xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrInfo.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "x86-instr-info"
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
49 
50 static cl::opt<bool>
51     NoFusing("disable-spill-fusing",
52              cl::desc("Disable fusing of spill code into instructions"),
53              cl::Hidden);
54 static cl::opt<bool>
55 PrintFailedFusing("print-failed-fuse-candidates",
56                   cl::desc("Print instructions that the allocator wants to"
57                            " fuse, but the X86 backend currently can't"),
58                   cl::Hidden);
59 static cl::opt<bool>
60 ReMatPICStubLoad("remat-pic-stub-load",
61                  cl::desc("Re-materialize load from stub in PIC mode"),
62                  cl::init(false), cl::Hidden);
63 static cl::opt<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65                           cl::desc("Clearance between two register writes "
66                                    "for inserting XOR to avoid partial "
67                                    "register update"),
68                           cl::init(64), cl::Hidden);
69 static cl::opt<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71                   cl::desc("How many idle instructions we would like before "
72                            "certain undef register reads"),
73                   cl::init(128), cl::Hidden);
74 
75 
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
78 
79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                                : X86::ADJCALLSTACKDOWN32),
82                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                                : X86::ADJCALLSTACKUP32),
84                       X86::CATCHRET,
85                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86       Subtarget(STI), RI(STI.getTargetTriple()) {
87 }
88 
89 bool
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                     unsigned &SrcReg, unsigned &DstReg,
92                                     unsigned &SubIdx) const {
93   switch (MI.getOpcode()) {
94   default: break;
95   case X86::MOVSX16rr8:
96   case X86::MOVZX16rr8:
97   case X86::MOVSX32rr8:
98   case X86::MOVZX32rr8:
99   case X86::MOVSX64rr8:
100     if (!Subtarget.is64Bit())
101       // It's not always legal to reference the low 8-bit of the larger
102       // register in 32-bit mode.
103       return false;
104     LLVM_FALLTHROUGH;
105   case X86::MOVSX32rr16:
106   case X86::MOVZX32rr16:
107   case X86::MOVSX64rr16:
108   case X86::MOVSX64rr32: {
109     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110       // Be conservative.
111       return false;
112     SrcReg = MI.getOperand(1).getReg();
113     DstReg = MI.getOperand(0).getReg();
114     switch (MI.getOpcode()) {
115     default: llvm_unreachable("Unreachable!");
116     case X86::MOVSX16rr8:
117     case X86::MOVZX16rr8:
118     case X86::MOVSX32rr8:
119     case X86::MOVZX32rr8:
120     case X86::MOVSX64rr8:
121       SubIdx = X86::sub_8bit;
122       break;
123     case X86::MOVSX32rr16:
124     case X86::MOVZX32rr16:
125     case X86::MOVSX64rr16:
126       SubIdx = X86::sub_16bit;
127       break;
128     case X86::MOVSX64rr32:
129       SubIdx = X86::sub_32bit;
130       break;
131     }
132     return true;
133   }
134   }
135   return false;
136 }
137 
138 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139   const MachineFunction *MF = MI.getParent()->getParent();
140   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141 
142   if (isFrameInstr(MI)) {
143     unsigned StackAlign = TFI->getStackAlignment();
144     int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145     SPAdj -= getFrameAdjustment(MI);
146     if (!isFrameSetup(MI))
147       SPAdj = -SPAdj;
148     return SPAdj;
149   }
150 
151   // To know whether a call adjusts the stack, we need information
152   // that is bound to the following ADJCALLSTACKUP pseudo.
153   // Look for the next ADJCALLSTACKUP that follows the call.
154   if (MI.isCall()) {
155     const MachineBasicBlock *MBB = MI.getParent();
156     auto I = ++MachineBasicBlock::const_iterator(MI);
157     for (auto E = MBB->end(); I != E; ++I) {
158       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159           I->isCall())
160         break;
161     }
162 
163     // If we could not find a frame destroy opcode, then it has already
164     // been simplified, so we don't care.
165     if (I->getOpcode() != getCallFrameDestroyOpcode())
166       return 0;
167 
168     return -(I->getOperand(1).getImm());
169   }
170 
171   // Currently handle only PUSHes we can reasonably expect to see
172   // in call sequences
173   switch (MI.getOpcode()) {
174   default:
175     return 0;
176   case X86::PUSH32i8:
177   case X86::PUSH32r:
178   case X86::PUSH32rmm:
179   case X86::PUSH32rmr:
180   case X86::PUSHi32:
181     return 4;
182   case X86::PUSH64i8:
183   case X86::PUSH64r:
184   case X86::PUSH64rmm:
185   case X86::PUSH64rmr:
186   case X86::PUSH64i32:
187     return 8;
188   }
189 }
190 
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194                                   int &FrameIndex) const {
195   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198       MI.getOperand(Op + X86::AddrDisp).isImm() &&
199       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203     return true;
204   }
205   return false;
206 }
207 
208 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209   switch (Opcode) {
210   default:
211     return false;
212   case X86::MOV8rm:
213   case X86::KMOVBkm:
214     MemBytes = 1;
215     return true;
216   case X86::MOV16rm:
217   case X86::KMOVWkm:
218     MemBytes = 2;
219     return true;
220   case X86::MOV32rm:
221   case X86::MOVSSrm:
222   case X86::MOVSSrm_alt:
223   case X86::VMOVSSrm:
224   case X86::VMOVSSrm_alt:
225   case X86::VMOVSSZrm:
226   case X86::VMOVSSZrm_alt:
227   case X86::KMOVDkm:
228     MemBytes = 4;
229     return true;
230   case X86::MOV64rm:
231   case X86::LD_Fp64m:
232   case X86::MOVSDrm:
233   case X86::MOVSDrm_alt:
234   case X86::VMOVSDrm:
235   case X86::VMOVSDrm_alt:
236   case X86::VMOVSDZrm:
237   case X86::VMOVSDZrm_alt:
238   case X86::MMX_MOVD64rm:
239   case X86::MMX_MOVQ64rm:
240   case X86::KMOVQkm:
241     MemBytes = 8;
242     return true;
243   case X86::MOVAPSrm:
244   case X86::MOVUPSrm:
245   case X86::MOVAPDrm:
246   case X86::MOVUPDrm:
247   case X86::MOVDQArm:
248   case X86::MOVDQUrm:
249   case X86::VMOVAPSrm:
250   case X86::VMOVUPSrm:
251   case X86::VMOVAPDrm:
252   case X86::VMOVUPDrm:
253   case X86::VMOVDQArm:
254   case X86::VMOVDQUrm:
255   case X86::VMOVAPSZ128rm:
256   case X86::VMOVUPSZ128rm:
257   case X86::VMOVAPSZ128rm_NOVLX:
258   case X86::VMOVUPSZ128rm_NOVLX:
259   case X86::VMOVAPDZ128rm:
260   case X86::VMOVUPDZ128rm:
261   case X86::VMOVDQU8Z128rm:
262   case X86::VMOVDQU16Z128rm:
263   case X86::VMOVDQA32Z128rm:
264   case X86::VMOVDQU32Z128rm:
265   case X86::VMOVDQA64Z128rm:
266   case X86::VMOVDQU64Z128rm:
267     MemBytes = 16;
268     return true;
269   case X86::VMOVAPSYrm:
270   case X86::VMOVUPSYrm:
271   case X86::VMOVAPDYrm:
272   case X86::VMOVUPDYrm:
273   case X86::VMOVDQAYrm:
274   case X86::VMOVDQUYrm:
275   case X86::VMOVAPSZ256rm:
276   case X86::VMOVUPSZ256rm:
277   case X86::VMOVAPSZ256rm_NOVLX:
278   case X86::VMOVUPSZ256rm_NOVLX:
279   case X86::VMOVAPDZ256rm:
280   case X86::VMOVUPDZ256rm:
281   case X86::VMOVDQU8Z256rm:
282   case X86::VMOVDQU16Z256rm:
283   case X86::VMOVDQA32Z256rm:
284   case X86::VMOVDQU32Z256rm:
285   case X86::VMOVDQA64Z256rm:
286   case X86::VMOVDQU64Z256rm:
287     MemBytes = 32;
288     return true;
289   case X86::VMOVAPSZrm:
290   case X86::VMOVUPSZrm:
291   case X86::VMOVAPDZrm:
292   case X86::VMOVUPDZrm:
293   case X86::VMOVDQU8Zrm:
294   case X86::VMOVDQU16Zrm:
295   case X86::VMOVDQA32Zrm:
296   case X86::VMOVDQU32Zrm:
297   case X86::VMOVDQA64Zrm:
298   case X86::VMOVDQU64Zrm:
299     MemBytes = 64;
300     return true;
301   }
302 }
303 
304 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305   switch (Opcode) {
306   default:
307     return false;
308   case X86::MOV8mr:
309   case X86::KMOVBmk:
310     MemBytes = 1;
311     return true;
312   case X86::MOV16mr:
313   case X86::KMOVWmk:
314     MemBytes = 2;
315     return true;
316   case X86::MOV32mr:
317   case X86::MOVSSmr:
318   case X86::VMOVSSmr:
319   case X86::VMOVSSZmr:
320   case X86::KMOVDmk:
321     MemBytes = 4;
322     return true;
323   case X86::MOV64mr:
324   case X86::ST_FpP64m:
325   case X86::MOVSDmr:
326   case X86::VMOVSDmr:
327   case X86::VMOVSDZmr:
328   case X86::MMX_MOVD64mr:
329   case X86::MMX_MOVQ64mr:
330   case X86::MMX_MOVNTQmr:
331   case X86::KMOVQmk:
332     MemBytes = 8;
333     return true;
334   case X86::MOVAPSmr:
335   case X86::MOVUPSmr:
336   case X86::MOVAPDmr:
337   case X86::MOVUPDmr:
338   case X86::MOVDQAmr:
339   case X86::MOVDQUmr:
340   case X86::VMOVAPSmr:
341   case X86::VMOVUPSmr:
342   case X86::VMOVAPDmr:
343   case X86::VMOVUPDmr:
344   case X86::VMOVDQAmr:
345   case X86::VMOVDQUmr:
346   case X86::VMOVUPSZ128mr:
347   case X86::VMOVAPSZ128mr:
348   case X86::VMOVUPSZ128mr_NOVLX:
349   case X86::VMOVAPSZ128mr_NOVLX:
350   case X86::VMOVUPDZ128mr:
351   case X86::VMOVAPDZ128mr:
352   case X86::VMOVDQA32Z128mr:
353   case X86::VMOVDQU32Z128mr:
354   case X86::VMOVDQA64Z128mr:
355   case X86::VMOVDQU64Z128mr:
356   case X86::VMOVDQU8Z128mr:
357   case X86::VMOVDQU16Z128mr:
358     MemBytes = 16;
359     return true;
360   case X86::VMOVUPSYmr:
361   case X86::VMOVAPSYmr:
362   case X86::VMOVUPDYmr:
363   case X86::VMOVAPDYmr:
364   case X86::VMOVDQUYmr:
365   case X86::VMOVDQAYmr:
366   case X86::VMOVUPSZ256mr:
367   case X86::VMOVAPSZ256mr:
368   case X86::VMOVUPSZ256mr_NOVLX:
369   case X86::VMOVAPSZ256mr_NOVLX:
370   case X86::VMOVUPDZ256mr:
371   case X86::VMOVAPDZ256mr:
372   case X86::VMOVDQU8Z256mr:
373   case X86::VMOVDQU16Z256mr:
374   case X86::VMOVDQA32Z256mr:
375   case X86::VMOVDQU32Z256mr:
376   case X86::VMOVDQA64Z256mr:
377   case X86::VMOVDQU64Z256mr:
378     MemBytes = 32;
379     return true;
380   case X86::VMOVUPSZmr:
381   case X86::VMOVAPSZmr:
382   case X86::VMOVUPDZmr:
383   case X86::VMOVAPDZmr:
384   case X86::VMOVDQU8Zmr:
385   case X86::VMOVDQU16Zmr:
386   case X86::VMOVDQA32Zmr:
387   case X86::VMOVDQU32Zmr:
388   case X86::VMOVDQA64Zmr:
389   case X86::VMOVDQU64Zmr:
390     MemBytes = 64;
391     return true;
392   }
393   return false;
394 }
395 
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397                                            int &FrameIndex) const {
398   unsigned Dummy;
399   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400 }
401 
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403                                            int &FrameIndex,
404                                            unsigned &MemBytes) const {
405   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407       return MI.getOperand(0).getReg();
408   return 0;
409 }
410 
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412                                                  int &FrameIndex) const {
413   unsigned Dummy;
414   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415     unsigned Reg;
416     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417       return Reg;
418     // Check for post-frame index elimination operations
419     SmallVector<const MachineMemOperand *, 1> Accesses;
420     if (hasLoadFromStackSlot(MI, Accesses)) {
421       FrameIndex =
422           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423               ->getFrameIndex();
424       return 1;
425     }
426   }
427   return 0;
428 }
429 
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431                                           int &FrameIndex) const {
432   unsigned Dummy;
433   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434 }
435 
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437                                           int &FrameIndex,
438                                           unsigned &MemBytes) const {
439   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441         isFrameOperand(MI, 0, FrameIndex))
442       return MI.getOperand(X86::AddrNumOperands).getReg();
443   return 0;
444 }
445 
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447                                                 int &FrameIndex) const {
448   unsigned Dummy;
449   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450     unsigned Reg;
451     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452       return Reg;
453     // Check for post-frame index elimination operations
454     SmallVector<const MachineMemOperand *, 1> Accesses;
455     if (hasStoreToStackSlot(MI, Accesses)) {
456       FrameIndex =
457           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458               ->getFrameIndex();
459       return 1;
460     }
461   }
462   return 0;
463 }
464 
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467   // Don't waste compile time scanning use-def chains of physregs.
468   if (!Register::isVirtualRegister(BaseReg))
469     return false;
470   bool isPICBase = false;
471   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472          E = MRI.def_instr_end(); I != E; ++I) {
473     MachineInstr *DefMI = &*I;
474     if (DefMI->getOpcode() != X86::MOVPC32r)
475       return false;
476     assert(!isPICBase && "More than one PIC base?");
477     isPICBase = true;
478   }
479   return isPICBase;
480 }
481 
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483                                                      AAResults *AA) const {
484   switch (MI.getOpcode()) {
485   default:
486     // This function should only be called for opcodes with the ReMaterializable
487     // flag set.
488     llvm_unreachable("Unknown rematerializable operation!");
489     break;
490 
491   case X86::LOAD_STACK_GUARD:
492   case X86::AVX1_SETALLONES:
493   case X86::AVX2_SETALLONES:
494   case X86::AVX512_128_SET0:
495   case X86::AVX512_256_SET0:
496   case X86::AVX512_512_SET0:
497   case X86::AVX512_512_SETALLONES:
498   case X86::AVX512_FsFLD0SD:
499   case X86::AVX512_FsFLD0SS:
500   case X86::AVX512_FsFLD0F128:
501   case X86::AVX_SET0:
502   case X86::FsFLD0SD:
503   case X86::FsFLD0SS:
504   case X86::FsFLD0F128:
505   case X86::KSET0D:
506   case X86::KSET0Q:
507   case X86::KSET0W:
508   case X86::KSET1D:
509   case X86::KSET1Q:
510   case X86::KSET1W:
511   case X86::MMX_SET0:
512   case X86::MOV32ImmSExti8:
513   case X86::MOV32r0:
514   case X86::MOV32r1:
515   case X86::MOV32r_1:
516   case X86::MOV32ri64:
517   case X86::MOV64ImmSExti8:
518   case X86::V_SET0:
519   case X86::V_SETALLONES:
520   case X86::MOV16ri:
521   case X86::MOV32ri:
522   case X86::MOV64ri:
523   case X86::MOV64ri32:
524   case X86::MOV8ri:
525     return true;
526 
527   case X86::MOV8rm:
528   case X86::MOV8rm_NOREX:
529   case X86::MOV16rm:
530   case X86::MOV32rm:
531   case X86::MOV64rm:
532   case X86::MOVSSrm:
533   case X86::MOVSSrm_alt:
534   case X86::MOVSDrm:
535   case X86::MOVSDrm_alt:
536   case X86::MOVAPSrm:
537   case X86::MOVUPSrm:
538   case X86::MOVAPDrm:
539   case X86::MOVUPDrm:
540   case X86::MOVDQArm:
541   case X86::MOVDQUrm:
542   case X86::VMOVSSrm:
543   case X86::VMOVSSrm_alt:
544   case X86::VMOVSDrm:
545   case X86::VMOVSDrm_alt:
546   case X86::VMOVAPSrm:
547   case X86::VMOVUPSrm:
548   case X86::VMOVAPDrm:
549   case X86::VMOVUPDrm:
550   case X86::VMOVDQArm:
551   case X86::VMOVDQUrm:
552   case X86::VMOVAPSYrm:
553   case X86::VMOVUPSYrm:
554   case X86::VMOVAPDYrm:
555   case X86::VMOVUPDYrm:
556   case X86::VMOVDQAYrm:
557   case X86::VMOVDQUYrm:
558   case X86::MMX_MOVD64rm:
559   case X86::MMX_MOVQ64rm:
560   // AVX-512
561   case X86::VMOVSSZrm:
562   case X86::VMOVSSZrm_alt:
563   case X86::VMOVSDZrm:
564   case X86::VMOVSDZrm_alt:
565   case X86::VMOVAPDZ128rm:
566   case X86::VMOVAPDZ256rm:
567   case X86::VMOVAPDZrm:
568   case X86::VMOVAPSZ128rm:
569   case X86::VMOVAPSZ256rm:
570   case X86::VMOVAPSZ128rm_NOVLX:
571   case X86::VMOVAPSZ256rm_NOVLX:
572   case X86::VMOVAPSZrm:
573   case X86::VMOVDQA32Z128rm:
574   case X86::VMOVDQA32Z256rm:
575   case X86::VMOVDQA32Zrm:
576   case X86::VMOVDQA64Z128rm:
577   case X86::VMOVDQA64Z256rm:
578   case X86::VMOVDQA64Zrm:
579   case X86::VMOVDQU16Z128rm:
580   case X86::VMOVDQU16Z256rm:
581   case X86::VMOVDQU16Zrm:
582   case X86::VMOVDQU32Z128rm:
583   case X86::VMOVDQU32Z256rm:
584   case X86::VMOVDQU32Zrm:
585   case X86::VMOVDQU64Z128rm:
586   case X86::VMOVDQU64Z256rm:
587   case X86::VMOVDQU64Zrm:
588   case X86::VMOVDQU8Z128rm:
589   case X86::VMOVDQU8Z256rm:
590   case X86::VMOVDQU8Zrm:
591   case X86::VMOVUPDZ128rm:
592   case X86::VMOVUPDZ256rm:
593   case X86::VMOVUPDZrm:
594   case X86::VMOVUPSZ128rm:
595   case X86::VMOVUPSZ256rm:
596   case X86::VMOVUPSZ128rm_NOVLX:
597   case X86::VMOVUPSZ256rm_NOVLX:
598   case X86::VMOVUPSZrm: {
599     // Loads from constant pools are trivially rematerializable.
600     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
601         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
602         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
603         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
604         MI.isDereferenceableInvariantLoad(AA)) {
605       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
606       if (BaseReg == 0 || BaseReg == X86::RIP)
607         return true;
608       // Allow re-materialization of PIC load.
609       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
610         return false;
611       const MachineFunction &MF = *MI.getParent()->getParent();
612       const MachineRegisterInfo &MRI = MF.getRegInfo();
613       return regIsPICBase(BaseReg, MRI);
614     }
615     return false;
616   }
617 
618   case X86::LEA32r:
619   case X86::LEA64r: {
620     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
621         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
622         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
623         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
624       // lea fi#, lea GV, etc. are all rematerializable.
625       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
626         return true;
627       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
628       if (BaseReg == 0)
629         return true;
630       // Allow re-materialization of lea PICBase + x.
631       const MachineFunction &MF = *MI.getParent()->getParent();
632       const MachineRegisterInfo &MRI = MF.getRegInfo();
633       return regIsPICBase(BaseReg, MRI);
634     }
635     return false;
636   }
637   }
638 }
639 
640 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
641                                  MachineBasicBlock::iterator I,
642                                  unsigned DestReg, unsigned SubIdx,
643                                  const MachineInstr &Orig,
644                                  const TargetRegisterInfo &TRI) const {
645   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
646   if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
647     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
648     // effects.
649     int Value;
650     switch (Orig.getOpcode()) {
651     case X86::MOV32r0:  Value = 0; break;
652     case X86::MOV32r1:  Value = 1; break;
653     case X86::MOV32r_1: Value = -1; break;
654     default:
655       llvm_unreachable("Unexpected instruction!");
656     }
657 
658     const DebugLoc &DL = Orig.getDebugLoc();
659     BuildMI(MBB, I, DL, get(X86::MOV32ri))
660         .add(Orig.getOperand(0))
661         .addImm(Value);
662   } else {
663     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
664     MBB.insert(I, MI);
665   }
666 
667   MachineInstr &NewMI = *std::prev(I);
668   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
669 }
670 
671 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
672 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
673   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
674     MachineOperand &MO = MI.getOperand(i);
675     if (MO.isReg() && MO.isDef() &&
676         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
677       return true;
678     }
679   }
680   return false;
681 }
682 
683 /// Check whether the shift count for a machine operand is non-zero.
684 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
685                                               unsigned ShiftAmtOperandIdx) {
686   // The shift count is six bits with the REX.W prefix and five bits without.
687   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
688   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
689   return Imm & ShiftCountMask;
690 }
691 
692 /// Check whether the given shift count is appropriate
693 /// can be represented by a LEA instruction.
694 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
695   // Left shift instructions can be transformed into load-effective-address
696   // instructions if we can encode them appropriately.
697   // A LEA instruction utilizes a SIB byte to encode its scale factor.
698   // The SIB.scale field is two bits wide which means that we can encode any
699   // shift amount less than 4.
700   return ShAmt < 4 && ShAmt > 0;
701 }
702 
703 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
704                                   unsigned Opc, bool AllowSP, Register &NewSrc,
705                                   bool &isKill, MachineOperand &ImplicitOp,
706                                   LiveVariables *LV) const {
707   MachineFunction &MF = *MI.getParent()->getParent();
708   const TargetRegisterClass *RC;
709   if (AllowSP) {
710     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
711   } else {
712     RC = Opc != X86::LEA32r ?
713       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
714   }
715   Register SrcReg = Src.getReg();
716 
717   // For both LEA64 and LEA32 the register already has essentially the right
718   // type (32-bit or 64-bit) we may just need to forbid SP.
719   if (Opc != X86::LEA64_32r) {
720     NewSrc = SrcReg;
721     isKill = Src.isKill();
722     assert(!Src.isUndef() && "Undef op doesn't need optimization");
723 
724     if (Register::isVirtualRegister(NewSrc) &&
725         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
726       return false;
727 
728     return true;
729   }
730 
731   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
732   // another we need to add 64-bit registers to the final MI.
733   if (Register::isPhysicalRegister(SrcReg)) {
734     ImplicitOp = Src;
735     ImplicitOp.setImplicit();
736 
737     NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
738     isKill = Src.isKill();
739     assert(!Src.isUndef() && "Undef op doesn't need optimization");
740   } else {
741     // Virtual register of the wrong class, we have to create a temporary 64-bit
742     // vreg to feed into the LEA.
743     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
744     MachineInstr *Copy =
745         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
746             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
747             .add(Src);
748 
749     // Which is obviously going to be dead after we're done with it.
750     isKill = true;
751 
752     if (LV)
753       LV->replaceKillInstruction(SrcReg, MI, *Copy);
754   }
755 
756   // We've set all the parameters without issue.
757   return true;
758 }
759 
760 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
761     unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
762     LiveVariables *LV, bool Is8BitOp) const {
763   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
764   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
765   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
766               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
767          "Unexpected type for LEA transform");
768 
769   // TODO: For a 32-bit target, we need to adjust the LEA variables with
770   // something like this:
771   //   Opcode = X86::LEA32r;
772   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
773   //   OutRegLEA =
774   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
775   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
776   if (!Subtarget.is64Bit())
777     return nullptr;
778 
779   unsigned Opcode = X86::LEA64_32r;
780   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
781   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
782 
783   // Build and insert into an implicit UNDEF value. This is OK because
784   // we will be shifting and then extracting the lower 8/16-bits.
785   // This has the potential to cause partial register stall. e.g.
786   //   movw    (%rbp,%rcx,2), %dx
787   //   leal    -65(%rdx), %esi
788   // But testing has shown this *does* help performance in 64-bit mode (at
789   // least on modern x86 machines).
790   MachineBasicBlock::iterator MBBI = MI.getIterator();
791   Register Dest = MI.getOperand(0).getReg();
792   Register Src = MI.getOperand(1).getReg();
793   bool IsDead = MI.getOperand(0).isDead();
794   bool IsKill = MI.getOperand(1).isKill();
795   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
796   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
797   BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
798   MachineInstr *InsMI =
799       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
800           .addReg(InRegLEA, RegState::Define, SubReg)
801           .addReg(Src, getKillRegState(IsKill));
802 
803   MachineInstrBuilder MIB =
804       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
805   switch (MIOpc) {
806   default: llvm_unreachable("Unreachable!");
807   case X86::SHL8ri:
808   case X86::SHL16ri: {
809     unsigned ShAmt = MI.getOperand(2).getImm();
810     MIB.addReg(0).addImm(1ULL << ShAmt)
811        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
812     break;
813   }
814   case X86::INC8r:
815   case X86::INC16r:
816     addRegOffset(MIB, InRegLEA, true, 1);
817     break;
818   case X86::DEC8r:
819   case X86::DEC16r:
820     addRegOffset(MIB, InRegLEA, true, -1);
821     break;
822   case X86::ADD8ri:
823   case X86::ADD8ri_DB:
824   case X86::ADD16ri:
825   case X86::ADD16ri8:
826   case X86::ADD16ri_DB:
827   case X86::ADD16ri8_DB:
828     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
829     break;
830   case X86::ADD8rr:
831   case X86::ADD8rr_DB:
832   case X86::ADD16rr:
833   case X86::ADD16rr_DB: {
834     Register Src2 = MI.getOperand(2).getReg();
835     bool IsKill2 = MI.getOperand(2).isKill();
836     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
837     unsigned InRegLEA2 = 0;
838     MachineInstr *InsMI2 = nullptr;
839     if (Src == Src2) {
840       // ADD8rr/ADD16rr killed %reg1028, %reg1028
841       // just a single insert_subreg.
842       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
843     } else {
844       if (Subtarget.is64Bit())
845         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
846       else
847         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
848       // Build and insert into an implicit UNDEF value. This is OK because
849       // we will be shifting and then extracting the lower 8/16-bits.
850       BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
851       InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
852                    .addReg(InRegLEA2, RegState::Define, SubReg)
853                    .addReg(Src2, getKillRegState(IsKill2));
854       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
855     }
856     if (LV && IsKill2 && InsMI2)
857       LV->replaceKillInstruction(Src2, MI, *InsMI2);
858     break;
859   }
860   }
861 
862   MachineInstr *NewMI = MIB;
863   MachineInstr *ExtMI =
864       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
865           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
866           .addReg(OutRegLEA, RegState::Kill, SubReg);
867 
868   if (LV) {
869     // Update live variables.
870     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
871     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
872     if (IsKill)
873       LV->replaceKillInstruction(Src, MI, *InsMI);
874     if (IsDead)
875       LV->replaceKillInstruction(Dest, MI, *ExtMI);
876   }
877 
878   return ExtMI;
879 }
880 
881 /// This method must be implemented by targets that
882 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
883 /// may be able to convert a two-address instruction into a true
884 /// three-address instruction on demand.  This allows the X86 target (for
885 /// example) to convert ADD and SHL instructions into LEA instructions if they
886 /// would require register copies due to two-addressness.
887 ///
888 /// This method returns a null pointer if the transformation cannot be
889 /// performed, otherwise it returns the new instruction.
890 ///
891 MachineInstr *
892 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
893                                     MachineInstr &MI, LiveVariables *LV) const {
894   // The following opcodes also sets the condition code register(s). Only
895   // convert them to equivalent lea if the condition code register def's
896   // are dead!
897   if (hasLiveCondCodeDef(MI))
898     return nullptr;
899 
900   MachineFunction &MF = *MI.getParent()->getParent();
901   // All instructions input are two-addr instructions.  Get the known operands.
902   const MachineOperand &Dest = MI.getOperand(0);
903   const MachineOperand &Src = MI.getOperand(1);
904 
905   // Ideally, operations with undef should be folded before we get here, but we
906   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
907   // Without this, we have to forward undef state to new register operands to
908   // avoid machine verifier errors.
909   if (Src.isUndef())
910     return nullptr;
911   if (MI.getNumOperands() > 2)
912     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
913       return nullptr;
914 
915   MachineInstr *NewMI = nullptr;
916   bool Is64Bit = Subtarget.is64Bit();
917 
918   bool Is8BitOp = false;
919   unsigned MIOpc = MI.getOpcode();
920   switch (MIOpc) {
921   default: llvm_unreachable("Unreachable!");
922   case X86::SHL64ri: {
923     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
924     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
925     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
926 
927     // LEA can't handle RSP.
928     if (Register::isVirtualRegister(Src.getReg()) &&
929         !MF.getRegInfo().constrainRegClass(Src.getReg(),
930                                            &X86::GR64_NOSPRegClass))
931       return nullptr;
932 
933     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
934                 .add(Dest)
935                 .addReg(0)
936                 .addImm(1ULL << ShAmt)
937                 .add(Src)
938                 .addImm(0)
939                 .addReg(0);
940     break;
941   }
942   case X86::SHL32ri: {
943     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
944     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
945     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
946 
947     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
948 
949     // LEA can't handle ESP.
