1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCExpr.h" 36 #include "llvm/MC/MCInst.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "x86-instr-info" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "X86GenInstrInfo.inc" 49 50 static cl::opt<bool> 51 NoFusing("disable-spill-fusing", 52 cl::desc("Disable fusing of spill code into instructions"), 53 cl::Hidden); 54 static cl::opt<bool> 55 PrintFailedFusing("print-failed-fuse-candidates", 56 cl::desc("Print instructions that the allocator wants to" 57 " fuse, but the X86 backend currently can't"), 58 cl::Hidden); 59 static cl::opt<bool> 60 ReMatPICStubLoad("remat-pic-stub-load", 61 cl::desc("Re-materialize load from stub in PIC mode"), 62 cl::init(false), cl::Hidden); 63 static cl::opt<unsigned> 64 PartialRegUpdateClearance("partial-reg-update-clearance", 65 cl::desc("Clearance between two register writes " 66 "for inserting XOR to avoid partial " 67 "register update"), 68 cl::init(64), cl::Hidden); 69 static cl::opt<unsigned> 70 UndefRegClearance("undef-reg-clearance", 71 cl::desc("How many idle instructions we would like before " 72 "certain undef register reads"), 73 cl::init(128), cl::Hidden); 74 75 76 // Pin the vtable to this file. 77 void X86InstrInfo::anchor() {} 78 79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 80 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 81 : X86::ADJCALLSTACKDOWN32), 82 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 83 : X86::ADJCALLSTACKUP32), 84 X86::CATCHRET, 85 (STI.is64Bit() ? X86::RETQ : X86::RETL)), 86 Subtarget(STI), RI(STI.getTargetTriple()) { 87 } 88 89 bool 90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 91 unsigned &SrcReg, unsigned &DstReg, 92 unsigned &SubIdx) const { 93 switch (MI.getOpcode()) { 94 default: break; 95 case X86::MOVSX16rr8: 96 case X86::MOVZX16rr8: 97 case X86::MOVSX32rr8: 98 case X86::MOVZX32rr8: 99 case X86::MOVSX64rr8: 100 if (!Subtarget.is64Bit()) 101 // It's not always legal to reference the low 8-bit of the larger 102 // register in 32-bit mode. 103 return false; 104 LLVM_FALLTHROUGH; 105 case X86::MOVSX32rr16: 106 case X86::MOVZX32rr16: 107 case X86::MOVSX64rr16: 108 case X86::MOVSX64rr32: { 109 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 110 // Be conservative. 111 return false; 112 SrcReg = MI.getOperand(1).getReg(); 113 DstReg = MI.getOperand(0).getReg(); 114 switch (MI.getOpcode()) { 115 default: llvm_unreachable("Unreachable!"); 116 case X86::MOVSX16rr8: 117 case X86::MOVZX16rr8: 118 case X86::MOVSX32rr8: 119 case X86::MOVZX32rr8: 120 case X86::MOVSX64rr8: 121 SubIdx = X86::sub_8bit; 122 break; 123 case X86::MOVSX32rr16: 124 case X86::MOVZX32rr16: 125 case X86::MOVSX64rr16: 126 SubIdx = X86::sub_16bit; 127 break; 128 case X86::MOVSX64rr32: 129 SubIdx = X86::sub_32bit; 130 break; 131 } 132 return true; 133 } 134 } 135 return false; 136 } 137 138 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 139 const MachineFunction *MF = MI.getParent()->getParent(); 140 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 141 142 if (isFrameInstr(MI)) { 143 unsigned StackAlign = TFI->getStackAlignment(); 144 int SPAdj = alignTo(getFrameSize(MI), StackAlign); 145 SPAdj -= getFrameAdjustment(MI); 146 if (!isFrameSetup(MI)) 147 SPAdj = -SPAdj; 148 return SPAdj; 149 } 150 151 // To know whether a call adjusts the stack, we need information 152 // that is bound to the following ADJCALLSTACKUP pseudo. 153 // Look for the next ADJCALLSTACKUP that follows the call. 154 if (MI.isCall()) { 155 const MachineBasicBlock *MBB = MI.getParent(); 156 auto I = ++MachineBasicBlock::const_iterator(MI); 157 for (auto E = MBB->end(); I != E; ++I) { 158 if (I->getOpcode() == getCallFrameDestroyOpcode() || 159 I->isCall()) 160 break; 161 } 162 163 // If we could not find a frame destroy opcode, then it has already 164 // been simplified, so we don't care. 165 if (I->getOpcode() != getCallFrameDestroyOpcode()) 166 return 0; 167 168 return -(I->getOperand(1).getImm()); 169 } 170 171 // Currently handle only PUSHes we can reasonably expect to see 172 // in call sequences 173 switch (MI.getOpcode()) { 174 default: 175 return 0; 176 case X86::PUSH32i8: 177 case X86::PUSH32r: 178 case X86::PUSH32rmm: 179 case X86::PUSH32rmr: 180 case X86::PUSHi32: 181 return 4; 182 case X86::PUSH64i8: 183 case X86::PUSH64r: 184 case X86::PUSH64rmm: 185 case X86::PUSH64rmr: 186 case X86::PUSH64i32: 187 return 8; 188 } 189 } 190 191 /// Return true and the FrameIndex if the specified 192 /// operand and follow operands form a reference to the stack frame. 193 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 194 int &FrameIndex) const { 195 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 196 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 197 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 198 MI.getOperand(Op + X86::AddrDisp).isImm() && 199 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 200 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 201 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 202 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 203 return true; 204 } 205 return false; 206 } 207 208 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 209 switch (Opcode) { 210 default: 211 return false; 212 case X86::MOV8rm: 213 case X86::KMOVBkm: 214 MemBytes = 1; 215 return true; 216 case X86::MOV16rm: 217 case X86::KMOVWkm: 218 MemBytes = 2; 219 return true; 220 case X86::MOV32rm: 221 case X86::MOVSSrm: 222 case X86::MOVSSrm_alt: 223 case X86::VMOVSSrm: 224 case X86::VMOVSSrm_alt: 225 case X86::VMOVSSZrm: 226 case X86::VMOVSSZrm_alt: 227 case X86::KMOVDkm: 228 MemBytes = 4; 229 return true; 230 case X86::MOV64rm: 231 case X86::LD_Fp64m: 232 case X86::MOVSDrm: 233 case X86::MOVSDrm_alt: 234 case X86::VMOVSDrm: 235 case X86::VMOVSDrm_alt: 236 case X86::VMOVSDZrm: 237 case X86::VMOVSDZrm_alt: 238 case X86::MMX_MOVD64rm: 239 case X86::MMX_MOVQ64rm: 240 case X86::KMOVQkm: 241 MemBytes = 8; 242 return true; 243 case X86::MOVAPSrm: 244 case X86::MOVUPSrm: 245 case X86::MOVAPDrm: 246 case X86::MOVUPDrm: 247 case X86::MOVDQArm: 248 case X86::MOVDQUrm: 249 case X86::VMOVAPSrm: 250 case X86::VMOVUPSrm: 251 case X86::VMOVAPDrm: 252 case X86::VMOVUPDrm: 253 case X86::VMOVDQArm: 254 case X86::VMOVDQUrm: 255 case X86::VMOVAPSZ128rm: 256 case X86::VMOVUPSZ128rm: 257 case X86::VMOVAPSZ128rm_NOVLX: 258 case X86::VMOVUPSZ128rm_NOVLX: 259 case X86::VMOVAPDZ128rm: 260 case X86::VMOVUPDZ128rm: 261 case X86::VMOVDQU8Z128rm: 262 case X86::VMOVDQU16Z128rm: 263 case X86::VMOVDQA32Z128rm: 264 case X86::VMOVDQU32Z128rm: 265 case X86::VMOVDQA64Z128rm: 266 case X86::VMOVDQU64Z128rm: 267 MemBytes = 16; 268 return true; 269 case X86::VMOVAPSYrm: 270 case X86::VMOVUPSYrm: 271 case X86::VMOVAPDYrm: 272 case X86::VMOVUPDYrm: 273 case X86::VMOVDQAYrm: 274 case X86::VMOVDQUYrm: 275 case X86::VMOVAPSZ256rm: 276 case X86::VMOVUPSZ256rm: 277 case X86::VMOVAPSZ256rm_NOVLX: 278 case X86::VMOVUPSZ256rm_NOVLX: 279 case X86::VMOVAPDZ256rm: 280 case X86::VMOVUPDZ256rm: 281 case X86::VMOVDQU8Z256rm: 282 case X86::VMOVDQU16Z256rm: 283 case X86::VMOVDQA32Z256rm: 284 case X86::VMOVDQU32Z256rm: 285 case X86::VMOVDQA64Z256rm: 286 case X86::VMOVDQU64Z256rm: 287 MemBytes = 32; 288 return true; 289 case X86::VMOVAPSZrm: 290 case X86::VMOVUPSZrm: 291 case X86::VMOVAPDZrm: 292 case X86::VMOVUPDZrm: 293 case X86::VMOVDQU8Zrm: 294 case X86::VMOVDQU16Zrm: 295 case X86::VMOVDQA32Zrm: 296 case X86::VMOVDQU32Zrm: 297 case X86::VMOVDQA64Zrm: 298 case X86::VMOVDQU64Zrm: 299 MemBytes = 64; 300 return true; 301 } 302 } 303 304 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 305 switch (Opcode) { 306 default: 307 return false; 308 case X86::MOV8mr: 309 case X86::KMOVBmk: 310 MemBytes = 1; 311 return true; 312 case X86::MOV16mr: 313 case X86::KMOVWmk: 314 MemBytes = 2; 315 return true; 316 case X86::MOV32mr: 317 case X86::MOVSSmr: 318 case X86::VMOVSSmr: 319 case X86::VMOVSSZmr: 320 case X86::KMOVDmk: 321 MemBytes = 4; 322 return true; 323 case X86::MOV64mr: 324 case X86::ST_FpP64m: 325 case X86::MOVSDmr: 326 case X86::VMOVSDmr: 327 case X86::VMOVSDZmr: 328 case X86::MMX_MOVD64mr: 329 case X86::MMX_MOVQ64mr: 330 case X86::MMX_MOVNTQmr: 331 case X86::KMOVQmk: 332 MemBytes = 8; 333 return true; 334 case X86::MOVAPSmr: 335 case X86::MOVUPSmr: 336 case X86::MOVAPDmr: 337 case X86::MOVUPDmr: 338 case X86::MOVDQAmr: 339 case X86::MOVDQUmr: 340 case X86::VMOVAPSmr: 341 case X86::VMOVUPSmr: 342 case X86::VMOVAPDmr: 343 case X86::VMOVUPDmr: 344 case X86::VMOVDQAmr: 345 case X86::VMOVDQUmr: 346 case X86::VMOVUPSZ128mr: 347 case X86::VMOVAPSZ128mr: 348 case X86::VMOVUPSZ128mr_NOVLX: 349 case X86::VMOVAPSZ128mr_NOVLX: 350 case X86::VMOVUPDZ128mr: 351 case X86::VMOVAPDZ128mr: 352 case X86::VMOVDQA32Z128mr: 353 case X86::VMOVDQU32Z128mr: 354 case X86::VMOVDQA64Z128mr: 355 case X86::VMOVDQU64Z128mr: 356 case X86::VMOVDQU8Z128mr: 357 case X86::VMOVDQU16Z128mr: 358 MemBytes = 16; 359 return true; 360 case X86::VMOVUPSYmr: 361 case X86::VMOVAPSYmr: 362 case X86::VMOVUPDYmr: 363 case X86::VMOVAPDYmr: 364 case X86::VMOVDQUYmr: 365 case X86::VMOVDQAYmr: 366 case X86::VMOVUPSZ256mr: 367 case X86::VMOVAPSZ256mr: 368 case X86::VMOVUPSZ256mr_NOVLX: 369 case X86::VMOVAPSZ256mr_NOVLX: 370 case X86::VMOVUPDZ256mr: 371 case X86::VMOVAPDZ256mr: 372 case X86::VMOVDQU8Z256mr: 373 case X86::VMOVDQU16Z256mr: 374 case X86::VMOVDQA32Z256mr: 375 case X86::VMOVDQU32Z256mr: 376 case X86::VMOVDQA64Z256mr: 377 case X86::VMOVDQU64Z256mr: 378 MemBytes = 32; 379 return true; 380 case X86::VMOVUPSZmr: 381 case X86::VMOVAPSZmr: 382 case X86::VMOVUPDZmr: 383 case X86::VMOVAPDZmr: 384 case X86::VMOVDQU8Zmr: 385 case X86::VMOVDQU16Zmr: 386 case X86::VMOVDQA32Zmr: 387 case X86::VMOVDQU32Zmr: 388 case X86::VMOVDQA64Zmr: 389 case X86::VMOVDQU64Zmr: 390 MemBytes = 64; 391 return true; 392 } 393 return false; 394 } 395 396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 397 int &FrameIndex) const { 398 unsigned Dummy; 399 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 400 } 401 402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 403 int &FrameIndex, 404 unsigned &MemBytes) const { 405 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 406 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 407 return MI.getOperand(0).getReg(); 408 return 0; 409 } 410 411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 412 int &FrameIndex) const { 413 unsigned Dummy; 414 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 415 unsigned Reg; 416 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 417 return Reg; 418 // Check for post-frame index elimination operations 419 SmallVector<const MachineMemOperand *, 1> Accesses; 420 if (hasLoadFromStackSlot(MI, Accesses)) { 421 FrameIndex = 422 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 423 ->getFrameIndex(); 424 return 1; 425 } 426 } 427 return 0; 428 } 429 430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 431 int &FrameIndex) const { 432 unsigned Dummy; 433 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 434 } 435 436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 437 int &FrameIndex, 438 unsigned &MemBytes) const { 439 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 440 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 441 isFrameOperand(MI, 0, FrameIndex)) 442 return MI.getOperand(X86::AddrNumOperands).getReg(); 443 return 0; 444 } 445 446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 447 int &FrameIndex) const { 448 unsigned Dummy; 449 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 450 unsigned Reg; 451 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 452 return Reg; 453 // Check for post-frame index elimination operations 454 SmallVector<const MachineMemOperand *, 1> Accesses; 455 if (hasStoreToStackSlot(MI, Accesses)) { 456 FrameIndex = 457 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 458 ->getFrameIndex(); 459 return 1; 460 } 461 } 462 return 0; 463 } 464 465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 466 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 467 // Don't waste compile time scanning use-def chains of physregs. 468 if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) 469 return false; 470 bool isPICBase = false; 471 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 472 E = MRI.def_instr_end(); I != E; ++I) { 473 MachineInstr *DefMI = &*I; 474 if (DefMI->getOpcode() != X86::MOVPC32r) 475 return false; 476 assert(!isPICBase && "More than one PIC base?"); 477 isPICBase = true; 478 } 479 return isPICBase; 480 } 481 482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 483 AliasAnalysis *AA) const { 484 switch (MI.getOpcode()) { 485 default: break; 486 case X86::MOV8rm: 487 case X86::MOV8rm_NOREX: 488 case X86::MOV16rm: 489 case X86::MOV32rm: 490 case X86::MOV64rm: 491 case X86::MOVSSrm: 492 case X86::MOVSSrm_alt: 493 case X86::MOVSDrm: 494 case X86::MOVSDrm_alt: 495 case X86::MOVAPSrm: 496 case X86::MOVUPSrm: 497 case X86::MOVAPDrm: 498 case X86::MOVUPDrm: 499 case X86::MOVDQArm: 500 case X86::MOVDQUrm: 501 case X86::VMOVSSrm: 502 case X86::VMOVSSrm_alt: 503 case X86::VMOVSDrm: 504 case X86::VMOVSDrm_alt: 505 case X86::VMOVAPSrm: 506 case X86::VMOVUPSrm: 507 case X86::VMOVAPDrm: 508 case X86::VMOVUPDrm: 509 case X86::VMOVDQArm: 510 case X86::VMOVDQUrm: 511 case X86::VMOVAPSYrm: 512 case X86::VMOVUPSYrm: 513 case X86::VMOVAPDYrm: 514 case X86::VMOVUPDYrm: 515 case X86::VMOVDQAYrm: 516 case X86::VMOVDQUYrm: 517 case X86::MMX_MOVD64rm: 518 case X86::MMX_MOVQ64rm: 519 // AVX-512 520 case X86::VMOVSSZrm: 521 case X86::VMOVSSZrm_alt: 522 case X86::VMOVSDZrm: 523 case X86::VMOVSDZrm_alt: 524 case X86::VMOVAPDZ128rm: 525 case X86::VMOVAPDZ256rm: 526 case X86::VMOVAPDZrm: 527 case X86::VMOVAPSZ128rm: 528 case X86::VMOVAPSZ256rm: 529 case X86::VMOVAPSZ128rm_NOVLX: 530 case X86::VMOVAPSZ256rm_NOVLX: 531 case X86::VMOVAPSZrm: 532 case X86::VMOVDQA32Z128rm: 533 case X86::VMOVDQA32Z256rm: 534 case X86::VMOVDQA32Zrm: 535 case X86::VMOVDQA64Z128rm: 536 case X86::VMOVDQA64Z256rm: 537 case X86::VMOVDQA64Zrm: 538 case X86::VMOVDQU16Z128rm: 539 case X86::VMOVDQU16Z256rm: 540 case X86::VMOVDQU16Zrm: 541 case X86::VMOVDQU32Z128rm: 542 case X86::VMOVDQU32Z256rm: 543 case X86::VMOVDQU32Zrm: 544 case X86::VMOVDQU64Z128rm: 545 case X86::VMOVDQU64Z256rm: 546 case X86::VMOVDQU64Zrm: 547 case X86::VMOVDQU8Z128rm: 548 case X86::VMOVDQU8Z256rm: 549 case X86::VMOVDQU8Zrm: 550 case X86::VMOVUPDZ128rm: 551 case X86::VMOVUPDZ256rm: 552 case X86::VMOVUPDZrm: 553 case X86::VMOVUPSZ128rm: 554 case X86::VMOVUPSZ256rm: 555 case X86::VMOVUPSZ128rm_NOVLX: 556 case X86::VMOVUPSZ256rm_NOVLX: 557 case X86::VMOVUPSZrm: { 558 // Loads from constant pools are trivially rematerializable. 559 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 560 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 561 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 562 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 563 MI.isDereferenceableInvariantLoad(AA)) { 564 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 565 if (BaseReg == 0 || BaseReg == X86::RIP) 566 return true; 567 // Allow re-materialization of PIC load. 568 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) 569 return false; 570 const MachineFunction &MF = *MI.getParent()->getParent(); 571 const MachineRegisterInfo &MRI = MF.getRegInfo(); 572 return regIsPICBase(BaseReg, MRI); 573 } 574 return false; 575 } 576 577 case X86::LEA32r: 578 case X86::LEA64r: { 579 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 580 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 581 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 582 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 583 // lea fi#, lea GV, etc. are all rematerializable. 584 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 585 return true; 586 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 587 if (BaseReg == 0) 588 return true; 589 // Allow re-materialization of lea PICBase + x. 590 const MachineFunction &MF = *MI.getParent()->getParent(); 591 const MachineRegisterInfo &MRI = MF.getRegInfo(); 592 return regIsPICBase(BaseReg, MRI); 593 } 594 return false; 595 } 596 } 597 598 // All other instructions marked M_REMATERIALIZABLE are always trivially 599 // rematerializable. 600 return true; 601 } 602 603 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 604 MachineBasicBlock::iterator I, 605 unsigned DestReg, unsigned SubIdx, 606 const MachineInstr &Orig, 607 const TargetRegisterInfo &TRI) const { 608 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 609 if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { 610 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 611 // effects. 612 int Value; 613 switch (Orig.getOpcode()) { 614 case X86::MOV32r0: Value = 0; break; 615 case X86::MOV32r1: Value = 1; break; 616 case X86::MOV32r_1: Value = -1; break; 617 default: 618 llvm_unreachable("Unexpected instruction!"); 619 } 620 621 const DebugLoc &DL = Orig.getDebugLoc(); 622 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 623 .add(Orig.getOperand(0)) 624 .addImm(Value); 625 } else { 626 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 627 MBB.insert(I, MI); 628 } 629 630 MachineInstr &NewMI = *std::prev(I); 631 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 632 } 633 634 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 635 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 636 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 637 MachineOperand &MO = MI.getOperand(i); 638 if (MO.isReg() && MO.isDef() && 639 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 640 return true; 641 } 642 } 643 return false; 644 } 645 646 /// Check whether the shift count for a machine operand is non-zero. 647 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 648 unsigned ShiftAmtOperandIdx) { 649 // The shift count is six bits with the REX.W prefix and five bits without. 650 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 651 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 652 return Imm & ShiftCountMask; 653 } 654 655 /// Check whether the given shift count is appropriate 656 /// can be represented by a LEA instruction. 657 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 658 // Left shift instructions can be transformed into load-effective-address 659 // instructions if we can encode them appropriately. 660 // A LEA instruction utilizes a SIB byte to encode its scale factor. 661 // The SIB.scale field is two bits wide which means that we can encode any 662 // shift amount less than 4. 663 return ShAmt < 4 && ShAmt > 0; 664 } 665 666 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 667 unsigned Opc, bool AllowSP, unsigned &NewSrc, 668 bool &isKill, MachineOperand &ImplicitOp, 669 LiveVariables *LV) const { 670 MachineFunction &MF = *MI.getParent()->getParent(); 671 const TargetRegisterClass *RC; 672 if (AllowSP) { 673 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 674 } else { 675 RC = Opc != X86::LEA32r ? 676 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 677 } 678 unsigned SrcReg = Src.getReg(); 679 680 // For both LEA64 and LEA32 the register already has essentially the right 681 // type (32-bit or 64-bit) we may just need to forbid SP. 682 if (Opc != X86::LEA64_32r) { 683 NewSrc = SrcReg; 684 isKill = Src.isKill(); 685 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 686 687 if (TargetRegisterInfo::isVirtualRegister(NewSrc) && 688 !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 689 return false; 690 691 return true; 692 } 693 694 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 695 // another we need to add 64-bit registers to the final MI. 696 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 697 ImplicitOp = Src; 698 ImplicitOp.setImplicit(); 699 700 NewSrc = getX86SubSuperRegister(Src.getReg(), 64); 701 isKill = Src.isKill(); 702 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 703 } else { 704 // Virtual register of the wrong class, we have to create a temporary 64-bit 705 // vreg to feed into the LEA. 706 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 707 MachineInstr *Copy = 708 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 709 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 710 .add(Src); 711 712 // Which is obviously going to be dead after we're done with it. 713 isKill = true; 714 715 if (LV) 716 LV->replaceKillInstruction(SrcReg, MI, *Copy); 717 } 718 719 // We've set all the parameters without issue. 720 return true; 721 } 722 723 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( 724 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, 725 LiveVariables *LV, bool Is8BitOp) const { 726 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 727 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 728 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 729 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 730 "Unexpected type for LEA transform"); 731 732 // TODO: For a 32-bit target, we need to adjust the LEA variables with 733 // something like this: 734 // Opcode = X86::LEA32r; 735 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 736 // OutRegLEA = 737 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 738 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 739 if (!Subtarget.is64Bit()) 740 return nullptr; 741 742 unsigned Opcode = X86::LEA64_32r; 743 unsigned InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 744 unsigned OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 745 746 // Build and insert into an implicit UNDEF value. This is OK because 747 // we will be shifting and then extracting the lower 8/16-bits. 748 // This has the potential to cause partial register stall. e.g. 749 // movw (%rbp,%rcx,2), %dx 750 // leal -65(%rdx), %esi 751 // But testing has shown this *does* help performance in 64-bit mode (at 752 // least on modern x86 machines). 753 MachineBasicBlock::iterator MBBI = MI.getIterator(); 754 unsigned Dest = MI.getOperand(0).getReg(); 755 unsigned Src = MI.getOperand(1).getReg(); 756 bool IsDead = MI.getOperand(0).isDead(); 757 bool IsKill = MI.getOperand(1).isKill(); 758 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 759 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 760 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 761 MachineInstr *InsMI = 762 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 763 .addReg(InRegLEA, RegState::Define, SubReg) 764 .addReg(Src, getKillRegState(IsKill)); 765 766 MachineInstrBuilder MIB = 767 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 768 switch (MIOpc) { 769 default: llvm_unreachable("Unreachable!"); 770 case X86::SHL8ri: 771 case X86::SHL16ri: { 772 unsigned ShAmt = MI.getOperand(2).getImm(); 773 MIB.addReg(0).addImm(1ULL << ShAmt) 774 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0); 775 break; 776 } 777 case X86::INC8r: 778 case X86::INC16r: 779 addRegOffset(MIB, InRegLEA, true, 1); 780 break; 781 case X86::DEC8r: 782 case X86::DEC16r: 783 addRegOffset(MIB, InRegLEA, true, -1); 784 break; 785 case X86::ADD8ri: 786 case X86::ADD8ri_DB: 787 case X86::ADD16ri: 788 case X86::ADD16ri8: 789 case X86::ADD16ri_DB: 790 case X86::ADD16ri8_DB: 791 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 792 break; 793 case X86::ADD8rr: 794 case X86::ADD8rr_DB: 795 case X86::ADD16rr: 796 case X86::ADD16rr_DB: { 797 unsigned Src2 = MI.getOperand(2).getReg(); 798 bool IsKill2 = MI.getOperand(2).isKill(); 799 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 800 unsigned InRegLEA2 = 0; 801 MachineInstr *InsMI2 = nullptr; 802 if (Src == Src2) { 803 // ADD8rr/ADD16rr killed %reg1028, %reg1028 804 // just a single insert_subreg. 805 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 806 } else { 807 if (Subtarget.is64Bit()) 808 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 809 else 810 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 811 // Build and insert into an implicit UNDEF value. This is OK because 812 // we will be shifting and then extracting the lower 8/16-bits. 813 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2); 814 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 815 .addReg(InRegLEA2, RegState::Define, SubReg) 816 .addReg(Src2, getKillRegState(IsKill2)); 817 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 818 } 819 if (LV && IsKill2 && InsMI2) 820 LV->replaceKillInstruction(Src2, MI, *InsMI2); 821 break; 822 } 823 } 824 825 MachineInstr *NewMI = MIB; 826 MachineInstr *ExtMI = 827 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 828 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 829 .addReg(OutRegLEA, RegState::Kill, SubReg); 830 831 if (LV) { 832 // Update live variables. 833 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 834 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 835 if (IsKill) 836 LV->replaceKillInstruction(Src, MI, *InsMI); 837 if (IsDead) 838 LV->replaceKillInstruction(Dest, MI, *ExtMI); 839 } 840 841 return ExtMI; 842 } 843 844 /// This method must be implemented by targets that 845 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 846 /// may be able to convert a two-address instruction into a true 847 /// three-address instruction on demand. This allows the X86 target (for 848 /// example) to convert ADD and SHL instructions into LEA instructions if they 849 /// would require register copies due to two-addressness. 850 /// 851 /// This method returns a null pointer if the transformation cannot be 852 /// performed, otherwise it returns the new instruction. 853 /// 854 MachineInstr * 855 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 856 MachineInstr &MI, LiveVariables *LV) const { 857 // The following opcodes also sets the condition code register(s). Only 858 // convert them to equivalent lea if the condition code register def's 859 // are dead! 860 if (hasLiveCondCodeDef(MI)) 861 return nullptr; 862 863 MachineFunction &MF = *MI.getParent()->getParent(); 864 // All instructions input are two-addr instructions. Get the known operands. 865 const MachineOperand &Dest = MI.getOperand(0); 866 const MachineOperand &Src = MI.getOperand(1); 867 868 // Ideally, operations with undef should be folded before we get here, but we 869 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 870 // Without this, we have to forward undef state to new register operands to 871 // avoid machine verifier errors. 872 if (Src.isUndef()) 873 return nullptr; 874 if (MI.getNumOperands() > 2) 875 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 876 return nullptr; 877 878 MachineInstr *NewMI = nullptr; 879 bool Is64Bit = Subtarget.is64Bit(); 880 881 bool Is8BitOp = false; 882 unsigned MIOpc = MI.getOpcode(); 883 switch (MIOpc) { 884 default: llvm_unreachable("Unreachable!"); 885 case X86::SHL64ri: { 886 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 887 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 888 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 889 890 // LEA can't handle RSP. 891 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && 892 !MF.getRegInfo().constrainRegClass(Src.getReg(), 893 &X86::GR64_NOSPRegClass)) 894 return nullptr; 895 896 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 897 .add(Dest) 898 .addReg(0) 899 .addImm(1ULL << ShAmt) 900 .add(Src) 901 .addImm(0) 902 .addReg(0); 903 break; 904 } 905 case X86::SHL32ri: { 906 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 907 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 908 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 909 910 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 911 912 // LEA can't handle ESP. 913 bool isKill; 914 unsigned SrcReg; 915 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 916 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, 917 SrcReg, isKill, ImplicitOp, LV)) 918 return nullptr; 919 920 MachineInstrBuilder MIB = 921 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 922 .add(Dest) 923 .addReg(0) 924 .addImm(1ULL << ShAmt) 925 .addReg(SrcReg, getKillRegState(isKill)) 926 .addImm(0) 927 .addReg(0); 928 if (ImplicitOp.getReg() != 0) 929 MIB.add(ImplicitOp); 930 NewMI = MIB; 931 932 break; 933 } 934 case X86::SHL8ri: 935 Is8BitOp = true; 936 LLVM_FALLTHROUGH; 937 case X86::SHL16ri: { 938 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 939 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 940 if (!isTruncatedShiftCountForLEA(ShAmt)) 941 return nullptr; 942 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 943 } 944 case X86::INC64r: 945 case X86::INC32r: { 946 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 947 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : 948 (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 949 bool isKill; 950 unsigned SrcReg; 951 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 952 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 953 ImplicitOp, LV)) 954 return nullptr; 955 956 MachineInstrBuilder MIB = 957 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 958 .add(Dest) 959 .addReg(SrcReg, getKillRegState(isKill)); 960 if (ImplicitOp.getReg() != 0) 961 MIB.add(ImplicitOp); 962 963 NewMI = addOffset(MIB, 1); 964 break; 965 } 966 case X86::DEC64r: 967 case X86::DEC32r: { 968 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 969 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 970 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 971 972 bool isKill; 973 unsigned SrcReg; 974 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 975 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, 976 ImplicitOp, LV)) 977 return nullptr; 978 979 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 980 .add(Dest) 981 .addReg(SrcReg, getKillRegState(isKill)); 982 if (ImplicitOp.getReg() != 0) 983 MIB.add(ImplicitOp); 984 985 NewMI = addOffset(MIB, -1); 986 987 break; 988 } 989 case X86::DEC8r: 990 case X86::INC8r: 991 Is8BitOp = true; 992 LLVM_FALLTHROUGH; 993 case X86::DEC16r: 994 case X86::INC16r: 995 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 996 case X86::ADD64rr: 997 case X86::ADD64rr_DB: 998 case X86::ADD32rr: 999 case X86::ADD32rr_DB: { 1000 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1001 unsigned Opc; 1002 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1003 Opc = X86::LEA64r; 1004 else 1005 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1006 1007 bool isKill; 1008 unsigned SrcReg; 1009 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1010 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1011 SrcReg, isKill, ImplicitOp, LV)) 1012 return nullptr; 1013 1014 const MachineOperand &Src2 = MI.getOperand(2); 1015 bool isKill2; 1016 unsigned SrcReg2; 1017 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1018 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, 1019 SrcReg2, isKill2, ImplicitOp2, LV)) 1020 return nullptr; 1021 1022 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1023 if (ImplicitOp.getReg() != 0) 1024 MIB.add(ImplicitOp); 1025 if (ImplicitOp2.getReg() != 0) 1026 MIB.add(ImplicitOp2); 1027 1028 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1029 if (LV && Src2.isKill()) 1030 LV->replaceKillInstruction(SrcReg2, MI, *NewMI); 1031 break; 1032 } 1033 case X86::ADD8rr: 1034 case X86::ADD8rr_DB: 1035 Is8BitOp = true; 1036 LLVM_FALLTHROUGH; 1037 case X86::ADD16rr: 1038 case X86::ADD16rr_DB: 1039 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1040 case X86::ADD64ri32: 1041 case X86::ADD64ri8: 1042 case X86::ADD64ri32_DB: 1043 case X86::ADD64ri8_DB: 1044 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1045 NewMI = addOffset( 1046 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1047 MI.getOperand(2)); 1048 break; 1049 case X86::ADD32ri: 1050 case X86::ADD32ri8: 1051 case X86::ADD32ri_DB: 1052 case X86::ADD32ri8_DB: { 1053 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1054 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1055 1056 bool isKill; 1057 unsigned SrcReg; 1058 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1059 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1060 SrcReg, isKill, ImplicitOp, LV)) 1061 return nullptr; 1062 1063 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1064 .add(Dest) 1065 .addReg(SrcReg, getKillRegState(isKill)); 1066 if (ImplicitOp.getReg() != 0) 1067 MIB.add(ImplicitOp); 1068 1069 NewMI = addOffset(MIB, MI.getOperand(2)); 1070 break; 1071 } 1072 case X86::ADD8ri: 1073 case X86::ADD8ri_DB: 1074 Is8BitOp = true; 1075 LLVM_FALLTHROUGH; 1076 case X86::ADD16ri: 1077 case X86::ADD16ri8: 1078 case X86::ADD16ri_DB: 1079 case X86::ADD16ri8_DB: 1080 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp); 1081 case X86::SUB8ri: 1082 case X86::SUB16ri8: 1083 case X86::SUB16ri: 1084 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1085 return nullptr; 1086 case X86::SUB32ri8: 1087 case X86::SUB32ri: { 1088 if (!MI.getOperand(2).isImm()) 1089 return nullptr; 1090 int64_t Imm = MI.getOperand(2).getImm(); 1091 if (!isInt<32>(-Imm)) 1092 return nullptr; 1093 1094 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1095 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1096 1097 bool isKill; 1098 unsigned SrcReg; 1099 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1100 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, 1101 SrcReg, isKill, ImplicitOp, LV)) 1102 return nullptr; 1103 1104 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1105 .add(Dest) 1106 .addReg(SrcReg, getKillRegState(isKill)); 1107 if (ImplicitOp.getReg() != 0) 1108 MIB.add(ImplicitOp); 1109 1110 NewMI = addOffset(MIB, -Imm); 1111 break; 1112 } 1113 1114 case X86::SUB64ri8: 1115 case X86::SUB64ri32: { 1116 if (!MI.getOperand(2).isImm()) 1117 return nullptr; 1118 int64_t Imm = MI.getOperand(2).getImm(); 1119 if (!isInt<32>(-Imm)) 1120 return nullptr; 1121 1122 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1123 1124 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), 1125 get(X86::LEA64r)).add(Dest).add(Src); 1126 NewMI = addOffset(MIB, -Imm); 1127 break; 1128 } 1129 1130 case X86::VMOVDQU8Z128rmk: 1131 case X86::VMOVDQU8Z256rmk: 1132 case X86::VMOVDQU8Zrmk: 1133 case X86::VMOVDQU16Z128rmk: 1134 case X86::VMOVDQU16Z256rmk: 1135 case X86::VMOVDQU16Zrmk: 1136 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: 1137 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: 1138 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: 1139 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: 1140 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: 1141 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: 1142 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: 1143 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: 1144 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: 1145 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: 1146 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: 1147 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: { 1148 unsigned Opc; 1149 switch (MIOpc) { 1150 default: llvm_unreachable("Unreachable!"); 1151 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; 1152 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; 1153 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; 1154 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; 1155 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; 1156 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; 1157 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1158 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1159 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1160 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1161 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1162 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1163 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1164 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1165 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1166 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1167 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1168 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1169 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1170 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1171 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1172 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1173 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1174 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1175 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1176 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1177 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1178 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1179 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1180 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1181 } 1182 1183 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1184 .add(Dest) 1185 .add(MI.getOperand(2)) 1186 .add(Src) 1187 .add(MI.getOperand(3)) 1188 .add(MI.getOperand(4)) 1189 .add(MI.getOperand(5)) 1190 .add(MI.getOperand(6)) 1191 .add(MI.getOperand(7)); 1192 break; 1193 } 1194 case X86::VMOVDQU8Z128rrk: 1195 case X86::VMOVDQU8Z256rrk: 1196 case X86::VMOVDQU8Zrrk: 1197 case X86::VMOVDQU16Z128rrk: 1198 case X86::VMOVDQU16Z256rrk: 1199 case X86::VMOVDQU16Zrrk: 1200 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: 1201 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: 1202 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: 1203 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: 1204 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: 1205 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: 1206 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: 1207 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: 1208 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: 1209 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: 1210 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: 1211 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { 1212 unsigned Opc; 1213 switch (MIOpc) { 1214 default: llvm_unreachable("Unreachable!"); 1215 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; 1216 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; 1217 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; 1218 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; 1219 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; 1220 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; 1221 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1222 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1223 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1224 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1225 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1226 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1227 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1228 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1229 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1230 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1231 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1232 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1233 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1234 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1235 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1236 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1237 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1238 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1239 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1240 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1241 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1242 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1243 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1244 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1245 } 1246 1247 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1248 .add(Dest) 1249 .add(MI.getOperand(2)) 1250 .add(Src) 1251 .add(MI.getOperand(3)); 1252 break; 1253 } 1254 } 1255 1256 if (!NewMI) return nullptr; 1257 1258 if (LV) { // Update live variables 1259 if (Src.isKill()) 1260 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); 1261 if (Dest.isDead()) 1262 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); 1263 } 1264 1265 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst 1266 return NewMI; 1267 } 1268 1269 /// This determines which of three possible cases of a three source commute 1270 /// the source indexes correspond to taking into account any mask operands. 