more than one, we cannot identify the
2490   // fallthrough MBB and should return nullptr.
2491   MachineBasicBlock *FallthroughBB = nullptr;
2492   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2493     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2494       continue;
2495     // Return a nullptr if we found more than one fallthrough successor.
2496     if (FallthroughBB && FallthroughBB != TBB)
2497       return nullptr;
2498     FallthroughBB = *SI;
2499   }
2500   return FallthroughBB;
2501 }
2502 
2503 bool X86InstrInfo::AnalyzeBranchImpl(
2504     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2505     SmallVectorImpl<MachineOperand> &Cond,
2506     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2507 
2508   // Start from the bottom of the block and work up, examining the
2509   // terminator instructions.
2510   MachineBasicBlock::iterator I = MBB.end();
2511   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2512   while (I != MBB.begin()) {
2513     --I;
2514     if (I->isDebugInstr())
2515       continue;
2516 
2517     // Working from the bottom, when we see a non-terminator instruction, we're
2518     // done.
2519     if (!isUnpredicatedTerminator(*I))
2520       break;
2521 
2522     // A terminator that isn't a branch can't easily be handled by this
2523     // analysis.
2524     if (!I->isBranch())
2525       return true;
2526 
2527     // Handle unconditional branches.
2528     if (I->getOpcode() == X86::JMP_1) {
2529       UnCondBrIter = I;
2530 
2531       if (!AllowModify) {
2532         TBB = I->getOperand(0).getMBB();
2533         continue;
2534       }
2535 
2536       // If the block has any instructions after a JMP, delete them.
2537       while (std::next(I) != MBB.end())
2538         std::next(I)->eraseFromParent();
2539 
2540       Cond.clear();
2541       FBB = nullptr;
2542 
2543       // Delete the JMP if it's equivalent to a fall-through.
2544       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2545         TBB = nullptr;
2546         I->eraseFromParent();
2547         I = MBB.end();
2548         UnCondBrIter = MBB.end();
2549         continue;
2550       }
2551 
2552       // TBB is used to indicate the unconditional destination.
2553       TBB = I->getOperand(0).getMBB();
2554       continue;
2555     }
2556 
2557     // Handle conditional branches.
2558     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2559     if (BranchCode == X86::COND_INVALID)
2560       return true;  // Can't handle indirect branch.
2561 
2562     // In practice we should never have an undef eflags operand, if we do
2563     // abort here as we are not prepared to preserve the flag.
2564     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2565       return true;
2566 
2567     // Working from the bottom, handle the first conditional branch.
2568     if (Cond.empty()) {
2569       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2570       if (AllowModify && UnCondBrIter != MBB.end() &&
2571           MBB.isLayoutSuccessor(TargetBB)) {
2572         // If we can modify the code and it ends in something like:
2573         //
2574         //     jCC L1
2575         //     jmp L2
2576         //   L1:
2577         //     ...
2578         //   L2:
2579         //
2580         // Then we can change this to:
2581         //
2582         //     jnCC L2
2583         //   L1:
2584         //     ...
2585         //   L2:
2586         //
2587         // Which is a bit more efficient.
2588         // We conditionally jump to the fall-through block.
2589         BranchCode = GetOppositeBranchCondition(BranchCode);
2590         MachineBasicBlock::iterator OldInst = I;
2591 
2592         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2593           .addMBB(UnCondBrIter->getOperand(0).getMBB())
2594           .addImm(BranchCode);
2595         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2596           .addMBB(TargetBB);
2597 
2598         OldInst->eraseFromParent();
2599         UnCondBrIter->eraseFromParent();
2600 
2601         // Restart the analysis.
2602         UnCondBrIter = MBB.end();
2603         I = MBB.end();
2604         continue;
2605       }
2606 
2607       FBB = TBB;
2608       TBB = I->getOperand(0).getMBB();
2609       Cond.push_back(MachineOperand::CreateImm(BranchCode));
2610       CondBranches.push_back(&*I);
2611       continue;
2612     }
2613 
2614     // Handle subsequent conditional branches. Only handle the case where all
2615     // conditional branches branch to the same destination and their condition
2616     // opcodes fit one of the special multi-branch idioms.
2617     assert(Cond.size() == 1);
2618     assert(TBB);
2619 
2620     // If the conditions are the same, we can leave them alone.
2621     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2622     auto NewTBB = I->getOperand(0).getMBB();
2623     if (OldBranchCode == BranchCode && TBB == NewTBB)
2624       continue;
2625 
2626     // If they differ, see if they fit one of the known patterns. Theoretically,
2627     // we could handle more patterns here, but we shouldn't expect to see them
2628     // if instruction selection has done a reasonable job.
2629     if (TBB == NewTBB &&
2630                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2631                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2632       BranchCode = X86::COND_NE_OR_P;
2633     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2634                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2635       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2636         return true;
2637 
2638       // X86::COND_E_AND_NP usually has two different branch destinations.
2639       //
2640       // JP B1
2641       // JE B2
2642       // JMP B1
2643       // B1:
2644       // B2:
2645       //
2646       // Here this condition branches to B2 only if NP && E. It has another
2647       // equivalent form:
2648       //
2649       // JNE B1
2650       // JNP B2
2651       // JMP B1
2652       // B1:
2653       // B2:
2654       //
2655       // Similarly it branches to B2 only if E && NP. That is why this condition
2656       // is named with COND_E_AND_NP.
2657       BranchCode = X86::COND_E_AND_NP;
2658     } else
2659       return true;
2660 
2661     // Update the MachineOperand.
2662     Cond[0].setImm(BranchCode);
2663     CondBranches.push_back(&*I);
2664   }
2665 
2666   return false;
2667 }
2668 
2669 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2670                                  MachineBasicBlock *&TBB,
2671                                  MachineBasicBlock *&FBB,
2672                                  SmallVectorImpl<MachineOperand> &Cond,
2673                                  bool AllowModify) const {
2674   SmallVector<MachineInstr *, 4> CondBranches;
2675   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2676 }
2677 
2678 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2679                                           MachineBranchPredicate &MBP,
2680                                           bool AllowModify) const {
2681   using namespace std::placeholders;
2682 
2683   SmallVector<MachineOperand, 4> Cond;
2684   SmallVector<MachineInstr *, 4> CondBranches;
2685   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2686                         AllowModify))
2687     return true;
2688 
2689   if (Cond.size() != 1)
2690     return true;
2691 
2692   assert(MBP.TrueDest && "expected!");
2693 
2694   if (!MBP.FalseDest)
2695     MBP.FalseDest = MBB.getNextNode();
2696 
2697   const TargetRegisterInfo *TRI = &getRegisterInfo();
2698 
2699   MachineInstr *ConditionDef = nullptr;
2700   bool SingleUseCondition = true;
2701 
2702   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2703     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2704       ConditionDef = &*I;
2705       break;
2706     }
2707 
2708     if (I->readsRegister(X86::EFLAGS, TRI))
2709       SingleUseCondition = false;
2710   }
2711 
2712   if (!ConditionDef)
2713     return true;
2714 
2715   if (SingleUseCondition) {
2716     for (auto *Succ : MBB.successors())
2717       if (Succ->isLiveIn(X86::EFLAGS))
2718         SingleUseCondition = false;
2719   }
2720 
2721   MBP.ConditionDef = ConditionDef;
2722   MBP.SingleUseCondition = SingleUseCondition;
2723 
2724   // Currently we only recognize the simple pattern:
2725   //
2726   //   test %reg, %reg
2727   //   je %label
2728   //
2729   const unsigned TestOpcode =
2730       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2731 
2732   if (ConditionDef->getOpcode() == TestOpcode &&
2733       ConditionDef->getNumOperands() == 3 &&
2734       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2735       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2736     MBP.LHS = ConditionDef->getOperand(0);
2737     MBP.RHS = MachineOperand::CreateImm(0);
2738     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2739                         ? MachineBranchPredicate::PRED_NE
2740                         : MachineBranchPredicate::PRED_EQ;
2741     return false;
2742   }
2743 
2744   return true;
2745 }
2746 
2747 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2748                                     int *BytesRemoved) const {
2749   assert(!BytesRemoved && "code size not handled");
2750 
2751   MachineBasicBlock::iterator I = MBB.end();
2752   unsigned Count = 0;
2753 
2754   while (I != MBB.begin()) {
2755     --I;
2756     if (I->isDebugInstr())
2757       continue;
2758     if (I->getOpcode() != X86::JMP_1 &&
2759         X86::getCondFromBranch(*I) == X86::COND_INVALID)
2760       break;
2761     // Remove the branch.
2762     I->eraseFromParent();
2763     I = MBB.end();
2764     ++Count;
2765   }
2766 
2767   return Count;
2768 }
2769 
2770 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2771                                     MachineBasicBlock *TBB,
2772                                     MachineBasicBlock *FBB,
2773                                     ArrayRef<MachineOperand> Cond,
2774                                     const DebugLoc &DL,
2775                                     int *BytesAdded) const {
2776   // Shouldn't be a fall through.
2777   assert(TBB && "insertBranch must not be told to insert a fallthrough");
2778   assert((Cond.size() == 1 || Cond.size() == 0) &&
2779          "X86 branch conditions have one component!");
2780   assert(!BytesAdded && "code size not handled");
2781 
2782   if (Cond.empty()) {
2783     // Unconditional branch?
2784     assert(!FBB && "Unconditional branch with multiple successors!");
2785     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2786     return 1;
2787   }
2788 
2789   // If FBB is null, it is implied to be a fall-through block.
2790   bool FallThru = FBB == nullptr;
2791 
2792   // Conditional branch.
2793   unsigned Count = 0;
2794   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2795   switch (CC) {
2796   case X86::COND_NE_OR_P:
2797     // Synthesize NE_OR_P with two branches.
2798     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2799     ++Count;
2800     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2801     ++Count;
2802     break;
2803   case X86::COND_E_AND_NP:
2804     // Use the next block of MBB as FBB if it is null.
2805     if (FBB == nullptr) {
2806       FBB = getFallThroughMBB(&MBB, TBB);
2807       assert(FBB && "MBB cannot be the last block in function when the false "
2808                     "body is a fall-through.");
2809     }
2810     // Synthesize COND_E_AND_NP with two branches.
2811     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2812     ++Count;
2813     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2814     ++Count;
2815     break;
2816   default: {
2817     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2818     ++Count;
2819   }
2820   }
2821   if (!FallThru) {
2822     // Two-way Conditional branch. Insert the second branch.
2823     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2824     ++Count;
2825   }
2826   return Count;
2827 }
2828 
2829 bool X86InstrInfo::
2830 canInsertSelect(const MachineBasicBlock &MBB,
2831                 ArrayRef<MachineOperand> Cond,
2832                 unsigned TrueReg, unsigned FalseReg,
2833                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2834   // Not all subtargets have cmov instructions.
2835   if (!Subtarget.hasCMov())
2836     return false;
2837   if (Cond.size() != 1)
2838     return false;
2839   // We cannot do the composite conditions, at least not in SSA form.
2840   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2841     return false;
2842 
2843   // Check register classes.
2844   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2845   const TargetRegisterClass *RC =
2846     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2847   if (!RC)
2848     return false;
2849 
2850   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2851   if (X86::GR16RegClass.hasSubClassEq(RC) ||
2852       X86::GR32RegClass.hasSubClassEq(RC) ||
2853       X86::GR64RegClass.hasSubClassEq(RC)) {
2854     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2855     // Bridge. Probably Ivy Bridge as well.
2856     CondCycles = 2;
2857     TrueCycles = 2;
2858     FalseCycles = 2;
2859     return true;
2860   }
2861 
2862   // Can't do vectors.
2863   return false;
2864 }
2865 
2866 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2867                                 MachineBasicBlock::iterator I,
2868                                 const DebugLoc &DL, unsigned DstReg,
2869                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2870                                 unsigned FalseReg) const {
2871   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2872   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2873   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2874   assert(Cond.size() == 1 && "Invalid Cond array");
2875   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2876                                     false /*HasMemoryOperand*/);
2877   BuildMI(MBB, I, DL, get(Opc), DstReg)
2878       .addReg(FalseReg)
2879       .addReg(TrueReg)
2880       .addImm(Cond[0].getImm());
2881 }
2882 
2883 /// Test if the given register is a physical h register.
2884 static bool isHReg(unsigned Reg) {
2885   return X86::GR8_ABCD_HRegClass.contains(Reg);
2886 }
2887 
2888 // Try and copy between VR128/VR64 and GR64 registers.
2889 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2890                                         const X86Subtarget &Subtarget) {
2891   bool HasAVX = Subtarget.hasAVX();
2892   bool HasAVX512 = Subtarget.hasAVX512();
2893 
2894   // SrcReg(MaskReg) -> DestReg(GR64)
2895   // SrcReg(MaskReg) -> DestReg(GR32)
2896 
2897   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2898   if (X86::VK16RegClass.contains(SrcReg)) {
2899     if (X86::GR64RegClass.contains(DestReg)) {
2900       assert(Subtarget.hasBWI());
2901       return X86::KMOVQrk;
2902     }
2903     if (X86::GR32RegClass.contains(DestReg))
2904       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2905   }
2906 
2907   // SrcReg(GR64) -> DestReg(MaskReg)
2908   // SrcReg(GR32) -> DestReg(MaskReg)
2909 
2910   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2911   if (X86::VK16RegClass.contains(DestReg)) {
2912     if (X86::GR64RegClass.contains(SrcReg)) {
2913       assert(Subtarget.hasBWI());
2914       return X86::KMOVQkr;
2915     }
2916     if (X86::GR32RegClass.contains(SrcReg))
2917       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2918   }
2919 
2920 
2921   // SrcReg(VR128) -> DestReg(GR64)
2922   // SrcReg(VR64)  -> DestReg(GR64)
2923   // SrcReg(GR64)  -> DestReg(VR128)
2924   // SrcReg(GR64)  -> DestReg(VR64)
2925 
2926   if (X86::GR64RegClass.contains(DestReg)) {
2927     if (X86::VR128XRegClass.contains(SrcReg))
2928       // Copy from a VR128 register to a GR64 register.
2929       return HasAVX512 ? X86::VMOVPQIto64Zrr :
2930              HasAVX    ? X86::VMOVPQIto64rr  :
2931                          X86::MOVPQIto64rr;
2932     if (X86::VR64RegClass.contains(SrcReg))
2933       // Copy from a VR64 register to a GR64 register.
2934       return X86::MMX_MOVD64from64rr;
2935   } else if (X86::GR64RegClass.contains(SrcReg)) {
2936     // Copy from a GR64 register to a VR128 register.
2937     if (X86::VR128XRegClass.contains(DestReg))
2938       return HasAVX512 ? X86::VMOV64toPQIZrr :
2939              HasAVX    ? X86::VMOV64toPQIrr  :
2940                          X86::MOV64toPQIrr;
2941     // Copy from a GR64 register to a VR64 register.
2942     if (X86::VR64RegClass.contains(DestReg))
2943       return X86::MMX_MOVD64to64rr;
2944   }
2945 
2946   // SrcReg(VR128) -> DestReg(GR32)
2947   // SrcReg(GR32)  -> DestReg(VR128)
2948 
2949   if (X86::GR32RegClass.contains(DestReg) &&
2950       X86::VR128XRegClass.contains(SrcReg))
2951     // Copy from a VR128 register to a GR32 register.
2952     return HasAVX512 ? X86::VMOVPDI2DIZrr :
2953            HasAVX    ? X86::VMOVPDI2DIrr  :
2954                        X86::MOVPDI2DIrr;
2955 
2956   if (X86::VR128XRegClass.contains(DestReg) &&
2957       X86::GR32RegClass.contains(SrcReg))
2958     // Copy from a VR128 register to a VR128 register.
2959     return HasAVX512 ? X86::VMOVDI2PDIZrr :
2960            HasAVX    ? X86::VMOVDI2PDIrr  :
2961                        X86::MOVDI2PDIrr;
2962   return 0;
2963 }
2964 
2965 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2966                                MachineBasicBlock::iterator MI,
2967                                const DebugLoc &DL, MCRegister DestReg,
2968                                MCRegister SrcReg, bool KillSrc) const {
2969   // First deal with the normal symmetric copies.
2970   bool HasAVX = Subtarget.hasAVX();
2971   bool HasVLX = Subtarget.hasVLX();
2972   unsigned Opc = 0;
2973   if (X86::GR64RegClass.contains(DestReg, SrcReg))
2974     Opc = X86::MOV64rr;
2975   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2976     Opc = X86::MOV32rr;
2977   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2978     Opc = X86::MOV16rr;
2979   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2980     // Copying to or from a physical H register on x86-64 requires a NOREX
2981     // move.  Otherwise use a normal move.
2982     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2983         Subtarget.is64Bit()) {
2984       Opc = X86::MOV8rr_NOREX;
2985       // Both operands must be encodable without an REX prefix.
2986       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2987              "8-bit H register can not be copied outside GR8_NOREX");
2988     } else
2989       Opc = X86::MOV8rr;
2990   }
2991   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2992     Opc = X86::MMX_MOVQ64rr;
2993   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2994     if (HasVLX)
2995       Opc = X86::VMOVAPSZ128rr;
2996     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2997       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2998     else {
2999       // If this an extended register and we don't have VLX we need to use a
3000       // 512-bit move.
3001       Opc = X86::VMOVAPSZrr;
3002       const TargetRegisterInfo *TRI = &getRegisterInfo();
3003       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3004                                          &X86::VR512RegClass);
3005       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3006                                         &X86::VR512RegClass);
3007     }
3008   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3009     if (HasVLX)
3010       Opc = X86::VMOVAPSZ256rr;
3011     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3012       Opc = X86::VMOVAPSYrr;
3013     else {
3014       // If this an extended register and we don't have VLX we need to use a
3015       // 512-bit move.
3016       Opc = X86::VMOVAPSZrr;
3017       const TargetRegisterInfo *TRI = &getRegisterInfo();
3018       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3019                                          &X86::VR512RegClass);
3020       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3021                                         &X86::VR512RegClass);
3022     }
3023   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3024     Opc = X86::VMOVAPSZrr;
3025   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3026   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3027     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3028   if (!Opc)
3029     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3030 
3031   if (Opc) {
3032     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3033       .addReg(SrcReg, getKillRegState(KillSrc));
3034     return;
3035   }
3036 
3037   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3038     // FIXME: We use a fatal error here because historically LLVM has tried
3039     // lower some of these physreg copies and we want to ensure we get
3040     // reasonable bug reports if someone encounters a case no other testing
3041     // found. This path should be removed after the LLVM 7 release.
3042     report_fatal_error("Unable to copy EFLAGS physical register!");
3043   }
3044 
3045   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3046                     << RI.getName(DestReg) << '\n');
3047   report_fatal_error("Cannot emit physreg copy instruction");
3048 }
3049 
3050 Optional<DestSourcePair>
3051 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3052   if (MI.isMoveReg())
3053     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3054   return None;
3055 }
3056 
3057 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3058                                       const TargetRegisterClass *RC,
3059                                       bool isStackAligned,
3060                                       const X86Subtarget &STI,
3061                                       bool load) {
3062   bool HasAVX = STI.hasAVX();
3063   bool HasAVX512 = STI.hasAVX512();
3064   bool HasVLX = STI.hasVLX();
3065 
3066   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3067   default:
3068     llvm_unreachable("Unknown spill size");
3069   case 1:
3070     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3071     if (STI.is64Bit())
3072       // Copying to or from a physical H register on x86-64 requires a NOREX
3073       // move.  Otherwise use a normal move.
3074       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3075         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3076     return load ? X86::MOV8rm : X86::MOV8mr;
3077   case 2:
3078     if (X86::VK16RegClass.hasSubClassEq(RC))
3079       return load ? X86::KMOVWkm : X86::KMOVWmk;
3080     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3081     return load ? X86::MOV16rm : X86::MOV16mr;
3082   case 4:
3083     if (X86::GR32RegClass.hasSubClassEq(RC))
3084       return load ? X86::MOV32rm : X86::MOV32mr;
3085     if (X86::FR32XRegClass.hasSubClassEq(RC))
3086       return load ?
3087         (HasAVX512 ? X86::VMOVSSZrm_alt :
3088          HasAVX    ? X86::VMOVSSrm_alt :
3089                      X86::MOVSSrm_alt) :
3090         (HasAVX512 ? X86::VMOVSSZmr :
3091          HasAVX    ? X86::VMOVSSmr :
3092                      X86::MOVSSmr);
3093     if (X86::RFP32RegClass.hasSubClassEq(RC))
3094       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3095     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3096       assert(STI.hasBWI() && "KMOVD requires BWI");
3097       return load ? X86::KMOVDkm : X86::KMOVDmk;
3098     }
3099     // All of these mask pair classes have the same spill size, the same kind
3100     // of kmov instructions can be used with all of them.
3101     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3102         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3103         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3104         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3105         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3106       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3107     llvm_unreachable("Unknown 4-byte regclass");
3108   case 8:
3109     if (X86::GR64RegClass.hasSubClassEq(RC))
3110       return load ? X86::MOV64rm : X86::MOV64mr;
3111     if (X86::FR64XRegClass.hasSubClassEq(RC))
3112       return load ?
3113         (HasAVX512 ? X86::VMOVSDZrm_alt :
3114          HasAVX    ? X86::VMOVSDrm_alt :
3115                      X86::MOVSDrm_alt) :
3116         (HasAVX512 ? X86::VMOVSDZmr :
3117          HasAVX    ? X86::VMOVSDmr :
3118                      X86::MOVSDmr);
3119     if (X86::VR64RegClass.hasSubClassEq(RC))
3120       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3121     if (X86::RFP64RegClass.hasSubClassEq(RC))
3122       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3123     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3124       assert(STI.hasBWI() && "KMOVQ requires BWI");
3125       return load ? X86::KMOVQkm : X86::KMOVQmk;
3126     }
3127     llvm_unreachable("Unknown 8-byte regclass");
3128   case 10:
3129     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3130     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3131   case 16: {
3132     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3133       // If stack is realigned we can use aligned stores.
3134       if (isStackAligned)
3135         return load ?
3136           (HasVLX    ? X86::VMOVAPSZ128rm :
3137            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3138            HasAVX    ? X86::VMOVAPSrm :
3139                        X86::MOVAPSrm):
3140           (HasVLX    ? X86::VMOVAPSZ128mr :
3141            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3142            HasAVX    ? X86::VMOVAPSmr :
3143                        X86::MOVAPSmr);
3144       else
3145         return load ?
3146           (HasVLX    ? X86::VMOVUPSZ128rm :
3147            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3148            HasAVX    ? X86::VMOVUPSrm :
3149                        X86::MOVUPSrm):
3150           (HasVLX    ? X86::VMOVUPSZ128mr :
3151            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3152            HasAVX    ? X86::VMOVUPSmr :
3153                        X86::MOVUPSmr);
3154     }
3155     if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3156       if (STI.is64Bit())
3157         return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3158       else
3159         return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3160     }
3161     llvm_unreachable("Unknown 16-byte regclass");
3162   }
3163   case 32:
3164     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3165     // If stack is realigned we can use aligned stores.
3166     if (isStackAligned)
3167       return load ?
3168         (HasVLX    ? X86::VMOVAPSZ256rm :
3169          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3170                      X86::VMOVAPSYrm) :
3171         (HasVLX    ? X86::VMOVAPSZ256mr :
3172          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3173                      X86::VMOVAPSYmr);
3174     else
3175       return load ?