950     bool isKill;
951     Register SrcReg;
952     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
953     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
954                         SrcReg, isKill, ImplicitOp, LV))
955       return nullptr;
956 
957     MachineInstrBuilder MIB =
958         BuildMI(MF, MI.getDebugLoc(), get(Opc))
959             .add(Dest)
960             .addReg(0)
961             .addImm(1ULL << ShAmt)
962             .addReg(SrcReg, getKillRegState(isKill))
963             .addImm(0)
964             .addReg(0);
965     if (ImplicitOp.getReg() != 0)
966       MIB.add(ImplicitOp);
967     NewMI = MIB;
968 
969     break;
970   }
971   case X86::SHL8ri:
972     Is8BitOp = true;
973     LLVM_FALLTHROUGH;
974   case X86::SHL16ri: {
975     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
976     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
977     if (!isTruncatedShiftCountForLEA(ShAmt))
978       return nullptr;
979     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
980   }
981   case X86::INC64r:
982   case X86::INC32r: {
983     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
984     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
985         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
986     bool isKill;
987     Register SrcReg;
988     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
989     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
990                         ImplicitOp, LV))
991       return nullptr;
992 
993     MachineInstrBuilder MIB =
994         BuildMI(MF, MI.getDebugLoc(), get(Opc))
995             .add(Dest)
996             .addReg(SrcReg, getKillRegState(isKill));
997     if (ImplicitOp.getReg() != 0)
998       MIB.add(ImplicitOp);
999 
1000     NewMI = addOffset(MIB, 1);
1001     break;
1002   }
1003   case X86::DEC64r:
1004   case X86::DEC32r: {
1005     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1006     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1007         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1008 
1009     bool isKill;
1010     Register SrcReg;
1011     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1012     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1013                         ImplicitOp, LV))
1014       return nullptr;
1015 
1016     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1017                                   .add(Dest)
1018                                   .addReg(SrcReg, getKillRegState(isKill));
1019     if (ImplicitOp.getReg() != 0)
1020       MIB.add(ImplicitOp);
1021 
1022     NewMI = addOffset(MIB, -1);
1023 
1024     break;
1025   }
1026   case X86::DEC8r:
1027   case X86::INC8r:
1028     Is8BitOp = true;
1029     LLVM_FALLTHROUGH;
1030   case X86::DEC16r:
1031   case X86::INC16r:
1032     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1033   case X86::ADD64rr:
1034   case X86::ADD64rr_DB:
1035   case X86::ADD32rr:
1036   case X86::ADD32rr_DB: {
1037     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1038     unsigned Opc;
1039     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1040       Opc = X86::LEA64r;
1041     else
1042       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1043 
1044     bool isKill;
1045     Register SrcReg;
1046     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1047     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1048                         SrcReg, isKill, ImplicitOp, LV))
1049       return nullptr;
1050 
1051     const MachineOperand &Src2 = MI.getOperand(2);
1052     bool isKill2;
1053     Register SrcReg2;
1054     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1055     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1056                         SrcReg2, isKill2, ImplicitOp2, LV))
1057       return nullptr;
1058 
1059     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1060     if (ImplicitOp.getReg() != 0)
1061       MIB.add(ImplicitOp);
1062     if (ImplicitOp2.getReg() != 0)
1063       MIB.add(ImplicitOp2);
1064 
1065     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1066     if (LV && Src2.isKill())
1067       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1068     break;
1069   }
1070   case X86::ADD8rr:
1071   case X86::ADD8rr_DB:
1072     Is8BitOp = true;
1073     LLVM_FALLTHROUGH;
1074   case X86::ADD16rr:
1075   case X86::ADD16rr_DB:
1076     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1077   case X86::ADD64ri32:
1078   case X86::ADD64ri8:
1079   case X86::ADD64ri32_DB:
1080   case X86::ADD64ri8_DB:
1081     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1082     NewMI = addOffset(
1083         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1084         MI.getOperand(2));
1085     break;
1086   case X86::ADD32ri:
1087   case X86::ADD32ri8:
1088   case X86::ADD32ri_DB:
1089   case X86::ADD32ri8_DB: {
1090     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1091     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1092 
1093     bool isKill;
1094     Register SrcReg;
1095     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1096     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1097                         SrcReg, isKill, ImplicitOp, LV))
1098       return nullptr;
1099 
1100     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1101                                   .add(Dest)
1102                                   .addReg(SrcReg, getKillRegState(isKill));
1103     if (ImplicitOp.getReg() != 0)
1104       MIB.add(ImplicitOp);
1105 
1106     NewMI = addOffset(MIB, MI.getOperand(2));
1107     break;
1108   }
1109   case X86::ADD8ri:
1110   case X86::ADD8ri_DB:
1111     Is8BitOp = true;
1112     LLVM_FALLTHROUGH;
1113   case X86::ADD16ri:
1114   case X86::ADD16ri8:
1115   case X86::ADD16ri_DB:
1116   case X86::ADD16ri8_DB:
1117     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1118   case X86::SUB8ri:
1119   case X86::SUB16ri8:
1120   case X86::SUB16ri:
1121     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1122     return nullptr;
1123   case X86::SUB32ri8:
1124   case X86::SUB32ri: {
1125     if (!MI.getOperand(2).isImm())
1126       return nullptr;
1127     int64_t Imm = MI.getOperand(2).getImm();
1128     if (!isInt<32>(-Imm))
1129       return nullptr;
1130 
1131     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1132     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1133 
1134     bool isKill;
1135     Register SrcReg;
1136     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1137     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1138                         SrcReg, isKill, ImplicitOp, LV))
1139       return nullptr;
1140 
1141     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1142                                   .add(Dest)
1143                                   .addReg(SrcReg, getKillRegState(isKill));
1144     if (ImplicitOp.getReg() != 0)
1145       MIB.add(ImplicitOp);
1146 
1147     NewMI = addOffset(MIB, -Imm);
1148     break;
1149   }
1150 
1151   case X86::SUB64ri8:
1152   case X86::SUB64ri32: {
1153     if (!MI.getOperand(2).isImm())
1154       return nullptr;
1155     int64_t Imm = MI.getOperand(2).getImm();
1156     if (!isInt<32>(-Imm))
1157       return nullptr;
1158 
1159     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1160 
1161     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1162                                       get(X86::LEA64r)).add(Dest).add(Src);
1163     NewMI = addOffset(MIB, -Imm);
1164     break;
1165   }
1166 
1167   case X86::VMOVDQU8Z128rmk:
1168   case X86::VMOVDQU8Z256rmk:
1169   case X86::VMOVDQU8Zrmk:
1170   case X86::VMOVDQU16Z128rmk:
1171   case X86::VMOVDQU16Z256rmk:
1172   case X86::VMOVDQU16Zrmk:
1173   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1176   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1179   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1180   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1181   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1182   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1183   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1184   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1185   case X86::VBROADCASTSDZ256mk:
1186   case X86::VBROADCASTSDZmk:
1187   case X86::VBROADCASTSSZ128mk:
1188   case X86::VBROADCASTSSZ256mk:
1189   case X86::VBROADCASTSSZmk:
1190   case X86::VPBROADCASTDZ128mk:
1191   case X86::VPBROADCASTDZ256mk:
1192   case X86::VPBROADCASTDZmk:
1193   case X86::VPBROADCASTQZ128mk:
1194   case X86::VPBROADCASTQZ256mk:
1195   case X86::VPBROADCASTQZmk: {
1196     unsigned Opc;
1197     switch (MIOpc) {
1198     default: llvm_unreachable("Unreachable!");
1199     case X86::VMOVDQU8Z128rmk:    Opc = X86::VPBLENDMBZ128rmk; break;
1200     case X86::VMOVDQU8Z256rmk:    Opc = X86::VPBLENDMBZ256rmk; break;
1201     case X86::VMOVDQU8Zrmk:       Opc = X86::VPBLENDMBZrmk;    break;
1202     case X86::VMOVDQU16Z128rmk:   Opc = X86::VPBLENDMWZ128rmk; break;
1203     case X86::VMOVDQU16Z256rmk:   Opc = X86::VPBLENDMWZ256rmk; break;
1204     case X86::VMOVDQU16Zrmk:      Opc = X86::VPBLENDMWZrmk;    break;
1205     case X86::VMOVDQU32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1206     case X86::VMOVDQU32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1207     case X86::VMOVDQU32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1208     case X86::VMOVDQU64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1209     case X86::VMOVDQU64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1210     case X86::VMOVDQU64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1211     case X86::VMOVUPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1212     case X86::VMOVUPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1213     case X86::VMOVUPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1214     case X86::VMOVUPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1215     case X86::VMOVUPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1216     case X86::VMOVUPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1217     case X86::VMOVDQA32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1218     case X86::VMOVDQA32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1219     case X86::VMOVDQA32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1220     case X86::VMOVDQA64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1221     case X86::VMOVDQA64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1222     case X86::VMOVDQA64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1223     case X86::VMOVAPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1224     case X86::VMOVAPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1225     case X86::VMOVAPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1226     case X86::VMOVAPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1227     case X86::VMOVAPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1228     case X86::VMOVAPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1229     case X86::VBROADCASTSDZ256mk: Opc = X86::VBLENDMPDZ256rmbk; break;
1230     case X86::VBROADCASTSDZmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1231     case X86::VBROADCASTSSZ128mk: Opc = X86::VBLENDMPSZ128rmbk; break;
1232     case X86::VBROADCASTSSZ256mk: Opc = X86::VBLENDMPSZ256rmbk; break;
1233     case X86::VBROADCASTSSZmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1234     case X86::VPBROADCASTDZ128mk: Opc = X86::VPBLENDMDZ128rmbk; break;
1235     case X86::VPBROADCASTDZ256mk: Opc = X86::VPBLENDMDZ256rmbk; break;
1236     case X86::VPBROADCASTDZmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1237     case X86::VPBROADCASTQZ128mk: Opc = X86::VPBLENDMQZ128rmbk; break;
1238     case X86::VPBROADCASTQZ256mk: Opc = X86::VPBLENDMQZ256rmbk; break;
1239     case X86::VPBROADCASTQZmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1240     }
1241 
1242     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1243               .add(Dest)
1244               .add(MI.getOperand(2))
1245               .add(Src)
1246               .add(MI.getOperand(3))
1247               .add(MI.getOperand(4))
1248               .add(MI.getOperand(5))
1249               .add(MI.getOperand(6))
1250               .add(MI.getOperand(7));
1251     break;
1252   }
1253 
1254   case X86::VMOVDQU8Z128rrk:
1255   case X86::VMOVDQU8Z256rrk:
1256   case X86::VMOVDQU8Zrrk:
1257   case X86::VMOVDQU16Z128rrk:
1258   case X86::VMOVDQU16Z256rrk:
1259   case X86::VMOVDQU16Zrrk:
1260   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1261   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1262   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1263   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1264   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1265   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1266   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1267   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1268   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1269   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1270   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1271   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1272     unsigned Opc;
1273     switch (MIOpc) {
1274     default: llvm_unreachable("Unreachable!");
1275     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1276     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1277     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1278     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1279     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1280     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1281     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1282     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1283     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1284     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1285     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1286     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1287     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1288     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1289     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1290     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1291     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1292     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1293     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1294     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1295     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1296     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1297     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1298     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1299     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1300     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1301     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1302     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1303     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1304     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1305     }
1306 
1307     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1308               .add(Dest)
1309               .add(MI.getOperand(2))
1310               .add(Src)
1311               .add(MI.getOperand(3));
1312     break;
1313   }
1314   }
1315 
1316   if (!NewMI) return nullptr;
1317 
1318   if (LV) {  // Update live variables
1319     if (Src.isKill())
1320       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1321     if (Dest.isDead())
1322       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1323   }
1324 
1325   MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1326   return NewMI;
1327 }
1328 
1329 /// This determines which of three possible cases of a three source commute
1330 /// the source indexes correspond to taking into account any mask operands.
1331 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1332 /// possible.
1333 /// Case 0 - Possible to commute the first and second operands.
1334 /// Case 1 - Possible to commute the first and third operands.
1335 /// Case 2 - Possible to commute the second and third operands.
1336 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1337                                        unsigned SrcOpIdx2) {
1338   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1339   if (SrcOpIdx1 > SrcOpIdx2)
1340     std::swap(SrcOpIdx1, SrcOpIdx2);
1341 
1342   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1343   if (X86II::isKMasked(TSFlags)) {
1344     Op2++;
1345     Op3++;
1346   }
1347 
1348   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1349     return 0;
1350   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1351     return 1;
1352   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1353     return 2;
1354   llvm_unreachable("Unknown three src commute case.");
1355 }
1356 
1357 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1358     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1359     const X86InstrFMA3Group &FMA3Group) const {
1360 
1361   unsigned Opc = MI.getOpcode();
1362 
1363   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1364   // analysis. The commute optimization is legal only if all users of FMA*_Int
1365   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1366   // not implemented yet. So, just return 0 in that case.
1367   // When such analysis are available this place will be the right place for
1368   // calling it.
1369   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1370          "Intrinsic instructions can't commute operand 1");
1371 
1372   // Determine which case this commute is or if it can't be done.
1373   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1374                                          SrcOpIdx2);
1375   assert(Case < 3 && "Unexpected case number!");
1376 
1377   // Define the FMA forms mapping array that helps to map input FMA form
1378   // to output FMA form to preserve the operation semantics after
1379   // commuting the operands.
1380   const unsigned Form132Index = 0;
1381   const unsigned Form213Index = 1;
1382   const unsigned Form231Index = 2;
1383   static const unsigned FormMapping[][3] = {
1384     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1385     // FMA132 A, C, b; ==> FMA231 C, A, b;
1386     // FMA213 B, A, c; ==> FMA213 A, B, c;
1387     // FMA231 C, A, b; ==> FMA132 A, C, b;
1388     { Form231Index, Form213Index, Form132Index },
1389     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1390     // FMA132 A, c, B; ==> FMA132 B, c, A;
1391     // FMA213 B, a, C; ==> FMA231 C, a, B;
1392     // FMA231 C, a, B; ==> FMA213 B, a, C;
1393     { Form132Index, Form231Index, Form213Index },
1394     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1395     // FMA132 a, C, B; ==> FMA213 a, B, C;
1396     // FMA213 b, A, C; ==> FMA132 b, C, A;
1397     // FMA231 c, A, B; ==> FMA231 c, B, A;
1398     { Form213Index, Form132Index, Form231Index }
1399   };
1400 
1401   unsigned FMAForms[3];
1402   FMAForms[0] = FMA3Group.get132Opcode();
1403   FMAForms[1] = FMA3Group.get213Opcode();
1404   FMAForms[2] = FMA3Group.get231Opcode();
1405   unsigned FormIndex;
1406   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1407     if (Opc == FMAForms[FormIndex])
1408       break;
1409 
1410   // Everything is ready, just adjust the FMA opcode and return it.
1411   FormIndex = FormMapping[Case][FormIndex];
1412   return FMAForms[FormIndex];
1413 }
1414 
1415 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1416                              unsigned SrcOpIdx2) {
1417   // Determine which case this commute is or if it can't be done.
1418   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1419                                          SrcOpIdx2);
1420   assert(Case < 3 && "Unexpected case value!");
1421 
1422   // For each case we need to swap two pairs of bits in the final immediate.
1423   static const uint8_t SwapMasks[3][4] = {
1424     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1425     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1426     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1427   };
1428 
1429   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1430   // Clear out the bits we are swapping.
1431   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1432                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1433   // If the immediate had a bit of the pair set, then set the opposite bit.
1434   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1435   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1436   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1437   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1438   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1439 }
1440 
1441 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1442 // commuted.
1443 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1444 #define VPERM_CASES(Suffix) \
1445   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1446   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1447   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1448   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1449   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1450   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1451   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1452   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1453   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1454   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1455   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1456   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1457 
1458 #define VPERM_CASES_BROADCAST(Suffix) \
1459   VPERM_CASES(Suffix) \
1460   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1461   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1462   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1463   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1464   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1465   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1466 
1467   switch (Opcode) {
1468   default: return false;
1469   VPERM_CASES(B)
1470   VPERM_CASES_BROADCAST(D)
1471   VPERM_CASES_BROADCAST(PD)
1472   VPERM_CASES_BROADCAST(PS)
1473   VPERM_CASES_BROADCAST(Q)
1474   VPERM_CASES(W)
1475     return true;
1476   }
1477 #undef VPERM_CASES_BROADCAST
1478 #undef VPERM_CASES
1479 }
1480 
1481 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1482 // from the I opcode to the T opcode and vice versa.
1483 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1484 #define VPERM_CASES(Orig, New) \
1485   case X86::Orig##128rr:    return X86::New##128rr;   \
1486   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1487   case X86::Orig##128rm:    return X86::New##128rm;   \
1488   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1489   case X86::Orig##256rr:    return X86::New##256rr;   \
1490   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1491   case X86::Orig##256rm:    return X86::New##256rm;   \
1492   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1493   case X86::Orig##rr:       return X86::New##rr;      \
1494   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1495   case X86::Orig##rm:       return X86::New##rm;      \
1496   case X86::Orig##rmkz:     return X86::New##rmkz;
1497 
1498 #define VPERM_CASES_BROADCAST(Orig, New) \
1499   VPERM_CASES(Orig, New) \
1500   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1501   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1502   case X86::Orig##256rmb:   return X86::New##256rmb;   \
1503   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1504   case X86::Orig##rmb:      return X86::New##rmb;      \
1505   case X86::Orig##rmbkz:    return X86::New##rmbkz;
1506 
1507   switch (Opcode) {
1508   VPERM_CASES(VPERMI2B, VPERMT2B)
1509   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1510   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1511   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1512   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1513   VPERM_CASES(VPERMI2W, VPERMT2W)
1514   VPERM_CASES(VPERMT2B, VPERMI2B)
1515   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1516   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1517   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1518   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1519   VPERM_CASES(VPERMT2W, VPERMI2W)
1520   }
1521 
1522   llvm_unreachable("Unreachable!");
1523 #undef VPERM_CASES_BROADCAST
1524 #undef VPERM_CASES
1525 }
1526 
1527 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1528                                                    unsigned OpIdx1,
1529                                                    unsigned OpIdx2) const {
1530   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1531     if (NewMI)
1532       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1533     return MI;
1534   };
1535 
1536   switch (MI.getOpcode()) {
1537   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1538   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1539   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1540   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1541   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1542   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1543     unsigned Opc;
1544     unsigned Size;
1545     switch (MI.getOpcode()) {
1546     default: llvm_unreachable("Unreachable!");
1547     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1548     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1549     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1550     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1551     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1552     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1553     }
1554     unsigned Amt = MI.getOperand(3).getImm();
1555     auto &WorkingMI = cloneIfNew(MI);
1556     WorkingMI.setDesc(get(Opc));
1557     WorkingMI.getOperand(3).setImm(Size - Amt);
1558     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1559                                                    OpIdx1, OpIdx2);
1560   }
1561   case X86::PFSUBrr:
1562   case X86::PFSUBRrr: {
1563     // PFSUB  x, y: x = x - y
1564     // PFSUBR x, y: x = y - x
1565     unsigned Opc =
1566         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1567     auto &WorkingMI = cloneIfNew(MI);
1568     WorkingMI.setDesc(get(Opc));
1569     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1570                                                    OpIdx1, OpIdx2);
1571   }
1572   case X86::BLENDPDrri:
1573   case X86::BLENDPSrri:
1574   case X86::VBLENDPDrri:
1575   case X86::VBLENDPSrri:
1576     // If we're optimizing for size, try to use MOVSD/MOVSS.
1577     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1578       unsigned Mask, Opc;
1579       switch (MI.getOpcode()) {
1580       default: llvm_unreachable("Unreachable!");
1581       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1582       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1583       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1584       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1585       }
1586       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1587         auto &WorkingMI = cloneIfNew(MI);
1588         WorkingMI.setDesc(get(Opc));
1589         WorkingMI.RemoveOperand(3);
1590         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1591                                                        /*NewMI=*/false,
1592                                                        OpIdx1, OpIdx2);
1593       }
1594     }
1595     LLVM_FALLTHROUGH;
1596   case X86::PBLENDWrri:
1597   case X86::VBLENDPDYrri:
1598   case X86::VBLENDPSYrri:
1599   case X86::VPBLENDDrri:
1600   case X86::VPBLENDWrri:
1601   case X86::VPBLENDDYrri:
1602   case X86::VPBLENDWYrri:{
1603     int8_t Mask;
1604     switch (MI.getOpcode()) {
1605     default: llvm_unreachable("Unreachable!");
1606     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1607     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1608     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1609     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1610     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1611     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1612     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1613     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1614     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1615     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1616     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1617     }
1618     // Only the least significant bits of Imm are used.
1619     // Using int8_t to ensure it will be sign extended to the int64_t that
1620     // setImm takes in order to match isel behavior.
1621     int8_t Imm = MI.getOperand(3).getImm() & Mask;
1622     auto &WorkingMI = cloneIfNew(MI);
1623     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1624     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1625                                                    OpIdx1, OpIdx2);
1626   }
1627   case X86::INSERTPSrr:
1628   case X86::VINSERTPSrr:
1629   case X86::VINSERTPSZrr: {
1630     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1631     unsigned ZMask = Imm & 15;
1632     unsigned DstIdx = (Imm >> 4) & 3;
1633     unsigned SrcIdx = (Imm >> 6) & 3;
1634 
1635     // We can commute insertps if we zero 2 of the elements, the insertion is
1636     // "inline" and we don't override the insertion with a zero.
1637     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1638         countPopulation(ZMask) == 2) {
1639       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1640       assert(AltIdx < 4 && "Illegal insertion index");
1641       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1642       auto &WorkingMI = cloneIfNew(MI);
1643       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1644       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1645                                                      OpIdx1, OpIdx2);
1646     }
1647     return nullptr;
1648   }
1649   case X86::MOVSDrr:
1650   case X86::MOVSSrr:
1651   case X86::VMOVSDrr:
1652   case X86::VMOVSSrr:{
1653     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1654     if (Subtarget.hasSSE41()) {
1655       unsigned Mask, Opc;
1656       switch (MI.getOpcode()) {
1657       default: llvm_unreachable("Unreachable!");
1658       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1659       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1660       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1661       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1662       }
1663 
1664       auto &WorkingMI = cloneIfNew(MI);
1665       WorkingMI.setDesc(get(Opc));
1666       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1667       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1668                                                      OpIdx1, OpIdx2);
1669     }
1670 
1671     // Convert to SHUFPD.
1672     assert(MI.getOpcode() == X86::MOVSDrr &&
1673            "Can only commute MOVSDrr without SSE4.1");
1674 
1675     auto &WorkingMI = cloneIfNew(MI);
1676     WorkingMI.setDesc(get(X86::SHUFPDrri));
1677     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1678     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1679                                                    OpIdx1, OpIdx2);
1680   }
1681   case X86::SHUFPDrri: {
1682     // Commute to MOVSD.
1683     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1684     auto &WorkingMI = cloneIfNew(MI);
1685     WorkingMI.setDesc(get(X86::MOVSDrr));
1686     WorkingMI.RemoveOperand(3);
1687     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688                                                    OpIdx1, OpIdx2);
1689   }
1690   case X86::PCLMULQDQrr:
1691   case X86::VPCLMULQDQrr:
1692   case X86::VPCLMULQDQYrr:
1693   case X86::VPCLMULQDQZrr:
1694   case X86::VPCLMULQDQZ128rr:
1695   case X86::VPCLMULQDQZ256rr: {
1696     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1697     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1698     unsigned Imm = MI.getOperand(3).getImm();
1699     unsigned Src1Hi = Imm & 0x01;
1700     unsigned Src2Hi = Imm & 0x10;
1701     auto &WorkingMI = cloneIfNew(MI);
1702     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1703     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1704                                                    OpIdx1, OpIdx2);
1705   }
1706   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1707   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1708   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1709   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1710   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1711   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1712   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1713   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1714   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1715   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1716   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1717   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1718   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1719   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1720   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1721   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1722   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1723   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1724   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1725   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1726   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1727   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1728   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1729   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1730     // Flip comparison mode immediate (if necessary).
1731     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1732     Imm = X86::getSwappedVPCMPImm(Imm);
1733     auto &WorkingMI = cloneIfNew(MI);
1734     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1735     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1736                                                    OpIdx1, OpIdx2);
1737   }
1738   case X86::VPCOMBri: case X86::VPCOMUBri:
1739   case X86::VPCOMDri: case X86::VPCOMUDri:
1740   case X86::VPCOMQri: case X86::VPCOMUQri:
1741   case X86::VPCOMWri: case X86::VPCOMUWri: {
1742     // Flip comparison mode immediate (if necessary).
1743     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1744     Imm = X86::getSwappedVPCOMImm(Imm);
1745     auto &WorkingMI = cloneIfNew(MI);
1746     WorkingMI.getOperand(3).setImm(Imm);
1747     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1748                                                    OpIdx1, OpIdx2);
1749   }
1750   case X86::VCMPSDZrr:
1751   case X86::VCMPSSZrr:
1752   case X86::VCMPPDZrri:
1753   case X86::VCMPPSZrri:
1754   case X86::VCMPPDZ128rri:
1755   case X86::VCMPPSZ128rri:
1756   case X86::VCMPPDZ256rri:
1757   case X86::VCMPPSZ256rri:
1758   case X86::VCMPPDZrrik:
1759   case X86::VCMPPSZrrik:
1760   case X86::VCMPPDZ128rrik:
1761   case X86::VCMPPSZ128rrik:
1762   case X86::VCMPPDZ256rrik:
1763   case X86::VCMPPSZ256rrik: {
1764     unsigned Imm =
1765                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
1766     Imm = X86::getSwappedVCMPImm(Imm);
1767     auto &WorkingMI = cloneIfNew(MI);
1768     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
1769     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1770                                                    OpIdx1, OpIdx2);
1771   }
1772   case X86::VPERM2F128rr:
1773   case X86::VPERM2I128rr: {
1774     // Flip permute source immediate.
1775     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1776     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1777     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1778     auto &WorkingMI = cloneIfNew(MI);
1779     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1780     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1781                                                    OpIdx1, OpIdx2);
1782   }
1783   case X86::MOVHLPSrr:
1784   case X86::UNPCKHPDrr:
1785   case X86::VMOVHLPSrr:
1786   case X86::VUNPCKHPDrr:
1787   case X86::VMOVHLPSZrr:
1788   case X86::VUNPCKHPDZ128rr: {
1789     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1790 
1791     unsigned Opc = MI.getOpcode();
1792     switch (Opc) {
1793     default: llvm_unreachable("Unreachable!");
1794     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1795     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1796     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1797     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1798     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1799     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1800     }
1801     auto &WorkingMI = cloneIfNew(MI);
1802     WorkingMI.setDesc(get(Opc));
1803     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1804                                                    OpIdx1, OpIdx2);
1805   }
1806   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1807     auto &WorkingMI = cloneIfNew(MI);
1808     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1809     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1810     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1811     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1812                                                    OpIdx1, OpIdx2);
1813   }
1814   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1815   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1816   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1817   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1818   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1819   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1820   case X86::VPTERNLOGDZrrik:
1821   case X86::VPTERNLOGDZ128rrik:
1822   case X86::VPTERNLOGDZ256rrik:
1823   case X86::VPTERNLOGQZrrik:
1824   case X86::VPTERNLOGQZ128rrik:
1825   case X86::VPTERNLOGQZ256rrik:
1826   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1827   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1828   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1829   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1830   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1831   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1832   case X86::VPTERNLOGDZ128rmbi:
1833   case X86::VPTERNLOGDZ256rmbi:
1834   case X86::VPTERNLOGDZrmbi:
1835   case X86::VPTERNLOGQZ128rmbi:
1836   case X86::VPTERNLOGQZ256rmbi:
1837   case X86::VPTERNLOGQZrmbi:
1838   case X86::VPTERNLOGDZ128rmbikz:
1839   case X86::VPTERNLOGDZ256rmbikz:
1840   case X86::VPTERNLOGDZrmbikz:
1841   case X86::VPTERNLOGQZ128rmbikz:
1842   case X86::VPTERNLOGQZ256rmbikz:
1843   case X86::VPTERNLOGQZrmbikz: {
1844     auto &WorkingMI = cloneIfNew(MI);
1845     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1846     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1847                                                    OpIdx1, OpIdx2);
1848   }
1849   default: {
1850     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1851       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1852       auto &WorkingMI = cloneIfNew(MI);
1853       WorkingMI.setDesc(get(Opc));
1854       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1855                                                      OpIdx1, OpIdx2);
1856     }
1857 
1858     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1859                                                       MI.getDesc().TSFlags);
1860     if (FMA3Group) {
1861       unsigned Opc =
1862         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1863       auto &WorkingMI = cloneIfNew(MI);
1864       WorkingMI.setDesc(get(Opc));
1865       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1866                                                      OpIdx1, OpIdx2);
1867     }
1868 
1869     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1870   }
1871   }
1872 }
1873 
1874 bool
1875 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1876                                             unsigned &SrcOpIdx1,
1877                                             unsigned &SrcOpIdx2,
1878                                             bool IsIntrinsic) const {
1879   uint64_t TSFlags = MI.getDesc().TSFlags;
1880 
1881   unsigned FirstCommutableVecOp = 1;
1882   unsigned LastCommutableVecOp = 3;
1883   unsigned KMaskOp = -1U;
1884   if (X86II::isKMasked(TSFlags)) {
1885     // For k-zero-masked operations it is Ok to commute the first vector
1886     // operand.
1887     // For regular k-masked operations a conservative choice is done as the
1888     // elements of the first vector operand, for which the corresponding bit
1889     // in the k-mask operand is set to 0, are copied to the result of the
1890     // instruction.
1891     // TODO/FIXME: The commute still may be legal if it is known that the
1892     // k-mask operand is set to either all ones or all zeroes.
1893     // It is also Ok to commute the 1st operand if all users of MI use only
1894     // the elements enabled by the k-mask operand. For example,
1895     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1896     //                                                     : v1[i];
1897     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1898     //                                  // Ok, to commute v1 in FMADD213PSZrk.
1899 
1900     // The k-mask operand has index = 2 for masked and zero-masked operations.
1901     KMaskOp = 2;
1902 
1903     // The operand with index = 1 is used as a source for those elements for
1904     // which the corresponding bit in the k-mask is set to 0.
1905     if (X86II::isKMergeMasked(TSFlags))
1906       FirstCommutableVecOp = 3;
1907 
1908     LastCommutableVecOp++;
1909   } else if (IsIntrinsic) {
1910     // Commuting the first operand of an intrinsic instruction isn't possible
1911     // unless we can prove that only the lowest element of the result is used.
1912     FirstCommutableVecOp = 2;
1913   }
1914 
1915   if (isMem(MI, LastCommutableVecOp))
1916     LastCommutableVecOp--;
1917 
1918   // Only the first RegOpsNum operands are commutable.
1919   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1920   // that the operand is not specified/fixed.
1921   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1922       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1923        SrcOpIdx1 == KMaskOp))
1924     return false;
1925   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1926       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1927        SrcOpIdx2 == KMaskOp))
1928     return false;
1929 
1930   // Look for two different register operands assumed to be commutable
1931   // regardless of the FMA opcode. The FMA opcode is adjusted later.
1932   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1933       SrcOpIdx2 == CommuteAnyOperandIndex) {
1934     unsigned CommutableOpIdx2 = SrcOpIdx2;
1935 
1936     // At least one of operands to be commuted is not specified and
1937     // this method is free to choose appropriate commutable operands.
1938     if (SrcOpIdx1 == SrcOpIdx2)
1939       // Both of operands are not fixed. By default set one of commutable
1940       // operands to the last register operand of the instruction.
1941       CommutableOpIdx2 = LastCommutableVecOp;
1942     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1943       // Only one of operands is not fixed.
1944       CommutableOpIdx2 = SrcOpIdx1;
1945 
1946     // CommutableOpIdx2 is well defined now. Let's choose another commutable
1947     // operand and assign its index to CommutableOpIdx1.
1948     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1949 
1950     unsigned CommutableOpIdx1;
1951     for (CommutableOpIdx1 = LastCommutableVecOp;
1952          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1953       // Just ignore and skip the k-mask operand.
1954       if (CommutableOpIdx1 == KMaskOp)
1955         continue;
1956 
1957       // The commuted operands must have different registers.
1958       // Otherwise, the commute transformation does not change anything and
1959       // is useless then.
1960       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1961         break;
1962     }
1963 
1964     // No appropriate commutable operands were found.
1965     if (CommutableOpIdx1 < FirstCommutableVecOp)
1966       return false;
1967 
1968     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1969     // to return those values.
1970     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1971                               CommutableOpIdx1, CommutableOpIdx2))
1972       return false;
1973   }
1974 
1975   return true;
1976 }
1977 
1978 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1979                                          unsigned &SrcOpIdx1,
1980                                          unsigned &SrcOpIdx2) const {
1981   const MCInstrDesc &Desc = MI.getDesc();
1982   if (!Desc.isCommutable())
1983     return false;
1984 
1985   switch (MI.getOpcode()) {
1986   case X86::CMPSDrr:
1987   case X86::CMPSSrr:
1988   case X86::CMPPDrri:
1989   case X86::CMPPSrri:
1990   case X86::VCMPSDrr:
1991   case X86::VCMPSSrr:
1992   case X86::VCMPPDrri:
1993   case X86::VCMPPSrri:
1994   case X86::VCMPPDYrri:
1995   case X86::VCMPPSYrri:
1996   case X86::VCMPSDZrr:
1997   case X86::VCMPSSZrr:
1998   case X86::VCMPPDZrri:
1999   case X86::VCMPPSZrri:
2000   case X86::VCMPPDZ128rri:
2001   case X86::VCMPPSZ128rri:
2002   case X86::VCMPPDZ256rri:
2003   case X86::VCMPPSZ256rri:
2004   case X86::VCMPPDZrrik:
2005   case X86::VCMPPSZrrik:
2006   case X86::VCMPPDZ128rrik:
2007   case X86::VCMPPSZ128rrik:
2008   case X86::VCMPPDZ256rrik:
2009   case X86::VCMPPSZ256rrik: {
2010     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2011 
2012     // Float comparison can be safely commuted for
2013     // Ordered/Unordered/Equal/NotEqual tests
2014     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2015     switch (Imm) {
2016     default:
2017       // EVEX versions can be commuted.
2018       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2019         break;
2020       return false;
2021     case 0x00: // EQUAL
2022     case 0x03: // UNORDERED
2023     case 0x04: // NOT EQUAL
2024     case 0x07: // ORDERED
2025       break;
2026     }
2027 
2028     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2029     // when masked).
2030     // Assign them to the returned operand indices here.
2031     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2032                                 2 + OpOffset);
2033   }
2034   case X86::MOVSSrr:
2035     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2036     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2037     // AVX implies sse4.1.
2038     if (Subtarget.hasSSE41())
2039       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040     return false;
2041   case X86::SHUFPDrri:
2042     // We can commute this to MOVSD.
2043     if (MI.getOperand(3).getImm() == 0x02)
2044       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2045     return false;
2046   case X86::MOVHLPSrr:
2047   case X86::UNPCKHPDrr:
2048   case X86::VMOVHLPSrr:
2049   case X86::VUNPCKHPDrr:
2050   case X86::VMOVHLPSZrr:
2051   case X86::VUNPCKHPDZ128rr:
2052     if (Subtarget.hasSSE2())
2053       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2054     return false;
2055   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2056   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2057   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2058   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2059   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2060   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2061   case X86::VPTERNLOGDZrrik:
2062   case X86::VPTERNLOGDZ128rrik:
2063   case X86::VPTERNLOGDZ256rrik:
2064   case X86::VPTERNLOGQZrrik:
2065   case X86::VPTERNLOGQZ128rrik:
2066   case X86::VPTERNLOGQZ256rrik:
2067   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2068   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2069   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2070   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2071   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2072   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2073   case X86::VPTERNLOGDZ128rmbi:
2074   case X86::VPTERNLOGDZ256rmbi:
2075   case X86::VPTERNLOGDZrmbi:
2076   case X86::VPTERNLOGQZ128rmbi:
2077   case X86::VPTERNLOGQZ256rmbi:
2078   case X86::VPTERNLOGQZrmbi:
2079   case X86::VPTERNLOGDZ128rmbikz:
2080   case X86::VPTERNLOGDZ256rmbikz:
2081   case X86::VPTERNLOGDZrmbikz:
2082   case X86::VPTERNLOGQZ128rmbikz:
2083   case X86::VPTERNLOGQZ256rmbikz:
2084   case X86::VPTERNLOGQZrmbikz:
2085     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2086   case X86::VPDPWSSDZ128r:
2087   case X86::VPDPWSSDZ128rk:
2088   case X86::VPDPWSSDZ128rkz:
2089   case X86::VPDPWSSDZ256r:
2090   case X86::VPDPWSSDZ256rk:
2091   case X86::VPDPWSSDZ256rkz:
2092   case X86::VPDPWSSDZr:
2093   case X86::VPDPWSSDZrk:
2094   case X86::VPDPWSSDZrkz:
2095   case X86::VPDPWSSDSZ128r:
2096   case X86::VPDPWSSDSZ128rk:
2097   case X86::VPDPWSSDSZ128rkz:
2098   case X86::VPDPWSSDSZ256r:
2099   case X86::VPDPWSSDSZ256rk:
2100   case X86::VPDPWSSDSZ256rkz:
2101   case X86::VPDPWSSDSZr:
2102   case X86::VPDPWSSDSZrk:
2103   case X86::VPDPWSSDSZrkz:
2104   case X86::VPMADD52HUQZ128r:
2105   case X86::VPMADD52HUQZ128rk:
2106   case X86::VPMADD52HUQZ128rkz:
2107   case X86::VPMADD52HUQZ256r:
2108   case X86::VPMADD52HUQZ256rk:
2109   case X86::VPMADD52HUQZ256rkz:
2110   case X86::VPMADD52HUQZr:
2111   case X86::VPMADD52HUQZrk:
2112   case X86::VPMADD52HUQZrkz:
2113   case X86::VPMADD52LUQZ128r:
2114   case X86::VPMADD52LUQZ128rk:
2115   case X86::VPMADD52LUQZ128rkz:
2116   case X86::VPMADD52LUQZ256r:
2117   case X86::VPMADD52LUQZ256rk:
2118   case X86::VPMADD52LUQZ256rkz:
2119   case X86::VPMADD52LUQZr:
2120   case X86::VPMADD52LUQZrk:
2121   case X86::VPMADD52LUQZrkz: {
2122     unsigned CommutableOpIdx1 = 2;
2123     unsigned CommutableOpIdx2 = 3;
2124     if (X86II::isKMasked(Desc.TSFlags)) {
2125       // Skip the mask register.