1271 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 1272 /// possible. 1273 /// Case 0 - Possible to commute the first and second operands. 1274 /// Case 1 - Possible to commute the first and third operands. 1275 /// Case 2 - Possible to commute the second and third operands. 1276 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 1277 unsigned SrcOpIdx2) { 1278 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 1279 if (SrcOpIdx1 > SrcOpIdx2) 1280 std::swap(SrcOpIdx1, SrcOpIdx2); 1281 1282 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 1283 if (X86II::isKMasked(TSFlags)) { 1284 Op2++; 1285 Op3++; 1286 } 1287 1288 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 1289 return 0; 1290 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 1291 return 1; 1292 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 1293 return 2; 1294 llvm_unreachable("Unknown three src commute case."); 1295 } 1296 1297 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 1298 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 1299 const X86InstrFMA3Group &FMA3Group) const { 1300 1301 unsigned Opc = MI.getOpcode(); 1302 1303 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 1304 // analysis. The commute optimization is legal only if all users of FMA*_Int 1305 // use only the lowest element of the FMA*_Int instruction. Such analysis are 1306 // not implemented yet. So, just return 0 in that case. 1307 // When such analysis are available this place will be the right place for 1308 // calling it. 1309 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 1310 "Intrinsic instructions can't commute operand 1"); 1311 1312 // Determine which case this commute is or if it can't be done. 1313 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1314 SrcOpIdx2); 1315 assert(Case < 3 && "Unexpected case number!"); 1316 1317 // Define the FMA forms mapping array that helps to map input FMA form 1318 // to output FMA form to preserve the operation semantics after 1319 // commuting the operands. 1320 const unsigned Form132Index = 0; 1321 const unsigned Form213Index = 1; 1322 const unsigned Form231Index = 2; 1323 static const unsigned FormMapping[][3] = { 1324 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 1325 // FMA132 A, C, b; ==> FMA231 C, A, b; 1326 // FMA213 B, A, c; ==> FMA213 A, B, c; 1327 // FMA231 C, A, b; ==> FMA132 A, C, b; 1328 { Form231Index, Form213Index, Form132Index }, 1329 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 1330 // FMA132 A, c, B; ==> FMA132 B, c, A; 1331 // FMA213 B, a, C; ==> FMA231 C, a, B; 1332 // FMA231 C, a, B; ==> FMA213 B, a, C; 1333 { Form132Index, Form231Index, Form213Index }, 1334 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 1335 // FMA132 a, C, B; ==> FMA213 a, B, C; 1336 // FMA213 b, A, C; ==> FMA132 b, C, A; 1337 // FMA231 c, A, B; ==> FMA231 c, B, A; 1338 { Form213Index, Form132Index, Form231Index } 1339 }; 1340 1341 unsigned FMAForms[3]; 1342 FMAForms[0] = FMA3Group.get132Opcode(); 1343 FMAForms[1] = FMA3Group.get213Opcode(); 1344 FMAForms[2] = FMA3Group.get231Opcode(); 1345 unsigned FormIndex; 1346 for (FormIndex = 0; FormIndex < 3; FormIndex++) 1347 if (Opc == FMAForms[FormIndex]) 1348 break; 1349 1350 // Everything is ready, just adjust the FMA opcode and return it. 1351 FormIndex = FormMapping[Case][FormIndex]; 1352 return FMAForms[FormIndex]; 1353 } 1354 1355 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 1356 unsigned SrcOpIdx2) { 1357 // Determine which case this commute is or if it can't be done. 1358 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1359 SrcOpIdx2); 1360 assert(Case < 3 && "Unexpected case value!"); 1361 1362 // For each case we need to swap two pairs of bits in the final immediate. 1363 static const uint8_t SwapMasks[3][4] = { 1364 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. 1365 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. 1366 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. 1367 }; 1368 1369 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); 1370 // Clear out the bits we are swapping. 1371 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 1372 SwapMasks[Case][2] | SwapMasks[Case][3]); 1373 // If the immediate had a bit of the pair set, then set the opposite bit. 1374 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; 1375 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; 1376 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; 1377 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; 1378 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); 1379 } 1380 1381 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 1382 // commuted. 1383 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 1384 #define VPERM_CASES(Suffix) \ 1385 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ 1386 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ 1387 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ 1388 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ 1389 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ 1390 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ 1391 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ 1392 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ 1393 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ 1394 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ 1395 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ 1396 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: 1397 1398 #define VPERM_CASES_BROADCAST(Suffix) \ 1399 VPERM_CASES(Suffix) \ 1400 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ 1401 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ 1402 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ 1403 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ 1404 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ 1405 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: 1406 1407 switch (Opcode) { 1408 default: return false; 1409 VPERM_CASES(B) 1410 VPERM_CASES_BROADCAST(D) 1411 VPERM_CASES_BROADCAST(PD) 1412 VPERM_CASES_BROADCAST(PS) 1413 VPERM_CASES_BROADCAST(Q) 1414 VPERM_CASES(W) 1415 return true; 1416 } 1417 #undef VPERM_CASES_BROADCAST 1418 #undef VPERM_CASES 1419 } 1420 1421 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 1422 // from the I opcode to the T opcode and vice versa. 1423 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 1424 #define VPERM_CASES(Orig, New) \ 1425 case X86::Orig##128rr: return X86::New##128rr; \ 1426 case X86::Orig##128rrkz: return X86::New##128rrkz; \ 1427 case X86::Orig##128rm: return X86::New##128rm; \ 1428 case X86::Orig##128rmkz: return X86::New##128rmkz; \ 1429 case X86::Orig##256rr: return X86::New##256rr; \ 1430 case X86::Orig##256rrkz: return X86::New##256rrkz; \ 1431 case X86::Orig##256rm: return X86::New##256rm; \ 1432 case X86::Orig##256rmkz: return X86::New##256rmkz; \ 1433 case X86::Orig##rr: return X86::New##rr; \ 1434 case X86::Orig##rrkz: return X86::New##rrkz; \ 1435 case X86::Orig##rm: return X86::New##rm; \ 1436 case X86::Orig##rmkz: return X86::New##rmkz; 1437 1438 #define VPERM_CASES_BROADCAST(Orig, New) \ 1439 VPERM_CASES(Orig, New) \ 1440 case X86::Orig##128rmb: return X86::New##128rmb; \ 1441 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ 1442 case X86::Orig##256rmb: return X86::New##256rmb; \ 1443 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ 1444 case X86::Orig##rmb: return X86::New##rmb; \ 1445 case X86::Orig##rmbkz: return X86::New##rmbkz; 1446 1447 switch (Opcode) { 1448 VPERM_CASES(VPERMI2B, VPERMT2B) 1449 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 1450 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 1451 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 1452 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 1453 VPERM_CASES(VPERMI2W, VPERMT2W) 1454 VPERM_CASES(VPERMT2B, VPERMI2B) 1455 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 1456 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 1457 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 1458 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 1459 VPERM_CASES(VPERMT2W, VPERMI2W) 1460 } 1461 1462 llvm_unreachable("Unreachable!"); 1463 #undef VPERM_CASES_BROADCAST 1464 #undef VPERM_CASES 1465 } 1466 1467 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1468 unsigned OpIdx1, 1469 unsigned OpIdx2) const { 1470 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 1471 if (NewMI) 1472 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 1473 return MI; 1474 }; 1475 1476 switch (MI.getOpcode()) { 1477 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 1478 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 1479 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 1480 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 1481 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 1482 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 1483 unsigned Opc; 1484 unsigned Size; 1485 switch (MI.getOpcode()) { 1486 default: llvm_unreachable("Unreachable!"); 1487 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 1488 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 1489 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 1490 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 1491 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 1492 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 1493 } 1494 unsigned Amt = MI.getOperand(3).getImm(); 1495 auto &WorkingMI = cloneIfNew(MI); 1496 WorkingMI.setDesc(get(Opc)); 1497 WorkingMI.getOperand(3).setImm(Size - Amt); 1498 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1499 OpIdx1, OpIdx2); 1500 } 1501 case X86::PFSUBrr: 1502 case X86::PFSUBRrr: { 1503 // PFSUB x, y: x = x - y 1504 // PFSUBR x, y: x = y - x 1505 unsigned Opc = 1506 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); 1507 auto &WorkingMI = cloneIfNew(MI); 1508 WorkingMI.setDesc(get(Opc)); 1509 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1510 OpIdx1, OpIdx2); 1511 } 1512 case X86::BLENDPDrri: 1513 case X86::BLENDPSrri: 1514 case X86::VBLENDPDrri: 1515 case X86::VBLENDPSrri: 1516 // If we're optimizing for size, try to use MOVSD/MOVSS. 1517 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 1518 unsigned Mask, Opc; 1519 switch (MI.getOpcode()) { 1520 default: llvm_unreachable("Unreachable!"); 1521 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; 1522 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; 1523 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; 1524 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; 1525 } 1526 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 1527 auto &WorkingMI = cloneIfNew(MI); 1528 WorkingMI.setDesc(get(Opc)); 1529 WorkingMI.RemoveOperand(3); 1530 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, 1531 /*NewMI=*/false, 1532 OpIdx1, OpIdx2); 1533 } 1534 } 1535 LLVM_FALLTHROUGH; 1536 case X86::PBLENDWrri: 1537 case X86::VBLENDPDYrri: 1538 case X86::VBLENDPSYrri: 1539 case X86::VPBLENDDrri: 1540 case X86::VPBLENDWrri: 1541 case X86::VPBLENDDYrri: 1542 case X86::VPBLENDWYrri:{ 1543 int8_t Mask; 1544 switch (MI.getOpcode()) { 1545 default: llvm_unreachable("Unreachable!"); 1546 case X86::BLENDPDrri: Mask = (int8_t)0x03; break; 1547 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; 1548 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; 1549 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; 1550 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; 1551 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; 1552 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; 1553 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; 1554 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; 1555 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; 1556 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; 1557 } 1558 // Only the least significant bits of Imm are used. 1559 // Using int8_t to ensure it will be sign extended to the int64_t that 1560 // setImm takes in order to match isel behavior. 1561 int8_t Imm = MI.getOperand(3).getImm() & Mask; 1562 auto &WorkingMI = cloneIfNew(MI); 1563 WorkingMI.getOperand(3).setImm(Mask ^ Imm); 1564 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1565 OpIdx1, OpIdx2); 1566 } 1567 case X86::INSERTPSrr: 1568 case X86::VINSERTPSrr: 1569 case X86::VINSERTPSZrr: { 1570 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 1571 unsigned ZMask = Imm & 15; 1572 unsigned DstIdx = (Imm >> 4) & 3; 1573 unsigned SrcIdx = (Imm >> 6) & 3; 1574 1575 // We can commute insertps if we zero 2 of the elements, the insertion is 1576 // "inline" and we don't override the insertion with a zero. 1577 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 1578 countPopulation(ZMask) == 2) { 1579 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15); 1580 assert(AltIdx < 4 && "Illegal insertion index"); 1581 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 1582 auto &WorkingMI = cloneIfNew(MI); 1583 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm); 1584 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1585 OpIdx1, OpIdx2); 1586 } 1587 return nullptr; 1588 } 1589 case X86::MOVSDrr: 1590 case X86::MOVSSrr: 1591 case X86::VMOVSDrr: 1592 case X86::VMOVSSrr:{ 1593 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 1594 if (Subtarget.hasSSE41()) { 1595 unsigned Mask, Opc; 1596 switch (MI.getOpcode()) { 1597 default: llvm_unreachable("Unreachable!"); 1598 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; 1599 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; 1600 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; 1601 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; 1602 } 1603 1604 auto &WorkingMI = cloneIfNew(MI); 1605 WorkingMI.setDesc(get(Opc)); 1606 WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); 1607 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1608 OpIdx1, OpIdx2); 1609 } 1610 1611 // Convert to SHUFPD. 1612 assert(MI.getOpcode() == X86::MOVSDrr && 1613 "Can only commute MOVSDrr without SSE4.1"); 1614 1615 auto &WorkingMI = cloneIfNew(MI); 1616 WorkingMI.setDesc(get(X86::SHUFPDrri)); 1617 WorkingMI.addOperand(MachineOperand::CreateImm(0x02)); 1618 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1619 OpIdx1, OpIdx2); 1620 } 1621 case X86::SHUFPDrri: { 1622 // Commute to MOVSD. 1623 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 1624 auto &WorkingMI = cloneIfNew(MI); 1625 WorkingMI.setDesc(get(X86::MOVSDrr)); 1626 WorkingMI.RemoveOperand(3); 1627 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1628 OpIdx1, OpIdx2); 1629 } 1630 case X86::PCLMULQDQrr: 1631 case X86::VPCLMULQDQrr: 1632 case X86::VPCLMULQDQYrr: 1633 case X86::VPCLMULQDQZrr: 1634 case X86::VPCLMULQDQZ128rr: 1635 case X86::VPCLMULQDQZ256rr: { 1636 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 1637 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 1638 unsigned Imm = MI.getOperand(3).getImm(); 1639 unsigned Src1Hi = Imm & 0x01; 1640 unsigned Src2Hi = Imm & 0x10; 1641 auto &WorkingMI = cloneIfNew(MI); 1642 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 1643 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1644 OpIdx1, OpIdx2); 1645 } 1646 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: 1647 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: 1648 case X86::VPCMPBZrri: case X86::VPCMPUBZrri: 1649 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: 1650 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: 1651 case X86::VPCMPDZrri: case X86::VPCMPUDZrri: 1652 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: 1653 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: 1654 case X86::VPCMPQZrri: case X86::VPCMPUQZrri: 1655 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: 1656 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: 1657 case X86::VPCMPWZrri: case X86::VPCMPUWZrri: 1658 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: 1659 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: 1660 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: 1661 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: 1662 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: 1663 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: 1664 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: 1665 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: 1666 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: 1667 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: 1668 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: 1669 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { 1670 // Flip comparison mode immediate (if necessary). 1671 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; 1672 Imm = X86::getSwappedVPCMPImm(Imm); 1673 auto &WorkingMI = cloneIfNew(MI); 1674 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); 1675 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1676 OpIdx1, OpIdx2); 1677 } 1678 case X86::VPCOMBri: case X86::VPCOMUBri: 1679 case X86::VPCOMDri: case X86::VPCOMUDri: 1680 case X86::VPCOMQri: case X86::VPCOMUQri: 1681 case X86::VPCOMWri: case X86::VPCOMUWri: { 1682 // Flip comparison mode immediate (if necessary). 1683 unsigned Imm = MI.getOperand(3).getImm() & 0x7; 1684 Imm = X86::getSwappedVPCOMImm(Imm); 1685 auto &WorkingMI = cloneIfNew(MI); 1686 WorkingMI.getOperand(3).setImm(Imm); 1687 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1688 OpIdx1, OpIdx2); 1689 } 1690 case X86::VPERM2F128rr: 1691 case X86::VPERM2I128rr: { 1692 // Flip permute source immediate. 1693 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 1694 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 1695 int8_t Imm = MI.getOperand(3).getImm() & 0xFF; 1696 auto &WorkingMI = cloneIfNew(MI); 1697 WorkingMI.getOperand(3).setImm(Imm ^ 0x22); 1698 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1699 OpIdx1, OpIdx2); 1700 } 1701 case X86::MOVHLPSrr: 1702 case X86::UNPCKHPDrr: 1703 case X86::VMOVHLPSrr: 1704 case X86::VUNPCKHPDrr: 1705 case X86::VMOVHLPSZrr: 1706 case X86::VUNPCKHPDZ128rr: { 1707 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 1708 1709 unsigned Opc = MI.getOpcode(); 1710 switch (Opc) { 1711 default: llvm_unreachable("Unreachable!"); 1712 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; 1713 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; 1714 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; 1715 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; 1716 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; 1717 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; 1718 } 1719 auto &WorkingMI = cloneIfNew(MI); 1720 WorkingMI.setDesc(get(Opc)); 1721 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1722 OpIdx1, OpIdx2); 1723 } 1724 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: { 1725 auto &WorkingMI = cloneIfNew(MI); 1726 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 1727 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 1728 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 1729 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1730 OpIdx1, OpIdx2); 1731 } 1732 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 1733 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 1734 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 1735 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 1736 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 1737 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 1738 case X86::VPTERNLOGDZrrik: 1739 case X86::VPTERNLOGDZ128rrik: 1740 case X86::VPTERNLOGDZ256rrik: 1741 case X86::VPTERNLOGQZrrik: 1742 case X86::VPTERNLOGQZ128rrik: 1743 case X86::VPTERNLOGQZ256rrik: 1744 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 1745 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 1746 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 1747 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 1748 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 1749 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 1750 case X86::VPTERNLOGDZ128rmbi: 1751 case X86::VPTERNLOGDZ256rmbi: 1752 case X86::VPTERNLOGDZrmbi: 1753 case X86::VPTERNLOGQZ128rmbi: 1754 case X86::VPTERNLOGQZ256rmbi: 1755 case X86::VPTERNLOGQZrmbi: 1756 case X86::VPTERNLOGDZ128rmbikz: 1757 case X86::VPTERNLOGDZ256rmbikz: 1758 case X86::VPTERNLOGDZrmbikz: 1759 case X86::VPTERNLOGQZ128rmbikz: 1760 case X86::VPTERNLOGQZ256rmbikz: 1761 case X86::VPTERNLOGQZrmbikz: { 1762 auto &WorkingMI = cloneIfNew(MI); 1763 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); 1764 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1765 OpIdx1, OpIdx2); 1766 } 1767 default: { 1768 if (isCommutableVPERMV3Instruction(MI.getOpcode())) { 1769 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); 1770 auto &WorkingMI = cloneIfNew(MI); 1771 WorkingMI.setDesc(get(Opc)); 1772 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1773 OpIdx1, OpIdx2); 1774 } 1775 1776 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 1777 MI.getDesc().TSFlags); 1778 if (FMA3Group) { 1779 unsigned Opc = 1780 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); 1781 auto &WorkingMI = cloneIfNew(MI); 1782 WorkingMI.setDesc(get(Opc)); 1783 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1784 OpIdx1, OpIdx2); 1785 } 1786 1787 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1788 } 1789 } 1790 } 1791 1792 bool 1793 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 1794 unsigned &SrcOpIdx1, 1795 unsigned &SrcOpIdx2, 1796 bool IsIntrinsic) const { 1797 uint64_t TSFlags = MI.getDesc().TSFlags; 1798 1799 unsigned FirstCommutableVecOp = 1; 1800 unsigned LastCommutableVecOp = 3; 1801 unsigned KMaskOp = -1U; 1802 if (X86II::isKMasked(TSFlags)) { 1803 // For k-zero-masked operations it is Ok to commute the first vector 1804 // operand. 1805 // For regular k-masked operations a conservative choice is done as the 1806 // elements of the first vector operand, for which the corresponding bit 1807 // in the k-mask operand is set to 0, are copied to the result of the 1808 // instruction. 1809 // TODO/FIXME: The commute still may be legal if it is known that the 1810 // k-mask operand is set to either all ones or all zeroes. 1811 // It is also Ok to commute the 1st operand if all users of MI use only 1812 // the elements enabled by the k-mask operand. For example, 1813 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 1814 // : v1[i]; 1815 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 1816 // // Ok, to commute v1 in FMADD213PSZrk. 1817 1818 // The k-mask operand has index = 2 for masked and zero-masked operations. 1819 KMaskOp = 2; 1820 1821 // The operand with index = 1 is used as a source for those elements for 1822 // which the corresponding bit in the k-mask is set to 0. 1823 if (X86II::isKMergeMasked(TSFlags)) 1824 FirstCommutableVecOp = 3; 1825 1826 LastCommutableVecOp++; 1827 } else if (IsIntrinsic) { 1828 // Commuting the first operand of an intrinsic instruction isn't possible 1829 // unless we can prove that only the lowest element of the result is used. 1830 FirstCommutableVecOp = 2; 1831 } 1832 1833 if (isMem(MI, LastCommutableVecOp)) 1834 LastCommutableVecOp--; 1835 1836 // Only the first RegOpsNum operands are commutable. 1837 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 1838 // that the operand is not specified/fixed. 1839 if (SrcOpIdx1 != CommuteAnyOperandIndex && 1840 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 1841 SrcOpIdx1 == KMaskOp)) 1842 return false; 1843 if (SrcOpIdx2 != CommuteAnyOperandIndex && 1844 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 1845 SrcOpIdx2 == KMaskOp)) 1846 return false; 1847 1848 // Look for two different register operands assumed to be commutable 1849 // regardless of the FMA opcode. The FMA opcode is adjusted later. 1850 if (SrcOpIdx1 == CommuteAnyOperandIndex || 1851 SrcOpIdx2 == CommuteAnyOperandIndex) { 1852 unsigned CommutableOpIdx2 = SrcOpIdx2; 1853 1854 // At least one of operands to be commuted is not specified and 1855 // this method is free to choose appropriate commutable operands. 1856 if (SrcOpIdx1 == SrcOpIdx2) 1857 // Both of operands are not fixed. By default set one of commutable 1858 // operands to the last register operand of the instruction. 1859 CommutableOpIdx2 = LastCommutableVecOp; 1860 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 1861 // Only one of operands is not fixed. 1862 CommutableOpIdx2 = SrcOpIdx1; 1863 1864 // CommutableOpIdx2 is well defined now. Let's choose another commutable 1865 // operand and assign its index to CommutableOpIdx1. 1866 unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 1867 1868 unsigned CommutableOpIdx1; 1869 for (CommutableOpIdx1 = LastCommutableVecOp; 1870 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 1871 // Just ignore and skip the k-mask operand. 1872 if (CommutableOpIdx1 == KMaskOp) 1873 continue; 1874 1875 // The commuted operands must have different registers. 1876 // Otherwise, the commute transformation does not change anything and 1877 // is useless then. 1878 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 1879 break; 1880 } 1881 1882 // No appropriate commutable operands were found. 1883 if (CommutableOpIdx1 < FirstCommutableVecOp) 1884 return false; 1885 1886 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 1887 // to return those values. 1888 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1889 CommutableOpIdx1, CommutableOpIdx2)) 1890 return false; 1891 } 1892 1893 return true; 1894 } 1895 1896 bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 1897 unsigned &SrcOpIdx2) const { 1898 const MCInstrDesc &Desc = MI.getDesc(); 1899 if (!Desc.isCommutable()) 1900 return false; 1901 1902 switch (MI.getOpcode()) { 1903 case X86::CMPSDrr: 1904 case X86::CMPSSrr: 1905 case X86::CMPPDrri: 1906 case X86::CMPPSrri: 1907 case X86::VCMPSDrr: 1908 case X86::VCMPSSrr: 1909 case X86::VCMPPDrri: 1910 case X86::VCMPPSrri: 1911 case X86::VCMPPDYrri: 1912 case X86::VCMPPSYrri: 1913 case X86::VCMPSDZrr: 1914 case X86::VCMPSSZrr: 1915 case X86::VCMPPDZrri: 1916 case X86::VCMPPSZrri: 1917 case X86::VCMPPDZ128rri: 1918 case X86::VCMPPSZ128rri: 1919 case X86::VCMPPDZ256rri: 1920 case X86::VCMPPSZ256rri: 1921 case X86::VCMPPDZrrik: 1922 case X86::VCMPPSZrrik: 1923 case X86::VCMPPDZ128rrik: 1924 case X86::VCMPPSZ128rrik: 1925 case X86::VCMPPDZ256rrik: 1926 case X86::VCMPPSZ256rrik: { 1927 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 1928 1929 // Float comparison can be safely commuted for 1930 // Ordered/Unordered/Equal/NotEqual tests 1931 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 1932 switch (Imm) { 1933 case 0x00: // EQUAL 1934 case 0x03: // UNORDERED 1935 case 0x04: // NOT EQUAL 1936 case 0x07: // ORDERED 1937 // The indices of the commutable operands are 1 and 2 (or 2 and 3 1938 // when masked). 1939 // Assign them to the returned operand indices here. 1940 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 1941 2 + OpOffset); 1942 } 1943 return false; 1944 } 1945 case X86::MOVSSrr: 1946 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 1947 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 1948 // AVX implies sse4.1. 1949 if (Subtarget.hasSSE41()) 1950 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1951 return false; 1952 case X86::SHUFPDrri: 1953 // We can commute this to MOVSD. 1954 if (MI.getOperand(3).getImm() == 0x02) 1955 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1956 return false; 1957 case X86::MOVHLPSrr: 1958 case X86::UNPCKHPDrr: 1959 case X86::VMOVHLPSrr: 1960 case X86::VUNPCKHPDrr: 1961 case X86::VMOVHLPSZrr: 1962 case X86::VUNPCKHPDZ128rr: 1963 if (Subtarget.hasSSE2()) 1964 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1965 return false; 1966 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 1967 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 1968 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 1969 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 1970 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 1971 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 1972 case X86::VPTERNLOGDZrrik: 1973 case X86::VPTERNLOGDZ128rrik: 1974 case X86::VPTERNLOGDZ256rrik: 1975 case X86::VPTERNLOGQZrrik: 1976 case X86::VPTERNLOGQZ128rrik: 1977 case X86::VPTERNLOGQZ256rrik: 1978 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 1979 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 1980 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 1981 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 1982 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 1983 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 1984 case X86::VPTERNLOGDZ128rmbi: 1985 case X86::VPTERNLOGDZ256rmbi: 1986 case X86::VPTERNLOGDZrmbi: 1987 case X86::VPTERNLOGQZ128rmbi: 1988 case X86::VPTERNLOGQZ256rmbi: 1989 case X86::VPTERNLOGQZrmbi: 1990 case X86::VPTERNLOGDZ128rmbikz: 1991 case X86::VPTERNLOGDZ256rmbikz: 1992 case X86::VPTERNLOGDZrmbikz: 1993 case X86::VPTERNLOGQZ128rmbikz: 1994 case X86::VPTERNLOGQZ256rmbikz: 1995 case X86::VPTERNLOGQZrmbikz: 1996 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1997 case X86::VPMADD52HUQZ128r: 1998 case X86::VPMADD52HUQZ128rk: 1999 case X86::VPMADD52HUQZ128rkz: 2000 case X86::VPMADD52HUQZ256r: 2001 case X86::VPMADD52HUQZ256rk: 2002 case X86::VPMADD52HUQZ256rkz: 2003 case X86::VPMADD52HUQZr: 2004 case X86::VPMADD52HUQZrk: 2005 case X86::VPMADD52HUQZrkz: 2006 case X86::VPMADD52LUQZ128r: 2007 case X86::VPMADD52LUQZ128rk: 2008 case X86::VPMADD52LUQZ128rkz: 2009 case X86::VPMADD52LUQZ256r: 2010 case X86::VPMADD52LUQZ256rk: 2011 case X86::VPMADD52LUQZ256rkz: 2012 case X86::VPMADD52LUQZr: 2013 case X86::VPMADD52LUQZrk: 2014 case X86::VPMADD52LUQZrkz: { 2015 unsigned CommutableOpIdx1 = 2; 2016 unsigned CommutableOpIdx2 = 3; 2017 if (X86II::isKMasked(Desc.TSFlags)) { 2018 // Skip the mask register. 2019 ++CommutableOpIdx1; 2020 ++CommutableOpIdx2; 2021 } 2022 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2023 CommutableOpIdx1, CommutableOpIdx2)) 2024 return false; 2025 if (!MI.getOperand(SrcOpIdx1).isReg() || 2026 !MI.getOperand(SrcOpIdx2).isReg()) 2027 // No idea. 2028 return false; 2029 return true; 2030 } 2031 2032 default: 2033 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2034 MI.getDesc().TSFlags); 2035 if (FMA3Group) 2036 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 2037 FMA3Group->isIntrinsic()); 2038 2039 // Handled masked instructions since we need to skip over the mask input 2040 // and the preserved input. 2041 if (X86II::isKMasked(Desc.TSFlags)) { 2042 // First assume that the first input is the mask operand and skip past it. 2043 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 2044 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 2045 // Check if the first input is tied. If there isn't one then we only 2046 // need to skip the mask operand which we did above. 