3176         (HasVLX    ? X86::VMOVUPSZ256rm :
3177          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3178                      X86::VMOVUPSYrm) :
3179         (HasVLX    ? X86::VMOVUPSZ256mr :
3180          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3181                      X86::VMOVUPSYmr);
3182   case 64:
3183     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3184     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3185     if (isStackAligned)
3186       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3187     else
3188       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3189   }
3190 }
3191 
3192 bool X86InstrInfo::getMemOperandWithOffset(
3193     const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3194     const TargetRegisterInfo *TRI) const {
3195   const MCInstrDesc &Desc = MemOp.getDesc();
3196   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3197   if (MemRefBegin < 0)
3198     return false;
3199 
3200   MemRefBegin += X86II::getOperandBias(Desc);
3201 
3202   BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3203   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3204     return false;
3205 
3206   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3207     return false;
3208 
3209   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3210       X86::NoRegister)
3211     return false;
3212 
3213   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3214 
3215   // Displacement can be symbolic
3216   if (!DispMO.isImm())
3217     return false;
3218 
3219   Offset = DispMO.getImm();
3220 
3221   if (!BaseOp->isReg())
3222     return false;
3223 
3224   return true;
3225 }
3226 
3227 static unsigned getStoreRegOpcode(unsigned SrcReg,
3228                                   const TargetRegisterClass *RC,
3229                                   bool isStackAligned,
3230                                   const X86Subtarget &STI) {
3231   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3232 }
3233 
3234 
3235 static unsigned getLoadRegOpcode(unsigned DestReg,
3236                                  const TargetRegisterClass *RC,
3237                                  bool isStackAligned,
3238                                  const X86Subtarget &STI) {
3239   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3240 }
3241 
3242 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3243                                        MachineBasicBlock::iterator MI,
3244                                        unsigned SrcReg, bool isKill, int FrameIdx,
3245                                        const TargetRegisterClass *RC,
3246                                        const TargetRegisterInfo *TRI) const {
3247   const MachineFunction &MF = *MBB.getParent();
3248   assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3249          "Stack slot too small for store");
3250   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3251   bool isAligned =
3252       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3253       RI.canRealignStack(MF);
3254   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3255   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3256     .addReg(SrcReg, getKillRegState(isKill));
3257 }
3258 
3259 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3260                                         MachineBasicBlock::iterator MI,
3261                                         unsigned DestReg, int FrameIdx,
3262                                         const TargetRegisterClass *RC,
3263                                         const TargetRegisterInfo *TRI) const {
3264   const MachineFunction &MF = *MBB.getParent();
3265   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3266   bool isAligned =
3267       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3268       RI.canRealignStack(MF);
3269   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3270   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3271 }
3272 
3273 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3274                                   unsigned &SrcReg2, int &CmpMask,
3275                                   int &CmpValue) const {
3276   switch (MI.getOpcode()) {
3277   default: break;
3278   case X86::CMP64ri32:
3279   case X86::CMP64ri8:
3280   case X86::CMP32ri:
3281   case X86::CMP32ri8:
3282   case X86::CMP16ri:
3283   case X86::CMP16ri8:
3284   case X86::CMP8ri:
3285     SrcReg = MI.getOperand(0).getReg();
3286     SrcReg2 = 0;
3287     if (MI.getOperand(1).isImm()) {
3288       CmpMask = ~0;
3289       CmpValue = MI.getOperand(1).getImm();
3290     } else {
3291       CmpMask = CmpValue = 0;
3292     }
3293     return true;
3294   // A SUB can be used to perform comparison.
3295   case X86::SUB64rm:
3296   case X86::SUB32rm:
3297   case X86::SUB16rm:
3298   case X86::SUB8rm:
3299     SrcReg = MI.getOperand(1).getReg();
3300     SrcReg2 = 0;
3301     CmpMask = 0;
3302     CmpValue = 0;
3303     return true;
3304   case X86::SUB64rr:
3305   case X86::SUB32rr:
3306   case X86::SUB16rr:
3307   case X86::SUB8rr:
3308     SrcReg = MI.getOperand(1).getReg();
3309     SrcReg2 = MI.getOperand(2).getReg();
3310     CmpMask = 0;
3311     CmpValue = 0;
3312     return true;
3313   case X86::SUB64ri32:
3314   case X86::SUB64ri8:
3315   case X86::SUB32ri:
3316   case X86::SUB32ri8:
3317   case X86::SUB16ri:
3318   case X86::SUB16ri8:
3319   case X86::SUB8ri:
3320     SrcReg = MI.getOperand(1).getReg();
3321     SrcReg2 = 0;
3322     if (MI.getOperand(2).isImm()) {
3323       CmpMask = ~0;
3324       CmpValue = MI.getOperand(2).getImm();
3325     } else {
3326       CmpMask = CmpValue = 0;
3327     }
3328     return true;
3329   case X86::CMP64rr:
3330   case X86::CMP32rr:
3331   case X86::CMP16rr:
3332   case X86::CMP8rr:
3333     SrcReg = MI.getOperand(0).getReg();
3334     SrcReg2 = MI.getOperand(1).getReg();
3335     CmpMask = 0;
3336     CmpValue = 0;
3337     return true;
3338   case X86::TEST8rr:
3339   case X86::TEST16rr:
3340   case X86::TEST32rr:
3341   case X86::TEST64rr:
3342     SrcReg = MI.getOperand(0).getReg();
3343     if (MI.getOperand(1).getReg() != SrcReg)
3344       return false;
3345     // Compare against zero.
3346     SrcReg2 = 0;
3347     CmpMask = ~0;
3348     CmpValue = 0;
3349     return true;
3350   }
3351   return false;
3352 }
3353 
3354 /// Check whether the first instruction, whose only
3355 /// purpose is to update flags, can be made redundant.
3356 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3357 /// This function can be extended later on.
3358 /// SrcReg, SrcRegs: register operands for FlagI.
3359 /// ImmValue: immediate for FlagI if it takes an immediate.
3360 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3361                                         unsigned SrcReg, unsigned SrcReg2,
3362                                         int ImmMask, int ImmValue,
3363                                         const MachineInstr &OI) {
3364   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3365        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3366        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3367        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3368       ((OI.getOperand(1).getReg() == SrcReg &&
3369         OI.getOperand(2).getReg() == SrcReg2) ||
3370        (OI.getOperand(1).getReg() == SrcReg2 &&
3371         OI.getOperand(2).getReg() == SrcReg)))
3372     return true;
3373 
3374   if (ImmMask != 0 &&
3375       ((FlagI.getOpcode() == X86::CMP64ri32 &&
3376         OI.getOpcode() == X86::SUB64ri32) ||
3377        (FlagI.getOpcode() == X86::CMP64ri8 &&
3378         OI.getOpcode() == X86::SUB64ri8) ||
3379        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3380        (FlagI.getOpcode() == X86::CMP32ri8 &&
3381         OI.getOpcode() == X86::SUB32ri8) ||
3382        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3383        (FlagI.getOpcode() == X86::CMP16ri8 &&
3384         OI.getOpcode() == X86::SUB16ri8) ||
3385        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3386       OI.getOperand(1).getReg() == SrcReg &&
3387       OI.getOperand(2).getImm() == ImmValue)
3388     return true;
3389   return false;
3390 }
3391 
3392 /// Check whether the definition can be converted
3393 /// to remove a comparison against zero.
3394 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3395   NoSignFlag = false;
3396 
3397   switch (MI.getOpcode()) {
3398   default: return false;
3399 
3400   // The shift instructions only modify ZF if their shift count is non-zero.
3401   // N.B.: The processor truncates the shift count depending on the encoding.
3402   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3403   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3404      return getTruncatedShiftCount(MI, 2) != 0;
3405 
3406   // Some left shift instructions can be turned into LEA instructions but only
3407   // if their flags aren't used. Avoid transforming such instructions.
3408   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3409     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3410     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3411     return ShAmt != 0;
3412   }
3413 
3414   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3415   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3416      return getTruncatedShiftCount(MI, 3) != 0;
3417 
3418   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3419   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3420   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3421   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3422   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3423   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3424   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3425   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3426   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3427   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3428   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3429   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3430   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3431   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3432   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3433   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3434   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3435   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3436   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3437   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3438   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3439   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3440   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3441   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3442   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3443   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3444   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3445   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3446   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3447   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3448   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3449   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3450   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3451   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3452   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3453   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3454   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3455   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3456   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3457   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3458   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3459   case X86::ANDN32rr:  case X86::ANDN32rm:
3460   case X86::ANDN64rr:  case X86::ANDN64rm:
3461   case X86::BLSI32rr:  case X86::BLSI32rm:
3462   case X86::BLSI64rr:  case X86::BLSI64rm:
3463   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3464   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3465   case X86::BLSR32rr:  case X86::BLSR32rm:
3466   case X86::BLSR64rr:  case X86::BLSR64rm:
3467   case X86::BZHI32rr:  case X86::BZHI32rm:
3468   case X86::BZHI64rr:  case X86::BZHI64rm:
3469   case X86::LZCNT16rr: case X86::LZCNT16rm:
3470   case X86::LZCNT32rr: case X86::LZCNT32rm:
3471   case X86::LZCNT64rr: case X86::LZCNT64rm:
3472   case X86::POPCNT16rr:case X86::POPCNT16rm:
3473   case X86::POPCNT32rr:case X86::POPCNT32rm:
3474   case X86::POPCNT64rr:case X86::POPCNT64rm:
3475   case X86::TZCNT16rr: case X86::TZCNT16rm:
3476   case X86::TZCNT32rr: case X86::TZCNT32rm:
3477   case X86::TZCNT64rr: case X86::TZCNT64rm:
3478   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3479   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3480   case X86::BLCI32rr:    case X86::BLCI32rm:
3481   case X86::BLCI64rr:    case X86::BLCI64rm:
3482   case X86::BLCIC32rr:   case X86::BLCIC32rm:
3483   case X86::BLCIC64rr:   case X86::BLCIC64rm:
3484   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3485   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3486   case X86::BLCS32rr:    case X86::BLCS32rm:
3487   case X86::BLCS64rr:    case X86::BLCS64rm:
3488   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3489   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3490   case X86::BLSIC32rr:   case X86::BLSIC32rm:
3491   case X86::BLSIC64rr:   case X86::BLSIC64rm:
3492   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3493   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3494   case X86::TZMSK32rr:   case X86::TZMSK32rm:
3495   case X86::TZMSK64rr:   case X86::TZMSK64rm:
3496     return true;
3497   case X86::BEXTR32rr:   case X86::BEXTR64rr:
3498   case X86::BEXTR32rm:   case X86::BEXTR64rm:
3499   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3500   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3501     // BEXTR doesn't update the sign flag so we can't use it.
3502     NoSignFlag = true;
3503     return true;
3504   }
3505 }
3506 
3507 /// Check whether the use can be converted to remove a comparison against zero.
3508 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3509   switch (MI.getOpcode()) {
3510   default: return X86::COND_INVALID;
3511   case X86::NEG8r:
3512   case X86::NEG16r:
3513   case X86::NEG32r:
3514   case X86::NEG64r:
3515     return X86::COND_AE;
3516   case X86::LZCNT16rr:
3517   case X86::LZCNT32rr:
3518   case X86::LZCNT64rr:
3519     return X86::COND_B;
3520   case X86::POPCNT16rr:
3521   case X86::POPCNT32rr:
3522   case X86::POPCNT64rr:
3523     return X86::COND_E;
3524   case X86::TZCNT16rr:
3525   case X86::TZCNT32rr:
3526   case X86::TZCNT64rr:
3527     return X86::COND_B;
3528   case X86::BSF16rr:
3529   case X86::BSF32rr:
3530   case X86::BSF64rr:
3531   case X86::BSR16rr:
3532   case X86::BSR32rr:
3533   case X86::BSR64rr:
3534     return X86::COND_E;
3535   case X86::BLSI32rr:
3536   case X86::BLSI64rr:
3537     return X86::COND_AE;
3538   case X86::BLSR32rr:
3539   case X86::BLSR64rr:
3540   case X86::BLSMSK32rr:
3541   case X86::BLSMSK64rr:
3542     return X86::COND_B;
3543   // TODO: TBM instructions.
3544   }
3545 }
3546 
3547 /// Check if there exists an earlier instruction that
3548 /// operates on the same source operands and sets flags in the same way as
3549 /// Compare; remove Compare if possible.
3550 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3551                                         unsigned SrcReg2, int CmpMask,
3552                                         int CmpValue,
3553                                         const MachineRegisterInfo *MRI) const {
3554   // Check whether we can replace SUB with CMP.
3555   switch (CmpInstr.getOpcode()) {
3556   default: break;
3557   case X86::SUB64ri32:
3558   case X86::SUB64ri8:
3559   case X86::SUB32ri:
3560   case X86::SUB32ri8:
3561   case X86::SUB16ri:
3562   case X86::SUB16ri8:
3563   case X86::SUB8ri:
3564   case X86::SUB64rm:
3565   case X86::SUB32rm:
3566   case X86::SUB16rm:
3567   case X86::SUB8rm:
3568   case X86::SUB64rr:
3569   case X86::SUB32rr:
3570   case X86::SUB16rr:
3571   case X86::SUB8rr: {
3572     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3573       return false;
3574     // There is no use of the destination register, we can replace SUB with CMP.
3575     unsigned NewOpcode = 0;
3576     switch (CmpInstr.getOpcode()) {
3577     default: llvm_unreachable("Unreachable!");
3578     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3579     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3580     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3581     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3582     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3583     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3584     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3585     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3586     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3587     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3588     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3589     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3590     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3591     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3592     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3593     }
3594     CmpInstr.setDesc(get(NewOpcode));
3595     CmpInstr.RemoveOperand(0);
3596     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3597     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3598         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3599       return false;
3600   }
3601   }
3602 
3603   // Get the unique definition of SrcReg.
3604   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3605   if (!MI) return false;
3606 
3607   // CmpInstr is the first instruction of the BB.
3608   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3609 
3610   // If we are comparing against zero, check whether we can use MI to update
3611   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3612   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3613   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3614     return false;
3615 
3616   // If we have a use of the source register between the def and our compare
3617   // instruction we can eliminate the compare iff the use sets EFLAGS in the
3618   // right way.
3619   bool ShouldUpdateCC = false;
3620   bool NoSignFlag = false;
3621   X86::CondCode NewCC = X86::COND_INVALID;
3622   if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3623     // Scan forward from the use until we hit the use we're looking for or the
3624     // compare instruction.
3625     for (MachineBasicBlock::iterator J = MI;; ++J) {
3626       // Do we have a convertible instruction?
3627       NewCC = isUseDefConvertible(*J);
3628       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3629           J->getOperand(1).getReg() == SrcReg) {
3630         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3631         ShouldUpdateCC = true; // Update CC later on.
3632         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3633         // with the new def.
3634         Def = J;
3635         MI = &*Def;
3636         break;
3637       }
3638 
3639       if (J == I)
3640         return false;
3641     }
3642   }
3643 
3644   // We are searching for an earlier instruction that can make CmpInstr
3645   // redundant and that instruction will be saved in Sub.
3646   MachineInstr *Sub = nullptr;
3647   const TargetRegisterInfo *TRI = &getRegisterInfo();
3648 
3649   // We iterate backward, starting from the instruction before CmpInstr and
3650   // stop when reaching the definition of a source register or done with the BB.
3651   // RI points to the instruction before CmpInstr.
3652   // If the definition is in this basic block, RE points to the definition;
3653   // otherwise, RE is the rend of the basic block.
3654   MachineBasicBlock::reverse_iterator
3655       RI = ++I.getReverse(),
3656       RE = CmpInstr.getParent() == MI->getParent()
3657                ? Def.getReverse() /* points to MI */
3658                : CmpInstr.getParent()->rend();
3659   MachineInstr *Movr0Inst = nullptr;
3660   for (; RI != RE; ++RI) {
3661     MachineInstr &Instr = *RI;
3662     // Check whether CmpInstr can be made redundant by the current instruction.
3663     if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3664                                            CmpValue, Instr)) {
3665       Sub = &Instr;
3666       break;
3667     }
3668 
3669     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3670         Instr.readsRegister(X86::EFLAGS, TRI)) {
3671       // This instruction modifies or uses EFLAGS.
3672 
3673       // MOV32r0 etc. are implemented with xor which clobbers condition code.
3674       // They are safe to move up, if the definition to EFLAGS is dead and
3675       // earlier instructions do not read or write EFLAGS.
3676       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3677           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3678         Movr0Inst = &Instr;
3679         continue;
3680       }
3681 
3682       // We can't remove CmpInstr.
3683       return false;
3684     }
3685   }
3686 
3687   // Return false if no candidates exist.
3688   if (!IsCmpZero && !Sub)
3689     return false;
3690 
3691   bool IsSwapped =
3692       (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
3693        Sub->getOperand(2).getReg() == SrcReg);
3694 
3695   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3696   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3697   // If we are done with the basic block, we need to check whether EFLAGS is
3698   // live-out.
3699   bool IsSafe = false;
3700   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3701   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3702   for (++I; I != E; ++I) {
3703     const MachineInstr &Instr = *I;
3704     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3705     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3706     // We should check the usage if this instruction uses and updates EFLAGS.
3707     if (!UseEFLAGS && ModifyEFLAGS) {
3708       // It is safe to remove CmpInstr if EFLAGS is updated again.
3709       IsSafe = true;
3710       break;
3711     }
3712     if (!UseEFLAGS && !ModifyEFLAGS)
3713       continue;
3714 
3715     // EFLAGS is used by this instruction.
3716     X86::CondCode OldCC = X86::COND_INVALID;
3717     if (IsCmpZero || IsSwapped) {
3718       // We decode the condition code from opcode.
3719       if (Instr.isBranch())
3720         OldCC = X86::getCondFromBranch(Instr);
3721       else {
3722         OldCC = X86::getCondFromSETCC(Instr);
3723         if (OldCC == X86::COND_INVALID)
3724           OldCC = X86::getCondFromCMov(Instr);
3725       }
3726       if (OldCC == X86::COND_INVALID) return false;
3727     }
3728     X86::CondCode ReplacementCC = X86::COND_INVALID;
3729     if (IsCmpZero) {
3730       switch (OldCC) {
3731       default: break;
3732       case X86::COND_A: case X86::COND_AE:
3733       case X86::COND_B: case X86::COND_BE:
3734       case X86::COND_G: case X86::COND_GE:
3735       case X86::COND_L: case X86::COND_LE:
3736       case X86::COND_O: case X86::COND_NO:
3737         // CF and OF are used, we can't perform this optimization.
3738         return false;
3739       case X86::COND_S: case X86::COND_NS:
3740         // If SF is used, but the instruction doesn't update the SF, then we
3741         // can't do the optimization.
3742         if (NoSignFlag)
3743           return false;
3744         break;
3745       }
3746 
3747       // If we're updating the condition code check if we have to reverse the
3748       // condition.
3749       if (ShouldUpdateCC)
3750         switch (OldCC) {
3751         default:
3752           return false;
3753         case X86::COND_E:
3754           ReplacementCC = NewCC;
3755           break;
3756         case X86::COND_NE:
3757           ReplacementCC = GetOppositeBranchCondition(NewCC);
3758           break;
3759         }
3760     } else if (IsSwapped) {
3761       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3762       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3763       // We swap the condition code and synthesize the new opcode.
3764       ReplacementCC = getSwappedCondition(OldCC);
3765       if (ReplacementCC == X86::COND_INVALID) return false;
3766     }
3767 
3768     if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3769       // Push the MachineInstr to OpsToUpdate.
3770       // If it is safe to remove CmpInstr, the condition code of these
3771       // instructions will be modified.
3772       OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3773     }
3774     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3775       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3776       IsSafe = true;
3777       break;
3778     }
3779   }
3780 
3781   // If EFLAGS is not killed nor re-defined, we should check whether it is
3782   // live-out. If it is live-out, do not optimize.
3783   if ((IsCmpZero || IsSwapped) && !IsSafe) {
3784     MachineBasicBlock *MBB = CmpInstr.getParent();
3785     for (MachineBasicBlock *Successor : MBB->successors())
3786       if (Successor->isLiveIn(X86::EFLAGS))
3787         return false;
3788   }
3789 
3790   // The instruction to be updated is either Sub or MI.
3791   Sub = IsCmpZero ? MI : Sub;
3792   // Move Movr0Inst to the appropriate place before Sub.
3793   if (Movr0Inst) {
3794     // Look backwards until we find a def that doesn't use the current EFLAGS.
3795     Def = Sub;
3796     MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3797                                         InsertE = Sub->getParent()->rend();
3798     for (; InsertI != InsertE; ++InsertI) {
3799       MachineInstr *Instr = &*InsertI;
3800       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3801           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3802         Sub->getParent()->remove(Movr0Inst);
3803         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3804                                    Movr0Inst);
3805         break;
3806       }
3807     }
3808     if (InsertI == InsertE)
3809       return false;
3810   }
3811 
3812   // Make sure Sub instruction defines EFLAGS and mark the def live.
3813   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3814   assert(FlagDef && "Unable to locate a def EFLAGS operand");
3815   FlagDef->setIsDead(false);
3816 
3817   CmpInstr.eraseFromParent();
3818 
3819   // Modify the condition code of instructions in OpsToUpdate.
3820   for (auto &Op : OpsToUpdate) {
3821     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3822         .setImm(Op.second);
3823   }
3824   return true;
3825 }
3826 
3827 /// Try to remove the load by folding it to a register
3828 /// operand at the use. We fold the load instructions if load defines a virtual
3829 /// register, the virtual register is used once in the same BB, and the
3830 /// instructions in-between do not load or store, and have no side effects.
3831 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3832                                               const MachineRegisterInfo *MRI,
3833                                               unsigned &FoldAsLoadDefReg,
3834                                               MachineInstr *&DefMI) const {
3835   // Check whether we can move DefMI here.
3836   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3837   assert(DefMI);
3838   bool SawStore = false;
3839   if (!DefMI->isSafeToMove(nullptr, SawStore))
3840     return nullptr;
3841 
3842   // Collect information about virtual register operands of MI.
3843   SmallVector<unsigned, 1> SrcOperandIds;
3844   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3845     MachineOperand &MO = MI.getOperand(i);
3846     if (!MO.isReg())
3847       continue;
3848     Register Reg = MO.getReg();
3849     if (Reg != FoldAsLoadDefReg)
3850       continue;
3851     // Do not fold if we have a subreg use or a def.
3852     if (MO.getSubReg() || MO.isDef())
3853       return nullptr;
3854     SrcOperandIds.push_back(i);
3855   }
3856   if (SrcOperandIds.empty())
3857     return nullptr;
3858 
3859   // Check whether we can fold the def into SrcOperandId.
3860   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3861     FoldAsLoadDefReg = 0;
3862     return FoldMI;
3863   }
3864 
3865   return nullptr;
3866 }
3867 
3868 /// Expand a single-def pseudo instruction to a two-addr
3869 /// instruction with two undef reads of the register being defined.
3870 /// This is used for mapping:
3871 ///   %xmm4 = V_SET0
3872 /// to:
3873 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3874 ///
3875 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3876                              const MCInstrDesc &Desc) {
3877   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3878   Register Reg = MIB->getOperand(0).getReg();
3879   MIB->setDesc(Desc);
3880 
3881   // MachineInstr::addOperand() will insert explicit operands before any
3882   // implicit operands.
3883   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3884   // But we don't trust that.
3885   assert(MIB->getOperand(1).getReg() == Reg &&
3886          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3887   return true;
3888 }
3889 
3890 /// Expand a single-def pseudo instruction to a two-addr
3891 /// instruction with two %k0 reads.
3892 /// This is used for mapping:
3893 ///   %k4 = K_SET1
3894 /// to:
3895 ///   %k4 = KXNORrr %k0, %k0
3896 static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3897                             const MCInstrDesc &Desc, unsigned Reg) {
3898   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3899   MIB->setDesc(Desc);
3900   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3901   return true;
3902 }
3903 
3904 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3905                           bool MinusOne) {
3906   MachineBasicBlock &MBB = *MIB->getParent();
3907   DebugLoc DL = MIB->getDebugLoc();
3908   Register Reg = MIB->getOperand(0).getReg();
3909 
3910   // Insert the XOR.