2126       ++CommutableOpIdx1;
2127       ++CommutableOpIdx2;
2128     }
2129     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2130                               CommutableOpIdx1, CommutableOpIdx2))
2131       return false;
2132     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2133         !MI.getOperand(SrcOpIdx2).isReg())
2134       // No idea.
2135       return false;
2136     return true;
2137   }
2138 
2139   default:
2140     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2141                                                       MI.getDesc().TSFlags);
2142     if (FMA3Group)
2143       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2144                                            FMA3Group->isIntrinsic());
2145 
2146     // Handled masked instructions since we need to skip over the mask input
2147     // and the preserved input.
2148     if (X86II::isKMasked(Desc.TSFlags)) {
2149       // First assume that the first input is the mask operand and skip past it.
2150       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2151       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2152       // Check if the first input is tied. If there isn't one then we only
2153       // need to skip the mask operand which we did above.
2154       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2155                                              MCOI::TIED_TO) != -1)) {
2156         // If this is zero masking instruction with a tied operand, we need to
2157         // move the first index back to the first input since this must
2158         // be a 3 input instruction and we want the first two non-mask inputs.
2159         // Otherwise this is a 2 input instruction with a preserved input and
2160         // mask, so we need to move the indices to skip one more input.
2161         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2162           ++CommutableOpIdx1;
2163           ++CommutableOpIdx2;
2164         } else {
2165           --CommutableOpIdx1;
2166         }
2167       }
2168 
2169       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2170                                 CommutableOpIdx1, CommutableOpIdx2))
2171         return false;
2172 
2173       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2174           !MI.getOperand(SrcOpIdx2).isReg())
2175         // No idea.
2176         return false;
2177       return true;
2178     }
2179 
2180     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2181   }
2182   return false;
2183 }
2184 
2185 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2186   switch (MI.getOpcode()) {
2187   default: return X86::COND_INVALID;
2188   case X86::JCC_1:
2189     return static_cast<X86::CondCode>(
2190         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2191   }
2192 }
2193 
2194 /// Return condition code of a SETCC opcode.
2195 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2196   switch (MI.getOpcode()) {
2197   default: return X86::COND_INVALID;
2198   case X86::SETCCr: case X86::SETCCm:
2199     return static_cast<X86::CondCode>(
2200         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2201   }
2202 }
2203 
2204 /// Return condition code of a CMov opcode.
2205 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2206   switch (MI.getOpcode()) {
2207   default: return X86::COND_INVALID;
2208   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2209   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2210     return static_cast<X86::CondCode>(
2211         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2212   }
2213 }
2214 
2215 /// Return the inverse of the specified condition,
2216 /// e.g. turning COND_E to COND_NE.
2217 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2218   switch (CC) {
2219   default: llvm_unreachable("Illegal condition code!");
2220   case X86::COND_E:  return X86::COND_NE;
2221   case X86::COND_NE: return X86::COND_E;
2222   case X86::COND_L:  return X86::COND_GE;
2223   case X86::COND_LE: return X86::COND_G;
2224   case X86::COND_G:  return X86::COND_LE;
2225   case X86::COND_GE: return X86::COND_L;
2226   case X86::COND_B:  return X86::COND_AE;
2227   case X86::COND_BE: return X86::COND_A;
2228   case X86::COND_A:  return X86::COND_BE;
2229   case X86::COND_AE: return X86::COND_B;
2230   case X86::COND_S:  return X86::COND_NS;
2231   case X86::COND_NS: return X86::COND_S;
2232   case X86::COND_P:  return X86::COND_NP;
2233   case X86::COND_NP: return X86::COND_P;
2234   case X86::COND_O:  return X86::COND_NO;
2235   case X86::COND_NO: return X86::COND_O;
2236   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2237   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2238   }
2239 }
2240 
2241 /// Assuming the flags are set by MI(a,b), return the condition code if we
2242 /// modify the instructions such that flags are set by MI(b,a).
2243 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2244   switch (CC) {
2245   default: return X86::COND_INVALID;
2246   case X86::COND_E:  return X86::COND_E;
2247   case X86::COND_NE: return X86::COND_NE;
2248   case X86::COND_L:  return X86::COND_G;
2249   case X86::COND_LE: return X86::COND_GE;
2250   case X86::COND_G:  return X86::COND_L;
2251   case X86::COND_GE: return X86::COND_LE;
2252   case X86::COND_B:  return X86::COND_A;
2253   case X86::COND_BE: return X86::COND_AE;
2254   case X86::COND_A:  return X86::COND_B;
2255   case X86::COND_AE: return X86::COND_BE;
2256   }
2257 }
2258 
2259 std::pair<X86::CondCode, bool>
2260 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2261   X86::CondCode CC = X86::COND_INVALID;
2262   bool NeedSwap = false;
2263   switch (Predicate) {
2264   default: break;
2265   // Floating-point Predicates
2266   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2267   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2268   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2269   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2270   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2271   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2272   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2273   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2274   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2275   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2276   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2277   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2278   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2279   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2280 
2281   // Integer Predicates
2282   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2283   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2284   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2285   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2286   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2287   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2288   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2289   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2290   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2291   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2292   }
2293 
2294   return std::make_pair(CC, NeedSwap);
2295 }
2296 
2297 /// Return a setcc opcode based on whether it has memory operand.
2298 unsigned X86::getSETOpc(bool HasMemoryOperand) {
2299   return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2300 }
2301 
2302 /// Return a cmov opcode for the given register size in bytes, and operand type.
2303 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2304   switch(RegBytes) {
2305   default: llvm_unreachable("Illegal register size!");
2306   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2307   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2308   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2309   }
2310 }
2311 
2312 /// Get the VPCMP immediate for the given condition.
2313 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2314   switch (CC) {
2315   default: llvm_unreachable("Unexpected SETCC condition");
2316   case ISD::SETNE:  return 4;
2317   case ISD::SETEQ:  return 0;
2318   case ISD::SETULT:
2319   case ISD::SETLT: return 1;
2320   case ISD::SETUGT:
2321   case ISD::SETGT: return 6;
2322   case ISD::SETUGE:
2323   case ISD::SETGE: return 5;
2324   case ISD::SETULE:
2325   case ISD::SETLE: return 2;
2326   }
2327 }
2328 
2329 /// Get the VPCMP immediate if the operands are swapped.
2330 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2331   switch (Imm) {
2332   default: llvm_unreachable("Unreachable!");
2333   case 0x01: Imm = 0x06; break; // LT  -> NLE
2334   case 0x02: Imm = 0x05; break; // LE  -> NLT
2335   case 0x05: Imm = 0x02; break; // NLT -> LE
2336   case 0x06: Imm = 0x01; break; // NLE -> LT
2337   case 0x00: // EQ
2338   case 0x03: // FALSE
2339   case 0x04: // NE
2340   case 0x07: // TRUE
2341     break;
2342   }
2343 
2344   return Imm;
2345 }
2346 
2347 /// Get the VPCOM immediate if the operands are swapped.
2348 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2349   switch (Imm) {
2350   default: llvm_unreachable("Unreachable!");
2351   case 0x00: Imm = 0x02; break; // LT -> GT
2352   case 0x01: Imm = 0x03; break; // LE -> GE
2353   case 0x02: Imm = 0x00; break; // GT -> LT
2354   case 0x03: Imm = 0x01; break; // GE -> LE
2355   case 0x04: // EQ
2356   case 0x05: // NE
2357   case 0x06: // FALSE
2358   case 0x07: // TRUE
2359     break;
2360   }
2361 
2362   return Imm;
2363 }
2364 
2365 /// Get the VCMP immediate if the operands are swapped.
2366 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2367   // Only need the lower 2 bits to distinquish.
2368   switch (Imm & 0x3) {
2369   default: llvm_unreachable("Unreachable!");
2370   case 0x00: case 0x03:
2371     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2372     break;
2373   case 0x01: case 0x02:
2374     // Need to toggle bits 3:0. Bit 4 stays the same.
2375     Imm ^= 0xf;
2376     break;
2377   }
2378 
2379   return Imm;
2380 }
2381 
2382 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2383   if (!MI.isTerminator()) return false;
2384 
2385   // Conditional branch is a special case.
2386   if (MI.isBranch() && !MI.isBarrier())
2387     return true;
2388   if (!MI.isPredicable())
2389     return true;
2390   return !isPredicated(MI);
2391 }
2392 
2393 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2394   switch (MI.getOpcode()) {
2395   case X86::TCRETURNdi:
2396   case X86::TCRETURNri:
2397   case X86::TCRETURNmi:
2398   case X86::TCRETURNdi64:
2399   case X86::TCRETURNri64:
2400   case X86::TCRETURNmi64:
2401     return true;
2402   default:
2403     return false;
2404   }
2405 }
2406 
2407 bool X86InstrInfo::canMakeTailCallConditional(
2408     SmallVectorImpl<MachineOperand> &BranchCond,
2409     const MachineInstr &TailCall) const {
2410   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2411       TailCall.getOpcode() != X86::TCRETURNdi64) {
2412     // Only direct calls can be done with a conditional branch.
2413     return false;
2414   }
2415 
2416   const MachineFunction *MF = TailCall.getParent()->getParent();
2417   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2418     // Conditional tail calls confuse the Win64 unwinder.
2419     return false;
2420   }
2421 
2422   assert(BranchCond.size() == 1);
2423   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2424     // Can't make a conditional tail call with this condition.
2425     return false;
2426   }
2427 
2428   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2429   if (X86FI->getTCReturnAddrDelta() != 0 ||
2430       TailCall.getOperand(1).getImm() != 0) {
2431     // A conditional tail call cannot do any stack adjustment.
2432     return false;
2433   }
2434 
2435   return true;
2436 }
2437 
2438 void X86InstrInfo::replaceBranchWithTailCall(
2439     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2440     const MachineInstr &TailCall) const {
2441   assert(canMakeTailCallConditional(BranchCond, TailCall));
2442 
2443   MachineBasicBlock::iterator I = MBB.end();
2444   while (I != MBB.begin()) {
2445     --I;
2446     if (I->isDebugInstr())
2447       continue;
2448     if (!I->isBranch())
2449       assert(0 && "Can't find the branch to replace!");
2450 
2451     X86::CondCode CC = X86::getCondFromBranch(*I);
2452     assert(BranchCond.size() == 1);
2453     if (CC != BranchCond[0].getImm())
2454       continue;
2455 
2456     break;
2457   }
2458 
2459   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2460                                                          : X86::TCRETURNdi64cc;
2461 
2462   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2463   MIB->addOperand(TailCall.getOperand(0)); // Destination.
2464   MIB.addImm(0); // Stack offset (not used).
2465   MIB->addOperand(BranchCond[0]); // Condition.
2466   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2467 
2468   // Add implicit uses and defs of all live regs potentially clobbered by the
2469   // call. This way they still appear live across the call.
2470   LivePhysRegs LiveRegs(getRegisterInfo());
2471   LiveRegs.addLiveOuts(MBB);
2472   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2473   LiveRegs.stepForward(*MIB, Clobbers);
2474   for (const auto &C : Clobbers) {
2475     MIB.addReg(C.first, RegState::Implicit);
2476     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2477   }
2478 
2479   I->eraseFromParent();
2480 }
2481 
2482 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2483 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2484 // fallthrough MBB cannot be identified.
2485 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2486                                             MachineBasicBlock *TBB) {
2487   // Look for non-EHPad successors other than TBB. If we find exactly one, it
2488   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2489   // and fallthrough MBB. If we find more than one, we cannot identify the
2490   // fallthrough MBB and should return nullptr.
2491   MachineBasicBlock *FallthroughBB = nullptr;
2492   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2493     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2494       continue;
2495     // Return a nullptr if we found more than one fallthrough successor.
2496     if (FallthroughBB && FallthroughBB != TBB)
2497       return nullptr;
2498     FallthroughBB = *SI;
2499   }
2500   return FallthroughBB;
2501 }
2502 
2503 bool X86InstrInfo::AnalyzeBranchImpl(
2504     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2505     SmallVectorImpl<MachineOperand> &Cond,
2506     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2507 
2508   // Start from the bottom of the block and work up, examining the
2509   // terminator instructions.
2510   MachineBasicBlock::iterator I = MBB.end();
2511   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2512   while (I != MBB.begin()) {
2513     --I;
2514     if (I->isDebugInstr())
2515       continue;
2516 
2517     // Working from the bottom, when we see a non-terminator instruction, we're
2518     // done.
2519     if (!isUnpredicatedTerminator(*I))
2520       break;
2521 
2522     // A terminator that isn't a branch can't easily be handled by this
2523     // analysis.
2524     if (!I->isBranch())
2525       return true;
2526 
2527     // Handle unconditional branches.
2528     if (I->getOpcode() == X86::JMP_1) {
2529       UnCondBrIter = I;
2530 
2531       if (!AllowModify) {
2532         TBB = I->getOperand(0).getMBB();
2533         continue;
2534       }
2535 
2536       // If the block has any instructions after a JMP, delete them.
2537       while (std::next(I) != MBB.end())
2538         std::next(I)->eraseFromParent();
2539 
2540       Cond.clear();
2541       FBB = nullptr;
2542 
2543       // Delete the JMP if it's equivalent to a fall-through.
2544       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2545         TBB = nullptr;
2546         I->eraseFromParent();
2547         I = MBB.end();
2548         UnCondBrIter = MBB.end();
2549         continue;
2550       }
2551 
2552       // TBB is used to indicate the unconditional destination.
2553       TBB = I->getOperand(0).getMBB();
2554       continue;
2555     }
2556 
2557     // Handle conditional branches.
2558     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2559     if (BranchCode == X86::COND_INVALID)
2560       return true;  // Can't handle indirect branch.
2561 
2562     // In practice we should never have an undef eflags operand, if we do
2563     // abort here as we are not prepared to preserve the flag.
2564     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2565       return true;
2566 
2567     // Working from the bottom, handle the first conditional branch.
2568     if (Cond.empty()) {
2569       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2570       if (AllowModify && UnCondBrIter != MBB.end() &&
2571           MBB.isLayoutSuccessor(TargetBB)) {
2572         // If we can modify the code and it ends in something like:
2573         //
2574         //     jCC L1
2575         //     jmp L2
2576         //   L1:
2577         //     ...
2578         //   L2:
2579         //
2580         // Then we can change this to:
2581         //
2582         //     jnCC L2
2583         //   L1:
2584         //     ...
2585         //   L2:
2586         //
2587         // Which is a bit more efficient.
2588         // We conditionally jump to the fall-through block.
2589         BranchCode = GetOppositeBranchCondition(BranchCode);
2590         MachineBasicBlock::iterator OldInst = I;
2591 
2592         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2593           .addMBB(UnCondBrIter->getOperand(0).getMBB())
2594           .addImm(BranchCode);
2595         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2596           .addMBB(TargetBB);
2597 
2598         OldInst->eraseFromParent();
2599         UnCondBrIter->eraseFromParent();
2600 
2601         // Restart the analysis.
2602         UnCondBrIter = MBB.end();
2603         I = MBB.end();
2604         continue;
2605       }
2606 
2607       FBB = TBB;
2608       TBB = I->getOperand(0).getMBB();
2609       Cond.push_back(MachineOperand::CreateImm(BranchCode));
2610       CondBranches.push_back(&*I);
2611       continue;
2612     }
2613 
2614     // Handle subsequent conditional branches. Only handle the case where all
2615     // conditional branches branch to the same destination and their condition
2616     // opcodes fit one of the special multi-branch idioms.
2617     assert(Cond.size() == 1);
2618     assert(TBB);
2619 
2620     // If the conditions are the same, we can leave them alone.
2621     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2622     auto NewTBB = I->getOperand(0).getMBB();
2623     if (OldBranchCode == BranchCode && TBB == NewTBB)
2624       continue;
2625 
2626     // If they differ, see if they fit one of the known patterns. Theoretically,
2627     // we could handle more patterns here, but we shouldn't expect to see them
2628     // if instruction selection has done a reasonable job.
2629     if (TBB == NewTBB &&
2630                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2631                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2632       BranchCode = X86::COND_NE_OR_P;
2633     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2634                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2635       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2636         return true;
2637 
2638       // X86::COND_E_AND_NP usually has two different branch destinations.
2639       //
2640       // JP B1
2641       // JE B2
2642       // JMP B1
2643       // B1:
2644       // B2:
2645       //
2646       // Here this condition branches to B2 only if NP && E. It has another
2647       // equivalent form:
2648       //
2649       // JNE B1
2650       // JNP B2
2651       // JMP B1
2652       // B1:
2653       // B2:
2654       //
2655       // Similarly it branches to B2 only if E && NP. That is why this condition
2656       // is named with COND_E_AND_NP.
2657       BranchCode = X86::COND_E_AND_NP;
2658     } else
2659       return true;
2660 
2661     // Update the MachineOperand.
2662     Cond[0].setImm(BranchCode);
2663     CondBranches.push_back(&*I);
2664   }
2665 
2666   return false;
2667 }
2668 
2669 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2670                                  MachineBasicBlock *&TBB,
2671                                  MachineBasicBlock *&FBB,
2672                                  SmallVectorImpl<MachineOperand> &Cond,
2673                                  bool AllowModify) const {
2674   SmallVector<MachineInstr *, 4> CondBranches;
2675   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2676 }
2677 
2678 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2679                                           MachineBranchPredicate &MBP,
2680                                           bool AllowModify) const {
2681   using namespace std::placeholders;
2682 
2683   SmallVector<MachineOperand, 4> Cond;
2684   SmallVector<MachineInstr *, 4> CondBranches;
2685   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2686                         AllowModify))
2687     return true;
2688 
2689   if (Cond.size() != 1)
2690     return true;
2691 
2692   assert(MBP.TrueDest && "expected!");
2693 
2694   if (!MBP.FalseDest)
2695     MBP.FalseDest = MBB.getNextNode();
2696 
2697   const TargetRegisterInfo *TRI = &getRegisterInfo();
2698 
2699   MachineInstr *ConditionDef = nullptr;
2700   bool SingleUseCondition = true;
2701 
2702   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2703     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2704       ConditionDef = &*I;
2705       break;
2706     }
2707 
2708     if (I->readsRegister(X86::EFLAGS, TRI))
2709       SingleUseCondition = false;
2710   }
2711 
2712   if (!ConditionDef)
2713     return true;
2714 
2715   if (SingleUseCondition) {
2716     for (auto *Succ : MBB.successors())
2717       if (Succ->isLiveIn(X86::EFLAGS))
2718         SingleUseCondition = false;
2719   }
2720 
2721   MBP.ConditionDef = ConditionDef;
2722   MBP.SingleUseCondition = SingleUseCondition;
2723 
2724   // Currently we only recognize the simple pattern:
2725   //
2726   //   test %reg, %reg
2727   //   je %label
2728   //
2729   const unsigned TestOpcode =
2730       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2731 
2732   if (ConditionDef->getOpcode() == TestOpcode &&
2733       ConditionDef->getNumOperands() == 3 &&
2734       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2735       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2736     MBP.LHS = ConditionDef->getOperand(0);
2737     MBP.RHS = MachineOperand::CreateImm(0);
2738     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2739                         ? MachineBranchPredicate::PRED_NE
2740                         : MachineBranchPredicate::PRED_EQ;
2741     return false;
2742   }
2743 
2744   return true;
2745 }
2746 
2747 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2748                                     int *BytesRemoved) const {
2749   assert(!BytesRemoved && "code size not handled");
2750 
2751   MachineBasicBlock::iterator I = MBB.end();
2752   unsigned Count = 0;
2753 
2754   while (I != MBB.begin()) {
2755     --I;
2756     if (I->isDebugInstr())
2757       continue;
2758     if (I->getOpcode() != X86::JMP_1 &&
2759         X86::getCondFromBranch(*I) == X86::COND_INVALID)
2760       break;
2761     // Remove the branch.
2762     I->eraseFromParent();
2763     I = MBB.end();
2764     ++Count;
2765   }
2766 
2767   return Count;
2768 }
2769 
2770 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2771                                     MachineBasicBlock *TBB,
2772                                     MachineBasicBlock *FBB,
2773                                     ArrayRef<MachineOperand> Cond,
2774                                     const DebugLoc &DL,
2775                                     int *BytesAdded) const {
2776   // Shouldn't be a fall through.
2777   assert(TBB && "insertBranch must not be told to insert a fallthrough");
2778   assert((Cond.size() == 1 || Cond.size() == 0) &&
2779          "X86 branch conditions have one component!");
2780   assert(!BytesAdded && "code size not handled");
2781 
2782   if (Cond.empty()) {
2783     // Unconditional branch?
2784     assert(!FBB && "Unconditional branch with multiple successors!");
2785     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2786     return 1;
2787   }
2788 
2789   // If FBB is null, it is implied to be a fall-through block.
2790   bool FallThru = FBB == nullptr;
2791 
2792   // Conditional branch.
2793   unsigned Count = 0;
2794   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2795   switch (CC) {
2796   case X86::COND_NE_OR_P:
2797     // Synthesize NE_OR_P with two branches.
2798     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2799     ++Count;
2800     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2801     ++Count;
2802     break;
2803   case X86::COND_E_AND_NP:
2804     // Use the next block of MBB as FBB if it is null.
2805     if (FBB == nullptr) {
2806       FBB = getFallThroughMBB(&MBB, TBB);
2807       assert(FBB && "MBB cannot be the last block in function when the false "
2808                     "body is a fall-through.");
2809     }
2810     // Synthesize COND_E_AND_NP with two branches.
2811     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2812     ++Count;
2813     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2814     ++Count;
2815     break;
2816   default: {
2817     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2818     ++Count;
2819   }
2820   }
2821   if (!FallThru) {
2822     // Two-way Conditional branch. Insert the second branch.
2823     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2824     ++Count;
2825   }
2826   return Count;
2827 }
2828 
2829 bool X86InstrInfo::
2830 canInsertSelect(const MachineBasicBlock &MBB,
2831                 ArrayRef<MachineOperand> Cond,
2832                 unsigned TrueReg, unsigned FalseReg,
2833                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2834   // Not all subtargets have cmov instructions.
2835   if (!Subtarget.hasCMov())
2836     return false;
2837   if (Cond.size() != 1)
2838     return false;
2839   // We cannot do the composite conditions, at least not in SSA form.
2840   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2841     return false;
2842 
2843   // Check register classes.
2844   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2845   const TargetRegisterClass *RC =
2846     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2847   if (!RC)
2848     return false;
2849 
2850   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2851   if (X86::GR16RegClass.hasSubClassEq(RC) ||
2852       X86::GR32RegClass.hasSubClassEq(RC) ||
2853       X86::GR64RegClass.hasSubClassEq(RC)) {
2854     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2855     // Bridge. Probably Ivy Bridge as well.
2856     CondCycles = 2;
2857     TrueCycles = 2;
2858     FalseCycles = 2;
2859     return true;
2860   }
2861 
2862   // Can't do vectors.
2863   return false;
2864 }
2865 
2866 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2867                                 MachineBasicBlock::iterator I,
2868                                 const DebugLoc &DL, unsigned DstReg,
2869                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2870                                 unsigned FalseReg) const {
2871   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2872   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2873   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2874   assert(Cond.size() == 1 && "Invalid Cond array");
2875   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2876                                     false /*HasMemoryOperand*/);
2877   BuildMI(MBB, I, DL, get(Opc), DstReg)
2878       .addReg(FalseReg)
2879       .addReg(TrueReg)
2880       .addImm(Cond[0].getImm());
2881 }
2882 
2883 /// Test if the given register is a physical h register.
2884 static bool isHReg(unsigned Reg) {
2885   return X86::GR8_ABCD_HRegClass.contains(Reg);
2886 }
2887 
2888 // Try and copy between VR128/VR64 and GR64 registers.
2889 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2890                                         const X86Subtarget &Subtarget) {
2891   bool HasAVX = Subtarget.hasAVX();
2892   bool HasAVX512 = Subtarget.hasAVX512();
2893 
2894   // SrcReg(MaskReg) -> DestReg(GR64)
2895   // SrcReg(MaskReg) -> DestReg(GR32)
2896 
2897   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2898   if (X86::VK16RegClass.contains(SrcReg)) {
2899     if (X86::GR64RegClass.contains(DestReg)) {
2900       assert(Subtarget.hasBWI());
2901       return X86::KMOVQrk;
2902     }
2903     if (X86::GR32RegClass.contains(DestReg))
2904       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2905   }
2906 
2907   // SrcReg(GR64) -> DestReg(MaskReg)
2908   // SrcReg(GR32) -> DestReg(MaskReg)
2909 
2910   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2911   if (X86::VK16RegClass.contains(DestReg)) {
2912     if (X86::GR64RegClass.contains(SrcReg)) {
2913       assert(Subtarget.hasBWI());
2914       return X86::KMOVQkr;
2915     }
2916     if (X86::GR32RegClass.contains(SrcReg))
2917       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2918   }
2919 
2920 
2921   // SrcReg(VR128) -> DestReg(GR64)
2922   // SrcReg(VR64)  -> DestReg(GR64)
2923   // SrcReg(GR64)  -> DestReg(VR128)
2924   // SrcReg(GR64)  -> DestReg(VR64)
2925 
2926   if (X86::GR64RegClass.contains(DestReg)) {
2927     if (X86::VR128XRegClass.contains(SrcReg))
2928       // Copy from a VR128 register to a GR64 register.
2929       return HasAVX512 ? X86::VMOVPQIto64Zrr :
2930              HasAVX    ? X86::VMOVPQIto64rr  :
2931                          X86::MOVPQIto64rr;
2932     if (X86::VR64RegClass.contains(SrcReg))
2933       // Copy from a VR64 register to a GR64 register.
2934       return X86::MMX_MOVD64from64rr;
2935   } else if (X86::GR64RegClass.contains(SrcReg)) {
2936     // Copy from a GR64 register to a VR128 register.
2937     if (X86::VR128XRegClass.contains(DestReg))
2938       return HasAVX512 ? X86::VMOV64toPQIZrr :
2939              HasAVX    ? X86::VMOV64toPQIrr  :
2940                          X86::MOV64toPQIrr;
2941     // Copy from a GR64 register to a VR64 register.
2942     if (X86::VR64RegClass.contains(DestReg))
2943       return X86::MMX_MOVD64to64rr;
2944   }
2945 
2946   // SrcReg(VR128) -> DestReg(GR32)
2947   // SrcReg(GR32)  -> DestReg(VR128)
2948 
2949   if (X86::GR32RegClass.contains(DestReg) &&
2950       X86::VR128XRegClass.contains(SrcReg))
2951     // Copy from a VR128 register to a GR32 register.
2952     return HasAVX512 ? X86::VMOVPDI2DIZrr :
2953            HasAVX    ? X86::VMOVPDI2DIrr  :
2954                        X86::MOVPDI2DIrr;
2955 
2956   if (X86::VR128XRegClass.contains(DestReg) &&
2957       X86::GR32RegClass.contains(SrcReg))
2958     // Copy from a VR128 register to a VR128 register.
2959     return HasAVX512 ? X86::VMOVDI2PDIZrr :
2960            HasAVX    ? X86::VMOVDI2PDIrr  :
2961                        X86::MOVDI2PDIrr;
2962   return 0;
2963 }
2964 
2965 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2966                                MachineBasicBlock::iterator MI,
2967                                const DebugLoc &DL, MCRegister DestReg,
2968                                MCRegister SrcReg, bool KillSrc) const {
2969   // First deal with the normal symmetric copies.
2970   bool HasAVX = Subtarget.hasAVX();
2971   bool HasVLX = Subtarget.hasVLX();
2972   unsigned Opc = 0;
2973   if (X86::GR64RegClass.contains(DestReg, SrcReg))
2974     Opc = X86::MOV64rr;
2975   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2976     Opc = X86::MOV32rr;
2977   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2978     Opc = X86::MOV16rr;
2979   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2980     // Copying to or from a physical H register on x86-64 requires a NOREX
2981     // move.  Otherwise use a normal move.
2982     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2983         Subtarget.is64Bit()) {
2984       Opc = X86::MOV8rr_NOREX;
2985       // Both operands must be encodable without an REX prefix.
2986       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2987              "8-bit H register can not be copied outside GR8_NOREX");
2988     } else
2989       Opc = X86::MOV8rr;
2990   }
2991   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2992     Opc = X86::MMX_MOVQ64rr;
2993   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2994     if (HasVLX)
2995       Opc = X86::VMOVAPSZ128rr;
2996     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2997       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2998     else {
2999       // If this an extended register and we don't have VLX we need to use a
3000       // 512-bit move.
3001       Opc = X86::VMOVAPSZrr;
3002       const TargetRegisterInfo *TRI = &getRegisterInfo();
3003       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3004                                          &X86::VR512RegClass);
3005       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3006                                         &X86::VR512RegClass);
3007     }
3008   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3009     if (HasVLX)
3010       Opc = X86::VMOVAPSZ256rr;
3011     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3012       Opc = X86::VMOVAPSYrr;
3013     else {
3014       // If this an extended register and we don't have VLX we need to use a
3015       // 512-bit move.
3016       Opc = X86::VMOVAPSZrr;
3017       const TargetRegisterInfo *TRI = &getRegisterInfo();
3018       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3019                                          &X86::VR512RegClass);
3020       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3021                                         &X86::VR512RegClass);
3022     }
3023   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3024     Opc = X86::VMOVAPSZrr;
3025   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3026   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3027     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3028   if (!Opc)
3029     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3030 
3031   if (Opc) {
3032     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3033       .addReg(SrcReg, getKillRegState(KillSrc));
3034     return;
3035   }
3036 
3037   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3038     // FIXME: We use a fatal error here because historically LLVM has tried
3039     // lower some of these physreg copies and we want to ensure we get
3040     // reasonable bug reports if someone encounters a case no other testing
3041     // found. This path should be removed after the LLVM 7 release.
3042     report_fatal_error("Unable to copy EFLAGS physical register!");
3043   }
3044 
3045   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3046                     << RI.getName(DestReg) << '\n');
3047   report_fatal_error("Cannot emit physreg copy instruction");
3048 }
3049 
3050 Optional<DestSourcePair>
3051 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3052   if (MI.isMoveReg())
3053     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3054   return None;
3055 }
3056 
3057 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3058                                       const TargetRegisterClass *RC,
3059                                       bool isStackAligned,
3060                                       const X86Subtarget &STI,
3061                                       bool load) {
3062   bool HasAVX = STI.hasAVX();
3063   bool HasAVX512 = STI.hasAVX512();
3064   bool HasVLX = STI.hasVLX();
3065 
3066   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3067   default:
3068     llvm_unreachable("Unknown spill size");
3069   case 1:
3070     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3071     if (STI.is64Bit())
3072       // Copying to or from a physical H register on x86-64 requires a NOREX
3073       // move.  Otherwise use a normal move.
3074       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3075         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3076     return load ? X86::MOV8rm : X86::MOV8mr;
3077   case 2:
3078     if (X86::VK16RegClass.hasSubClassEq(RC))
3079       return load ? X86::KMOVWkm : X86::KMOVWmk;
3080     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3081     return load ? X86::MOV16rm : X86::MOV16mr;
3082   case 4:
3083     if (X86::GR32RegClass.hasSubClassEq(RC))
3084       return load ? X86::MOV32rm : X86::MOV32mr;
3085     if (X86::FR32XRegClass.hasSubClassEq(RC))
3086       return load ?
3087         (HasAVX512 ? X86::VMOVSSZrm_alt :
3088          HasAVX    ? X86::VMOVSSrm_alt :
3089                      X86::MOVSSrm_alt) :
3090         (HasAVX512 ? X86::VMOVSSZmr :
3091          HasAVX    ? X86::VMOVSSmr :
3092                      X86::MOVSSmr);
3093     if (X86::RFP32RegClass.hasSubClassEq(RC))
3094       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3095     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3096       assert(STI.hasBWI() && "KMOVD requires BWI");
3097       return load ? X86::KMOVDkm : X86::KMOVDmk;
3098     }
3099     // All of these mask pair classes have the same spill size, the same kind
3100     // of kmov instructions can be used with all of them.
3101     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3102         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3103         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3104         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3105         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3106       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3107     llvm_unreachable("Unknown 4-byte regclass");
3108   case 8:
3109     if (X86::GR64RegClass.hasSubClassEq(RC))
3110       return load ? X86::MOV64rm : X86::MOV64mr;
3111     if (X86::FR64XRegClass.hasSubClassEq(RC))
3112       return load ?