2047 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 2048 MCOI::TIED_TO) != -1)) { 2049 // If this is zero masking instruction with a tied operand, we need to 2050 // move the first index back to the first input since this must 2051 // be a 3 input instruction and we want the first two non-mask inputs. 2052 // Otherwise this is a 2 input instruction with a preserved input and 2053 // mask, so we need to move the indices to skip one more input. 2054 if (X86II::isKMergeMasked(Desc.TSFlags)) { 2055 ++CommutableOpIdx1; 2056 ++CommutableOpIdx2; 2057 } else { 2058 --CommutableOpIdx1; 2059 } 2060 } 2061 2062 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2063 CommutableOpIdx1, CommutableOpIdx2)) 2064 return false; 2065 2066 if (!MI.getOperand(SrcOpIdx1).isReg() || 2067 !MI.getOperand(SrcOpIdx2).isReg()) 2068 // No idea. 2069 return false; 2070 return true; 2071 } 2072 2073 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2074 } 2075 return false; 2076 } 2077 2078 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 2079 switch (MI.getOpcode()) { 2080 default: return X86::COND_INVALID; 2081 case X86::JCC_1: 2082 return static_cast<X86::CondCode>( 2083 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2084 } 2085 } 2086 2087 /// Return condition code of a SETCC opcode. 2088 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 2089 switch (MI.getOpcode()) { 2090 default: return X86::COND_INVALID; 2091 case X86::SETCCr: case X86::SETCCm: 2092 return static_cast<X86::CondCode>( 2093 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2094 } 2095 } 2096 2097 /// Return condition code of a CMov opcode. 2098 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 2099 switch (MI.getOpcode()) { 2100 default: return X86::COND_INVALID; 2101 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: 2102 case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm: 2103 return static_cast<X86::CondCode>( 2104 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm()); 2105 } 2106 } 2107 2108 /// Return the inverse of the specified condition, 2109 /// e.g. turning COND_E to COND_NE. 2110 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2111 switch (CC) { 2112 default: llvm_unreachable("Illegal condition code!"); 2113 case X86::COND_E: return X86::COND_NE; 2114 case X86::COND_NE: return X86::COND_E; 2115 case X86::COND_L: return X86::COND_GE; 2116 case X86::COND_LE: return X86::COND_G; 2117 case X86::COND_G: return X86::COND_LE; 2118 case X86::COND_GE: return X86::COND_L; 2119 case X86::COND_B: return X86::COND_AE; 2120 case X86::COND_BE: return X86::COND_A; 2121 case X86::COND_A: return X86::COND_BE; 2122 case X86::COND_AE: return X86::COND_B; 2123 case X86::COND_S: return X86::COND_NS; 2124 case X86::COND_NS: return X86::COND_S; 2125 case X86::COND_P: return X86::COND_NP; 2126 case X86::COND_NP: return X86::COND_P; 2127 case X86::COND_O: return X86::COND_NO; 2128 case X86::COND_NO: return X86::COND_O; 2129 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; 2130 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; 2131 } 2132 } 2133 2134 /// Assuming the flags are set by MI(a,b), return the condition code if we 2135 /// modify the instructions such that flags are set by MI(b,a). 2136 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 2137 switch (CC) { 2138 default: return X86::COND_INVALID; 2139 case X86::COND_E: return X86::COND_E; 2140 case X86::COND_NE: return X86::COND_NE; 2141 case X86::COND_L: return X86::COND_G; 2142 case X86::COND_LE: return X86::COND_GE; 2143 case X86::COND_G: return X86::COND_L; 2144 case X86::COND_GE: return X86::COND_LE; 2145 case X86::COND_B: return X86::COND_A; 2146 case X86::COND_BE: return X86::COND_AE; 2147 case X86::COND_A: return X86::COND_B; 2148 case X86::COND_AE: return X86::COND_BE; 2149 } 2150 } 2151 2152 std::pair<X86::CondCode, bool> 2153 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 2154 X86::CondCode CC = X86::COND_INVALID; 2155 bool NeedSwap = false; 2156 switch (Predicate) { 2157 default: break; 2158 // Floating-point Predicates 2159 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; 2160 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; 2161 case CmpInst::FCMP_OGT: CC = X86::COND_A; break; 2162 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; 2163 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; 2164 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; 2165 case CmpInst::FCMP_ULT: CC = X86::COND_B; break; 2166 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; 2167 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; 2168 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; 2169 case CmpInst::FCMP_UNO: CC = X86::COND_P; break; 2170 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; 2171 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; 2172 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; 2173 2174 // Integer Predicates 2175 case CmpInst::ICMP_EQ: CC = X86::COND_E; break; 2176 case CmpInst::ICMP_NE: CC = X86::COND_NE; break; 2177 case CmpInst::ICMP_UGT: CC = X86::COND_A; break; 2178 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; 2179 case CmpInst::ICMP_ULT: CC = X86::COND_B; break; 2180 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; 2181 case CmpInst::ICMP_SGT: CC = X86::COND_G; break; 2182 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; 2183 case CmpInst::ICMP_SLT: CC = X86::COND_L; break; 2184 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; 2185 } 2186 2187 return std::make_pair(CC, NeedSwap); 2188 } 2189 2190 /// Return a setcc opcode based on whether it has memory operand. 2191 unsigned X86::getSETOpc(bool HasMemoryOperand) { 2192 return HasMemoryOperand ? X86::SETCCr : X86::SETCCm; 2193 } 2194 2195 /// Return a cmov opcode for the given register size in bytes, and operand type. 2196 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) { 2197 switch(RegBytes) { 2198 default: llvm_unreachable("Illegal register size!"); 2199 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr; 2200 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr; 2201 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr; 2202 } 2203 } 2204 2205 /// Get the VPCMP immediate for the given condition. 2206 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 2207 switch (CC) { 2208 default: llvm_unreachable("Unexpected SETCC condition"); 2209 case ISD::SETNE: return 4; 2210 case ISD::SETEQ: return 0; 2211 case ISD::SETULT: 2212 case ISD::SETLT: return 1; 2213 case ISD::SETUGT: 2214 case ISD::SETGT: return 6; 2215 case ISD::SETUGE: 2216 case ISD::SETGE: return 5; 2217 case ISD::SETULE: 2218 case ISD::SETLE: return 2; 2219 } 2220 } 2221 2222 /// Get the VPCMP immediate if the opcodes are swapped. 2223 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 2224 switch (Imm) { 2225 default: llvm_unreachable("Unreachable!"); 2226 case 0x01: Imm = 0x06; break; // LT -> NLE 2227 case 0x02: Imm = 0x05; break; // LE -> NLT 2228 case 0x05: Imm = 0x02; break; // NLT -> LE 2229 case 0x06: Imm = 0x01; break; // NLE -> LT 2230 case 0x00: // EQ 2231 case 0x03: // FALSE 2232 case 0x04: // NE 2233 case 0x07: // TRUE 2234 break; 2235 } 2236 2237 return Imm; 2238 } 2239 2240 /// Get the VPCOM immediate if the opcodes are swapped. 2241 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 2242 switch (Imm) { 2243 default: llvm_unreachable("Unreachable!"); 2244 case 0x00: Imm = 0x02; break; // LT -> GT 2245 case 0x01: Imm = 0x03; break; // LE -> GE 2246 case 0x02: Imm = 0x00; break; // GT -> LT 2247 case 0x03: Imm = 0x01; break; // GE -> LE 2248 case 0x04: // EQ 2249 case 0x05: // NE 2250 case 0x06: // FALSE 2251 case 0x07: // TRUE 2252 break; 2253 } 2254 2255 return Imm; 2256 } 2257 2258 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 2259 if (!MI.isTerminator()) return false; 2260 2261 // Conditional branch is a special case. 2262 if (MI.isBranch() && !MI.isBarrier()) 2263 return true; 2264 if (!MI.isPredicable()) 2265 return true; 2266 return !isPredicated(MI); 2267 } 2268 2269 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 2270 switch (MI.getOpcode()) { 2271 case X86::TCRETURNdi: 2272 case X86::TCRETURNri: 2273 case X86::TCRETURNmi: 2274 case X86::TCRETURNdi64: 2275 case X86::TCRETURNri64: 2276 case X86::TCRETURNmi64: 2277 return true; 2278 default: 2279 return false; 2280 } 2281 } 2282 2283 bool X86InstrInfo::canMakeTailCallConditional( 2284 SmallVectorImpl<MachineOperand> &BranchCond, 2285 const MachineInstr &TailCall) const { 2286 if (TailCall.getOpcode() != X86::TCRETURNdi && 2287 TailCall.getOpcode() != X86::TCRETURNdi64) { 2288 // Only direct calls can be done with a conditional branch. 2289 return false; 2290 } 2291 2292 const MachineFunction *MF = TailCall.getParent()->getParent(); 2293 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 2294 // Conditional tail calls confuse the Win64 unwinder. 2295 return false; 2296 } 2297 2298 assert(BranchCond.size() == 1); 2299 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 2300 // Can't make a conditional tail call with this condition. 2301 return false; 2302 } 2303 2304 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 2305 if (X86FI->getTCReturnAddrDelta() != 0 || 2306 TailCall.getOperand(1).getImm() != 0) { 2307 // A conditional tail call cannot do any stack adjustment. 2308 return false; 2309 } 2310 2311 return true; 2312 } 2313 2314 void X86InstrInfo::replaceBranchWithTailCall( 2315 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 2316 const MachineInstr &TailCall) const { 2317 assert(canMakeTailCallConditional(BranchCond, TailCall)); 2318 2319 MachineBasicBlock::iterator I = MBB.end(); 2320 while (I != MBB.begin()) { 2321 --I; 2322 if (I->isDebugInstr()) 2323 continue; 2324 if (!I->isBranch()) 2325 assert(0 && "Can't find the branch to replace!"); 2326 2327 X86::CondCode CC = X86::getCondFromBranch(*I); 2328 assert(BranchCond.size() == 1); 2329 if (CC != BranchCond[0].getImm()) 2330 continue; 2331 2332 break; 2333 } 2334 2335 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 2336 : X86::TCRETURNdi64cc; 2337 2338 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 2339 MIB->addOperand(TailCall.getOperand(0)); // Destination. 2340 MIB.addImm(0); // Stack offset (not used). 2341 MIB->addOperand(BranchCond[0]); // Condition. 2342 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 2343 2344 // Add implicit uses and defs of all live regs potentially clobbered by the 2345 // call. This way they still appear live across the call. 2346 LivePhysRegs LiveRegs(getRegisterInfo()); 2347 LiveRegs.addLiveOuts(MBB); 2348 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 2349 LiveRegs.stepForward(*MIB, Clobbers); 2350 for (const auto &C : Clobbers) { 2351 MIB.addReg(C.first, RegState::Implicit); 2352 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 2353 } 2354 2355 I->eraseFromParent(); 2356 } 2357 2358 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 2359 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 2360 // fallthrough MBB cannot be identified. 2361 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 2362 MachineBasicBlock *TBB) { 2363 // Look for non-EHPad successors other than TBB. If we find exactly one, it 2364 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 2365 // and fallthrough MBB. If we find more than one, we cannot identify the 2366 // fallthrough MBB and should return nullptr. 2367 MachineBasicBlock *FallthroughBB = nullptr; 2368 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { 2369 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) 2370 continue; 2371 // Return a nullptr if we found more than one fallthrough successor. 2372 if (FallthroughBB && FallthroughBB != TBB) 2373 return nullptr; 2374 FallthroughBB = *SI; 2375 } 2376 return FallthroughBB; 2377 } 2378 2379 bool X86InstrInfo::AnalyzeBranchImpl( 2380 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 2381 SmallVectorImpl<MachineOperand> &Cond, 2382 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 2383 2384 // Start from the bottom of the block and work up, examining the 2385 // terminator instructions. 2386 MachineBasicBlock::iterator I = MBB.end(); 2387 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 2388 while (I != MBB.begin()) { 2389 --I; 2390 if (I->isDebugInstr()) 2391 continue; 2392 2393 // Working from the bottom, when we see a non-terminator instruction, we're 2394 // done. 2395 if (!isUnpredicatedTerminator(*I)) 2396 break; 2397 2398 // A terminator that isn't a branch can't easily be handled by this 2399 // analysis. 2400 if (!I->isBranch()) 2401 return true; 2402 2403 // Handle unconditional branches. 2404 if (I->getOpcode() == X86::JMP_1) { 2405 UnCondBrIter = I; 2406 2407 if (!AllowModify) { 2408 TBB = I->getOperand(0).getMBB(); 2409 continue; 2410 } 2411 2412 // If the block has any instructions after a JMP, delete them. 2413 while (std::next(I) != MBB.end()) 2414 std::next(I)->eraseFromParent(); 2415 2416 Cond.clear(); 2417 FBB = nullptr; 2418 2419 // Delete the JMP if it's equivalent to a fall-through. 2420 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 2421 TBB = nullptr; 2422 I->eraseFromParent(); 2423 I = MBB.end(); 2424 UnCondBrIter = MBB.end(); 2425 continue; 2426 } 2427 2428 // TBB is used to indicate the unconditional destination. 2429 TBB = I->getOperand(0).getMBB(); 2430 continue; 2431 } 2432 2433 // Handle conditional branches. 2434 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 2435 if (BranchCode == X86::COND_INVALID) 2436 return true; // Can't handle indirect branch. 2437 2438 // In practice we should never have an undef eflags operand, if we do 2439 // abort here as we are not prepared to preserve the flag. 2440 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef()) 2441 return true; 2442 2443 // Working from the bottom, handle the first conditional branch. 2444 if (Cond.empty()) { 2445 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 2446 if (AllowModify && UnCondBrIter != MBB.end() && 2447 MBB.isLayoutSuccessor(TargetBB)) { 2448 // If we can modify the code and it ends in something like: 2449 // 2450 // jCC L1 2451 // jmp L2 2452 // L1: 2453 // ... 2454 // L2: 2455 // 2456 // Then we can change this to: 2457 // 2458 // jnCC L2 2459 // L1: 2460 // ... 2461 // L2: 2462 // 2463 // Which is a bit more efficient. 2464 // We conditionally jump to the fall-through block. 2465 BranchCode = GetOppositeBranchCondition(BranchCode); 2466 MachineBasicBlock::iterator OldInst = I; 2467 2468 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1)) 2469 .addMBB(UnCondBrIter->getOperand(0).getMBB()) 2470 .addImm(BranchCode); 2471 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) 2472 .addMBB(TargetBB); 2473 2474 OldInst->eraseFromParent(); 2475 UnCondBrIter->eraseFromParent(); 2476 2477 // Restart the analysis. 2478 UnCondBrIter = MBB.end(); 2479 I = MBB.end(); 2480 continue; 2481 } 2482 2483 FBB = TBB; 2484 TBB = I->getOperand(0).getMBB(); 2485 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 2486 CondBranches.push_back(&*I); 2487 continue; 2488 } 2489 2490 // Handle subsequent conditional branches. Only handle the case where all 2491 // conditional branches branch to the same destination and their condition 2492 // opcodes fit one of the special multi-branch idioms. 2493 assert(Cond.size() == 1); 2494 assert(TBB); 2495 2496 // If the conditions are the same, we can leave them alone. 2497 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 2498 auto NewTBB = I->getOperand(0).getMBB(); 2499 if (OldBranchCode == BranchCode && TBB == NewTBB) 2500 continue; 2501 2502 // If they differ, see if they fit one of the known patterns. Theoretically, 2503 // we could handle more patterns here, but we shouldn't expect to see them 2504 // if instruction selection has done a reasonable job. 2505 if (TBB == NewTBB && 2506 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 2507 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 2508 BranchCode = X86::COND_NE_OR_P; 2509 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 2510 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 2511 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 2512 return true; 2513 2514 // X86::COND_E_AND_NP usually has two different branch destinations. 2515 // 2516 // JP B1 2517 // JE B2 2518 // JMP B1 2519 // B1: 2520 // B2: 2521 // 2522 // Here this condition branches to B2 only if NP && E. It has another 2523 // equivalent form: 2524 // 2525 // JNE B1 2526 // JNP B2 2527 // JMP B1 2528 // B1: 2529 // B2: 2530 // 2531 // Similarly it branches to B2 only if E && NP. That is why this condition 2532 // is named with COND_E_AND_NP. 2533 BranchCode = X86::COND_E_AND_NP; 2534 } else 2535 return true; 2536 2537 // Update the MachineOperand. 2538 Cond[0].setImm(BranchCode); 2539 CondBranches.push_back(&*I); 2540 } 2541 2542 return false; 2543 } 2544 2545 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 2546 MachineBasicBlock *&TBB, 2547 MachineBasicBlock *&FBB, 2548 SmallVectorImpl<MachineOperand> &Cond, 2549 bool AllowModify) const { 2550 SmallVector<MachineInstr *, 4> CondBranches; 2551 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 2552 } 2553 2554 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 2555 MachineBranchPredicate &MBP, 2556 bool AllowModify) const { 2557 using namespace std::placeholders; 2558 2559 SmallVector<MachineOperand, 4> Cond; 2560 SmallVector<MachineInstr *, 4> CondBranches; 2561 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 2562 AllowModify)) 2563 return true; 2564 2565 if (Cond.size() != 1) 2566 return true; 2567 2568 assert(MBP.TrueDest && "expected!"); 2569 2570 if (!MBP.FalseDest) 2571 MBP.FalseDest = MBB.getNextNode(); 2572 2573 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2574 2575 MachineInstr *ConditionDef = nullptr; 2576 bool SingleUseCondition = true; 2577 2578 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { 2579 if (I->modifiesRegister(X86::EFLAGS, TRI)) { 2580 ConditionDef = &*I; 2581 break; 2582 } 2583 2584 if (I->readsRegister(X86::EFLAGS, TRI)) 2585 SingleUseCondition = false; 2586 } 2587 2588 if (!ConditionDef) 2589 return true; 2590 2591 if (SingleUseCondition) { 2592 for (auto *Succ : MBB.successors()) 2593 if (Succ->isLiveIn(X86::EFLAGS)) 2594 SingleUseCondition = false; 2595 } 2596 2597 MBP.ConditionDef = ConditionDef; 2598 MBP.SingleUseCondition = SingleUseCondition; 2599 2600 // Currently we only recognize the simple pattern: 2601 // 2602 // test %reg, %reg 2603 // je %label 2604 // 2605 const unsigned TestOpcode = 2606 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 2607 2608 if (ConditionDef->getOpcode() == TestOpcode && 2609 ConditionDef->getNumOperands() == 3 && 2610 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 2611 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 2612 MBP.LHS = ConditionDef->getOperand(0); 2613 MBP.RHS = MachineOperand::CreateImm(0); 2614 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 2615 ? MachineBranchPredicate::PRED_NE 2616 : MachineBranchPredicate::PRED_EQ; 2617 return false; 2618 } 2619 2620 return true; 2621 } 2622 2623 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 2624 int *BytesRemoved) const { 2625 assert(!BytesRemoved && "code size not handled"); 2626 2627 MachineBasicBlock::iterator I = MBB.end(); 2628 unsigned Count = 0; 2629 2630 while (I != MBB.begin()) { 2631 --I; 2632 if (I->isDebugInstr()) 2633 continue; 2634 if (I->getOpcode() != X86::JMP_1 && 2635 X86::getCondFromBranch(*I) == X86::COND_INVALID) 2636 break; 2637 // Remove the branch. 2638 I->eraseFromParent(); 2639 I = MBB.end(); 2640 ++Count; 2641 } 2642 2643 return Count; 2644 } 2645 2646 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 2647 MachineBasicBlock *TBB, 2648 MachineBasicBlock *FBB, 2649 ArrayRef<MachineOperand> Cond, 2650 const DebugLoc &DL, 2651 int *BytesAdded) const { 2652 // Shouldn't be a fall through. 2653 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 2654 assert((Cond.size() == 1 || Cond.size() == 0) && 2655 "X86 branch conditions have one component!"); 2656 assert(!BytesAdded && "code size not handled"); 2657 2658 if (Cond.empty()) { 2659 // Unconditional branch? 2660 assert(!FBB && "Unconditional branch with multiple successors!"); 2661 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 2662 return 1; 2663 } 2664 2665 // If FBB is null, it is implied to be a fall-through block. 2666 bool FallThru = FBB == nullptr; 2667 2668 // Conditional branch. 2669 unsigned Count = 0; 2670 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 2671 switch (CC) { 2672 case X86::COND_NE_OR_P: 2673 // Synthesize NE_OR_P with two branches. 2674 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 2675 ++Count; 2676 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 2677 ++Count; 2678 break; 2679 case X86::COND_E_AND_NP: 2680 // Use the next block of MBB as FBB if it is null. 2681 if (FBB == nullptr) { 2682 FBB = getFallThroughMBB(&MBB, TBB); 2683 assert(FBB && "MBB cannot be the last block in function when the false " 2684 "body is a fall-through."); 2685 } 2686 // Synthesize COND_E_AND_NP with two branches. 2687 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 2688 ++Count; 2689 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 2690 ++Count; 2691 break; 2692 default: { 2693 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 2694 ++Count; 2695 } 2696 } 2697 if (!FallThru) { 2698 // Two-way Conditional branch. Insert the second branch. 2699 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 2700 ++Count; 2701 } 2702 return Count; 2703 } 2704 2705 bool X86InstrInfo:: 2706 canInsertSelect(const MachineBasicBlock &MBB, 2707 ArrayRef<MachineOperand> Cond, 2708 unsigned TrueReg, unsigned FalseReg, 2709 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 2710 // Not all subtargets have cmov instructions. 2711 if (!Subtarget.hasCMov()) 2712 return false; 2713 if (Cond.size() != 1) 2714 return false; 2715 // We cannot do the composite conditions, at least not in SSA form. 2716 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 2717 return false; 2718 2719 // Check register classes. 2720 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2721 const TargetRegisterClass *RC = 2722 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 2723 if (!RC) 2724 return false; 2725 2726 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 2727 if (X86::GR16RegClass.hasSubClassEq(RC) || 2728 X86::GR32RegClass.hasSubClassEq(RC) || 2729 X86::GR64RegClass.hasSubClassEq(RC)) { 2730 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 2731 // Bridge. Probably Ivy Bridge as well. 2732 CondCycles = 2; 2733 TrueCycles = 2; 2734 FalseCycles = 2; 2735 return true; 2736 } 2737 2738 // Can't do vectors. 2739 return false; 2740 } 2741 2742 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 2743 MachineBasicBlock::iterator I, 2744 const DebugLoc &DL, unsigned DstReg, 2745 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 2746 unsigned FalseReg) const { 2747 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2748 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 2749 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 2750 assert(Cond.size() == 1 && "Invalid Cond array"); 2751 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 2752 false /*HasMemoryOperand*/); 2753 BuildMI(MBB, I, DL, get(Opc), DstReg) 2754 .addReg(FalseReg) 2755 .addReg(TrueReg) 2756 .addImm(Cond[0].getImm()); 2757 } 2758 2759 /// Test if the given register is a physical h register. 2760 static bool isHReg(unsigned Reg) { 2761 return X86::GR8_ABCD_HRegClass.contains(Reg); 2762 } 2763 2764 // Try and copy between VR128/VR64 and GR64 registers. 2765 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 2766 const X86Subtarget &Subtarget) { 2767 bool HasAVX = Subtarget.hasAVX(); 2768 bool HasAVX512 = Subtarget.hasAVX512(); 2769 2770 // SrcReg(MaskReg) -> DestReg(GR64) 2771 // SrcReg(MaskReg) -> DestReg(GR32) 2772 2773 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 2774 if (X86::VK16RegClass.contains(SrcReg)) { 2775 if (X86::GR64RegClass.contains(DestReg)) { 2776 assert(Subtarget.hasBWI()); 2777 return X86::KMOVQrk; 2778 } 2779 if (X86::GR32RegClass.contains(DestReg)) 2780 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; 2781 } 2782 2783 // SrcReg(GR64) -> DestReg(MaskReg) 2784 // SrcReg(GR32) -> DestReg(MaskReg) 2785 2786 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 2787 if (X86::VK16RegClass.contains(DestReg)) { 2788 if (X86::GR64RegClass.contains(SrcReg)) { 2789 assert(Subtarget.hasBWI()); 2790 return X86::KMOVQkr; 2791 } 2792 if (X86::GR32RegClass.contains(SrcReg)) 2793 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; 2794 } 2795 2796 2797 // SrcReg(VR128) -> DestReg(GR64) 2798 // SrcReg(VR64) -> DestReg(GR64) 2799 // SrcReg(GR64) -> DestReg(VR128) 2800 // SrcReg(GR64) -> DestReg(VR64) 2801 2802 if (X86::GR64RegClass.contains(DestReg)) { 2803 if (X86::VR128XRegClass.contains(SrcReg)) 2804 // Copy from a VR128 register to a GR64 register. 2805 return HasAVX512 ? X86::VMOVPQIto64Zrr : 2806 HasAVX ? X86::VMOVPQIto64rr : 2807 X86::MOVPQIto64rr; 2808 if (X86::VR64RegClass.contains(SrcReg)) 2809 // Copy from a VR64 register to a GR64 register. 2810 return X86::MMX_MOVD64from64rr; 2811 } else if (X86::GR64RegClass.contains(SrcReg)) { 2812 // Copy from a GR64 register to a VR128 register. 2813 if (X86::VR128XRegClass.contains(DestReg)) 2814 return HasAVX512 ? X86::VMOV64toPQIZrr : 2815 HasAVX ? X86::VMOV64toPQIrr : 2816 X86::MOV64toPQIrr; 2817 // Copy from a GR64 register to a VR64 register. 2818 if (X86::VR64RegClass.contains(DestReg)) 2819 return X86::MMX_MOVD64to64rr; 2820 } 2821 2822 // SrcReg(VR128) -> DestReg(GR32) 2823 // SrcReg(GR32) -> DestReg(VR128) 2824 2825 if (X86::GR32RegClass.contains(DestReg) && 2826 X86::VR128XRegClass.contains(SrcReg)) 2827 // Copy from a VR128 register to a GR32 register. 2828 return HasAVX512 ? X86::VMOVPDI2DIZrr : 2829 HasAVX ? X86::VMOVPDI2DIrr : 2830 X86::MOVPDI2DIrr; 2831 2832 if (X86::VR128XRegClass.contains(DestReg) && 2833 X86::GR32RegClass.contains(SrcReg)) 2834 // Copy from a VR128 register to a VR128 register. 2835 return HasAVX512 ? X86::VMOVDI2PDIZrr : 2836 HasAVX ? X86::VMOVDI2PDIrr : 2837 X86::MOVDI2PDIrr; 2838 return 0; 2839 } 2840 2841 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 2842 MachineBasicBlock::iterator MI, 2843 const DebugLoc &DL, unsigned DestReg, 2844 unsigned SrcReg, bool KillSrc) const { 2845 // First deal with the normal symmetric copies. 2846 bool HasAVX = Subtarget.hasAVX(); 2847 bool HasVLX = Subtarget.hasVLX(); 2848 unsigned Opc = 0; 2849 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 2850 Opc = X86::MOV64rr; 2851 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 2852 Opc = X86::MOV32rr; 2853 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 2854 Opc = X86::MOV16rr; 2855 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 2856 // Copying to or from a physical H register on x86-64 requires a NOREX 2857 // move. Otherwise use a normal move. 2858 if ((isHReg(DestReg) || isHReg(SrcReg)) && 2859 Subtarget.is64Bit()) { 2860 Opc = X86::MOV8rr_NOREX; 2861 // Both operands must be encodable without an REX prefix. 2862 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 2863 "8-bit H register can not be copied outside GR8_NOREX"); 2864 } else 2865 Opc = X86::MOV8rr; 2866 } 2867 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 2868 Opc = X86::MMX_MOVQ64rr; 2869 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 2870 if (HasVLX) 2871 Opc = X86::VMOVAPSZ128rr; 2872 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 2873 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 2874 else { 2875 // If this an extended register and we don't have VLX we need to use a 2876 // 512-bit move. 2877 Opc = X86::VMOVAPSZrr; 2878 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2879 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, 2880 &X86::VR512RegClass); 2881 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, 2882 &X86::VR512RegClass); 2883 } 2884 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 2885 if (HasVLX) 2886 Opc = X86::VMOVAPSZ256rr; 2887 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 2888 Opc = X86::VMOVAPSYrr; 2889 else { 2890 // If this an extended register and we don't have VLX we need to use a 2891 // 512-bit move. 2892 Opc = X86::VMOVAPSZrr; 2893 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2894 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, 2895 &X86::VR512RegClass); 2896 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, 2897 &X86::VR512RegClass); 2898 } 2899 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 2900 Opc = X86::VMOVAPSZrr; 2901 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 2902 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 2903 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; 2904 if (!Opc) 2905 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 2906 2907 if (Opc) { 2908 BuildMI(MBB, MI, DL, get(Opc), DestReg) 2909 .addReg(SrcReg, getKillRegState(KillSrc)); 2910 return; 2911 } 2912 2913 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 2914 // FIXME: We use a fatal error here because historically LLVM has tried 2915 // lower some of these physreg copies and we want to ensure we get 2916 // reasonable bug reports if someone encounters a case no other testing 2917 // found. This path should be removed after the LLVM 7 release. 2918 report_fatal_error("Unable to copy EFLAGS physical register!"); 2919 } 2920 2921 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 2922 << RI.getName(DestReg) << '\n'); 2923 report_fatal_error("Cannot emit physreg copy instruction"); 2924 } 2925 2926 bool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI, 2927 const MachineOperand *&Src, 2928 const MachineOperand *&Dest) const { 2929 if (MI.isMoveReg()) { 2930 Dest = &MI.getOperand(0); 2931 Src = &MI.getOperand(1); 2932 return true; 2933 } 2934 return false; 2935 } 2936 2937 static unsigned getLoadStoreRegOpcode(unsigned Reg, 2938 const TargetRegisterClass *RC, 2939 bool isStackAligned, 2940 const X86Subtarget &STI, 2941 bool load) { 2942 bool HasAVX = STI.hasAVX(); 2943 bool HasAVX512 = STI.hasAVX512(); 2944 bool HasVLX = STI.hasVLX(); 2945 2946 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 2947 default: 2948 llvm_unreachable("Unknown spill size"); 2949 case 1: 2950 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 2951 if (STI.is64Bit()) 2952 // Copying to or from a physical H register on x86-64 requires a NOREX 2953 // move. Otherwise use a normal move. 2954 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 2955 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 2956 return load ? X86::MOV8rm : X86::MOV8mr; 2957 case 2: 2958 if (X86::VK16RegClass.hasSubClassEq(RC)) 2959 return load ? X86::KMOVWkm : X86::KMOVWmk; 2960 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 2961 return load ? X86::MOV16rm : X86::MOV16mr; 2962 case 4: 2963 if (X86::GR32RegClass.hasSubClassEq(RC)) 2964 return load ? X86::MOV32rm : X86::MOV32mr; 2965 if (X86::FR32XRegClass.hasSubClassEq(RC)) 2966 return load ? 2967 (HasAVX512 ? X86::VMOVSSZrm_alt : 2968 HasAVX ? X86::VMOVSSrm_alt : 2969 X86::MOVSSrm_alt) : 2970 (HasAVX512 ? X86::VMOVSSZmr : 2971 HasAVX ? X86::VMOVSSmr : 2972 X86::MOVSSmr); 2973 if (X86::RFP32RegClass.hasSubClassEq(RC)) 2974 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 2975 if (X86::VK32RegClass.hasSubClassEq(RC)) { 2976 assert(STI.hasBWI() && "KMOVD requires BWI"); 2977 return load ? X86::KMOVDkm : X86::KMOVDmk; 2978 } 2979 // All of these mask pair classes have the same spill size, the same kind 2980 // of kmov instructions can be used with all of them. 2981 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 2982 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 2983 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 2984 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 2985 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 2986 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 2987 llvm_unreachable("Unknown 4-byte regclass"); 2988 case 8: 2989 if (X86::GR64RegClass.hasSubClassEq(RC)) 2990 return load ? X86::MOV64rm : X86::MOV64mr; 2991 if (X86::FR64XRegClass.hasSubClassEq(RC)) 2992 return load ? 2993 (HasAVX512 ? X86::VMOVSDZrm_alt : 2994 HasAVX ? X86::VMOVSDrm_alt : 2995 X86::MOVSDrm_alt) : 2996 (HasAVX512 ? X86::VMOVSDZmr : 2997 HasAVX ? X86::VMOVSDmr : 2998 X86::MOVSDmr); 2999 if (X86::VR64RegClass.hasSubClassEq(RC)) 3000 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 3001 if (X86::RFP64RegClass.hasSubClassEq(RC)) 3002 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 3003 if (X86::VK64RegClass.hasSubClassEq(RC)) { 3004 assert(STI.hasBWI() && "KMOVQ requires BWI"); 3005 return load ? X86::KMOVQkm : X86::KMOVQmk; 3006 } 3007 llvm_unreachable("Unknown 8-byte regclass"); 3008 case 10: 3009 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 3010 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 3011 case 16: { 3012 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 3013 // If stack is realigned we can use aligned stores. 3014 if (isStackAligned) 3015 return load ? 3016 (HasVLX ? X86::VMOVAPSZ128rm : 3017 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : 3018 HasAVX ? X86::VMOVAPSrm : 3019 X86::MOVAPSrm): 3020 (HasVLX ? X86::VMOVAPSZ128mr : 3021 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : 3022 HasAVX ? X86::VMOVAPSmr : 3023 X86::MOVAPSmr); 3024 else 3025 return load ? 3026 (HasVLX ? X86::VMOVUPSZ128rm : 3027 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : 3028 HasAVX ? X86::VMOVUPSrm : 3029 X86::MOVUPSrm): 3030 (HasVLX ? X86::VMOVUPSZ128mr : 3031 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : 3032 HasAVX ? X86::VMOVUPSmr : 3033 X86::MOVUPSmr); 3034 } 3035 if (X86::BNDRRegClass.hasSubClassEq(RC)) { 3036 if (STI.is64Bit()) 3037 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; 3038 else 3039 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; 3040 } 3041 llvm_unreachable("Unknown 16-byte regclass"); 3042 } 3043 case 32: 3044 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 3045 // If stack is realigned we can use aligned stores. 3046 if (isStackAligned) 3047 return load ? 3048 (HasVLX ? X86::VMOVAPSZ256rm : 3049 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : 3050 X86::VMOVAPSYrm) : 3051 (HasVLX ? X86::VMOVAPSZ256mr : 3052 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : 3053 X86::VMOVAPSYmr); 3054 else 3055 return load ? 