3911   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3912       .addReg(Reg, RegState::Undef)
3913       .addReg(Reg, RegState::Undef);
3914 
3915   // Turn the pseudo into an INC or DEC.
3916   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3917   MIB.addReg(Reg);
3918 
3919   return true;
3920 }
3921 
3922 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3923                                const TargetInstrInfo &TII,
3924                                const X86Subtarget &Subtarget) {
3925   MachineBasicBlock &MBB = *MIB->getParent();
3926   DebugLoc DL = MIB->getDebugLoc();
3927   int64_t Imm = MIB->getOperand(1).getImm();
3928   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3929   MachineBasicBlock::iterator I = MIB.getInstr();
3930 
3931   int StackAdjustment;
3932 
3933   if (Subtarget.is64Bit()) {
3934     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3935            MIB->getOpcode() == X86::MOV32ImmSExti8);
3936 
3937     // Can't use push/pop lowering if the function might write to the red zone.
3938     X86MachineFunctionInfo *X86FI =
3939         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3940     if (X86FI->getUsesRedZone()) {
3941       MIB->setDesc(TII.get(MIB->getOpcode() ==
3942                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3943       return true;
3944     }
3945 
3946     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3947     // widen the register if necessary.
3948     StackAdjustment = 8;
3949     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3950     MIB->setDesc(TII.get(X86::POP64r));
3951     MIB->getOperand(0)
3952         .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3953   } else {
3954     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3955     StackAdjustment = 4;
3956     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3957     MIB->setDesc(TII.get(X86::POP32r));
3958   }
3959   MIB->RemoveOperand(1);
3960   MIB->addImplicitDefUseOperands(*MBB.getParent());
3961 
3962   // Build CFI if necessary.
3963   MachineFunction &MF = *MBB.getParent();
3964   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3965   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3966   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
3967   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3968   if (EmitCFI) {
3969     TFL->BuildCFI(MBB, I, DL,
3970         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3971     TFL->BuildCFI(MBB, std::next(I), DL,
3972         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3973   }
3974 
3975   return true;
3976 }
3977 
3978 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3979 // code sequence is needed for other targets.
3980 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3981                                  const TargetInstrInfo &TII) {
3982   MachineBasicBlock &MBB = *MIB->getParent();
3983   DebugLoc DL = MIB->getDebugLoc();
3984   Register Reg = MIB->getOperand(0).getReg();
3985   const GlobalValue *GV =
3986       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3987   auto Flags = MachineMemOperand::MOLoad |
3988                MachineMemOperand::MODereferenceable |
3989                MachineMemOperand::MOInvariant;
3990   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3991       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3992   MachineBasicBlock::iterator I = MIB.getInstr();
3993 
3994   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3995       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3996       .addMemOperand(MMO);
3997   MIB->setDebugLoc(DL);
3998   MIB->setDesc(TII.get(X86::MOV64rm));
3999   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4000 }
4001 
4002 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4003   MachineBasicBlock &MBB = *MIB->getParent();
4004   MachineFunction &MF = *MBB.getParent();
4005   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4006   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4007   unsigned XorOp =
4008       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4009   MIB->setDesc(TII.get(XorOp));
4010   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4011   return true;
4012 }
4013 
4014 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4015 // but not VLX. If it uses an extended register we need to use an instruction
4016 // that loads the lower 128/256-bit, but is available with only AVX512F.
4017 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4018                             const TargetRegisterInfo *TRI,
4019                             const MCInstrDesc &LoadDesc,
4020                             const MCInstrDesc &BroadcastDesc,
4021                             unsigned SubIdx) {
4022   Register DestReg = MIB->getOperand(0).getReg();
4023   // Check if DestReg is XMM16-31 or YMM16-31.
4024   if (TRI->getEncodingValue(DestReg) < 16) {
4025     // We can use a normal VEX encoded load.
4026     MIB->setDesc(LoadDesc);
4027   } else {
4028     // Use a 128/256-bit VBROADCAST instruction.
4029     MIB->setDesc(BroadcastDesc);
4030     // Change the destination to a 512-bit register.
4031     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4032     MIB->getOperand(0).setReg(DestReg);
4033   }
4034   return true;
4035 }
4036 
4037 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4038 // but not VLX. If it uses an extended register we need to use an instruction
4039 // that stores the lower 128/256-bit, but is available with only AVX512F.
4040 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4041                              const TargetRegisterInfo *TRI,
4042                              const MCInstrDesc &StoreDesc,
4043                              const MCInstrDesc &ExtractDesc,
4044                              unsigned SubIdx) {
4045   Register SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4046   // Check if DestReg is XMM16-31 or YMM16-31.
4047   if (TRI->getEncodingValue(SrcReg) < 16) {
4048     // We can use a normal VEX encoded store.
4049     MIB->setDesc(StoreDesc);
4050   } else {
4051     // Use a VEXTRACTF instruction.
4052     MIB->setDesc(ExtractDesc);
4053     // Change the destination to a 512-bit register.
4054     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4055     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4056     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4057   }
4058 
4059   return true;
4060 }
4061 
4062 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4063   MIB->setDesc(Desc);
4064   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4065   // Temporarily remove the immediate so we can add another source register.
4066   MIB->RemoveOperand(2);
4067   // Add the register. Don't copy the kill flag if there is one.
4068   MIB.addReg(MIB->getOperand(1).getReg(),
4069              getUndefRegState(MIB->getOperand(1).isUndef()));
4070   // Add back the immediate.
4071   MIB.addImm(ShiftAmt);
4072   return true;
4073 }
4074 
4075 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4076   bool HasAVX = Subtarget.hasAVX();
4077   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4078   switch (MI.getOpcode()) {
4079   case X86::MOV32r0:
4080     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4081   case X86::MOV32r1:
4082     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4083   case X86::MOV32r_1:
4084     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4085   case X86::MOV32ImmSExti8:
4086   case X86::MOV64ImmSExti8:
4087     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4088   case X86::SETB_C8r:
4089     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4090   case X86::SETB_C16r:
4091     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4092   case X86::SETB_C32r:
4093     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4094   case X86::SETB_C64r:
4095     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4096   case X86::MMX_SET0:
4097     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4098   case X86::V_SET0:
4099   case X86::FsFLD0SS:
4100   case X86::FsFLD0SD:
4101   case X86::FsFLD0F128:
4102     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4103   case X86::AVX_SET0: {
4104     assert(HasAVX && "AVX not supported");
4105     const TargetRegisterInfo *TRI = &getRegisterInfo();
4106     Register SrcReg = MIB->getOperand(0).getReg();
4107     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4108     MIB->getOperand(0).setReg(XReg);
4109     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4110     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4111     return true;
4112   }
4113   case X86::AVX512_128_SET0:
4114   case X86::AVX512_FsFLD0SS:
4115   case X86::AVX512_FsFLD0SD:
4116   case X86::AVX512_FsFLD0F128: {
4117     bool HasVLX = Subtarget.hasVLX();
4118     Register SrcReg = MIB->getOperand(0).getReg();
4119     const TargetRegisterInfo *TRI = &getRegisterInfo();
4120     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4121       return Expand2AddrUndef(MIB,
4122                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4123     // Extended register without VLX. Use a larger XOR.
4124     SrcReg =
4125         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4126     MIB->getOperand(0).setReg(SrcReg);
4127     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4128   }
4129   case X86::AVX512_256_SET0:
4130   case X86::AVX512_512_SET0: {
4131     bool HasVLX = Subtarget.hasVLX();
4132     Register SrcReg = MIB->getOperand(0).getReg();
4133     const TargetRegisterInfo *TRI = &getRegisterInfo();
4134     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4135       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4136       MIB->getOperand(0).setReg(XReg);
4137       Expand2AddrUndef(MIB,
4138                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4139       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4140       return true;
4141     }
4142     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4143       // No VLX so we must reference a zmm.
4144       unsigned ZReg =
4145         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4146       MIB->getOperand(0).setReg(ZReg);
4147     }
4148     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4149   }
4150   case X86::V_SETALLONES:
4151     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4152   case X86::AVX2_SETALLONES:
4153     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4154   case X86::AVX1_SETALLONES: {
4155     Register Reg = MIB->getOperand(0).getReg();
4156     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4157     MIB->setDesc(get(X86::VCMPPSYrri));
4158     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4159     return true;
4160   }
4161   case X86::AVX512_512_SETALLONES: {
4162     Register Reg = MIB->getOperand(0).getReg();
4163     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4164     // VPTERNLOGD needs 3 register inputs and an immediate.
4165     // 0xff will return 1s for any input.
4166     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4167        .addReg(Reg, RegState::Undef).addImm(0xff);
4168     return true;
4169   }
4170   case X86::AVX512_512_SEXT_MASK_32:
4171   case X86::AVX512_512_SEXT_MASK_64: {
4172     Register Reg = MIB->getOperand(0).getReg();
4173     Register MaskReg = MIB->getOperand(1).getReg();
4174     unsigned MaskState = getRegState(MIB->getOperand(1));
4175     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4176                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4177     MI.RemoveOperand(1);
4178     MIB->setDesc(get(Opc));
4179     // VPTERNLOG needs 3 register inputs and an immediate.
4180     // 0xff will return 1s for any input.
4181     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4182        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4183     return true;
4184   }
4185   case X86::VMOVAPSZ128rm_NOVLX:
4186     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4187                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4188   case X86::VMOVUPSZ128rm_NOVLX:
4189     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4190                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4191   case X86::VMOVAPSZ256rm_NOVLX:
4192     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4193                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4194   case X86::VMOVUPSZ256rm_NOVLX:
4195     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4196                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4197   case X86::VMOVAPSZ128mr_NOVLX:
4198     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4199                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4200   case X86::VMOVUPSZ128mr_NOVLX:
4201     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4202                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4203   case X86::VMOVAPSZ256mr_NOVLX:
4204     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4205                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4206   case X86::VMOVUPSZ256mr_NOVLX:
4207     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4208                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4209   case X86::MOV32ri64: {
4210     Register Reg = MIB->getOperand(0).getReg();
4211     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4212     MI.setDesc(get(X86::MOV32ri));
4213     MIB->getOperand(0).setReg(Reg32);
4214     MIB.addReg(Reg, RegState::ImplicitDefine);
4215     return true;
4216   }
4217 
4218   // KNL does not recognize dependency-breaking idioms for mask registers,
4219   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4220   // Using %k0 as the undef input register is a performance heuristic based
4221   // on the assumption that %k0 is used less frequently than the other mask
4222   // registers, since it is not usable as a write mask.
4223   // FIXME: A more advanced approach would be to choose the best input mask
4224   // register based on context.
4225   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4226   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4227   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4228   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4229   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4230   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4231   case TargetOpcode::LOAD_STACK_GUARD:
4232     expandLoadStackGuard(MIB, *this);
4233     return true;
4234   case X86::XOR64_FP:
4235   case X86::XOR32_FP:
4236     return expandXorFP(MIB, *this);
4237   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4238   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4239   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4240   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4241   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4242   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4243   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4244   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4245   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4246   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4247   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4248   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4249   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4250   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4251   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4252   }
4253   return false;
4254 }
4255 
4256 /// Return true for all instructions that only update
4257 /// the first 32 or 64-bits of the destination register and leave the rest
4258 /// unmodified. This can be used to avoid folding loads if the instructions
4259 /// only update part of the destination register, and the non-updated part is
4260 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4261 /// instructions breaks the partial register dependency and it can improve
4262 /// performance. e.g.:
4263 ///
4264 ///   movss (%rdi), %xmm0
4265 ///   cvtss2sd %xmm0, %xmm0
4266 ///
4267 /// Instead of
4268 ///   cvtss2sd (%rdi), %xmm0
4269 ///
4270 /// FIXME: This should be turned into a TSFlags.
4271 ///
4272 static bool hasPartialRegUpdate(unsigned Opcode,
4273                                 const X86Subtarget &Subtarget,
4274                                 bool ForLoadFold = false) {
4275   switch (Opcode) {
4276   case X86::CVTSI2SSrr:
4277   case X86::CVTSI2SSrm:
4278   case X86::CVTSI642SSrr:
4279   case X86::CVTSI642SSrm:
4280   case X86::CVTSI2SDrr:
4281   case X86::CVTSI2SDrm:
4282   case X86::CVTSI642SDrr:
4283   case X86::CVTSI642SDrm:
4284     // Load folding won't effect the undef register update since the input is
4285     // a GPR.
4286     return !ForLoadFold;
4287   case X86::CVTSD2SSrr:
4288   case X86::CVTSD2SSrm:
4289   case X86::CVTSS2SDrr:
4290   case X86::CVTSS2SDrm:
4291   case X86::MOVHPDrm:
4292   case X86::MOVHPSrm:
4293   case X86::MOVLPDrm:
4294   case X86::MOVLPSrm:
4295   case X86::RCPSSr:
4296   case X86::RCPSSm:
4297   case X86::RCPSSr_Int:
4298   case X86::RCPSSm_Int:
4299   case X86::ROUNDSDr:
4300   case X86::ROUNDSDm:
4301   case X86::ROUNDSSr:
4302   case X86::ROUNDSSm:
4303   case X86::RSQRTSSr:
4304   case X86::RSQRTSSm:
4305   case X86::RSQRTSSr_Int:
4306   case X86::RSQRTSSm_Int:
4307   case X86::SQRTSSr:
4308   case X86::SQRTSSm:
4309   case X86::SQRTSSr_Int:
4310   case X86::SQRTSSm_Int:
4311   case X86::SQRTSDr:
4312   case X86::SQRTSDm:
4313   case X86::SQRTSDr_Int:
4314   case X86::SQRTSDm_Int:
4315     return true;
4316   // GPR
4317   case X86::POPCNT32rm:
4318   case X86::POPCNT32rr:
4319   case X86::POPCNT64rm:
4320   case X86::POPCNT64rr:
4321     return Subtarget.hasPOPCNTFalseDeps();
4322   case X86::LZCNT32rm:
4323   case X86::LZCNT32rr:
4324   case X86::LZCNT64rm:
4325   case X86::LZCNT64rr:
4326   case X86::TZCNT32rm:
4327   case X86::TZCNT32rr:
4328   case X86::TZCNT64rm:
4329   case X86::TZCNT64rr:
4330     return Subtarget.hasLZCNTFalseDeps();
4331   }
4332 
4333   return false;
4334 }
4335 
4336 /// Inform the BreakFalseDeps pass how many idle
4337 /// instructions we would like before a partial register update.
4338 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4339     const MachineInstr &MI, unsigned OpNum,
4340     const TargetRegisterInfo *TRI) const {
4341   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4342     return 0;
4343 
4344   // If MI is marked as reading Reg, the partial register update is wanted.
4345   const MachineOperand &MO = MI.getOperand(0);
4346   Register Reg = MO.getReg();
4347   if (Register::isVirtualRegister(Reg)) {
4348     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4349       return 0;
4350   } else {
4351     if (MI.readsRegister(Reg, TRI))
4352       return 0;
4353   }
4354 
4355   // If any instructions in the clearance range are reading Reg, insert a
4356   // dependency breaking instruction, which is inexpensive and is likely to
4357   // be hidden in other instruction's cycles.
4358   return PartialRegUpdateClearance;
4359 }
4360 
4361 // Return true for any instruction the copies the high bits of the first source
4362 // operand into the unused high bits of the destination operand.
4363 static bool hasUndefRegUpdate(unsigned Opcode, unsigned &OpNum,
4364                               bool ForLoadFold = false) {
4365   // Set the OpNum parameter to the first source operand.
4366   OpNum = 1;
4367   switch (Opcode) {
4368   case X86::VCVTSI2SSrr:
4369   case X86::VCVTSI2SSrm:
4370   case X86::VCVTSI2SSrr_Int:
4371   case X86::VCVTSI2SSrm_Int:
4372   case X86::VCVTSI642SSrr:
4373   case X86::VCVTSI642SSrm:
4374   case X86::VCVTSI642SSrr_Int:
4375   case X86::VCVTSI642SSrm_Int:
4376   case X86::VCVTSI2SDrr:
4377   case X86::VCVTSI2SDrm:
4378   case X86::VCVTSI2SDrr_Int:
4379   case X86::VCVTSI2SDrm_Int:
4380   case X86::VCVTSI642SDrr:
4381   case X86::VCVTSI642SDrm:
4382   case X86::VCVTSI642SDrr_Int:
4383   case X86::VCVTSI642SDrm_Int:
4384   // AVX-512
4385   case X86::VCVTSI2SSZrr:
4386   case X86::VCVTSI2SSZrm:
4387   case X86::VCVTSI2SSZrr_Int:
4388   case X86::VCVTSI2SSZrrb_Int:
4389   case X86::VCVTSI2SSZrm_Int:
4390   case X86::VCVTSI642SSZrr:
4391   case X86::VCVTSI642SSZrm:
4392   case X86::VCVTSI642SSZrr_Int:
4393   case X86::VCVTSI642SSZrrb_Int:
4394   case X86::VCVTSI642SSZrm_Int:
4395   case X86::VCVTSI2SDZrr:
4396   case X86::VCVTSI2SDZrm:
4397   case X86::VCVTSI2SDZrr_Int:
4398   case X86::VCVTSI2SDZrm_Int:
4399   case X86::VCVTSI642SDZrr:
4400   case X86::VCVTSI642SDZrm:
4401   case X86::VCVTSI642SDZrr_Int:
4402   case X86::VCVTSI642SDZrrb_Int:
4403   case X86::VCVTSI642SDZrm_Int:
4404   case X86::VCVTUSI2SSZrr:
4405   case X86::VCVTUSI2SSZrm:
4406   case X86::VCVTUSI2SSZrr_Int:
4407   case X86::VCVTUSI2SSZrrb_Int:
4408   case X86::VCVTUSI2SSZrm_Int:
4409   case X86::VCVTUSI642SSZrr:
4410   case X86::VCVTUSI642SSZrm:
4411   case X86::VCVTUSI642SSZrr_Int:
4412   case X86::VCVTUSI642SSZrrb_Int:
4413   case X86::VCVTUSI642SSZrm_Int:
4414   case X86::VCVTUSI2SDZrr:
4415   case X86::VCVTUSI2SDZrm:
4416   case X86::VCVTUSI2SDZrr_Int:
4417   case X86::VCVTUSI2SDZrm_Int:
4418   case X86::VCVTUSI642SDZrr:
4419   case X86::VCVTUSI642SDZrm:
4420   case X86::VCVTUSI642SDZrr_Int:
4421   case X86::VCVTUSI642SDZrrb_Int:
4422   case X86::VCVTUSI642SDZrm_Int:
4423     // Load folding won't effect the undef register update since the input is
4424     // a GPR.
4425     return !ForLoadFold;
4426   case X86::VCVTSD2SSrr:
4427   case X86::VCVTSD2SSrm:
4428   case X86::VCVTSD2SSrr_Int:
4429   case X86::VCVTSD2SSrm_Int:
4430   case X86::VCVTSS2SDrr:
4431   case X86::VCVTSS2SDrm:
4432   case X86::VCVTSS2SDrr_Int:
4433   case X86::VCVTSS2SDrm_Int:
4434   case X86::VRCPSSr:
4435   case X86::VRCPSSr_Int:
4436   case X86::VRCPSSm:
4437   case X86::VRCPSSm_Int:
4438   case X86::VROUNDSDr:
4439   case X86::VROUNDSDm:
4440   case X86::VROUNDSDr_Int:
4441   case X86::VROUNDSDm_Int:
4442   case X86::VROUNDSSr:
4443   case X86::VROUNDSSm:
4444   case X86::VROUNDSSr_Int:
4445   case X86::VROUNDSSm_Int:
4446   case X86::VRSQRTSSr:
4447   case X86::VRSQRTSSr_Int:
4448   case X86::VRSQRTSSm:
4449   case X86::VRSQRTSSm_Int:
4450   case X86::VSQRTSSr:
4451   case X86::VSQRTSSr_Int:
4452   case X86::VSQRTSSm:
4453   case X86::VSQRTSSm_Int:
4454   case X86::VSQRTSDr:
4455   case X86::VSQRTSDr_Int:
4456   case X86::VSQRTSDm:
4457   case X86::VSQRTSDm_Int:
4458   // AVX-512
4459   case X86::VCVTSD2SSZrr:
4460   case X86::VCVTSD2SSZrr_Int:
4461   case X86::VCVTSD2SSZrrb_Int:
4462   case X86::VCVTSD2SSZrm:
4463   case X86::VCVTSD2SSZrm_Int:
4464   case X86::VCVTSS2SDZrr:
4465   case X86::VCVTSS2SDZrr_Int:
4466   case X86::VCVTSS2SDZrrb_Int:
4467   case X86::VCVTSS2SDZrm:
4468   case X86::VCVTSS2SDZrm_Int:
4469   case X86::VGETEXPSDZr:
4470   case X86::VGETEXPSDZrb:
4471   case X86::VGETEXPSDZm:
4472   case X86::VGETEXPSSZr:
4473   case X86::VGETEXPSSZrb:
4474   case X86::VGETEXPSSZm:
4475   case X86::VGETMANTSDZrri:
4476   case X86::VGETMANTSDZrrib:
4477   case X86::VGETMANTSDZrmi:
4478   case X86::VGETMANTSSZrri:
4479   case X86::VGETMANTSSZrrib:
4480   case X86::VGETMANTSSZrmi:
4481   case X86::VRNDSCALESDZr:
4482   case X86::VRNDSCALESDZr_Int:
4483   case X86::VRNDSCALESDZrb_Int:
4484   case X86::VRNDSCALESDZm:
4485   case X86::VRNDSCALESDZm_Int:
4486   case X86::VRNDSCALESSZr:
4487   case X86::VRNDSCALESSZr_Int:
4488   case X86::VRNDSCALESSZrb_Int:
4489   case X86::VRNDSCALESSZm:
4490   case X86::VRNDSCALESSZm_Int:
4491   case X86::VRCP14SDZrr:
4492   case X86::VRCP14SDZrm:
4493   case X86::VRCP14SSZrr:
4494   case X86::VRCP14SSZrm:
4495   case X86::VRCP28SDZr:
4496   case X86::VRCP28SDZrb:
4497   case X86::VRCP28SDZm:
4498   case X86::VRCP28SSZr:
4499   case X86::VRCP28SSZrb:
4500   case X86::VRCP28SSZm:
4501   case X86::VREDUCESSZrmi:
4502   case X86::VREDUCESSZrri:
4503   case X86::VREDUCESSZrrib:
4504   case X86::VRSQRT14SDZrr:
4505   case X86::VRSQRT14SDZrm:
4506   case X86::VRSQRT14SSZrr:
4507   case X86::VRSQRT14SSZrm:
4508   case X86::VRSQRT28SDZr:
4509   case X86::VRSQRT28SDZrb:
4510   case X86::VRSQRT28SDZm:
4511   case X86::VRSQRT28SSZr:
4512   case X86::VRSQRT28SSZrb:
4513   case X86::VRSQRT28SSZm:
4514   case X86::VSQRTSSZr:
4515   case X86::VSQRTSSZr_Int:
4516   case X86::VSQRTSSZrb_Int:
4517   case X86::VSQRTSSZm:
4518   case X86::VSQRTSSZm_Int:
4519   case X86::VSQRTSDZr:
4520   case X86::VSQRTSDZr_Int:
4521   case X86::VSQRTSDZrb_Int:
4522   case X86::VSQRTSDZm:
4523   case X86::VSQRTSDZm_Int:
4524     return true;
4525   case X86::VMOVSSZrrk:
4526   case X86::VMOVSDZrrk:
4527     OpNum = 3;
4528     return true;
4529   case X86::VMOVSSZrrkz:
4530   case X86::VMOVSDZrrkz:
4531     OpNum = 2;
4532     return true;
4533   }
4534 
4535   return false;
4536 }
4537 
4538 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4539 /// before certain undef register reads.