3113         (HasAVX512 ? X86::VMOVSDZrm_alt :
3114          HasAVX    ? X86::VMOVSDrm_alt :
3115                      X86::MOVSDrm_alt) :
3116         (HasAVX512 ? X86::VMOVSDZmr :
3117          HasAVX    ? X86::VMOVSDmr :
3118                      X86::MOVSDmr);
3119     if (X86::VR64RegClass.hasSubClassEq(RC))
3120       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3121     if (X86::RFP64RegClass.hasSubClassEq(RC))
3122       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3123     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3124       assert(STI.hasBWI() && "KMOVQ requires BWI");
3125       return load ? X86::KMOVQkm : X86::KMOVQmk;
3126     }
3127     llvm_unreachable("Unknown 8-byte regclass");
3128   case 10:
3129     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3130     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3131   case 16: {
3132     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3133       // If stack is realigned we can use aligned stores.
3134       if (isStackAligned)
3135         return load ?
3136           (HasVLX    ? X86::VMOVAPSZ128rm :
3137            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3138            HasAVX    ? X86::VMOVAPSrm :
3139                        X86::MOVAPSrm):
3140           (HasVLX    ? X86::VMOVAPSZ128mr :
3141            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3142            HasAVX    ? X86::VMOVAPSmr :
3143                        X86::MOVAPSmr);
3144       else
3145         return load ?
3146           (HasVLX    ? X86::VMOVUPSZ128rm :
3147            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3148            HasAVX    ? X86::VMOVUPSrm :
3149                        X86::MOVUPSrm):
3150           (HasVLX    ? X86::VMOVUPSZ128mr :
3151            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3152            HasAVX    ? X86::VMOVUPSmr :
3153                        X86::MOVUPSmr);
3154     }
3155     if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3156       if (STI.is64Bit())
3157         return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3158       else
3159         return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3160     }
3161     llvm_unreachable("Unknown 16-byte regclass");
3162   }
3163   case 32:
3164     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3165     // If stack is realigned we can use aligned stores.
3166     if (isStackAligned)
3167       return load ?
3168         (HasVLX    ? X86::VMOVAPSZ256rm :
3169          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3170                      X86::VMOVAPSYrm) :
3171         (HasVLX    ? X86::VMOVAPSZ256mr :
3172          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3173                      X86::VMOVAPSYmr);
3174     else
3175       return load ?
3176         (HasVLX    ? X86::VMOVUPSZ256rm :
3177          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3178                      X86::VMOVUPSYrm) :
3179         (HasVLX    ? X86::VMOVUPSZ256mr :
3180          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3181                      X86::VMOVUPSYmr);
3182   case 64:
3183     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3184     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3185     if (isStackAligned)
3186       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3187     else
3188       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3189   }
3190 }
3191 
3192 bool X86InstrInfo::getMemOperandWithOffset(
3193     const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3194     const TargetRegisterInfo *TRI) const {
3195   const MCInstrDesc &Desc = MemOp.getDesc();
3196   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3197   if (MemRefBegin < 0)
3198     return false;
3199 
3200   MemRefBegin += X86II::getOperandBias(Desc);
3201 
3202   BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3203   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3204     return false;
3205 
3206   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3207     return false;
3208 
3209   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3210       X86::NoRegister)
3211     return false;
3212 
3213   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3214 
3215   // Displacement can be symbolic
3216   if (!DispMO.isImm())
3217     return false;
3218 
3219   Offset = DispMO.getImm();
3220 
3221   if (!BaseOp->isReg())
3222     return false;
3223 
3224   return true;
3225 }
3226 
3227 static unsigned getStoreRegOpcode(unsigned SrcReg,
3228                                   const TargetRegisterClass *RC,
3229                                   bool isStackAligned,
3230                                   const X86Subtarget &STI) {
3231   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3232 }
3233 
3234 
3235 static unsigned getLoadRegOpcode(unsigned DestReg,
3236                                  const TargetRegisterClass *RC,
3237                                  bool isStackAligned,
3238                                  const X86Subtarget &STI) {
3239   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3240 }
3241 
3242 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3243                                        MachineBasicBlock::iterator MI,
3244                                        unsigned SrcReg, bool isKill, int FrameIdx,
3245                                        const TargetRegisterClass *RC,
3246                                        const TargetRegisterInfo *TRI) const {
3247   const MachineFunction &MF = *MBB.getParent();
3248   assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3249          "Stack slot too small for store");
3250   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3251   bool isAligned =
3252       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3253       RI.canRealignStack(MF);
3254   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3255   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3256     .addReg(SrcReg, getKillRegState(isKill));
3257 }
3258 
3259 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3260                                         MachineBasicBlock::iterator MI,
3261                                         unsigned DestReg, int FrameIdx,
3262                                         const TargetRegisterClass *RC,
3263                                         const TargetRegisterInfo *TRI) const {
3264   const MachineFunction &MF = *MBB.getParent();
3265   unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3266   bool isAligned =
3267       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3268       RI.canRealignStack(MF);
3269   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3270   addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3271 }
3272 
3273 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3274                                   unsigned &SrcReg2, int &CmpMask,
3275                                   int &CmpValue) const {
3276   switch (MI.getOpcode()) {
3277   default: break;
3278   case X86::CMP64ri32:
3279   case X86::CMP64ri8:
3280   case X86::CMP32ri:
3281   case X86::CMP32ri8:
3282   case X86::CMP16ri:
3283   case X86::CMP16ri8:
3284   case X86::CMP8ri:
3285     SrcReg = MI.getOperand(0).getReg();
3286     SrcReg2 = 0;
3287     if (MI.getOperand(1).isImm()) {
3288       CmpMask = ~0;
3289       CmpValue = MI.getOperand(1).getImm();
3290     } else {
3291       CmpMask = CmpValue = 0;
3292     }
3293     return true;
3294   // A SUB can be used to perform comparison.
3295   case X86::SUB64rm:
3296   case X86::SUB32rm:
3297   case X86::SUB16rm:
3298   case X86::SUB8rm:
3299     SrcReg = MI.getOperand(1).getReg();
3300     SrcReg2 = 0;
3301     CmpMask = 0;
3302     CmpValue = 0;
3303     return true;
3304   case X86::SUB64rr:
3305   case X86::SUB32rr:
3306   case X86::SUB16rr:
3307   case X86::SUB8rr:
3308     SrcReg = MI.getOperand(1).getReg();
3309     SrcReg2 = MI.getOperand(2).getReg();
3310     CmpMask = 0;
3311     CmpValue = 0;
3312     return true;
3313   case X86::SUB64ri32:
3314   case X86::SUB64ri8:
3315   case X86::SUB32ri:
3316   case X86::SUB32ri8:
3317   case X86::SUB16ri:
3318   case X86::SUB16ri8:
3319   case X86::SUB8ri:
3320     SrcReg = MI.getOperand(1).getReg();
3321     SrcReg2 = 0;
3322     if (MI.getOperand(2).isImm()) {
3323       CmpMask = ~0;
3324       CmpValue = MI.getOperand(2).getImm();
3325     } else {
3326       CmpMask = CmpValue = 0;
3327     }
3328     return true;
3329   case X86::CMP64rr:
3330   case X86::CMP32rr:
3331   case X86::CMP16rr:
3332   case X86::CMP8rr:
3333     SrcReg = MI.getOperand(0).getReg();
3334     SrcReg2 = MI.getOperand(1).getReg();
3335     CmpMask = 0;
3336     CmpValue = 0;
3337     return true;
3338   case X86::TEST8rr:
3339   case X86::TEST16rr:
3340   case X86::TEST32rr:
3341   case X86::TEST64rr:
3342     SrcReg = MI.getOperand(0).getReg();
3343     if (MI.getOperand(1).getReg() != SrcReg)
3344       return false;
3345     // Compare against zero.
3346     SrcReg2 = 0;
3347     CmpMask = ~0;
3348     CmpValue = 0;
3349     return true;
3350   }
3351   return false;
3352 }
3353 
3354 /// Check whether the first instruction, whose only
3355 /// purpose is to update flags, can be made redundant.
3356 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3357 /// This function can be extended later on.
3358 /// SrcReg, SrcRegs: register operands for FlagI.
3359 /// ImmValue: immediate for FlagI if it takes an immediate.
3360 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3361                                         unsigned SrcReg, unsigned SrcReg2,
3362                                         int ImmMask, int ImmValue,
3363                                         const MachineInstr &OI) {
3364   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3365        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3366        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3367        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3368       ((OI.getOperand(1).getReg() == SrcReg &&
3369         OI.getOperand(2).getReg() == SrcReg2) ||
3370        (OI.getOperand(1).getReg() == SrcReg2 &&
3371         OI.getOperand(2).getReg() == SrcReg)))
3372     return true;
3373 
3374   if (ImmMask != 0 &&
3375       ((FlagI.getOpcode() == X86::CMP64ri32 &&
3376         OI.getOpcode() == X86::SUB64ri32) ||
3377        (FlagI.getOpcode() == X86::CMP64ri8 &&
3378         OI.getOpcode() == X86::SUB64ri8) ||
3379        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3380        (FlagI.getOpcode() == X86::CMP32ri8 &&
3381         OI.getOpcode() == X86::SUB32ri8) ||
3382        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3383        (FlagI.getOpcode() == X86::CMP16ri8 &&
3384         OI.getOpcode() == X86::SUB16ri8) ||
3385        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3386       OI.getOperand(1).getReg() == SrcReg &&
3387       OI.getOperand(2).getImm() == ImmValue)
3388     return true;
3389   return false;
3390 }
3391 
3392 /// Check whether the definition can be converted
3393 /// to remove a comparison against zero.
3394 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3395   NoSignFlag = false;
3396 
3397   switch (MI.getOpcode()) {
3398   default: return false;
3399 
3400   // The shift instructions only modify ZF if their shift count is non-zero.
3401   // N.B.: The processor truncates the shift count depending on the encoding.
3402   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3403   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3404      return getTruncatedShiftCount(MI, 2) != 0;
3405 
3406   // Some left shift instructions can be turned into LEA instructions but only
3407   // if their flags aren't used. Avoid transforming such instructions.
3408   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3409     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3410     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3411     return ShAmt != 0;
3412   }
3413 
3414   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3415   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3416      return getTruncatedShiftCount(MI, 3) != 0;
3417 
3418   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3419   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3420   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3421   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3422   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3423   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3424   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3425   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3426   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3427   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3428   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3429   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3430   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3431   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3432   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3433   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3434   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3435   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3436   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3437   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3438   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3439   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3440   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3441   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3442   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3443   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3444   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3445   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3446   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3447   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3448   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3449   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3450   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3451   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3452   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3453   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3454   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3455   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3456   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3457   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3458   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3459   case X86::ANDN32rr:  case X86::ANDN32rm:
3460   case X86::ANDN64rr:  case X86::ANDN64rm:
3461   case X86::BLSI32rr:  case X86::BLSI32rm:
3462   case X86::BLSI64rr:  case X86::BLSI64rm:
3463   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3464   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3465   case X86::BLSR32rr:  case X86::BLSR32rm:
3466   case X86::BLSR64rr:  case X86::BLSR64rm:
3467   case X86::BZHI32rr:  case X86::BZHI32rm:
3468   case X86::BZHI64rr:  case X86::BZHI64rm:
3469   case X86::LZCNT16rr: case X86::LZCNT16rm:
3470   case X86::LZCNT32rr: case X86::LZCNT32rm:
3471   case X86::LZCNT64rr: case X86::LZCNT64rm:
3472   case X86::POPCNT16rr:case X86::POPCNT16rm:
3473   case X86::POPCNT32rr:case X86::POPCNT32rm:
3474   case X86::POPCNT64rr:case X86::POPCNT64rm:
3475   case X86::TZCNT16rr: case X86::TZCNT16rm:
3476   case X86::TZCNT32rr: case X86::TZCNT32rm:
3477   case X86::TZCNT64rr: case X86::TZCNT64rm:
3478   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3479   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3480   case X86::BLCI32rr:    case X86::BLCI32rm:
3481   case X86::BLCI64rr:    case X86::BLCI64rm:
3482   case X86::BLCIC32rr:   case X86::BLCIC32rm:
3483   case X86::BLCIC64rr:   case X86::BLCIC64rm:
3484   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3485   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3486   case X86::BLCS32rr:    case X86::BLCS32rm:
3487   case X86::BLCS64rr:    case X86::BLCS64rm:
3488   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3489   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3490   case X86::BLSIC32rr:   case X86::BLSIC32rm:
3491   case X86::BLSIC64rr:   case X86::BLSIC64rm:
3492   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3493   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3494   case X86::TZMSK32rr:   case X86::TZMSK32rm:
3495   case X86::TZMSK64rr:   case X86::TZMSK64rm:
3496     return true;
3497   case X86::BEXTR32rr:   case X86::BEXTR64rr:
3498   case X86::BEXTR32rm:   case X86::BEXTR64rm:
3499   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3500   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3501     // BEXTR doesn't update the sign flag so we can't use it.
3502     NoSignFlag = true;
3503     return true;
3504   }
3505 }
3506 
3507 /// Check whether the use can be converted to remove a comparison against zero.
3508 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3509   switch (MI.getOpcode()) {
3510   default: return X86::COND_INVALID;
3511   case X86::NEG8r:
3512   case X86::NEG16r:
3513   case X86::NEG32r:
3514   case X86::NEG64r:
3515     return X86::COND_AE;
3516   case X86::LZCNT16rr:
3517   case X86::LZCNT32rr:
3518   case X86::LZCNT64rr:
3519     return X86::COND_B;
3520   case X86::POPCNT16rr:
3521   case X86::POPCNT32rr:
3522   case X86::POPCNT64rr:
3523     return X86::COND_E;
3524   case X86::TZCNT16rr:
3525   case X86::TZCNT32rr:
3526   case X86::TZCNT64rr:
3527     return X86::COND_B;
3528   case X86::BSF16rr:
3529   case X86::BSF32rr:
3530   case X86::BSF64rr:
3531   case X86::BSR16rr:
3532   case X86::BSR32rr:
3533   case X86::BSR64rr:
3534     return X86::COND_E;
3535   case X86::BLSI32rr:
3536   case X86::BLSI64rr:
3537     return X86::COND_AE;
3538   case X86::BLSR32rr:
3539   case X86::BLSR64rr:
3540   case X86::BLSMSK32rr:
3541   case X86::BLSMSK64rr:
3542     return X86::COND_B;
3543   // TODO: TBM instructions.
3544   }
3545 }
3546 
3547 /// Check if there exists an earlier instruction that
3548 /// operates on the same source operands and sets flags in the same way as
3549 /// Compare; remove Compare if possible.
3550 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3551                                         unsigned SrcReg2, int CmpMask,
3552                                         int CmpValue,
3553                                         const MachineRegisterInfo *MRI) const {
3554   // Check whether we can replace SUB with CMP.
3555   switch (CmpInstr.getOpcode()) {
3556   default: break;
3557   case X86::SUB64ri32:
3558   case X86::SUB64ri8:
3559   case X86::SUB32ri:
3560   case X86::SUB32ri8:
3561   case X86::SUB16ri:
3562   case X86::SUB16ri8:
3563   case X86::SUB8ri:
3564   case X86::SUB64rm:
3565   case X86::SUB32rm:
3566   case X86::SUB16rm:
3567   case X86::SUB8rm:
3568   case X86::SUB64rr:
3569   case X86::SUB32rr:
3570   case X86::SUB16rr:
3571   case X86::SUB8rr: {
3572     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3573       return false;
3574     // There is no use of the destination register, we can replace SUB with CMP.
3575     unsigned NewOpcode = 0;
3576     switch (CmpInstr.getOpcode()) {
3577     default: llvm_unreachable("Unreachable!");
3578     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3579     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3580     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3581     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3582     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3583     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3584     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3585     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3586     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3587     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3588     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3589     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3590     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3591     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3592     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3593     }
3594     CmpInstr.setDesc(get(NewOpcode));
3595     CmpInstr.RemoveOperand(0);
3596     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3597     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3598         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3599       return false;
3600   }
3601   }
3602 
3603   // Get the unique definition of SrcReg.
3604   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3605   if (!MI) return false;
3606 
3607   // CmpInstr is the first instruction of the BB.
3608   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3609 
3610   // If we are comparing against zero, check whether we can use MI to update
3611   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3612   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3613   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3614     return false;
3615 
3616   // If we have a use of the source register between the def and our compare
3617   // instruction we can eliminate the compare iff the use sets EFLAGS in the
3618   // right way.
3619   bool ShouldUpdateCC = false;
3620   bool NoSignFlag = false;
3621   X86::CondCode NewCC = X86::COND_INVALID;
3622   if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3623     // Scan forward from the use until we hit the use we're looking for or the
3624     // compare instruction.
3625     for (MachineBasicBlock::iterator J = MI;; ++J) {
3626       // Do we have a convertible instruction?
3627       NewCC = isUseDefConvertible(*J);
3628       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3629           J->getOperand(1).getReg() == SrcReg) {
3630         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3631         ShouldUpdateCC = true; // Update CC later on.
3632         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3633         // with the new def.
3634         Def = J;
3635         MI = &*Def;
3636         break;
3637       }
3638 
3639       if (J == I)
3640         return false;
3641     }
3642   }
3643 
3644   // We are searching for an earlier instruction that can make CmpInstr
3645   // redundant and that instruction will be saved in Sub.
3646   MachineInstr *Sub = nullptr;
3647   const TargetRegisterInfo *TRI = &getRegisterInfo();
3648 
3649   // We iterate backward, starting from the instruction before CmpInstr and
3650   // stop when reaching the definition of a source register or done with the BB.
3651   // RI points to the instruction before CmpInstr.
3652   // If the definition is in this basic block, RE points to the definition;
3653   // otherwise, RE is the rend of the basic block.
3654   MachineBasicBlock::reverse_iterator
3655       RI = ++I.getReverse(),
3656       RE = CmpInstr.getParent() == MI->getParent()
3657                ? Def.getReverse() /* points to MI */
3658                : CmpInstr.getParent()->rend();
3659   MachineInstr *Movr0Inst = nullptr;
3660   for (; RI != RE; ++RI) {
3661     MachineInstr &Instr = *RI;
3662     // Check whether CmpInstr can be made redundant by the current instruction.
3663     if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3664                                            CmpValue, Instr)) {
3665       Sub = &Instr;
3666       break;
3667     }
3668 
3669     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3670         Instr.readsRegister(X86::EFLAGS, TRI)) {
3671       // This instruction modifies or uses EFLAGS.
3672 
3673       // MOV32r0 etc. are implemented with xor which clobbers condition code.
3674       // They are safe to move up, if the definition to EFLAGS is dead and
3675       // earlier instructions do not read or write EFLAGS.
3676       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3677           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3678         Movr0Inst = &Instr;
3679         continue;
3680       }
3681 
3682       // We can't remove CmpInstr.
3683       return false;
3684     }
3685   }
3686 
3687   // Return false if no candidates exist.
3688   if (!IsCmpZero && !Sub)
3689     return false;
3690 
3691   bool IsSwapped =
3692       (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
3693        Sub->getOperand(2).getReg() == SrcReg);
3694 
3695   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3696   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3697   // If we are done with the basic block, we need to check whether EFLAGS is
3698   // live-out.
3699   bool IsSafe = false;
3700   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3701   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3702   for (++I; I != E; ++I) {
3703     const MachineInstr &Instr = *I;
3704     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3705     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3706     // We should check the usage if this instruction uses and updates EFLAGS.
3707     if (!UseEFLAGS && ModifyEFLAGS) {
3708       // It is safe to remove CmpInstr if EFLAGS is updated again.
3709       IsSafe = true;
3710       break;
3711     }
3712     if (!UseEFLAGS && !ModifyEFLAGS)
3713       continue;
3714 
3715     // EFLAGS is used by this instruction.
3716     X86::CondCode OldCC = X86::COND_INVALID;
3717     if (IsCmpZero || IsSwapped) {
3718       // We decode the condition code from opcode.
3719       if (Instr.isBranch())
3720         OldCC = X86::getCondFromBranch(Instr);
3721       else {
3722         OldCC = X86::getCondFromSETCC(Instr);
3723         if (OldCC == X86::COND_INVALID)
3724           OldCC = X86::getCondFromCMov(Instr);
3725       }
3726       if (OldCC == X86::COND_INVALID) return false;
3727     }
3728     X86::CondCode ReplacementCC = X86::COND_INVALID;
3729     if (IsCmpZero) {
3730       switch (OldCC) {
3731       default: break;
3732       case X86::COND_A: case X86::COND_AE:
3733       case X86::COND_B: case X86::COND_BE:
3734       case X86::COND_G: case X86::COND_GE:
3735       case X86::COND_L: case X86::COND_LE:
3736       case X86::COND_O: case X86::COND_NO:
3737         // CF and OF are used, we can't perform this optimization.
3738         return false;
3739       case X86::COND_S: case X86::COND_NS:
3740         // If SF is used, but the instruction doesn't update the SF, then we
3741         // can't do the optimization.
3742         if (NoSignFlag)
3743           return false;
3744         break;
3745       }
3746 
3747       // If we're updating the condition code check if we have to reverse the
3748       // condition.
3749       if (ShouldUpdateCC)
3750         switch (OldCC) {
3751         default:
3752           return false;
3753         case X86::COND_E:
3754           ReplacementCC = NewCC;
3755           break;
3756         case X86::COND_NE:
3757           ReplacementCC = GetOppositeBranchCondition(NewCC);
3758           break;
3759         }
3760     } else if (IsSwapped) {
3761       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3762       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3763       // We swap the condition code and synthesize the new opcode.
3764       ReplacementCC = getSwappedCondition(OldCC);
3765       if (ReplacementCC == X86::COND_INVALID) return false;
3766     }
3767 
3768     if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3769       // Push the MachineInstr to OpsToUpdate.
3770       // If it is safe to remove CmpInstr, the condition code of these
3771       // instructions will be modified.
3772       OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3773     }
3774     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3775       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3776       IsSafe = true;
3777       break;
3778     }
3779   }
3780 
3781   // If EFLAGS is not killed nor re-defined, we should check whether it is
3782   // live-out. If it is live-out, do not optimize.
3783   if ((IsCmpZero || IsSwapped) && !IsSafe) {
3784     MachineBasicBlock *MBB = CmpInstr.getParent();
3785     for (MachineBasicBlock *Successor : MBB->successors())
3786       if (Successor->isLiveIn(X86::EFLAGS))
3787         return false;
3788   }
3789 
3790   // The instruction to be updated is either Sub or MI.
3791   Sub = IsCmpZero ? MI : Sub;
3792   // Move Movr0Inst to the appropriate place before Sub.
3793   if (Movr0Inst) {
3794     // Look backwards until we find a def that doesn't use the current EFLAGS.
3795     Def = Sub;
3796     MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3797                                         InsertE = Sub->getParent()->rend();
3798     for (; InsertI != InsertE; ++InsertI) {
3799       MachineInstr *Instr = &*InsertI;
3800       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3801           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3802         Sub->getParent()->remove(Movr0Inst);
3803         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3804                                    Movr0Inst);
3805         break;
3806       }
3807     }
3808     if (InsertI == InsertE)
3809       return false;
3810   }
3811 
3812   // Make sure Sub instruction defines EFLAGS and mark the def live.
3813   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3814   assert(FlagDef && "Unable to locate a def EFLAGS operand");
3815   FlagDef->setIsDead(false);
3816 
3817   CmpInstr.eraseFromParent();
3818 
3819   // Modify the condition code of instructions in OpsToUpdate.
3820   for (auto &Op : OpsToUpdate) {
3821     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3822         .setImm(Op.second);
3823   }
3824   return true;
3825 }
3826 
3827 /// Try to remove the load by folding it to a register
3828 /// operand at the use. We fold the load instructions if load defines a virtual
3829 /// register, the virtual register is used once in the same BB, and the
3830 /// instructions in-between do not load or store, and have no side effects.
3831 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3832                                               const MachineRegisterInfo *MRI,
3833                                               unsigned &FoldAsLoadDefReg,
3834                                               MachineInstr *&DefMI) const {
3835   // Check whether we can move DefMI here.
3836   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3837   assert(DefMI);
3838   bool SawStore = false;
3839   if (!DefMI->isSafeToMove(nullptr, SawStore))
3840     return nullptr;
3841 
3842   // Collect information about virtual register operands of MI.
3843   SmallVector<unsigned, 1> SrcOperandIds;
3844   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3845     MachineOperand &MO = MI.getOperand(i);
3846     if (!MO.isReg())
3847       continue;
3848     Register Reg = MO.getReg();
3849     if (Reg != FoldAsLoadDefReg)
3850       continue;
3851     // Do not fold if we have a subreg use or a def.
3852     if (MO.getSubReg() || MO.isDef())
3853       return nullptr;
3854     SrcOperandIds.push_back(i);
3855   }
3856   if (SrcOperandIds.empty())
3857     return nullptr;
3858 
3859   // Check whether we can fold the def into SrcOperandId.
3860   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3861     FoldAsLoadDefReg = 0;
3862     return FoldMI;
3863   }
3864 
3865   return nullptr;
3866 }
3867 
3868 /// Expand a single-def pseudo instruction to a two-addr
3869 /// instruction with two undef reads of the register being defined.
3870 /// This is used for mapping:
3871 ///   %xmm4 = V_SET0
3872 /// to:
3873 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3874 ///
3875 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3876                              const MCInstrDesc &Desc) {
3877   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3878   Register Reg = MIB->getOperand(0).getReg();
3879   MIB->setDesc(Desc);
3880 
3881   // MachineInstr::addOperand() will insert explicit operands before any
3882   // implicit operands.
3883   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3884   // But we don't trust that.
3885   assert(MIB->getOperand(1).getReg() == Reg &&
3886          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3887   return true;
3888 }
3889 
3890 /// Expand a single-def pseudo instruction to a two-addr
3891 /// instruction with two %k0 reads.
3892 /// This is used for mapping:
3893 ///   %k4 = K_SET1
3894 /// to:
3895 ///   %k4 = KXNORrr %k0, %k0
3896 static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3897                             const MCInstrDesc &Desc, unsigned Reg) {
3898   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3899   MIB->setDesc(Desc);
3900   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3901   return true;
3902 }
3903 
3904 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3905                           bool MinusOne) {
3906   MachineBasicBlock &MBB = *MIB->getParent();
3907   DebugLoc DL = MIB->getDebugLoc();
3908   Register Reg = MIB->getOperand(0).getReg();
3909 
3910   // Insert the XOR.
3911   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3912       .addReg(Reg, RegState::Undef)
3913       .addReg(Reg, RegState::Undef);
3914 
3915   // Turn the pseudo into an INC or DEC.
3916   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3917   MIB.addReg(Reg);
3918 
3919   return true;
3920 }
3921 
3922 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3923                                const TargetInstrInfo &TII,
3924                                const X86Subtarget &Subtarget) {
3925   MachineBasicBlock &MBB = *MIB->getParent();
3926   DebugLoc DL = MIB->getDebugLoc();
3927   int64_t Imm = MIB->getOperand(1).getImm();
3928   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3929   MachineBasicBlock::iterator I = MIB.getInstr();
3930 
3931   int StackAdjustment;
3932 
3933   if (Subtarget.is64Bit()) {
3934     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3935            MIB->getOpcode() == X86::MOV32ImmSExti8);
3936 
3937     // Can't use push/pop lowering if the function might write to the red zone.
3938     X86MachineFunctionInfo *X86FI =
3939         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3940     if (X86FI->getUsesRedZone()) {
3941       MIB->setDesc(TII.get(MIB->getOpcode() ==
3942                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3943       return true;
3944     }
3945 
3946     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3947     // widen the register if necessary.
3948     StackAdjustment = 8;
3949     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3950     MIB->setDesc(TII.get(X86::POP64r));
3951     MIB->getOperand(0)
3952         .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3953   } else {
3954     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3955     StackAdjustment = 4;
3956     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3957     MIB->setDesc(TII.get(X86::POP32r));
3958   }
3959 
3960   // Build CFI if necessary.
3961   MachineFunction &MF = *MBB.getParent();
3962   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3963   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3964   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
3965   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3966   if (EmitCFI) {
3967     TFL->BuildCFI(MBB, I, DL,
3968         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3969     TFL->BuildCFI(MBB, std::next(I), DL,
3970         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3971   }
3972 
3973   return true;
3974 }
3975 
3976 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3977 // code sequence is needed for other targets.
3978 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3979                                  const TargetInstrInfo &TII) {
3980   MachineBasicBlock &MBB = *MIB->getParent();
3981   DebugLoc DL = MIB->getDebugLoc();
3982   Register Reg = MIB->getOperand(0).getReg();
3983   const GlobalValue *GV =
3984       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3985   auto Flags = MachineMemOperand::MOLoad |
3986                MachineMemOperand::MODereferenceable |
3987                MachineMemOperand::MOInvariant;
3988   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3989       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3990   MachineBasicBlock::iterator I = MIB.getInstr();
3991 
3992   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3993       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3994       .addMemOperand(MMO);
3995   MIB->setDebugLoc(DL);
3996   MIB->setDesc(TII.get(X86::MOV64rm));
3997   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
3998 }
3999 
4000 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4001   MachineBasicBlock &MBB = *MIB->getParent();
4002   MachineFunction &MF = *MBB.getParent();
4003   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4004   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4005   unsigned XorOp =
4006       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4007   MIB->setDesc(TII.get(XorOp));
4008   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4009   return true;
4010 }
4011 
4012 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4013 // but not VLX. If it uses an extended register we need to use an instruction
4014 // that loads the lower 128/256-bit, but is available with only AVX512F.
4015 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4016                             const TargetRegisterInfo *TRI,
4017                             const MCInstrDesc &LoadDesc,
4018                             const MCInstrDesc &BroadcastDesc,
4019                             unsigned SubIdx) {
4020   Register DestReg = MIB->getOperand(0).getReg();
4021   // Check if DestReg is XMM16-31 or YMM16-31.
4022   if (TRI->getEncodingValue(DestReg) < 16) {
4023     // We can use a normal VEX encoded load.
4024     MIB->setDesc(LoadDesc);
4025   } else {
4026     // Use a 128/256-bit VBROADCAST instruction.
4027     MIB->setDesc(BroadcastDesc);
4028     // Change the destination to a 512-bit register.
4029     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4030     MIB->getOperand(0).setReg(DestReg);
4031   }
4032   return true;
4033 }
4034 
4035 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4036 // but not VLX. If it uses an extended register we need to use an instruction
4037 // that stores the lower 128/256-bit, but is available with only AVX512F.
4038 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4039                              const TargetRegisterInfo *TRI,
4040                              const MCInstrDesc &StoreDesc,
4041                              const MCInstrDesc &ExtractDesc,
4042                              unsigned SubIdx) {
4043   Register SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4044   // Check if DestReg is XMM16-31 or YMM16-31.
4045   if (TRI->getEncodingValue(SrcReg) < 16) {
4046     // We can use a normal VEX encoded store.
4047     MIB->setDesc(StoreDesc);
4048   } else {
4049     // Use a VEXTRACTF instruction.
4050     MIB->setDesc(ExtractDesc);
4051     // Change the destination to a 512-bit register.
4052     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4053     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4054     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4055   }
4056 
4057   return true;
4058 }
4059 
4060 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4061   MIB->setDesc(Desc);
4062   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4063   // Temporarily remove the immediate so we can add another source register.
4064   MIB->RemoveOperand(2);
4065   // Add the register. Don't copy the kill flag if there is one.
4066   MIB.addReg(MIB->getOperand(1).getReg(),
4067              getUndefRegState(MIB->getOperand(1).isUndef()));
4068   // Add back the immediate.
4069   MIB.addImm(ShiftAmt);
4070   return true;
4071 }
4072 
4073 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4074   bool HasAVX = Subtarget.hasAVX();
4075   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4076   switch (MI.getOpcode()) {
4077   case X86::MOV32r0:
4078     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4079   case X86::MOV32r1:
4080     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4081   case X86::MOV32r_1:
4082     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4083   case X86::MOV32ImmSExti8:
4084   case X86::MOV64ImmSExti8:
4085     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4086   case X86::SETB_C8r:
4087     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4088   case X86::SETB_C16r:
4089     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4090   case X86::SETB_C32r:
4091     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4092   case X86::SETB_C64r:
4093     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4094   case X86::MMX_SET0:
4095     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4096   case X86::V_SET0:
4097   case X86::FsFLD0SS:
4098   case X86::FsFLD0SD:
4099   case X86::FsFLD0F128:
4100     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4101   case X86::AVX_SET0: {
4102     assert(HasAVX && "AVX not supported");
4103     const TargetRegisterInfo *TRI = &getRegisterInfo();
4104     Register SrcReg = MIB->getOperand(0).getReg();
4105     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4106     MIB->getOperand(0).setReg(XReg);
4107     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4108     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4109     return true;
4110   }
4111   case X86::AVX512_128_SET0:
4112   case X86::AVX512_FsFLD0SS:
4113   case X86::AVX512_FsFLD0SD:
4114   case X86::AVX512_FsFLD0F128: {
4115     bool HasVLX = Subtarget.hasVLX();
4116     Register SrcReg = MIB->getOperand(0).getReg();
4117     const TargetRegisterInfo *TRI = &getRegisterInfo();
4118     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4119       return Expand2AddrUndef(MIB,
4120                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4121     // Extended register without VLX. Use a larger XOR.