3056 (HasVLX ? X86::VMOVUPSZ256rm : 3057 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : 3058 X86::VMOVUPSYrm) : 3059 (HasVLX ? X86::VMOVUPSZ256mr : 3060 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : 3061 X86::VMOVUPSYmr); 3062 case 64: 3063 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 3064 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 3065 if (isStackAligned) 3066 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 3067 else 3068 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 3069 } 3070 } 3071 3072 bool X86InstrInfo::getMemOperandWithOffset( 3073 const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset, 3074 const TargetRegisterInfo *TRI) const { 3075 const MCInstrDesc &Desc = MemOp.getDesc(); 3076 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3077 if (MemRefBegin < 0) 3078 return false; 3079 3080 MemRefBegin += X86II::getOperandBias(Desc); 3081 3082 BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 3083 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 3084 return false; 3085 3086 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 3087 return false; 3088 3089 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 3090 X86::NoRegister) 3091 return false; 3092 3093 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 3094 3095 // Displacement can be symbolic 3096 if (!DispMO.isImm()) 3097 return false; 3098 3099 Offset = DispMO.getImm(); 3100 3101 assert(BaseOp->isReg() && "getMemOperandWithOffset only supports base " 3102 "operands of type register."); 3103 return true; 3104 } 3105 3106 static unsigned getStoreRegOpcode(unsigned SrcReg, 3107 const TargetRegisterClass *RC, 3108 bool isStackAligned, 3109 const X86Subtarget &STI) { 3110 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); 3111 } 3112 3113 3114 static unsigned getLoadRegOpcode(unsigned DestReg, 3115 const TargetRegisterClass *RC, 3116 bool isStackAligned, 3117 const X86Subtarget &STI) { 3118 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); 3119 } 3120 3121 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 3122 MachineBasicBlock::iterator MI, 3123 unsigned SrcReg, bool isKill, int FrameIdx, 3124 const TargetRegisterClass *RC, 3125 const TargetRegisterInfo *TRI) const { 3126 const MachineFunction &MF = *MBB.getParent(); 3127 assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 3128 "Stack slot too small for store"); 3129 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3130 bool isAligned = 3131 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || 3132 RI.canRealignStack(MF); 3133 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 3134 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3135 .addReg(SrcReg, getKillRegState(isKill)); 3136 } 3137 3138 void X86InstrInfo::storeRegToAddr( 3139 MachineFunction &MF, unsigned SrcReg, bool isKill, 3140 SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, 3141 ArrayRef<MachineMemOperand *> MMOs, 3142 SmallVectorImpl<MachineInstr *> &NewMIs) const { 3143 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 3144 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 3145 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; 3146 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 3147 DebugLoc DL; 3148 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 3149 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 3150 MIB.add(Addr[i]); 3151 MIB.addReg(SrcReg, getKillRegState(isKill)); 3152 MIB.setMemRefs(MMOs); 3153 NewMIs.push_back(MIB); 3154 } 3155 3156 3157 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 3158 MachineBasicBlock::iterator MI, 3159 unsigned DestReg, int FrameIdx, 3160 const TargetRegisterClass *RC, 3161 const TargetRegisterInfo *TRI) const { 3162 const MachineFunction &MF = *MBB.getParent(); 3163 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3164 bool isAligned = 3165 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || 3166 RI.canRealignStack(MF); 3167 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 3168 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx); 3169 } 3170 3171 void X86InstrInfo::loadRegFromAddr( 3172 MachineFunction &MF, unsigned DestReg, 3173 SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, 3174 ArrayRef<MachineMemOperand *> MMOs, 3175 SmallVectorImpl<MachineInstr *> &NewMIs) const { 3176 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 3177 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 3178 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; 3179 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 3180 DebugLoc DL; 3181 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 3182 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 3183 MIB.add(Addr[i]); 3184 MIB.setMemRefs(MMOs); 3185 NewMIs.push_back(MIB); 3186 } 3187 3188 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 3189 unsigned &SrcReg2, int &CmpMask, 3190 int &CmpValue) const { 3191 switch (MI.getOpcode()) { 3192 default: break; 3193 case X86::CMP64ri32: 3194 case X86::CMP64ri8: 3195 case X86::CMP32ri: 3196 case X86::CMP32ri8: 3197 case X86::CMP16ri: 3198 case X86::CMP16ri8: 3199 case X86::CMP8ri: 3200 SrcReg = MI.getOperand(0).getReg(); 3201 SrcReg2 = 0; 3202 if (MI.getOperand(1).isImm()) { 3203 CmpMask = ~0; 3204 CmpValue = MI.getOperand(1).getImm(); 3205 } else { 3206 CmpMask = CmpValue = 0; 3207 } 3208 return true; 3209 // A SUB can be used to perform comparison. 3210 case X86::SUB64rm: 3211 case X86::SUB32rm: 3212 case X86::SUB16rm: 3213 case X86::SUB8rm: 3214 SrcReg = MI.getOperand(1).getReg(); 3215 SrcReg2 = 0; 3216 CmpMask = 0; 3217 CmpValue = 0; 3218 return true; 3219 case X86::SUB64rr: 3220 case X86::SUB32rr: 3221 case X86::SUB16rr: 3222 case X86::SUB8rr: 3223 SrcReg = MI.getOperand(1).getReg(); 3224 SrcReg2 = MI.getOperand(2).getReg(); 3225 CmpMask = 0; 3226 CmpValue = 0; 3227 return true; 3228 case X86::SUB64ri32: 3229 case X86::SUB64ri8: 3230 case X86::SUB32ri: 3231 case X86::SUB32ri8: 3232 case X86::SUB16ri: 3233 case X86::SUB16ri8: 3234 case X86::SUB8ri: 3235 SrcReg = MI.getOperand(1).getReg(); 3236 SrcReg2 = 0; 3237 if (MI.getOperand(2).isImm()) { 3238 CmpMask = ~0; 3239 CmpValue = MI.getOperand(2).getImm(); 3240 } else { 3241 CmpMask = CmpValue = 0; 3242 } 3243 return true; 3244 case X86::CMP64rr: 3245 case X86::CMP32rr: 3246 case X86::CMP16rr: 3247 case X86::CMP8rr: 3248 SrcReg = MI.getOperand(0).getReg(); 3249 SrcReg2 = MI.getOperand(1).getReg(); 3250 CmpMask = 0; 3251 CmpValue = 0; 3252 return true; 3253 case X86::TEST8rr: 3254 case X86::TEST16rr: 3255 case X86::TEST32rr: 3256 case X86::TEST64rr: 3257 SrcReg = MI.getOperand(0).getReg(); 3258 if (MI.getOperand(1).getReg() != SrcReg) 3259 return false; 3260 // Compare against zero. 3261 SrcReg2 = 0; 3262 CmpMask = ~0; 3263 CmpValue = 0; 3264 return true; 3265 } 3266 return false; 3267 } 3268 3269 /// Check whether the first instruction, whose only 3270 /// purpose is to update flags, can be made redundant. 3271 /// CMPrr can be made redundant by SUBrr if the operands are the same. 3272 /// This function can be extended later on. 3273 /// SrcReg, SrcRegs: register operands for FlagI. 3274 /// ImmValue: immediate for FlagI if it takes an immediate. 3275 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI, 3276 unsigned SrcReg, unsigned SrcReg2, 3277 int ImmMask, int ImmValue, 3278 const MachineInstr &OI) { 3279 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || 3280 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || 3281 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || 3282 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && 3283 ((OI.getOperand(1).getReg() == SrcReg && 3284 OI.getOperand(2).getReg() == SrcReg2) || 3285 (OI.getOperand(1).getReg() == SrcReg2 && 3286 OI.getOperand(2).getReg() == SrcReg))) 3287 return true; 3288 3289 if (ImmMask != 0 && 3290 ((FlagI.getOpcode() == X86::CMP64ri32 && 3291 OI.getOpcode() == X86::SUB64ri32) || 3292 (FlagI.getOpcode() == X86::CMP64ri8 && 3293 OI.getOpcode() == X86::SUB64ri8) || 3294 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || 3295 (FlagI.getOpcode() == X86::CMP32ri8 && 3296 OI.getOpcode() == X86::SUB32ri8) || 3297 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || 3298 (FlagI.getOpcode() == X86::CMP16ri8 && 3299 OI.getOpcode() == X86::SUB16ri8) || 3300 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && 3301 OI.getOperand(1).getReg() == SrcReg && 3302 OI.getOperand(2).getImm() == ImmValue) 3303 return true; 3304 return false; 3305 } 3306 3307 /// Check whether the definition can be converted 3308 /// to remove a comparison against zero. 3309 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) { 3310 NoSignFlag = false; 3311 3312 switch (MI.getOpcode()) { 3313 default: return false; 3314 3315 // The shift instructions only modify ZF if their shift count is non-zero. 3316 // N.B.: The processor truncates the shift count depending on the encoding. 3317 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 3318 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 3319 return getTruncatedShiftCount(MI, 2) != 0; 3320 3321 // Some left shift instructions can be turned into LEA instructions but only 3322 // if their flags aren't used. Avoid transforming such instructions. 3323 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 3324 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 3325 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 3326 return ShAmt != 0; 3327 } 3328 3329 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 3330 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 3331 return getTruncatedShiftCount(MI, 3) != 0; 3332 3333 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 3334 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 3335 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 3336 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 3337 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 3338 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 3339 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 3340 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 3341 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 3342 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 3343 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 3344 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 3345 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 3346 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 3347 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 3348 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 3349 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 3350 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 3351 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 3352 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 3353 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 3354 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 3355 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 3356 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 3357 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 3358 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 3359 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 3360 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: 3361 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: 3362 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: 3363 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: 3364 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: 3365 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: 3366 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: 3367 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: 3368 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: 3369 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: 3370 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 3371 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 3372 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 3373 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 3374 case X86::ANDN32rr: case X86::ANDN32rm: 3375 case X86::ANDN64rr: case X86::ANDN64rm: 3376 case X86::BLSI32rr: case X86::BLSI32rm: 3377 case X86::BLSI64rr: case X86::BLSI64rm: 3378 case X86::BLSMSK32rr:case X86::BLSMSK32rm: 3379 case X86::BLSMSK64rr:case X86::BLSMSK64rm: 3380 case X86::BLSR32rr: case X86::BLSR32rm: 3381 case X86::BLSR64rr: case X86::BLSR64rm: 3382 case X86::BZHI32rr: case X86::BZHI32rm: 3383 case X86::BZHI64rr: case X86::BZHI64rm: 3384 case X86::LZCNT16rr: case X86::LZCNT16rm: 3385 case X86::LZCNT32rr: case X86::LZCNT32rm: 3386 case X86::LZCNT64rr: case X86::LZCNT64rm: 3387 case X86::POPCNT16rr:case X86::POPCNT16rm: 3388 case X86::POPCNT32rr:case X86::POPCNT32rm: 3389 case X86::POPCNT64rr:case X86::POPCNT64rm: 3390 case X86::TZCNT16rr: case X86::TZCNT16rm: 3391 case X86::TZCNT32rr: case X86::TZCNT32rm: 3392 case X86::TZCNT64rr: case X86::TZCNT64rm: 3393 case X86::BLCFILL32rr: case X86::BLCFILL32rm: 3394 case X86::BLCFILL64rr: case X86::BLCFILL64rm: 3395 case X86::BLCI32rr: case X86::BLCI32rm: 3396 case X86::BLCI64rr: case X86::BLCI64rm: 3397 case X86::BLCIC32rr: case X86::BLCIC32rm: 3398 case X86::BLCIC64rr: case X86::BLCIC64rm: 3399 case X86::BLCMSK32rr: case X86::BLCMSK32rm: 3400 case X86::BLCMSK64rr: case X86::BLCMSK64rm: 3401 case X86::BLCS32rr: case X86::BLCS32rm: 3402 case X86::BLCS64rr: case X86::BLCS64rm: 3403 case X86::BLSFILL32rr: case X86::BLSFILL32rm: 3404 case X86::BLSFILL64rr: case X86::BLSFILL64rm: 3405 case X86::BLSIC32rr: case X86::BLSIC32rm: 3406 case X86::BLSIC64rr: case X86::BLSIC64rm: 3407 case X86::T1MSKC32rr: case X86::T1MSKC32rm: 3408 case X86::T1MSKC64rr: case X86::T1MSKC64rm: 3409 case X86::TZMSK32rr: case X86::TZMSK32rm: 3410 case X86::TZMSK64rr: case X86::TZMSK64rm: 3411 return true; 3412 case X86::BEXTR32rr: case X86::BEXTR64rr: 3413 case X86::BEXTR32rm: case X86::BEXTR64rm: 3414 case X86::BEXTRI32ri: case X86::BEXTRI32mi: 3415 case X86::BEXTRI64ri: case X86::BEXTRI64mi: 3416 // BEXTR doesn't update the sign flag so we can't use it. 3417 NoSignFlag = true; 3418 return true; 3419 } 3420 } 3421 3422 /// Check whether the use can be converted to remove a comparison against zero. 3423 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { 3424 switch (MI.getOpcode()) { 3425 default: return X86::COND_INVALID; 3426 case X86::NEG8r: 3427 case X86::NEG16r: 3428 case X86::NEG32r: 3429 case X86::NEG64r: 3430 return X86::COND_AE; 3431 case X86::LZCNT16rr: 3432 case X86::LZCNT32rr: 3433 case X86::LZCNT64rr: 3434 return X86::COND_B; 3435 case X86::POPCNT16rr: 3436 case X86::POPCNT32rr: 3437 case X86::POPCNT64rr: 3438 return X86::COND_E; 3439 case X86::TZCNT16rr: 3440 case X86::TZCNT32rr: 3441 case X86::TZCNT64rr: 3442 return X86::COND_B; 3443 case X86::BSF16rr: 3444 case X86::BSF32rr: 3445 case X86::BSF64rr: 3446 case X86::BSR16rr: 3447 case X86::BSR32rr: 3448 case X86::BSR64rr: 3449 return X86::COND_E; 3450 case X86::BLSI32rr: 3451 case X86::BLSI64rr: 3452 return X86::COND_AE; 3453 case X86::BLSR32rr: 3454 case X86::BLSR64rr: 3455 case X86::BLSMSK32rr: 3456 case X86::BLSMSK64rr: 3457 return X86::COND_B; 3458 // TODO: TBM instructions. 3459 } 3460 } 3461 3462 /// Check if there exists an earlier instruction that 3463 /// operates on the same source operands and sets flags in the same way as 3464 /// Compare; remove Compare if possible. 3465 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 3466 unsigned SrcReg2, int CmpMask, 3467 int CmpValue, 3468 const MachineRegisterInfo *MRI) const { 3469 // Check whether we can replace SUB with CMP. 3470 switch (CmpInstr.getOpcode()) { 3471 default: break; 3472 case X86::SUB64ri32: 3473 case X86::SUB64ri8: 3474 case X86::SUB32ri: 3475 case X86::SUB32ri8: 3476 case X86::SUB16ri: 3477 case X86::SUB16ri8: 3478 case X86::SUB8ri: 3479 case X86::SUB64rm: 3480 case X86::SUB32rm: 3481 case X86::SUB16rm: 3482 case X86::SUB8rm: 3483 case X86::SUB64rr: 3484 case X86::SUB32rr: 3485 case X86::SUB16rr: 3486 case X86::SUB8rr: { 3487 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 3488 return false; 3489 // There is no use of the destination register, we can replace SUB with CMP. 3490 unsigned NewOpcode = 0; 3491 switch (CmpInstr.getOpcode()) { 3492 default: llvm_unreachable("Unreachable!"); 3493 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 3494 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 3495 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 3496 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 3497 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 3498 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 3499 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 3500 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 3501 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 3502 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 3503 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 3504 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 3505 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 3506 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 3507 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 3508 } 3509 CmpInstr.setDesc(get(NewOpcode)); 3510 CmpInstr.RemoveOperand(0); 3511 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 3512 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 3513 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 3514 return false; 3515 } 3516 } 3517 3518 // Get the unique definition of SrcReg. 3519 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3520 if (!MI) return false; 3521 3522 // CmpInstr is the first instruction of the BB. 3523 MachineBasicBlock::iterator I = CmpInstr, Def = MI; 3524 3525 // If we are comparing against zero, check whether we can use MI to update 3526 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. 3527 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 3528 if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) 3529 return false; 3530 3531 // If we have a use of the source register between the def and our compare 3532 // instruction we can eliminate the compare iff the use sets EFLAGS in the 3533 // right way. 3534 bool ShouldUpdateCC = false; 3535 bool NoSignFlag = false; 3536 X86::CondCode NewCC = X86::COND_INVALID; 3537 if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) { 3538 // Scan forward from the use until we hit the use we're looking for or the 3539 // compare instruction. 3540 for (MachineBasicBlock::iterator J = MI;; ++J) { 3541 // Do we have a convertible instruction? 3542 NewCC = isUseDefConvertible(*J); 3543 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && 3544 J->getOperand(1).getReg() == SrcReg) { 3545 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); 3546 ShouldUpdateCC = true; // Update CC later on. 3547 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going 3548 // with the new def. 3549 Def = J; 3550 MI = &*Def; 3551 break; 3552 } 3553 3554 if (J == I) 3555 return false; 3556 } 3557 } 3558 3559 // We are searching for an earlier instruction that can make CmpInstr 3560 // redundant and that instruction will be saved in Sub. 3561 MachineInstr *Sub = nullptr; 3562 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3563 3564 // We iterate backward, starting from the instruction before CmpInstr and 3565 // stop when reaching the definition of a source register or done with the BB. 3566 // RI points to the instruction before CmpInstr. 3567 // If the definition is in this basic block, RE points to the definition; 3568 // otherwise, RE is the rend of the basic block. 3569 MachineBasicBlock::reverse_iterator 3570 RI = ++I.getReverse(), 3571 RE = CmpInstr.getParent() == MI->getParent() 3572 ? Def.getReverse() /* points to MI */ 3573 : CmpInstr.getParent()->rend(); 3574 MachineInstr *Movr0Inst = nullptr; 3575 for (; RI != RE; ++RI) { 3576 MachineInstr &Instr = *RI; 3577 // Check whether CmpInstr can be made redundant by the current instruction. 3578 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, 3579 CmpValue, Instr)) { 3580 Sub = &Instr; 3581 break; 3582 } 3583 3584 if (Instr.modifiesRegister(X86::EFLAGS, TRI) || 3585 Instr.readsRegister(X86::EFLAGS, TRI)) { 3586 // This instruction modifies or uses EFLAGS. 3587 3588 // MOV32r0 etc. are implemented with xor which clobbers condition code. 3589 // They are safe to move up, if the definition to EFLAGS is dead and 3590 // earlier instructions do not read or write EFLAGS. 3591 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && 3592 Instr.registerDefIsDead(X86::EFLAGS, TRI)) { 3593 Movr0Inst = &Instr; 3594 continue; 3595 } 3596 3597 // We can't remove CmpInstr. 3598 return false; 3599 } 3600 } 3601 3602 // Return false if no candidates exist. 3603 if (!IsCmpZero && !Sub) 3604 return false; 3605 3606 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 3607 Sub->getOperand(2).getReg() == SrcReg); 3608 3609 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 3610 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 3611 // If we are done with the basic block, we need to check whether EFLAGS is 3612 // live-out. 3613 bool IsSafe = false; 3614 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate; 3615 MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); 3616 for (++I; I != E; ++I) { 3617 const MachineInstr &Instr = *I; 3618 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 3619 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 3620 // We should check the usage if this instruction uses and updates EFLAGS. 3621 if (!UseEFLAGS && ModifyEFLAGS) { 3622 // It is safe to remove CmpInstr if EFLAGS is updated again. 3623 IsSafe = true; 3624 break; 3625 } 3626 if (!UseEFLAGS && !ModifyEFLAGS) 3627 continue; 3628 3629 // EFLAGS is used by this instruction. 3630 X86::CondCode OldCC = X86::COND_INVALID; 3631 if (IsCmpZero || IsSwapped) { 3632 // We decode the condition code from opcode. 3633 if (Instr.isBranch()) 3634 OldCC = X86::getCondFromBranch(Instr); 3635 else { 3636 OldCC = X86::getCondFromSETCC(Instr); 3637 if (OldCC == X86::COND_INVALID) 3638 OldCC = X86::getCondFromCMov(Instr); 3639 } 3640 if (OldCC == X86::COND_INVALID) return false; 3641 } 3642 X86::CondCode ReplacementCC = X86::COND_INVALID; 3643 if (IsCmpZero) { 3644 switch (OldCC) { 3645 default: break; 3646 case X86::COND_A: case X86::COND_AE: 3647 case X86::COND_B: case X86::COND_BE: 3648 case X86::COND_G: case X86::COND_GE: 3649 case X86::COND_L: case X86::COND_LE: 3650 case X86::COND_O: case X86::COND_NO: 3651 // CF and OF are used, we can't perform this optimization. 3652 return false; 3653 case X86::COND_S: case X86::COND_NS: 3654 // If SF is used, but the instruction doesn't update the SF, then we 3655 // can't do the optimization. 3656 if (NoSignFlag) 3657 return false; 3658 break; 3659 } 3660 3661 // If we're updating the condition code check if we have to reverse the 3662 // condition. 3663 if (ShouldUpdateCC) 3664 switch (OldCC) { 3665 default: 3666 return false; 3667 case X86::COND_E: 3668 ReplacementCC = NewCC; 3669 break; 3670 case X86::COND_NE: 3671 ReplacementCC = GetOppositeBranchCondition(NewCC); 3672 break; 3673 } 3674 } else if (IsSwapped) { 3675 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 3676 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3677 // We swap the condition code and synthesize the new opcode. 3678 ReplacementCC = getSwappedCondition(OldCC); 3679 if (ReplacementCC == X86::COND_INVALID) return false; 3680 } 3681 3682 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { 3683 // Push the MachineInstr to OpsToUpdate. 3684 // If it is safe to remove CmpInstr, the condition code of these 3685 // instructions will be modified. 3686 OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC)); 3687 } 3688 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 3689 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 3690 IsSafe = true; 3691 break; 3692 } 3693 } 3694 3695 // If EFLAGS is not killed nor re-defined, we should check whether it is 3696 // live-out. If it is live-out, do not optimize. 3697 if ((IsCmpZero || IsSwapped) && !IsSafe) { 3698 MachineBasicBlock *MBB = CmpInstr.getParent(); 3699 for (MachineBasicBlock *Successor : MBB->successors()) 3700 if (Successor->isLiveIn(X86::EFLAGS)) 3701 return false; 3702 } 3703 3704 // The instruction to be updated is either Sub or MI. 3705 Sub = IsCmpZero ? MI : Sub; 3706 // Move Movr0Inst to the appropriate place before Sub. 3707 if (Movr0Inst) { 3708 // Look backwards until we find a def that doesn't use the current EFLAGS. 3709 Def = Sub; 3710 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), 3711 InsertE = Sub->getParent()->rend(); 3712 for (; InsertI != InsertE; ++InsertI) { 3713 MachineInstr *Instr = &*InsertI; 3714 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 3715 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 3716 Sub->getParent()->remove(Movr0Inst); 3717 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 3718 Movr0Inst); 3719 break; 3720 } 3721 } 3722 if (InsertI == InsertE) 3723 return false; 3724 } 3725 3726 // Make sure Sub instruction defines EFLAGS and mark the def live. 3727 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS); 3728 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 3729 FlagDef->setIsDead(false); 3730 3731 CmpInstr.eraseFromParent(); 3732 3733 // Modify the condition code of instructions in OpsToUpdate. 3734 for (auto &Op : OpsToUpdate) { 3735 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 3736 .setImm(Op.second); 3737 } 3738 return true; 3739 } 3740 3741 /// Try to remove the load by folding it to a register 3742 /// operand at the use. We fold the load instructions if load defines a virtual 3743 /// register, the virtual register is used once in the same BB, and the 3744 /// instructions in-between do not load or store, and have no side effects. 3745 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 3746 const MachineRegisterInfo *MRI, 3747 unsigned &FoldAsLoadDefReg, 3748 MachineInstr *&DefMI) const { 3749 // Check whether we can move DefMI here. 3750 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 3751 assert(DefMI); 3752 bool SawStore = false; 3753 if (!DefMI->isSafeToMove(nullptr, SawStore)) 3754 return nullptr; 3755 3756 // Collect information about virtual register operands of MI. 3757 SmallVector<unsigned, 1> SrcOperandIds; 3758 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 3759 MachineOperand &MO = MI.getOperand(i); 3760 if (!MO.isReg()) 3761 continue; 3762 unsigned Reg = MO.getReg(); 3763 if (Reg != FoldAsLoadDefReg) 3764 continue; 3765 // Do not fold if we have a subreg use or a def. 3766 if (MO.getSubReg() || MO.isDef()) 3767 return nullptr; 3768 SrcOperandIds.push_back(i); 3769 } 3770 if (SrcOperandIds.empty()) 3771 return nullptr; 3772 3773 // Check whether we can fold the def into SrcOperandId. 3774 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 3775 FoldAsLoadDefReg = 0; 3776 return FoldMI; 3777 } 3778 3779 return nullptr; 3780 } 3781 3782 /// Expand a single-def pseudo instruction to a two-addr 3783 /// instruction with two undef reads of the register being defined. 3784 /// This is used for mapping: 3785 /// %xmm4 = V_SET0 3786 /// to: 3787 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 3788 /// 3789 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 3790 const MCInstrDesc &Desc) { 3791 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 3792 unsigned Reg = MIB->getOperand(0).getReg(); 3793 MIB->setDesc(Desc); 3794 3795 // MachineInstr::addOperand() will insert explicit operands before any 3796 // implicit operands. 3797 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 3798 // But we don't trust that. 3799 assert(MIB->getOperand(1).getReg() == Reg && 3800 MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); 3801 return true; 3802 } 3803 3804 /// Expand a single-def pseudo instruction to a two-addr 3805 /// instruction with two %k0 reads. 3806 /// This is used for mapping: 3807 /// %k4 = K_SET1 3808 /// to: 3809 /// %k4 = KXNORrr %k0, %k0 3810 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, 3811 const MCInstrDesc &Desc, unsigned Reg) { 3812 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 3813 MIB->setDesc(Desc); 3814 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 3815 return true; 3816 } 3817 3818 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 3819 bool MinusOne) { 3820 MachineBasicBlock &MBB = *MIB->getParent(); 3821 DebugLoc DL = MIB->getDebugLoc(); 3822 unsigned Reg = MIB->getOperand(0).getReg(); 3823 3824 // Insert the XOR. 3825 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 3826 .addReg(Reg, RegState::Undef) 3827 .addReg(Reg, RegState::Undef); 3828 3829 // Turn the pseudo into an INC or DEC. 3830 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 3831 MIB.addReg(Reg); 3832 3833 return true; 3834 } 3835 3836 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 3837 const TargetInstrInfo &TII, 3838 const X86Subtarget &Subtarget) { 3839 MachineBasicBlock &MBB = *MIB->getParent(); 3840 DebugLoc DL = MIB->getDebugLoc(); 3841 int64_t Imm = MIB->getOperand(1).getImm(); 3842 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 3843 MachineBasicBlock::iterator I = MIB.getInstr(); 3844 3845 int StackAdjustment; 3846 3847 if (Subtarget.is64Bit()) { 3848 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 3849 MIB->getOpcode() == X86::MOV32ImmSExti8); 3850 3851 // Can't use push/pop lowering if the function might write to the red zone. 3852 X86MachineFunctionInfo *X86FI = 3853 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 3854 if (X86FI->getUsesRedZone()) { 3855 MIB->setDesc(TII.get(MIB->getOpcode() == 3856 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); 3857 return true; 3858 } 3859 3860 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 3861 // widen the register if necessary. 3862 StackAdjustment = 8; 3863 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); 3864 MIB->setDesc(TII.get(X86::POP64r)); 3865 MIB->getOperand(0) 3866 .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); 3867 } else { 3868 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 3869 StackAdjustment = 4; 3870 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); 3871 MIB->setDesc(TII.get(X86::POP32r)); 3872 } 3873 3874 // Build CFI if necessary. 3875 MachineFunction &MF = *MBB.getParent(); 3876 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 3877 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3878 bool NeedsDwarfCFI = 3879 !IsWin64Prologue && 3880 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); 3881 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 3882 if (EmitCFI) { 3883 TFL->BuildCFI(MBB, I, DL, 3884 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 3885 TFL->BuildCFI(MBB, std::next(I), DL, 3886 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 3887 } 3888 3889 return true; 3890 } 3891 3892 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 3893 // code sequence is needed for other targets. 3894 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 3895 const TargetInstrInfo &TII) { 3896 MachineBasicBlock &MBB = *MIB->getParent(); 3897 DebugLoc DL = MIB->getDebugLoc(); 3898 unsigned Reg = MIB->getOperand(0).getReg(); 3899 const GlobalValue *GV = 3900 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 3901 auto Flags = MachineMemOperand::MOLoad | 3902 MachineMemOperand::MODereferenceable | 3903 MachineMemOperand::MOInvariant; 3904 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 3905 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8); 3906 MachineBasicBlock::iterator I = MIB.getInstr(); 3907 3908 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 3909 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 3910 .addMemOperand(MMO); 3911 MIB->setDebugLoc(DL); 3912 MIB->setDesc(TII.get(X86::MOV64rm)); 3913 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 3914 } 3915 3916 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 3917 MachineBasicBlock &MBB = *MIB->getParent(); 3918 MachineFunction &MF = *MBB.getParent(); 3919 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 3920 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 3921 unsigned XorOp = 3922 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 3923 MIB->setDesc(TII.get(XorOp)); 3924 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 3925 return true; 3926 } 3927 3928 // This is used to handle spills for 128/256-bit registers when we have AVX512, 3929 // but not VLX. If it uses an extended register we need to use an instruction 3930 // that loads the lower 128/256-bit, but is available with only AVX512F. 3931 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 3932 const TargetRegisterInfo *TRI, 3933 const MCInstrDesc &LoadDesc, 3934 const MCInstrDesc &BroadcastDesc, 3935 unsigned SubIdx) { 3936 unsigned DestReg = MIB->getOperand(0).getReg(); 3937 // Check if DestReg is XMM16-31 or YMM16-31. 3938 if (TRI->getEncodingValue(DestReg) < 16) { 3939 // We can use a normal VEX encoded load. 3940 MIB->setDesc(LoadDesc); 3941 } else { 3942 // Use a 128/256-bit VBROADCAST instruction. 3943 MIB->setDesc(BroadcastDesc); 3944 // Change the destination to a 512-bit register. 3945 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 3946 MIB->getOperand(0).setReg(DestReg); 3947 } 3948 return true; 3949 } 3950 3951 // This is used to handle spills for 128/256-bit registers when we have AVX512, 3952 // but not VLX. If it uses an extended register we need to use an instruction 3953 // that stores the lower 128/256-bit, but is available with only AVX512F. 3954 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 3955 const TargetRegisterInfo *TRI, 3956 const MCInstrDesc &StoreDesc, 3957 const MCInstrDesc &ExtractDesc, 3958 unsigned SubIdx) { 3959 unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg(); 3960 // Check if DestReg is XMM16-31 or YMM16-31. 3961 if (TRI->getEncodingValue(SrcReg) < 16) { 3962 // We can use a normal VEX encoded store. 3963 MIB->setDesc(StoreDesc); 3964 } else { 3965 // Use a VEXTRACTF instruction. 3966 MIB->setDesc(ExtractDesc); 3967 // Change the destination to a 512-bit register. 3968 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 3969 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 3970 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 3971 } 3972 3973 return true; 3974 } 3975 3976 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 3977 MIB->setDesc(Desc); 3978 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 3979 // Temporarily remove the immediate so we can add another source register. 3980 MIB->RemoveOperand(2); 3981 // Add the register. Don't copy the kill flag if there is one. 3982 MIB.addReg(MIB->getOperand(1).getReg(), 3983 getUndefRegState(MIB->getOperand(1).isUndef())); 3984 // Add back the immediate. 