4540 ///
4541 /// This catches the VCVTSI2SD family of instructions:
4542 ///
4543 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4544 ///
4545 /// We should to be careful *not* to catch VXOR idioms which are presumably
4546 /// handled specially in the pipeline:
4547 ///
4548 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4549 ///
4550 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4551 /// high bits that are passed-through are not live.
4552 unsigned
4553 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4554                                    const TargetRegisterInfo *TRI) const {
4555   if (!hasUndefRegUpdate(MI.getOpcode(), OpNum))
4556     return 0;
4557 
4558   const MachineOperand &MO = MI.getOperand(OpNum);
4559   if (MO.isUndef() && Register::isPhysicalRegister(MO.getReg())) {
4560     return UndefRegClearance;
4561   }
4562   return 0;
4563 }
4564 
4565 void X86InstrInfo::breakPartialRegDependency(
4566     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4567   Register Reg = MI.getOperand(OpNum).getReg();
4568   // If MI kills this register, the false dependence is already broken.
4569   if (MI.killsRegister(Reg, TRI))
4570     return;
4571 
4572   if (X86::VR128RegClass.contains(Reg)) {
4573     // These instructions are all floating point domain, so xorps is the best
4574     // choice.
4575     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4576     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4577         .addReg(Reg, RegState::Undef)
4578         .addReg(Reg, RegState::Undef);
4579     MI.addRegisterKilled(Reg, TRI, true);
4580   } else if (X86::VR256RegClass.contains(Reg)) {
4581     // Use vxorps to clear the full ymm register.
4582     // It wants to read and write the xmm sub-register.
4583     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4584     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4585         .addReg(XReg, RegState::Undef)
4586         .addReg(XReg, RegState::Undef)
4587         .addReg(Reg, RegState::ImplicitDefine);
4588     MI.addRegisterKilled(Reg, TRI, true);
4589   } else if (X86::GR64RegClass.contains(Reg)) {
4590     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4591     // as well.
4592     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4593     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4594         .addReg(XReg, RegState::Undef)
4595         .addReg(XReg, RegState::Undef)
4596         .addReg(Reg, RegState::ImplicitDefine);
4597     MI.addRegisterKilled(Reg, TRI, true);
4598   } else if (X86::GR32RegClass.contains(Reg)) {
4599     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4600         .addReg(Reg, RegState::Undef)
4601         .addReg(Reg, RegState::Undef);
4602     MI.addRegisterKilled(Reg, TRI, true);
4603   }
4604 }
4605 
4606 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4607                         int PtrOffset = 0) {
4608   unsigned NumAddrOps = MOs.size();
4609 
4610   if (NumAddrOps < 4) {
4611     // FrameIndex only - add an immediate offset (whether its zero or not).
4612     for (unsigned i = 0; i != NumAddrOps; ++i)
4613       MIB.add(MOs[i]);
4614     addOffset(MIB, PtrOffset);
4615   } else {
4616     // General Memory Addressing - we need to add any offset to an existing
4617     // offset.
4618     assert(MOs.size() == 5 && "Unexpected memory operand list length");
4619     for (unsigned i = 0; i != NumAddrOps; ++i) {
4620       const MachineOperand &MO = MOs[i];
4621       if (i == 3 && PtrOffset != 0) {
4622         MIB.addDisp(MO, PtrOffset);
4623       } else {
4624         MIB.add(MO);
4625       }
4626     }
4627   }
4628 }
4629 
4630 static void updateOperandRegConstraints(MachineFunction &MF,
4631                                         MachineInstr &NewMI,
4632                                         const TargetInstrInfo &TII) {
4633   MachineRegisterInfo &MRI = MF.getRegInfo();
4634   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4635 
4636   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4637     MachineOperand &MO = NewMI.getOperand(Idx);
4638     // We only need to update constraints on virtual register operands.
4639     if (!MO.isReg())
4640       continue;
4641     Register Reg = MO.getReg();
4642     if (!Register::isVirtualRegister(Reg))
4643       continue;
4644 
4645     auto *NewRC = MRI.constrainRegClass(
4646         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4647     if (!NewRC) {
4648       LLVM_DEBUG(
4649           dbgs() << "WARNING: Unable to update register constraint for operand "
4650                  << Idx << " of instruction:\n";
4651           NewMI.dump(); dbgs() << "\n");
4652     }
4653   }
4654 }
4655 
4656 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4657                                      ArrayRef<MachineOperand> MOs,
4658                                      MachineBasicBlock::iterator InsertPt,
4659                                      MachineInstr &MI,
4660                                      const TargetInstrInfo &TII) {
4661   // Create the base instruction with the memory operand as the first part.
4662   // Omit the implicit operands, something BuildMI can't do.
4663   MachineInstr *NewMI =
4664       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4665   MachineInstrBuilder MIB(MF, NewMI);
4666   addOperands(MIB, MOs);
4667 
4668   // Loop over the rest of the ri operands, converting them over.
4669   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4670   for (unsigned i = 0; i != NumOps; ++i) {
4671     MachineOperand &MO = MI.getOperand(i + 2);
4672     MIB.add(MO);
4673   }
4674   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4675     MachineOperand &MO = MI.getOperand(i);
4676     MIB.add(MO);
4677   }
4678 
4679   updateOperandRegConstraints(MF, *NewMI, TII);
4680 
4681   MachineBasicBlock *MBB = InsertPt->getParent();
4682   MBB->insert(InsertPt, NewMI);
4683 
4684   return MIB;
4685 }
4686 
4687 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4688                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
4689                               MachineBasicBlock::iterator InsertPt,
4690                               MachineInstr &MI, const TargetInstrInfo &TII,
4691                               int PtrOffset = 0) {
4692   // Omit the implicit operands, something BuildMI can't do.
4693   MachineInstr *NewMI =
4694       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4695   MachineInstrBuilder MIB(MF, NewMI);
4696 
4697   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4698     MachineOperand &MO = MI.getOperand(i);
4699     if (i == OpNo) {
4700       assert(MO.isReg() && "Expected to fold into reg operand!");
4701       addOperands(MIB, MOs, PtrOffset);
4702     } else {
4703       MIB.add(MO);
4704     }
4705   }
4706 
4707   updateOperandRegConstraints(MF, *NewMI, TII);
4708 
4709   // Copy the NoFPExcept flag from the instruction we're fusing.
4710   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
4711     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
4712 
4713   MachineBasicBlock *MBB = InsertPt->getParent();
4714   MBB->insert(InsertPt, NewMI);
4715 
4716   return MIB;
4717 }
4718 
4719 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4720                                 ArrayRef<MachineOperand> MOs,
4721                                 MachineBasicBlock::iterator InsertPt,
4722                                 MachineInstr &MI) {
4723   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4724                                     MI.getDebugLoc(), TII.get(Opcode));
4725   addOperands(MIB, MOs);
4726   return MIB.addImm(0);
4727 }
4728 
4729 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4730     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4731     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4732     unsigned Size, unsigned Align) const {
4733   switch (MI.getOpcode()) {
4734   case X86::INSERTPSrr:
4735   case X86::VINSERTPSrr:
4736   case X86::VINSERTPSZrr:
4737     // Attempt to convert the load of inserted vector into a fold load
4738     // of a single float.
4739     if (OpNum == 2) {
4740       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4741       unsigned ZMask = Imm & 15;
4742       unsigned DstIdx = (Imm >> 4) & 3;
4743       unsigned SrcIdx = (Imm >> 6) & 3;
4744 
4745       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4746       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4747       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4748       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4749         int PtrOffset = SrcIdx * 4;
4750         unsigned NewImm = (DstIdx << 4) | ZMask;
4751         unsigned NewOpCode =
4752             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4753             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4754                                                     X86::INSERTPSrm;
4755         MachineInstr *NewMI =
4756             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4757         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4758         return NewMI;
4759       }
4760     }
4761     break;
4762   case X86::MOVHLPSrr:
4763   case X86::VMOVHLPSrr:
4764   case X86::VMOVHLPSZrr:
4765     // Move the upper 64-bits of the second operand to the lower 64-bits.
4766     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4767     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4768     if (OpNum == 2) {
4769       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4770       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4771       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4772       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4773         unsigned NewOpCode =
4774             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4775             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4776                                                    X86::MOVLPSrm;
4777         MachineInstr *NewMI =
4778             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4779         return NewMI;
4780       }
4781     }
4782     break;
4783   case X86::UNPCKLPDrr:
4784     // If we won't be able to fold this to the memory form of UNPCKL, use
4785     // MOVHPD instead. Done as custom because we can't have this in the load
4786     // table twice.
4787     if (OpNum == 2) {
4788       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4789       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4790       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4791       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4792         MachineInstr *NewMI =
4793             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4794         return NewMI;
4795       }
4796     }
4797     break;
4798   }
4799 
4800   return nullptr;
4801 }
4802 
4803 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4804                                                MachineInstr &MI) {
4805   unsigned Ignored;
4806   if (!hasUndefRegUpdate(MI.getOpcode(), Ignored, /*ForLoadFold*/true) ||
4807       !MI.getOperand(1).isReg())
4808     return false;
4809 
4810   // The are two cases we need to handle depending on where in the pipeline
4811   // the folding attempt is being made.
4812   // -Register has the undef flag set.
4813   // -Register is produced by the IMPLICIT_DEF instruction.
4814 
4815   if (MI.getOperand(1).isUndef())
4816     return true;
4817 
4818   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4819   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4820   return VRegDef && VRegDef->isImplicitDef();
4821 }
4822 
4823 
4824 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4825     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4826     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4827     unsigned Size, unsigned Align, bool AllowCommute) const {
4828   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4829   bool isTwoAddrFold = false;
4830 
4831   // For CPUs that favor the register form of a call or push,
4832   // do not fold loads into calls or pushes, unless optimizing for size
4833   // aggressively.
4834   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4835       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4836        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4837        MI.getOpcode() == X86::PUSH64r))
4838     return nullptr;
4839 
4840   // Avoid partial and undef register update stalls unless optimizing for size.
4841   if (!MF.getFunction().hasOptSize() &&
4842       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4843        shouldPreventUndefRegUpdateMemFold(MF, MI)))
4844     return nullptr;
4845 
4846   unsigned NumOps = MI.getDesc().getNumOperands();
4847   bool isTwoAddr =
4848       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4849 
4850   // FIXME: AsmPrinter doesn't know how to handle
4851   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4852   if (MI.getOpcode() == X86::ADD32ri &&
4853       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4854     return nullptr;
4855 
4856   // GOTTPOFF relocation loads can only be folded into add instructions.
4857   // FIXME: Need to exclude other relocations that only support specific
4858   // instructions.
4859   if (MOs.size() == X86::AddrNumOperands &&
4860       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4861       MI.getOpcode() != X86::ADD64rr)
4862     return nullptr;
4863 
4864   MachineInstr *NewMI = nullptr;
4865 
4866   // Attempt to fold any custom cases we have.
4867   if (MachineInstr *CustomMI =
4868           foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4869     return CustomMI;
4870 
4871   const X86MemoryFoldTableEntry *I = nullptr;
4872 
4873   // Folding a memory location into the two-address part of a two-address
4874   // instruction is different than folding it other places.  It requires
4875   // replacing the *two* registers with the memory location.
4876   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4877       MI.getOperand(1).isReg() &&
4878       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4879     I = lookupTwoAddrFoldTable(MI.getOpcode());
4880     isTwoAddrFold = true;
4881   } else {
4882     if (OpNum == 0) {
4883       if (MI.getOpcode() == X86::MOV32r0) {
4884         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4885         if (NewMI)
4886           return NewMI;
4887       }
4888     }
4889 
4890     I = lookupFoldTable(MI.getOpcode(), OpNum);
4891   }
4892 
4893   if (I != nullptr) {
4894     unsigned Opcode = I->DstOp;
4895     unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4896     MinAlign = MinAlign ? 1 << (MinAlign - 1) : 0;
4897     if (Align < MinAlign)
4898       return nullptr;
4899     bool NarrowToMOV32rm = false;
4900     if (Size) {
4901       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4902       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4903                                                   &RI, MF);
4904       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4905       if (Size < RCSize) {
4906         // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4907         // Check if it's safe to fold the load. If the size of the object is
4908         // narrower than the load width, then it's not.
4909         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4910           return nullptr;
4911         // If this is a 64-bit load, but the spill slot is 32, then we can do
4912         // a 32-bit load which is implicitly zero-extended. This likely is
4913         // due to live interval analysis remat'ing a load from stack slot.
4914         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4915           return nullptr;
4916         Opcode = X86::MOV32rm;
4917         NarrowToMOV32rm = true;
4918       }
4919     }
4920 
4921     if (isTwoAddrFold)
4922       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4923     else
4924       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4925 
4926     if (NarrowToMOV32rm) {
4927       // If this is the special case where we use a MOV32rm to load a 32-bit
4928       // value and zero-extend the top bits. Change the destination register
4929       // to a 32-bit one.
4930       Register DstReg = NewMI->getOperand(0).getReg();
4931       if (Register::isPhysicalRegister(DstReg))
4932         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4933       else
4934         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4935     }
4936     return NewMI;
4937   }
4938 
4939   // If the instruction and target operand are commutable, commute the
4940   // instruction and try again.
4941   if (AllowCommute) {
4942     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4943     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4944       bool HasDef = MI.getDesc().getNumDefs();
4945       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4946       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4947       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4948       bool Tied1 =
4949           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4950       bool Tied2 =
4951           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4952 
4953       // If either of the commutable operands are tied to the destination
4954       // then we can not commute + fold.
4955       if ((HasDef && Reg0 == Reg1 && Tied1) ||
4956           (HasDef && Reg0 == Reg2 && Tied2))
4957         return nullptr;
4958 
4959       MachineInstr *CommutedMI =
4960           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4961       if (!CommutedMI) {
4962         // Unable to commute.
4963         return nullptr;
4964       }
4965       if (CommutedMI != &MI) {
4966         // New instruction. We can't fold from this.
4967         CommutedMI->eraseFromParent();
4968         return nullptr;
4969       }
4970 
4971       // Attempt to fold with the commuted version of the instruction.
4972       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4973                                     Size, Align, /*AllowCommute=*/false);
4974       if (NewMI)
4975         return NewMI;
4976 
4977       // Folding failed again - undo the commute before returning.
4978       MachineInstr *UncommutedMI =
4979           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4980       if (!UncommutedMI) {
4981         // Unable to commute.
4982         return nullptr;
4983       }
4984       if (UncommutedMI != &MI) {
4985         // New instruction. It doesn't need to be kept.
4986         UncommutedMI->eraseFromParent();
4987         return nullptr;
4988       }
4989 
4990       // Return here to prevent duplicate fuse failure report.
4991       return nullptr;
4992     }
4993   }
4994 
4995   // No fusion
4996   if (PrintFailedFusing && !MI.isCopy())
4997     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4998   return nullptr;
4999 }
5000 
5001 MachineInstr *
5002 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5003                                     ArrayRef<unsigned> Ops,
5004                                     MachineBasicBlock::iterator InsertPt,
5005                                     int FrameIndex, LiveIntervals *LIS,
5006                                     VirtRegMap *VRM) const {
5007   // Check switch flag
5008   if (NoFusing)
5009     return nullptr;
5010 
5011   // Avoid partial and undef register update stalls unless optimizing for size.
5012   if (!MF.getFunction().hasOptSize() &&
5013       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5014        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5015     return nullptr;
5016 
5017   // Don't fold subreg spills, or reloads that use a high subreg.
5018   for (auto Op : Ops) {
5019     MachineOperand &MO = MI.getOperand(Op);
5020     auto SubReg = MO.getSubReg();
5021     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5022       return nullptr;
5023   }
5024 
5025   const MachineFrameInfo &MFI = MF.getFrameInfo();
5026   unsigned Size = MFI.getObjectSize(FrameIndex);
5027   unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5028   // If the function stack isn't realigned we don't want to fold instructions
5029   // that need increased alignment.
5030   if (!RI.needsStackRealignment(MF))
5031     Alignment =
5032         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5033   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5034     unsigned NewOpc = 0;
5035     unsigned RCSize = 0;
5036     switch (MI.getOpcode()) {
5037     default: return nullptr;
5038     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5039     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5040     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5041     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5042     }
5043     // Check if it's safe to fold the load. If the size of the object is
5044     // narrower than the load width, then it's not.
5045     if (Size < RCSize)
5046       return nullptr;
5047     // Change to CMPXXri r, 0 first.
5048     MI.setDesc(get(NewOpc));
5049     MI.getOperand(1).ChangeToImmediate(0);
5050   } else if (Ops.size() != 1)
5051     return nullptr;
5052 
5053   return foldMemoryOperandImpl(MF, MI, Ops[0],
5054                                MachineOperand::CreateFI(FrameIndex), InsertPt,
5055                                Size, Alignment, /*AllowCommute=*/true);
5056 }
5057 
5058 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5059 /// because the latter uses contents that wouldn't be defined in the folded
5060 /// version.  For instance, this transformation isn't legal:
5061 ///   movss (%rdi), %xmm0
5062 ///   addps %xmm0, %xmm0
5063 /// ->
5064 ///   addps (%rdi), %xmm0
5065 ///
5066 /// But this one is:
5067 ///   movss (%rdi), %xmm0
5068 ///   addss %xmm0, %xmm0
5069 /// ->
5070 ///   addss (%rdi), %xmm0
5071 ///
5072 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5073                                              const MachineInstr &UserMI,
5074                                              const MachineFunction &MF) {
5075   unsigned Opc = LoadMI.getOpcode();
5076   unsigned UserOpc = UserMI.getOpcode();
5077   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5078   const TargetRegisterClass *RC =
5079       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5080   unsigned RegSize = TRI.getRegSizeInBits(*RC);
5081 
5082   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5083        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5084        Opc == X86::VMOVSSZrm_alt) &&
5085       RegSize > 32) {
5086     // These instructions only load 32 bits, we can't fold them if the
5087     // destination register is wider than 32 bits (4 bytes), and its user
5088     // instruction isn't scalar (SS).
5089     switch (UserOpc) {
5090     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5091     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5092     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5093     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5094     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5095     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5096     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5097     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5098     case X86::VCMPSSZrr_Intk:
5099     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5100     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5101     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5102     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5103     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5104     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5105     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5106     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5107     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5108     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5109     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5110     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5111     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5112     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5113     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5114     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5115     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5116     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5117     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5118     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5119     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5120     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5121     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5122     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5123     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5124     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5125     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5126     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5127     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5128     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5129     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5130       return false;
5131     default:
5132       return true;
5133     }
5134   }
5135 
5136   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5137        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5138        Opc == X86::VMOVSDZrm_alt) &&
5139       RegSize > 64) {
5140     // These instructions only load 64 bits, we can't fold them if the
5141     // destination register is wider than 64 bits (8 bytes), and its user
5142     // instruction isn't scalar (SD).
5143     switch (UserOpc) {
5144     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5145     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5146     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5147     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5148     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5149     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5150     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5151     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5152     case X86::VCMPSDZrr_Intk:
5153     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5154     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5155     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5156     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5157     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5158     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5159     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5160     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5161     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5162     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5163     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5164     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5165     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5166     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5167     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5168     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5169     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5170     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5171     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5172     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5173     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5174     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5175     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5176     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5177     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5178     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5179     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5180     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5181     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5182     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5183     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5184       return false;
5185     default:
5186       return true;
5187     }
5188   }
5189 
5190   return false;
5191 }
5192 
5193 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5194     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5195     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5196     LiveIntervals *LIS) const {
5197 
5198   // TODO: Support the case where LoadMI loads a wide register, but MI
5199   // only uses a subreg.
5200   for (auto Op : Ops) {
5201     if (MI.getOperand(Op).getSubReg())
5202       return nullptr;
5203   }
5204 
5205   // If loading from a FrameIndex, fold directly from the FrameIndex.
5206   unsigned NumOps = LoadMI.getDesc().getNumOperands();
5207   int FrameIndex;
5208   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5209     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5210       return nullptr;
5211     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5212   }
5213 
5214   // Check switch flag
5215   if (NoFusing) return nullptr;
5216 
5217   // Avoid partial and undef register update stalls unless optimizing for size.
5218   if (!MF.getFunction().hasOptSize() &&
5219       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5220        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5221     return nullptr;
5222 
5223   // Determine the alignment of the load.
5224   unsigned Alignment = 0;
5225   if (LoadMI.hasOneMemOperand())
5226     Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5227   else
5228     switch (LoadMI.getOpcode()) {
5229     case X86::AVX512_512_SET0:
5230     case X86::AVX512_512_SETALLONES:
5231       Alignment = 64;
5232       break;
5233     case X86::AVX2_SETALLONES:
5234     case X86::AVX1_SETALLONES:
5235     case X86::AVX_SET0:
5236     case X86::AVX512_256_SET0:
5237       Alignment = 32;
5238       break;
5239     case X86::V_SET0:
5240     case X86::V_SETALLONES:
5241     case X86::AVX512_128_SET0:
5242     case X86::FsFLD0F128:
5243     case X86::AVX512_FsFLD0F128:
5244       Alignment = 16;
5245       break;
5246     case X86::MMX_SET0:
5247     case X86::FsFLD0SD:
5248     case X86::AVX512_FsFLD0SD:
5249       Alignment = 8;
5250       break;
5251     case X86::FsFLD0SS:
5252     case X86::AVX512_FsFLD0SS:
5253       Alignment = 4;
5254       break;
5255     default:
5256       return nullptr;
5257     }
5258   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5259     unsigned NewOpc = 0;
5260     switch (MI.getOpcode()) {
5261     default: return nullptr;
5262     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5263     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5264     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5265     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5266     }
5267     // Change to CMPXXri r, 0 first.
5268     MI.setDesc(get(NewOpc));
5269     MI.getOperand(1).ChangeToImmediate(0);
5270   } else if (Ops.size() != 1)
5271     return nullptr;
5272 
5273   // Make sure the subregisters match.
5274   // Otherwise we risk changing the size of the load.
5275   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5276     return nullptr;
5277 
5278   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5279   switch (LoadMI.getOpcode()) {
5280   case X86::MMX_SET0:
5281   case X86::V_SET0:
5282   case X86::V_SETALLONES:
5283   case X86::AVX2_SETALLONES:
5284   case X86::AVX1_SETALLONES:
5285   case X86::AVX_SET0:
5286   case X86::AVX512_128_SET0:
5287   case X86::AVX512_256_SET0:
5288   case X86::AVX512_512_SET0:
5289   case X86::AVX512_512_SETALLONES:
5290   case X86::FsFLD0SD:
5291   case X86::AVX512_FsFLD0SD:
5292   case X86::FsFLD0SS:
5293   case X86::AVX512_FsFLD0SS:
5294   case X86::FsFLD0F128:
5295   case X86::AVX512_FsFLD0F128: {
5296     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5297     // Create a constant-pool entry and operands to load from it.
5298 
5299     // Medium and large mode can't fold loads this way.
5300     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5301         MF.getTarget().getCodeModel() != CodeModel::Kernel)
5302       return nullptr;
5303 
5304     // x86-32 PIC requires a PIC base register for constant pools.
5305     unsigned PICBase = 0;
5306     if (MF.getTarget().isPositionIndependent()) {
5307       if (Subtarget.is64Bit())
5308         PICBase = X86::RIP;
5309       else
5310         // FIXME: PICBase = getGlobalBaseReg(&MF);
5311         // This doesn't work for several reasons.
