xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrFormats.td (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1//===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// X86 Instruction Format Definitions.
11//
12
13// Format specifies the encoding used by the instruction.  This is part of the
14// ad-hoc solution used to emit machine instruction encodings by our machine
15// code emitter.
16class Format<bits<7> val> {
17  bits<7> Value = val;
18}
19
20def Pseudo        : Format<0>;
21def RawFrm        : Format<1>;
22def AddRegFrm     : Format<2>;
23def RawFrmMemOffs : Format<3>;
24def RawFrmSrc     : Format<4>;
25def RawFrmDst     : Format<5>;
26def RawFrmDstSrc  : Format<6>;
27def RawFrmImm8    : Format<7>;
28def RawFrmImm16   : Format<8>;
29def AddCCFrm      : Format<9>;
30def PrefixByte    : Format<10>;
31def MRMDestMem4VOp3CC : Format<20>;
32def MRMr0          : Format<21>;
33def MRMSrcMemFSIB  : Format<22>;
34def MRMDestMemFSIB : Format<23>;
35def MRMDestMem     : Format<24>;
36def MRMSrcMem      : Format<25>;
37def MRMSrcMem4VOp3 : Format<26>;
38def MRMSrcMemOp4   : Format<27>;
39def MRMSrcMemCC    : Format<28>;
40def MRMXmCC: Format<30>;
41def MRMXm  : Format<31>;
42def MRM0m  : Format<32>;  def MRM1m  : Format<33>;  def MRM2m  : Format<34>;
43def MRM3m  : Format<35>;  def MRM4m  : Format<36>;  def MRM5m  : Format<37>;
44def MRM6m  : Format<38>;  def MRM7m  : Format<39>;
45def MRMDestReg     : Format<40>;
46def MRMSrcReg      : Format<41>;
47def MRMSrcReg4VOp3 : Format<42>;
48def MRMSrcRegOp4   : Format<43>;
49def MRMSrcRegCC    : Format<44>;
50def MRMXrCC: Format<46>;
51def MRMXr  : Format<47>;
52def MRM0r  : Format<48>;  def MRM1r  : Format<49>;  def MRM2r  : Format<50>;
53def MRM3r  : Format<51>;  def MRM4r  : Format<52>;  def MRM5r  : Format<53>;
54def MRM6r  : Format<54>;  def MRM7r  : Format<55>;
55def MRM0X  : Format<56>;  def MRM1X  : Format<57>;  def MRM2X  : Format<58>;
56def MRM3X  : Format<59>;  def MRM4X  : Format<60>;  def MRM5X  : Format<61>;
57def MRM6X  : Format<62>;  def MRM7X  : Format<63>;
58def MRM_C0 : Format<64>;  def MRM_C1 : Format<65>;  def MRM_C2 : Format<66>;
59def MRM_C3 : Format<67>;  def MRM_C4 : Format<68>;  def MRM_C5 : Format<69>;
60def MRM_C6 : Format<70>;  def MRM_C7 : Format<71>;  def MRM_C8 : Format<72>;
61def MRM_C9 : Format<73>;  def MRM_CA : Format<74>;  def MRM_CB : Format<75>;
62def MRM_CC : Format<76>;  def MRM_CD : Format<77>;  def MRM_CE : Format<78>;
63def MRM_CF : Format<79>;  def MRM_D0 : Format<80>;  def MRM_D1 : Format<81>;
64def MRM_D2 : Format<82>;  def MRM_D3 : Format<83>;  def MRM_D4 : Format<84>;
65def MRM_D5 : Format<85>;  def MRM_D6 : Format<86>;  def MRM_D7 : Format<87>;
66def MRM_D8 : Format<88>;  def MRM_D9 : Format<89>;  def MRM_DA : Format<90>;
67def MRM_DB : Format<91>;  def MRM_DC : Format<92>;  def MRM_DD : Format<93>;
68def MRM_DE : Format<94>;  def MRM_DF : Format<95>;  def MRM_E0 : Format<96>;
69def MRM_E1 : Format<97>;  def MRM_E2 : Format<98>;  def MRM_E3 : Format<99>;
70def MRM_E4 : Format<100>; def MRM_E5 : Format<101>; def MRM_E6 : Format<102>;
71def MRM_E7 : Format<103>; def MRM_E8 : Format<104>; def MRM_E9 : Format<105>;