3985 MIB.addImm(ShiftAmt); 3986 return true; 3987 } 3988 3989 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3990 bool HasAVX = Subtarget.hasAVX(); 3991 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 3992 switch (MI.getOpcode()) { 3993 case X86::MOV32r0: 3994 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 3995 case X86::MOV32r1: 3996 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 3997 case X86::MOV32r_1: 3998 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 3999 case X86::MOV32ImmSExti8: 4000 case X86::MOV64ImmSExti8: 4001 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 4002 case X86::SETB_C8r: 4003 return Expand2AddrUndef(MIB, get(X86::SBB8rr)); 4004 case X86::SETB_C16r: 4005 return Expand2AddrUndef(MIB, get(X86::SBB16rr)); 4006 case X86::SETB_C32r: 4007 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 4008 case X86::SETB_C64r: 4009 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 4010 case X86::MMX_SET0: 4011 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); 4012 case X86::V_SET0: 4013 case X86::FsFLD0SS: 4014 case X86::FsFLD0SD: 4015 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 4016 case X86::AVX_SET0: { 4017 assert(HasAVX && "AVX not supported"); 4018 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4019 unsigned SrcReg = MIB->getOperand(0).getReg(); 4020 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4021 MIB->getOperand(0).setReg(XReg); 4022 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 4023 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4024 return true; 4025 } 4026 case X86::AVX512_128_SET0: 4027 case X86::AVX512_FsFLD0SS: 4028 case X86::AVX512_FsFLD0SD: { 4029 bool HasVLX = Subtarget.hasVLX(); 4030 unsigned SrcReg = MIB->getOperand(0).getReg(); 4031 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4032 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 4033 return Expand2AddrUndef(MIB, 4034 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4035 // Extended register without VLX. Use a larger XOR. 4036 SrcReg = 4037 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 4038 MIB->getOperand(0).setReg(SrcReg); 4039 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4040 } 4041 case X86::AVX512_256_SET0: 4042 case X86::AVX512_512_SET0: { 4043 bool HasVLX = Subtarget.hasVLX(); 4044 unsigned SrcReg = MIB->getOperand(0).getReg(); 4045 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4046 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 4047 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4048 MIB->getOperand(0).setReg(XReg); 4049 Expand2AddrUndef(MIB, 4050 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4051 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4052 return true; 4053 } 4054 if (MI.getOpcode() == X86::AVX512_256_SET0) { 4055 // No VLX so we must reference a zmm. 4056 unsigned ZReg = 4057 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 4058 MIB->getOperand(0).setReg(ZReg); 4059 } 4060 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4061 } 4062 case X86::V_SETALLONES: 4063 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 4064 case X86::AVX2_SETALLONES: 4065 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 4066 case X86::AVX1_SETALLONES: { 4067 unsigned Reg = MIB->getOperand(0).getReg(); 4068 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 4069 MIB->setDesc(get(X86::VCMPPSYrri)); 4070 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 4071 return true; 4072 } 4073 case X86::AVX512_512_SETALLONES: { 4074 unsigned Reg = MIB->getOperand(0).getReg(); 4075 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 4076 // VPTERNLOGD needs 3 register inputs and an immediate. 4077 // 0xff will return 1s for any input. 4078 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) 4079 .addReg(Reg, RegState::Undef).addImm(0xff); 4080 return true; 4081 } 4082 case X86::AVX512_512_SEXT_MASK_32: 4083 case X86::AVX512_512_SEXT_MASK_64: { 4084 unsigned Reg = MIB->getOperand(0).getReg(); 4085 unsigned MaskReg = MIB->getOperand(1).getReg(); 4086 unsigned MaskState = getRegState(MIB->getOperand(1)); 4087 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? 4088 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; 4089 MI.RemoveOperand(1); 4090 MIB->setDesc(get(Opc)); 4091 // VPTERNLOG needs 3 register inputs and an immediate. 4092 // 0xff will return 1s for any input. 4093 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) 4094 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); 4095 return true; 4096 } 4097 case X86::VMOVAPSZ128rm_NOVLX: 4098 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 4099 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4100 case X86::VMOVUPSZ128rm_NOVLX: 4101 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 4102 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4103 case X86::VMOVAPSZ256rm_NOVLX: 4104 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 4105 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4106 case X86::VMOVUPSZ256rm_NOVLX: 4107 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 4108 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4109 case X86::VMOVAPSZ128mr_NOVLX: 4110 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 4111 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4112 case X86::VMOVUPSZ128mr_NOVLX: 4113 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 4114 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4115 case X86::VMOVAPSZ256mr_NOVLX: 4116 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 4117 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4118 case X86::VMOVUPSZ256mr_NOVLX: 4119 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 4120 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4121 case X86::MOV32ri64: { 4122 unsigned Reg = MIB->getOperand(0).getReg(); 4123 unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 4124 MI.setDesc(get(X86::MOV32ri)); 4125 MIB->getOperand(0).setReg(Reg32); 4126 MIB.addReg(Reg, RegState::ImplicitDefine); 4127 return true; 4128 } 4129 4130 // KNL does not recognize dependency-breaking idioms for mask registers, 4131 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 4132 // Using %k0 as the undef input register is a performance heuristic based 4133 // on the assumption that %k0 is used less frequently than the other mask 4134 // registers, since it is not usable as a write mask. 4135 // FIXME: A more advanced approach would be to choose the best input mask 4136 // register based on context. 4137 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); 4138 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); 4139 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); 4140 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); 4141 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); 4142 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); 4143 case TargetOpcode::LOAD_STACK_GUARD: 4144 expandLoadStackGuard(MIB, *this); 4145 return true; 4146 case X86::XOR64_FP: 4147 case X86::XOR32_FP: 4148 return expandXorFP(MIB, *this); 4149 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 4150 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 4151 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 4152 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 4153 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; 4154 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; 4155 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; 4156 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; 4157 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; 4158 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; 4159 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; 4160 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; 4161 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break; 4162 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break; 4163 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break; 4164 } 4165 return false; 4166 } 4167 4168 /// Return true for all instructions that only update 4169 /// the first 32 or 64-bits of the destination register and leave the rest 4170 /// unmodified. This can be used to avoid folding loads if the instructions 4171 /// only update part of the destination register, and the non-updated part is 4172 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 4173 /// instructions breaks the partial register dependency and it can improve 4174 /// performance. e.g.: 4175 /// 4176 /// movss (%rdi), %xmm0 4177 /// cvtss2sd %xmm0, %xmm0 4178 /// 4179 /// Instead of 4180 /// cvtss2sd (%rdi), %xmm0 4181 /// 4182 /// FIXME: This should be turned into a TSFlags. 4183 /// 4184 static bool hasPartialRegUpdate(unsigned Opcode, 4185 const X86Subtarget &Subtarget, 4186 bool ForLoadFold = false) { 4187 switch (Opcode) { 4188 case X86::CVTSI2SSrr: 4189 case X86::CVTSI2SSrm: 4190 case X86::CVTSI642SSrr: 4191 case X86::CVTSI642SSrm: 4192 case X86::CVTSI2SDrr: 4193 case X86::CVTSI2SDrm: 4194 case X86::CVTSI642SDrr: 4195 case X86::CVTSI642SDrm: 4196 // Load folding won't effect the undef register update since the input is 4197 // a GPR. 4198 return !ForLoadFold; 4199 case X86::CVTSD2SSrr: 4200 case X86::CVTSD2SSrm: 4201 case X86::CVTSS2SDrr: 4202 case X86::CVTSS2SDrm: 4203 case X86::MOVHPDrm: 4204 case X86::MOVHPSrm: 4205 case X86::MOVLPDrm: 4206 case X86::MOVLPSrm: 4207 case X86::RCPSSr: 4208 case X86::RCPSSm: 4209 case X86::RCPSSr_Int: 4210 case X86::RCPSSm_Int: 4211 case X86::ROUNDSDr: 4212 case X86::ROUNDSDm: 4213 case X86::ROUNDSSr: 4214 case X86::ROUNDSSm: 4215 case X86::RSQRTSSr: 4216 case X86::RSQRTSSm: 4217 case X86::RSQRTSSr_Int: 4218 case X86::RSQRTSSm_Int: 4219 case X86::SQRTSSr: 4220 case X86::SQRTSSm: 4221 case X86::SQRTSSr_Int: 4222 case X86::SQRTSSm_Int: 4223 case X86::SQRTSDr: 4224 case X86::SQRTSDm: 4225 case X86::SQRTSDr_Int: 4226 case X86::SQRTSDm_Int: 4227 return true; 4228 // GPR 4229 case X86::POPCNT32rm: 4230 case X86::POPCNT32rr: 4231 case X86::POPCNT64rm: 4232 case X86::POPCNT64rr: 4233 return Subtarget.hasPOPCNTFalseDeps(); 4234 case X86::LZCNT32rm: 4235 case X86::LZCNT32rr: 4236 case X86::LZCNT64rm: 4237 case X86::LZCNT64rr: 4238 case X86::TZCNT32rm: 4239 case X86::TZCNT32rr: 4240 case X86::TZCNT64rm: 4241 case X86::TZCNT64rr: 4242 return Subtarget.hasLZCNTFalseDeps(); 4243 } 4244 4245 return false; 4246 } 4247 4248 /// Inform the BreakFalseDeps pass how many idle 4249 /// instructions we would like before a partial register update. 4250 unsigned X86InstrInfo::getPartialRegUpdateClearance( 4251 const MachineInstr &MI, unsigned OpNum, 4252 const TargetRegisterInfo *TRI) const { 4253 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 4254 return 0; 4255 4256 // If MI is marked as reading Reg, the partial register update is wanted. 4257 const MachineOperand &MO = MI.getOperand(0); 4258 unsigned Reg = MO.getReg(); 4259 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4260 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 4261 return 0; 4262 } else { 4263 if (MI.readsRegister(Reg, TRI)) 4264 return 0; 4265 } 4266 4267 // If any instructions in the clearance range are reading Reg, insert a 4268 // dependency breaking instruction, which is inexpensive and is likely to 4269 // be hidden in other instruction's cycles. 4270 return PartialRegUpdateClearance; 4271 } 4272 4273 // Return true for any instruction the copies the high bits of the first source 4274 // operand into the unused high bits of the destination operand. 4275 static bool hasUndefRegUpdate(unsigned Opcode, bool ForLoadFold = false) { 4276 switch (Opcode) { 4277 case X86::VCVTSI2SSrr: 4278 case X86::VCVTSI2SSrm: 4279 case X86::VCVTSI2SSrr_Int: 4280 case X86::VCVTSI2SSrm_Int: 4281 case X86::VCVTSI642SSrr: 4282 case X86::VCVTSI642SSrm: 4283 case X86::VCVTSI642SSrr_Int: 4284 case X86::VCVTSI642SSrm_Int: 4285 case X86::VCVTSI2SDrr: 4286 case X86::VCVTSI2SDrm: 4287 case X86::VCVTSI2SDrr_Int: 4288 case X86::VCVTSI2SDrm_Int: 4289 case X86::VCVTSI642SDrr: 4290 case X86::VCVTSI642SDrm: 4291 case X86::VCVTSI642SDrr_Int: 4292 case X86::VCVTSI642SDrm_Int: 4293 // AVX-512 4294 case X86::VCVTSI2SSZrr: 4295 case X86::VCVTSI2SSZrm: 4296 case X86::VCVTSI2SSZrr_Int: 4297 case X86::VCVTSI2SSZrrb_Int: 4298 case X86::VCVTSI2SSZrm_Int: 4299 case X86::VCVTSI642SSZrr: 4300 case X86::VCVTSI642SSZrm: 4301 case X86::VCVTSI642SSZrr_Int: 4302 case X86::VCVTSI642SSZrrb_Int: 4303 case X86::VCVTSI642SSZrm_Int: 4304 case X86::VCVTSI2SDZrr: 4305 case X86::VCVTSI2SDZrm: 4306 case X86::VCVTSI2SDZrr_Int: 4307 case X86::VCVTSI2SDZrm_Int: 4308 case X86::VCVTSI642SDZrr: 4309 case X86::VCVTSI642SDZrm: 4310 case X86::VCVTSI642SDZrr_Int: 4311 case X86::VCVTSI642SDZrrb_Int: 4312 case X86::VCVTSI642SDZrm_Int: 4313 case X86::VCVTUSI2SSZrr: 4314 case X86::VCVTUSI2SSZrm: 4315 case X86::VCVTUSI2SSZrr_Int: 4316 case X86::VCVTUSI2SSZrrb_Int: 4317 case X86::VCVTUSI2SSZrm_Int: 4318 case X86::VCVTUSI642SSZrr: 4319 case X86::VCVTUSI642SSZrm: 4320 case X86::VCVTUSI642SSZrr_Int: 4321 case X86::VCVTUSI642SSZrrb_Int: 4322 case X86::VCVTUSI642SSZrm_Int: 4323 case X86::VCVTUSI2SDZrr: 4324 case X86::VCVTUSI2SDZrm: 4325 case X86::VCVTUSI2SDZrr_Int: 4326 case X86::VCVTUSI2SDZrm_Int: 4327 case X86::VCVTUSI642SDZrr: 4328 case X86::VCVTUSI642SDZrm: 4329 case X86::VCVTUSI642SDZrr_Int: 4330 case X86::VCVTUSI642SDZrrb_Int: 4331 case X86::VCVTUSI642SDZrm_Int: 4332 // Load folding won't effect the undef register update since the input is 4333 // a GPR. 4334 return !ForLoadFold; 4335 case X86::VCVTSD2SSrr: 4336 case X86::VCVTSD2SSrm: 4337 case X86::VCVTSD2SSrr_Int: 4338 case X86::VCVTSD2SSrm_Int: 4339 case X86::VCVTSS2SDrr: 4340 case X86::VCVTSS2SDrm: 4341 case X86::VCVTSS2SDrr_Int: 4342 case X86::VCVTSS2SDrm_Int: 4343 case X86::VRCPSSr: 4344 case X86::VRCPSSr_Int: 4345 case X86::VRCPSSm: 4346 case X86::VRCPSSm_Int: 4347 case X86::VROUNDSDr: 4348 case X86::VROUNDSDm: 4349 case X86::VROUNDSDr_Int: 4350 case X86::VROUNDSDm_Int: 4351 case X86::VROUNDSSr: 4352 case X86::VROUNDSSm: 4353 case X86::VROUNDSSr_Int: 4354 case X86::VROUNDSSm_Int: 4355 case X86::VRSQRTSSr: 4356 case X86::VRSQRTSSr_Int: 4357 case X86::VRSQRTSSm: 4358 case X86::VRSQRTSSm_Int: 4359 case X86::VSQRTSSr: 4360 case X86::VSQRTSSr_Int: 4361 case X86::VSQRTSSm: 4362 case X86::VSQRTSSm_Int: 4363 case X86::VSQRTSDr: 4364 case X86::VSQRTSDr_Int: 4365 case X86::VSQRTSDm: 4366 case X86::VSQRTSDm_Int: 4367 // AVX-512 4368 case X86::VCVTSD2SSZrr: 4369 case X86::VCVTSD2SSZrr_Int: 4370 case X86::VCVTSD2SSZrrb_Int: 4371 case X86::VCVTSD2SSZrm: 4372 case X86::VCVTSD2SSZrm_Int: 4373 case X86::VCVTSS2SDZrr: 4374 case X86::VCVTSS2SDZrr_Int: 4375 case X86::VCVTSS2SDZrrb_Int: 4376 case X86::VCVTSS2SDZrm: 4377 case X86::VCVTSS2SDZrm_Int: 4378 case X86::VGETEXPSDZr: 4379 case X86::VGETEXPSDZrb: 4380 case X86::VGETEXPSDZm: 4381 case X86::VGETEXPSSZr: 4382 case X86::VGETEXPSSZrb: 4383 case X86::VGETEXPSSZm: 4384 case X86::VGETMANTSDZrri: 4385 case X86::VGETMANTSDZrrib: 4386 case X86::VGETMANTSDZrmi: 4387 case X86::VGETMANTSSZrri: 4388 case X86::VGETMANTSSZrrib: 4389 case X86::VGETMANTSSZrmi: 4390 case X86::VRNDSCALESDZr: 4391 case X86::VRNDSCALESDZr_Int: 4392 case X86::VRNDSCALESDZrb_Int: 4393 case X86::VRNDSCALESDZm: 4394 case X86::VRNDSCALESDZm_Int: 4395 case X86::VRNDSCALESSZr: 4396 case X86::VRNDSCALESSZr_Int: 4397 case X86::VRNDSCALESSZrb_Int: 4398 case X86::VRNDSCALESSZm: 4399 case X86::VRNDSCALESSZm_Int: 4400 case X86::VRCP14SDZrr: 4401 case X86::VRCP14SDZrm: 4402 case X86::VRCP14SSZrr: 4403 case X86::VRCP14SSZrm: 4404 case X86::VRCP28SDZr: 4405 case X86::VRCP28SDZrb: 4406 case X86::VRCP28SDZm: 4407 case X86::VRCP28SSZr: 4408 case X86::VRCP28SSZrb: 4409 case X86::VRCP28SSZm: 4410 case X86::VREDUCESSZrmi: 4411 case X86::VREDUCESSZrri: 4412 case X86::VREDUCESSZrrib: 4413 case X86::VRSQRT14SDZrr: 4414 case X86::VRSQRT14SDZrm: 4415 case X86::VRSQRT14SSZrr: 4416 case X86::VRSQRT14SSZrm: 4417 case X86::VRSQRT28SDZr: 4418 case X86::VRSQRT28SDZrb: 4419 case X86::VRSQRT28SDZm: 4420 case X86::VRSQRT28SSZr: 4421 case X86::VRSQRT28SSZrb: 4422 case X86::VRSQRT28SSZm: 4423 case X86::VSQRTSSZr: 4424 case X86::VSQRTSSZr_Int: 4425 case X86::VSQRTSSZrb_Int: 4426 case X86::VSQRTSSZm: 4427 case X86::VSQRTSSZm_Int: 4428 case X86::VSQRTSDZr: 4429 case X86::VSQRTSDZr_Int: 4430 case X86::VSQRTSDZrb_Int: 4431 case X86::VSQRTSDZm: 4432 case X86::VSQRTSDZm_Int: 4433 return true; 4434 } 4435 4436 return false; 4437 } 4438 4439 /// Inform the BreakFalseDeps pass how many idle instructions we would like 4440 /// before certain undef register reads. 4441 /// 4442 /// This catches the VCVTSI2SD family of instructions: 4443 /// 4444 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 4445 /// 4446 /// We should to be careful *not* to catch VXOR idioms which are presumably 4447 /// handled specially in the pipeline: 4448 /// 4449 /// vxorps undef %xmm1, undef %xmm1, %xmm1 4450 /// 4451 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 4452 /// high bits that are passed-through are not live. 4453 unsigned 4454 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, 4455 const TargetRegisterInfo *TRI) const { 4456 if (!hasUndefRegUpdate(MI.getOpcode())) 4457 return 0; 4458 4459 // Set the OpNum parameter to the first source operand. 4460 OpNum = 1; 4461 4462 const MachineOperand &MO = MI.getOperand(OpNum); 4463 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 4464 return UndefRegClearance; 4465 } 4466 return 0; 4467 } 4468 4469 void X86InstrInfo::breakPartialRegDependency( 4470 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 4471 unsigned Reg = MI.getOperand(OpNum).getReg(); 4472 // If MI kills this register, the false dependence is already broken. 4473 if (MI.killsRegister(Reg, TRI)) 4474 return; 4475 4476 if (X86::VR128RegClass.contains(Reg)) { 4477 // These instructions are all floating point domain, so xorps is the best 4478 // choice. 4479 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 4480 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 4481 .addReg(Reg, RegState::Undef) 4482 .addReg(Reg, RegState::Undef); 4483 MI.addRegisterKilled(Reg, TRI, true); 4484 } else if (X86::VR256RegClass.contains(Reg)) { 4485 // Use vxorps to clear the full ymm register. 4486 // It wants to read and write the xmm sub-register. 4487 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); 4488 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 4489 .addReg(XReg, RegState::Undef) 4490 .addReg(XReg, RegState::Undef) 4491 .addReg(Reg, RegState::ImplicitDefine); 4492 MI.addRegisterKilled(Reg, TRI, true); 4493 } else if (X86::GR64RegClass.contains(Reg)) { 4494 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 4495 // as well. 4496 unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit); 4497 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 4498 .addReg(XReg, RegState::Undef) 4499 .addReg(XReg, RegState::Undef) 4500 .addReg(Reg, RegState::ImplicitDefine); 4501 MI.addRegisterKilled(Reg, TRI, true); 4502 } else if (X86::GR32RegClass.contains(Reg)) { 4503 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 4504 .addReg(Reg, RegState::Undef) 4505 .addReg(Reg, RegState::Undef); 4506 MI.addRegisterKilled(Reg, TRI, true); 4507 } 4508 } 4509 4510 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 4511 int PtrOffset = 0) { 4512 unsigned NumAddrOps = MOs.size(); 4513 4514 if (NumAddrOps < 4) { 4515 // FrameIndex only - add an immediate offset (whether its zero or not). 4516 for (unsigned i = 0; i != NumAddrOps; ++i) 4517 MIB.add(MOs[i]); 4518 addOffset(MIB, PtrOffset); 4519 } else { 4520 // General Memory Addressing - we need to add any offset to an existing 4521 // offset. 4522 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 4523 for (unsigned i = 0; i != NumAddrOps; ++i) { 4524 const MachineOperand &MO = MOs[i]; 4525 if (i == 3 && PtrOffset != 0) { 4526 MIB.addDisp(MO, PtrOffset); 4527 } else { 4528 MIB.add(MO); 4529 } 4530 } 4531 } 4532 } 4533 4534 static void updateOperandRegConstraints(MachineFunction &MF, 4535 MachineInstr &NewMI, 4536 const TargetInstrInfo &TII) { 4537 MachineRegisterInfo &MRI = MF.getRegInfo(); 4538 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 4539 4540 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 4541 MachineOperand &MO = NewMI.getOperand(Idx); 4542 // We only need to update constraints on virtual register operands. 4543 if (!MO.isReg()) 4544 continue; 4545 unsigned Reg = MO.getReg(); 4546 if (!TRI.isVirtualRegister(Reg)) 4547 continue; 4548 4549 auto *NewRC = MRI.constrainRegClass( 4550 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 4551 if (!NewRC) { 4552 LLVM_DEBUG( 4553 dbgs() << "WARNING: Unable to update register constraint for operand " 4554 << Idx << " of instruction:\n"; 4555 NewMI.dump(); dbgs() << "\n"); 4556 } 4557 } 4558 } 4559 4560 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 4561 ArrayRef<MachineOperand> MOs, 4562 MachineBasicBlock::iterator InsertPt, 4563 MachineInstr &MI, 4564 const TargetInstrInfo &TII) { 4565 // Create the base instruction with the memory operand as the first part. 4566 // Omit the implicit operands, something BuildMI can't do. 4567 MachineInstr *NewMI = 4568 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 4569 MachineInstrBuilder MIB(MF, NewMI); 4570 addOperands(MIB, MOs); 4571 4572 // Loop over the rest of the ri operands, converting them over. 4573 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 4574 for (unsigned i = 0; i != NumOps; ++i) { 4575 MachineOperand &MO = MI.getOperand(i + 2); 4576 MIB.add(MO); 4577 } 4578 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { 4579 MachineOperand &MO = MI.getOperand(i); 4580 MIB.add(MO); 4581 } 4582 4583 updateOperandRegConstraints(MF, *NewMI, TII); 4584 4585 MachineBasicBlock *MBB = InsertPt->getParent(); 4586 MBB->insert(InsertPt, NewMI); 4587 4588 return MIB; 4589 } 4590 4591 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 4592 unsigned OpNo, ArrayRef<MachineOperand> MOs, 4593 MachineBasicBlock::iterator InsertPt, 4594 MachineInstr &MI, const TargetInstrInfo &TII, 4595 int PtrOffset = 0) { 4596 // Omit the implicit operands, something BuildMI can't do. 4597 MachineInstr *NewMI = 4598 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 4599 MachineInstrBuilder MIB(MF, NewMI); 4600 4601 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4602 MachineOperand &MO = MI.getOperand(i); 4603 if (i == OpNo) { 4604 assert(MO.isReg() && "Expected to fold into reg operand!"); 4605 addOperands(MIB, MOs, PtrOffset); 4606 } else { 4607 MIB.add(MO); 4608 } 4609 } 4610 4611 updateOperandRegConstraints(MF, *NewMI, TII); 4612 4613 MachineBasicBlock *MBB = InsertPt->getParent(); 4614 MBB->insert(InsertPt, NewMI); 4615 4616 return MIB; 4617 } 4618 4619 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 4620 ArrayRef<MachineOperand> MOs, 4621 MachineBasicBlock::iterator InsertPt, 4622 MachineInstr &MI) { 4623 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 4624 MI.getDebugLoc(), TII.get(Opcode)); 4625 addOperands(MIB, MOs); 4626 return MIB.addImm(0); 4627 } 4628 4629 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 4630 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 4631 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 4632 unsigned Size, unsigned Align) const { 4633 switch (MI.getOpcode()) { 4634 case X86::INSERTPSrr: 4635 case X86::VINSERTPSrr: 4636 case X86::VINSERTPSZrr: 4637 // Attempt to convert the load of inserted vector into a fold load 4638 // of a single float. 4639 if (OpNum == 2) { 4640 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 4641 unsigned ZMask = Imm & 15; 4642 unsigned DstIdx = (Imm >> 4) & 3; 4643 unsigned SrcIdx = (Imm >> 6) & 3; 4644 4645 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4646 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 4647 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 4648 if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) { 4649 int PtrOffset = SrcIdx * 4; 4650 unsigned NewImm = (DstIdx << 4) | ZMask; 4651 unsigned NewOpCode = 4652 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : 4653 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : 4654 X86::INSERTPSrm; 4655 MachineInstr *NewMI = 4656 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 4657 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 4658 return NewMI; 4659 } 4660 } 4661 break; 4662 case X86::MOVHLPSrr: 4663 case X86::VMOVHLPSrr: 4664 case X86::VMOVHLPSZrr: 4665 // Move the upper 64-bits of the second operand to the lower 64-bits. 4666 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 4667 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 4668 if (OpNum == 2) { 4669 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4670 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 4671 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 4672 if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) { 4673 unsigned NewOpCode = 4674 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : 4675 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : 4676 X86::MOVLPSrm; 4677 MachineInstr *NewMI = 4678 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 4679 return NewMI; 4680 } 4681 } 4682 break; 4683 case X86::UNPCKLPDrr: 4684 // If we won't be able to fold this to the memory form of UNPCKL, use 4685 // MOVHPD instead. Done as custom because we can't have this in the load 4686 // table twice. 4687 if (OpNum == 2) { 4688 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4689 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 4690 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 4691 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) { 4692 MachineInstr *NewMI = 4693 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 4694 return NewMI; 4695 } 4696 } 4697 break; 4698 } 4699 4700 return nullptr; 4701 } 4702 4703 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 4704 MachineInstr &MI) { 4705 if (!hasUndefRegUpdate(MI.getOpcode(), /*ForLoadFold*/true) || 4706 !MI.getOperand(1).isReg()) 4707 return false; 4708 4709 // The are two cases we need to handle depending on where in the pipeline 4710 // the folding attempt is being made. 4711 // -Register has the undef flag set. 4712 // -Register is produced by the IMPLICIT_DEF instruction. 4713 4714 if (MI.getOperand(1).isUndef()) 4715 return true; 4716 4717 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4718 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 4719 return VRegDef && VRegDef->isImplicitDef(); 4720 } 4721 4722 4723 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 4724 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 4725 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 4726 unsigned Size, unsigned Align, bool AllowCommute) const { 4727 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 4728 bool isTwoAddrFold = false; 4729 4730 // For CPUs that favor the register form of a call or push, 4731 // do not fold loads into calls or pushes, unless optimizing for size 4732 // aggressively. 4733 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 4734 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || 4735 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || 4736 MI.getOpcode() == X86::PUSH64r)) 4737 return nullptr; 4738 4739 // Avoid partial and undef register update stalls unless optimizing for size. 4740 if (!MF.getFunction().hasOptSize() && 4741 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 4742 shouldPreventUndefRegUpdateMemFold(MF, MI))) 4743 return nullptr; 4744 4745 unsigned NumOps = MI.getDesc().getNumOperands(); 4746 bool isTwoAddr = 4747 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 4748 4749 // FIXME: AsmPrinter doesn't know how to handle 4750 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 4751 if (MI.getOpcode() == X86::ADD32ri && 4752 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 4753 return nullptr; 4754 4755 // GOTTPOFF relocation loads can only be folded into add instructions. 4756 // FIXME: Need to exclude other relocations that only support specific 4757 // instructions. 4758 if (MOs.size() == X86::AddrNumOperands && 4759 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 4760 MI.getOpcode() != X86::ADD64rr) 4761 return nullptr; 4762 4763 MachineInstr *NewMI = nullptr; 4764 4765 // Attempt to fold any custom cases we have. 4766 if (MachineInstr *CustomMI = 4767 foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) 4768 return CustomMI; 4769 4770 const X86MemoryFoldTableEntry *I = nullptr; 4771 4772 // Folding a memory location into the two-address part of a two-address 4773 // instruction is different than folding it other places. It requires 4774 // replacing the *two* registers with the memory location. 4775 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && 4776 MI.getOperand(1).isReg() && 4777 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 4778 I = lookupTwoAddrFoldTable(MI.getOpcode()); 4779 isTwoAddrFold = true; 4780 } else { 4781 if (OpNum == 0) { 4782 if (MI.getOpcode() == X86::MOV32r0) { 4783 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 4784 if (NewMI) 4785 return NewMI; 4786 } 4787 } 4788 4789 I = lookupFoldTable(MI.getOpcode(), OpNum); 4790 } 4791 4792 if (I != nullptr) { 4793 unsigned Opcode = I->DstOp; 4794 unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; 4795 if (Align < MinAlign) 4796 return nullptr; 4797 bool NarrowToMOV32rm = false; 4798 if (Size) { 4799 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4800 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, 4801 &RI, MF); 4802 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 4803 if (Size < RCSize) { 4804 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 4805 // Check if it's safe to fold the load. If the size of the object is 4806 // narrower than the load width, then it's not. 4807 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 4808 return nullptr; 4809 // If this is a 64-bit load, but the spill slot is 32, then we can do 4810 // a 32-bit load which is implicitly zero-extended. This likely is 4811 // due to live interval analysis remat'ing a load from stack slot. 4812 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 4813 return nullptr; 4814 Opcode = X86::MOV32rm; 4815 NarrowToMOV32rm = true; 4816 } 4817 } 4818 4819 if (isTwoAddrFold) 4820 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 4821 else 4822 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 4823 4824 if (NarrowToMOV32rm) { 4825 // If this is the special case where we use a MOV32rm to load a 32-bit 4826 // value and zero-extend the top bits. Change the destination register 4827 // to a 32-bit one. 4828 unsigned DstReg = NewMI->getOperand(0).getReg(); 4829 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 4830 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 4831 else 4832 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 4833 } 4834 return NewMI; 4835 } 4836 4837 // If the instruction and target operand are commutable, commute the 4838 // instruction and try again. 4839 if (AllowCommute) { 4840 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 4841 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 4842 bool HasDef = MI.getDesc().getNumDefs(); 4843 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 4844 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); 4845 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); 4846 bool Tied1 = 4847 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 4848 bool Tied2 = 4849 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 4850 4851 // If either of the commutable operands are tied to the destination 4852 // then we can not commute + fold. 4853 if ((HasDef && Reg0 == Reg1 && Tied1) || 4854 (HasDef && Reg0 == Reg2 && Tied2)) 4855 return nullptr; 4856 4857 MachineInstr *CommutedMI = 4858 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 4859 if (!CommutedMI) { 4860 // Unable to commute. 4861 return nullptr; 4862 } 4863 if (CommutedMI != &MI) { 4864 // New instruction. We can't fold from this. 4865 CommutedMI->eraseFromParent(); 4866 return nullptr; 4867 } 4868 4869 // Attempt to fold with the commuted version of the instruction. 4870 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, 4871 Size, Align, /*AllowCommute=*/false); 4872 if (NewMI) 4873 return NewMI; 4874 4875 // Folding failed again - undo the commute before returning. 4876 MachineInstr *UncommutedMI = 4877 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 4878 if (!UncommutedMI) { 4879 // Unable to commute. 4880 return nullptr; 4881 } 4882 if (UncommutedMI != &MI) { 4883 // New instruction. It doesn't need to be kept. 4884 UncommutedMI->eraseFromParent(); 4885 return nullptr; 4886 } 4887 4888 // Return here to prevent duplicate fuse failure report. 4889 return nullptr; 4890 } 4891 } 4892 4893 // No fusion 4894 if (PrintFailedFusing && !MI.isCopy()) 4895 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; 4896 return nullptr; 4897 } 4898 4899 MachineInstr * 4900 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 4901 ArrayRef<unsigned> Ops, 4902 MachineBasicBlock::iterator InsertPt, 4903 int FrameIndex, LiveIntervals *LIS, 4904 VirtRegMap *VRM) const { 4905 // Check switch flag 4906 if (NoFusing) 4907 return nullptr; 4908 4909 // Avoid partial and undef register update stalls unless optimizing for size. 4910 if (!MF.getFunction().hasOptSize() && 4911 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 4912 shouldPreventUndefRegUpdateMemFold(MF, MI))) 4913 return nullptr; 4914 4915 // Don't fold subreg spills, or reloads that use a high subreg. 4916 for (auto Op : Ops) { 4917 MachineOperand &MO = MI.getOperand(Op); 4918 auto SubReg = MO.getSubReg(); 4919 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 4920 return nullptr; 4921 } 4922 4923 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4924 unsigned Size = MFI.getObjectSize(FrameIndex); 4925 unsigned Alignment = MFI.getObjectAlignment(FrameIndex); 4926 // If the function stack isn't realigned we don't want to fold instructions 4927 // that need increased alignment. 4928 if (!RI.needsStackRealignment(MF)) 4929 Alignment = 4930 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); 4931 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 4932 unsigned NewOpc = 0; 4933 unsigned RCSize = 0; 4934 switch (MI.getOpcode()) { 4935 default: return nullptr; 4936 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 4937 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 4938 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 4939 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 4940 } 4941 // Check if it's safe to fold the load. If the size of the object is 4942 // narrower than the load width, then it's not. 4943 if (Size < RCSize) 4944 return nullptr; 4945 // Change to CMPXXri r, 0 first. 4946 MI.setDesc(get(NewOpc)); 4947 MI.getOperand(1).ChangeToImmediate(0); 4948 } else if (Ops.size() != 1) 4949 return nullptr; 4950 4951 return foldMemoryOperandImpl(MF, MI, Ops[0], 4952 MachineOperand::CreateFI(FrameIndex), InsertPt, 4953 Size, Alignment, /*AllowCommute=*/true); 4954 } 4955 4956 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 4957 /// because the latter uses contents that wouldn't be defined in the folded 4958 /// version. For instance, this transformation isn't legal: 4959 /// movss (%rdi), %xmm0 4960 /// addps %xmm0, %xmm0 4961 /// -> 4962 /// addps (%rdi), %xmm0 4963 /// 4964 /// But this one is: 4965 /// movss (%rdi), %xmm0 4966 /// addss %xmm0, %xmm0 4967 /// -> 4968 /// addss (%rdi), %xmm0 4969 /// 4970 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 4971 const MachineInstr &UserMI, 4972 const MachineFunction &MF) { 4973 unsigned Opc = LoadMI.getOpcode(); 4974 unsigned UserOpc = UserMI.getOpcode(); 4975 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4976 const TargetRegisterClass *RC = 4977 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 4978 unsigned RegSize = TRI.getRegSizeInBits(*RC); 4979 4980 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 4981 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 4982 Opc == X86::VMOVSSZrm_alt) && 4983 RegSize > 32) { 4984 // These instructions only load 32 bits, we can't fold them if the 4985 // destination register is wider than 32 bits (4 bytes), and its user 4986 // instruction isn't scalar (SS). 