5312         // 1. GlobalBaseReg may have been spilled.
5313         // 2. It may not be live at MI.
5314         return nullptr;
5315     }
5316 
5317     // Create a constant-pool entry.
5318     MachineConstantPool &MCP = *MF.getConstantPool();
5319     Type *Ty;
5320     unsigned Opc = LoadMI.getOpcode();
5321     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5322       Ty = Type::getFloatTy(MF.getFunction().getContext());
5323     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5324       Ty = Type::getDoubleTy(MF.getFunction().getContext());
5325     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
5326       Ty = Type::getFP128Ty(MF.getFunction().getContext());
5327     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5328       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5329     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5330              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5331       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5332     else if (Opc == X86::MMX_SET0)
5333       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5334     else
5335       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5336 
5337     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5338                       Opc == X86::AVX512_512_SETALLONES ||
5339                       Opc == X86::AVX1_SETALLONES);
5340     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5341                                     Constant::getNullValue(Ty);
5342     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5343 
5344     // Create operands to load from the constant pool entry.
5345     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5346     MOs.push_back(MachineOperand::CreateImm(1));
5347     MOs.push_back(MachineOperand::CreateReg(0, false));
5348     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5349     MOs.push_back(MachineOperand::CreateReg(0, false));
5350     break;
5351   }
5352   default: {
5353     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5354       return nullptr;
5355 
5356     // Folding a normal load. Just copy the load's address operands.
5357     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5358                LoadMI.operands_begin() + NumOps);
5359     break;
5360   }
5361   }
5362   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5363                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
5364 }
5365 
5366 static SmallVector<MachineMemOperand *, 2>
5367 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5368   SmallVector<MachineMemOperand *, 2> LoadMMOs;
5369 
5370   for (MachineMemOperand *MMO : MMOs) {
5371     if (!MMO->isLoad())
5372       continue;
5373 
5374     if (!MMO->isStore()) {
5375       // Reuse the MMO.
5376       LoadMMOs.push_back(MMO);
5377     } else {
5378       // Clone the MMO and unset the store flag.
5379       LoadMMOs.push_back(MF.getMachineMemOperand(
5380           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5381     }
5382   }
5383 
5384   return LoadMMOs;
5385 }
5386 
5387 static SmallVector<MachineMemOperand *, 2>
5388 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5389   SmallVector<MachineMemOperand *, 2> StoreMMOs;
5390 
5391   for (MachineMemOperand *MMO : MMOs) {
5392     if (!MMO->isStore())
5393       continue;
5394 
5395     if (!MMO->isLoad()) {
5396       // Reuse the MMO.
5397       StoreMMOs.push_back(MMO);
5398     } else {
5399       // Clone the MMO and unset the load flag.
5400       StoreMMOs.push_back(MF.getMachineMemOperand(
5401           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5402     }
5403   }
5404 
5405   return StoreMMOs;
5406 }
5407 
5408 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
5409                                    const TargetRegisterClass *RC,
5410                                    const X86Subtarget &STI) {
5411   assert(STI.hasAVX512() && "Expected at least AVX512!");
5412   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
5413   assert((SpillSize == 64 || STI.hasVLX()) &&
5414          "Can't broadcast less than 64 bytes without AVX512VL!");
5415 
5416   switch (I->Flags & TB_BCAST_MASK) {
5417   default: llvm_unreachable("Unexpected broadcast type!");
5418   case TB_BCAST_D:
5419     switch (SpillSize) {
5420     default: llvm_unreachable("Unknown spill size");
5421     case 16: return X86::VPBROADCASTDZ128m;
5422     case 32: return X86::VPBROADCASTDZ256m;
5423     case 64: return X86::VPBROADCASTDZm;
5424     }
5425     break;
5426   case TB_BCAST_Q:
5427     switch (SpillSize) {
5428     default: llvm_unreachable("Unknown spill size");
5429     case 16: return X86::VPBROADCASTQZ128m;
5430     case 32: return X86::VPBROADCASTQZ256m;
5431     case 64: return X86::VPBROADCASTQZm;
5432     }
5433     break;
5434   case TB_BCAST_SS:
5435     switch (SpillSize) {
5436     default: llvm_unreachable("Unknown spill size");
5437     case 16: return X86::VBROADCASTSSZ128m;
5438     case 32: return X86::VBROADCASTSSZ256m;
5439     case 64: return X86::VBROADCASTSSZm;
5440     }
5441     break;
5442   case TB_BCAST_SD:
5443     switch (SpillSize) {
5444     default: llvm_unreachable("Unknown spill size");
5445     case 16: return X86::VMOVDDUPZ128rm;
5446     case 32: return X86::VBROADCASTSDZ256m;
5447     case 64: return X86::VBROADCASTSDZm;
5448     }
5449     break;
5450   }
5451 }
5452 
5453 bool X86InstrInfo::unfoldMemoryOperand(
5454     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5455     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5456   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5457   if (I == nullptr)
5458     return false;
5459   unsigned Opc = I->DstOp;
5460   unsigned Index = I->Flags & TB_INDEX_MASK;
5461   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5462   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5463   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5464   if (UnfoldLoad && !FoldedLoad)
5465     return false;
5466   UnfoldLoad &= FoldedLoad;
5467   if (UnfoldStore && !FoldedStore)
5468     return false;
5469   UnfoldStore &= FoldedStore;
5470 
5471   const MCInstrDesc &MCID = get(Opc);
5472 
5473   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5474   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5475   // TODO: Check if 32-byte or greater accesses are slow too?
5476   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5477       Subtarget.isUnalignedMem16Slow())
5478     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5479     // conservatively assume the address is unaligned. That's bad for
5480     // performance.
5481     return false;
5482   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5483   SmallVector<MachineOperand,2> BeforeOps;
5484   SmallVector<MachineOperand,2> AfterOps;
5485   SmallVector<MachineOperand,4> ImpOps;
5486   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5487     MachineOperand &Op = MI.getOperand(i);
5488     if (i >= Index && i < Index + X86::AddrNumOperands)
5489       AddrOps.push_back(Op);
5490     else if (Op.isReg() && Op.isImplicit())
5491       ImpOps.push_back(Op);
5492     else if (i < Index)
5493       BeforeOps.push_back(Op);
5494     else if (i > Index)
5495       AfterOps.push_back(Op);
5496   }
5497 
5498   // Emit the load or broadcast instruction.
5499   if (UnfoldLoad) {
5500     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5501 
5502     unsigned Opc;
5503     if (FoldedBCast) {
5504       Opc = getBroadcastOpcode(I, RC, Subtarget);
5505     } else {
5506       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5507       bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5508       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
5509     }
5510 
5511     DebugLoc DL;
5512     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
5513     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5514       MIB.add(AddrOps[i]);
5515     MIB.setMemRefs(MMOs);
5516     NewMIs.push_back(MIB);
5517 
5518     if (UnfoldStore) {
5519       // Address operands cannot be marked isKill.
5520       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5521         MachineOperand &MO = NewMIs[0]->getOperand(i);
5522         if (MO.isReg())
5523           MO.setIsKill(false);
5524       }
5525     }
5526   }
5527 
5528   // Emit the data processing instruction.
5529   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5530   MachineInstrBuilder MIB(MF, DataMI);
5531 
5532   if (FoldedStore)
5533     MIB.addReg(Reg, RegState::Define);
5534   for (MachineOperand &BeforeOp : BeforeOps)
5535     MIB.add(BeforeOp);
5536   if (FoldedLoad)
5537     MIB.addReg(Reg);
5538   for (MachineOperand &AfterOp : AfterOps)
5539     MIB.add(AfterOp);
5540   for (MachineOperand &ImpOp : ImpOps) {
5541     MIB.addReg(ImpOp.getReg(),
5542                getDefRegState(ImpOp.isDef()) |
5543                RegState::Implicit |
5544                getKillRegState(ImpOp.isKill()) |
5545                getDeadRegState(ImpOp.isDead()) |
5546                getUndefRegState(ImpOp.isUndef()));
5547   }
5548   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5549   switch (DataMI->getOpcode()) {
5550   default: break;
5551   case X86::CMP64ri32:
5552   case X86::CMP64ri8:
5553   case X86::CMP32ri:
5554   case X86::CMP32ri8:
5555   case X86::CMP16ri:
5556   case X86::CMP16ri8:
5557   case X86::CMP8ri: {
5558     MachineOperand &MO0 = DataMI->getOperand(0);
5559     MachineOperand &MO1 = DataMI->getOperand(1);
5560     if (MO1.getImm() == 0) {
5561       unsigned NewOpc;
5562       switch (DataMI->getOpcode()) {
5563       default: llvm_unreachable("Unreachable!");
5564       case X86::CMP64ri8:
5565       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5566       case X86::CMP32ri8:
5567       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5568       case X86::CMP16ri8:
5569       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5570       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5571       }
5572       DataMI->setDesc(get(NewOpc));
5573       MO1.ChangeToRegister(MO0.getReg(), false);
5574     }
5575   }
5576   }
5577   NewMIs.push_back(DataMI);
5578 
5579   // Emit the store instruction.
5580   if (UnfoldStore) {
5581     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5582     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5583     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
5584     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5585     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
5586     DebugLoc DL;
5587     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
5588     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5589       MIB.add(AddrOps[i]);
5590     MIB.addReg(Reg, RegState::Kill);
5591     MIB.setMemRefs(MMOs);
5592     NewMIs.push_back(MIB);
5593   }
5594 
5595   return true;
5596 }
5597 
5598 bool
5599 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5600                                   SmallVectorImpl<SDNode*> &NewNodes) const {
5601   if (!N->isMachineOpcode())
5602     return false;
5603 
5604   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5605   if (I == nullptr)
5606     return false;
5607   unsigned Opc = I->DstOp;
5608   unsigned Index = I->Flags & TB_INDEX_MASK;
5609   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5610   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5611   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5612   const MCInstrDesc &MCID = get(Opc);
5613   MachineFunction &MF = DAG.getMachineFunction();
5614   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5615   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5616   unsigned NumDefs = MCID.NumDefs;
5617   std::vector<SDValue> AddrOps;
5618   std::vector<SDValue> BeforeOps;
5619   std::vector<SDValue> AfterOps;
5620   SDLoc dl(N);
5621   unsigned NumOps = N->getNumOperands();
5622   for (unsigned i = 0; i != NumOps-1; ++i) {
5623     SDValue Op = N->getOperand(i);
5624     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5625       AddrOps.push_back(Op);
5626     else if (i < Index-NumDefs)
5627       BeforeOps.push_back(Op);
5628     else if (i > Index-NumDefs)
5629       AfterOps.push_back(Op);
5630   }
5631   SDValue Chain = N->getOperand(NumOps-1);
5632   AddrOps.push_back(Chain);
5633 
5634   // Emit the load instruction.
5635   SDNode *Load = nullptr;
5636   if (FoldedLoad) {
5637     EVT VT = *TRI.legalclasstypes_begin(*RC);
5638     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5639     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5640         Subtarget.isUnalignedMem16Slow())
5641       // Do not introduce a slow unaligned load.
5642       return false;
5643     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5644     // memory access is slow above.
5645 
5646     unsigned Opc;
5647     if (FoldedBCast) {
5648       Opc = getBroadcastOpcode(I, RC, Subtarget);
5649     } else {
5650       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5651       bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5652       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
5653     }
5654 
5655     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
5656     NewNodes.push_back(Load);
5657 
5658     // Preserve memory reference information.
5659     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5660   }
5661 
5662   // Emit the data processing instruction.
5663   std::vector<EVT> VTs;
5664   const TargetRegisterClass *DstRC = nullptr;
5665   if (MCID.getNumDefs() > 0) {
5666     DstRC = getRegClass(MCID, 0, &RI, MF);
5667     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5668   }
5669   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5670     EVT VT = N->getValueType(i);
5671     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5672       VTs.push_back(VT);
5673   }
5674   if (Load)
5675     BeforeOps.push_back(SDValue(Load, 0));
5676   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5677   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5678   switch (Opc) {
5679     default: break;
5680     case X86::CMP64ri32:
5681     case X86::CMP64ri8:
5682     case X86::CMP32ri:
5683     case X86::CMP32ri8:
5684     case X86::CMP16ri:
5685     case X86::CMP16ri8:
5686     case X86::CMP8ri:
5687       if (isNullConstant(BeforeOps[1])) {
5688         switch (Opc) {
5689           default: llvm_unreachable("Unreachable!");
5690           case X86::CMP64ri8:
5691           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5692           case X86::CMP32ri8:
5693           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5694           case X86::CMP16ri8:
5695           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5696           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5697         }
5698         BeforeOps[1] = BeforeOps[0];
5699       }
5700   }
5701   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5702   NewNodes.push_back(NewNode);
5703 
5704   // Emit the store instruction.
5705   if (FoldedStore) {
5706     AddrOps.pop_back();
5707     AddrOps.push_back(SDValue(NewNode, 0));
5708     AddrOps.push_back(Chain);
5709     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5710     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5711         Subtarget.isUnalignedMem16Slow())
5712       // Do not introduce a slow unaligned store.
5713       return false;
5714     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5715     // memory access is slow above.
5716     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5717     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5718     SDNode *Store =
5719         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5720                            dl, MVT::Other, AddrOps);
5721     NewNodes.push_back(Store);
5722 
5723     // Preserve memory reference information.
5724     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5725   }
5726 
5727   return true;
5728 }
5729 
5730 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5731                                       bool UnfoldLoad, bool UnfoldStore,
5732                                       unsigned *LoadRegIndex) const {
5733   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5734   if (I == nullptr)
5735     return 0;
5736   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5737   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5738   if (UnfoldLoad && !FoldedLoad)
5739     return 0;
5740   if (UnfoldStore && !FoldedStore)
5741     return 0;
5742   if (LoadRegIndex)
5743     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5744   return I->DstOp;
5745 }
5746 
5747 bool
5748 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5749                                      int64_t &Offset1, int64_t &Offset2) const {
5750   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5751     return false;
5752   unsigned Opc1 = Load1->getMachineOpcode();
5753   unsigned Opc2 = Load2->getMachineOpcode();
5754   switch (Opc1) {
5755   default: return false;
5756   case X86::MOV8rm:
5757   case X86::MOV16rm:
5758   case X86::MOV32rm:
5759   case X86::MOV64rm:
5760   case X86::LD_Fp32m:
5761   case X86::LD_Fp64m:
5762   case X86::LD_Fp80m:
5763   case X86::MOVSSrm:
5764   case X86::MOVSSrm_alt:
5765   case X86::MOVSDrm:
5766   case X86::MOVSDrm_alt:
5767   case X86::MMX_MOVD64rm:
5768   case X86::MMX_MOVQ64rm:
5769   case X86::MOVAPSrm:
5770   case X86::MOVUPSrm:
5771   case X86::MOVAPDrm:
5772   case X86::MOVUPDrm:
5773   case X86::MOVDQArm:
5774   case X86::MOVDQUrm:
5775   // AVX load instructions
5776   case X86::VMOVSSrm:
5777   case X86::VMOVSSrm_alt:
5778   case X86::VMOVSDrm:
5779   case X86::VMOVSDrm_alt:
5780   case X86::VMOVAPSrm:
5781   case X86::VMOVUPSrm:
5782   case X86::VMOVAPDrm:
5783   case X86::VMOVUPDrm:
5784   case X86::VMOVDQArm:
5785   case X86::VMOVDQUrm:
5786   case X86::VMOVAPSYrm:
5787   case X86::VMOVUPSYrm:
5788   case X86::VMOVAPDYrm:
5789   case X86::VMOVUPDYrm:
5790   case X86::VMOVDQAYrm:
5791   case X86::VMOVDQUYrm:
5792   // AVX512 load instructions
5793   case X86::VMOVSSZrm:
5794   case X86::VMOVSSZrm_alt:
5795   case X86::VMOVSDZrm:
5796   case X86::VMOVSDZrm_alt:
5797   case X86::VMOVAPSZ128rm:
5798   case X86::VMOVUPSZ128rm:
5799   case X86::VMOVAPSZ128rm_NOVLX:
5800   case X86::VMOVUPSZ128rm_NOVLX:
5801   case X86::VMOVAPDZ128rm:
5802   case X86::VMOVUPDZ128rm:
5803   case X86::VMOVDQU8Z128rm:
5804   case X86::VMOVDQU16Z128rm:
5805   case X86::VMOVDQA32Z128rm:
5806   case X86::VMOVDQU32Z128rm:
5807   case X86::VMOVDQA64Z128rm:
5808   case X86::VMOVDQU64Z128rm:
5809   case X86::VMOVAPSZ256rm:
5810   case X86::VMOVUPSZ256rm:
5811   case X86::VMOVAPSZ256rm_NOVLX:
5812   case X86::VMOVUPSZ256rm_NOVLX:
5813   case X86::VMOVAPDZ256rm:
5814   case X86::VMOVUPDZ256rm:
5815   case X86::VMOVDQU8Z256rm:
5816   case X86::VMOVDQU16Z256rm:
5817   case X86::VMOVDQA32Z256rm:
5818   case X86::VMOVDQU32Z256rm:
5819   case X86::VMOVDQA64Z256rm:
5820   case X86::VMOVDQU64Z256rm:
5821   case X86::VMOVAPSZrm:
5822   case X86::VMOVUPSZrm:
5823   case X86::VMOVAPDZrm:
5824   case X86::VMOVUPDZrm:
5825   case X86::VMOVDQU8Zrm:
5826   case X86::VMOVDQU16Zrm:
5827   case X86::VMOVDQA32Zrm:
5828   case X86::VMOVDQU32Zrm:
5829   case X86::VMOVDQA64Zrm:
5830   case X86::VMOVDQU64Zrm:
5831   case X86::KMOVBkm:
5832   case X86::KMOVWkm:
5833   case X86::KMOVDkm:
5834   case X86::KMOVQkm:
5835     break;
5836   }
5837   switch (Opc2) {
5838   default: return false;
5839   case X86::MOV8rm:
5840   case X86::MOV16rm:
5841   case X86::MOV32rm:
5842   case X86::MOV64rm:
5843   case X86::LD_Fp32m:
5844   case X86::LD_Fp64m:
5845   case X86::LD_Fp80m:
5846   case X86::MOVSSrm:
5847   case X86::MOVSSrm_alt:
5848   case X86::MOVSDrm:
5849   case X86::MOVSDrm_alt:
5850   case X86::MMX_MOVD64rm:
5851   case X86::MMX_MOVQ64rm:
5852   case X86::MOVAPSrm:
5853   case X86::MOVUPSrm:
5854   case X86::MOVAPDrm:
5855   case X86::MOVUPDrm:
5856   case X86::MOVDQArm:
5857   case X86::MOVDQUrm:
5858   // AVX load instructions
5859   case X86::VMOVSSrm:
5860   case X86::VMOVSSrm_alt:
5861   case X86::VMOVSDrm:
5862   case X86::VMOVSDrm_alt:
5863   case X86::VMOVAPSrm:
5864   case X86::VMOVUPSrm:
5865   case X86::VMOVAPDrm:
5866   case X86::VMOVUPDrm:
5867   case X86::VMOVDQArm:
5868   case X86::VMOVDQUrm:
5869   case X86::VMOVAPSYrm:
5870   case X86::VMOVUPSYrm:
5871   case X86::VMOVAPDYrm:
5872   case X86::VMOVUPDYrm:
5873   case X86::VMOVDQAYrm:
5874   case X86::VMOVDQUYrm:
5875   // AVX512 load instructions
5876   case X86::VMOVSSZrm:
5877   case X86::VMOVSSZrm_alt:
5878   case X86::VMOVSDZrm:
5879   case X86::VMOVSDZrm_alt:
5880   case X86::VMOVAPSZ128rm:
5881   case X86::VMOVUPSZ128rm:
5882   case X86::VMOVAPSZ128rm_NOVLX:
5883   case X86::VMOVUPSZ128rm_NOVLX:
5884   case X86::VMOVAPDZ128rm:
5885   case X86::VMOVUPDZ128rm:
5886   case X86::VMOVDQU8Z128rm:
5887   case X86::VMOVDQU16Z128rm:
5888   case X86::VMOVDQA32Z128rm:
5889   case X86::VMOVDQU32Z128rm:
5890   case X86::VMOVDQA64Z128rm:
5891   case X86::VMOVDQU64Z128rm:
5892   case X86::VMOVAPSZ256rm:
5893   case X86::VMOVUPSZ256rm:
5894   case X86::VMOVAPSZ256rm_NOVLX:
5895   case X86::VMOVUPSZ256rm_NOVLX:
5896   case X86::VMOVAPDZ256rm:
5897   case X86::VMOVUPDZ256rm:
5898   case X86::VMOVDQU8Z256rm:
5899   case X86::VMOVDQU16Z256rm:
5900   case X86::VMOVDQA32Z256rm:
5901   case X86::VMOVDQU32Z256rm:
5902   case X86::VMOVDQA64Z256rm:
5903   case X86::VMOVDQU64Z256rm:
5904   case X86::VMOVAPSZrm:
5905   case X86::VMOVUPSZrm:
5906   case X86::VMOVAPDZrm:
5907   case X86::VMOVUPDZrm:
5908   case X86::VMOVDQU8Zrm:
5909   case X86::VMOVDQU16Zrm:
5910   case X86::VMOVDQA32Zrm:
5911   case X86::VMOVDQU32Zrm:
5912   case X86::VMOVDQA64Zrm:
5913   case X86::VMOVDQU64Zrm:
5914   case X86::KMOVBkm:
5915   case X86::KMOVWkm:
5916   case X86::KMOVDkm:
5917   case X86::KMOVQkm:
5918     break;
5919   }
5920 
5921   // Lambda to check if both the loads have the same value for an operand index.
5922   auto HasSameOp = [&](int I) {
5923     return Load1->getOperand(I) == Load2->getOperand(I);
5924   };
5925 
5926   // All operands except the displacement should match.
5927   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5928       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5929     return false;
5930 
5931   // Chain Operand must be the same.
5932   if (!HasSameOp(5))
5933     return false;
5934 
5935   // Now let's examine if the displacements are constants.
5936   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5937   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5938   if (!Disp1 || !Disp2)
5939     return false;
5940 
5941   Offset1 = Disp1->getSExtValue();
5942   Offset2 = Disp2->getSExtValue();
5943   return true;
5944 }
5945 
5946 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5947                                            int64_t Offset1, int64_t Offset2,
5948                                            unsigned NumLoads) const {
5949   assert(Offset2 > Offset1);
5950   if ((Offset2 - Offset1) / 8 > 64)
5951     return false;
5952 
5953   unsigned Opc1 = Load1->getMachineOpcode();
5954   unsigned Opc2 = Load2->getMachineOpcode();
5955   if (Opc1 != Opc2)
5956     return false;  // FIXME: overly conservative?
5957 
5958   switch (Opc1) {
5959   default: break;
5960   case X86::LD_Fp32m:
5961   case X86::LD_Fp64m:
5962   case X86::LD_Fp80m:
5963   case X86::MMX_MOVD64rm:
5964   case X86::MMX_MOVQ64rm:
5965     return false;
5966   }
5967 
5968   EVT VT = Load1->getValueType(0);
5969   switch (VT.getSimpleVT().SimpleTy) {
5970   default:
5971     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5972     // have 16 of them to play with.
5973     if (Subtarget.is64Bit()) {
5974       if (NumLoads >= 3)
5975         return false;
5976     } else if (NumLoads) {
5977       return false;
5978     }
5979     break;
5980   case MVT::i8:
5981   case MVT::i16:
5982   case MVT::i32:
5983   case MVT::i64:
5984   case MVT::f32:
5985   case MVT::f64:
5986     if (NumLoads)
5987       return false;
5988     break;
5989   }
5990 
5991   return true;
5992 }
5993 
5994 bool X86InstrInfo::
5995 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5996   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5997   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5998   Cond[0].setImm(GetOppositeBranchCondition(CC));
5999   return false;
6000 }
6001 
6002 bool X86InstrInfo::
6003 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6004   // FIXME: Return false for x87 stack register classes for now. We can't
6005   // allow any loads of these registers before FpGet_ST0_80.