72def MRM_EA : Format<106>; def MRM_EB : Format<107>; def MRM_EC : Format<108>;
73def MRM_ED : Format<109>; def MRM_EE : Format<110>; def MRM_EF : Format<111>;
74def MRM_F0 : Format<112>; def MRM_F1 : Format<113>; def MRM_F2 : Format<114>;
75def MRM_F3 : Format<115>; def MRM_F4 : Format<116>; def MRM_F5 : Format<117>;
76def MRM_F6 : Format<118>; def MRM_F7 : Format<119>; def MRM_F8 : Format<120>;
77def MRM_F9 : Format<121>; def MRM_FA : Format<122>; def MRM_FB : Format<123>;
78def MRM_FC : Format<124>; def MRM_FD : Format<125>; def MRM_FE : Format<126>;
79def MRM_FF : Format<127>;
80
81// ImmType - This specifies the immediate type used by an instruction. This is
82// part of the ad-hoc solution used to emit machine instruction encodings by our
83// machine code emitter.
84class ImmType<bits<4> val> {
85  bits<4> Value = val;
86}
87def NoImm      : ImmType<0>;
88def Imm8       : ImmType<1>;
89def Imm8PCRel  : ImmType<2>;
90def Imm8Reg    : ImmType<3>; // Register encoded in [7:4].
91def Imm16      : ImmType<4>;
92def Imm16PCRel : ImmType<5>;
93def Imm32      : ImmType<6>;
94def Imm32PCRel : ImmType<7>;
95def Imm32S     : ImmType<8>;
96def Imm64      : ImmType<9>;
97
98// FPFormat - This specifies what form this FP instruction has.  This is used by
99// the Floating-Point stackifier pass.
100class FPFormat<bits<3> val> {
101  bits<3> Value = val;
102}
103def NotFP      : FPFormat<0>;
104def ZeroArgFP  : FPFormat<1>;
105def OneArgFP   : FPFormat<2>;
106def OneArgFPRW : FPFormat<3>;
107def TwoArgFP   : FPFormat<4>;
108def CompareFP  : FPFormat<5>;
109def CondMovFP  : FPFormat<6>;
110def SpecialFP  : FPFormat<7>;
111
112// Class specifying the SSE execution domain, used by the SSEDomainFix pass.
113// Keep in sync with tables in X86InstrInfo.cpp.
114class Domain<bits<2> val> {
115  bits<2> Value = val;
116}
117def GenericDomain   : Domain<0>;
118def SSEPackedSingle : Domain<1>;
119def SSEPackedDouble : Domain<2>;
120def SSEPackedInt    : Domain<3>;
121
122// Class specifying the vector form of the decompressed
123// displacement of 8-bit.
124class CD8VForm<bits<3> val> {
125  bits<3> Value = val;
126}
127def CD8VF  : CD8VForm<0>;  // v := VL
128def CD8VH  : CD8VForm<1>;  // v := VL/2
129def CD8VQ  : CD8VForm<2>;  // v := VL/4
130def CD8VO  : CD8VForm<3>;  // v := VL/8
131// The tuple (subvector) forms.
132def CD8VT1 : CD8VForm<4>;  // v := 1
133def CD8VT2 : CD8VForm<5>;  // v := 2
134def CD8VT4 : CD8VForm<6>;  // v := 4
135def CD8VT8 : CD8VForm<7>;  // v := 8
136
137// Class specifying the prefix used an opcode extension.
138class Prefix<bits<3> val> {
139  bits<3> Value = val;
140}
141def NoPrfx : Prefix<0>;
142def PD     : Prefix<1>;
143def XS     : Prefix<2>;
144def XD     : Prefix<3>;
145def PS     : Prefix<4>; // Similar to NoPrfx, but disassembler uses this to know
146                        // that other instructions with this opcode use PD/XS/XD
147                        // and if any of those is not supported they shouldn't
148                        // decode to this instruction. e.g. ANDSS/ANDSD don't
149                        // exist, but the 0xf2/0xf3 encoding shouldn't
150                        // disable to ANDPS.