4987 switch (UserOpc) { 4988 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: 4989 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: 4990 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: 4991 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: 4992 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: 4993 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: 4994 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: 4995 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: 4996 case X86::VCMPSSZrr_Intk: 4997 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: 4998 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: 4999 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: 5000 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: 5001 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: 5002 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: 5003 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: 5004 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: 5005 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: 5006 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: 5007 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: 5008 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: 5009 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: 5010 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: 5011 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: 5012 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: 5013 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: 5014 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: 5015 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: 5016 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: 5017 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: 5018 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: 5019 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: 5020 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: 5021 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: 5022 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: 5023 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: 5024 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: 5025 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: 5026 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: 5027 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: 5028 return false; 5029 default: 5030 return true; 5031 } 5032 } 5033 5034 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 5035 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 5036 Opc == X86::VMOVSDZrm_alt) && 5037 RegSize > 64) { 5038 // These instructions only load 64 bits, we can't fold them if the 5039 // destination register is wider than 64 bits (8 bytes), and its user 5040 // instruction isn't scalar (SD). 5041 switch (UserOpc) { 5042 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: 5043 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: 5044 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: 5045 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: 5046 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: 5047 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: 5048 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: 5049 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: 5050 case X86::VCMPSDZrr_Intk: 5051 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: 5052 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: 5053 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: 5054 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: 5055 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: 5056 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: 5057 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: 5058 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: 5059 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: 5060 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: 5061 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: 5062 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: 5063 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: 5064 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: 5065 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: 5066 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: 5067 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: 5068 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: 5069 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: 5070 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: 5071 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: 5072 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: 5073 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: 5074 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: 5075 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: 5076 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: 5077 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: 5078 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: 5079 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: 5080 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: 5081 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: 5082 return false; 5083 default: 5084 return true; 5085 } 5086 } 5087 5088 return false; 5089 } 5090 5091 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 5092 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 5093 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 5094 LiveIntervals *LIS) const { 5095 5096 // TODO: Support the case where LoadMI loads a wide register, but MI 5097 // only uses a subreg. 5098 for (auto Op : Ops) { 5099 if (MI.getOperand(Op).getSubReg()) 5100 return nullptr; 5101 } 5102 5103 // If loading from a FrameIndex, fold directly from the FrameIndex. 5104 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 5105 int FrameIndex; 5106 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 5107 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 5108 return nullptr; 5109 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 5110 } 5111 5112 // Check switch flag 5113 if (NoFusing) return nullptr; 5114 5115 // Avoid partial and undef register update stalls unless optimizing for size. 5116 if (!MF.getFunction().hasOptSize() && 5117 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 5118 shouldPreventUndefRegUpdateMemFold(MF, MI))) 5119 return nullptr; 5120 5121 // Determine the alignment of the load. 5122 unsigned Alignment = 0; 5123 if (LoadMI.hasOneMemOperand()) 5124 Alignment = (*LoadMI.memoperands_begin())->getAlignment(); 5125 else 5126 switch (LoadMI.getOpcode()) { 5127 case X86::AVX512_512_SET0: 5128 case X86::AVX512_512_SETALLONES: 5129 Alignment = 64; 5130 break; 5131 case X86::AVX2_SETALLONES: 5132 case X86::AVX1_SETALLONES: 5133 case X86::AVX_SET0: 5134 case X86::AVX512_256_SET0: 5135 Alignment = 32; 5136 break; 5137 case X86::V_SET0: 5138 case X86::V_SETALLONES: 5139 case X86::AVX512_128_SET0: 5140 Alignment = 16; 5141 break; 5142 case X86::MMX_SET0: 5143 case X86::FsFLD0SD: 5144 case X86::AVX512_FsFLD0SD: 5145 Alignment = 8; 5146 break; 5147 case X86::FsFLD0SS: 5148 case X86::AVX512_FsFLD0SS: 5149 Alignment = 4; 5150 break; 5151 default: 5152 return nullptr; 5153 } 5154 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 5155 unsigned NewOpc = 0; 5156 switch (MI.getOpcode()) { 5157 default: return nullptr; 5158 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 5159 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 5160 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 5161 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 5162 } 5163 // Change to CMPXXri r, 0 first. 5164 MI.setDesc(get(NewOpc)); 5165 MI.getOperand(1).ChangeToImmediate(0); 5166 } else if (Ops.size() != 1) 5167 return nullptr; 5168 5169 // Make sure the subregisters match. 5170 // Otherwise we risk changing the size of the load. 5171 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 5172 return nullptr; 5173 5174 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 5175 switch (LoadMI.getOpcode()) { 5176 case X86::MMX_SET0: 5177 case X86::V_SET0: 5178 case X86::V_SETALLONES: 5179 case X86::AVX2_SETALLONES: 5180 case X86::AVX1_SETALLONES: 5181 case X86::AVX_SET0: 5182 case X86::AVX512_128_SET0: 5183 case X86::AVX512_256_SET0: 5184 case X86::AVX512_512_SET0: 5185 case X86::AVX512_512_SETALLONES: 5186 case X86::FsFLD0SD: 5187 case X86::AVX512_FsFLD0SD: 5188 case X86::FsFLD0SS: 5189 case X86::AVX512_FsFLD0SS: { 5190 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 5191 // Create a constant-pool entry and operands to load from it. 5192 5193 // Medium and large mode can't fold loads this way. 5194 if (MF.getTarget().getCodeModel() != CodeModel::Small && 5195 MF.getTarget().getCodeModel() != CodeModel::Kernel) 5196 return nullptr; 5197 5198 // x86-32 PIC requires a PIC base register for constant pools. 5199 unsigned PICBase = 0; 5200 if (MF.getTarget().isPositionIndependent()) { 5201 if (Subtarget.is64Bit()) 5202 PICBase = X86::RIP; 5203 else 5204 // FIXME: PICBase = getGlobalBaseReg(&MF); 5205 // This doesn't work for several reasons. 5206 // 1. GlobalBaseReg may have been spilled. 5207 // 2. It may not be live at MI. 5208 return nullptr; 5209 } 5210 5211 // Create a constant-pool entry. 5212 MachineConstantPool &MCP = *MF.getConstantPool(); 5213 Type *Ty; 5214 unsigned Opc = LoadMI.getOpcode(); 5215 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) 5216 Ty = Type::getFloatTy(MF.getFunction().getContext()); 5217 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) 5218 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 5219 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) 5220 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16); 5221 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || 5222 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) 5223 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8); 5224 else if (Opc == X86::MMX_SET0) 5225 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2); 5226 else 5227 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4); 5228 5229 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || 5230 Opc == X86::AVX512_512_SETALLONES || 5231 Opc == X86::AVX1_SETALLONES); 5232 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 5233 Constant::getNullValue(Ty); 5234 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 5235 5236 // Create operands to load from the constant pool entry. 5237 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 5238 MOs.push_back(MachineOperand::CreateImm(1)); 5239 MOs.push_back(MachineOperand::CreateReg(0, false)); 5240 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 5241 MOs.push_back(MachineOperand::CreateReg(0, false)); 5242 break; 5243 } 5244 default: { 5245 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 5246 return nullptr; 5247 5248 // Folding a normal load. Just copy the load's address operands. 5249 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 5250 LoadMI.operands_begin() + NumOps); 5251 break; 5252 } 5253 } 5254 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 5255 /*Size=*/0, Alignment, /*AllowCommute=*/true); 5256 } 5257 5258 static SmallVector<MachineMemOperand *, 2> 5259 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 5260 SmallVector<MachineMemOperand *, 2> LoadMMOs; 5261 5262 for (MachineMemOperand *MMO : MMOs) { 5263 if (!MMO->isLoad()) 5264 continue; 5265 5266 if (!MMO->isStore()) { 5267 // Reuse the MMO. 5268 LoadMMOs.push_back(MMO); 5269 } else { 5270 // Clone the MMO and unset the store flag. 5271 LoadMMOs.push_back(MF.getMachineMemOperand( 5272 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 5273 } 5274 } 5275 5276 return LoadMMOs; 5277 } 5278 5279 static SmallVector<MachineMemOperand *, 2> 5280 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 5281 SmallVector<MachineMemOperand *, 2> StoreMMOs; 5282 5283 for (MachineMemOperand *MMO : MMOs) { 5284 if (!MMO->isStore()) 5285 continue; 5286 5287 if (!MMO->isLoad()) { 5288 // Reuse the MMO. 5289 StoreMMOs.push_back(MMO); 5290 } else { 5291 // Clone the MMO and unset the load flag. 5292 StoreMMOs.push_back(MF.getMachineMemOperand( 5293 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 5294 } 5295 } 5296 5297 return StoreMMOs; 5298 } 5299 5300 bool X86InstrInfo::unfoldMemoryOperand( 5301 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 5302 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 5303 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 5304 if (I == nullptr) 5305 return false; 5306 unsigned Opc = I->DstOp; 5307 unsigned Index = I->Flags & TB_INDEX_MASK; 5308 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 5309 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 5310 if (UnfoldLoad && !FoldedLoad) 5311 return false; 5312 UnfoldLoad &= FoldedLoad; 5313 if (UnfoldStore && !FoldedStore) 5314 return false; 5315 UnfoldStore &= FoldedStore; 5316 5317 const MCInstrDesc &MCID = get(Opc); 5318 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 5319 // TODO: Check if 32-byte or greater accesses are slow too? 5320 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 5321 Subtarget.isUnalignedMem16Slow()) 5322 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 5323 // conservatively assume the address is unaligned. That's bad for 5324 // performance. 5325 return false; 5326 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 5327 SmallVector<MachineOperand,2> BeforeOps; 5328 SmallVector<MachineOperand,2> AfterOps; 5329 SmallVector<MachineOperand,4> ImpOps; 5330 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5331 MachineOperand &Op = MI.getOperand(i); 5332 if (i >= Index && i < Index + X86::AddrNumOperands) 5333 AddrOps.push_back(Op); 5334 else if (Op.isReg() && Op.isImplicit()) 5335 ImpOps.push_back(Op); 5336 else if (i < Index) 5337 BeforeOps.push_back(Op); 5338 else if (i > Index) 5339 AfterOps.push_back(Op); 5340 } 5341 5342 // Emit the load instruction. 5343 if (UnfoldLoad) { 5344 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 5345 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs); 5346 if (UnfoldStore) { 5347 // Address operands cannot be marked isKill. 5348 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 5349 MachineOperand &MO = NewMIs[0]->getOperand(i); 5350 if (MO.isReg()) 5351 MO.setIsKill(false); 5352 } 5353 } 5354 } 5355 5356 // Emit the data processing instruction. 5357 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 5358 MachineInstrBuilder MIB(MF, DataMI); 5359 5360 if (FoldedStore) 5361 MIB.addReg(Reg, RegState::Define); 5362 for (MachineOperand &BeforeOp : BeforeOps) 5363 MIB.add(BeforeOp); 5364 if (FoldedLoad) 5365 MIB.addReg(Reg); 5366 for (MachineOperand &AfterOp : AfterOps) 5367 MIB.add(AfterOp); 5368 for (MachineOperand &ImpOp : ImpOps) { 5369 MIB.addReg(ImpOp.getReg(), 5370 getDefRegState(ImpOp.isDef()) | 5371 RegState::Implicit | 5372 getKillRegState(ImpOp.isKill()) | 5373 getDeadRegState(ImpOp.isDead()) | 5374 getUndefRegState(ImpOp.isUndef())); 5375 } 5376 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 5377 switch (DataMI->getOpcode()) { 5378 default: break; 5379 case X86::CMP64ri32: 5380 case X86::CMP64ri8: 5381 case X86::CMP32ri: 5382 case X86::CMP32ri8: 5383 case X86::CMP16ri: 5384 case X86::CMP16ri8: 5385 case X86::CMP8ri: { 5386 MachineOperand &MO0 = DataMI->getOperand(0); 5387 MachineOperand &MO1 = DataMI->getOperand(1); 5388 if (MO1.getImm() == 0) { 5389 unsigned NewOpc; 5390 switch (DataMI->getOpcode()) { 5391 default: llvm_unreachable("Unreachable!"); 5392 case X86::CMP64ri8: 5393 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 5394 case X86::CMP32ri8: 5395 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 5396 case X86::CMP16ri8: 5397 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 5398 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 5399 } 5400 DataMI->setDesc(get(NewOpc)); 5401 MO1.ChangeToRegister(MO0.getReg(), false); 5402 } 5403 } 5404 } 5405 NewMIs.push_back(DataMI); 5406 5407 // Emit the store instruction. 5408 if (UnfoldStore) { 5409 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 5410 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 5411 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs); 5412 } 5413 5414 return true; 5415 } 5416 5417 bool 5418 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 5419 SmallVectorImpl<SDNode*> &NewNodes) const { 5420 if (!N->isMachineOpcode()) 5421 return false; 5422 5423 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 5424 if (I == nullptr) 5425 return false; 5426 unsigned Opc = I->DstOp; 5427 unsigned Index = I->Flags & TB_INDEX_MASK; 5428 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 5429 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 5430 const MCInstrDesc &MCID = get(Opc); 5431 MachineFunction &MF = DAG.getMachineFunction(); 5432 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5433 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 5434 unsigned NumDefs = MCID.NumDefs; 5435 std::vector<SDValue> AddrOps; 5436 std::vector<SDValue> BeforeOps; 5437 std::vector<SDValue> AfterOps; 5438 SDLoc dl(N); 5439 unsigned NumOps = N->getNumOperands(); 5440 for (unsigned i = 0; i != NumOps-1; ++i) { 5441 SDValue Op = N->getOperand(i); 5442 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 5443 AddrOps.push_back(Op); 5444 else if (i < Index-NumDefs) 5445 BeforeOps.push_back(Op); 5446 else if (i > Index-NumDefs) 5447 AfterOps.push_back(Op); 5448 } 5449 SDValue Chain = N->getOperand(NumOps-1); 5450 AddrOps.push_back(Chain); 5451 5452 // Emit the load instruction. 5453 SDNode *Load = nullptr; 5454 if (FoldedLoad) { 5455 EVT VT = *TRI.legalclasstypes_begin(*RC); 5456 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 5457 if (MMOs.empty() && RC == &X86::VR128RegClass && 5458 Subtarget.isUnalignedMem16Slow()) 5459 // Do not introduce a slow unaligned load. 5460 return false; 5461 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 5462 // memory access is slow above. 5463 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 5464 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; 5465 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, 5466 VT, MVT::Other, AddrOps); 5467 NewNodes.push_back(Load); 5468 5469 // Preserve memory reference information. 5470 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 5471 } 5472 5473 // Emit the data processing instruction. 5474 std::vector<EVT> VTs; 5475 const TargetRegisterClass *DstRC = nullptr; 5476 if (MCID.getNumDefs() > 0) { 5477 DstRC = getRegClass(MCID, 0, &RI, MF); 5478 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 5479 } 5480 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 5481 EVT VT = N->getValueType(i); 5482 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 5483 VTs.push_back(VT); 5484 } 5485 if (Load) 5486 BeforeOps.push_back(SDValue(Load, 0)); 5487 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); 5488 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 5489 switch (Opc) { 5490 default: break; 5491 case X86::CMP64ri32: 5492 case X86::CMP64ri8: 5493 case X86::CMP32ri: 5494 case X86::CMP32ri8: 5495 case X86::CMP16ri: 5496 case X86::CMP16ri8: 5497 case X86::CMP8ri: 5498 if (isNullConstant(BeforeOps[1])) { 5499 switch (Opc) { 5500 default: llvm_unreachable("Unreachable!"); 5501 case X86::CMP64ri8: 5502 case X86::CMP64ri32: Opc = X86::TEST64rr; break; 5503 case X86::CMP32ri8: 5504 case X86::CMP32ri: Opc = X86::TEST32rr; break; 5505 case X86::CMP16ri8: 5506 case X86::CMP16ri: Opc = X86::TEST16rr; break; 5507 case X86::CMP8ri: Opc = X86::TEST8rr; break; 5508 } 5509 BeforeOps[1] = BeforeOps[0]; 5510 } 5511 } 5512 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 5513 NewNodes.push_back(NewNode); 5514 5515 // Emit the store instruction. 5516 if (FoldedStore) { 5517 AddrOps.pop_back(); 5518 AddrOps.push_back(SDValue(NewNode, 0)); 5519 AddrOps.push_back(Chain); 5520 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 5521 if (MMOs.empty() && RC == &X86::VR128RegClass && 5522 Subtarget.isUnalignedMem16Slow()) 5523 // Do not introduce a slow unaligned store. 5524 return false; 5525 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 5526 // memory access is slow above. 5527 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 5528 bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment; 5529 SDNode *Store = 5530 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 5531 dl, MVT::Other, AddrOps); 5532 NewNodes.push_back(Store); 5533 5534 // Preserve memory reference information. 5535 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 5536 } 5537 5538 return true; 5539 } 5540 5541 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 5542 bool UnfoldLoad, bool UnfoldStore, 5543 unsigned *LoadRegIndex) const { 5544 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); 5545 if (I == nullptr) 5546 return 0; 5547 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 5548 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 5549 if (UnfoldLoad && !FoldedLoad) 5550 return 0; 5551 if (UnfoldStore && !FoldedStore) 5552 return 0; 5553 if (LoadRegIndex) 5554 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 5555 return I->DstOp; 5556 } 5557 5558 bool 5559 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 5560 int64_t &Offset1, int64_t &Offset2) const { 5561 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 5562 return false; 5563 unsigned Opc1 = Load1->getMachineOpcode(); 5564 unsigned Opc2 = Load2->getMachineOpcode(); 5565 switch (Opc1) { 5566 default: return false; 5567 case X86::MOV8rm: 5568 case X86::MOV16rm: 5569 case X86::MOV32rm: 5570 case X86::MOV64rm: 5571 case X86::LD_Fp32m: 5572 case X86::LD_Fp64m: 5573 case X86::LD_Fp80m: 5574 case X86::MOVSSrm: 5575 case X86::MOVSSrm_alt: 5576 case X86::MOVSDrm: 5577 case X86::MOVSDrm_alt: 5578 case X86::MMX_MOVD64rm: 5579 case X86::MMX_MOVQ64rm: 5580 case X86::MOVAPSrm: 5581 case X86::MOVUPSrm: 5582 case X86::MOVAPDrm: 5583 case X86::MOVUPDrm: 5584 case X86::MOVDQArm: 5585 case X86::MOVDQUrm: 5586 // AVX load instructions 5587 case X86::VMOVSSrm: 5588 case X86::VMOVSSrm_alt: 5589 case X86::VMOVSDrm: 5590 case X86::VMOVSDrm_alt: 5591 case X86::VMOVAPSrm: 5592 case X86::VMOVUPSrm: 5593 case X86::VMOVAPDrm: 5594 case X86::VMOVUPDrm: 5595 case X86::VMOVDQArm: 5596 case X86::VMOVDQUrm: 5597 case X86::VMOVAPSYrm: 5598 case X86::VMOVUPSYrm: 5599 case X86::VMOVAPDYrm: 5600 case X86::VMOVUPDYrm: 5601 case X86::VMOVDQAYrm: 5602 case X86::VMOVDQUYrm: 5603 // AVX512 load instructions 5604 case X86::VMOVSSZrm: 5605 case X86::VMOVSSZrm_alt: 5606 case X86::VMOVSDZrm: 5607 case X86::VMOVSDZrm_alt: 5608 case X86::VMOVAPSZ128rm: 5609 case X86::VMOVUPSZ128rm: 5610 case X86::VMOVAPSZ128rm_NOVLX: 5611 case X86::VMOVUPSZ128rm_NOVLX: 5612 case X86::VMOVAPDZ128rm: 5613 case X86::VMOVUPDZ128rm: 5614 case X86::VMOVDQU8Z128rm: 5615 case X86::VMOVDQU16Z128rm: 5616 case X86::VMOVDQA32Z128rm: 5617 case X86::VMOVDQU32Z128rm: 5618 case X86::VMOVDQA64Z128rm: 5619 case X86::VMOVDQU64Z128rm: 5620 case X86::VMOVAPSZ256rm: 5621 case X86::VMOVUPSZ256rm: 5622 case X86::VMOVAPSZ256rm_NOVLX: 5623 case X86::VMOVUPSZ256rm_NOVLX: 5624 case X86::VMOVAPDZ256rm: 5625 case X86::VMOVUPDZ256rm: 5626 case X86::VMOVDQU8Z256rm: 5627 case X86::VMOVDQU16Z256rm: 5628 case X86::VMOVDQA32Z256rm: 5629 case X86::VMOVDQU32Z256rm: 5630 case X86::VMOVDQA64Z256rm: 5631 case X86::VMOVDQU64Z256rm: 5632 case X86::VMOVAPSZrm: 5633 case X86::VMOVUPSZrm: 5634 case X86::VMOVAPDZrm: 5635 case X86::VMOVUPDZrm: 5636 case X86::VMOVDQU8Zrm: 5637 case X86::VMOVDQU16Zrm: 5638 case X86::VMOVDQA32Zrm: 5639 case X86::VMOVDQU32Zrm: 5640 case X86::VMOVDQA64Zrm: 5641 case X86::VMOVDQU64Zrm: 5642 case X86::KMOVBkm: 5643 case X86::KMOVWkm: 5644 case X86::KMOVDkm: 5645 case X86::KMOVQkm: 5646 break; 5647 } 5648 switch (Opc2) { 5649 default: return false; 5650 case X86::MOV8rm: 5651 case X86::MOV16rm: 5652 case X86::MOV32rm: 5653 case X86::MOV64rm: 5654 case X86::LD_Fp32m: 5655 case X86::LD_Fp64m: 5656 case X86::LD_Fp80m: 5657 case X86::MOVSSrm: 5658 case X86::MOVSSrm_alt: 5659 case X86::MOVSDrm: 5660 case X86::MOVSDrm_alt: 5661 case X86::MMX_MOVD64rm: 5662 case X86::MMX_MOVQ64rm: 5663 case X86::MOVAPSrm: 5664 case X86::MOVUPSrm: 5665 case X86::MOVAPDrm: 5666 case X86::MOVUPDrm: 5667 case X86::MOVDQArm: 5668 case X86::MOVDQUrm: 5669 // AVX load instructions 5670 case X86::VMOVSSrm: 5671 case X86::VMOVSSrm_alt: 5672 case X86::VMOVSDrm: 5673 case X86::VMOVSDrm_alt: 5674 case X86::VMOVAPSrm: 5675 case X86::VMOVUPSrm: 5676 case X86::VMOVAPDrm: 5677 case X86::VMOVUPDrm: 5678 case X86::VMOVDQArm: 5679 case X86::VMOVDQUrm: 5680 case X86::VMOVAPSYrm: 5681 case X86::VMOVUPSYrm: 5682 case X86::VMOVAPDYrm: 5683 case X86::VMOVUPDYrm: 5684 case X86::VMOVDQAYrm: 5685 case X86::VMOVDQUYrm: 5686 // AVX512 load instructions 5687 case X86::VMOVSSZrm: 5688 case X86::VMOVSSZrm_alt: 5689 case X86::VMOVSDZrm: 5690 case X86::VMOVSDZrm_alt: 5691 case X86::VMOVAPSZ128rm: 5692 case X86::VMOVUPSZ128rm: 5693 case X86::VMOVAPSZ128rm_NOVLX: 5694 case X86::VMOVUPSZ128rm_NOVLX: 5695 case X86::VMOVAPDZ128rm: 5696 case X86::VMOVUPDZ128rm: 5697 case X86::VMOVDQU8Z128rm: 5698 case X86::VMOVDQU16Z128rm: 5699 case X86::VMOVDQA32Z128rm: 5700 case X86::VMOVDQU32Z128rm: 5701 case X86::VMOVDQA64Z128rm: 5702 case X86::VMOVDQU64Z128rm: 5703 case X86::VMOVAPSZ256rm: 5704 case X86::VMOVUPSZ256rm: 5705 case X86::VMOVAPSZ256rm_NOVLX: 5706 case X86::VMOVUPSZ256rm_NOVLX: 5707 case X86::VMOVAPDZ256rm: 5708 case X86::VMOVUPDZ256rm: 5709 case X86::VMOVDQU8Z256rm: 5710 case X86::VMOVDQU16Z256rm: 5711 case X86::VMOVDQA32Z256rm: 5712 case X86::VMOVDQU32Z256rm: 5713 case X86::VMOVDQA64Z256rm: 5714 case X86::VMOVDQU64Z256rm: 5715 case X86::VMOVAPSZrm: 5716 case X86::VMOVUPSZrm: 5717 case X86::VMOVAPDZrm: 5718 case X86::VMOVUPDZrm: 5719 case X86::VMOVDQU8Zrm: 5720 case X86::VMOVDQU16Zrm: 5721 case X86::VMOVDQA32Zrm: 5722 case X86::VMOVDQU32Zrm: 5723 case X86::VMOVDQA64Zrm: 5724 case X86::VMOVDQU64Zrm: 5725 case X86::KMOVBkm: 5726 case X86::KMOVWkm: 5727 case X86::KMOVDkm: 5728 case X86::KMOVQkm: 5729 break; 5730 } 5731 5732 // Lambda to check if both the loads have the same value for an operand index. 5733 auto HasSameOp = [&](int I) { 5734 return Load1->getOperand(I) == Load2->getOperand(I); 5735 }; 5736 5737 // All operands except the displacement should match. 5738 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 5739 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 5740 return false; 5741 5742 // Chain Operand must be the same. 5743 if (!HasSameOp(5)) 5744 return false; 5745 5746 // Now let's examine if the displacements are constants. 5747 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 5748 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 5749 if (!Disp1 || !Disp2) 5750 return false; 5751 5752 Offset1 = Disp1->getSExtValue(); 5753 Offset2 = Disp2->getSExtValue(); 5754 return true; 5755 } 5756 5757 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 5758 int64_t Offset1, int64_t Offset2, 5759 unsigned NumLoads) const { 5760 assert(Offset2 > Offset1); 5761 if ((Offset2 - Offset1) / 8 > 64) 5762 return false; 5763 5764 unsigned Opc1 = Load1->getMachineOpcode(); 5765 unsigned Opc2 = Load2->getMachineOpcode(); 5766 if (Opc1 != Opc2) 5767 return false; // FIXME: overly conservative? 5768 5769 switch (Opc1) { 5770 default: break; 5771 case X86::LD_Fp32m: 5772 case X86::LD_Fp64m: 5773 case X86::LD_Fp80m: 5774 case X86::MMX_MOVD64rm: 5775 case X86::MMX_MOVQ64rm: 5776 return false; 5777 } 5778 5779 EVT VT = Load1->getValueType(0); 5780 switch (VT.getSimpleVT().SimpleTy) { 5781 default: 5782 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 5783 // have 16 of them to play with. 5784 if (Subtarget.is64Bit()) { 5785 if (NumLoads >= 3) 5786 return false; 5787 } else if (NumLoads) { 5788 return false; 5789 } 5790 break; 5791 case MVT::i8: 5792 case MVT::i16: 5793 case MVT::i32: 5794 case MVT::i64: 5795 case MVT::f32: 5796 case MVT::f64: 5797 if (NumLoads) 5798 return false; 5799 break; 5800 } 5801 5802 return true; 5803 } 5804 5805 bool X86InstrInfo:: 5806 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 5807 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 5808 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 5809 Cond[0].setImm(GetOppositeBranchCondition(CC)); 5810 return false; 5811 } 5812 5813 bool X86InstrInfo:: 5814 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 5815 // FIXME: Return false for x87 stack register classes for now. We can't 5816 // allow any loads of these registers before FpGet_ST0_80. 5817 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 5818 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 5819 RC == &X86::RFP80RegClass); 5820 } 5821 5822 /// Return a virtual register initialized with the 5823 /// the global base register value. Output instructions required to 5824 /// initialize the register in the function entry block, if necessary. 5825 /// 5826 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 5827 /// 5828 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 5829 assert((!Subtarget.is64Bit() || 5830 MF->getTarget().getCodeModel() == CodeModel::Medium || 5831 MF->getTarget().getCodeModel() == CodeModel::Large) && 5832 "X86-64 PIC uses RIP relative addressing"); 5833 5834 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 5835 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 5836 if (GlobalBaseReg != 0) 5837 return GlobalBaseReg; 5838 5839 // Create the register. The code to initialize it is inserted 5840 // later, by the CGBR pass (below). 5841 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 5842 GlobalBaseReg = RegInfo.createVirtualRegister( 5843 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 5844 X86FI->setGlobalBaseReg(GlobalBaseReg); 5845 return GlobalBaseReg; 5846 } 5847 5848 // These are the replaceable SSE instructions. Some of these have Int variants 5849 // that we don't include here. We don't want to replace instructions selected 5850 // by intrinsics. 5851 static const uint16_t ReplaceableInstrs[][3] = { 5852 //PackedSingle PackedDouble PackedInt 5853 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 5854 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 5855 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 5856 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 5857 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 5858 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 5859 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, 5860 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, 5861 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, 5862 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm }, 5863 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, 5864 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm }, 5865 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 5866 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 5867 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 5868 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 5869 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 5870 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 5871 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 5872 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 5873 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 5874 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, 5875 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, 5876 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, 5877 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, 5878 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, 5879 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, 5880 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, 5881 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, 5882 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, 5883 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, 5884 // AVX 128-bit support 5885 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 5886 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 5887 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 5888 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 5889 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 5890 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 5891 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, 5892 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, 5893 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, 5894 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm }, 5895 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, 5896 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm }, 5897 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 5898 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 5899 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 5900 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 5901 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 5902 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 5903 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 5904 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 5905 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 5906 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, 5907 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, 5908 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, 5909 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, 5910 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, 5911 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, 5912 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, 5913 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, 5914 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, 5915 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, 5916 // AVX 256-bit support 5917 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 5918 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 5919 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 5920 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 5921 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 5922 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 5923 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, 5924 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, 5925 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, 5926 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, 5927 // AVX512 support 5928 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, 5929 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, 5930 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, 5931 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, 5932 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, 5933 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, 5934 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, 5935 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm }, 5936 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, 5937 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm }, 5938 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r }, 5939 { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m }, 5940 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r }, 5941 { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m }, 5942 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr }, 5943 { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm }, 5944 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128r }, 5945 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128m }, 5946 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r }, 5947 { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m }, 5948 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr }, 5949 { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm }, 5950 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, 5951 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, 5952 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, 5953 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, 5954 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, 5955 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, 5956 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, 5957 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, 5958 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, 5959 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, 5960 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, 5961 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, 5962 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, 5963 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, 5964 