6006   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6007            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6008            RC == &X86::RFP80RegClass);
6009 }
6010 
6011 /// Return a virtual register initialized with the
6012 /// the global base register value. Output instructions required to
6013 /// initialize the register in the function entry block, if necessary.
6014 ///
6015 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6016 ///
6017 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6018   assert((!Subtarget.is64Bit() ||
6019           MF->getTarget().getCodeModel() == CodeModel::Medium ||
6020           MF->getTarget().getCodeModel() == CodeModel::Large) &&
6021          "X86-64 PIC uses RIP relative addressing");
6022 
6023   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6024   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6025   if (GlobalBaseReg != 0)
6026     return GlobalBaseReg;
6027 
6028   // Create the register. The code to initialize it is inserted
6029   // later, by the CGBR pass (below).
6030   MachineRegisterInfo &RegInfo = MF->getRegInfo();
6031   GlobalBaseReg = RegInfo.createVirtualRegister(
6032       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6033   X86FI->setGlobalBaseReg(GlobalBaseReg);
6034   return GlobalBaseReg;
6035 }
6036 
6037 // These are the replaceable SSE instructions. Some of these have Int variants
6038 // that we don't include here. We don't want to replace instructions selected
6039 // by intrinsics.
6040 static const uint16_t ReplaceableInstrs[][3] = {
6041   //PackedSingle     PackedDouble    PackedInt
6042   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6043   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6044   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6045   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6046   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6047   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
6048   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
6049   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
6050   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
6051   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6052   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
6053   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6054   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6055   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6056   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6057   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6058   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6059   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6060   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6061   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6062   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6063   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6064   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6065   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6066   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6067   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6068   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6069   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6070   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6071   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6072   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6073   // AVX 128-bit support
6074   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6075   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6076   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6077   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6078   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6079   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
6080   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
6081   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
6082   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
6083   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6084   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
6085   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6086   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6087   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6088   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6089   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6090   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6091   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6092   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6093   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6094   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6095   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6096   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6097   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6098   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6099   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6100   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6101   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6102   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6103   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6104   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6105   // AVX 256-bit support
6106   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6107   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6108   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6109   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6110   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6111   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
6112   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
6113   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
6114   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
6115   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
6116   // AVX512 support
6117   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
6118   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6119   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6120   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
6121   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
6122   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
6123   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
6124   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
6125   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
6126   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
6127   { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
6128   { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
6129   { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
6130   { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
6131   { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
6132   { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
6133   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
6134   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
6135   { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
6136   { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
6137   { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
6138   { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
6139   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
6140   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6141   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6142   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6143   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6144   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6145   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6146   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6147   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6148   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6149   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6150   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6151   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6152   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6153   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6154   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6155   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6156   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6157   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6158   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6159   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6160   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6161   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6162   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6163   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6164   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6165   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6166   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6167   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6168   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6169   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6170   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6171   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6172   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6173   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6174   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6175   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6176   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6177   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6178   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6179   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6180   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6181   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6182   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6183   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6184   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6185   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6186   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
6187   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
6188   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6189   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6190   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6191   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6192   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6193   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6194   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6195   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6196   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6197   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6198   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6199   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6200   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6201   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6202   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6203   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6204   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6205   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6206   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6207   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6208   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6209 };
6210 
6211 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6212   //PackedSingle       PackedDouble       PackedInt
6213   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6214   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6215   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6216   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6217   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6218   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6219   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6220   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6221   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6222   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6223   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6224   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6225   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6226   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6227   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6228   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6229   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6230   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6231   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6232   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6233   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6234   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6235   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6236   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6237   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6238   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6239   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6240   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6241   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6242   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6243   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6244 };
6245 
6246 static const uint16_t ReplaceableInstrsFP[][3] = {
6247   //PackedSingle         PackedDouble
6248   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6249   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6250   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6251   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6252   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6253   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6254   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6255   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6256   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6257 };
6258 
6259 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6260   //PackedSingle       PackedDouble       PackedInt
6261   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6262   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6263   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6264   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6265 };
6266 
6267 static const uint16_t ReplaceableInstrsAVX512[][4] = {
6268   // Two integer columns for 64-bit and 32-bit elements.
6269   //PackedSingle        PackedDouble        PackedInt             PackedInt
6270   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6271   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6272   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6273   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6274   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6275   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6276   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6277   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6278   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6279   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6280   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6281   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6282   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6283   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6284   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6285 };
6286 
6287 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6288   // Two integer columns for 64-bit and 32-bit elements.
6289   //PackedSingle        PackedDouble        PackedInt           PackedInt
6290   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6291   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6292   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6293   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6294   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6295   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6296   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6297   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6298   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6299   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6300   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6301   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6302   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6303   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6304   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6305   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6306   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6307   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6308   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6309   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6310   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6311   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6312   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6313   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6314 };
6315 
6316 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6317   // Two integer columns for 64-bit and 32-bit elements.
6318   //PackedSingle          PackedDouble
6319   //PackedInt             PackedInt
6320   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6321     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6322   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6323     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6324   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6325     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6326   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6327     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6328   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6329     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6330   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6331     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6332   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6333     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6334   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6335     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6336   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6337     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6338   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6339     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6340   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6341     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6342   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6343     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6344   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6345     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6346   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6347     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6348   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6349     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6350   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6351     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6352   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6353     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6354   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6355     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6356   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6357     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6358   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6359     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6360   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6361     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6362   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6363     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6364   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6365     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6366   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6367     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6368   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6369     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6370   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6371     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6372   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6373     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6374   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6375     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6376   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6377     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6378   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6379     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6380   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6381     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6382   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6383     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6384   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6385     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6386   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6387     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6388   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6389     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6390   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6391     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6392   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6393     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6394   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6395     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6396   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6397     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6398   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6399     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6400   { X86::VORPSZrmk,       X86::VORPDZrmk,
6401     X86::VPORQZrmk,       X86::VPORDZrmk       },
6402   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6403     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6404   { X86::VORPSZrrk,       X86::VORPDZrrk,
6405     X86::VPORQZrrk,       X86::VPORDZrrk       },
6406   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6407     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6408   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6409     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6410   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6411     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6412   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6413     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6414   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6415     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6416   // Broadcast loads can be handled the same as masked operations to avoid
6417   // changing element size.
6418   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6419     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6420   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6421     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6422   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6423     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6424   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6425     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6426   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6427     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6428   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6429     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6430   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6431     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6432   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6433     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6434   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6435     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6436   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6437     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6438   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6439     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6440   { X86::VORPSZrmb,       X86::VORPDZrmb,
6441     X86::VPORQZrmb,       X86::VPORDZrmb       },
6442   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6443     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6444   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6445     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6446   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6447     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6448   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6449     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6450   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6451     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6452   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6453     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6454   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6455     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6456   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6457     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6458   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6459     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6460   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6461     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6462   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6463     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6464   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6465     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6466   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6467     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6468   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6469     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6470   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6471     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6472   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6473     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6474   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6475     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6476   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6477     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6478   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6479     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6480   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6481     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6482   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6483     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6484   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6485     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6486   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6487     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6488   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6489     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6490   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6491     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6492   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6493     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6494   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6495     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6496 };
6497 
6498 // NOTE: These should only be used by the custom domain methods.
6499 static const uint16_t ReplaceableBlendInstrs[][3] = {
6500   //PackedSingle             PackedDouble             PackedInt
6501   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6502   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6503   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6504   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6505   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6506   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6507 };
6508 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6509   //PackedSingle             PackedDouble             PackedInt
6510   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6511   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6512   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6513   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6514 };
6515 
6516 // Special table for changing EVEX logic instructions to VEX.
6517 // TODO: Should we run EVEX->VEX earlier?
6518 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6519   // Two integer columns for 64-bit and 32-bit elements.
6520   //PackedSingle     PackedDouble     PackedInt           PackedInt
6521   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6522   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6523   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6524   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6525   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6526   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6527   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6528   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6529   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6530   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6531   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6532   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6533   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6534   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6535   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6536   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6537 };
6538 
6539 // FIXME: Some shuffle and unpack instructions have equivalents in different
6540 // domains, but they require a bit more work than just switching opcodes.
6541 
6542 static const uint16_t *lookup(unsigned opcode, unsigned domain,
6543                               ArrayRef<uint16_t[3]> Table) {
6544   for (const uint16_t (&Row)[3] : Table)
6545     if (Row[domain-1] == opcode)
6546       return Row;
6547   return nullptr;
6548 }
6549 
6550 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6551                                     ArrayRef<uint16_t[4]> Table) {
6552   // If this is the integer domain make sure to check both integer columns.
6553   for (const uint16_t (&Row)[4] : Table)
6554     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6555       return Row;
6556   return nullptr;
6557 }
6558 
6559 // Helper to attempt to widen/narrow blend masks.
6560 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6561                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
6562   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6563          "Illegal blend mask scale");
6564   unsigned NewMask = 0;
6565 
6566   if ((OldWidth % NewWidth) == 0) {
6567     unsigned Scale = OldWidth / NewWidth;
6568     unsigned SubMask = (1u << Scale) - 1;
6569     for (unsigned i = 0; i != NewWidth; ++i) {
6570       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6571       if (Sub == SubMask)
6572         NewMask |= (1u << i);
6573       else if (Sub != 0x0)
6574         return false;
6575     }
6576   } else {
6577     unsigned Scale = NewWidth / OldWidth;
6578     unsigned SubMask = (1u << Scale) - 1;
6579     for (unsigned i = 0; i != OldWidth; ++i) {
6580       if (OldMask & (1 << i)) {
6581         NewMask |= (SubMask << (i * Scale));
6582       }
6583     }
6584   }
6585 
6586   if (pNewMask)
6587     *pNewMask = NewMask;
6588   return true;
6589 }
6590 
6591 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6592   unsigned Opcode = MI.getOpcode();
6593   unsigned NumOperands = MI.getDesc().getNumOperands();
6594 
6595   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6596     uint16_t validDomains = 0;
6597     if (MI.getOperand(NumOperands - 1).isImm()) {
6598       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6599       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6600         validDomains |= 0x2; // PackedSingle
6601       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6602         validDomains |= 0x4; // PackedDouble
6603       if (!Is256 || Subtarget.hasAVX2())
6604         validDomains |= 0x8; // PackedInt
6605     }
6606     return validDomains;
6607   };
6608 
6609   switch (Opcode) {
6610   case X86::BLENDPDrmi:
6611   case X86::BLENDPDrri:
6612   case X86::VBLENDPDrmi:
6613   case X86::VBLENDPDrri:
6614     return GetBlendDomains(2, false);
6615   case X86::VBLENDPDYrmi:
6616   case X86::VBLENDPDYrri:
6617     return GetBlendDomains(4, true);
6618   case X86::BLENDPSrmi:
6619   case X86::BLENDPSrri:
6620   case X86::VBLENDPSrmi:
6621   case X86::VBLENDPSrri:
6622   case X86::VPBLENDDrmi:
6623   case X86::VPBLENDDrri:
6624     return GetBlendDomains(4, false);
6625   case X86::VBLENDPSYrmi:
6626   case X86::VBLENDPSYrri:
6627   case X86::VPBLENDDYrmi:
6628   case X86::VPBLENDDYrri:
6629     return GetBlendDomains(8, true);
6630   case X86::PBLENDWrmi:
6631   case X86::PBLENDWrri:
6632   case X86::VPBLENDWrmi:
6633   case X86::VPBLENDWrri:
6634   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6635   case X86::VPBLENDWYrmi:
6636   case X86::VPBLENDWYrri:
6637     return GetBlendDomains(8, false);
6638   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6639   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6640   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6641   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6642   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6643   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6644   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6645   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6646   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6647   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6648   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6649   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6650   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6651   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6652   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6653   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6654     // If we don't have DQI see if we can still switch from an EVEX integer
6655     // instruction to a VEX floating point instruction.
6656     if (Subtarget.hasDQI())
6657       return 0;
6658 
6659     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6660       return 0;
6661     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6662       return 0;
6663     // Register forms will have 3 operands. Memory form will have more.
6664     if (NumOperands == 3 &&
6665         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6666       return 0;
6667 
6668     // All domains are valid.
6669     return 0xe;
6670   case X86::MOVHLPSrr:
6671     // We can swap domains when both inputs are the same register.
6672     // FIXME: This doesn't catch all the cases we would like. If the input
6673     // register isn't KILLed by the instruction, the two address instruction
6674     // pass puts a COPY on one input. The other input uses the original
6675     // register. This prevents the same physical register from being used by
6676     // both inputs.
6677     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6678         MI.getOperand(0).getSubReg() == 0 &&
6679         MI.getOperand(1).getSubReg() == 0 &&
6680         MI.getOperand(2).getSubReg() == 0)
6681       return 0x6;
6682     return 0;
6683   case X86::SHUFPDrri:
6684     return 0x6;
6685   }
6686   return 0;
6687 }
6688 
6689 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6690                                             unsigned Domain) const {
6691   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6692   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6693   assert(dom && "Not an SSE instruction");
6694 
6695   unsigned Opcode = MI.getOpcode();
6696   unsigned NumOperands = MI.getDesc().getNumOperands();
6697 
6698   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6699     if (MI.getOperand(NumOperands - 1).isImm()) {
6700       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6701       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6702       unsigned NewImm = Imm;
6703 
6704       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6705       if (!table)
6706         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6707 
6708       if (Domain == 1) { // PackedSingle
6709         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6710       } else if (Domain == 2) { // PackedDouble
6711         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6712       } else if (Domain == 3) { // PackedInt
6713         if (Subtarget.hasAVX2()) {
6714           // If we are already VPBLENDW use that, else use VPBLENDD.
6715           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6716             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6717             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6718           }
6719         } else {
6720           assert(!Is256 && "128-bit vector expected");
6721           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6722         }
6723       }
6724 
6725       assert(table && table[Domain - 1] && "Unknown domain op");
6726       MI.setDesc(get(table[Domain - 1]));
6727       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6728     }
6729     return true;
6730   };
6731 
6732   switch (Opcode) {
6733   case X86::BLENDPDrmi:
6734   case X86::BLENDPDrri:
6735   case X86::VBLENDPDrmi:
6736   case X86::VBLENDPDrri:
6737     return SetBlendDomain(2, false);
6738   case X86::VBLENDPDYrmi:
6739   case X86::VBLENDPDYrri:
6740     return SetBlendDomain(4, true);
6741   case X86::BLENDPSrmi:
6742   case X86::BLENDPSrri:
6743   case X86::VBLENDPSrmi:
6744   case X86::VBLENDPSrri:
6745   case X86::VPBLENDDrmi:
6746   case X86::VPBLENDDrri:
6747     return SetBlendDomain(4, false);
6748   case X86::VBLENDPSYrmi:
6749   case X86::VBLENDPSYrri:
6750   case X86::VPBLENDDYrmi:
6751   case X86::VPBLENDDYrri:
6752     return SetBlendDomain(8, true);
6753   case X86::PBLENDWrmi:
6754   case X86::PBLENDWrri:
6755   case X86::VPBLENDWrmi:
6756   case X86::VPBLENDWrri:
6757     return SetBlendDomain(8, false);
6758   case X86::VPBLENDWYrmi:
6759   case X86::VPBLENDWYrri:
6760     return SetBlendDomain(16, true);
6761   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6762   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6763   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6764   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6765   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6766   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6767   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6768   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6769   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6770   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6771   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6772   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6773   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6774   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6775   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6776   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6777     // Without DQI, convert EVEX instructions to VEX instructions.
6778     if (Subtarget.hasDQI())
6779       return false;
6780 
6781     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6782                                          ReplaceableCustomAVX512LogicInstrs);
6783     assert(table && "Instruction not found in table?");
6784     // Don't change integer Q instructions to D instructions and
6785     // use D intructions if we started with a PS instruction.
6786     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6787       Domain = 4;
6788     MI.setDesc(get(table[Domain - 1]));
6789     return true;
6790   }
6791   case X86::UNPCKHPDrr:
6792   case X86::MOVHLPSrr:
6793     // We just need to commute the instruction which will switch the domains.
6794     if (Domain != dom && Domain != 3 &&
6795         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6796         MI.getOperand(0).getSubReg() == 0 &&
6797         MI.getOperand(1).getSubReg() == 0 &&
6798         MI.getOperand(2).getSubReg() == 0) {
6799       commuteInstruction(MI, false);
6800       return true;
6801     }
6802     // We must always return true for MOVHLPSrr.
6803     if (Opcode == X86::MOVHLPSrr)
6804       return true;
6805     break;
6806   case X86::SHUFPDrri: {
6807     if (Domain == 1) {
6808       unsigned Imm = MI.getOperand(3).getImm();
6809       unsigned NewImm = 0x44;
6810       if (Imm & 1) NewImm |= 0x0a;
6811       if (Imm & 2) NewImm |= 0xa0;
6812       MI.getOperand(3).setImm(NewImm);
6813       MI.setDesc(get(X86::SHUFPSrri));
6814     }
6815     return true;
6816   }
6817   }
6818   return false;
6819 }
6820 
6821 std::pair<uint16_t, uint16_t>
6822 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6823   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6824   unsigned opcode = MI.getOpcode();
6825   uint16_t validDomains = 0;
6826   if (domain) {
6827     // Attempt to match for custom instructions.
6828     validDomains = getExecutionDomainCustom(MI);
6829     if (validDomains)
6830       return std::make_pair(domain, validDomains);
6831 
6832     if (lookup(opcode, domain, ReplaceableInstrs)) {
6833       validDomains = 0xe;
6834     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6835       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6836     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6837       validDomains = 0x6;
6838     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6839       // Insert/extract instructions should only effect domain if AVX2
6840       // is enabled.
6841       if (!Subtarget.hasAVX2())
6842         return std::make_pair(0, 0);
6843       validDomains = 0xe;
6844     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6845       validDomains = 0xe;
6846     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6847                                                   ReplaceableInstrsAVX512DQ)) {
6848       validDomains = 0xe;
6849     } else if (Subtarget.hasDQI()) {
6850       if (const uint16_t *table = lookupAVX512(opcode, domain,
6851                                              ReplaceableInstrsAVX512DQMasked)) {
6852         if (domain == 1 || (domain == 3 && table[3] == opcode))
6853           validDomains = 0xa;
6854         else
6855           validDomains = 0xc;
6856       }
6857     }
6858   }
6859   return std::make_pair(domain, validDomains);
6860 }
6861 
6862 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6863   assert(Domain>0 && Domain<4 && "Invalid execution domain");
6864   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6865   assert(dom && "Not an SSE instruction");
6866 
6867   // Attempt to match for custom instructions.
6868   if (setExecutionDomainCustom(MI, Domain))
6869     return;
6870 
6871   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6872   if (!table) { // try the other table
6873     assert((Subtarget.hasAVX2() || Domain < 3) &&
6874            "256-bit vector operations only available in AVX2");
6875     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6876   }
6877   if (!table) { // try the FP table
6878     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6879     assert((!table || Domain < 3) &&
6880            "Can only select PackedSingle or PackedDouble");
6881   }
6882   if (!table) { // try the other table
6883     assert(Subtarget.hasAVX2() &&
6884            "256-bit insert/extract only available in AVX2");
6885     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6886   }
6887   if (!table) { // try the AVX512 table
6888     assert(Subtarget.hasAVX512() && "Requires AVX-512");
6889     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6890     // Don't change integer Q instructions to D instructions.
6891     if (table && Domain == 3 && table[3] == MI.getOpcode())
6892       Domain = 4;
6893   }
6894   if (!table) { // try the AVX512DQ table
6895     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6896     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6897     // Don't change integer Q instructions to D instructions and
6898     // use D intructions if we started with a PS instruction.
6899     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6900       Domain = 4;
6901   }
6902   if (!table) { // try the AVX512DQMasked table
6903     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6904     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6905     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6906       Domain = 4;
6907   }
6908   assert(table && "Cannot change domain");
6909   MI.setDesc(get(table[Domain - 1]));
6910 }
6911 
6912 /// Return the noop instruction to use for a noop.