4122     SrcReg =
4123         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4124     MIB->getOperand(0).setReg(SrcReg);
4125     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4126   }
4127   case X86::AVX512_256_SET0:
4128   case X86::AVX512_512_SET0: {
4129     bool HasVLX = Subtarget.hasVLX();
4130     Register SrcReg = MIB->getOperand(0).getReg();
4131     const TargetRegisterInfo *TRI = &getRegisterInfo();
4132     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4133       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4134       MIB->getOperand(0).setReg(XReg);
4135       Expand2AddrUndef(MIB,
4136                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4137       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4138       return true;
4139     }
4140     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4141       // No VLX so we must reference a zmm.
4142       unsigned ZReg =
4143         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4144       MIB->getOperand(0).setReg(ZReg);
4145     }
4146     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4147   }
4148   case X86::V_SETALLONES:
4149     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4150   case X86::AVX2_SETALLONES:
4151     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4152   case X86::AVX1_SETALLONES: {
4153     Register Reg = MIB->getOperand(0).getReg();
4154     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4155     MIB->setDesc(get(X86::VCMPPSYrri));
4156     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4157     return true;
4158   }
4159   case X86::AVX512_512_SETALLONES: {
4160     Register Reg = MIB->getOperand(0).getReg();
4161     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4162     // VPTERNLOGD needs 3 register inputs and an immediate.
4163     // 0xff will return 1s for any input.
4164     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4165        .addReg(Reg, RegState::Undef).addImm(0xff);
4166     return true;
4167   }
4168   case X86::AVX512_512_SEXT_MASK_32:
4169   case X86::AVX512_512_SEXT_MASK_64: {
4170     Register Reg = MIB->getOperand(0).getReg();
4171     Register MaskReg = MIB->getOperand(1).getReg();
4172     unsigned MaskState = getRegState(MIB->getOperand(1));
4173     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4174                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4175     MI.RemoveOperand(1);
4176     MIB->setDesc(get(Opc));
4177     // VPTERNLOG needs 3 register inputs and an immediate.
4178     // 0xff will return 1s for any input.
4179     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4180        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4181     return true;
4182   }
4183   case X86::VMOVAPSZ128rm_NOVLX:
4184     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4185                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4186   case X86::VMOVUPSZ128rm_NOVLX:
4187     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4188                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4189   case X86::VMOVAPSZ256rm_NOVLX:
4190     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4191                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4192   case X86::VMOVUPSZ256rm_NOVLX:
4193     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4194                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4195   case X86::VMOVAPSZ128mr_NOVLX:
4196     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4197                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4198   case X86::VMOVUPSZ128mr_NOVLX:
4199     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4200                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4201   case X86::VMOVAPSZ256mr_NOVLX:
4202     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4203                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4204   case X86::VMOVUPSZ256mr_NOVLX:
4205     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4206                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4207   case X86::MOV32ri64: {
4208     Register Reg = MIB->getOperand(0).getReg();
4209     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4210     MI.setDesc(get(X86::MOV32ri));
4211     MIB->getOperand(0).setReg(Reg32);
4212     MIB.addReg(Reg, RegState::ImplicitDefine);
4213     return true;
4214   }
4215 
4216   // KNL does not recognize dependency-breaking idioms for mask registers,
4217   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4218   // Using %k0 as the undef input register is a performance heuristic based
4219   // on the assumption that %k0 is used less frequently than the other mask
4220   // registers, since it is not usable as a write mask.
4221   // FIXME: A more advanced approach would be to choose the best input mask
4222   // register based on context.
4223   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4224   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4225   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4226   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4227   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4228   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4229   case TargetOpcode::LOAD_STACK_GUARD:
4230     expandLoadStackGuard(MIB, *this);
4231     return true;
4232   case X86::XOR64_FP:
4233   case X86::XOR32_FP:
4234     return expandXorFP(MIB, *this);
4235   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4236   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4237   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4238   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4239   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4240   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4241   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4242   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4243   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4244   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4245   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4246   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4247   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4248   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4249   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4250   }
4251   return false;
4252 }
4253 
4254 /// Return true for all instructions that only update
4255 /// the first 32 or 64-bits of the destination register and leave the rest
4256 /// unmodified. This can be used to avoid folding loads if the instructions
4257 /// only update part of the destination register, and the non-updated part is
4258 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4259 /// instructions breaks the partial register dependency and it can improve
4260 /// performance. e.g.:
4261 ///
4262 ///   movss (%rdi), %xmm0
4263 ///   cvtss2sd %xmm0, %xmm0
4264 ///
4265 /// Instead of
4266 ///   cvtss2sd (%rdi), %xmm0
4267 ///
4268 /// FIXME: This should be turned into a TSFlags.
4269 ///
4270 static bool hasPartialRegUpdate(unsigned Opcode,
4271                                 const X86Subtarget &Subtarget,
4272                                 bool ForLoadFold = false) {
4273   switch (Opcode) {
4274   case X86::CVTSI2SSrr:
4275   case X86::CVTSI2SSrm:
4276   case X86::CVTSI642SSrr:
4277   case X86::CVTSI642SSrm:
4278   case X86::CVTSI2SDrr:
4279   case X86::CVTSI2SDrm:
4280   case X86::CVTSI642SDrr:
4281   case X86::CVTSI642SDrm:
4282     // Load folding won't effect the undef register update since the input is
4283     // a GPR.
4284     return !ForLoadFold;
4285   case X86::CVTSD2SSrr:
4286   case X86::CVTSD2SSrm:
4287   case X86::CVTSS2SDrr:
4288   case X86::CVTSS2SDrm:
4289   case X86::MOVHPDrm:
4290   case X86::MOVHPSrm:
4291   case X86::MOVLPDrm:
4292   case X86::MOVLPSrm:
4293   case X86::RCPSSr:
4294   case X86::RCPSSm:
4295   case X86::RCPSSr_Int:
4296   case X86::RCPSSm_Int:
4297   case X86::ROUNDSDr:
4298   case X86::ROUNDSDm:
4299   case X86::ROUNDSSr:
4300   case X86::ROUNDSSm:
4301   case X86::RSQRTSSr:
4302   case X86::RSQRTSSm:
4303   case X86::RSQRTSSr_Int:
4304   case X86::RSQRTSSm_Int:
4305   case X86::SQRTSSr:
4306   case X86::SQRTSSm:
4307   case X86::SQRTSSr_Int:
4308   case X86::SQRTSSm_Int:
4309   case X86::SQRTSDr:
4310   case X86::SQRTSDm:
4311   case X86::SQRTSDr_Int:
4312   case X86::SQRTSDm_Int:
4313     return true;
4314   // GPR
4315   case X86::POPCNT32rm:
4316   case X86::POPCNT32rr:
4317   case X86::POPCNT64rm:
4318   case X86::POPCNT64rr:
4319     return Subtarget.hasPOPCNTFalseDeps();
4320   case X86::LZCNT32rm:
4321   case X86::LZCNT32rr:
4322   case X86::LZCNT64rm:
4323   case X86::LZCNT64rr:
4324   case X86::TZCNT32rm:
4325   case X86::TZCNT32rr:
4326   case X86::TZCNT64rm:
4327   case X86::TZCNT64rr:
4328     return Subtarget.hasLZCNTFalseDeps();
4329   }
4330 
4331   return false;
4332 }
4333 
4334 /// Inform the BreakFalseDeps pass how many idle
4335 /// instructions we would like before a partial register update.
4336 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4337     const MachineInstr &MI, unsigned OpNum,
4338     const TargetRegisterInfo *TRI) const {
4339   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4340     return 0;
4341 
4342   // If MI is marked as reading Reg, the partial register update is wanted.
4343   const MachineOperand &MO = MI.getOperand(0);
4344   Register Reg = MO.getReg();
4345   if (Register::isVirtualRegister(Reg)) {
4346     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4347       return 0;
4348   } else {
4349     if (MI.readsRegister(Reg, TRI))
4350       return 0;
4351   }
4352 
4353   // If any instructions in the clearance range are reading Reg, insert a
4354   // dependency breaking instruction, which is inexpensive and is likely to
4355   // be hidden in other instruction's cycles.
4356   return PartialRegUpdateClearance;
4357 }
4358 
4359 // Return true for any instruction the copies the high bits of the first source
4360 // operand into the unused high bits of the destination operand.
4361 static bool hasUndefRegUpdate(unsigned Opcode, unsigned &OpNum,
4362                               bool ForLoadFold = false) {
4363   // Set the OpNum parameter to the first source operand.
4364   OpNum = 1;
4365   switch (Opcode) {
4366   case X86::VCVTSI2SSrr:
4367   case X86::VCVTSI2SSrm:
4368   case X86::VCVTSI2SSrr_Int:
4369   case X86::VCVTSI2SSrm_Int:
4370   case X86::VCVTSI642SSrr:
4371   case X86::VCVTSI642SSrm:
4372   case X86::VCVTSI642SSrr_Int:
4373   case X86::VCVTSI642SSrm_Int:
4374   case X86::VCVTSI2SDrr:
4375   case X86::VCVTSI2SDrm:
4376   case X86::VCVTSI2SDrr_Int:
4377   case X86::VCVTSI2SDrm_Int:
4378   case X86::VCVTSI642SDrr:
4379   case X86::VCVTSI642SDrm:
4380   case X86::VCVTSI642SDrr_Int:
4381   case X86::VCVTSI642SDrm_Int:
4382   // AVX-512
4383   case X86::VCVTSI2SSZrr:
4384   case X86::VCVTSI2SSZrm:
4385   case X86::VCVTSI2SSZrr_Int:
4386   case X86::VCVTSI2SSZrrb_Int:
4387   case X86::VCVTSI2SSZrm_Int:
4388   case X86::VCVTSI642SSZrr:
4389   case X86::VCVTSI642SSZrm:
4390   case X86::VCVTSI642SSZrr_Int:
4391   case X86::VCVTSI642SSZrrb_Int:
4392   case X86::VCVTSI642SSZrm_Int:
4393   case X86::VCVTSI2SDZrr:
4394   case X86::VCVTSI2SDZrm:
4395   case X86::VCVTSI2SDZrr_Int:
4396   case X86::VCVTSI2SDZrm_Int:
4397   case X86::VCVTSI642SDZrr:
4398   case X86::VCVTSI642SDZrm:
4399   case X86::VCVTSI642SDZrr_Int:
4400   case X86::VCVTSI642SDZrrb_Int:
4401   case X86::VCVTSI642SDZrm_Int:
4402   case X86::VCVTUSI2SSZrr:
4403   case X86::VCVTUSI2SSZrm:
4404   case X86::VCVTUSI2SSZrr_Int:
4405   case X86::VCVTUSI2SSZrrb_Int:
4406   case X86::VCVTUSI2SSZrm_Int:
4407   case X86::VCVTUSI642SSZrr:
4408   case X86::VCVTUSI642SSZrm:
4409   case X86::VCVTUSI642SSZrr_Int:
4410   case X86::VCVTUSI642SSZrrb_Int:
4411   case X86::VCVTUSI642SSZrm_Int:
4412   case X86::VCVTUSI2SDZrr:
4413   case X86::VCVTUSI2SDZrm:
4414   case X86::VCVTUSI2SDZrr_Int:
4415   case X86::VCVTUSI2SDZrm_Int:
4416   case X86::VCVTUSI642SDZrr:
4417   case X86::VCVTUSI642SDZrm:
4418   case X86::VCVTUSI642SDZrr_Int:
4419   case X86::VCVTUSI642SDZrrb_Int:
4420   case X86::VCVTUSI642SDZrm_Int:
4421     // Load folding won't effect the undef register update since the input is
4422     // a GPR.
4423     return !ForLoadFold;
4424   case X86::VCVTSD2SSrr:
4425   case X86::VCVTSD2SSrm:
4426   case X86::VCVTSD2SSrr_Int:
4427   case X86::VCVTSD2SSrm_Int:
4428   case X86::VCVTSS2SDrr:
4429   case X86::VCVTSS2SDrm:
4430   case X86::VCVTSS2SDrr_Int:
4431   case X86::VCVTSS2SDrm_Int:
4432   case X86::VRCPSSr:
4433   case X86::VRCPSSr_Int:
4434   case X86::VRCPSSm:
4435   case X86::VRCPSSm_Int:
4436   case X86::VROUNDSDr:
4437   case X86::VROUNDSDm:
4438   case X86::VROUNDSDr_Int:
4439   case X86::VROUNDSDm_Int:
4440   case X86::VROUNDSSr:
4441   case X86::VROUNDSSm:
4442   case X86::VROUNDSSr_Int:
4443   case X86::VROUNDSSm_Int:
4444   case X86::VRSQRTSSr:
4445   case X86::VRSQRTSSr_Int:
4446   case X86::VRSQRTSSm:
4447   case X86::VRSQRTSSm_Int:
4448   case X86::VSQRTSSr:
4449   case X86::VSQRTSSr_Int:
4450   case X86::VSQRTSSm:
4451   case X86::VSQRTSSm_Int:
4452   case X86::VSQRTSDr:
4453   case X86::VSQRTSDr_Int:
4454   case X86::VSQRTSDm:
4455   case X86::VSQRTSDm_Int:
4456   // AVX-512
4457   case X86::VCVTSD2SSZrr:
4458   case X86::VCVTSD2SSZrr_Int:
4459   case X86::VCVTSD2SSZrrb_Int:
4460   case X86::VCVTSD2SSZrm:
4461   case X86::VCVTSD2SSZrm_Int:
4462   case X86::VCVTSS2SDZrr:
4463   case X86::VCVTSS2SDZrr_Int:
4464   case X86::VCVTSS2SDZrrb_Int:
4465   case X86::VCVTSS2SDZrm:
4466   case X86::VCVTSS2SDZrm_Int:
4467   case X86::VGETEXPSDZr:
4468   case X86::VGETEXPSDZrb:
4469   case X86::VGETEXPSDZm:
4470   case X86::VGETEXPSSZr:
4471   case X86::VGETEXPSSZrb:
4472   case X86::VGETEXPSSZm:
4473   case X86::VGETMANTSDZrri:
4474   case X86::VGETMANTSDZrrib:
4475   case X86::VGETMANTSDZrmi:
4476   case X86::VGETMANTSSZrri:
4477   case X86::VGETMANTSSZrrib:
4478   case X86::VGETMANTSSZrmi:
4479   case X86::VRNDSCALESDZr:
4480   case X86::VRNDSCALESDZr_Int:
4481   case X86::VRNDSCALESDZrb_Int:
4482   case X86::VRNDSCALESDZm:
4483   case X86::VRNDSCALESDZm_Int:
4484   case X86::VRNDSCALESSZr:
4485   case X86::VRNDSCALESSZr_Int:
4486   case X86::VRNDSCALESSZrb_Int:
4487   case X86::VRNDSCALESSZm:
4488   case X86::VRNDSCALESSZm_Int:
4489   case X86::VRCP14SDZrr:
4490   case X86::VRCP14SDZrm:
4491   case X86::VRCP14SSZrr:
4492   case X86::VRCP14SSZrm:
4493   case X86::VRCP28SDZr:
4494   case X86::VRCP28SDZrb:
4495   case X86::VRCP28SDZm:
4496   case X86::VRCP28SSZr:
4497   case X86::VRCP28SSZrb:
4498   case X86::VRCP28SSZm:
4499   case X86::VREDUCESSZrmi:
4500   case X86::VREDUCESSZrri:
4501   case X86::VREDUCESSZrrib:
4502   case X86::VRSQRT14SDZrr:
4503   case X86::VRSQRT14SDZrm:
4504   case X86::VRSQRT14SSZrr:
4505   case X86::VRSQRT14SSZrm:
4506   case X86::VRSQRT28SDZr:
4507   case X86::VRSQRT28SDZrb:
4508   case X86::VRSQRT28SDZm:
4509   case X86::VRSQRT28SSZr:
4510   case X86::VRSQRT28SSZrb:
4511   case X86::VRSQRT28SSZm:
4512   case X86::VSQRTSSZr:
4513   case X86::VSQRTSSZr_Int:
4514   case X86::VSQRTSSZrb_Int:
4515   case X86::VSQRTSSZm:
4516   case X86::VSQRTSSZm_Int:
4517   case X86::VSQRTSDZr:
4518   case X86::VSQRTSDZr_Int:
4519   case X86::VSQRTSDZrb_Int:
4520   case X86::VSQRTSDZm:
4521   case X86::VSQRTSDZm_Int:
4522     return true;
4523   case X86::VMOVSSZrrk:
4524   case X86::VMOVSDZrrk:
4525     OpNum = 3;
4526     return true;
4527   case X86::VMOVSSZrrkz:
4528   case X86::VMOVSDZrrkz:
4529     OpNum = 2;
4530     return true;
4531   }
4532 
4533   return false;
4534 }
4535 
4536 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4537 /// before certain undef register reads.
4538 ///
4539 /// This catches the VCVTSI2SD family of instructions:
4540 ///
4541 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4542 ///
4543 /// We should to be careful *not* to catch VXOR idioms which are presumably
4544 /// handled specially in the pipeline:
4545 ///
4546 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4547 ///
4548 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4549 /// high bits that are passed-through are not live.
4550 unsigned
4551 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4552                                    const TargetRegisterInfo *TRI) const {
4553   if (!hasUndefRegUpdate(MI.getOpcode(), OpNum))
4554     return 0;
4555 
4556   const MachineOperand &MO = MI.getOperand(OpNum);
4557   if (MO.isUndef() && Register::isPhysicalRegister(MO.getReg())) {
4558     return UndefRegClearance;
4559   }
4560   return 0;
4561 }
4562 
4563 void X86InstrInfo::breakPartialRegDependency(
4564     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4565   Register Reg = MI.getOperand(OpNum).getReg();
4566   // If MI kills this register, the false dependence is already broken.
4567   if (MI.killsRegister(Reg, TRI))
4568     return;
4569 
4570   if (X86::VR128RegClass.contains(Reg)) {
4571     // These instructions are all floating point domain, so xorps is the best
4572     // choice.
4573     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4574     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4575         .addReg(Reg, RegState::Undef)
4576         .addReg(Reg, RegState::Undef);
4577     MI.addRegisterKilled(Reg, TRI, true);
4578   } else if (X86::VR256RegClass.contains(Reg)) {
4579     // Use vxorps to clear the full ymm register.
4580     // It wants to read and write the xmm sub-register.
4581     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4582     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4583         .addReg(XReg, RegState::Undef)
4584         .addReg(XReg, RegState::Undef)
4585         .addReg(Reg, RegState::ImplicitDefine);
4586     MI.addRegisterKilled(Reg, TRI, true);
4587   } else if (X86::GR64RegClass.contains(Reg)) {
4588     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4589     // as well.
4590     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4591     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4592         .addReg(XReg, RegState::Undef)
4593         .addReg(XReg, RegState::Undef)
4594         .addReg(Reg, RegState::ImplicitDefine);
4595     MI.addRegisterKilled(Reg, TRI, true);
4596   } else if (X86::GR32RegClass.contains(Reg)) {
4597     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4598         .addReg(Reg, RegState::Undef)
4599         .addReg(Reg, RegState::Undef);
4600     MI.addRegisterKilled(Reg, TRI, true);
4601   }
4602 }
4603 
4604 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4605                         int PtrOffset = 0) {
4606   unsigned NumAddrOps = MOs.size();
4607 
4608   if (NumAddrOps < 4) {
4609     // FrameIndex only - add an immediate offset (whether its zero or not).
4610     for (unsigned i = 0; i != NumAddrOps; ++i)
4611       MIB.add(MOs[i]);
4612     addOffset(MIB, PtrOffset);
4613   } else {
4614     // General Memory Addressing - we need to add any offset to an existing
4615     // offset.
4616     assert(MOs.size() == 5 && "Unexpected memory operand list length");
4617     for (unsigned i = 0; i != NumAddrOps; ++i) {
4618       const MachineOperand &MO = MOs[i];
4619       if (i == 3 && PtrOffset != 0) {
4620         MIB.addDisp(MO, PtrOffset);
4621       } else {
4622         MIB.add(MO);
4623       }
4624     }
4625   }
4626 }
4627 
4628 static void updateOperandRegConstraints(MachineFunction &MF,
4629                                         MachineInstr &NewMI,
4630                                         const TargetInstrInfo &TII) {
4631   MachineRegisterInfo &MRI = MF.getRegInfo();
4632   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4633 
4634   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4635     MachineOperand &MO = NewMI.getOperand(Idx);
4636     // We only need to update constraints on virtual register operands.
4637     if (!MO.isReg())
4638       continue;
4639     Register Reg = MO.getReg();
4640     if (!Register::isVirtualRegister(Reg))
4641       continue;
4642 
4643     auto *NewRC = MRI.constrainRegClass(
4644         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4645     if (!NewRC) {
4646       LLVM_DEBUG(
4647           dbgs() << "WARNING: Unable to update register constraint for operand "
4648                  << Idx << " of instruction:\n";
4649           NewMI.dump(); dbgs() << "\n");
4650     }
4651   }
4652 }
4653 
4654 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4655                                      ArrayRef<MachineOperand> MOs,
4656                                      MachineBasicBlock::iterator InsertPt,
4657                                      MachineInstr &MI,
4658                                      const TargetInstrInfo &TII) {
4659   // Create the base instruction with the memory operand as the first part.
4660   // Omit the implicit operands, something BuildMI can't do.
4661   MachineInstr *NewMI =
4662       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4663   MachineInstrBuilder MIB(MF, NewMI);
4664   addOperands(MIB, MOs);
4665 
4666   // Loop over the rest of the ri operands, converting them over.
4667   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4668   for (unsigned i = 0; i != NumOps; ++i) {
4669     MachineOperand &MO = MI.getOperand(i + 2);
4670     MIB.add(MO);
4671   }
4672   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4673     MachineOperand &MO = MI.getOperand(i);
4674     MIB.add(MO);
4675   }
4676 
4677   updateOperandRegConstraints(MF, *NewMI, TII);
4678 
4679   MachineBasicBlock *MBB = InsertPt->getParent();
4680   MBB->insert(InsertPt, NewMI);
4681 
4682   return MIB;
4683 }
4684 
4685 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4686                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
4687                               MachineBasicBlock::iterator InsertPt,
4688                               MachineInstr &MI, const TargetInstrInfo &TII,
4689                               int PtrOffset = 0) {
4690   // Omit the implicit operands, something BuildMI can't do.
4691   MachineInstr *NewMI =
4692       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4693   MachineInstrBuilder MIB(MF, NewMI);
4694 
4695   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4696     MachineOperand &MO = MI.getOperand(i);
4697     if (i == OpNo) {
4698       assert(MO.isReg() && "Expected to fold into reg operand!");
4699       addOperands(MIB, MOs, PtrOffset);
4700     } else {
4701       MIB.add(MO);
4702     }
4703   }
4704 
4705   updateOperandRegConstraints(MF, *NewMI, TII);
4706 
4707   // Copy the NoFPExcept flag from the instruction we're fusing.
4708   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
4709     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
4710 
4711   MachineBasicBlock *MBB = InsertPt->getParent();
4712   MBB->insert(InsertPt, NewMI);
4713 
4714   return MIB;
4715 }
4716 
4717 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4718                                 ArrayRef<MachineOperand> MOs,
4719                                 MachineBasicBlock::iterator InsertPt,
4720                                 MachineInstr &MI) {
4721   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4722                                     MI.getDebugLoc(), TII.get(Opcode));
4723   addOperands(MIB, MOs);
4724   return MIB.addImm(0);
4725 }
4726 
4727 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4728     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4729     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4730     unsigned Size, unsigned Align) const {
4731   switch (MI.getOpcode()) {
4732   case X86::INSERTPSrr:
4733   case X86::VINSERTPSrr:
4734   case X86::VINSERTPSZrr:
4735     // Attempt to convert the load of inserted vector into a fold load
4736     // of a single float.
4737     if (OpNum == 2) {
4738       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4739       unsigned ZMask = Imm & 15;
4740       unsigned DstIdx = (Imm >> 4) & 3;
4741       unsigned SrcIdx = (Imm >> 6) & 3;
4742 
4743       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4744       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4745       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4746       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4747         int PtrOffset = SrcIdx * 4;
4748         unsigned NewImm = (DstIdx << 4) | ZMask;
4749         unsigned NewOpCode =
4750             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4751             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4752                                                     X86::INSERTPSrm;
4753         MachineInstr *NewMI =
4754             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4755         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4756         return NewMI;
4757       }
4758     }
4759     break;
4760   case X86::MOVHLPSrr:
4761   case X86::VMOVHLPSrr:
4762   case X86::VMOVHLPSZrr:
4763     // Move the upper 64-bits of the second operand to the lower 64-bits.
4764     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4765     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4766     if (OpNum == 2) {
4767       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4768       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4769       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4770       if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4771         unsigned NewOpCode =
4772             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4773             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4774                                                    X86::MOVLPSrm;
4775         MachineInstr *NewMI =
4776             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4777         return NewMI;
4778       }
4779     }
4780     break;
4781   case X86::UNPCKLPDrr:
4782     // If we won't be able to fold this to the memory form of UNPCKL, use
4783     // MOVHPD instead. Done as custom because we can't have this in the load
4784     // table twice.
4785     if (OpNum == 2) {
4786       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4787       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4788       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4789       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4790         MachineInstr *NewMI =
4791             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4792         return NewMI;
4793       }
4794     }
4795     break;
4796   }
4797 
4798   return nullptr;
4799 }
4800 
4801 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4802                                                MachineInstr &MI) {
4803   unsigned Ignored;
4804   if (!hasUndefRegUpdate(MI.getOpcode(), Ignored, /*ForLoadFold*/true) ||
4805       !MI.getOperand(1).isReg())
4806     return false;
4807 
4808   // The are two cases we need to handle depending on where in the pipeline
4809   // the folding attempt is being made.
4810   // -Register has the undef flag set.
4811   // -Register is produced by the IMPLICIT_DEF instruction.
4812 
4813   if (MI.getOperand(1).isUndef())
4814     return true;
4815 
4816   MachineRegisterInfo &RegInfo = MF.getRegInfo();
4817   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4818   return VRegDef && VRegDef->isImplicitDef();
4819 }
4820 
4821 
4822 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4823     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4824     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4825     unsigned Size, unsigned Align, bool AllowCommute) const {
4826   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4827   bool isTwoAddrFold = false;
4828 
4829   // For CPUs that favor the register form of a call or push,
4830   // do not fold loads into calls or pushes, unless optimizing for size
4831   // aggressively.
4832   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4833       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4834        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4835        MI.getOpcode() == X86::PUSH64r))
4836     return nullptr;
4837 
4838   // Avoid partial and undef register update stalls unless optimizing for size.
4839   if (!MF.getFunction().hasOptSize() &&
4840       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4841        shouldPreventUndefRegUpdateMemFold(MF, MI)))
4842     return nullptr;
4843 
4844   unsigned NumOps = MI.getDesc().getNumOperands();
4845   bool isTwoAddr =
4846       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4847 
4848   // FIXME: AsmPrinter doesn't know how to handle
4849   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4850   if (MI.getOpcode() == X86::ADD32ri &&
4851       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4852     return nullptr;
4853 
4854   // GOTTPOFF relocation loads can only be folded into add instructions.
4855   // FIXME: Need to exclude other relocations that only support specific
4856   // instructions.
4857   if (MOs.size() == X86::AddrNumOperands &&
4858       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4859       MI.getOpcode() != X86::ADD64rr)
4860     return nullptr;
4861 
4862   MachineInstr *NewMI = nullptr;
4863 
4864   // Attempt to fold any custom cases we have.
4865   if (MachineInstr *CustomMI =
4866           foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4867     return CustomMI;
4868 
4869   const X86MemoryFoldTableEntry *I = nullptr;
4870 
4871   // Folding a memory location into the two-address part of a two-address
4872   // instruction is different than folding it other places.  It requires
4873   // replacing the *two* registers with the memory location.
4874   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4875       MI.getOperand(1).isReg() &&
4876       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4877     I = lookupTwoAddrFoldTable(MI.getOpcode());
4878     isTwoAddrFold = true;
4879   } else {
4880     if (OpNum == 0) {
4881       if (MI.getOpcode() == X86::MOV32r0) {
4882         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4883         if (NewMI)
4884           return NewMI;
4885       }
4886     }
4887 
4888     I = lookupFoldTable(MI.getOpcode(), OpNum);
4889   }
4890 
4891   if (I != nullptr) {
4892     unsigned Opcode = I->DstOp;
4893     unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4894     MinAlign = MinAlign ? 1 << (MinAlign - 1) : 0;
4895     if (Align < MinAlign)
4896       return nullptr;
4897     bool NarrowToMOV32rm = false;
4898     if (Size) {
4899       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4900       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4901                                                   &RI, MF);
4902       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4903       if (Size < RCSize) {
4904         // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4905         // Check if it's safe to fold the load. If the size of the object is
4906         // narrower than the load width, then it's not.
4907         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4908           return nullptr;
4909         // If this is a 64-bit load, but the spill slot is 32, then we can do
4910         // a 32-bit load which is implicitly zero-extended. This likely is
4911         // due to live interval analysis remat'ing a load from stack slot.
4912         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4913           return nullptr;
4914         Opcode = X86::MOV32rm;
4915         NarrowToMOV32rm = true;
4916       }
4917     }
4918 
4919     if (isTwoAddrFold)
4920       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4921     else
4922       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4923 
4924     if (NarrowToMOV32rm) {
4925       // If this is the special case where we use a MOV32rm to load a 32-bit
4926       // value and zero-extend the top bits. Change the destination register
4927       // to a 32-bit one.
4928       Register DstReg = NewMI->getOperand(0).getReg();
4929       if (Register::isPhysicalRegister(DstReg))
4930         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4931       else
4932         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4933     }
4934     return NewMI;
4935   }
4936 
4937   // If the instruction and target operand are commutable, commute the
4938   // instruction and try again.
4939   if (AllowCommute) {
4940     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4941     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4942       bool HasDef = MI.getDesc().getNumDefs();
4943       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4944       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4945       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4946       bool Tied1 =
4947           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4948       bool Tied2 =
4949           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4950 
4951       // If either of the commutable operands are tied to the destination
4952       // then we can not commute + fold.
4953       if ((HasDef && Reg0 == Reg1 && Tied1) ||
4954           (HasDef && Reg0 == Reg2 && Tied2))
4955         return nullptr;
4956 
4957       MachineInstr *CommutedMI =
4958           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4959       if (!CommutedMI) {
4960         // Unable to commute.
4961         return nullptr;
4962       }
4963       if (CommutedMI != &MI) {
4964         // New instruction. We can't fold from this.
4965         CommutedMI->eraseFromParent();
4966         return nullptr;
4967       }
4968 
4969       // Attempt to fold with the commuted version of the instruction.
4970       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4971                                     Size, Align, /*AllowCommute=*/false);
4972       if (NewMI)
4973         return NewMI;
4974 
4975       // Folding failed again - undo the commute before returning.
4976       MachineInstr *UncommutedMI =
4977           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4978       if (!UncommutedMI) {
4979         // Unable to commute.
4980         return nullptr;
4981       }
4982       if (UncommutedMI != &MI) {
4983         // New instruction. It doesn't need to be kept.
4984         UncommutedMI->eraseFromParent();
4985         return nullptr;
4986       }
4987 
4988       // Return here to prevent duplicate fuse failure report.
4989       return nullptr;
4990     }
4991   }
4992 
4993   // No fusion
4994   if (PrintFailedFusing && !MI.isCopy())
4995     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4996   return nullptr;
4997 }
4998 
4999 MachineInstr *
5000 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5001                                     ArrayRef<unsigned> Ops,
5002                                     MachineBasicBlock::iterator InsertPt,
5003                                     int FrameIndex, LiveIntervals *LIS,
5004                                     VirtRegMap *VRM) const {
5005   // Check switch flag
5006   if (NoFusing)
5007     return nullptr;
5008 
5009   // Avoid partial and undef register update stalls unless optimizing for size.
5010   if (!MF.getFunction().hasOptSize() &&
5011       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5012        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5013     return nullptr;
5014 
5015   // Don't fold subreg spills, or reloads that use a high subreg.
5016   for (auto Op : Ops) {
5017     MachineOperand &MO = MI.getOperand(Op);
5018     auto SubReg = MO.getSubReg();
5019     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5020       return nullptr;
5021   }
5022 
5023   const MachineFrameInfo &MFI = MF.getFrameInfo();
5024   unsigned Size = MFI.getObjectSize(FrameIndex);
5025   unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5026   // If the function stack isn't realigned we don't want to fold instructions
5027   // that need increased alignment.
5028   if (!RI.needsStackRealignment(MF))
5029     Alignment =
5030         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5031   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5032     unsigned NewOpc = 0;
5033     unsigned RCSize = 0;
5034     switch (MI.getOpcode()) {
5035     default: return nullptr;
5036     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5037     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5038     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5039     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5040     }
5041     // Check if it's safe to fold the load. If the size of the object is
5042     // narrower than the load width, then it's not.
5043     if (Size < RCSize)
5044       return nullptr;
5045     // Change to CMPXXri r, 0 first.