151
152// Class specifying the opcode map.
153class Map<bits<4> val> {
154  bits<4> Value = val;
155}
156def OB        : Map<0>;
157def TB        : Map<1>;
158def T8        : Map<2>;
159def TA        : Map<3>;
160def XOP8      : Map<4>;
161def XOP9      : Map<5>;
162def XOPA      : Map<6>;
163def ThreeDNow : Map<7>;
164def T_MAP4    : Map<8>;
165def T_MAP5    : Map<9>;
166def T_MAP6    : Map<10>;
167def T_MAP7    : Map<11>;
168
169// Class specifying the encoding
170class Encoding<bits<2> val> {
171  bits<2> Value = val;
172}
173def EncNormal : Encoding<0>;
174def EncVEX    : Encoding<1>;
175def EncXOP    : Encoding<2>;
176def EncEVEX   : Encoding<3>;
177
178// Operand size for encodings that change based on mode.
179class OperandSize<bits<2> val> {
180  bits<2> Value = val;
181}
182def OpSizeFixed  : OperandSize<0>; // Never needs a 0x66 prefix.
183def OpSize16     : OperandSize<1>; // Needs 0x66 prefix in 32/64-bit mode.
184def OpSize32     : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode.
185
186// Address size for encodings that change based on mode.
187class AddressSize<bits<2> val> {
188  bits<2> Value = val;
189}
190def AdSizeX  : AddressSize<0>; // Address size determined using addr operand.
191def AdSize16 : AddressSize<1>; // Encodes a 16-bit address.
192def AdSize32 : AddressSize<2>; // Encodes a 32-bit address.
193def AdSize64 : AddressSize<3>; // Encodes a 64-bit address.
194
195// Force the instruction to use REX2/VEX/EVEX encoding.
196class ExplicitOpPrefix<bits<2> val> {
197  bits<2> Value = val;
198}
199def NoExplicitOpPrefix : ExplicitOpPrefix<0>;
200def ExplicitREX2       : ExplicitOpPrefix<1>;
201def ExplicitVEX        : ExplicitOpPrefix<2>;
202def ExplicitEVEX       : ExplicitOpPrefix<3>;
203
204class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
205              string AsmStr, Domain d = GenericDomain>
206  : Instruction {
207  let Namespace = "X86";
208
209  bits<8> Opcode = opcod;
210  Format Form = f;
211  bits<7> FormBits = Form.Value;
212  ImmType ImmT = i;
213
214  dag OutOperandList = outs;
215  dag InOperandList = ins;
216  string AsmString = AsmStr;
217
218  // If this is a pseudo instruction, mark it isCodeGenOnly.
219  let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo");
220
221  let HasPositionOrder = 1;
222
223  //
224  // Attributes specific to X86 instructions...
225  //
226  bit ForceDisassemble = 0; // Force instruction to disassemble even though it's
227                            // isCodeGenonly. Needed to hide an ambiguous
228                            // AsmString from the parser, but still disassemble.
229
230  OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change
231                                    // based on operand size of the mode?
232  bits<2> OpSizeBits = OpSize.Value;
233  AddressSize AdSize = AdSizeX; // Does this instruction's encoding change
234                                // based on address size of the mode?
235  bits<2> AdSizeBits = AdSize.Value;
236
237  Encoding OpEnc = EncNormal; // Encoding used by this instruction
238  // Which prefix byte does this inst have?
239  Prefix OpPrefix = !if(!eq(OpEnc, EncNormal), NoPrfx, PS);
240  bits<3> OpPrefixBits = OpPrefix.Value;
241  Map OpMap = OB;           // Which opcode map does this inst have?
242  bits<4> OpMapBits = OpMap.Value;
243  bit hasREX_W  = 0;  // Does this inst require the REX.W prefix?