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, 5965 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, 5966 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, 5967 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, 5968 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, 5969 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, 5970 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, 5971 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, 5972 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, 5973 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, 5974 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, 5975 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, 5976 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, 5977 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, 5978 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, 5979 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, 5980 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, 5981 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, 5982 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, 5983 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, 5984 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, 5985 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, 5986 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, 5987 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, 5988 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, 5989 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, 5990 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, 5991 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, 5992 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, 5993 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, 5994 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, 5995 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, 5996 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, 5997 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, 5998 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, 5999 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, 6000 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, 6001 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, 6002 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, 6003 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, 6004 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, 6005 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, 6006 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, 6007 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, 6008 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, 6009 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, 6010 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, 6011 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, 6012 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, 6013 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, 6014 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, 6015 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, 6016 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, 6017 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, 6018 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, 6019 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, 6020 }; 6021 6022 static const uint16_t ReplaceableInstrsAVX2[][3] = { 6023 //PackedSingle PackedDouble PackedInt 6024 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 6025 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 6026 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 6027 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 6028 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 6029 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 6030 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 6031 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 6032 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 6033 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 6034 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 6035 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 6036 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm}, 6037 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr}, 6038 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 6039 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 6040 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 6041 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, 6042 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, 6043 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, 6044 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, 6045 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, 6046 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, 6047 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, 6048 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, 6049 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, 6050 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, 6051 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, 6052 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, 6053 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, 6054 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, 6055 }; 6056 6057 static const uint16_t ReplaceableInstrsFP[][3] = { 6058 //PackedSingle PackedDouble 6059 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END }, 6060 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END }, 6061 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END }, 6062 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END }, 6063 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END }, 6064 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END }, 6065 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END }, 6066 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END }, 6067 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END }, 6068 }; 6069 6070 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { 6071 //PackedSingle PackedDouble PackedInt 6072 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 6073 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 6074 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 6075 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 6076 }; 6077 6078 static const uint16_t ReplaceableInstrsAVX512[][4] = { 6079 // Two integer columns for 64-bit and 32-bit elements. 6080 //PackedSingle PackedDouble PackedInt PackedInt 6081 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, 6082 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, 6083 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, 6084 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, 6085 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, 6086 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, 6087 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, 6088 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, 6089 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, 6090 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, 6091 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, 6092 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, 6093 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, 6094 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, 6095 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, 6096 }; 6097 6098 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { 6099 // Two integer columns for 64-bit and 32-bit elements. 6100 //PackedSingle PackedDouble PackedInt PackedInt 6101 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 6102 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 6103 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 6104 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 6105 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 6106 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 6107 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 6108 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 6109 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 6110 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 6111 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 6112 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 6113 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 6114 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 6115 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 6116 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 6117 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, 6118 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, 6119 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, 6120 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, 6121 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, 6122 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, 6123 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, 6124 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, 6125 }; 6126 6127 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { 6128 // Two integer columns for 64-bit and 32-bit elements. 6129 //PackedSingle PackedDouble 6130 //PackedInt PackedInt 6131 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, 6132 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, 6133 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, 6134 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, 6135 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, 6136 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, 6137 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, 6138 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, 6139 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, 6140 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, 6141 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, 6142 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, 6143 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, 6144 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, 6145 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, 6146 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, 6147 { X86::VORPSZ128rmk, X86::VORPDZ128rmk, 6148 X86::VPORQZ128rmk, X86::VPORDZ128rmk }, 6149 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, 6150 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, 6151 { X86::VORPSZ128rrk, X86::VORPDZ128rrk, 6152 X86::VPORQZ128rrk, X86::VPORDZ128rrk }, 6153 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, 6154 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, 6155 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, 6156 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, 6157 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, 6158 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, 6159 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, 6160 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, 6161 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, 6162 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, 6163 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, 6164 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, 6165 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, 6166 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, 6167 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, 6168 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, 6169 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, 6170 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, 6171 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, 6172 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, 6173 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, 6174 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, 6175 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, 6176 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, 6177 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, 6178 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, 6179 { X86::VORPSZ256rmk, X86::VORPDZ256rmk, 6180 X86::VPORQZ256rmk, X86::VPORDZ256rmk }, 6181 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, 6182 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, 6183 { X86::VORPSZ256rrk, X86::VORPDZ256rrk, 6184 X86::VPORQZ256rrk, X86::VPORDZ256rrk }, 6185 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, 6186 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, 6187 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, 6188 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, 6189 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, 6190 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, 6191 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, 6192 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, 6193 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, 6194 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, 6195 { X86::VANDNPSZrmk, X86::VANDNPDZrmk, 6196 X86::VPANDNQZrmk, X86::VPANDNDZrmk }, 6197 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, 6198 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, 6199 { X86::VANDNPSZrrk, X86::VANDNPDZrrk, 6200 X86::VPANDNQZrrk, X86::VPANDNDZrrk }, 6201 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, 6202 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, 6203 { X86::VANDPSZrmk, X86::VANDPDZrmk, 6204 X86::VPANDQZrmk, X86::VPANDDZrmk }, 6205 { X86::VANDPSZrmkz, X86::VANDPDZrmkz, 6206 X86::VPANDQZrmkz, X86::VPANDDZrmkz }, 6207 { X86::VANDPSZrrk, X86::VANDPDZrrk, 6208 X86::VPANDQZrrk, X86::VPANDDZrrk }, 6209 { X86::VANDPSZrrkz, X86::VANDPDZrrkz, 6210 X86::VPANDQZrrkz, X86::VPANDDZrrkz }, 6211 { X86::VORPSZrmk, X86::VORPDZrmk, 6212 X86::VPORQZrmk, X86::VPORDZrmk }, 6213 { X86::VORPSZrmkz, X86::VORPDZrmkz, 6214 X86::VPORQZrmkz, X86::VPORDZrmkz }, 6215 { X86::VORPSZrrk, X86::VORPDZrrk, 6216 X86::VPORQZrrk, X86::VPORDZrrk }, 6217 { X86::VORPSZrrkz, X86::VORPDZrrkz, 6218 X86::VPORQZrrkz, X86::VPORDZrrkz }, 6219 { X86::VXORPSZrmk, X86::VXORPDZrmk, 6220 X86::VPXORQZrmk, X86::VPXORDZrmk }, 6221 { X86::VXORPSZrmkz, X86::VXORPDZrmkz, 6222 X86::VPXORQZrmkz, X86::VPXORDZrmkz }, 6223 { X86::VXORPSZrrk, X86::VXORPDZrrk, 6224 X86::VPXORQZrrk, X86::VPXORDZrrk }, 6225 { X86::VXORPSZrrkz, X86::VXORPDZrrkz, 6226 X86::VPXORQZrrkz, X86::VPXORDZrrkz }, 6227 // Broadcast loads can be handled the same as masked operations to avoid 6228 // changing element size. 6229 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, 6230 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, 6231 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, 6232 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, 6233 { X86::VORPSZ128rmb, X86::VORPDZ128rmb, 6234 X86::VPORQZ128rmb, X86::VPORDZ128rmb }, 6235 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, 6236 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, 6237 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, 6238 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, 6239 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, 6240 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, 6241 { X86::VORPSZ256rmb, X86::VORPDZ256rmb, 6242 X86::VPORQZ256rmb, X86::VPORDZ256rmb }, 6243 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, 6244 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, 6245 { X86::VANDNPSZrmb, X86::VANDNPDZrmb, 6246 X86::VPANDNQZrmb, X86::VPANDNDZrmb }, 6247 { X86::VANDPSZrmb, X86::VANDPDZrmb, 6248 X86::VPANDQZrmb, X86::VPANDDZrmb }, 6249 { X86::VANDPSZrmb, X86::VANDPDZrmb, 6250 X86::VPANDQZrmb, X86::VPANDDZrmb }, 6251 { X86::VORPSZrmb, X86::VORPDZrmb, 6252 X86::VPORQZrmb, X86::VPORDZrmb }, 6253 { X86::VXORPSZrmb, X86::VXORPDZrmb, 6254 X86::VPXORQZrmb, X86::VPXORDZrmb }, 6255 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, 6256 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, 6257 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, 6258 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, 6259 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, 6260 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, 6261 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, 6262 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, 6263 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, 6264 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, 6265 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, 6266 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, 6267 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, 6268 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, 6269 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, 6270 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, 6271 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, 6272 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, 6273 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 6274 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 6275 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 6276 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 6277 { X86::VORPSZrmbk, X86::VORPDZrmbk, 6278 X86::VPORQZrmbk, X86::VPORDZrmbk }, 6279 { X86::VXORPSZrmbk, X86::VXORPDZrmbk, 6280 X86::VPXORQZrmbk, X86::VPXORDZrmbk }, 6281 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, 6282 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, 6283 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, 6284 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, 6285 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, 6286 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, 6287 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, 6288 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, 6289 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, 6290 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, 6291 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, 6292 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, 6293 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, 6294 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, 6295 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, 6296 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, 6297 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, 6298 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, 6299 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 6300 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 6301 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 6302 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 6303 { X86::VORPSZrmbkz, X86::VORPDZrmbkz, 6304 X86::VPORQZrmbkz, X86::VPORDZrmbkz }, 6305 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, 6306 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, 6307 }; 6308 6309 // NOTE: These should only be used by the custom domain methods. 6310 static const uint16_t ReplaceableBlendInstrs[][3] = { 6311 //PackedSingle PackedDouble PackedInt 6312 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, 6313 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, 6314 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, 6315 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, 6316 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, 6317 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, 6318 }; 6319 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = { 6320 //PackedSingle PackedDouble PackedInt 6321 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, 6322 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, 6323 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, 6324 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, 6325 }; 6326 6327 // Special table for changing EVEX logic instructions to VEX. 6328 // TODO: Should we run EVEX->VEX earlier? 6329 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { 6330 // Two integer columns for 64-bit and 32-bit elements. 6331 //PackedSingle PackedDouble PackedInt PackedInt 6332 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 6333 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 6334 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 6335 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 6336 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 6337 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 6338 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 6339 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 6340 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 6341 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 6342 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 6343 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 6344 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 6345 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 6346 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 6347 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 6348 }; 6349 6350 // FIXME: Some shuffle and unpack instructions have equivalents in different 6351 // domains, but they require a bit more work than just switching opcodes. 6352 6353 static const uint16_t *lookup(unsigned opcode, unsigned domain, 6354 ArrayRef<uint16_t[3]> Table) { 6355 for (const uint16_t (&Row)[3] : Table) 6356 if (Row[domain-1] == opcode) 6357 return Row; 6358 return nullptr; 6359 } 6360 6361 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 6362 ArrayRef<uint16_t[4]> Table) { 6363 // If this is the integer domain make sure to check both integer columns. 6364 for (const uint16_t (&Row)[4] : Table) 6365 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) 6366 return Row; 6367 return nullptr; 6368 } 6369 6370 // Helper to attempt to widen/narrow blend masks. 6371 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 6372 unsigned NewWidth, unsigned *pNewMask = nullptr) { 6373 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 6374 "Illegal blend mask scale"); 6375 unsigned NewMask = 0; 6376 6377 if ((OldWidth % NewWidth) == 0) { 6378 unsigned Scale = OldWidth / NewWidth; 6379 unsigned SubMask = (1u << Scale) - 1; 6380 for (unsigned i = 0; i != NewWidth; ++i) { 6381 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 6382 if (Sub == SubMask) 6383 NewMask |= (1u << i); 6384 else if (Sub != 0x0) 6385 return false; 6386 } 6387 } else { 6388 unsigned Scale = NewWidth / OldWidth; 6389 unsigned SubMask = (1u << Scale) - 1; 6390 for (unsigned i = 0; i != OldWidth; ++i) { 6391 if (OldMask & (1 << i)) { 6392 NewMask |= (SubMask << (i * Scale)); 6393 } 6394 } 6395 } 6396 6397 if (pNewMask) 6398 *pNewMask = NewMask; 6399 return true; 6400 } 6401 6402 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 6403 unsigned Opcode = MI.getOpcode(); 6404 unsigned NumOperands = MI.getDesc().getNumOperands(); 6405 6406 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 6407 uint16_t validDomains = 0; 6408 if (MI.getOperand(NumOperands - 1).isImm()) { 6409 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 6410 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 6411 validDomains |= 0x2; // PackedSingle 6412 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 6413 validDomains |= 0x4; // PackedDouble 6414 if (!Is256 || Subtarget.hasAVX2()) 6415 validDomains |= 0x8; // PackedInt 6416 } 6417 return validDomains; 6418 }; 6419 6420 switch (Opcode) { 6421 case X86::BLENDPDrmi: 6422 case X86::BLENDPDrri: 6423 case X86::VBLENDPDrmi: 6424 case X86::VBLENDPDrri: 6425 return GetBlendDomains(2, false); 6426 case X86::VBLENDPDYrmi: 6427 case X86::VBLENDPDYrri: 6428 return GetBlendDomains(4, true); 6429 case X86::BLENDPSrmi: 6430 case X86::BLENDPSrri: 6431 case X86::VBLENDPSrmi: 6432 case X86::VBLENDPSrri: 6433 case X86::VPBLENDDrmi: 6434 case X86::VPBLENDDrri: 6435 return GetBlendDomains(4, false); 6436 case X86::VBLENDPSYrmi: 6437 case X86::VBLENDPSYrri: 6438 case X86::VPBLENDDYrmi: 6439 case X86::VPBLENDDYrri: 6440 return GetBlendDomains(8, true); 6441 case X86::PBLENDWrmi: 6442 case X86::PBLENDWrri: 6443 case X86::VPBLENDWrmi: 6444 case X86::VPBLENDWrri: 6445 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 6446 case X86::VPBLENDWYrmi: 6447 case X86::VPBLENDWYrri: 6448 return GetBlendDomains(8, false); 6449 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 6450 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 6451 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 6452 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 6453 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 6454 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 6455 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 6456 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 6457 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 6458 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 6459 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 6460 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 6461 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 6462 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 6463 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 6464 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: 6465 // If we don't have DQI see if we can still switch from an EVEX integer 6466 // instruction to a VEX floating point instruction. 6467 if (Subtarget.hasDQI()) 6468 return 0; 6469 6470 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 6471 return 0; 6472 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 6473 return 0; 6474 // Register forms will have 3 operands. Memory form will have more. 6475 if (NumOperands == 3 && 6476 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 6477 return 0; 6478 6479 // All domains are valid. 6480 return 0xe; 6481 case X86::MOVHLPSrr: 6482 // We can swap domains when both inputs are the same register. 6483 // FIXME: This doesn't catch all the cases we would like. If the input 6484 // register isn't KILLed by the instruction, the two address instruction 6485 // pass puts a COPY on one input. The other input uses the original 6486 // register. This prevents the same physical register from being used by 6487 // both inputs. 6488 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 6489 MI.getOperand(0).getSubReg() == 0 && 6490 MI.getOperand(1).getSubReg() == 0 && 6491 MI.getOperand(2).getSubReg() == 0) 6492 return 0x6; 6493 return 0; 6494 case X86::SHUFPDrri: 6495 return 0x6; 6496 } 6497 return 0; 6498 } 6499 6500 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 6501 unsigned Domain) const { 6502 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 6503 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 6504 assert(dom && "Not an SSE instruction"); 6505 6506 unsigned Opcode = MI.getOpcode(); 6507 unsigned NumOperands = MI.getDesc().getNumOperands(); 6508 6509 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 6510 if (MI.getOperand(NumOperands - 1).isImm()) { 6511 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 6512 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 6513 unsigned NewImm = Imm; 6514 6515 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 6516 if (!table) 6517 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 6518 6519 if (Domain == 1) { // PackedSingle 6520 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 6521 } else if (Domain == 2) { // PackedDouble 6522 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 6523 } else if (Domain == 3) { // PackedInt 6524 if (Subtarget.hasAVX2()) { 6525 // If we are already VPBLENDW use that, else use VPBLENDD. 6526 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 6527 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 6528 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 6529 } 6530 } else { 6531 assert(!Is256 && "128-bit vector expected"); 6532 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 6533 } 6534 } 6535 6536 assert(table && table[Domain - 1] && "Unknown domain op"); 6537 MI.setDesc(get(table[Domain - 1])); 6538 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 6539 } 6540 return true; 6541 }; 6542 6543 switch (Opcode) { 6544 case X86::BLENDPDrmi: 6545 case X86::BLENDPDrri: 6546 case X86::VBLENDPDrmi: 6547 case X86::VBLENDPDrri: 6548 return SetBlendDomain(2, false); 6549 case X86::VBLENDPDYrmi: 6550 case X86::VBLENDPDYrri: 6551 return SetBlendDomain(4, true); 6552 case X86::BLENDPSrmi: 6553 case X86::BLENDPSrri: 6554 case X86::VBLENDPSrmi: 6555 case X86::VBLENDPSrri: 6556 case X86::VPBLENDDrmi: 6557 case X86::VPBLENDDrri: 6558 return SetBlendDomain(4, false); 6559 case X86::VBLENDPSYrmi: 6560 case X86::VBLENDPSYrri: 6561 case X86::VPBLENDDYrmi: 6562 case X86::VPBLENDDYrri: 6563 return SetBlendDomain(8, true); 6564 case X86::PBLENDWrmi: 6565 case X86::PBLENDWrri: 6566 case X86::VPBLENDWrmi: 6567 case X86::VPBLENDWrri: 6568 return SetBlendDomain(8, false); 6569 case X86::VPBLENDWYrmi: 6570 case X86::VPBLENDWYrri: 6571 return SetBlendDomain(16, true); 6572 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 6573 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 6574 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 6575 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 6576 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 6577 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 6578 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 6579 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 6580 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 6581 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 6582 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 6583 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 6584 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 6585 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 6586 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 6587 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { 6588 // Without DQI, convert EVEX instructions to VEX instructions. 6589 if (Subtarget.hasDQI()) 6590 return false; 6591 6592 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, 6593 ReplaceableCustomAVX512LogicInstrs); 6594 assert(table && "Instruction not found in table?"); 6595 // Don't change integer Q instructions to D instructions and 6596 // use D intructions if we started with a PS instruction. 6597 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 6598 Domain = 4; 6599 MI.setDesc(get(table[Domain - 1])); 6600 return true; 6601 } 6602 case X86::UNPCKHPDrr: 6603 case X86::MOVHLPSrr: 6604 // We just need to commute the instruction which will switch the domains. 6605 if (Domain != dom && Domain != 3 && 6606 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 6607 MI.getOperand(0).getSubReg() == 0 && 6608 MI.getOperand(1).getSubReg() == 0 && 6609 MI.getOperand(2).getSubReg() == 0) { 6610 commuteInstruction(MI, false); 6611 return true; 6612 } 6613 // We must always return true for MOVHLPSrr. 6614 if (Opcode == X86::MOVHLPSrr) 6615 return true; 6616 break; 6617 case X86::SHUFPDrri: { 6618 if (Domain == 1) { 6619 unsigned Imm = MI.getOperand(3).getImm(); 6620 unsigned NewImm = 0x44; 6621 if (Imm & 1) NewImm |= 0x0a; 6622 if (Imm & 2) NewImm |= 0xa0; 6623 MI.getOperand(3).setImm(NewImm); 6624 MI.setDesc(get(X86::SHUFPSrri)); 6625 } 6626 return true; 6627 } 6628 } 6629 return false; 6630 } 6631 6632 std::pair<uint16_t, uint16_t> 6633 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 6634 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 6635 unsigned opcode = MI.getOpcode(); 6636 uint16_t validDomains = 0; 6637 if (domain) { 6638 // Attempt to match for custom instructions. 6639 validDomains = getExecutionDomainCustom(MI); 6640 if (validDomains) 6641 return std::make_pair(domain, validDomains); 6642 6643 if (lookup(opcode, domain, ReplaceableInstrs)) { 6644 validDomains = 0xe; 6645 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 6646 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 6647 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 6648 validDomains = 0x6; 6649 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 6650 // Insert/extract instructions should only effect domain if AVX2 6651 // is enabled. 6652 if (!Subtarget.hasAVX2()) 6653 return std::make_pair(0, 0); 6654 validDomains = 0xe; 6655 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 6656 validDomains = 0xe; 6657 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, 6658 ReplaceableInstrsAVX512DQ)) { 6659 validDomains = 0xe; 6660 } else if (Subtarget.hasDQI()) { 6661 if (const uint16_t *table = lookupAVX512(opcode, domain, 6662 ReplaceableInstrsAVX512DQMasked)) { 6663 if (domain == 1 || (domain == 3 && table[3] == opcode)) 6664 validDomains = 0xa; 6665 else 6666 validDomains = 0xc; 6667 } 6668 } 6669 } 6670 return std::make_pair(domain, validDomains); 6671 } 6672 6673 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 6674 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 6675 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 6676 assert(dom && "Not an SSE instruction"); 6677 6678 // Attempt to match for custom instructions. 6679 if (setExecutionDomainCustom(MI, Domain)) 6680 return; 6681 6682 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 6683 if (!table) { // try the other table 6684 assert((Subtarget.hasAVX2() || Domain < 3) && 6685 "256-bit vector operations only available in AVX2"); 6686 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 6687 } 6688 if (!table) { // try the FP table 6689 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 6690 assert((!table || Domain < 3) && 6691 "Can only select PackedSingle or PackedDouble"); 6692 } 6693 if (!table) { // try the other table 6694 assert(Subtarget.hasAVX2() && 6695 "256-bit insert/extract only available in AVX2"); 6696 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 6697 } 6698 if (!table) { // try the AVX512 table 6699 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 6700 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 6701 // Don't change integer Q instructions to D instructions. 6702 if (table && Domain == 3 && table[3] == MI.getOpcode()) 6703 Domain = 4; 6704 } 6705 if (!table) { // try the AVX512DQ table 6706 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 6707 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 6708 // Don't change integer Q instructions to D instructions and 6709 // use D intructions if we started with a PS instruction. 