5046     MI.setDesc(get(NewOpc));
5047     MI.getOperand(1).ChangeToImmediate(0);
5048   } else if (Ops.size() != 1)
5049     return nullptr;
5050 
5051   return foldMemoryOperandImpl(MF, MI, Ops[0],
5052                                MachineOperand::CreateFI(FrameIndex), InsertPt,
5053                                Size, Alignment, /*AllowCommute=*/true);
5054 }
5055 
5056 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5057 /// because the latter uses contents that wouldn't be defined in the folded
5058 /// version.  For instance, this transformation isn't legal:
5059 ///   movss (%rdi), %xmm0
5060 ///   addps %xmm0, %xmm0
5061 /// ->
5062 ///   addps (%rdi), %xmm0
5063 ///
5064 /// But this one is:
5065 ///   movss (%rdi), %xmm0
5066 ///   addss %xmm0, %xmm0
5067 /// ->
5068 ///   addss (%rdi), %xmm0
5069 ///
5070 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5071                                              const MachineInstr &UserMI,
5072                                              const MachineFunction &MF) {
5073   unsigned Opc = LoadMI.getOpcode();
5074   unsigned UserOpc = UserMI.getOpcode();
5075   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5076   const TargetRegisterClass *RC =
5077       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5078   unsigned RegSize = TRI.getRegSizeInBits(*RC);
5079 
5080   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5081        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5082        Opc == X86::VMOVSSZrm_alt) &&
5083       RegSize > 32) {
5084     // These instructions only load 32 bits, we can't fold them if the
5085     // destination register is wider than 32 bits (4 bytes), and its user
5086     // instruction isn't scalar (SS).
5087     switch (UserOpc) {
5088     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5089     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5090     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5091     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5092     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5093     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5094     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5095     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5096     case X86::VCMPSSZrr_Intk:
5097     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5098     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5099     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5100     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5101     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5102     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5103     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5104     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5105     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5106     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5107     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5108     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5109     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5110     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5111     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5112     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5113     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5114     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5115     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5116     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5117     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5118     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5119     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5120     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5121     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5122     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5123     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5124     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5125     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5126     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5127     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5128       return false;
5129     default:
5130       return true;
5131     }
5132   }
5133 
5134   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5135        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5136        Opc == X86::VMOVSDZrm_alt) &&
5137       RegSize > 64) {
5138     // These instructions only load 64 bits, we can't fold them if the
5139     // destination register is wider than 64 bits (8 bytes), and its user
5140     // instruction isn't scalar (SD).
5141     switch (UserOpc) {
5142     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5143     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5144     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5145     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5146     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5147     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5148     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5149     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5150     case X86::VCMPSDZrr_Intk:
5151     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5152     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5153     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5154     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5155     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5156     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5157     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5158     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5159     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5160     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5161     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5162     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5163     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5164     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5165     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5166     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5167     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5168     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5169     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5170     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5171     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5172     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5173     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5174     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5175     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5176     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5177     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5178     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5179     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5180     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5181     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5182       return false;
5183     default:
5184       return true;
5185     }
5186   }
5187 
5188   return false;
5189 }
5190 
5191 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5192     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5193     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5194     LiveIntervals *LIS) const {
5195 
5196   // TODO: Support the case where LoadMI loads a wide register, but MI
5197   // only uses a subreg.
5198   for (auto Op : Ops) {
5199     if (MI.getOperand(Op).getSubReg())
5200       return nullptr;
5201   }
5202 
5203   // If loading from a FrameIndex, fold directly from the FrameIndex.
5204   unsigned NumOps = LoadMI.getDesc().getNumOperands();
5205   int FrameIndex;
5206   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5207     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5208       return nullptr;
5209     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5210   }
5211 
5212   // Check switch flag
5213   if (NoFusing) return nullptr;
5214 
5215   // Avoid partial and undef register update stalls unless optimizing for size.
5216   if (!MF.getFunction().hasOptSize() &&
5217       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5218        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5219     return nullptr;
5220 
5221   // Determine the alignment of the load.
5222   unsigned Alignment = 0;
5223   if (LoadMI.hasOneMemOperand())
5224     Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5225   else
5226     switch (LoadMI.getOpcode()) {
5227     case X86::AVX512_512_SET0:
5228     case X86::AVX512_512_SETALLONES:
5229       Alignment = 64;
5230       break;
5231     case X86::AVX2_SETALLONES:
5232     case X86::AVX1_SETALLONES:
5233     case X86::AVX_SET0:
5234     case X86::AVX512_256_SET0:
5235       Alignment = 32;
5236       break;
5237     case X86::V_SET0:
5238     case X86::V_SETALLONES:
5239     case X86::AVX512_128_SET0:
5240     case X86::FsFLD0F128:
5241     case X86::AVX512_FsFLD0F128:
5242       Alignment = 16;
5243       break;
5244     case X86::MMX_SET0:
5245     case X86::FsFLD0SD:
5246     case X86::AVX512_FsFLD0SD:
5247       Alignment = 8;
5248       break;
5249     case X86::FsFLD0SS:
5250     case X86::AVX512_FsFLD0SS:
5251       Alignment = 4;
5252       break;
5253     default:
5254       return nullptr;
5255     }
5256   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5257     unsigned NewOpc = 0;
5258     switch (MI.getOpcode()) {
5259     default: return nullptr;
5260     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5261     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5262     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5263     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5264     }
5265     // Change to CMPXXri r, 0 first.
5266     MI.setDesc(get(NewOpc));
5267     MI.getOperand(1).ChangeToImmediate(0);
5268   } else if (Ops.size() != 1)
5269     return nullptr;
5270 
5271   // Make sure the subregisters match.
5272   // Otherwise we risk changing the size of the load.
5273   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5274     return nullptr;
5275 
5276   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5277   switch (LoadMI.getOpcode()) {
5278   case X86::MMX_SET0:
5279   case X86::V_SET0:
5280   case X86::V_SETALLONES:
5281   case X86::AVX2_SETALLONES:
5282   case X86::AVX1_SETALLONES:
5283   case X86::AVX_SET0:
5284   case X86::AVX512_128_SET0:
5285   case X86::AVX512_256_SET0:
5286   case X86::AVX512_512_SET0:
5287   case X86::AVX512_512_SETALLONES:
5288   case X86::FsFLD0SD:
5289   case X86::AVX512_FsFLD0SD:
5290   case X86::FsFLD0SS:
5291   case X86::AVX512_FsFLD0SS:
5292   case X86::FsFLD0F128:
5293   case X86::AVX512_FsFLD0F128: {
5294     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5295     // Create a constant-pool entry and operands to load from it.
5296 
5297     // Medium and large mode can't fold loads this way.
5298     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5299         MF.getTarget().getCodeModel() != CodeModel::Kernel)
5300       return nullptr;
5301 
5302     // x86-32 PIC requires a PIC base register for constant pools.
5303     unsigned PICBase = 0;
5304     if (MF.getTarget().isPositionIndependent()) {
5305       if (Subtarget.is64Bit())
5306         PICBase = X86::RIP;
5307       else
5308         // FIXME: PICBase = getGlobalBaseReg(&MF);
5309         // This doesn't work for several reasons.
5310         // 1. GlobalBaseReg may have been spilled.
5311         // 2. It may not be live at MI.
5312         return nullptr;
5313     }
5314 
5315     // Create a constant-pool entry.
5316     MachineConstantPool &MCP = *MF.getConstantPool();
5317     Type *Ty;
5318     unsigned Opc = LoadMI.getOpcode();
5319     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5320       Ty = Type::getFloatTy(MF.getFunction().getContext());
5321     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5322       Ty = Type::getDoubleTy(MF.getFunction().getContext());
5323     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
5324       Ty = Type::getFP128Ty(MF.getFunction().getContext());
5325     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5326       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5327     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5328              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5329       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5330     else if (Opc == X86::MMX_SET0)
5331       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5332     else
5333       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5334 
5335     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5336                       Opc == X86::AVX512_512_SETALLONES ||
5337                       Opc == X86::AVX1_SETALLONES);
5338     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5339                                     Constant::getNullValue(Ty);
5340     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5341 
5342     // Create operands to load from the constant pool entry.
5343     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5344     MOs.push_back(MachineOperand::CreateImm(1));
5345     MOs.push_back(MachineOperand::CreateReg(0, false));
5346     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5347     MOs.push_back(MachineOperand::CreateReg(0, false));
5348     break;
5349   }
5350   default: {
5351     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5352       return nullptr;
5353 
5354     // Folding a normal load. Just copy the load's address operands.
5355     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5356                LoadMI.operands_begin() + NumOps);
5357     break;
5358   }
5359   }
5360   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5361                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
5362 }
5363 
5364 static SmallVector<MachineMemOperand *, 2>
5365 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5366   SmallVector<MachineMemOperand *, 2> LoadMMOs;
5367 
5368   for (MachineMemOperand *MMO : MMOs) {
5369     if (!MMO->isLoad())
5370       continue;
5371 
5372     if (!MMO->isStore()) {
5373       // Reuse the MMO.
5374       LoadMMOs.push_back(MMO);
5375     } else {
5376       // Clone the MMO and unset the store flag.
5377       LoadMMOs.push_back(MF.getMachineMemOperand(
5378           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5379     }
5380   }
5381 
5382   return LoadMMOs;
5383 }
5384 
5385 static SmallVector<MachineMemOperand *, 2>
5386 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5387   SmallVector<MachineMemOperand *, 2> StoreMMOs;
5388 
5389   for (MachineMemOperand *MMO : MMOs) {
5390     if (!MMO->isStore())
5391       continue;
5392 
5393     if (!MMO->isLoad()) {
5394       // Reuse the MMO.
5395       StoreMMOs.push_back(MMO);
5396     } else {
5397       // Clone the MMO and unset the load flag.
5398       StoreMMOs.push_back(MF.getMachineMemOperand(
5399           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5400     }
5401   }
5402 
5403   return StoreMMOs;
5404 }
5405 
5406 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
5407                                    const TargetRegisterClass *RC,
5408                                    const X86Subtarget &STI) {
5409   assert(STI.hasAVX512() && "Expected at least AVX512!");
5410   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
5411   assert((SpillSize == 64 || STI.hasVLX()) &&
5412          "Can't broadcast less than 64 bytes without AVX512VL!");
5413 
5414   switch (I->Flags & TB_BCAST_MASK) {
5415   default: llvm_unreachable("Unexpected broadcast type!");
5416   case TB_BCAST_D:
5417     switch (SpillSize) {
5418     default: llvm_unreachable("Unknown spill size");
5419     case 16: return X86::VPBROADCASTDZ128m;
5420     case 32: return X86::VPBROADCASTDZ256m;
5421     case 64: return X86::VPBROADCASTDZm;
5422     }
5423     break;
5424   case TB_BCAST_Q:
5425     switch (SpillSize) {
5426     default: llvm_unreachable("Unknown spill size");
5427     case 16: return X86::VPBROADCASTQZ128m;
5428     case 32: return X86::VPBROADCASTQZ256m;
5429     case 64: return X86::VPBROADCASTQZm;
5430     }
5431     break;
5432   case TB_BCAST_SS:
5433     switch (SpillSize) {
5434     default: llvm_unreachable("Unknown spill size");
5435     case 16: return X86::VBROADCASTSSZ128m;
5436     case 32: return X86::VBROADCASTSSZ256m;
5437     case 64: return X86::VBROADCASTSSZm;
5438     }
5439     break;
5440   case TB_BCAST_SD:
5441     switch (SpillSize) {
5442     default: llvm_unreachable("Unknown spill size");
5443     case 16: return X86::VMOVDDUPZ128rm;
5444     case 32: return X86::VBROADCASTSDZ256m;
5445     case 64: return X86::VBROADCASTSDZm;
5446     }
5447     break;
5448   }
5449 }
5450 
5451 bool X86InstrInfo::unfoldMemoryOperand(
5452     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5453     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5454   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5455   if (I == nullptr)
5456     return false;
5457   unsigned Opc = I->DstOp;
5458   unsigned Index = I->Flags & TB_INDEX_MASK;
5459   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5460   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5461   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5462   if (UnfoldLoad && !FoldedLoad)
5463     return false;
5464   UnfoldLoad &= FoldedLoad;
5465   if (UnfoldStore && !FoldedStore)
5466     return false;
5467   UnfoldStore &= FoldedStore;
5468 
5469   const MCInstrDesc &MCID = get(Opc);
5470 
5471   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5472   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5473   // TODO: Check if 32-byte or greater accesses are slow too?
5474   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5475       Subtarget.isUnalignedMem16Slow())
5476     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5477     // conservatively assume the address is unaligned. That's bad for
5478     // performance.
5479     return false;
5480   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5481   SmallVector<MachineOperand,2> BeforeOps;
5482   SmallVector<MachineOperand,2> AfterOps;
5483   SmallVector<MachineOperand,4> ImpOps;
5484   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5485     MachineOperand &Op = MI.getOperand(i);
5486     if (i >= Index && i < Index + X86::AddrNumOperands)
5487       AddrOps.push_back(Op);
5488     else if (Op.isReg() && Op.isImplicit())
5489       ImpOps.push_back(Op);
5490     else if (i < Index)
5491       BeforeOps.push_back(Op);
5492     else if (i > Index)
5493       AfterOps.push_back(Op);
5494   }
5495 
5496   // Emit the load or broadcast instruction.
5497   if (UnfoldLoad) {
5498     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5499 
5500     unsigned Opc;
5501     if (FoldedBCast) {
5502       Opc = getBroadcastOpcode(I, RC, Subtarget);
5503     } else {
5504       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5505       bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5506       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
5507     }
5508 
5509     DebugLoc DL;
5510     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
5511     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5512       MIB.add(AddrOps[i]);
5513     MIB.setMemRefs(MMOs);
5514     NewMIs.push_back(MIB);
5515 
5516     if (UnfoldStore) {
5517       // Address operands cannot be marked isKill.
5518       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5519         MachineOperand &MO = NewMIs[0]->getOperand(i);
5520         if (MO.isReg())
5521           MO.setIsKill(false);
5522       }
5523     }
5524   }
5525 
5526   // Emit the data processing instruction.
5527   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5528   MachineInstrBuilder MIB(MF, DataMI);
5529 
5530   if (FoldedStore)
5531     MIB.addReg(Reg, RegState::Define);
5532   for (MachineOperand &BeforeOp : BeforeOps)
5533     MIB.add(BeforeOp);
5534   if (FoldedLoad)
5535     MIB.addReg(Reg);
5536   for (MachineOperand &AfterOp : AfterOps)
5537     MIB.add(AfterOp);
5538   for (MachineOperand &ImpOp : ImpOps) {
5539     MIB.addReg(ImpOp.getReg(),
5540                getDefRegState(ImpOp.isDef()) |
5541                RegState::Implicit |
5542                getKillRegState(ImpOp.isKill()) |
5543                getDeadRegState(ImpOp.isDead()) |
5544                getUndefRegState(ImpOp.isUndef()));
5545   }
5546   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5547   switch (DataMI->getOpcode()) {
5548   default: break;
5549   case X86::CMP64ri32:
5550   case X86::CMP64ri8:
5551   case X86::CMP32ri:
5552   case X86::CMP32ri8:
5553   case X86::CMP16ri:
5554   case X86::CMP16ri8:
5555   case X86::CMP8ri: {
5556     MachineOperand &MO0 = DataMI->getOperand(0);
5557     MachineOperand &MO1 = DataMI->getOperand(1);
5558     if (MO1.getImm() == 0) {
5559       unsigned NewOpc;
5560       switch (DataMI->getOpcode()) {
5561       default: llvm_unreachable("Unreachable!");
5562       case X86::CMP64ri8:
5563       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5564       case X86::CMP32ri8:
5565       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5566       case X86::CMP16ri8:
5567       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5568       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5569       }
5570       DataMI->setDesc(get(NewOpc));
5571       MO1.ChangeToRegister(MO0.getReg(), false);
5572     }
5573   }
5574   }
5575   NewMIs.push_back(DataMI);
5576 
5577   // Emit the store instruction.
5578   if (UnfoldStore) {
5579     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5580     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5581     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
5582     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5583     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
5584     DebugLoc DL;
5585     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
5586     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5587       MIB.add(AddrOps[i]);
5588     MIB.addReg(Reg, RegState::Kill);
5589     MIB.setMemRefs(MMOs);
5590     NewMIs.push_back(MIB);
5591   }
5592 
5593   return true;
5594 }
5595 
5596 bool
5597 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5598                                   SmallVectorImpl<SDNode*> &NewNodes) const {
5599   if (!N->isMachineOpcode())
5600     return false;
5601 
5602   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5603   if (I == nullptr)
5604     return false;
5605   unsigned Opc = I->DstOp;
5606   unsigned Index = I->Flags & TB_INDEX_MASK;
5607   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5608   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5609   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5610   const MCInstrDesc &MCID = get(Opc);
5611   MachineFunction &MF = DAG.getMachineFunction();
5612   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5613   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5614   unsigned NumDefs = MCID.NumDefs;
5615   std::vector<SDValue> AddrOps;
5616   std::vector<SDValue> BeforeOps;
5617   std::vector<SDValue> AfterOps;
5618   SDLoc dl(N);
5619   unsigned NumOps = N->getNumOperands();
5620   for (unsigned i = 0; i != NumOps-1; ++i) {
5621     SDValue Op = N->getOperand(i);
5622     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5623       AddrOps.push_back(Op);
5624     else if (i < Index-NumDefs)
5625       BeforeOps.push_back(Op);
5626     else if (i > Index-NumDefs)
5627       AfterOps.push_back(Op);
5628   }
5629   SDValue Chain = N->getOperand(NumOps-1);
5630   AddrOps.push_back(Chain);
5631 
5632   // Emit the load instruction.
5633   SDNode *Load = nullptr;
5634   if (FoldedLoad) {
5635     EVT VT = *TRI.legalclasstypes_begin(*RC);
5636     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5637     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5638         Subtarget.isUnalignedMem16Slow())
5639       // Do not introduce a slow unaligned load.
5640       return false;
5641     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5642     // memory access is slow above.
5643 
5644     unsigned Opc;
5645     if (FoldedBCast) {
5646       Opc = getBroadcastOpcode(I, RC, Subtarget);
5647     } else {
5648       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5649       bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5650       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
5651     }
5652 
5653     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
5654     NewNodes.push_back(Load);
5655 
5656     // Preserve memory reference information.
5657     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5658   }
5659 
5660   // Emit the data processing instruction.
5661   std::vector<EVT> VTs;
5662   const TargetRegisterClass *DstRC = nullptr;
5663   if (MCID.getNumDefs() > 0) {
5664     DstRC = getRegClass(MCID, 0, &RI, MF);
5665     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5666   }
5667   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5668     EVT VT = N->getValueType(i);
5669     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5670       VTs.push_back(VT);
5671   }
5672   if (Load)
5673     BeforeOps.push_back(SDValue(Load, 0));
5674   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5675   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5676   switch (Opc) {
5677     default: break;
5678     case X86::CMP64ri32:
5679     case X86::CMP64ri8:
5680     case X86::CMP32ri:
5681     case X86::CMP32ri8:
5682     case X86::CMP16ri:
5683     case X86::CMP16ri8:
5684     case X86::CMP8ri:
5685       if (isNullConstant(BeforeOps[1])) {
5686         switch (Opc) {
5687           default: llvm_unreachable("Unreachable!");
5688           case X86::CMP64ri8:
5689           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5690           case X86::CMP32ri8:
5691           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5692           case X86::CMP16ri8:
5693           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5694           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5695         }
5696         BeforeOps[1] = BeforeOps[0];
5697       }
5698   }
5699   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5700   NewNodes.push_back(NewNode);
5701 
5702   // Emit the store instruction.
5703   if (FoldedStore) {
5704     AddrOps.pop_back();
5705     AddrOps.push_back(SDValue(NewNode, 0));
5706     AddrOps.push_back(Chain);
5707     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5708     if (MMOs.empty() && RC == &X86::VR128RegClass &&
5709         Subtarget.isUnalignedMem16Slow())
5710       // Do not introduce a slow unaligned store.
5711       return false;
5712     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5713     // memory access is slow above.
5714     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5715     bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5716     SDNode *Store =
5717         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5718                            dl, MVT::Other, AddrOps);
5719     NewNodes.push_back(Store);
5720 
5721     // Preserve memory reference information.
5722     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5723   }
5724 
5725   return true;
5726 }
5727 
5728 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5729                                       bool UnfoldLoad, bool UnfoldStore,
5730                                       unsigned *LoadRegIndex) const {
5731   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5732   if (I == nullptr)
5733     return 0;
5734   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5735   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5736   if (UnfoldLoad && !FoldedLoad)
5737     return 0;
5738   if (UnfoldStore && !FoldedStore)
5739     return 0;
5740   if (LoadRegIndex)
5741     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5742   return I->DstOp;
5743 }
5744 
5745 bool
5746 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5747                                      int64_t &Offset1, int64_t &Offset2) const {
5748   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5749     return false;
5750   unsigned Opc1 = Load1->getMachineOpcode();
5751   unsigned Opc2 = Load2->getMachineOpcode();
5752   switch (Opc1) {
5753   default: return false;
5754   case X86::MOV8rm:
5755   case X86::MOV16rm:
5756   case X86::MOV32rm:
5757   case X86::MOV64rm:
5758   case X86::LD_Fp32m:
5759   case X86::LD_Fp64m:
5760   case X86::LD_Fp80m:
5761   case X86::MOVSSrm:
5762   case X86::MOVSSrm_alt:
5763   case X86::MOVSDrm:
5764   case X86::MOVSDrm_alt:
5765   case X86::MMX_MOVD64rm:
5766   case X86::MMX_MOVQ64rm:
5767   case X86::MOVAPSrm:
5768   case X86::MOVUPSrm:
5769   case X86::MOVAPDrm:
5770   case X86::MOVUPDrm:
5771   case X86::MOVDQArm:
5772   case X86::MOVDQUrm:
5773   // AVX load instructions
5774   case X86::VMOVSSrm:
5775   case X86::VMOVSSrm_alt:
5776   case X86::VMOVSDrm:
5777   case X86::VMOVSDrm_alt:
5778   case X86::VMOVAPSrm:
5779   case X86::VMOVUPSrm:
5780   case X86::VMOVAPDrm:
5781   case X86::VMOVUPDrm:
5782   case X86::VMOVDQArm:
5783   case X86::VMOVDQUrm:
5784   case X86::VMOVAPSYrm:
5785   case X86::VMOVUPSYrm:
5786   case X86::VMOVAPDYrm:
5787   case X86::VMOVUPDYrm:
5788   case X86::VMOVDQAYrm:
5789   case X86::VMOVDQUYrm:
5790   // AVX512 load instructions
5791   case X86::VMOVSSZrm:
5792   case X86::VMOVSSZrm_alt:
5793   case X86::VMOVSDZrm:
5794   case X86::VMOVSDZrm_alt:
5795   case X86::VMOVAPSZ128rm:
5796   case X86::VMOVUPSZ128rm:
5797   case X86::VMOVAPSZ128rm_NOVLX:
5798   case X86::VMOVUPSZ128rm_NOVLX:
5799   case X86::VMOVAPDZ128rm:
5800   case X86::VMOVUPDZ128rm:
5801   case X86::VMOVDQU8Z128rm:
5802   case X86::VMOVDQU16Z128rm:
5803   case X86::VMOVDQA32Z128rm:
5804   case X86::VMOVDQU32Z128rm:
5805   case X86::VMOVDQA64Z128rm:
5806   case X86::VMOVDQU64Z128rm:
5807   case X86::VMOVAPSZ256rm:
5808   case X86::VMOVUPSZ256rm:
5809   case X86::VMOVAPSZ256rm_NOVLX:
5810   case X86::VMOVUPSZ256rm_NOVLX:
5811   case X86::VMOVAPDZ256rm:
5812   case X86::VMOVUPDZ256rm:
5813   case X86::VMOVDQU8Z256rm:
5814   case X86::VMOVDQU16Z256rm:
5815   case X86::VMOVDQA32Z256rm:
5816   case X86::VMOVDQU32Z256rm:
5817   case X86::VMOVDQA64Z256rm:
5818   case X86::VMOVDQU64Z256rm:
5819   case X86::VMOVAPSZrm:
5820   case X86::VMOVUPSZrm:
5821   case X86::VMOVAPDZrm:
5822   case X86::VMOVUPDZrm:
5823   case X86::VMOVDQU8Zrm:
5824   case X86::VMOVDQU16Zrm:
5825   case X86::VMOVDQA32Zrm:
5826   case X86::VMOVDQU32Zrm:
5827   case X86::VMOVDQA64Zrm:
5828   case X86::VMOVDQU64Zrm:
5829   case X86::KMOVBkm:
5830   case X86::KMOVWkm:
5831   case X86::KMOVDkm:
5832   case X86::KMOVQkm:
5833     break;
5834   }
5835   switch (Opc2) {
5836   default: return false;
5837   case X86::MOV8rm:
5838   case X86::MOV16rm:
5839   case X86::MOV32rm:
5840   case X86::MOV64rm:
5841   case X86::LD_Fp32m:
5842   case X86::LD_Fp64m:
5843   case X86::LD_Fp80m:
5844   case X86::MOVSSrm:
5845   case X86::MOVSSrm_alt:
5846   case X86::MOVSDrm:
5847   case X86::MOVSDrm_alt:
5848   case X86::MMX_MOVD64rm:
5849   case X86::MMX_MOVQ64rm:
5850   case X86::MOVAPSrm:
5851   case X86::MOVUPSrm:
5852   case X86::MOVAPDrm:
5853   case X86::MOVUPDrm:
5854   case X86::MOVDQArm:
5855   case X86::MOVDQUrm:
5856   // AVX load instructions
5857   case X86::VMOVSSrm:
5858   case X86::VMOVSSrm_alt:
5859   case X86::VMOVSDrm:
5860   case X86::VMOVSDrm_alt:
5861   case X86::VMOVAPSrm:
5862   case X86::VMOVUPSrm:
5863   case X86::VMOVAPDrm:
5864   case X86::VMOVUPDrm:
5865   case X86::VMOVDQArm:
5866   case X86::VMOVDQUrm:
5867   case X86::VMOVAPSYrm:
5868   case X86::VMOVUPSYrm:
5869   case X86::VMOVAPDYrm:
5870   case X86::VMOVUPDYrm:
5871   case X86::VMOVDQAYrm:
5872   case X86::VMOVDQUYrm:
5873   // AVX512 load instructions
5874   case X86::VMOVSSZrm:
5875   case X86::VMOVSSZrm_alt:
5876   case X86::VMOVSDZrm:
5877   case X86::VMOVSDZrm_alt:
5878   case X86::VMOVAPSZ128rm:
5879   case X86::VMOVUPSZ128rm:
5880   case X86::VMOVAPSZ128rm_NOVLX:
5881   case X86::VMOVUPSZ128rm_NOVLX:
5882   case X86::VMOVAPDZ128rm:
5883   case X86::VMOVUPDZ128rm:
5884   case X86::VMOVDQU8Z128rm:
5885   case X86::VMOVDQU16Z128rm:
5886   case X86::VMOVDQA32Z128rm:
5887   case X86::VMOVDQU32Z128rm:
5888   case X86::VMOVDQA64Z128rm:
5889   case X86::VMOVDQU64Z128rm:
5890   case X86::VMOVAPSZ256rm:
5891   case X86::VMOVUPSZ256rm:
5892   case X86::VMOVAPSZ256rm_NOVLX:
5893   case X86::VMOVUPSZ256rm_NOVLX:
5894   case X86::VMOVAPDZ256rm:
5895   case X86::VMOVUPDZ256rm:
5896   case X86::VMOVDQU8Z256rm:
5897   case X86::VMOVDQU16Z256rm:
5898   case X86::VMOVDQA32Z256rm:
5899   case X86::VMOVDQU32Z256rm:
5900   case X86::VMOVDQA64Z256rm:
5901   case X86::VMOVDQU64Z256rm:
5902   case X86::VMOVAPSZrm:
5903   case X86::VMOVUPSZrm:
5904   case X86::VMOVAPDZrm:
5905   case X86::VMOVUPDZrm:
5906   case X86::VMOVDQU8Zrm:
5907   case X86::VMOVDQU16Zrm:
5908   case X86::VMOVDQA32Zrm:
5909   case X86::VMOVDQU32Zrm:
5910   case X86::VMOVDQA64Zrm:
5911   case X86::VMOVDQU64Zrm:
5912   case X86::KMOVBkm:
5913   case X86::KMOVWkm:
5914   case X86::KMOVDkm:
5915   case X86::KMOVQkm:
5916     break;
5917   }
5918 
5919   // Lambda to check if both the loads have the same value for an operand index.
5920   auto HasSameOp = [&](int I) {
5921     return Load1->getOperand(I) == Load2->getOperand(I);
5922   };
5923 
5924   // All operands except the displacement should match.
5925   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5926       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5927     return false;
5928 
5929   // Chain Operand must be the same.
5930   if (!HasSameOp(5))
5931     return false;
5932 
5933   // Now let's examine if the displacements are constants.
5934   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5935   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5936   if (!Disp1 || !Disp2)
5937     return false;
5938 
5939   Offset1 = Disp1->getSExtValue();
5940   Offset2 = Disp2->getSExtValue();
5941   return true;
5942 }
5943 
5944 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5945                                            int64_t Offset1, int64_t Offset2,
5946                                            unsigned NumLoads) const {
5947   assert(Offset2 > Offset1);
5948   if ((Offset2 - Offset1) / 8 > 64)
5949     return false;
5950 
5951   unsigned Opc1 = Load1->getMachineOpcode();
5952   unsigned Opc2 = Load2->getMachineOpcode();
5953   if (Opc1 != Opc2)
5954     return false;  // FIXME: overly conservative?
5955 
5956   switch (Opc1) {
5957   default: break;
5958   case X86::LD_Fp32m:
5959   case X86::LD_Fp64m:
5960   case X86::LD_Fp80m:
5961   case X86::MMX_MOVD64rm:
5962   case X86::MMX_MOVQ64rm:
5963     return false;
5964   }
5965 
5966   EVT VT = Load1->getValueType(0);
5967   switch (VT.getSimpleVT().SimpleTy) {
5968   default:
5969     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5970     // have 16 of them to play with.
5971     if (Subtarget.is64Bit()) {
5972       if (NumLoads >= 3)
5973         return false;
5974     } else if (NumLoads) {
5975       return false;
5976     }
5977     break;
5978   case MVT::i8:
5979   case MVT::i16:
5980   case MVT::i32:
5981   case MVT::i64:
5982   case MVT::f32:
5983   case MVT::f64:
5984     if (NumLoads)
5985       return false;
5986     break;
5987   }
5988 
5989   return true;
5990 }
5991 
5992 bool X86InstrInfo::
5993 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5994   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5995   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5996   Cond[0].setImm(GetOppositeBranchCondition(CC));
5997   return false;
5998 }
5999 
6000 bool X86InstrInfo::
6001 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6002   // FIXME: Return false for x87 stack register classes for now. We can't
6003   // allow any loads of these registers before FpGet_ST0_80.
6004   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6005            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6006            RC == &X86::RFP80RegClass);
6007 }
6008 
6009 /// Return a virtual register initialized with the
6010 /// the global base register value. Output instructions required to
6011 /// initialize the register in the function entry block, if necessary.
6012 ///
6013 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6014 ///
6015 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6016   assert((!Subtarget.is64Bit() ||
6017           MF->getTarget().getCodeModel() == CodeModel::Medium ||
6018           MF->getTarget().getCodeModel() == CodeModel::Large) &&
6019          "X86-64 PIC uses RIP relative addressing");
6020 
6021   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6022   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6023   if (GlobalBaseReg != 0)
6024     return GlobalBaseReg;
6025 
6026   // Create the register. The code to initialize it is inserted
6027   // later, by the CGBR pass (below).
6028   MachineRegisterInfo &RegInfo = MF->getRegInfo();
6029   GlobalBaseReg = RegInfo.createVirtualRegister(
6030       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6031   X86FI->setGlobalBaseReg(GlobalBaseReg);
6032   return GlobalBaseReg;
6033 }
6034 
6035 // These are the replaceable SSE instructions. Some of these have Int variants
6036 // that we don't include here. We don't want to replace instructions selected
6037 // by intrinsics.
6038 static const uint16_t ReplaceableInstrs[][3] = {
6039   //PackedSingle     PackedDouble    PackedInt
6040   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6041   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6042   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6043   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6044   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6045   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
6046   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
6047   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
6048   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
6049   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6050   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
6051   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6052   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6053   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6054   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6055   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6056   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6057   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6058   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6059   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6060   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6061   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6062   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6063   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6064   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6065   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6066   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6067   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6068   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6069   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6070   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6071   // AVX 128-bit support
6072   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6073   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6074   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6075   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6076   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6077   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
6078   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
6079   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
6080   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
6081   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6082   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
6083   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6084   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6085   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6086   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6087   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6088   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6089   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6090   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6091   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6092   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6093   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6094   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6095   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6096   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6097   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6098   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6099   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6100   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6101   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6102   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6103   // AVX 256-bit support
6104   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6105   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6106   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6107   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6108   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6109   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
6110   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
6111   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
6112   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
6113   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
6114   // AVX512 support
6115   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
6116   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6117   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6118   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
6119   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
6120   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
6121   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
6122   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
6123   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
6124   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
6125   { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
6126   { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
6127   { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
6128   { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
6129   { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
6130   { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
6131   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
6132   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
6133   { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
6134   { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
6135   { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
6136   { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
6137   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
6138   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6139   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6140   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6141   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6142   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6143   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6144   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6145   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6146   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6147   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6148   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6149   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6150   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6151   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6152   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6153   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6154   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6155   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6156   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6157   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6158   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6159   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6160   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6161   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6162   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6163   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6164   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6165   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6166   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6167   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6168   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6169   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6170   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6171   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6172   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6173   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6174   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6175   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6176   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6177   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6178   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6179   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6180   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6181   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6182   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6183   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6184   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
6185   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
6186   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6187   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6188   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6189   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6190   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6191   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6192   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6193   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6194   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6195   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6196   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6197   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6198   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6199   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6200   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6201   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6202   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6203   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6204   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6205   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6206   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6207 };
6208 
6209 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6210   //PackedSingle       PackedDouble       PackedInt
6211   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6212   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6213   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6214   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6215   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6216   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6217   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6218   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6219   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6220   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6221   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6222   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6223   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6224   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6225   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6226   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6227   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6228   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6229   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6230   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6231   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6232   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6233   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6234   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6235   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6236   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6237   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6238   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6239   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6240   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6241   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6242 };
6243 
6244 static const uint16_t ReplaceableInstrsFP[][3] = {
6245   //PackedSingle         PackedDouble
6246   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6247   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6248   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6249   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6250   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6251   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6252   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6253   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6254   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6255 };
6256 
6257 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6258   //PackedSingle       PackedDouble       PackedInt
6259   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6260   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6261   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6262   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6263 };
6264 
6265 static const uint16_t ReplaceableInstrsAVX512[][4] = {
6266   // Two integer columns for 64-bit and 32-bit elements.