244  FPFormat FPForm = NotFP;  // What flavor of FP instruction is this?
245  bit hasLockPrefix = 0;    // Does this inst have a 0xF0 prefix?
246  Domain ExeDomain = d;
247  bit hasREPPrefix = 0;     // Does this inst have a REP prefix?
248  bits<2> OpEncBits = OpEnc.Value;
249  bit IgnoresW = 0;         // Does this inst ignore REX_W field?
250  bit hasVEX_4V = 0;        // Does this inst require the VEX.VVVV field?
251  bit hasVEX_L = 0;         // Does this inst use large (256-bit) registers?
252  bit ignoresVEX_L = 0;     // Does this instruction ignore the L-bit
253  bit hasEVEX_K = 0;        // Does this inst require masking?
254  bit hasEVEX_Z = 0;        // Does this inst set the EVEX_Z field?
255  bit hasEVEX_L2 = 0;       // Does this inst set the EVEX_L2 field?
256  bit hasEVEX_B = 0;        // Does this inst set the EVEX_B field?
257  bit hasEVEX_NF = 0;       // Does this inst set the EVEX_NF field?
258  bits<3> CD8_Form = 0;     // Compressed disp8 form - vector-width.
259  // Declare it int rather than bits<4> so that all bits are defined when
260  // assigning to bits<7>.
261  int CD8_EltSize = 0;      // Compressed disp8 form - element-size in bytes.
262  bit hasEVEX_RC = 0;       // Explicitly specified rounding control in FP instruction.
263  bit hasNoTrackPrefix = 0; // Does this inst has 0x3E (NoTrack) prefix?
264
265  // Vector size in bytes.
266  bits<7> VectSize = !if(hasEVEX_L2, 64, !if(hasVEX_L, 32, 16));
267
268  // The scaling factor for AVX512's compressed displacement is either
269  //   - the size of a  power-of-two number of elements or
270  //   - the size of a single element for broadcasts or
271  //   - the total vector size divided by a power-of-two number.
272  // Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64.
273  bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value),
274                           !if (CD8_Form{2},
275                                !shl(CD8_EltSize, CD8_Form{1-0}),
276                                !if (hasEVEX_B,
277                                     CD8_EltSize,
278                                     !srl(VectSize, CD8_Form{1-0}))), 0);
279
280  ExplicitOpPrefix explicitOpPrefix = NoExplicitOpPrefix;
281  bits<2> explicitOpPrefixBits = explicitOpPrefix.Value;
282  // TSFlags layout should be kept in sync with X86BaseInfo.h.
283  let TSFlags{6-0}   = FormBits;
284  let TSFlags{8-7}   = OpSizeBits;
285  let TSFlags{10-9}  = AdSizeBits;
286  // No need for 3rd bit, we don't need to distinguish NoPrfx from PS.
287  let TSFlags{12-11} = OpPrefixBits{1-0};
288  let TSFlags{16-13} = OpMapBits;
289  let TSFlags{17}    = hasREX_W;
290  let TSFlags{21-18} = ImmT.Value;
291  let TSFlags{24-22} = FPForm.Value;
292  let TSFlags{25}    = hasLockPrefix;
293  let TSFlags{26}    = hasREPPrefix;
294  let TSFlags{28-27} = ExeDomain.Value;
295  let TSFlags{30-29} = OpEncBits;
296  let TSFlags{38-31} = Opcode;
297  let TSFlags{39}    = hasVEX_4V;
298  let TSFlags{40}    = hasVEX_L;
299  let TSFlags{41}    = hasEVEX_K;
300  let TSFlags{42}    = hasEVEX_Z;
301  let TSFlags{43}    = hasEVEX_L2;
302  let TSFlags{44}    = hasEVEX_B;
303  let TSFlags{47-45} = !if(!eq(CD8_Scale, 0), 0, !add(!logtwo(CD8_Scale), 1));
304  let TSFlags{48}    = hasEVEX_RC;
305  let TSFlags{49}    = hasNoTrackPrefix;
306  let TSFlags{51-50} = explicitOpPrefixBits;
307  let TSFlags{52}    = hasEVEX_NF;
308}
309