6913 void X86InstrInfo::getNoop(MCInst &NopInst) const {
6914   NopInst.setOpcode(X86::NOOP);
6915 }
6916 
6917 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6918   switch (opc) {
6919   default: return false;
6920   case X86::DIVPDrm:
6921   case X86::DIVPDrr:
6922   case X86::DIVPSrm:
6923   case X86::DIVPSrr:
6924   case X86::DIVSDrm:
6925   case X86::DIVSDrm_Int:
6926   case X86::DIVSDrr:
6927   case X86::DIVSDrr_Int:
6928   case X86::DIVSSrm:
6929   case X86::DIVSSrm_Int:
6930   case X86::DIVSSrr:
6931   case X86::DIVSSrr_Int:
6932   case X86::SQRTPDm:
6933   case X86::SQRTPDr:
6934   case X86::SQRTPSm:
6935   case X86::SQRTPSr:
6936   case X86::SQRTSDm:
6937   case X86::SQRTSDm_Int:
6938   case X86::SQRTSDr:
6939   case X86::SQRTSDr_Int:
6940   case X86::SQRTSSm:
6941   case X86::SQRTSSm_Int:
6942   case X86::SQRTSSr:
6943   case X86::SQRTSSr_Int:
6944   // AVX instructions with high latency
6945   case X86::VDIVPDrm:
6946   case X86::VDIVPDrr:
6947   case X86::VDIVPDYrm:
6948   case X86::VDIVPDYrr:
6949   case X86::VDIVPSrm:
6950   case X86::VDIVPSrr:
6951   case X86::VDIVPSYrm:
6952   case X86::VDIVPSYrr:
6953   case X86::VDIVSDrm:
6954   case X86::VDIVSDrm_Int:
6955   case X86::VDIVSDrr:
6956   case X86::VDIVSDrr_Int:
6957   case X86::VDIVSSrm:
6958   case X86::VDIVSSrm_Int:
6959   case X86::VDIVSSrr:
6960   case X86::VDIVSSrr_Int:
6961   case X86::VSQRTPDm:
6962   case X86::VSQRTPDr:
6963   case X86::VSQRTPDYm:
6964   case X86::VSQRTPDYr:
6965   case X86::VSQRTPSm:
6966   case X86::VSQRTPSr:
6967   case X86::VSQRTPSYm:
6968   case X86::VSQRTPSYr:
6969   case X86::VSQRTSDm:
6970   case X86::VSQRTSDm_Int:
6971   case X86::VSQRTSDr:
6972   case X86::VSQRTSDr_Int:
6973   case X86::VSQRTSSm:
6974   case X86::VSQRTSSm_Int:
6975   case X86::VSQRTSSr:
6976   case X86::VSQRTSSr_Int:
6977   // AVX512 instructions with high latency
6978   case X86::VDIVPDZ128rm:
6979   case X86::VDIVPDZ128rmb:
6980   case X86::VDIVPDZ128rmbk:
6981   case X86::VDIVPDZ128rmbkz:
6982   case X86::VDIVPDZ128rmk:
6983   case X86::VDIVPDZ128rmkz:
6984   case X86::VDIVPDZ128rr:
6985   case X86::VDIVPDZ128rrk:
6986   case X86::VDIVPDZ128rrkz:
6987   case X86::VDIVPDZ256rm:
6988   case X86::VDIVPDZ256rmb:
6989   case X86::VDIVPDZ256rmbk:
6990   case X86::VDIVPDZ256rmbkz:
6991   case X86::VDIVPDZ256rmk:
6992   case X86::VDIVPDZ256rmkz:
6993   case X86::VDIVPDZ256rr:
6994   case X86::VDIVPDZ256rrk:
6995   case X86::VDIVPDZ256rrkz:
6996   case X86::VDIVPDZrrb:
6997   case X86::VDIVPDZrrbk:
6998   case X86::VDIVPDZrrbkz:
6999   case X86::VDIVPDZrm:
7000   case X86::VDIVPDZrmb:
7001   case X86::VDIVPDZrmbk:
7002   case X86::VDIVPDZrmbkz:
7003   case X86::VDIVPDZrmk:
7004   case X86::VDIVPDZrmkz:
7005   case X86::VDIVPDZrr:
7006   case X86::VDIVPDZrrk:
7007   case X86::VDIVPDZrrkz:
7008   case X86::VDIVPSZ128rm:
7009   case X86::VDIVPSZ128rmb:
7010   case X86::VDIVPSZ128rmbk:
7011   case X86::VDIVPSZ128rmbkz:
7012   case X86::VDIVPSZ128rmk:
7013   case X86::VDIVPSZ128rmkz:
7014   case X86::VDIVPSZ128rr:
7015   case X86::VDIVPSZ128rrk:
7016   case X86::VDIVPSZ128rrkz:
7017   case X86::VDIVPSZ256rm:
7018   case X86::VDIVPSZ256rmb:
7019   case X86::VDIVPSZ256rmbk:
7020   case X86::VDIVPSZ256rmbkz:
7021   case X86::VDIVPSZ256rmk:
7022   case X86::VDIVPSZ256rmkz:
7023   case X86::VDIVPSZ256rr:
7024   case X86::VDIVPSZ256rrk:
7025   case X86::VDIVPSZ256rrkz:
7026   case X86::VDIVPSZrrb:
7027   case X86::VDIVPSZrrbk:
7028   case X86::VDIVPSZrrbkz:
7029   case X86::VDIVPSZrm:
7030   case X86::VDIVPSZrmb:
7031   case X86::VDIVPSZrmbk:
7032   case X86::VDIVPSZrmbkz:
7033   case X86::VDIVPSZrmk:
7034   case X86::VDIVPSZrmkz:
7035   case X86::VDIVPSZrr:
7036   case X86::VDIVPSZrrk:
7037   case X86::VDIVPSZrrkz:
7038   case X86::VDIVSDZrm:
7039   case X86::VDIVSDZrr:
7040   case X86::VDIVSDZrm_Int:
7041   case X86::VDIVSDZrm_Intk:
7042   case X86::VDIVSDZrm_Intkz:
7043   case X86::VDIVSDZrr_Int:
7044   case X86::VDIVSDZrr_Intk:
7045   case X86::VDIVSDZrr_Intkz:
7046   case X86::VDIVSDZrrb_Int:
7047   case X86::VDIVSDZrrb_Intk:
7048   case X86::VDIVSDZrrb_Intkz:
7049   case X86::VDIVSSZrm:
7050   case X86::VDIVSSZrr:
7051   case X86::VDIVSSZrm_Int:
7052   case X86::VDIVSSZrm_Intk:
7053   case X86::VDIVSSZrm_Intkz:
7054   case X86::VDIVSSZrr_Int:
7055   case X86::VDIVSSZrr_Intk:
7056   case X86::VDIVSSZrr_Intkz:
7057   case X86::VDIVSSZrrb_Int:
7058   case X86::VDIVSSZrrb_Intk:
7059   case X86::VDIVSSZrrb_Intkz:
7060   case X86::VSQRTPDZ128m:
7061   case X86::VSQRTPDZ128mb:
7062   case X86::VSQRTPDZ128mbk:
7063   case X86::VSQRTPDZ128mbkz:
7064   case X86::VSQRTPDZ128mk:
7065   case X86::VSQRTPDZ128mkz:
7066   case X86::VSQRTPDZ128r:
7067   case X86::VSQRTPDZ128rk:
7068   case X86::VSQRTPDZ128rkz:
7069   case X86::VSQRTPDZ256m:
7070   case X86::VSQRTPDZ256mb:
7071   case X86::VSQRTPDZ256mbk:
7072   case X86::VSQRTPDZ256mbkz:
7073   case X86::VSQRTPDZ256mk:
7074   case X86::VSQRTPDZ256mkz:
7075   case X86::VSQRTPDZ256r:
7076   case X86::VSQRTPDZ256rk:
7077   case X86::VSQRTPDZ256rkz:
7078   case X86::VSQRTPDZm:
7079   case X86::VSQRTPDZmb:
7080   case X86::VSQRTPDZmbk:
7081   case X86::VSQRTPDZmbkz:
7082   case X86::VSQRTPDZmk:
7083   case X86::VSQRTPDZmkz:
7084   case X86::VSQRTPDZr:
7085   case X86::VSQRTPDZrb:
7086   case X86::VSQRTPDZrbk:
7087   case X86::VSQRTPDZrbkz:
7088   case X86::VSQRTPDZrk:
7089   case X86::VSQRTPDZrkz:
7090   case X86::VSQRTPSZ128m:
7091   case X86::VSQRTPSZ128mb:
7092   case X86::VSQRTPSZ128mbk:
7093   case X86::VSQRTPSZ128mbkz:
7094   case X86::VSQRTPSZ128mk:
7095   case X86::VSQRTPSZ128mkz:
7096   case X86::VSQRTPSZ128r:
7097   case X86::VSQRTPSZ128rk:
7098   case X86::VSQRTPSZ128rkz:
7099   case X86::VSQRTPSZ256m:
7100   case X86::VSQRTPSZ256mb:
7101   case X86::VSQRTPSZ256mbk:
7102   case X86::VSQRTPSZ256mbkz:
7103   case X86::VSQRTPSZ256mk:
7104   case X86::VSQRTPSZ256mkz:
7105   case X86::VSQRTPSZ256r:
7106   case X86::VSQRTPSZ256rk:
7107   case X86::VSQRTPSZ256rkz:
7108   case X86::VSQRTPSZm:
7109   case X86::VSQRTPSZmb:
7110   case X86::VSQRTPSZmbk:
7111   case X86::VSQRTPSZmbkz:
7112   case X86::VSQRTPSZmk:
7113   case X86::VSQRTPSZmkz:
7114   case X86::VSQRTPSZr:
7115   case X86::VSQRTPSZrb:
7116   case X86::VSQRTPSZrbk:
7117   case X86::VSQRTPSZrbkz:
7118   case X86::VSQRTPSZrk:
7119   case X86::VSQRTPSZrkz:
7120   case X86::VSQRTSDZm:
7121   case X86::VSQRTSDZm_Int:
7122   case X86::VSQRTSDZm_Intk:
7123   case X86::VSQRTSDZm_Intkz:
7124   case X86::VSQRTSDZr:
7125   case X86::VSQRTSDZr_Int:
7126   case X86::VSQRTSDZr_Intk:
7127   case X86::VSQRTSDZr_Intkz:
7128   case X86::VSQRTSDZrb_Int:
7129   case X86::VSQRTSDZrb_Intk:
7130   case X86::VSQRTSDZrb_Intkz:
7131   case X86::VSQRTSSZm:
7132   case X86::VSQRTSSZm_Int:
7133   case X86::VSQRTSSZm_Intk:
7134   case X86::VSQRTSSZm_Intkz:
7135   case X86::VSQRTSSZr:
7136   case X86::VSQRTSSZr_Int:
7137   case X86::VSQRTSSZr_Intk:
7138   case X86::VSQRTSSZr_Intkz:
7139   case X86::VSQRTSSZrb_Int:
7140   case X86::VSQRTSSZrb_Intk:
7141   case X86::VSQRTSSZrb_Intkz:
7142 
7143   case X86::VGATHERDPDYrm:
7144   case X86::VGATHERDPDZ128rm:
7145   case X86::VGATHERDPDZ256rm:
7146   case X86::VGATHERDPDZrm:
7147   case X86::VGATHERDPDrm:
7148   case X86::VGATHERDPSYrm:
7149   case X86::VGATHERDPSZ128rm:
7150   case X86::VGATHERDPSZ256rm:
7151   case X86::VGATHERDPSZrm:
7152   case X86::VGATHERDPSrm:
7153   case X86::VGATHERPF0DPDm:
7154   case X86::VGATHERPF0DPSm:
7155   case X86::VGATHERPF0QPDm:
7156   case X86::VGATHERPF0QPSm:
7157   case X86::VGATHERPF1DPDm:
7158   case X86::VGATHERPF1DPSm:
7159   case X86::VGATHERPF1QPDm:
7160   case X86::VGATHERPF1QPSm:
7161   case X86::VGATHERQPDYrm:
7162   case X86::VGATHERQPDZ128rm:
7163   case X86::VGATHERQPDZ256rm:
7164   case X86::VGATHERQPDZrm:
7165   case X86::VGATHERQPDrm:
7166   case X86::VGATHERQPSYrm:
7167   case X86::VGATHERQPSZ128rm:
7168   case X86::VGATHERQPSZ256rm:
7169   case X86::VGATHERQPSZrm:
7170   case X86::VGATHERQPSrm:
7171   case X86::VPGATHERDDYrm:
7172   case X86::VPGATHERDDZ128rm:
7173   case X86::VPGATHERDDZ256rm:
7174   case X86::VPGATHERDDZrm:
7175   case X86::VPGATHERDDrm:
7176   case X86::VPGATHERDQYrm:
7177   case X86::VPGATHERDQZ128rm:
7178   case X86::VPGATHERDQZ256rm:
7179   case X86::VPGATHERDQZrm:
7180   case X86::VPGATHERDQrm:
7181   case X86::VPGATHERQDYrm:
7182   case X86::VPGATHERQDZ128rm:
7183   case X86::VPGATHERQDZ256rm:
7184   case X86::VPGATHERQDZrm:
7185   case X86::VPGATHERQDrm:
7186   case X86::VPGATHERQQYrm:
7187   case X86::VPGATHERQQZ128rm:
7188   case X86::VPGATHERQQZ256rm:
7189   case X86::VPGATHERQQZrm:
7190   case X86::VPGATHERQQrm:
7191   case X86::VSCATTERDPDZ128mr:
7192   case X86::VSCATTERDPDZ256mr:
7193   case X86::VSCATTERDPDZmr:
7194   case X86::VSCATTERDPSZ128mr:
7195   case X86::VSCATTERDPSZ256mr:
7196   case X86::VSCATTERDPSZmr:
7197   case X86::VSCATTERPF0DPDm:
7198   case X86::VSCATTERPF0DPSm:
7199   case X86::VSCATTERPF0QPDm:
7200   case X86::VSCATTERPF0QPSm:
7201   case X86::VSCATTERPF1DPDm:
7202   case X86::VSCATTERPF1DPSm:
7203   case X86::VSCATTERPF1QPDm:
7204   case X86::VSCATTERPF1QPSm:
7205   case X86::VSCATTERQPDZ128mr:
7206   case X86::VSCATTERQPDZ256mr:
7207   case X86::VSCATTERQPDZmr:
7208   case X86::VSCATTERQPSZ128mr:
7209   case X86::VSCATTERQPSZ256mr:
7210   case X86::VSCATTERQPSZmr:
7211   case X86::VPSCATTERDDZ128mr:
7212   case X86::VPSCATTERDDZ256mr:
7213   case X86::VPSCATTERDDZmr:
7214   case X86::VPSCATTERDQZ128mr:
7215   case X86::VPSCATTERDQZ256mr:
7216   case X86::VPSCATTERDQZmr:
7217   case X86::VPSCATTERQDZ128mr:
7218   case X86::VPSCATTERQDZ256mr:
7219   case X86::VPSCATTERQDZmr:
7220   case X86::VPSCATTERQQZ128mr:
7221   case X86::VPSCATTERQQZ256mr:
7222   case X86::VPSCATTERQQZmr:
7223     return true;
7224   }
7225 }
7226 
7227 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7228                                          const MachineRegisterInfo *MRI,
7229                                          const MachineInstr &DefMI,
7230                                          unsigned DefIdx,
7231                                          const MachineInstr &UseMI,
7232                                          unsigned UseIdx) const {
7233   return isHighLatencyDef(DefMI.getOpcode());
7234 }
7235 
7236 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7237                                            const MachineBasicBlock *MBB) const {
7238   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
7239          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
7240 
7241   // Integer binary math/logic instructions have a third source operand:
7242   // the EFLAGS register. That operand must be both defined here and never
7243   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7244   // not change anything because rearranging the operands could affect other
7245   // instructions that depend on the exact status flags (zero, sign, etc.)
7246   // that are set by using these particular operands with this operation.
7247   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
7248   assert((Inst.getNumDefs() == 1 || FlagDef) &&
7249          "Implicit def isn't flags?");
7250   if (FlagDef && !FlagDef->isDead())
7251     return false;
7252 
7253   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7254 }
7255 
7256 // TODO: There are many more machine instruction opcodes to match:
7257 //       1. Other data types (integer, vectors)
7258 //       2. Other math / logic operations (xor, or)
7259 //       3. Other forms of the same operation (intrinsics and other variants)
7260 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7261   switch (Inst.getOpcode()) {
7262   case X86::AND8rr:
7263   case X86::AND16rr:
7264   case X86::AND32rr:
7265   case X86::AND64rr:
7266   case X86::OR8rr:
7267   case X86::OR16rr:
7268   case X86::OR32rr:
7269   case X86::OR64rr:
7270   case X86::XOR8rr:
7271   case X86::XOR16rr:
7272   case X86::XOR32rr:
7273   case X86::XOR64rr:
7274   case X86::IMUL16rr:
7275   case X86::IMUL32rr:
7276   case X86::IMUL64rr:
7277   case X86::PANDrr:
7278   case X86::PORrr:
7279   case X86::PXORrr:
7280   case X86::ANDPDrr:
7281   case X86::ANDPSrr:
7282   case X86::ORPDrr:
7283   case X86::ORPSrr:
7284   case X86::XORPDrr:
7285   case X86::XORPSrr:
7286   case X86::PADDBrr:
7287   case X86::PADDWrr:
7288   case X86::PADDDrr:
7289   case X86::PADDQrr:
7290   case X86::PMULLWrr:
7291   case X86::PMULLDrr:
7292   case X86::PMAXSBrr:
7293   case X86::PMAXSDrr:
7294   case X86::PMAXSWrr:
7295   case X86::PMAXUBrr:
7296   case X86::PMAXUDrr:
7297   case X86::PMAXUWrr:
7298   case X86::PMINSBrr:
7299   case X86::PMINSDrr:
7300   case X86::PMINSWrr:
7301   case X86::PMINUBrr:
7302   case X86::PMINUDrr:
7303   case X86::PMINUWrr:
7304   case X86::VPANDrr:
7305   case X86::VPANDYrr:
7306   case X86::VPANDDZ128rr:
7307   case X86::VPANDDZ256rr:
7308   case X86::VPANDDZrr:
7309   case X86::VPANDQZ128rr:
7310   case X86::VPANDQZ256rr:
7311   case X86::VPANDQZrr:
7312   case X86::VPORrr:
7313   case X86::VPORYrr:
7314   case X86::VPORDZ128rr:
7315   case X86::VPORDZ256rr:
7316   case X86::VPORDZrr:
7317   case X86::VPORQZ128rr:
7318   case X86::VPORQZ256rr:
7319   case X86::VPORQZrr:
7320   case X86::VPXORrr:
7321   case X86::VPXORYrr:
7322   case X86::VPXORDZ128rr:
7323   case X86::VPXORDZ256rr:
7324   case X86::VPXORDZrr:
7325   case X86::VPXORQZ128rr:
7326   case X86::VPXORQZ256rr:
7327   case X86::VPXORQZrr:
7328   case X86::VANDPDrr:
7329   case X86::VANDPSrr:
7330   case X86::VANDPDYrr:
7331   case X86::VANDPSYrr:
7332   case X86::VANDPDZ128rr:
7333   case X86::VANDPSZ128rr:
7334   case X86::VANDPDZ256rr:
7335   case X86::VANDPSZ256rr:
7336   case X86::VANDPDZrr:
7337   case X86::VANDPSZrr:
7338   case X86::VORPDrr:
7339   case X86::VORPSrr:
7340   case X86::VORPDYrr:
7341   case X86::VORPSYrr:
7342   case X86::VORPDZ128rr:
7343   case X86::VORPSZ128rr:
7344   case X86::VORPDZ256rr:
7345   case X86::VORPSZ256rr:
7346   case X86::VORPDZrr:
7347   case X86::VORPSZrr:
7348   case X86::VXORPDrr:
7349   case X86::VXORPSrr:
7350   case X86::VXORPDYrr:
7351   case X86::VXORPSYrr:
7352   case X86::VXORPDZ128rr:
7353   case X86::VXORPSZ128rr:
7354   case X86::VXORPDZ256rr:
7355   case X86::VXORPSZ256rr:
7356   case X86::VXORPDZrr:
7357   case X86::VXORPSZrr:
7358   case X86::KADDBrr:
7359   case X86::KADDWrr:
7360   case X86::KADDDrr:
7361   case X86::KADDQrr:
7362   case X86::KANDBrr:
7363   case X86::KANDWrr:
7364   case X86::KANDDrr:
7365   case X86::KANDQrr:
7366   case X86::KORBrr:
7367   case X86::KORWrr:
7368   case X86::KORDrr:
7369   case X86::KORQrr:
7370   case X86::KXORBrr:
7371   case X86::KXORWrr:
7372   case X86::KXORDrr:
7373   case X86::KXORQrr:
7374   case X86::VPADDBrr:
7375   case X86::VPADDWrr:
7376   case X86::VPADDDrr:
7377   case X86::VPADDQrr:
7378   case X86::VPADDBYrr:
7379   case X86::VPADDWYrr:
7380   case X86::VPADDDYrr:
7381   case X86::VPADDQYrr:
7382   case X86::VPADDBZ128rr:
7383   case X86::VPADDWZ128rr:
7384   case X86::VPADDDZ128rr:
7385   case X86::VPADDQZ128rr:
7386   case X86::VPADDBZ256rr:
7387   case X86::VPADDWZ256rr:
7388   case X86::VPADDDZ256rr:
7389   case X86::VPADDQZ256rr:
7390   case X86::VPADDBZrr:
7391   case X86::VPADDWZrr:
7392   case X86::VPADDDZrr:
7393   case X86::VPADDQZrr:
7394   case X86::VPMULLWrr:
7395   case X86::VPMULLWYrr:
7396   case X86::VPMULLWZ128rr:
7397   case X86::VPMULLWZ256rr:
7398   case X86::VPMULLWZrr:
7399   case X86::VPMULLDrr:
7400   case X86::VPMULLDYrr:
7401   case X86::VPMULLDZ128rr:
7402   case X86::VPMULLDZ256rr:
7403   case X86::VPMULLDZrr:
7404   case X86::VPMULLQZ128rr:
7405   case X86::VPMULLQZ256rr:
7406   case X86::VPMULLQZrr:
7407   case X86::VPMAXSBrr:
7408   case X86::VPMAXSBYrr:
7409   case X86::VPMAXSBZ128rr:
7410   case X86::VPMAXSBZ256rr:
7411   case X86::VPMAXSBZrr:
7412   case X86::VPMAXSDrr:
7413   case X86::VPMAXSDYrr:
7414   case X86::VPMAXSDZ128rr:
7415   case X86::VPMAXSDZ256rr:
7416   case X86::VPMAXSDZrr:
7417   case X86::VPMAXSQZ128rr:
7418   case X86::VPMAXSQZ256rr:
7419   case X86::VPMAXSQZrr:
7420   case X86::VPMAXSWrr:
7421   case X86::VPMAXSWYrr:
7422   case X86::VPMAXSWZ128rr:
7423   case X86::VPMAXSWZ256rr:
7424   case X86::VPMAXSWZrr:
7425   case X86::VPMAXUBrr:
7426   case X86::VPMAXUBYrr:
7427   case X86::VPMAXUBZ128rr:
7428   case X86::VPMAXUBZ256rr:
7429   case X86::VPMAXUBZrr:
7430   case X86::VPMAXUDrr:
7431   case X86::VPMAXUDYrr:
7432   case X86::VPMAXUDZ128rr:
7433   case X86::VPMAXUDZ256rr:
7434   case X86::VPMAXUDZrr:
7435   case X86::VPMAXUQZ128rr:
7436   case X86::VPMAXUQZ256rr:
7437   case X86::VPMAXUQZrr:
7438   case X86::VPMAXUWrr:
7439   case X86::VPMAXUWYrr:
7440   case X86::VPMAXUWZ128rr:
7441   case X86::VPMAXUWZ256rr:
7442   case X86::VPMAXUWZrr:
7443   case X86::VPMINSBrr:
7444   case X86::VPMINSBYrr:
7445   case X86::VPMINSBZ128rr:
7446   case X86::VPMINSBZ256rr:
7447   case X86::VPMINSBZrr:
7448   case X86::VPMINSDrr:
7449   case X86::VPMINSDYrr:
7450   case X86::VPMINSDZ128rr:
7451   case X86::VPMINSDZ256rr:
7452   case X86::VPMINSDZrr:
7453   case X86::VPMINSQZ128rr:
7454   case X86::VPMINSQZ256rr:
7455   case X86::VPMINSQZrr:
7456   case X86::VPMINSWrr:
7457   case X86::VPMINSWYrr:
7458   case X86::VPMINSWZ128rr:
7459   case X86::VPMINSWZ256rr:
7460   case X86::VPMINSWZrr:
7461   case X86::VPMINUBrr:
7462   case X86::VPMINUBYrr:
7463   case X86::VPMINUBZ128rr:
7464   case X86::VPMINUBZ256rr:
7465   case X86::VPMINUBZrr:
7466   case X86::VPMINUDrr:
7467   case X86::VPMINUDYrr:
7468   case X86::VPMINUDZ128rr:
7469   case X86::VPMINUDZ256rr:
7470   case X86::VPMINUDZrr:
7471   case X86::VPMINUQZ128rr:
7472   case X86::VPMINUQZ256rr:
7473   case X86::VPMINUQZrr:
7474   case X86::VPMINUWrr:
7475   case X86::VPMINUWYrr:
7476   case X86::VPMINUWZ128rr:
7477   case X86::VPMINUWZ256rr:
7478   case X86::VPMINUWZrr:
7479   // Normal min/max instructions are not commutative because of NaN and signed
7480   // zero semantics, but these are. Thus, there's no need to check for global
7481   // relaxed math; the instructions themselves have the properties we need.