6267   //PackedSingle        PackedDouble        PackedInt             PackedInt
6268   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6269   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6270   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6271   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6272   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6273   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6274   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6275   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6276   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6277   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6278   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6279   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6280   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6281   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6282   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6283 };
6284 
6285 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6286   // Two integer columns for 64-bit and 32-bit elements.
6287   //PackedSingle        PackedDouble        PackedInt           PackedInt
6288   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6289   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6290   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6291   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6292   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6293   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6294   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6295   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6296   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6297   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6298   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6299   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6300   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6301   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6302   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6303   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6304   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6305   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6306   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6307   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6308   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6309   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6310   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6311   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6312 };
6313 
6314 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6315   // Two integer columns for 64-bit and 32-bit elements.
6316   //PackedSingle          PackedDouble
6317   //PackedInt             PackedInt
6318   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6319     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6320   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6321     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6322   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6323     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6324   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6325     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6326   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6327     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6328   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6329     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6330   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6331     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6332   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6333     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6334   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6335     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6336   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6337     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6338   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6339     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6340   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6341     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6342   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6343     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6344   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6345     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6346   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6347     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6348   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6349     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6350   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6351     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6352   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6353     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6354   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6355     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6356   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6357     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6358   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6359     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6360   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6361     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6362   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6363     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6364   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6365     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6366   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6367     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6368   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6369     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6370   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6371     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6372   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6373     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6374   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6375     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6376   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6377     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6378   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6379     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6380   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6381     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6382   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6383     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6384   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6385     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6386   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6387     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6388   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6389     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6390   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6391     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6392   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6393     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6394   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6395     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6396   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6397     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6398   { X86::VORPSZrmk,       X86::VORPDZrmk,
6399     X86::VPORQZrmk,       X86::VPORDZrmk       },
6400   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6401     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6402   { X86::VORPSZrrk,       X86::VORPDZrrk,
6403     X86::VPORQZrrk,       X86::VPORDZrrk       },
6404   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6405     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6406   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6407     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6408   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6409     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6410   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6411     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6412   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6413     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6414   // Broadcast loads can be handled the same as masked operations to avoid
6415   // changing element size.
6416   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6417     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6418   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6419     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6420   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6421     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6422   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6423     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6424   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6425     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6426   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6427     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6428   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6429     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6430   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6431     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6432   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6433     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6434   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6435     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6436   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6437     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6438   { X86::VORPSZrmb,       X86::VORPDZrmb,
6439     X86::VPORQZrmb,       X86::VPORDZrmb       },
6440   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6441     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6442   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6443     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6444   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6445     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6446   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6447     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6448   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6449     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6450   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6451     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6452   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6453     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6454   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6455     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6456   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6457     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6458   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6459     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6460   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6461     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6462   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6463     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6464   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6465     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6466   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6467     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6468   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6469     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6470   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6471     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6472   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6473     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6474   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6475     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6476   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6477     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6478   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6479     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6480   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6481     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6482   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6483     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6484   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6485     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6486   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6487     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6488   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6489     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6490   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6491     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6492   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6493     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6494 };
6495 
6496 // NOTE: These should only be used by the custom domain methods.
6497 static const uint16_t ReplaceableBlendInstrs[][3] = {
6498   //PackedSingle             PackedDouble             PackedInt
6499   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6500   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6501   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6502   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6503   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6504   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6505 };
6506 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6507   //PackedSingle             PackedDouble             PackedInt
6508   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6509   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6510   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6511   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6512 };
6513 
6514 // Special table for changing EVEX logic instructions to VEX.
6515 // TODO: Should we run EVEX->VEX earlier?
6516 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6517   // Two integer columns for 64-bit and 32-bit elements.
6518   //PackedSingle     PackedDouble     PackedInt           PackedInt
6519   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6520   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6521   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6522   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6523   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6524   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6525   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6526   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6527   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6528   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6529   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6530   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6531   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6532   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6533   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6534   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6535 };
6536 
6537 // FIXME: Some shuffle and unpack instructions have equivalents in different
6538 // domains, but they require a bit more work than just switching opcodes.
6539 
6540 static const uint16_t *lookup(unsigned opcode, unsigned domain,
6541                               ArrayRef<uint16_t[3]> Table) {
6542   for (const uint16_t (&Row)[3] : Table)
6543     if (Row[domain-1] == opcode)
6544       return Row;
6545   return nullptr;
6546 }
6547 
6548 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6549                                     ArrayRef<uint16_t[4]> Table) {
6550   // If this is the integer domain make sure to check both integer columns.
6551   for (const uint16_t (&Row)[4] : Table)
6552     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6553       return Row;
6554   return nullptr;
6555 }
6556 
6557 // Helper to attempt to widen/narrow blend masks.
6558 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6559                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
6560   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6561          "Illegal blend mask scale");
6562   unsigned NewMask = 0;
6563 
6564   if ((OldWidth % NewWidth) == 0) {
6565     unsigned Scale = OldWidth / NewWidth;
6566     unsigned SubMask = (1u << Scale) - 1;
6567     for (unsigned i = 0; i != NewWidth; ++i) {
6568       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6569       if (Sub == SubMask)
6570         NewMask |= (1u << i);
6571       else if (Sub != 0x0)
6572         return false;
6573     }
6574   } else {
6575     unsigned Scale = NewWidth / OldWidth;
6576     unsigned SubMask = (1u << Scale) - 1;
6577     for (unsigned i = 0; i != OldWidth; ++i) {
6578       if (OldMask & (1 << i)) {
6579         NewMask |= (SubMask << (i * Scale));
6580       }
6581     }
6582   }
6583 
6584   if (pNewMask)
6585     *pNewMask = NewMask;
6586   return true;
6587 }
6588 
6589 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6590   unsigned Opcode = MI.getOpcode();
6591   unsigned NumOperands = MI.getDesc().getNumOperands();
6592 
6593   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6594     uint16_t validDomains = 0;
6595     if (MI.getOperand(NumOperands - 1).isImm()) {
6596       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6597       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6598         validDomains |= 0x2; // PackedSingle
6599       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6600         validDomains |= 0x4; // PackedDouble
6601       if (!Is256 || Subtarget.hasAVX2())
6602         validDomains |= 0x8; // PackedInt
6603     }
6604     return validDomains;
6605   };
6606 
6607   switch (Opcode) {
6608   case X86::BLENDPDrmi:
6609   case X86::BLENDPDrri:
6610   case X86::VBLENDPDrmi:
6611   case X86::VBLENDPDrri:
6612     return GetBlendDomains(2, false);
6613   case X86::VBLENDPDYrmi:
6614   case X86::VBLENDPDYrri:
6615     return GetBlendDomains(4, true);
6616   case X86::BLENDPSrmi:
6617   case X86::BLENDPSrri:
6618   case X86::VBLENDPSrmi:
6619   case X86::VBLENDPSrri:
6620   case X86::VPBLENDDrmi:
6621   case X86::VPBLENDDrri:
6622     return GetBlendDomains(4, false);
6623   case X86::VBLENDPSYrmi:
6624   case X86::VBLENDPSYrri:
6625   case X86::VPBLENDDYrmi:
6626   case X86::VPBLENDDYrri:
6627     return GetBlendDomains(8, true);
6628   case X86::PBLENDWrmi:
6629   case X86::PBLENDWrri:
6630   case X86::VPBLENDWrmi:
6631   case X86::VPBLENDWrri:
6632   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6633   case X86::VPBLENDWYrmi:
6634   case X86::VPBLENDWYrri:
6635     return GetBlendDomains(8, false);
6636   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6637   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6638   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6639   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6640   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6641   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6642   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6643   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6644   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6645   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6646   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6647   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6648   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6649   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6650   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6651   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6652     // If we don't have DQI see if we can still switch from an EVEX integer
6653     // instruction to a VEX floating point instruction.
6654     if (Subtarget.hasDQI())
6655       return 0;
6656 
6657     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6658       return 0;
6659     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6660       return 0;
6661     // Register forms will have 3 operands. Memory form will have more.
6662     if (NumOperands == 3 &&
6663         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6664       return 0;
6665 
6666     // All domains are valid.
6667     return 0xe;
6668   case X86::MOVHLPSrr:
6669     // We can swap domains when both inputs are the same register.
6670     // FIXME: This doesn't catch all the cases we would like. If the input
6671     // register isn't KILLed by the instruction, the two address instruction
6672     // pass puts a COPY on one input. The other input uses the original
6673     // register. This prevents the same physical register from being used by
6674     // both inputs.
6675     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6676         MI.getOperand(0).getSubReg() == 0 &&
6677         MI.getOperand(1).getSubReg() == 0 &&
6678         MI.getOperand(2).getSubReg() == 0)
6679       return 0x6;
6680     return 0;
6681   case X86::SHUFPDrri:
6682     return 0x6;
6683   }
6684   return 0;
6685 }
6686 
6687 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6688                                             unsigned Domain) const {
6689   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6690   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6691   assert(dom && "Not an SSE instruction");
6692 
6693   unsigned Opcode = MI.getOpcode();
6694   unsigned NumOperands = MI.getDesc().getNumOperands();
6695 
6696   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6697     if (MI.getOperand(NumOperands - 1).isImm()) {
6698       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6699       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6700       unsigned NewImm = Imm;
6701 
6702       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6703       if (!table)
6704         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6705 
6706       if (Domain == 1) { // PackedSingle
6707         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6708       } else if (Domain == 2) { // PackedDouble
6709         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6710       } else if (Domain == 3) { // PackedInt
6711         if (Subtarget.hasAVX2()) {
6712           // If we are already VPBLENDW use that, else use VPBLENDD.
6713           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6714             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6715             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6716           }
6717         } else {
6718           assert(!Is256 && "128-bit vector expected");
6719           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6720         }
6721       }
6722 
6723       assert(table && table[Domain - 1] && "Unknown domain op");
6724       MI.setDesc(get(table[Domain - 1]));
6725       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6726     }
6727     return true;
6728   };
6729 
6730   switch (Opcode) {
6731   case X86::BLENDPDrmi:
6732   case X86::BLENDPDrri:
6733   case X86::VBLENDPDrmi:
6734   case X86::VBLENDPDrri:
6735     return SetBlendDomain(2, false);
6736   case X86::VBLENDPDYrmi:
6737   case X86::VBLENDPDYrri:
6738     return SetBlendDomain(4, true);
6739   case X86::BLENDPSrmi:
6740   case X86::BLENDPSrri:
6741   case X86::VBLENDPSrmi:
6742   case X86::VBLENDPSrri:
6743   case X86::VPBLENDDrmi:
6744   case X86::VPBLENDDrri:
6745     return SetBlendDomain(4, false);
6746   case X86::VBLENDPSYrmi:
6747   case X86::VBLENDPSYrri:
6748   case X86::VPBLENDDYrmi:
6749   case X86::VPBLENDDYrri:
6750     return SetBlendDomain(8, true);
6751   case X86::PBLENDWrmi:
6752   case X86::PBLENDWrri:
6753   case X86::VPBLENDWrmi:
6754   case X86::VPBLENDWrri:
6755     return SetBlendDomain(8, false);
6756   case X86::VPBLENDWYrmi:
6757   case X86::VPBLENDWYrri:
6758     return SetBlendDomain(16, true);
6759   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6760   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6761   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6762   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6763   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6764   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6765   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6766   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6767   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6768   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6769   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6770   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6771   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6772   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6773   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6774   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6775     // Without DQI, convert EVEX instructions to VEX instructions.
6776     if (Subtarget.hasDQI())
6777       return false;
6778 
6779     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6780                                          ReplaceableCustomAVX512LogicInstrs);
6781     assert(table && "Instruction not found in table?");
6782     // Don't change integer Q instructions to D instructions and
6783     // use D intructions if we started with a PS instruction.
6784     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6785       Domain = 4;
6786     MI.setDesc(get(table[Domain - 1]));
6787     return true;
6788   }
6789   case X86::UNPCKHPDrr:
6790   case X86::MOVHLPSrr:
6791     // We just need to commute the instruction which will switch the domains.
6792     if (Domain != dom && Domain != 3 &&
6793         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6794         MI.getOperand(0).getSubReg() == 0 &&
6795         MI.getOperand(1).getSubReg() == 0 &&
6796         MI.getOperand(2).getSubReg() == 0) {
6797       commuteInstruction(MI, false);
6798       return true;
6799     }
6800     // We must always return true for MOVHLPSrr.
6801     if (Opcode == X86::MOVHLPSrr)
6802       return true;
6803     break;
6804   case X86::SHUFPDrri: {
6805     if (Domain == 1) {
6806       unsigned Imm = MI.getOperand(3).getImm();
6807       unsigned NewImm = 0x44;
6808       if (Imm & 1) NewImm |= 0x0a;
6809       if (Imm & 2) NewImm |= 0xa0;
6810       MI.getOperand(3).setImm(NewImm);
6811       MI.setDesc(get(X86::SHUFPSrri));
6812     }
6813     return true;
6814   }
6815   }
6816   return false;
6817 }
6818 
6819 std::pair<uint16_t, uint16_t>
6820 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6821   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6822   unsigned opcode = MI.getOpcode();
6823   uint16_t validDomains = 0;
6824   if (domain) {
6825     // Attempt to match for custom instructions.
6826     validDomains = getExecutionDomainCustom(MI);
6827     if (validDomains)
6828       return std::make_pair(domain, validDomains);
6829 
6830     if (lookup(opcode, domain, ReplaceableInstrs)) {
6831       validDomains = 0xe;
6832     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6833       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6834     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6835       validDomains = 0x6;
6836     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6837       // Insert/extract instructions should only effect domain if AVX2
6838       // is enabled.
6839       if (!Subtarget.hasAVX2())
6840         return std::make_pair(0, 0);
6841       validDomains = 0xe;
6842     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6843       validDomains = 0xe;
6844     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6845                                                   ReplaceableInstrsAVX512DQ)) {
6846       validDomains = 0xe;
6847     } else if (Subtarget.hasDQI()) {
6848       if (const uint16_t *table = lookupAVX512(opcode, domain,
6849                                              ReplaceableInstrsAVX512DQMasked)) {
6850         if (domain == 1 || (domain == 3 && table[3] == opcode))
6851           validDomains = 0xa;
6852         else
6853           validDomains = 0xc;
6854       }
6855     }
6856   }
6857   return std::make_pair(domain, validDomains);
6858 }
6859 
6860 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6861   assert(Domain>0 && Domain<4 && "Invalid execution domain");
6862   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6863   assert(dom && "Not an SSE instruction");
6864 
6865   // Attempt to match for custom instructions.
6866   if (setExecutionDomainCustom(MI, Domain))
6867     return;
6868 
6869   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6870   if (!table) { // try the other table
6871     assert((Subtarget.hasAVX2() || Domain < 3) &&
6872            "256-bit vector operations only available in AVX2");
6873     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6874   }
6875   if (!table) { // try the FP table
6876     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6877     assert((!table || Domain < 3) &&
6878            "Can only select PackedSingle or PackedDouble");
6879   }
6880   if (!table) { // try the other table
6881     assert(Subtarget.hasAVX2() &&
6882            "256-bit insert/extract only available in AVX2");
6883     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6884   }
6885   if (!table) { // try the AVX512 table
6886     assert(Subtarget.hasAVX512() && "Requires AVX-512");
6887     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6888     // Don't change integer Q instructions to D instructions.
6889     if (table && Domain == 3 && table[3] == MI.getOpcode())
6890       Domain = 4;
6891   }
6892   if (!table) { // try the AVX512DQ table
6893     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6894     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6895     // Don't change integer Q instructions to D instructions and
6896     // use D intructions if we started with a PS instruction.
6897     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6898       Domain = 4;
6899   }
6900   if (!table) { // try the AVX512DQMasked table
6901     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6902     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6903     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6904       Domain = 4;
6905   }
6906   assert(table && "Cannot change domain");
6907   MI.setDesc(get(table[Domain - 1]));
6908 }
6909 
6910 /// Return the noop instruction to use for a noop.
6911 void X86InstrInfo::getNoop(MCInst &NopInst) const {
6912   NopInst.setOpcode(X86::NOOP);
6913 }
6914 
6915 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6916   switch (opc) {
6917   default: return false;
6918   case X86::DIVPDrm:
6919   case X86::DIVPDrr:
6920   case X86::DIVPSrm:
6921   case X86::DIVPSrr:
6922   case X86::DIVSDrm:
6923   case X86::DIVSDrm_Int:
6924   case X86::DIVSDrr:
6925   case X86::DIVSDrr_Int:
6926   case X86::DIVSSrm:
6927   case X86::DIVSSrm_Int:
6928   case X86::DIVSSrr:
6929   case X86::DIVSSrr_Int:
6930   case X86::SQRTPDm:
6931   case X86::SQRTPDr:
6932   case X86::SQRTPSm:
6933   case X86::SQRTPSr:
6934   case X86::SQRTSDm:
6935   case X86::SQRTSDm_Int:
6936   case X86::SQRTSDr:
6937   case X86::SQRTSDr_Int:
6938   case X86::SQRTSSm:
6939   case X86::SQRTSSm_Int:
6940   case X86::SQRTSSr:
6941   case X86::SQRTSSr_Int:
6942   // AVX instructions with high latency
6943   case X86::VDIVPDrm:
6944   case X86::VDIVPDrr:
6945   case X86::VDIVPDYrm:
6946   case X86::VDIVPDYrr:
6947   case X86::VDIVPSrm:
6948   case X86::VDIVPSrr:
6949   case X86::VDIVPSYrm:
6950   case X86::VDIVPSYrr:
6951   case X86::VDIVSDrm:
6952   case X86::VDIVSDrm_Int:
6953   case X86::VDIVSDrr:
6954   case X86::VDIVSDrr_Int:
6955   case X86::VDIVSSrm:
6956   case X86::VDIVSSrm_Int:
6957   case X86::VDIVSSrr:
6958   case X86::VDIVSSrr_Int:
6959   case X86::VSQRTPDm:
6960   case X86::VSQRTPDr:
6961   case X86::VSQRTPDYm:
6962   case X86::VSQRTPDYr:
6963   case X86::VSQRTPSm:
6964   case X86::VSQRTPSr:
6965   case X86::VSQRTPSYm:
6966   case X86::VSQRTPSYr:
6967   case X86::VSQRTSDm:
6968   case X86::VSQRTSDm_Int:
6969   case X86::VSQRTSDr:
6970   case X86::VSQRTSDr_Int:
6971   case X86::VSQRTSSm:
6972   case X86::VSQRTSSm_Int:
6973   case X86::VSQRTSSr:
6974   case X86::VSQRTSSr_Int:
6975   // AVX512 instructions with high latency
6976   case X86::VDIVPDZ128rm:
6977   case X86::VDIVPDZ128rmb:
6978   case X86::VDIVPDZ128rmbk:
6979   case X86::VDIVPDZ128rmbkz:
6980   case X86::VDIVPDZ128rmk:
6981   case X86::VDIVPDZ128rmkz:
6982   case X86::VDIVPDZ128rr:
6983   case X86::VDIVPDZ128rrk:
6984   case X86::VDIVPDZ128rrkz:
6985   case X86::VDIVPDZ256rm:
6986   case X86::VDIVPDZ256rmb:
6987   case X86::VDIVPDZ256rmbk:
6988   case X86::VDIVPDZ256rmbkz:
6989   case X86::VDIVPDZ256rmk:
6990   case X86::VDIVPDZ256rmkz:
6991   case X86::VDIVPDZ256rr:
6992   case X86::VDIVPDZ256rrk:
6993   case X86::VDIVPDZ256rrkz:
6994   case X86::VDIVPDZrrb:
6995   case X86::VDIVPDZrrbk:
6996   case X86::VDIVPDZrrbkz:
6997   case X86::VDIVPDZrm:
6998   case X86::VDIVPDZrmb:
6999   case X86::VDIVPDZrmbk:
7000   case X86::VDIVPDZrmbkz:
7001   case X86::VDIVPDZrmk:
7002   case X86::VDIVPDZrmkz:
7003   case X86::VDIVPDZrr:
7004   case X86::VDIVPDZrrk:
7005   case X86::VDIVPDZrrkz:
7006   case X86::VDIVPSZ128rm:
7007   case X86::VDIVPSZ128rmb:
7008   case X86::VDIVPSZ128rmbk:
7009   case X86::VDIVPSZ128rmbkz:
7010   case X86::VDIVPSZ128rmk:
7011   case X86::VDIVPSZ128rmkz:
7012   case X86::VDIVPSZ128rr:
7013   case X86::VDIVPSZ128rrk:
7014   case X86::VDIVPSZ128rrkz:
7015   case X86::VDIVPSZ256rm:
7016   case X86::VDIVPSZ256rmb:
7017   case X86::VDIVPSZ256rmbk:
7018   case X86::VDIVPSZ256rmbkz:
7019   case X86::VDIVPSZ256rmk:
7020   case X86::VDIVPSZ256rmkz:
7021   case X86::VDIVPSZ256rr:
7022   case X86::VDIVPSZ256rrk:
7023   case X86::VDIVPSZ256rrkz:
7024   case X86::VDIVPSZrrb:
7025   case X86::VDIVPSZrrbk:
7026   case X86::VDIVPSZrrbkz:
7027   case X86::VDIVPSZrm:
7028   case X86::VDIVPSZrmb:
7029   case X86::VDIVPSZrmbk:
7030   case X86::VDIVPSZrmbkz:
7031   case X86::VDIVPSZrmk:
7032   case X86::VDIVPSZrmkz:
7033   case X86::VDIVPSZrr:
7034   case X86::VDIVPSZrrk:
7035   case X86::VDIVPSZrrkz:
7036   case X86::VDIVSDZrm:
7037   case X86::VDIVSDZrr:
7038   case X86::VDIVSDZrm_Int:
7039   case X86::VDIVSDZrm_Intk:
7040   case X86::VDIVSDZrm_Intkz:
7041   case X86::VDIVSDZrr_Int:
7042   case X86::VDIVSDZrr_Intk:
7043   case X86::VDIVSDZrr_Intkz:
7044   case X86::VDIVSDZrrb_Int:
7045   case X86::VDIVSDZrrb_Intk:
7046   case X86::VDIVSDZrrb_Intkz:
7047   case X86::VDIVSSZrm:
7048   case X86::VDIVSSZrr:
7049   case X86::VDIVSSZrm_Int:
7050   case X86::VDIVSSZrm_Intk:
7051   case X86::VDIVSSZrm_Intkz:
7052   case X86::VDIVSSZrr_Int:
7053   case X86::VDIVSSZrr_Intk:
7054   case X86::VDIVSSZrr_Intkz:
7055   case X86::VDIVSSZrrb_Int:
7056   case X86::VDIVSSZrrb_Intk:
7057   case X86::VDIVSSZrrb_Intkz:
7058   case X86::VSQRTPDZ128m:
7059   case X86::VSQRTPDZ128mb:
7060   case X86::VSQRTPDZ128mbk:
7061   case X86::VSQRTPDZ128mbkz:
7062   case X86::VSQRTPDZ128mk:
7063   case X86::VSQRTPDZ128mkz:
7064   case X86::VSQRTPDZ128r:
7065   case X86::VSQRTPDZ128rk:
7066   case X86::VSQRTPDZ128rkz:
7067   case X86::VSQRTPDZ256m:
7068   case X86::VSQRTPDZ256mb:
7069   case X86::VSQRTPDZ256mbk:
7070   case X86::VSQRTPDZ256mbkz:
7071   case X86::VSQRTPDZ256mk:
7072   case X86::VSQRTPDZ256mkz:
7073   case X86::VSQRTPDZ256r:
7074   case X86::VSQRTPDZ256rk:
7075   case X86::VSQRTPDZ256rkz:
7076   case X86::VSQRTPDZm:
7077   case X86::VSQRTPDZmb:
7078   case X86::VSQRTPDZmbk:
7079   case X86::VSQRTPDZmbkz:
7080   case X86::VSQRTPDZmk:
7081   case X86::VSQRTPDZmkz:
7082   case X86::VSQRTPDZr:
7083   case X86::VSQRTPDZrb:
7084   case X86::VSQRTPDZrbk:
7085   case X86::VSQRTPDZrbkz:
7086   case X86::VSQRTPDZrk:
7087   case X86::VSQRTPDZrkz:
7088   case X86::VSQRTPSZ128m:
7089   case X86::VSQRTPSZ128mb:
7090   case X86::VSQRTPSZ128mbk:
7091   case X86::VSQRTPSZ128mbkz:
7092   case X86::VSQRTPSZ128mk:
7093   case X86::VSQRTPSZ128mkz:
7094   case X86::VSQRTPSZ128r:
7095   case X86::VSQRTPSZ128rk:
7096   case X86::VSQRTPSZ128rkz:
7097   case X86::VSQRTPSZ256m:
7098   case X86::VSQRTPSZ256mb:
7099   case X86::VSQRTPSZ256mbk:
7100   case X86::VSQRTPSZ256mbkz:
7101   case X86::VSQRTPSZ256mk:
7102   case X86::VSQRTPSZ256mkz:
7103   case X86::VSQRTPSZ256r:
7104   case X86::VSQRTPSZ256rk:
7105   case X86::VSQRTPSZ256rkz:
7106   case X86::VSQRTPSZm:
7107   case X86::VSQRTPSZmb:
7108   case X86::VSQRTPSZmbk:
7109   case X86::VSQRTPSZmbkz:
7110   case X86::VSQRTPSZmk:
7111   case X86::VSQRTPSZmkz:
7112   case X86::VSQRTPSZr:
7113   case X86::VSQRTPSZrb:
7114   case X86::VSQRTPSZrbk:
7115   case X86::VSQRTPSZrbkz:
7116   case X86::VSQRTPSZrk:
7117   case X86::VSQRTPSZrkz:
7118   case X86::VSQRTSDZm:
7119   case X86::VSQRTSDZm_Int:
7120   case X86::VSQRTSDZm_Intk:
7121   case X86::VSQRTSDZm_Intkz:
7122   case X86::VSQRTSDZr:
7123   case X86::VSQRTSDZr_Int:
7124   case X86::VSQRTSDZr_Intk:
7125   case X86::VSQRTSDZr_Intkz:
7126   case X86::VSQRTSDZrb_Int:
7127   case X86::VSQRTSDZrb_Intk:
7128   case X86::VSQRTSDZrb_Intkz:
7129   case X86::VSQRTSSZm:
7130   case X86::VSQRTSSZm_Int:
7131   case X86::VSQRTSSZm_Intk:
7132   case X86::VSQRTSSZm_Intkz:
7133   case X86::VSQRTSSZr:
7134   case X86::VSQRTSSZr_Int:
7135   case X86::VSQRTSSZr_Intk:
7136   case X86::VSQRTSSZr_Intkz:
7137   case X86::VSQRTSSZrb_Int:
7138   case X86::VSQRTSSZrb_Intk:
7139   case X86::VSQRTSSZrb_Intkz:
7140 
7141   case X86::VGATHERDPDYrm:
7142   case X86::VGATHERDPDZ128rm:
7143   case X86::VGATHERDPDZ256rm:
7144   case X86::VGATHERDPDZrm:
7145   case X86::VGATHERDPDrm:
7146   case X86::VGATHERDPSYrm:
7147   case X86::VGATHERDPSZ128rm:
7148   case X86::VGATHERDPSZ256rm:
7149   case X86::VGATHERDPSZrm:
7150   case X86::VGATHERDPSrm:
7151   case X86::VGATHERPF0DPDm:
7152   case X86::VGATHERPF0DPSm:
7153   case X86::VGATHERPF0QPDm:
7154   case X86::VGATHERPF0QPSm:
7155   case X86::VGATHERPF1DPDm:
7156   case X86::VGATHERPF1DPSm:
7157   case X86::VGATHERPF1QPDm:
7158   case X86::VGATHERPF1QPSm:
7159   case X86::VGATHERQPDYrm:
7160   case X86::VGATHERQPDZ128rm:
7161   case X86::VGATHERQPDZ256rm:
7162   case X86::VGATHERQPDZrm:
7163   case X86::VGATHERQPDrm:
7164   case X86::VGATHERQPSYrm:
7165   case X86::VGATHERQPSZ128rm:
7166   case X86::VGATHERQPSZ256rm:
7167   case X86::VGATHERQPSZrm:
7168   case X86::VGATHERQPSrm:
7169   case X86::VPGATHERDDYrm:
7170   case X86::VPGATHERDDZ128rm:
7171   case X86::VPGATHERDDZ256rm:
7172   case X86::VPGATHERDDZrm:
7173   case X86::VPGATHERDDrm:
7174   case X86::VPGATHERDQYrm:
7175   case X86::VPGATHERDQZ128rm:
7176   case X86::VPGATHERDQZ256rm:
7177   case X86::VPGATHERDQZrm:
7178   case X86::VPGATHERDQrm:
7179   case X86::VPGATHERQDYrm:
7180   case X86::VPGATHERQDZ128rm:
7181   case X86::VPGATHERQDZ256rm:
7182   case X86::VPGATHERQDZrm:
7183   case X86::VPGATHERQDrm:
7184   case X86::VPGATHERQQYrm:
7185   case X86::VPGATHERQQZ128rm:
7186   case X86::VPGATHERQQZ256rm:
7187   case X86::VPGATHERQQZrm:
7188   case X86::VPGATHERQQrm:
7189   case X86::VSCATTERDPDZ128mr:
7190   case X86::VSCATTERDPDZ256mr:
7191   case X86::VSCATTERDPDZmr:
7192   case X86::VSCATTERDPSZ128mr:
7193   case X86::VSCATTERDPSZ256mr:
7194   case X86::VSCATTERDPSZmr:
7195   case X86::VSCATTERPF0DPDm:
7196   case X86::VSCATTERPF0DPSm:
7197   case X86::VSCATTERPF0QPDm:
7198   case X86::VSCATTERPF0QPSm:
7199   case X86::VSCATTERPF1DPDm:
7200   case X86::VSCATTERPF1DPSm:
7201   case X86::VSCATTERPF1QPDm:
7202   case X86::VSCATTERPF1QPSm:
7203   case X86::VSCATTERQPDZ128mr:
7204   case X86::VSCATTERQPDZ256mr:
7205   case X86::VSCATTERQPDZmr:
7206   case X86::VSCATTERQPSZ128mr:
7207   case X86::VSCATTERQPSZ256mr:
7208   case X86::VSCATTERQPSZmr:
7209   case X86::VPSCATTERDDZ128mr:
7210   case X86::VPSCATTERDDZ256mr:
7211   case X86::VPSCATTERDDZmr:
7212   case X86::VPSCATTERDQZ128mr:
7213   case X86::VPSCATTERDQZ256mr:
7214   case X86::VPSCATTERDQZmr:
7215   case X86::VPSCATTERQDZ128mr:
7216   case X86::VPSCATTERQDZ256mr:
7217   case X86::VPSCATTERQDZmr:
7218   case X86::VPSCATTERQQZ128mr:
7219   case X86::VPSCATTERQQZ256mr:
7220   case X86::VPSCATTERQQZmr:
7221     return true;
7222   }
7223 }
7224 
7225 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7226                                          const MachineRegisterInfo *MRI,
7227                                          const MachineInstr &DefMI,
7228                                          unsigned DefIdx,
7229                                          const MachineInstr &UseMI,
7230                                          unsigned UseIdx) const {
7231   return isHighLatencyDef(DefMI.getOpcode());
7232 }
7233 
7234 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7235                                            const MachineBasicBlock *MBB) const {
7236   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
7237          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
7238 
7239   // Integer binary math/logic instructions have a third source operand:
7240   // the EFLAGS register. That operand must be both defined here and never
7241   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7242   // not change anything because rearranging the operands could affect other
7243   // instructions that depend on the exact status flags (zero, sign, etc.)
7244   // that are set by using these particular operands with this operation.