6710 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 6711 Domain = 4; 6712 } 6713 if (!table) { // try the AVX512DQMasked table 6714 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 6715 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 6716 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 6717 Domain = 4; 6718 } 6719 assert(table && "Cannot change domain"); 6720 MI.setDesc(get(table[Domain - 1])); 6721 } 6722 6723 /// Return the noop instruction to use for a noop. 6724 void X86InstrInfo::getNoop(MCInst &NopInst) const { 6725 NopInst.setOpcode(X86::NOOP); 6726 } 6727 6728 bool X86InstrInfo::isHighLatencyDef(int opc) const { 6729 switch (opc) { 6730 default: return false; 6731 case X86::DIVPDrm: 6732 case X86::DIVPDrr: 6733 case X86::DIVPSrm: 6734 case X86::DIVPSrr: 6735 case X86::DIVSDrm: 6736 case X86::DIVSDrm_Int: 6737 case X86::DIVSDrr: 6738 case X86::DIVSDrr_Int: 6739 case X86::DIVSSrm: 6740 case X86::DIVSSrm_Int: 6741 case X86::DIVSSrr: 6742 case X86::DIVSSrr_Int: 6743 case X86::SQRTPDm: 6744 case X86::SQRTPDr: 6745 case X86::SQRTPSm: 6746 case X86::SQRTPSr: 6747 case X86::SQRTSDm: 6748 case X86::SQRTSDm_Int: 6749 case X86::SQRTSDr: 6750 case X86::SQRTSDr_Int: 6751 case X86::SQRTSSm: 6752 case X86::SQRTSSm_Int: 6753 case X86::SQRTSSr: 6754 case X86::SQRTSSr_Int: 6755 // AVX instructions with high latency 6756 case X86::VDIVPDrm: 6757 case X86::VDIVPDrr: 6758 case X86::VDIVPDYrm: 6759 case X86::VDIVPDYrr: 6760 case X86::VDIVPSrm: 6761 case X86::VDIVPSrr: 6762 case X86::VDIVPSYrm: 6763 case X86::VDIVPSYrr: 6764 case X86::VDIVSDrm: 6765 case X86::VDIVSDrm_Int: 6766 case X86::VDIVSDrr: 6767 case X86::VDIVSDrr_Int: 6768 case X86::VDIVSSrm: 6769 case X86::VDIVSSrm_Int: 6770 case X86::VDIVSSrr: 6771 case X86::VDIVSSrr_Int: 6772 case X86::VSQRTPDm: 6773 case X86::VSQRTPDr: 6774 case X86::VSQRTPDYm: 6775 case X86::VSQRTPDYr: 6776 case X86::VSQRTPSm: 6777 case X86::VSQRTPSr: 6778 case X86::VSQRTPSYm: 6779 case X86::VSQRTPSYr: 6780 case X86::VSQRTSDm: 6781 case X86::VSQRTSDm_Int: 6782 case X86::VSQRTSDr: 6783 case X86::VSQRTSDr_Int: 6784 case X86::VSQRTSSm: 6785 case X86::VSQRTSSm_Int: 6786 case X86::VSQRTSSr: 6787 case X86::VSQRTSSr_Int: 6788 // AVX512 instructions with high latency 6789 case X86::VDIVPDZ128rm: 6790 case X86::VDIVPDZ128rmb: 6791 case X86::VDIVPDZ128rmbk: 6792 case X86::VDIVPDZ128rmbkz: 6793 case X86::VDIVPDZ128rmk: 6794 case X86::VDIVPDZ128rmkz: 6795 case X86::VDIVPDZ128rr: 6796 case X86::VDIVPDZ128rrk: 6797 case X86::VDIVPDZ128rrkz: 6798 case X86::VDIVPDZ256rm: 6799 case X86::VDIVPDZ256rmb: 6800 case X86::VDIVPDZ256rmbk: 6801 case X86::VDIVPDZ256rmbkz: 6802 case X86::VDIVPDZ256rmk: 6803 case X86::VDIVPDZ256rmkz: 6804 case X86::VDIVPDZ256rr: 6805 case X86::VDIVPDZ256rrk: 6806 case X86::VDIVPDZ256rrkz: 6807 case X86::VDIVPDZrrb: 6808 case X86::VDIVPDZrrbk: 6809 case X86::VDIVPDZrrbkz: 6810 case X86::VDIVPDZrm: 6811 case X86::VDIVPDZrmb: 6812 case X86::VDIVPDZrmbk: 6813 case X86::VDIVPDZrmbkz: 6814 case X86::VDIVPDZrmk: 6815 case X86::VDIVPDZrmkz: 6816 case X86::VDIVPDZrr: 6817 case X86::VDIVPDZrrk: 6818 case X86::VDIVPDZrrkz: 6819 case X86::VDIVPSZ128rm: 6820 case X86::VDIVPSZ128rmb: 6821 case X86::VDIVPSZ128rmbk: 6822 case X86::VDIVPSZ128rmbkz: 6823 case X86::VDIVPSZ128rmk: 6824 case X86::VDIVPSZ128rmkz: 6825 case X86::VDIVPSZ128rr: 6826 case X86::VDIVPSZ128rrk: 6827 case X86::VDIVPSZ128rrkz: 6828 case X86::VDIVPSZ256rm: 6829 case X86::VDIVPSZ256rmb: 6830 case X86::VDIVPSZ256rmbk: 6831 case X86::VDIVPSZ256rmbkz: 6832 case X86::VDIVPSZ256rmk: 6833 case X86::VDIVPSZ256rmkz: 6834 case X86::VDIVPSZ256rr: 6835 case X86::VDIVPSZ256rrk: 6836 case X86::VDIVPSZ256rrkz: 6837 case X86::VDIVPSZrrb: 6838 case X86::VDIVPSZrrbk: 6839 case X86::VDIVPSZrrbkz: 6840 case X86::VDIVPSZrm: 6841 case X86::VDIVPSZrmb: 6842 case X86::VDIVPSZrmbk: 6843 case X86::VDIVPSZrmbkz: 6844 case X86::VDIVPSZrmk: 6845 case X86::VDIVPSZrmkz: 6846 case X86::VDIVPSZrr: 6847 case X86::VDIVPSZrrk: 6848 case X86::VDIVPSZrrkz: 6849 case X86::VDIVSDZrm: 6850 case X86::VDIVSDZrr: 6851 case X86::VDIVSDZrm_Int: 6852 case X86::VDIVSDZrm_Intk: 6853 case X86::VDIVSDZrm_Intkz: 6854 case X86::VDIVSDZrr_Int: 6855 case X86::VDIVSDZrr_Intk: 6856 case X86::VDIVSDZrr_Intkz: 6857 case X86::VDIVSDZrrb_Int: 6858 case X86::VDIVSDZrrb_Intk: 6859 case X86::VDIVSDZrrb_Intkz: 6860 case X86::VDIVSSZrm: 6861 case X86::VDIVSSZrr: 6862 case X86::VDIVSSZrm_Int: 6863 case X86::VDIVSSZrm_Intk: 6864 case X86::VDIVSSZrm_Intkz: 6865 case X86::VDIVSSZrr_Int: 6866 case X86::VDIVSSZrr_Intk: 6867 case X86::VDIVSSZrr_Intkz: 6868 case X86::VDIVSSZrrb_Int: 6869 case X86::VDIVSSZrrb_Intk: 6870 case X86::VDIVSSZrrb_Intkz: 6871 case X86::VSQRTPDZ128m: 6872 case X86::VSQRTPDZ128mb: 6873 case X86::VSQRTPDZ128mbk: 6874 case X86::VSQRTPDZ128mbkz: 6875 case X86::VSQRTPDZ128mk: 6876 case X86::VSQRTPDZ128mkz: 6877 case X86::VSQRTPDZ128r: 6878 case X86::VSQRTPDZ128rk: 6879 case X86::VSQRTPDZ128rkz: 6880 case X86::VSQRTPDZ256m: 6881 case X86::VSQRTPDZ256mb: 6882 case X86::VSQRTPDZ256mbk: 6883 case X86::VSQRTPDZ256mbkz: 6884 case X86::VSQRTPDZ256mk: 6885 case X86::VSQRTPDZ256mkz: 6886 case X86::VSQRTPDZ256r: 6887 case X86::VSQRTPDZ256rk: 6888 case X86::VSQRTPDZ256rkz: 6889 case X86::VSQRTPDZm: 6890 case X86::VSQRTPDZmb: 6891 case X86::VSQRTPDZmbk: 6892 case X86::VSQRTPDZmbkz: 6893 case X86::VSQRTPDZmk: 6894 case X86::VSQRTPDZmkz: 6895 case X86::VSQRTPDZr: 6896 case X86::VSQRTPDZrb: 6897 case X86::VSQRTPDZrbk: 6898 case X86::VSQRTPDZrbkz: 6899 case X86::VSQRTPDZrk: 6900 case X86::VSQRTPDZrkz: 6901 case X86::VSQRTPSZ128m: 6902 case X86::VSQRTPSZ128mb: 6903 case X86::VSQRTPSZ128mbk: 6904 case X86::VSQRTPSZ128mbkz: 6905 case X86::VSQRTPSZ128mk: 6906 case X86::VSQRTPSZ128mkz: 6907 case X86::VSQRTPSZ128r: 6908 case X86::VSQRTPSZ128rk: 6909 case X86::VSQRTPSZ128rkz: 6910 case X86::VSQRTPSZ256m: 6911 case X86::VSQRTPSZ256mb: 6912 case X86::VSQRTPSZ256mbk: 6913 case X86::VSQRTPSZ256mbkz: 6914 case X86::VSQRTPSZ256mk: 6915 case X86::VSQRTPSZ256mkz: 6916 case X86::VSQRTPSZ256r: 6917 case X86::VSQRTPSZ256rk: 6918 case X86::VSQRTPSZ256rkz: 6919 case X86::VSQRTPSZm: 6920 case X86::VSQRTPSZmb: 6921 case X86::VSQRTPSZmbk: 6922 case X86::VSQRTPSZmbkz: 6923 case X86::VSQRTPSZmk: 6924 case X86::VSQRTPSZmkz: 6925 case X86::VSQRTPSZr: 6926 case X86::VSQRTPSZrb: 6927 case X86::VSQRTPSZrbk: 6928 case X86::VSQRTPSZrbkz: 6929 case X86::VSQRTPSZrk: 6930 case X86::VSQRTPSZrkz: 6931 case X86::VSQRTSDZm: 6932 case X86::VSQRTSDZm_Int: 6933 case X86::VSQRTSDZm_Intk: 6934 case X86::VSQRTSDZm_Intkz: 6935 case X86::VSQRTSDZr: 6936 case X86::VSQRTSDZr_Int: 6937 case X86::VSQRTSDZr_Intk: 6938 case X86::VSQRTSDZr_Intkz: 6939 case X86::VSQRTSDZrb_Int: 6940 case X86::VSQRTSDZrb_Intk: 6941 case X86::VSQRTSDZrb_Intkz: 6942 case X86::VSQRTSSZm: 6943 case X86::VSQRTSSZm_Int: 6944 case X86::VSQRTSSZm_Intk: 6945 case X86::VSQRTSSZm_Intkz: 6946 case X86::VSQRTSSZr: 6947 case X86::VSQRTSSZr_Int: 6948 case X86::VSQRTSSZr_Intk: 6949 case X86::VSQRTSSZr_Intkz: 6950 case X86::VSQRTSSZrb_Int: 6951 case X86::VSQRTSSZrb_Intk: 6952 case X86::VSQRTSSZrb_Intkz: 6953 6954 case X86::VGATHERDPDYrm: 6955 case X86::VGATHERDPDZ128rm: 6956 case X86::VGATHERDPDZ256rm: 6957 case X86::VGATHERDPDZrm: 6958 case X86::VGATHERDPDrm: 6959 case X86::VGATHERDPSYrm: 6960 case X86::VGATHERDPSZ128rm: 6961 case X86::VGATHERDPSZ256rm: 6962 case X86::VGATHERDPSZrm: 6963 case X86::VGATHERDPSrm: 6964 case X86::VGATHERPF0DPDm: 6965 case X86::VGATHERPF0DPSm: 6966 case X86::VGATHERPF0QPDm: 6967 case X86::VGATHERPF0QPSm: 6968 case X86::VGATHERPF1DPDm: 6969 case X86::VGATHERPF1DPSm: 6970 case X86::VGATHERPF1QPDm: 6971 case X86::VGATHERPF1QPSm: 6972 case X86::VGATHERQPDYrm: 6973 case X86::VGATHERQPDZ128rm: 6974 case X86::VGATHERQPDZ256rm: 6975 case X86::VGATHERQPDZrm: 6976 case X86::VGATHERQPDrm: 6977 case X86::VGATHERQPSYrm: 6978 case X86::VGATHERQPSZ128rm: 6979 case X86::VGATHERQPSZ256rm: 6980 case X86::VGATHERQPSZrm: 6981 case X86::VGATHERQPSrm: 6982 case X86::VPGATHERDDYrm: 6983 case X86::VPGATHERDDZ128rm: 6984 case X86::VPGATHERDDZ256rm: 6985 case X86::VPGATHERDDZrm: 6986 case X86::VPGATHERDDrm: 6987 case X86::VPGATHERDQYrm: 6988 case X86::VPGATHERDQZ128rm: 6989 case X86::VPGATHERDQZ256rm: 6990 case X86::VPGATHERDQZrm: 6991 case X86::VPGATHERDQrm: 6992 case X86::VPGATHERQDYrm: 6993 case X86::VPGATHERQDZ128rm: 6994 case X86::VPGATHERQDZ256rm: 6995 case X86::VPGATHERQDZrm: 6996 case X86::VPGATHERQDrm: 6997 case X86::VPGATHERQQYrm: 6998 case X86::VPGATHERQQZ128rm: 6999 case X86::VPGATHERQQZ256rm: 7000 case X86::VPGATHERQQZrm: 7001 case X86::VPGATHERQQrm: 7002 case X86::VSCATTERDPDZ128mr: 7003 case X86::VSCATTERDPDZ256mr: 7004 case X86::VSCATTERDPDZmr: 7005 case X86::VSCATTERDPSZ128mr: 7006 case X86::VSCATTERDPSZ256mr: 7007 case X86::VSCATTERDPSZmr: 7008 case X86::VSCATTERPF0DPDm: 7009 case X86::VSCATTERPF0DPSm: 7010 case X86::VSCATTERPF0QPDm: 7011 case X86::VSCATTERPF0QPSm: 7012 case X86::VSCATTERPF1DPDm: 7013 case X86::VSCATTERPF1DPSm: 7014 case X86::VSCATTERPF1QPDm: 7015 case X86::VSCATTERPF1QPSm: 7016 case X86::VSCATTERQPDZ128mr: 7017 case X86::VSCATTERQPDZ256mr: 7018 case X86::VSCATTERQPDZmr: 7019 case X86::VSCATTERQPSZ128mr: 7020 case X86::VSCATTERQPSZ256mr: 7021 case X86::VSCATTERQPSZmr: 7022 case X86::VPSCATTERDDZ128mr: 7023 case X86::VPSCATTERDDZ256mr: 7024 case X86::VPSCATTERDDZmr: 7025 case X86::VPSCATTERDQZ128mr: 7026 case X86::VPSCATTERDQZ256mr: 7027 case X86::VPSCATTERDQZmr: 7028 case X86::VPSCATTERQDZ128mr: 7029 case X86::VPSCATTERQDZ256mr: 7030 case X86::VPSCATTERQDZmr: 7031 case X86::VPSCATTERQQZ128mr: 7032 case X86::VPSCATTERQQZ256mr: 7033 case X86::VPSCATTERQQZmr: 7034 return true; 7035 } 7036 } 7037 7038 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 7039 const MachineRegisterInfo *MRI, 7040 const MachineInstr &DefMI, 7041 unsigned DefIdx, 7042 const MachineInstr &UseMI, 7043 unsigned UseIdx) const { 7044 return isHighLatencyDef(DefMI.getOpcode()); 7045 } 7046 7047 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 7048 const MachineBasicBlock *MBB) const { 7049 assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && 7050 "Reassociation needs binary operators"); 7051 7052 // Integer binary math/logic instructions have a third source operand: 7053 // the EFLAGS register. That operand must be both defined here and never 7054 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 7055 // not change anything because rearranging the operands could affect other 7056 // instructions that depend on the exact status flags (zero, sign, etc.) 7057 // that are set by using these particular operands with this operation. 7058 if (Inst.getNumOperands() == 4) { 7059 assert(Inst.getOperand(3).isReg() && 7060 Inst.getOperand(3).getReg() == X86::EFLAGS && 7061 "Unexpected operand in reassociable instruction"); 7062 if (!Inst.getOperand(3).isDead()) 7063 return false; 7064 } 7065 7066 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 7067 } 7068 7069 // TODO: There are many more machine instruction opcodes to match: 7070 // 1. Other data types (integer, vectors) 7071 // 2. Other math / logic operations (xor, or) 7072 // 3. Other forms of the same operation (intrinsics and other variants) 7073 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 7074 switch (Inst.getOpcode()) { 7075 case X86::AND8rr: 7076 case X86::AND16rr: 7077 case X86::AND32rr: 7078 case X86::AND64rr: 7079 case X86::OR8rr: 7080 case X86::OR16rr: 7081 case X86::OR32rr: 7082 case X86::OR64rr: 7083 case X86::XOR8rr: 7084 case X86::XOR16rr: 7085 case X86::XOR32rr: 7086 case X86::XOR64rr: 7087 case X86::IMUL16rr: 7088 case X86::IMUL32rr: 7089 case X86::IMUL64rr: 7090 case X86::PANDrr: 7091 case X86::PORrr: 7092 case X86::PXORrr: 7093 case X86::ANDPDrr: 7094 case X86::ANDPSrr: 7095 case X86::ORPDrr: 7096 case X86::ORPSrr: 7097 case X86::XORPDrr: 7098 case X86::XORPSrr: 7099 case X86::PADDBrr: 7100 case X86::PADDWrr: 7101 case X86::PADDDrr: 7102 case X86::PADDQrr: 7103 case X86::PMULLWrr: 7104 case X86::PMULLDrr: 7105 case X86::PMAXSBrr: 7106 case X86::PMAXSDrr: 7107 case X86::PMAXSWrr: 7108 case X86::PMAXUBrr: 7109 case X86::PMAXUDrr: 7110 case X86::PMAXUWrr: 7111 case X86::PMINSBrr: 7112 case X86::PMINSDrr: 7113 case X86::PMINSWrr: 7114 case X86::PMINUBrr: 7115 case X86::PMINUDrr: 7116 case X86::PMINUWrr: 7117 case X86::VPANDrr: 7118 case X86::VPANDYrr: 7119 case X86::VPANDDZ128rr: 7120 case X86::VPANDDZ256rr: 7121 case X86::VPANDDZrr: 7122 case X86::VPANDQZ128rr: 7123 case X86::VPANDQZ256rr: 7124 case X86::VPANDQZrr: 7125 case X86::VPORrr: 7126 case X86::VPORYrr: 7127 case X86::VPORDZ128rr: 7128 case X86::VPORDZ256rr: 7129 case X86::VPORDZrr: 7130 case X86::VPORQZ128rr: 7131 case X86::VPORQZ256rr: 7132 case X86::VPORQZrr: 7133 case X86::VPXORrr: 7134 case X86::VPXORYrr: 7135 case X86::VPXORDZ128rr: 7136 case X86::VPXORDZ256rr: 7137 case X86::VPXORDZrr: 7138 case X86::VPXORQZ128rr: 7139 case X86::VPXORQZ256rr: 7140 case X86::VPXORQZrr: 7141 case X86::VANDPDrr: 7142 case X86::VANDPSrr: 7143 case X86::VANDPDYrr: 7144 case X86::VANDPSYrr: 7145 case X86::VANDPDZ128rr: 7146 case X86::VANDPSZ128rr: 7147 case X86::VANDPDZ256rr: 7148 case X86::VANDPSZ256rr: 7149 case X86::VANDPDZrr: 7150 case X86::VANDPSZrr: 7151 case X86::VORPDrr: 7152 case X86::VORPSrr: 7153 case X86::VORPDYrr: 7154 case X86::VORPSYrr: 7155 case X86::VORPDZ128rr: 7156 case X86::VORPSZ128rr: 7157 case X86::VORPDZ256rr: 7158 case X86::VORPSZ256rr: 7159 case X86::VORPDZrr: 7160 case X86::VORPSZrr: 7161 case X86::VXORPDrr: 7162 case X86::VXORPSrr: 7163 case X86::VXORPDYrr: 7164 case X86::VXORPSYrr: 7165 case X86::VXORPDZ128rr: 7166 case X86::VXORPSZ128rr: 7167 case X86::VXORPDZ256rr: 7168 case X86::VXORPSZ256rr: 7169 case X86::VXORPDZrr: 7170 case X86::VXORPSZrr: 7171 case X86::KADDBrr: 7172 case X86::KADDWrr: 7173 case X86::KADDDrr: 7174 case X86::KADDQrr: 7175 case X86::KANDBrr: 7176 case X86::KANDWrr: 7177 case X86::KANDDrr: 7178 case X86::KANDQrr: 7179 case X86::KORBrr: 7180 case X86::KORWrr: 7181 case X86::KORDrr: 7182 case X86::KORQrr: 7183 case X86::KXORBrr: 7184 case X86::KXORWrr: 7185 case X86::KXORDrr: 7186 case X86::KXORQrr: 7187 case X86::VPADDBrr: 7188 case X86::VPADDWrr: 7189 case X86::VPADDDrr: 7190 case X86::VPADDQrr: 7191 case X86::VPADDBYrr: 7192 case X86::VPADDWYrr: 7193 case X86::VPADDDYrr: 7194 case X86::VPADDQYrr: 7195 case X86::VPADDBZ128rr: 7196 case X86::VPADDWZ128rr: 7197 case X86::VPADDDZ128rr: 7198 case X86::VPADDQZ128rr: 7199 case X86::VPADDBZ256rr: 7200 case X86::VPADDWZ256rr: 7201 case X86::VPADDDZ256rr: 7202 case X86::VPADDQZ256rr: 7203 case X86::VPADDBZrr: 7204 case X86::VPADDWZrr: 7205 case X86::VPADDDZrr: 7206 case X86::VPADDQZrr: 7207 case X86::VPMULLWrr: 7208 case X86::VPMULLWYrr: 7209 case X86::VPMULLWZ128rr: 7210 case X86::VPMULLWZ256rr: 7211 case X86::VPMULLWZrr: 7212 case X86::VPMULLDrr: 7213 case X86::VPMULLDYrr: 7214 case X86::VPMULLDZ128rr: 7215 case X86::VPMULLDZ256rr: 7216 case X86::VPMULLDZrr: 7217 case X86::VPMULLQZ128rr: 7218 case X86::VPMULLQZ256rr: 7219 case X86::VPMULLQZrr: 7220 case X86::VPMAXSBrr: 7221 case X86::VPMAXSBYrr: 7222 case X86::VPMAXSBZ128rr: 7223 case X86::VPMAXSBZ256rr: 7224 case X86::VPMAXSBZrr: 7225 case X86::VPMAXSDrr: 7226 case X86::VPMAXSDYrr: 7227 case X86::VPMAXSDZ128rr: 7228 case X86::VPMAXSDZ256rr: 7229 case X86::VPMAXSDZrr: 7230 case X86::VPMAXSQZ128rr: 7231 case X86::VPMAXSQZ256rr: 7232 case X86::VPMAXSQZrr: 7233 case X86::VPMAXSWrr: 7234 case X86::VPMAXSWYrr: 7235 case X86::VPMAXSWZ128rr: 7236 case X86::VPMAXSWZ256rr: 7237 case X86::VPMAXSWZrr: 7238 case X86::VPMAXUBrr: 7239 case X86::VPMAXUBYrr: 7240 case X86::VPMAXUBZ128rr: 7241 case X86::VPMAXUBZ256rr: 7242 case X86::VPMAXUBZrr: 7243 case X86::VPMAXUDrr: 7244 case X86::VPMAXUDYrr: 7245 case X86::VPMAXUDZ128rr: 7246 case X86::VPMAXUDZ256rr: 7247 case X86::VPMAXUDZrr: 7248 case X86::VPMAXUQZ128rr: 7249 case X86::VPMAXUQZ256rr: 7250 case X86::VPMAXUQZrr: 7251 case X86::VPMAXUWrr: 7252 case X86::VPMAXUWYrr: 7253 case X86::VPMAXUWZ128rr: 7254 case X86::VPMAXUWZ256rr: 7255 case X86::VPMAXUWZrr: 7256 case X86::VPMINSBrr: 7257 case X86::VPMINSBYrr: 7258 case X86::VPMINSBZ128rr: 7259 case X86::VPMINSBZ256rr: 7260 case X86::VPMINSBZrr: 7261 case X86::VPMINSDrr: 7262 case X86::VPMINSDYrr: 7263 case X86::VPMINSDZ128rr: 7264 case X86::VPMINSDZ256rr: 7265 case X86::VPMINSDZrr: 7266 case X86::VPMINSQZ128rr: 7267 case X86::VPMINSQZ256rr: 7268 case X86::VPMINSQZrr: 7269 case X86::VPMINSWrr: 7270 case X86::VPMINSWYrr: 7271 case X86::VPMINSWZ128rr: 7272 case X86::VPMINSWZ256rr: 7273 case X86::VPMINSWZrr: 7274 case X86::VPMINUBrr: 7275 case X86::VPMINUBYrr: 7276 case X86::VPMINUBZ128rr: 7277 case X86::VPMINUBZ256rr: 7278 case X86::VPMINUBZrr: 7279 case X86::VPMINUDrr: 7280 case X86::VPMINUDYrr: 7281 case X86::VPMINUDZ128rr: 7282 case X86::VPMINUDZ256rr: 7283 case X86::VPMINUDZrr: 7284 case X86::VPMINUQZ128rr: 7285 case X86::VPMINUQZ256rr: 7286 case X86::VPMINUQZrr: 7287 case X86::VPMINUWrr: 7288 case X86::VPMINUWYrr: 7289 case X86::VPMINUWZ128rr: 7290 case X86::VPMINUWZ256rr: 7291 case X86::VPMINUWZrr: 7292 // Normal min/max instructions are not commutative because of NaN and signed 7293 // zero semantics, but these are. Thus, there's no need to check for global 7294 // relaxed math; the instructions themselves have the properties we need. 7295 case X86::MAXCPDrr: 7296 case X86::MAXCPSrr: 7297 case X86::MAXCSDrr: 7298 case X86::MAXCSSrr: 7299 case X86::MINCPDrr: 7300 case X86::MINCPSrr: 7301 case X86::MINCSDrr: 7302 case X86::MINCSSrr: 7303 case X86::VMAXCPDrr: 7304 case X86::VMAXCPSrr: 7305 case X86::VMAXCPDYrr: 7306 case X86::VMAXCPSYrr: 7307 case X86::VMAXCPDZ128rr: 7308 case X86::VMAXCPSZ128rr: 7309 case X86::VMAXCPDZ256rr: 7310 case X86::VMAXCPSZ256rr: 7311 case X86::VMAXCPDZrr: 7312 case X86::VMAXCPSZrr: 7313 case X86::VMAXCSDrr: 7314 case X86::VMAXCSSrr: 7315 case X86::VMAXCSDZrr: 7316 case X86::VMAXCSSZrr: 7317 case X86::VMINCPDrr: 7318 case X86::VMINCPSrr: 7319 case X86::VMINCPDYrr: 7320 case X86::VMINCPSYrr: 7321 case X86::VMINCPDZ128rr: 7322 case X86::VMINCPSZ128rr: 7323 case X86::VMINCPDZ256rr: 7324 case X86::VMINCPSZ256rr: 7325 case X86::VMINCPDZrr: 7326 case X86::VMINCPSZrr: 7327 case X86::VMINCSDrr: 7328 case X86::VMINCSSrr: 7329 case X86::VMINCSDZrr: 7330 case X86::VMINCSSZrr: 7331 return true; 7332 case X86::ADDPDrr: 7333 case X86::ADDPSrr: 7334 case X86::ADDSDrr: 7335 case X86::ADDSSrr: 7336 case X86::MULPDrr: 7337 case X86::MULPSrr: 7338 case X86::MULSDrr: 7339 case X86::MULSSrr: 7340 case X86::VADDPDrr: 7341 case X86::VADDPSrr: 7342 case X86::VADDPDYrr: 7343 case X86::VADDPSYrr: 7344 case X86::VADDPDZ128rr: 7345 case X86::VADDPSZ128rr: 7346 case X86::VADDPDZ256rr: 7347 case X86::VADDPSZ256rr: 7348 case X86::VADDPDZrr: 7349 case X86::VADDPSZrr: 7350 case X86::VADDSDrr: 7351 case X86::VADDSSrr: 7352 case X86::VADDSDZrr: 7353 case X86::VADDSSZrr: 7354 case X86::VMULPDrr: 7355 case X86::VMULPSrr: 7356 case X86::VMULPDYrr: 7357 case X86::VMULPSYrr: 7358 case X86::VMULPDZ128rr: 7359 case X86::VMULPSZ128rr: 7360 case X86::VMULPDZ256rr: 7361 case X86::VMULPSZ256rr: 7362 case X86::VMULPDZrr: 7363 case X86::VMULPSZrr: 7364 case X86::VMULSDrr: 7365 case X86::VMULSSrr: 7366 case X86::VMULSDZrr: 7367 case X86::VMULSSZrr: 7368 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; 7369 default: 7370 return false; 7371 } 7372 } 7373 7374 /// This is an architecture-specific helper function of reassociateOps. 7375 /// Set special operand attributes for new instructions after reassociation. 7376 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 7377 MachineInstr &OldMI2, 7378 MachineInstr &NewMI1, 7379 MachineInstr &NewMI2) const { 7380 // Integer instructions define an implicit EFLAGS source register operand as 7381 // the third source (fourth total) operand. 7382 if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) 7383 return; 7384 7385 assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && 7386 "Unexpected instruction type for reassociation"); 7387 7388 MachineOperand &OldOp1 = OldMI1.getOperand(3); 7389 MachineOperand &OldOp2 = OldMI2.getOperand(3); 7390 MachineOperand &NewOp1 = NewMI1.getOperand(3); 7391 MachineOperand &NewOp2 = NewMI2.getOperand(3); 7392 7393 assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && 7394 "Must have dead EFLAGS operand in reassociable instruction"); 7395 assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && 7396 "Must have dead EFLAGS operand in reassociable instruction"); 7397 7398 (void)OldOp1; 7399 (void)OldOp2; 7400 7401 assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && 7402 "Unexpected operand in reassociable instruction"); 7403 assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && 7404 "Unexpected operand in reassociable instruction"); 7405 7406 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 7407 // of this pass or other passes. The EFLAGS operands must be dead in these new 7408 // instructions because the EFLAGS operands in the original instructions must 7409 // be dead in order for reassociation to occur. 7410 NewOp1.setIsDead(); 7411 NewOp2.setIsDead(); 7412 } 7413 7414 std::pair<unsigned, unsigned> 7415 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 7416 return std::make_pair(TF, 0u); 7417 } 7418 7419 ArrayRef<std::pair<unsigned, const char *>> 7420 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 7421 using namespace X86II; 7422 static const std::pair<unsigned, const char *> TargetFlags[] = { 7423 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 7424 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 7425 {MO_GOT, "x86-got"}, 7426 {MO_GOTOFF, "x86-gotoff"}, 7427 {MO_GOTPCREL, "x86-gotpcrel"}, 7428 {MO_PLT, "x86-plt"}, 7429 {MO_TLSGD, "x86-tlsgd"}, 7430 {MO_TLSLD, "x86-tlsld"}, 7431 {MO_TLSLDM, "x86-tlsldm"}, 7432 {MO_GOTTPOFF, "x86-gottpoff"}, 7433 {MO_INDNTPOFF, "x86-indntpoff"}, 7434 {MO_TPOFF, "x86-tpoff"}, 7435 {MO_DTPOFF, "x86-dtpoff"}, 7436 {MO_NTPOFF, "x86-ntpoff"}, 7437 {MO_GOTNTPOFF, "x86-gotntpoff"}, 7438 {MO_DLLIMPORT, "x86-dllimport"}, 7439 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 7440 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 7441 {MO_TLVP, "x86-tlvp"}, 7442 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 7443 {MO_SECREL, "x86-secrel"}, 7444 {MO_COFFSTUB, "x86-coffstub"}}; 7445 return makeArrayRef(TargetFlags); 7446 } 7447 7448 namespace { 7449 /// Create Global Base Reg pass. This initializes the PIC 7450 /// global base register for x86-32. 7451 struct CGBR : public MachineFunctionPass { 7452 static char ID; 7453 CGBR() : MachineFunctionPass(ID) {} 7454 7455 bool runOnMachineFunction(MachineFunction &MF) override { 7456 const X86TargetMachine *TM = 7457 static_cast<const X86TargetMachine *>(&MF.getTarget()); 7458 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 7459 7460 // Don't do anything in the 64-bit small and kernel code models. They use 7461 // RIP-relative addressing for everything. 7462 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || 7463 TM->getCodeModel() == CodeModel::Kernel)) 7464 return false; 7465 7466 // Only emit a global base reg in PIC mode. 7467 if (!TM->isPositionIndependent()) 7468 return false; 7469 7470 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 7471 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 7472 7473 // If we didn't need a GlobalBaseReg, don't insert code. 7474 if (GlobalBaseReg == 0) 7475 return false; 7476 7477 // Insert the set of GlobalBaseReg into the first MBB of the function 7478 MachineBasicBlock &FirstMBB = MF.front(); 7479 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 7480 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 7481 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7482 const X86InstrInfo *TII = STI.getInstrInfo(); 7483 7484 unsigned PC; 7485 if (STI.isPICStyleGOT()) 7486 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 7487 else 7488 PC = GlobalBaseReg; 7489 7490 if (STI.is64Bit()) { 7491 if (TM->getCodeModel() == CodeModel::Medium) { 7492 // In the medium code model, use a RIP-relative LEA to materialize the 7493 // GOT. 7494 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 7495 .addReg(X86::RIP) 7496 .addImm(0) 7497 .addReg(0) 7498 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 7499 .addReg(0); 7500 } else if (TM->getCodeModel() == CodeModel::Large) { 7501 // In the large code model, we are aiming for this code, though the 7502 // register allocation may vary: 7503 // leaq .LN$pb(%rip), %rax 7504 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 7505 // addq %rcx, %rax 7506 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 7507 unsigned PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 7508 unsigned GOTReg = 7509 RegInfo.createVirtualRegister(&X86::GR64RegClass); 7510 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 7511 .addReg(X86::RIP) 7512 .addImm(0) 7513 .addReg(0) 7514 .addSym(MF.getPICBaseSymbol()) 7515 .addReg(0); 7516 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 7517 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 7518 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 7519 X86II::MO_PIC_BASE_OFFSET); 7520 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 7521 .addReg(PBReg, RegState::Kill) 7522 .addReg(GOTReg, RegState::Kill); 7523 } else { 7524 llvm_unreachable("unexpected code model"); 7525 } 7526 } else { 7527 // Operand of MovePCtoStack is completely ignored by asm printer. It's 7528 // only used in JIT code emission as displacement to pc. 7529 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 7530 7531 // If we're using vanilla 'GOT' PIC style, we should use relative 7532 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 7533 if (STI.isPICStyleGOT()) { 7534 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 7535 // %some_register 7536 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 7537 .addReg(PC) 7538 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 7539 X86II::MO_GOT_ABSOLUTE_ADDRESS); 7540 } 7541 } 7542 7543 return true; 7544 } 7545 7546 StringRef getPassName() const override { 7547 return "X86 PIC Global Base Reg Initialization"; 7548 } 7549 7550 void getAnalysisUsage(AnalysisUsage &AU) const override { 7551 AU.setPreservesCFG(); 7552 MachineFunctionPass::getAnalysisUsage(AU); 7553 } 7554 }; 7555 } 7556 7557 char CGBR::ID = 0; 7558 FunctionPass* 7559 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 7560 7561 namespace { 7562 struct LDTLSCleanup : public MachineFunctionPass { 7563 static char ID; 7564 LDTLSCleanup() : MachineFunctionPass(ID) {} 7565 7566 bool runOnMachineFunction(MachineFunction &MF) override { 7567 if (skipFunction(MF.getFunction())) 7568 return false; 7569 7570 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 7571 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 7572 // No point folding accesses if there isn't at least two. 7573 return false; 7574 } 7575 7576 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 7577 return VisitNode(DT->getRootNode(), 0); 7578 } 7579 7580 // Visit the dominator subtree rooted at Node in pre-order. 7581 // If TLSBaseAddrReg is non-null, then use that to replace any 7582 // TLS_base_addr instructions. Otherwise, create the register 7583 // when the first such instruction is seen, and then use it 7584 // as we encounter more instructions. 7585 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 7586 MachineBasicBlock *BB = Node->getBlock(); 7587 bool Changed = false; 7588 7589 // Traverse the current block. 7590 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 7591 ++I) { 7592 switch (I->getOpcode()) { 7593 case X86::TLS_base_addr32: 7594 case X86::TLS_base_addr64: 7595 if (TLSBaseAddrReg) 7596 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 7597 else 7598 I = SetRegister(*I, &TLSBaseAddrReg); 7599 Changed = true; 7600 break; 7601 default: 7602 break; 7603 } 7604 } 7605 7606 // Visit the children of this block in the dominator tree. 7607 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); 7608 I != E; ++I) { 7609 Changed |= VisitNode(*I, TLSBaseAddrReg); 7610 } 7611 7612 return Changed; 7613 } 7614 7615 // Replace the TLS_base_addr instruction I with a copy from 7616 // TLSBaseAddrReg, returning the new instruction. 7617 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 7618 unsigned TLSBaseAddrReg) { 7619 MachineFunction *MF = I.getParent()->getParent(); 7620 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 7621 const bool is64Bit = STI.is64Bit(); 7622 const X86InstrInfo *TII = STI.getInstrInfo(); 7623 7624 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 7625 MachineInstr *Copy = 7626 BuildMI(*I.getParent(), I, I.getDebugLoc(), 7627 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 7628 .addReg(TLSBaseAddrReg); 7629 7630 // Erase the TLS_base_addr instruction. 7631 I.eraseFromParent(); 7632 7633 return Copy; 7634 } 7635 7636 // Create a virtual register in *TLSBaseAddrReg, and populate it by 7637 // inserting a copy instruction after I. Returns the new instruction. 7638 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 7639 MachineFunction *MF = I.getParent()->getParent(); 7640 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 7641 const bool is64Bit = STI.is64Bit(); 7642 const X86InstrInfo *TII = STI.getInstrInfo(); 7643 7644 // Create a virtual register for the TLS base address. 7645 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 7646 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 7647 ? &X86::GR64RegClass 7648 : &X86::GR32RegClass); 7649 7650 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 7651 MachineInstr *Next = I.getNextNode(); 7652 MachineInstr *Copy = 7653 BuildMI(*I.getParent(), Next, I.getDebugLoc(), 7654 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 7655 .addReg(is64Bit ? X86::RAX : X86::EAX); 7656 7657 return Copy; 7658 } 7659 7660 StringRef getPassName() const override { 7661 return "Local Dynamic TLS Access Clean-up"; 7662 } 7663 7664 void getAnalysisUsage(AnalysisUsage &AU) const override { 7665 AU.setPreservesCFG(); 7666 AU.addRequired<MachineDominatorTree>(); 7667 MachineFunctionPass::getAnalysisUsage(AU); 7668 } 7669 }; 7670 } 7671 7672 char LDTLSCleanup::ID = 0; 7673 FunctionPass* 7674 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 7675 7676 /// Constants defining how certain sequences should be outlined. 7677 /// 7678 /// \p MachineOutlinerDefault implies that the function is called with a call 7679 /// instruction, and a return must be emitted for the outlined function frame. 7680 /// 7681 /// That is, 7682 /// 7683 /// I1 OUTLINED_FUNCTION: 7684 /// I2 --> call OUTLINED_FUNCTION I1 7685 /// I3 I2 7686 /// I3 7687 /// ret 7688 /// 7689 /// * Call construction overhead: 1 (call instruction) 7690 /// * Frame construction overhead: 1 (return instruction) 7691 /// 7692 /// \p MachineOutlinerTailCall implies that the function is being tail called. 7693 /// A jump is emitted instead of a call, and the return is already present in 7694 /// the outlined sequence. That is, 7695 /// 7696 /// I1 OUTLINED_FUNCTION: 7697 /// I2 --> jmp OUTLINED_FUNCTION I1 7698 /// ret I2 7699 /// ret 7700 /// 7701 /// * Call construction overhead: 1 (jump instruction) 7702 /// * Frame construction overhead: 0 (don't need to return) 7703 /// 7704 enum MachineOutlinerClass { 7705 MachineOutlinerDefault, 7706 MachineOutlinerTailCall 7707 }; 7708 7709 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( 7710 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 7711 unsigned SequenceSize = 7712 std::accumulate(RepeatedSequenceLocs[0].front(), 7713 std::next(RepeatedSequenceLocs[0].back()), 0, 7714 [](unsigned Sum, const MachineInstr &MI) { 7715 // FIXME: x86 doesn't implement getInstSizeInBytes, so 7716 // we can't tell the cost. Just assume each instruction 7717 // is one byte. 7718 if (MI.isDebugInstr() || MI.isKill()) 7719 return Sum; 7720 return Sum + 1; 7721 }); 7722 7723 // FIXME: Use real size in bytes for call and ret instructions. 7724 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 7725 for (outliner::Candidate &C : RepeatedSequenceLocs) 7726 C.setCallInfo(MachineOutlinerTailCall, 1); 7727 7728 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 7729 0, // Number of bytes to emit frame. 7730 MachineOutlinerTailCall // Type of frame. 7731 ); 7732 } 7733 7734 for (outliner::Candidate &C : RepeatedSequenceLocs) 7735 C.setCallInfo(MachineOutlinerDefault, 1); 7736 7737 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, 7738 MachineOutlinerDefault); 7739 } 7740 7741 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, 7742 bool OutlineFromLinkOnceODRs) const { 7743 const Function &F = MF.getFunction(); 7744 7745 // Does the function use a red zone? If it does, then we can't risk messing 7746 // with the stack. 7747 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 7748 // It could have a red zone. If it does, then we don't want to touch it. 7749 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 7750 if (!X86FI || X86FI->getUsesRedZone()) 7751 return false; 7752 } 7753 7754 // If we *don't* want to outline from things that could potentially be deduped 7755 // then return false. 7756 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 7757 return false; 7758 7759 // This function is viable for outlining, so return true. 7760 return true; 7761 } 7762 7763 outliner::InstrType 7764 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 7765 MachineInstr &MI = *MIT; 7766 // Don't allow debug values to impact outlining type. 7767 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 7768 return outliner::InstrType::Invisible; 7769 7770 // At this point, KILL instructions don't really tell us much so we can go 7771 // ahead and skip over them. 7772 if (MI.isKill()) 7773 return outliner::InstrType::Invisible; 7774 7775 // Is this a tail call? If yes, we can outline as a tail call. 7776 if (isTailCall(MI)) 7777 return outliner::InstrType::Legal; 7778 7779 // Is this the terminator of a basic block? 7780 if (MI.isTerminator() || MI.isReturn()) { 7781 7782 // Does its parent have any successors in its MachineFunction? 7783 if (MI.getParent()->succ_empty()) 7784 return outliner::InstrType::Legal; 7785 7786 // It does, so we can't tail call it. 7787 return outliner::InstrType::Illegal; 7788 } 7789 7790 // Don't outline anything that modifies or reads from the stack pointer. 7791 // 7792 // FIXME: There are instructions which are being manually built without 7793 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 7794 // able to remove the extra checks once those are fixed up. For example, 7795 // sometimes we might get something like %rax = POP64r 1. This won't be 7796 // caught by modifiesRegister or readsRegister even though the instruction 7797 // really ought to be formed so that modifiesRegister/readsRegister would 7798 // catch it. 7799 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 7800 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 7801 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 7802 return outliner::InstrType::Illegal; 7803 7804 // Outlined calls change the instruction pointer, so don't read from it. 7805 if (MI.readsRegister(X86::RIP, &RI) || 7806 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 7807 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 7808 return outliner::InstrType::Illegal; 7809 7810 // Positions can't safely be outlined. 7811 if (MI.isPosition()) 7812 return outliner::InstrType::Illegal; 7813 7814 // Make sure none of the operands of this instruction do anything tricky. 7815 for (const MachineOperand &MOP : MI.operands()) 7816 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 7817 MOP.isTargetIndex()) 7818 return outliner::InstrType::Illegal; 7819 7820 return outliner::InstrType::Legal; 7821 } 7822 7823 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, 7824 MachineFunction &MF, 7825 const outliner::OutlinedFunction &OF) 7826 const { 7827 // If we're a tail call, we already have a return, so don't do anything. 7828 if (OF.FrameConstructionID == MachineOutlinerTailCall) 7829 return; 7830 7831 // We're a normal call, so our sequence doesn't have a return instruction. 7832 // Add it in. 7833 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); 7834 MBB.insert(MBB.end(), retq); 7835 } 7836 7837 MachineBasicBlock::iterator 7838 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 7839 MachineBasicBlock::iterator &It, 7840 MachineFunction &MF, 7841 const outliner::Candidate &C) const { 7842 // Is it a tail call? 7843 if (C.CallConstructionID == MachineOutlinerTailCall) { 7844 // Yes, just insert a JMP. 7845 It = MBB.insert(It, 7846 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 7847 .addGlobalAddress(M.getNamedValue(MF.getName()))); 7848 } else { 7849 // No, insert a call. 7850 It = MBB.insert(It, 7851 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 7852 .addGlobalAddress(M.getNamedValue(MF.getName()))); 7853 } 7854 7855 return It; 7856 } 7857 7858 #define GET_INSTRINFO_HELPERS 7859 #include "X86GenInstrInfo.inc" 7860