7482   case X86::MAXCPDrr:
7483   case X86::MAXCPSrr:
7484   case X86::MAXCSDrr:
7485   case X86::MAXCSSrr:
7486   case X86::MINCPDrr:
7487   case X86::MINCPSrr:
7488   case X86::MINCSDrr:
7489   case X86::MINCSSrr:
7490   case X86::VMAXCPDrr:
7491   case X86::VMAXCPSrr:
7492   case X86::VMAXCPDYrr:
7493   case X86::VMAXCPSYrr:
7494   case X86::VMAXCPDZ128rr:
7495   case X86::VMAXCPSZ128rr:
7496   case X86::VMAXCPDZ256rr:
7497   case X86::VMAXCPSZ256rr:
7498   case X86::VMAXCPDZrr:
7499   case X86::VMAXCPSZrr:
7500   case X86::VMAXCSDrr:
7501   case X86::VMAXCSSrr:
7502   case X86::VMAXCSDZrr:
7503   case X86::VMAXCSSZrr:
7504   case X86::VMINCPDrr:
7505   case X86::VMINCPSrr:
7506   case X86::VMINCPDYrr:
7507   case X86::VMINCPSYrr:
7508   case X86::VMINCPDZ128rr:
7509   case X86::VMINCPSZ128rr:
7510   case X86::VMINCPDZ256rr:
7511   case X86::VMINCPSZ256rr:
7512   case X86::VMINCPDZrr:
7513   case X86::VMINCPSZrr:
7514   case X86::VMINCSDrr:
7515   case X86::VMINCSSrr:
7516   case X86::VMINCSDZrr:
7517   case X86::VMINCSSZrr:
7518     return true;
7519   case X86::ADDPDrr:
7520   case X86::ADDPSrr:
7521   case X86::ADDSDrr:
7522   case X86::ADDSSrr:
7523   case X86::MULPDrr:
7524   case X86::MULPSrr:
7525   case X86::MULSDrr:
7526   case X86::MULSSrr:
7527   case X86::VADDPDrr:
7528   case X86::VADDPSrr:
7529   case X86::VADDPDYrr:
7530   case X86::VADDPSYrr:
7531   case X86::VADDPDZ128rr:
7532   case X86::VADDPSZ128rr:
7533   case X86::VADDPDZ256rr:
7534   case X86::VADDPSZ256rr:
7535   case X86::VADDPDZrr:
7536   case X86::VADDPSZrr:
7537   case X86::VADDSDrr:
7538   case X86::VADDSSrr:
7539   case X86::VADDSDZrr:
7540   case X86::VADDSSZrr:
7541   case X86::VMULPDrr:
7542   case X86::VMULPSrr:
7543   case X86::VMULPDYrr:
7544   case X86::VMULPSYrr:
7545   case X86::VMULPDZ128rr:
7546   case X86::VMULPSZ128rr:
7547   case X86::VMULPDZ256rr:
7548   case X86::VMULPSZ256rr:
7549   case X86::VMULPDZrr:
7550   case X86::VMULPSZrr:
7551   case X86::VMULSDrr:
7552   case X86::VMULSSrr:
7553   case X86::VMULSDZrr:
7554   case X86::VMULSSZrr:
7555     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7556   default:
7557     return false;
7558   }
7559 }
7560 
7561 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
7562 /// register then, if possible, describe the value in terms of the source
7563 /// register.
7564 static Optional<ParamLoadedValue>
7565 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
7566                          const TargetRegisterInfo *TRI) {
7567   Register DestReg = MI.getOperand(0).getReg();
7568   Register SrcReg = MI.getOperand(1).getReg();
7569 
7570   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7571 
7572   // If the described register is the destination, just return the source.
7573   if (DestReg == DescribedReg)
7574     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7575 
7576   // If the described register is a sub-register of the destination register,
7577   // then pick out the source register's corresponding sub-register.
7578   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
7579     unsigned SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
7580     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
7581   }
7582 
7583   // The remaining case to consider is when the described register is a
7584   // super-register of the destination register. MOV8rr and MOV16rr does not
7585   // write to any of the other bytes in the register, meaning that we'd have to
7586   // describe the value using a combination of the source register and the
7587   // non-overlapping bits in the described register, which is not currently
7588   // possible.
7589   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
7590       !TRI->isSuperRegister(DestReg, DescribedReg))
7591     return None;
7592 
7593   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
7594   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7595 }
7596 
7597 Optional<ParamLoadedValue>
7598 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
7599   const MachineOperand *Op = nullptr;
7600   DIExpression *Expr = nullptr;
7601 
7602   const TargetRegisterInfo *TRI = &getRegisterInfo();
7603 
7604   switch (MI.getOpcode()) {
7605   case X86::LEA32r:
7606   case X86::LEA64r:
7607   case X86::LEA64_32r: {
7608     // We may need to describe a 64-bit parameter with a 32-bit LEA.
7609     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7610       return None;
7611 
7612     // Operand 4 could be global address. For now we do not support
7613     // such situation.
7614     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
7615       return None;
7616 
7617     const MachineOperand &Op1 = MI.getOperand(1);
7618     const MachineOperand &Op2 = MI.getOperand(3);
7619     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
7620                            Register::isPhysicalRegister(Op2.getReg())));
7621 
7622     // Omit situations like:
7623     // %rsi = lea %rsi, 4, ...
7624     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
7625         Op2.getReg() == MI.getOperand(0).getReg())
7626       return None;
7627     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
7628               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
7629              (Op2.getReg() != X86::NoRegister &&
7630               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
7631       return None;
7632 
7633     int64_t Coef = MI.getOperand(2).getImm();
7634     int64_t Offset = MI.getOperand(4).getImm();
7635     SmallVector<uint64_t, 8> Ops;
7636 
7637     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
7638       Op = &Op1;
7639     } else if (Op1.isFI())
7640       Op = &Op1;
7641 
7642     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
7643       Ops.push_back(dwarf::DW_OP_constu);
7644       Ops.push_back(Coef + 1);
7645       Ops.push_back(dwarf::DW_OP_mul);
7646     } else {
7647       if (Op && Op2.getReg() != X86::NoRegister) {
7648         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
7649         if (dwarfReg < 0)
7650           return None;
7651         else if (dwarfReg < 32) {
7652           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
7653           Ops.push_back(0);
7654         } else {
7655           Ops.push_back(dwarf::DW_OP_bregx);
7656           Ops.push_back(dwarfReg);
7657           Ops.push_back(0);
7658         }
7659       } else if (!Op) {
7660         assert(Op2.getReg() != X86::NoRegister);
7661         Op = &Op2;
7662       }
7663 
7664       if (Coef > 1) {
7665         assert(Op2.getReg() != X86::NoRegister);
7666         Ops.push_back(dwarf::DW_OP_constu);
7667         Ops.push_back(Coef);
7668         Ops.push_back(dwarf::DW_OP_mul);
7669       }
7670 
7671       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
7672           Op2.getReg() != X86::NoRegister) {
7673         Ops.push_back(dwarf::DW_OP_plus);
7674       }
7675     }
7676 
7677     DIExpression::appendOffset(Ops, Offset);
7678     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
7679 
7680     return ParamLoadedValue(*Op, Expr);;
7681   }
7682   case X86::MOV32ri:
7683   case X86::MOV64ri:
7684   case X86::MOV64ri32:
7685     // MOV32ri may be used for producing zero-extended 32-bit immediates in
7686     // 64-bit parameters, so we need to consider super-registers.
7687     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7688       return None;
7689     return ParamLoadedValue(MI.getOperand(1), Expr);
7690   case X86::MOV8rr:
7691   case X86::MOV16rr:
7692   case X86::MOV32rr:
7693   case X86::MOV64rr:
7694     return describeMOVrrLoadedValue(MI, Reg, TRI);
7695   case X86::XOR32rr: {
7696     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
7697     // super-registers.
7698     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7699       return None;
7700     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
7701       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
7702     return None;
7703   }
7704   case X86::MOVSX64rr32: {
7705     // We may need to describe the lower 32 bits of the MOVSX; for example, in
7706     // cases like this:
7707     //
7708     //  $ebx = [...]
7709     //  $rdi = MOVSX64rr32 $ebx
7710     //  $esi = MOV32rr $edi
7711     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
7712       return None;
7713 
7714     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7715 
7716     // If the described register is the destination register we need to
7717     // sign-extend the source register from 32 bits. The other case we handle
7718     // is when the described register is the 32-bit sub-register of the
7719     // destination register, in case we just need to return the source
7720     // register.
7721     if (Reg == MI.getOperand(0).getReg())
7722       Expr = DIExpression::appendExt(Expr, 32, 64, true);
7723     else
7724       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
7725              "Unhandled sub-register case for MOVSX64rr32");
7726 
7727     return ParamLoadedValue(MI.getOperand(1), Expr);
7728   }
7729   default:
7730     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
7731     return TargetInstrInfo::describeLoadedValue(MI, Reg);
7732   }
7733 }
7734 
7735 /// This is an architecture-specific helper function of reassociateOps.
7736 /// Set special operand attributes for new instructions after reassociation.
7737 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7738                                          MachineInstr &OldMI2,
7739                                          MachineInstr &NewMI1,
7740                                          MachineInstr &NewMI2) const {
7741   // Integer instructions may define an implicit EFLAGS dest register operand.
7742   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
7743   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
7744 
7745   assert(!OldFlagDef1 == !OldFlagDef2 &&
7746          "Unexpected instruction type for reassociation");
7747 
7748   if (!OldFlagDef1 || !OldFlagDef2)
7749     return;
7750 
7751   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
7752          "Must have dead EFLAGS operand in reassociable instruction");
7753 
7754   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
7755   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
7756 
7757   assert(NewFlagDef1 && NewFlagDef2 &&
7758          "Unexpected operand in reassociable instruction");
7759 
7760   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7761   // of this pass or other passes. The EFLAGS operands must be dead in these new
7762   // instructions because the EFLAGS operands in the original instructions must
7763   // be dead in order for reassociation to occur.
7764   NewFlagDef1->setIsDead();
7765   NewFlagDef2->setIsDead();
7766 }
7767 
7768 std::pair<unsigned, unsigned>
7769 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7770   return std::make_pair(TF, 0u);
7771 }
7772 
7773 ArrayRef<std::pair<unsigned, const char *>>
7774 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7775   using namespace X86II;
7776   static const std::pair<unsigned, const char *> TargetFlags[] = {
7777       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7778       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7779       {MO_GOT, "x86-got"},
7780       {MO_GOTOFF, "x86-gotoff"},
7781       {MO_GOTPCREL, "x86-gotpcrel"},
7782       {MO_PLT, "x86-plt"},
7783       {MO_TLSGD, "x86-tlsgd"},
7784       {MO_TLSLD, "x86-tlsld"},
7785       {MO_TLSLDM, "x86-tlsldm"},
7786       {MO_GOTTPOFF, "x86-gottpoff"},
7787       {MO_INDNTPOFF, "x86-indntpoff"},
7788       {MO_TPOFF, "x86-tpoff"},
7789       {MO_DTPOFF, "x86-dtpoff"},
7790       {MO_NTPOFF, "x86-ntpoff"},
7791       {MO_GOTNTPOFF, "x86-gotntpoff"},
7792       {MO_DLLIMPORT, "x86-dllimport"},
7793       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7794       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7795       {MO_TLVP, "x86-tlvp"},
7796       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7797       {MO_SECREL, "x86-secrel"},
7798       {MO_COFFSTUB, "x86-coffstub"}};
7799   return makeArrayRef(TargetFlags);
7800 }
7801 
7802 namespace {
7803   /// Create Global Base Reg pass. This initializes the PIC
7804   /// global base register for x86-32.
7805   struct CGBR : public MachineFunctionPass {
7806     static char ID;
7807     CGBR() : MachineFunctionPass(ID) {}
7808 
7809     bool runOnMachineFunction(MachineFunction &MF) override {
7810       const X86TargetMachine *TM =
7811         static_cast<const X86TargetMachine *>(&MF.getTarget());
7812       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7813 
7814       // Don't do anything in the 64-bit small and kernel code models. They use
7815       // RIP-relative addressing for everything.
7816       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7817                             TM->getCodeModel() == CodeModel::Kernel))
7818         return false;
7819 
7820       // Only emit a global base reg in PIC mode.
7821       if (!TM->isPositionIndependent())
7822         return false;
7823 
7824       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7825       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7826 
7827       // If we didn't need a GlobalBaseReg, don't insert code.
7828       if (GlobalBaseReg == 0)
7829         return false;
7830 
7831       // Insert the set of GlobalBaseReg into the first MBB of the function
7832       MachineBasicBlock &FirstMBB = MF.front();
7833       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7834       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7835       MachineRegisterInfo &RegInfo = MF.getRegInfo();
7836       const X86InstrInfo *TII = STI.getInstrInfo();
7837 
7838       unsigned PC;
7839       if (STI.isPICStyleGOT())
7840         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7841       else
7842         PC = GlobalBaseReg;
7843 
7844       if (STI.is64Bit()) {
7845         if (TM->getCodeModel() == CodeModel::Medium) {
7846           // In the medium code model, use a RIP-relative LEA to materialize the
7847           // GOT.
7848           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7849               .addReg(X86::RIP)
7850               .addImm(0)
7851               .addReg(0)
7852               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7853               .addReg(0);
7854         } else if (TM->getCodeModel() == CodeModel::Large) {
7855           // In the large code model, we are aiming for this code, though the
7856           // register allocation may vary:
7857           //   leaq .LN$pb(%rip), %rax
7858           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7859           //   addq %rcx, %rax
7860           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7861           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7862           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7863           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7864               .addReg(X86::RIP)
7865               .addImm(0)
7866               .addReg(0)
7867               .addSym(MF.getPICBaseSymbol())
7868               .addReg(0);
7869           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7870           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7871               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7872                                  X86II::MO_PIC_BASE_OFFSET);
7873           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7874               .addReg(PBReg, RegState::Kill)
7875               .addReg(GOTReg, RegState::Kill);
7876         } else {
7877           llvm_unreachable("unexpected code model");
7878         }
7879       } else {
7880         // Operand of MovePCtoStack is completely ignored by asm printer. It's
7881         // only used in JIT code emission as displacement to pc.
7882         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7883 
7884         // If we're using vanilla 'GOT' PIC style, we should use relative
7885         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7886         if (STI.isPICStyleGOT()) {
7887           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7888           // %some_register
7889           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7890               .addReg(PC)
7891               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7892                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
7893         }
7894       }
7895 
7896       return true;
7897     }
7898 
7899     StringRef getPassName() const override {
7900       return "X86 PIC Global Base Reg Initialization";
7901     }
7902 
7903     void getAnalysisUsage(AnalysisUsage &AU) const override {
7904       AU.setPreservesCFG();
7905       MachineFunctionPass::getAnalysisUsage(AU);
7906     }
7907   };
7908 }
7909 
7910 char CGBR::ID = 0;
7911 FunctionPass*
7912 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7913 
7914 namespace {
7915   struct LDTLSCleanup : public MachineFunctionPass {
7916     static char ID;
7917     LDTLSCleanup() : MachineFunctionPass(ID) {}
7918 
7919     bool runOnMachineFunction(MachineFunction &MF) override {
7920       if (skipFunction(MF.getFunction()))
7921         return false;
7922 
7923       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7924       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7925         // No point folding accesses if there isn't at least two.
7926         return false;
7927       }
7928 
7929       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7930       return VisitNode(DT->getRootNode(), 0);
7931     }
7932 
7933     // Visit the dominator subtree rooted at Node in pre-order.
7934     // If TLSBaseAddrReg is non-null, then use that to replace any
7935     // TLS_base_addr instructions. Otherwise, create the register
7936     // when the first such instruction is seen, and then use it
7937     // as we encounter more instructions.
7938     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7939       MachineBasicBlock *BB = Node->getBlock();
7940       bool Changed = false;
7941 
7942       // Traverse the current block.
7943       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7944            ++I) {
7945         switch (I->getOpcode()) {
7946           case X86::TLS_base_addr32:
7947           case X86::TLS_base_addr64:
7948             if (TLSBaseAddrReg)
7949               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7950             else
7951               I = SetRegister(*I, &TLSBaseAddrReg);
7952             Changed = true;
7953             break;
7954           default:
7955             break;
7956         }
7957       }
7958 
7959       // Visit the children of this block in the dominator tree.
7960       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7961            I != E; ++I) {
7962         Changed |= VisitNode(*I, TLSBaseAddrReg);
7963       }
7964 
7965       return Changed;
7966     }
7967 
7968     // Replace the TLS_base_addr instruction I with a copy from
7969     // TLSBaseAddrReg, returning the new instruction.
7970     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7971                                          unsigned TLSBaseAddrReg) {
7972       MachineFunction *MF = I.getParent()->getParent();
7973       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7974       const bool is64Bit = STI.is64Bit();
7975       const X86InstrInfo *TII = STI.getInstrInfo();
7976 
7977       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7978       MachineInstr *Copy =
7979           BuildMI(*I.getParent(), I, I.getDebugLoc(),
7980                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7981               .addReg(TLSBaseAddrReg);
7982 
7983       // Erase the TLS_base_addr instruction.
7984       I.eraseFromParent();
7985 
7986       return Copy;
7987     }
7988 
7989     // Create a virtual register in *TLSBaseAddrReg, and populate it by
7990     // inserting a copy instruction after I. Returns the new instruction.
7991     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7992       MachineFunction *MF = I.getParent()->getParent();
7993       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7994       const bool is64Bit = STI.is64Bit();
7995       const X86InstrInfo *TII = STI.getInstrInfo();
7996 
7997       // Create a virtual register for the TLS base address.
7998       MachineRegisterInfo &RegInfo = MF->getRegInfo();
7999       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8000                                                       ? &X86::GR64RegClass
8001                                                       : &X86::GR32RegClass);
8002 
8003       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8004       MachineInstr *Next = I.getNextNode();
8005       MachineInstr *Copy =
8006           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8007                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8008               .addReg(is64Bit ? X86::RAX : X86::EAX);
8009 
8010       return Copy;
8011     }
8012 
8013     StringRef getPassName() const override {
8014       return "Local Dynamic TLS Access Clean-up";
8015     }
8016 
8017     void getAnalysisUsage(AnalysisUsage &AU) const override {
8018       AU.setPreservesCFG();
8019       AU.addRequired<MachineDominatorTree>();
8020       MachineFunctionPass::getAnalysisUsage(AU);
8021     }
8022   };
8023 }
8024 
8025 char LDTLSCleanup::ID = 0;
8026 FunctionPass*
8027 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8028 
8029 /// Constants defining how certain sequences should be outlined.
8030 ///
8031 /// \p MachineOutlinerDefault implies that the function is called with a call
8032 /// instruction, and a return must be emitted for the outlined function frame.
8033 ///
8034 /// That is,
8035 ///
8036 /// I1                                 OUTLINED_FUNCTION:
8037 /// I2 --> call OUTLINED_FUNCTION       I1
8038 /// I3                                  I2
8039 ///                                     I3
8040 ///                                     ret
8041 ///
8042 /// * Call construction overhead: 1 (call instruction)
8043 /// * Frame construction overhead: 1 (return instruction)
8044 ///
8045 /// \p MachineOutlinerTailCall implies that the function is being tail called.
8046 /// A jump is emitted instead of a call, and the return is already present in
8047 /// the outlined sequence. That is,
8048 ///
8049 /// I1                                 OUTLINED_FUNCTION:
8050 /// I2 --> jmp OUTLINED_FUNCTION       I1
8051 /// ret                                I2
8052 ///                                    ret
8053 ///
8054 /// * Call construction overhead: 1 (jump instruction)
8055 /// * Frame construction overhead: 0 (don't need to return)
8056 ///
8057 enum MachineOutlinerClass {
8058   MachineOutlinerDefault,
8059   MachineOutlinerTailCall
8060 };
8061 
8062 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8063     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8064   unsigned SequenceSize =
8065       std::accumulate(RepeatedSequenceLocs[0].front(),
8066                       std::next(RepeatedSequenceLocs[0].back()), 0,
8067                       [](unsigned Sum, const MachineInstr &MI) {
8068                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
8069                         // we can't tell the cost.  Just assume each instruction
8070                         // is one byte.
8071                         if (MI.isDebugInstr() || MI.isKill())
8072                           return Sum;
8073                         return Sum + 1;
8074                       });
8075 
8076   // FIXME: Use real size in bytes for call and ret instructions.
8077   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8078     for (outliner::Candidate &C : RepeatedSequenceLocs)
8079       C.setCallInfo(MachineOutlinerTailCall, 1);
8080 
8081     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8082                                       0, // Number of bytes to emit frame.
8083                                       MachineOutlinerTailCall // Type of frame.
8084     );
8085   }
8086 
8087   for (outliner::Candidate &C : RepeatedSequenceLocs)
8088     C.setCallInfo(MachineOutlinerDefault, 1);
8089 
8090   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
8091                                     MachineOutlinerDefault);
8092 }
8093 
8094 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
8095                                            bool OutlineFromLinkOnceODRs) const {
8096   const Function &F = MF.getFunction();
8097 
8098   // Does the function use a red zone? If it does, then we can't risk messing
8099   // with the stack.
8100   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
8101     // It could have a red zone. If it does, then we don't want to touch it.
8102     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8103     if (!X86FI || X86FI->getUsesRedZone())
8104       return false;
8105   }
8106 
8107   // If we *don't* want to outline from things that could potentially be deduped
8108   // then return false.
8109   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
8110       return false;
8111 
8112   // This function is viable for outlining, so return true.
8113   return true;
8114 }
8115 
8116 outliner::InstrType
8117 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
8118   MachineInstr &MI = *MIT;
8119   // Don't allow debug values to impact outlining type.
8120   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
8121     return outliner::InstrType::Invisible;
8122 
8123   // At this point, KILL instructions don't really tell us much so we can go
8124   // ahead and skip over them.
8125   if (MI.isKill())
8126     return outliner::InstrType::Invisible;
8127 
8128   // Is this a tail call? If yes, we can outline as a tail call.
8129   if (isTailCall(MI))
8130     return outliner::InstrType::Legal;
8131 
8132   // Is this the terminator of a basic block?
8133   if (MI.isTerminator() || MI.isReturn()) {
8134 
8135     // Does its parent have any successors in its MachineFunction?
8136     if (MI.getParent()->succ_empty())
8137       return outliner::InstrType::Legal;
8138 
8139     // It does, so we can't tail call it.
8140     return outliner::InstrType::Illegal;
8141   }
8142 
8143   // Don't outline anything that modifies or reads from the stack pointer.
8144   //
8145   // FIXME: There are instructions which are being manually built without
8146   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
8147   // able to remove the extra checks once those are fixed up. For example,
8148   // sometimes we might get something like %rax = POP64r 1. This won't be
8149   // caught by modifiesRegister or readsRegister even though the instruction
8150   // really ought to be formed so that modifiesRegister/readsRegister would
8151   // catch it.
8152   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
8153       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
8154       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
8155     return outliner::InstrType::Illegal;
8156 
8157   // Outlined calls change the instruction pointer, so don't read from it.
8158   if (MI.readsRegister(X86::RIP, &RI) ||
8159       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
8160       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
8161     return outliner::InstrType::Illegal;
8162 
8163   // Positions can't safely be outlined.
8164   if (MI.isPosition())
8165     return outliner::InstrType::Illegal;
8166 
8167   // Make sure none of the operands of this instruction do anything tricky.
8168   for (const MachineOperand &MOP : MI.operands())
8169     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
8170         MOP.isTargetIndex())
8171       return outliner::InstrType::Illegal;
8172 
8173   return outliner::InstrType::Legal;
8174 }
8175 
8176 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
8177                                           MachineFunction &MF,
8178                                           const outliner::OutlinedFunction &OF)
8179                                           const {
8180   // If we're a tail call, we already have a return, so don't do anything.
8181   if (OF.FrameConstructionID == MachineOutlinerTailCall)
8182     return;
8183 
8184   // We're a normal call, so our sequence doesn't have a return instruction.
8185   // Add it in.
8186   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
8187   MBB.insert(MBB.end(), retq);
8188 }
8189 
8190 MachineBasicBlock::iterator
8191 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
8192                                  MachineBasicBlock::iterator &It,
8193                                  MachineFunction &MF,
8194                                  const outliner::Candidate &C) const {
8195   // Is it a tail call?
8196   if (C.CallConstructionID == MachineOutlinerTailCall) {
8197     // Yes, just insert a JMP.
8198     It = MBB.insert(It,
8199                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
8200                       .addGlobalAddress(M.getNamedValue(MF.getName())));
8201   } else {
8202     // No, insert a call.
8203     It = MBB.insert(It,
8204                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
8205                       .addGlobalAddress(M.getNamedValue(MF.getName())));
8206   }
8207 
8208   return It;
8209 }
8210 
8211 #define GET_INSTRINFO_HELPERS
8212 #include "X86GenInstrInfo.inc"
8213