7245   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
7246   assert((Inst.getNumDefs() == 1 || FlagDef) &&
7247          "Implicit def isn't flags?");
7248   if (FlagDef && !FlagDef->isDead())
7249     return false;
7250 
7251   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7252 }
7253 
7254 // TODO: There are many more machine instruction opcodes to match:
7255 //       1. Other data types (integer, vectors)
7256 //       2. Other math / logic operations (xor, or)
7257 //       3. Other forms of the same operation (intrinsics and other variants)
7258 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7259   switch (Inst.getOpcode()) {
7260   case X86::AND8rr:
7261   case X86::AND16rr:
7262   case X86::AND32rr:
7263   case X86::AND64rr:
7264   case X86::OR8rr:
7265   case X86::OR16rr:
7266   case X86::OR32rr:
7267   case X86::OR64rr:
7268   case X86::XOR8rr:
7269   case X86::XOR16rr:
7270   case X86::XOR32rr:
7271   case X86::XOR64rr:
7272   case X86::IMUL16rr:
7273   case X86::IMUL32rr:
7274   case X86::IMUL64rr:
7275   case X86::PANDrr:
7276   case X86::PORrr:
7277   case X86::PXORrr:
7278   case X86::ANDPDrr:
7279   case X86::ANDPSrr:
7280   case X86::ORPDrr:
7281   case X86::ORPSrr:
7282   case X86::XORPDrr:
7283   case X86::XORPSrr:
7284   case X86::PADDBrr:
7285   case X86::PADDWrr:
7286   case X86::PADDDrr:
7287   case X86::PADDQrr:
7288   case X86::PMULLWrr:
7289   case X86::PMULLDrr:
7290   case X86::PMAXSBrr:
7291   case X86::PMAXSDrr:
7292   case X86::PMAXSWrr:
7293   case X86::PMAXUBrr:
7294   case X86::PMAXUDrr:
7295   case X86::PMAXUWrr:
7296   case X86::PMINSBrr:
7297   case X86::PMINSDrr:
7298   case X86::PMINSWrr:
7299   case X86::PMINUBrr:
7300   case X86::PMINUDrr:
7301   case X86::PMINUWrr:
7302   case X86::VPANDrr:
7303   case X86::VPANDYrr:
7304   case X86::VPANDDZ128rr:
7305   case X86::VPANDDZ256rr:
7306   case X86::VPANDDZrr:
7307   case X86::VPANDQZ128rr:
7308   case X86::VPANDQZ256rr:
7309   case X86::VPANDQZrr:
7310   case X86::VPORrr:
7311   case X86::VPORYrr:
7312   case X86::VPORDZ128rr:
7313   case X86::VPORDZ256rr:
7314   case X86::VPORDZrr:
7315   case X86::VPORQZ128rr:
7316   case X86::VPORQZ256rr:
7317   case X86::VPORQZrr:
7318   case X86::VPXORrr:
7319   case X86::VPXORYrr:
7320   case X86::VPXORDZ128rr:
7321   case X86::VPXORDZ256rr:
7322   case X86::VPXORDZrr:
7323   case X86::VPXORQZ128rr:
7324   case X86::VPXORQZ256rr:
7325   case X86::VPXORQZrr:
7326   case X86::VANDPDrr:
7327   case X86::VANDPSrr:
7328   case X86::VANDPDYrr:
7329   case X86::VANDPSYrr:
7330   case X86::VANDPDZ128rr:
7331   case X86::VANDPSZ128rr:
7332   case X86::VANDPDZ256rr:
7333   case X86::VANDPSZ256rr:
7334   case X86::VANDPDZrr:
7335   case X86::VANDPSZrr:
7336   case X86::VORPDrr:
7337   case X86::VORPSrr:
7338   case X86::VORPDYrr:
7339   case X86::VORPSYrr:
7340   case X86::VORPDZ128rr:
7341   case X86::VORPSZ128rr:
7342   case X86::VORPDZ256rr:
7343   case X86::VORPSZ256rr:
7344   case X86::VORPDZrr:
7345   case X86::VORPSZrr:
7346   case X86::VXORPDrr:
7347   case X86::VXORPSrr:
7348   case X86::VXORPDYrr:
7349   case X86::VXORPSYrr:
7350   case X86::VXORPDZ128rr:
7351   case X86::VXORPSZ128rr:
7352   case X86::VXORPDZ256rr:
7353   case X86::VXORPSZ256rr:
7354   case X86::VXORPDZrr:
7355   case X86::VXORPSZrr:
7356   case X86::KADDBrr:
7357   case X86::KADDWrr:
7358   case X86::KADDDrr:
7359   case X86::KADDQrr:
7360   case X86::KANDBrr:
7361   case X86::KANDWrr:
7362   case X86::KANDDrr:
7363   case X86::KANDQrr:
7364   case X86::KORBrr:
7365   case X86::KORWrr:
7366   case X86::KORDrr:
7367   case X86::KORQrr:
7368   case X86::KXORBrr:
7369   case X86::KXORWrr:
7370   case X86::KXORDrr:
7371   case X86::KXORQrr:
7372   case X86::VPADDBrr:
7373   case X86::VPADDWrr:
7374   case X86::VPADDDrr:
7375   case X86::VPADDQrr:
7376   case X86::VPADDBYrr:
7377   case X86::VPADDWYrr:
7378   case X86::VPADDDYrr:
7379   case X86::VPADDQYrr:
7380   case X86::VPADDBZ128rr:
7381   case X86::VPADDWZ128rr:
7382   case X86::VPADDDZ128rr:
7383   case X86::VPADDQZ128rr:
7384   case X86::VPADDBZ256rr:
7385   case X86::VPADDWZ256rr:
7386   case X86::VPADDDZ256rr:
7387   case X86::VPADDQZ256rr:
7388   case X86::VPADDBZrr:
7389   case X86::VPADDWZrr:
7390   case X86::VPADDDZrr:
7391   case X86::VPADDQZrr:
7392   case X86::VPMULLWrr:
7393   case X86::VPMULLWYrr:
7394   case X86::VPMULLWZ128rr:
7395   case X86::VPMULLWZ256rr:
7396   case X86::VPMULLWZrr:
7397   case X86::VPMULLDrr:
7398   case X86::VPMULLDYrr:
7399   case X86::VPMULLDZ128rr:
7400   case X86::VPMULLDZ256rr:
7401   case X86::VPMULLDZrr:
7402   case X86::VPMULLQZ128rr:
7403   case X86::VPMULLQZ256rr:
7404   case X86::VPMULLQZrr:
7405   case X86::VPMAXSBrr:
7406   case X86::VPMAXSBYrr:
7407   case X86::VPMAXSBZ128rr:
7408   case X86::VPMAXSBZ256rr:
7409   case X86::VPMAXSBZrr:
7410   case X86::VPMAXSDrr:
7411   case X86::VPMAXSDYrr:
7412   case X86::VPMAXSDZ128rr:
7413   case X86::VPMAXSDZ256rr:
7414   case X86::VPMAXSDZrr:
7415   case X86::VPMAXSQZ128rr:
7416   case X86::VPMAXSQZ256rr:
7417   case X86::VPMAXSQZrr:
7418   case X86::VPMAXSWrr:
7419   case X86::VPMAXSWYrr:
7420   case X86::VPMAXSWZ128rr:
7421   case X86::VPMAXSWZ256rr:
7422   case X86::VPMAXSWZrr:
7423   case X86::VPMAXUBrr:
7424   case X86::VPMAXUBYrr:
7425   case X86::VPMAXUBZ128rr:
7426   case X86::VPMAXUBZ256rr:
7427   case X86::VPMAXUBZrr:
7428   case X86::VPMAXUDrr:
7429   case X86::VPMAXUDYrr:
7430   case X86::VPMAXUDZ128rr:
7431   case X86::VPMAXUDZ256rr:
7432   case X86::VPMAXUDZrr:
7433   case X86::VPMAXUQZ128rr:
7434   case X86::VPMAXUQZ256rr:
7435   case X86::VPMAXUQZrr:
7436   case X86::VPMAXUWrr:
7437   case X86::VPMAXUWYrr:
7438   case X86::VPMAXUWZ128rr:
7439   case X86::VPMAXUWZ256rr:
7440   case X86::VPMAXUWZrr:
7441   case X86::VPMINSBrr:
7442   case X86::VPMINSBYrr:
7443   case X86::VPMINSBZ128rr:
7444   case X86::VPMINSBZ256rr:
7445   case X86::VPMINSBZrr:
7446   case X86::VPMINSDrr:
7447   case X86::VPMINSDYrr:
7448   case X86::VPMINSDZ128rr:
7449   case X86::VPMINSDZ256rr:
7450   case X86::VPMINSDZrr:
7451   case X86::VPMINSQZ128rr:
7452   case X86::VPMINSQZ256rr:
7453   case X86::VPMINSQZrr:
7454   case X86::VPMINSWrr:
7455   case X86::VPMINSWYrr:
7456   case X86::VPMINSWZ128rr:
7457   case X86::VPMINSWZ256rr:
7458   case X86::VPMINSWZrr:
7459   case X86::VPMINUBrr:
7460   case X86::VPMINUBYrr:
7461   case X86::VPMINUBZ128rr:
7462   case X86::VPMINUBZ256rr:
7463   case X86::VPMINUBZrr:
7464   case X86::VPMINUDrr:
7465   case X86::VPMINUDYrr:
7466   case X86::VPMINUDZ128rr:
7467   case X86::VPMINUDZ256rr:
7468   case X86::VPMINUDZrr:
7469   case X86::VPMINUQZ128rr:
7470   case X86::VPMINUQZ256rr:
7471   case X86::VPMINUQZrr:
7472   case X86::VPMINUWrr:
7473   case X86::VPMINUWYrr:
7474   case X86::VPMINUWZ128rr:
7475   case X86::VPMINUWZ256rr:
7476   case X86::VPMINUWZrr:
7477   // Normal min/max instructions are not commutative because of NaN and signed
7478   // zero semantics, but these are. Thus, there's no need to check for global
7479   // relaxed math; the instructions themselves have the properties we need.
7480   case X86::MAXCPDrr:
7481   case X86::MAXCPSrr:
7482   case X86::MAXCSDrr:
7483   case X86::MAXCSSrr:
7484   case X86::MINCPDrr:
7485   case X86::MINCPSrr:
7486   case X86::MINCSDrr:
7487   case X86::MINCSSrr:
7488   case X86::VMAXCPDrr:
7489   case X86::VMAXCPSrr:
7490   case X86::VMAXCPDYrr:
7491   case X86::VMAXCPSYrr:
7492   case X86::VMAXCPDZ128rr:
7493   case X86::VMAXCPSZ128rr:
7494   case X86::VMAXCPDZ256rr:
7495   case X86::VMAXCPSZ256rr:
7496   case X86::VMAXCPDZrr:
7497   case X86::VMAXCPSZrr:
7498   case X86::VMAXCSDrr:
7499   case X86::VMAXCSSrr:
7500   case X86::VMAXCSDZrr:
7501   case X86::VMAXCSSZrr:
7502   case X86::VMINCPDrr:
7503   case X86::VMINCPSrr:
7504   case X86::VMINCPDYrr:
7505   case X86::VMINCPSYrr:
7506   case X86::VMINCPDZ128rr:
7507   case X86::VMINCPSZ128rr:
7508   case X86::VMINCPDZ256rr:
7509   case X86::VMINCPSZ256rr:
7510   case X86::VMINCPDZrr:
7511   case X86::VMINCPSZrr:
7512   case X86::VMINCSDrr:
7513   case X86::VMINCSSrr:
7514   case X86::VMINCSDZrr:
7515   case X86::VMINCSSZrr:
7516     return true;
7517   case X86::ADDPDrr:
7518   case X86::ADDPSrr:
7519   case X86::ADDSDrr:
7520   case X86::ADDSSrr:
7521   case X86::MULPDrr:
7522   case X86::MULPSrr:
7523   case X86::MULSDrr:
7524   case X86::MULSSrr:
7525   case X86::VADDPDrr:
7526   case X86::VADDPSrr:
7527   case X86::VADDPDYrr:
7528   case X86::VADDPSYrr:
7529   case X86::VADDPDZ128rr:
7530   case X86::VADDPSZ128rr:
7531   case X86::VADDPDZ256rr:
7532   case X86::VADDPSZ256rr:
7533   case X86::VADDPDZrr:
7534   case X86::VADDPSZrr:
7535   case X86::VADDSDrr:
7536   case X86::VADDSSrr:
7537   case X86::VADDSDZrr:
7538   case X86::VADDSSZrr:
7539   case X86::VMULPDrr:
7540   case X86::VMULPSrr:
7541   case X86::VMULPDYrr:
7542   case X86::VMULPSYrr:
7543   case X86::VMULPDZ128rr:
7544   case X86::VMULPSZ128rr:
7545   case X86::VMULPDZ256rr:
7546   case X86::VMULPSZ256rr:
7547   case X86::VMULPDZrr:
7548   case X86::VMULPSZrr:
7549   case X86::VMULSDrr:
7550   case X86::VMULSSrr:
7551   case X86::VMULSDZrr:
7552   case X86::VMULSSZrr:
7553     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7554   default:
7555     return false;
7556   }
7557 }
7558 
7559 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
7560 /// register then, if possible, describe the value in terms of the source
7561 /// register.
7562 static Optional<ParamLoadedValue>
7563 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
7564                          const TargetRegisterInfo *TRI) {
7565   Register DestReg = MI.getOperand(0).getReg();
7566   Register SrcReg = MI.getOperand(1).getReg();
7567 
7568   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7569 
7570   // If the described register is the destination, just return the source.
7571   if (DestReg == DescribedReg)
7572     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7573 
7574   // If the described register is a sub-register of the destination register,
7575   // then pick out the source register's corresponding sub-register.
7576   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
7577     unsigned SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
7578     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
7579   }
7580 
7581   // The remaining case to consider is when the described register is a
7582   // super-register of the destination register. MOV8rr and MOV16rr does not
7583   // write to any of the other bytes in the register, meaning that we'd have to
7584   // describe the value using a combination of the source register and the
7585   // non-overlapping bits in the described register, which is not currently
7586   // possible.
7587   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
7588       !TRI->isSuperRegister(DestReg, DescribedReg))
7589     return None;
7590 
7591   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
7592   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7593 }
7594 
7595 Optional<ParamLoadedValue>
7596 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
7597   const MachineOperand *Op = nullptr;
7598   DIExpression *Expr = nullptr;
7599 
7600   const TargetRegisterInfo *TRI = &getRegisterInfo();
7601 
7602   switch (MI.getOpcode()) {
7603   case X86::LEA32r:
7604   case X86::LEA64r:
7605   case X86::LEA64_32r: {
7606     // We may need to describe a 64-bit parameter with a 32-bit LEA.
7607     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7608       return None;
7609 
7610     // Operand 4 could be global address. For now we do not support
7611     // such situation.
7612     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
7613       return None;
7614 
7615     const MachineOperand &Op1 = MI.getOperand(1);
7616     const MachineOperand &Op2 = MI.getOperand(3);
7617     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
7618                            Register::isPhysicalRegister(Op2.getReg())));
7619 
7620     // Omit situations like:
7621     // %rsi = lea %rsi, 4, ...
7622     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
7623         Op2.getReg() == MI.getOperand(0).getReg())
7624       return None;
7625     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
7626               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
7627              (Op2.getReg() != X86::NoRegister &&
7628               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
7629       return None;
7630 
7631     int64_t Coef = MI.getOperand(2).getImm();
7632     int64_t Offset = MI.getOperand(4).getImm();
7633     SmallVector<uint64_t, 8> Ops;
7634 
7635     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
7636       Op = &Op1;
7637     } else if (Op1.isFI())
7638       Op = &Op1;
7639 
7640     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
7641       Ops.push_back(dwarf::DW_OP_constu);
7642       Ops.push_back(Coef + 1);
7643       Ops.push_back(dwarf::DW_OP_mul);
7644     } else {
7645       if (Op && Op2.getReg() != X86::NoRegister) {
7646         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
7647         if (dwarfReg < 0)
7648           return None;
7649         else if (dwarfReg < 32) {
7650           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
7651           Ops.push_back(0);
7652         } else {
7653           Ops.push_back(dwarf::DW_OP_bregx);
7654           Ops.push_back(dwarfReg);
7655           Ops.push_back(0);
7656         }
7657       } else if (!Op) {
7658         assert(Op2.getReg() != X86::NoRegister);
7659         Op = &Op2;
7660       }
7661 
7662       if (Coef > 1) {
7663         assert(Op2.getReg() != X86::NoRegister);
7664         Ops.push_back(dwarf::DW_OP_constu);
7665         Ops.push_back(Coef);
7666         Ops.push_back(dwarf::DW_OP_mul);
7667       }
7668 
7669       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
7670           Op2.getReg() != X86::NoRegister) {
7671         Ops.push_back(dwarf::DW_OP_plus);
7672       }
7673     }
7674 
7675     DIExpression::appendOffset(Ops, Offset);
7676     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
7677 
7678     return ParamLoadedValue(*Op, Expr);;
7679   }
7680   case X86::MOV32ri:
7681   case X86::MOV64ri:
7682   case X86::MOV64ri32:
7683     // MOV32ri may be used for producing zero-extended 32-bit immediates in
7684     // 64-bit parameters, so we need to consider super-registers.
7685     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7686       return None;
7687     return ParamLoadedValue(MI.getOperand(1), Expr);
7688   case X86::MOV8rr:
7689   case X86::MOV16rr:
7690   case X86::MOV32rr:
7691   case X86::MOV64rr:
7692     return describeMOVrrLoadedValue(MI, Reg, TRI);
7693   case X86::XOR32rr: {
7694     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
7695     // super-registers.
7696     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7697       return None;
7698     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
7699       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
7700     return None;
7701   }
7702   case X86::MOVSX64rr32: {
7703     // We may need to describe the lower 32 bits of the MOVSX; for example, in
7704     // cases like this:
7705     //
7706     //  $ebx = [...]
7707     //  $rdi = MOVSX64rr32 $ebx
7708     //  $esi = MOV32rr $edi
7709     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
7710       return None;
7711 
7712     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7713 
7714     // If the described register is the destination register we need to
7715     // sign-extend the source register from 32 bits. The other case we handle
7716     // is when the described register is the 32-bit sub-register of the
7717     // destination register, in case we just need to return the source
7718     // register.
7719     if (Reg == MI.getOperand(0).getReg())
7720       Expr = DIExpression::appendExt(Expr, 32, 64, true);
7721     else
7722       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
7723              "Unhandled sub-register case for MOVSX64rr32");
7724 
7725     return ParamLoadedValue(MI.getOperand(1), Expr);
7726   }
7727   default:
7728     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
7729     return TargetInstrInfo::describeLoadedValue(MI, Reg);
7730   }
7731 }
7732 
7733 /// This is an architecture-specific helper function of reassociateOps.
7734 /// Set special operand attributes for new instructions after reassociation.
7735 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7736                                          MachineInstr &OldMI2,
7737                                          MachineInstr &NewMI1,
7738                                          MachineInstr &NewMI2) const {
7739   // Integer instructions may define an implicit EFLAGS dest register operand.
7740   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
7741   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
7742 
7743   assert(!OldFlagDef1 == !OldFlagDef2 &&
7744          "Unexpected instruction type for reassociation");
7745 
7746   if (!OldFlagDef1 || !OldFlagDef2)
7747     return;
7748 
7749   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
7750          "Must have dead EFLAGS operand in reassociable instruction");
7751 
7752   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
7753   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
7754 
7755   assert(NewFlagDef1 && NewFlagDef2 &&
7756          "Unexpected operand in reassociable instruction");
7757 
7758   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7759   // of this pass or other passes. The EFLAGS operands must be dead in these new
7760   // instructions because the EFLAGS operands in the original instructions must
7761   // be dead in order for reassociation to occur.
7762   NewFlagDef1->setIsDead();
7763   NewFlagDef2->setIsDead();
7764 }
7765 
7766 std::pair<unsigned, unsigned>
7767 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7768   return std::make_pair(TF, 0u);
7769 }
7770 
7771 ArrayRef<std::pair<unsigned, const char *>>
7772 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7773   using namespace X86II;
7774   static const std::pair<unsigned, const char *> TargetFlags[] = {
7775       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7776       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7777       {MO_GOT, "x86-got"},
7778       {MO_GOTOFF, "x86-gotoff"},
7779       {MO_GOTPCREL, "x86-gotpcrel"},
7780       {MO_PLT, "x86-plt"},
7781       {MO_TLSGD, "x86-tlsgd"},
7782       {MO_TLSLD, "x86-tlsld"},
7783       {MO_TLSLDM, "x86-tlsldm"},
7784       {MO_GOTTPOFF, "x86-gottpoff"},
7785       {MO_INDNTPOFF, "x86-indntpoff"},
7786       {MO_TPOFF, "x86-tpoff"},
7787       {MO_DTPOFF, "x86-dtpoff"},
7788       {MO_NTPOFF, "x86-ntpoff"},
7789       {MO_GOTNTPOFF, "x86-gotntpoff"},
7790       {MO_DLLIMPORT, "x86-dllimport"},
7791       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7792       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7793       {MO_TLVP, "x86-tlvp"},
7794       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7795       {MO_SECREL, "x86-secrel"},
7796       {MO_COFFSTUB, "x86-coffstub"}};
7797   return makeArrayRef(TargetFlags);
7798 }
7799 
7800 namespace {
7801   /// Create Global Base Reg pass. This initializes the PIC
7802   /// global base register for x86-32.
7803   struct CGBR : public MachineFunctionPass {
7804     static char ID;
7805     CGBR() : MachineFunctionPass(ID) {}
7806 
7807     bool runOnMachineFunction(MachineFunction &MF) override {
7808       const X86TargetMachine *TM =
7809         static_cast<const X86TargetMachine *>(&MF.getTarget());
7810       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7811 
7812       // Don't do anything in the 64-bit small and kernel code models. They use
7813       // RIP-relative addressing for everything.
7814       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7815                             TM->getCodeModel() == CodeModel::Kernel))
7816         return false;
7817 
7818       // Only emit a global base reg in PIC mode.
7819       if (!TM->isPositionIndependent())
7820         return false;
7821 
7822       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7823       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7824 
7825       // If we didn't need a GlobalBaseReg, don't insert code.
7826       if (GlobalBaseReg == 0)
7827         return false;
7828 
7829       // Insert the set of GlobalBaseReg into the first MBB of the function
7830       MachineBasicBlock &FirstMBB = MF.front();
7831       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7832       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7833       MachineRegisterInfo &RegInfo = MF.getRegInfo();
7834       const X86InstrInfo *TII = STI.getInstrInfo();
7835 
7836       unsigned PC;
7837       if (STI.isPICStyleGOT())
7838         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7839       else
7840         PC = GlobalBaseReg;
7841 
7842       if (STI.is64Bit()) {
7843         if (TM->getCodeModel() == CodeModel::Medium) {
7844           // In the medium code model, use a RIP-relative LEA to materialize the
7845           // GOT.
7846           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7847               .addReg(X86::RIP)
7848               .addImm(0)
7849               .addReg(0)
7850               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7851               .addReg(0);
7852         } else if (TM->getCodeModel() == CodeModel::Large) {
7853           // In the large code model, we are aiming for this code, though the
7854           // register allocation may vary:
7855           //   leaq .LN$pb(%rip), %rax
7856           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7857           //   addq %rcx, %rax
7858           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7859           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7860           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7861           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7862               .addReg(X86::RIP)
7863               .addImm(0)
7864               .addReg(0)
7865               .addSym(MF.getPICBaseSymbol())
7866               .addReg(0);
7867           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7868           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7869               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7870                                  X86II::MO_PIC_BASE_OFFSET);
7871           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7872               .addReg(PBReg, RegState::Kill)
7873               .addReg(GOTReg, RegState::Kill);
7874         } else {
7875           llvm_unreachable("unexpected code model");
7876         }
7877       } else {
7878         // Operand of MovePCtoStack is completely ignored by asm printer. It's
7879         // only used in JIT code emission as displacement to pc.
7880         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7881 
7882         // If we're using vanilla 'GOT' PIC style, we should use relative
7883         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7884         if (STI.isPICStyleGOT()) {
7885           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7886           // %some_register
7887           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7888               .addReg(PC)
7889               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7890                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
7891         }
7892       }
7893 
7894       return true;
7895     }
7896 
7897     StringRef getPassName() const override {
7898       return "X86 PIC Global Base Reg Initialization";
7899     }
7900 
7901     void getAnalysisUsage(AnalysisUsage &AU) const override {
7902       AU.setPreservesCFG();
7903       MachineFunctionPass::getAnalysisUsage(AU);
7904     }
7905   };
7906 }
7907 
7908 char CGBR::ID = 0;
7909 FunctionPass*
7910 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7911 
7912 namespace {
7913   struct LDTLSCleanup : public MachineFunctionPass {
7914     static char ID;
7915     LDTLSCleanup() : MachineFunctionPass(ID) {}
7916 
7917     bool runOnMachineFunction(MachineFunction &MF) override {
7918       if (skipFunction(MF.getFunction()))
7919         return false;
7920 
7921       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7922       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7923         // No point folding accesses if there isn't at least two.
7924         return false;
7925       }
7926 
7927       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7928       return VisitNode(DT->getRootNode(), 0);
7929     }
7930 
7931     // Visit the dominator subtree rooted at Node in pre-order.
7932     // If TLSBaseAddrReg is non-null, then use that to replace any
7933     // TLS_base_addr instructions. Otherwise, create the register
7934     // when the first such instruction is seen, and then use it
7935     // as we encounter more instructions.
7936     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7937       MachineBasicBlock *BB = Node->getBlock();
7938       bool Changed = false;
7939 
7940       // Traverse the current block.
7941       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7942            ++I) {
7943         switch (I->getOpcode()) {
7944           case X86::TLS_base_addr32:
7945           case X86::TLS_base_addr64:
7946             if (TLSBaseAddrReg)
7947               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7948             else
7949               I = SetRegister(*I, &TLSBaseAddrReg);
7950             Changed = true;
7951             break;
7952           default:
7953             break;
7954         }
7955       }
7956 
7957       // Visit the children of this block in the dominator tree.
7958       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7959            I != E; ++I) {
7960         Changed |= VisitNode(*I, TLSBaseAddrReg);
7961       }
7962 
7963       return Changed;
7964     }
7965 
7966     // Replace the TLS_base_addr instruction I with a copy from
7967     // TLSBaseAddrReg, returning the new instruction.
7968     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7969                                          unsigned TLSBaseAddrReg) {
7970       MachineFunction *MF = I.getParent()->getParent();
7971       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7972       const bool is64Bit = STI.is64Bit();
7973       const X86InstrInfo *TII = STI.getInstrInfo();
7974 
7975       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7976       MachineInstr *Copy =
7977           BuildMI(*I.getParent(), I, I.getDebugLoc(),
7978                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7979               .addReg(TLSBaseAddrReg);
7980 
7981       // Erase the TLS_base_addr instruction.
7982       I.eraseFromParent();
7983 
7984       return Copy;
7985     }
7986 
7987     // Create a virtual register in *TLSBaseAddrReg, and populate it by
7988     // inserting a copy instruction after I. Returns the new instruction.
7989     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7990       MachineFunction *MF = I.getParent()->getParent();
7991       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7992       const bool is64Bit = STI.is64Bit();
7993       const X86InstrInfo *TII = STI.getInstrInfo();
7994 
7995       // Create a virtual register for the TLS base address.
7996       MachineRegisterInfo &RegInfo = MF->getRegInfo();
7997       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7998                                                       ? &X86::GR64RegClass
7999                                                       : &X86::GR32RegClass);
8000 
8001       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8002       MachineInstr *Next = I.getNextNode();
8003       MachineInstr *Copy =
8004           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8005                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8006               .addReg(is64Bit ? X86::RAX : X86::EAX);
8007 
8008       return Copy;
8009     }
8010 
8011     StringRef getPassName() const override {
8012       return "Local Dynamic TLS Access Clean-up";
8013     }
8014 
8015     void getAnalysisUsage(AnalysisUsage &AU) const override {
8016       AU.setPreservesCFG();
8017       AU.addRequired<MachineDominatorTree>();
8018       MachineFunctionPass::getAnalysisUsage(AU);
8019     }
8020   };
8021 }
8022 
8023 char LDTLSCleanup::ID = 0;
8024 FunctionPass*
8025 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8026 
8027 /// Constants defining how certain sequences should be outlined.
8028 ///
8029 /// \p MachineOutlinerDefault implies that the function is called with a call
8030 /// instruction, and a return must be emitted for the outlined function frame.
8031 ///
8032 /// That is,
8033 ///
8034 /// I1                                 OUTLINED_FUNCTION:
8035 /// I2 --> call OUTLINED_FUNCTION       I1
8036 /// I3                                  I2
8037 ///                                     I3
8038 ///                                     ret
8039 ///
8040 /// * Call construction overhead: 1 (call instruction)
8041 /// * Frame construction overhead: 1 (return instruction)
8042 ///
8043 /// \p MachineOutlinerTailCall implies that the function is being tail called.
8044 /// A jump is emitted instead of a call, and the return is already present in
8045 /// the outlined sequence. That is,
8046 ///
8047 /// I1                                 OUTLINED_FUNCTION:
8048 /// I2 --> jmp OUTLINED_FUNCTION       I1
8049 /// ret                                I2
8050 ///                                    ret
8051 ///
8052 /// * Call construction overhead: 1 (jump instruction)
8053 /// * Frame construction overhead: 0 (don't need to return)
8054 ///
8055 enum MachineOutlinerClass {
8056   MachineOutlinerDefault,
8057   MachineOutlinerTailCall
8058 };
8059 
8060 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8061     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8062   unsigned SequenceSize =
8063       std::accumulate(RepeatedSequenceLocs[0].front(),
8064                       std::next(RepeatedSequenceLocs[0].back()), 0,
8065                       [](unsigned Sum, const MachineInstr &MI) {
8066                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
8067                         // we can't tell the cost.  Just assume each instruction
8068                         // is one byte.
8069                         if (MI.isDebugInstr() || MI.isKill())
8070                           return Sum;
8071                         return Sum + 1;
8072                       });
8073 
8074   // FIXME: Use real size in bytes for call and ret instructions.
8075   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8076     for (outliner::Candidate &C : RepeatedSequenceLocs)
8077       C.setCallInfo(MachineOutlinerTailCall, 1);
8078 
8079     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8080                                       0, // Number of bytes to emit frame.
8081                                       MachineOutlinerTailCall // Type of frame.
8082     );
8083   }
8084 
8085   for (outliner::Candidate &C : RepeatedSequenceLocs)
8086     C.setCallInfo(MachineOutlinerDefault, 1);
8087 
8088   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
8089                                     MachineOutlinerDefault);
8090 }
8091 
8092 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
8093                                            bool OutlineFromLinkOnceODRs) const {
8094   const Function &F = MF.getFunction();
8095 
8096   // Does the function use a red zone? If it does, then we can't risk messing
8097   // with the stack.
8098   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
8099     // It could have a red zone. If it does, then we don't want to touch it.
8100     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8101     if (!X86FI || X86FI->getUsesRedZone())
8102       return false;
8103   }
8104 
8105   // If we *don't* want to outline from things that could potentially be deduped
8106   // then return false.
8107   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
8108       return false;
8109 
8110   // This function is viable for outlining, so return true.
8111   return true;
8112 }
8113 
8114 outliner::InstrType
8115 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
8116   MachineInstr &MI = *MIT;
8117   // Don't allow debug values to impact outlining type.
8118   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
8119     return outliner::InstrType::Invisible;
8120 
8121   // At this point, KILL instructions don't really tell us much so we can go
8122   // ahead and skip over them.
8123   if (MI.isKill())
8124     return outliner::InstrType::Invisible;
8125 
8126   // Is this a tail call? If yes, we can outline as a tail call.
8127   if (isTailCall(MI))
8128     return outliner::InstrType::Legal;
8129 
8130   // Is this the terminator of a basic block?
8131   if (MI.isTerminator() || MI.isReturn()) {
8132 
8133     // Does its parent have any successors in its MachineFunction?
8134     if (MI.getParent()->succ_empty())
8135       return outliner::InstrType::Legal;
8136 
8137     // It does, so we can't tail call it.
8138     return outliner::InstrType::Illegal;
8139   }
8140 
8141   // Don't outline anything that modifies or reads from the stack pointer.
8142   //
8143   // FIXME: There are instructions which are being manually built without
8144   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
8145   // able to remove the extra checks once those are fixed up. For example,
8146   // sometimes we might get something like %rax = POP64r 1. This won't be
8147   // caught by modifiesRegister or readsRegister even though the instruction
8148   // really ought to be formed so that modifiesRegister/readsRegister would
8149   // catch it.
8150   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
8151       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
8152       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
8153     return outliner::InstrType::Illegal;
8154 
8155   // Outlined calls change the instruction pointer, so don't read from it.
8156   if (MI.readsRegister(X86::RIP, &RI) ||
8157       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
8158       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
8159     return outliner::InstrType::Illegal;
8160 
8161   // Positions can't safely be outlined.
8162   if (MI.isPosition())
8163     return outliner::InstrType::Illegal;
8164 
8165   // Make sure none of the operands of this instruction do anything tricky.
8166   for (const MachineOperand &MOP : MI.operands())
8167     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
8168         MOP.isTargetIndex())
8169       return outliner::InstrType::Illegal;
8170 
8171   return outliner::InstrType::Legal;
8172 }
8173 
8174 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
8175                                           MachineFunction &MF,
8176                                           const outliner::OutlinedFunction &OF)
8177                                           const {
8178   // If we're a tail call, we already have a return, so don't do anything.
8179   if (OF.FrameConstructionID == MachineOutlinerTailCall)
8180     return;
8181 
8182   // We're a normal call, so our sequence doesn't have a return instruction.
8183   // Add it in.
8184   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
8185   MBB.insert(MBB.end(), retq);
8186 }
8187 
8188 MachineBasicBlock::iterator
8189 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
8190                                  MachineBasicBlock::iterator &It,
8191                                  MachineFunction &MF,
8192                                  const outliner::Candidate &C) const {
8193   // Is it a tail call?
8194   if (C.CallConstructionID == MachineOutlinerTailCall) {
8195     // Yes, just insert a JMP.
8196     It = MBB.insert(It,
8197                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
8198                       .addGlobalAddress(M.getNamedValue(MF.getName())));
8199   } else {
8200     // No, insert a call.
8201     It = MBB.insert(It,
8202                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
8203                       .addGlobalAddress(M.getNamedValue(MF.getName())));
8204   }
8205 
8206   return It;
8207 }
8208 
8209 #define GET_INSTRINFO_HELPERS
8210 #include "X86GenInstrInfo.inc"
8211