10b57cec5SDimitry Andric//===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===// 20b57cec5SDimitry Andric// 30b57cec5SDimitry Andric// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric// See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric// 70b57cec5SDimitry Andric//===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric 90b57cec5SDimitry Andric//===----------------------------------------------------------------------===// 100b57cec5SDimitry Andric// X86 Instruction Format Definitions. 110b57cec5SDimitry Andric// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric// Format specifies the encoding used by the instruction. This is part of the 140b57cec5SDimitry Andric// ad-hoc solution used to emit machine instruction encodings by our machine 150b57cec5SDimitry Andric// code emitter. 160b57cec5SDimitry Andricclass Format<bits<7> val> { 170b57cec5SDimitry Andric bits<7> Value = val; 180b57cec5SDimitry Andric} 190b57cec5SDimitry Andric 200b57cec5SDimitry Andricdef Pseudo : Format<0>; 210b57cec5SDimitry Andricdef RawFrm : Format<1>; 220b57cec5SDimitry Andricdef AddRegFrm : Format<2>; 230b57cec5SDimitry Andricdef RawFrmMemOffs : Format<3>; 240b57cec5SDimitry Andricdef RawFrmSrc : Format<4>; 250b57cec5SDimitry Andricdef RawFrmDst : Format<5>; 260b57cec5SDimitry Andricdef RawFrmDstSrc : Format<6>; 270b57cec5SDimitry Andricdef RawFrmImm8 : Format<7>; 280b57cec5SDimitry Andricdef RawFrmImm16 : Format<8>; 290b57cec5SDimitry Andricdef AddCCFrm : Format<9>; 305ffd83dbSDimitry Andricdef PrefixByte : Format<10>; 31*0fca6ea1SDimitry Andricdef MRMDestRegCC : Format<18>; 32*0fca6ea1SDimitry Andricdef MRMDestMemCC : Format<19>; 33bdd1243dSDimitry Andricdef MRMDestMem4VOp3CC : Format<20>; 345ffd83dbSDimitry Andricdef MRMr0 : Format<21>; 355ffd83dbSDimitry Andricdef MRMSrcMemFSIB : Format<22>; 365ffd83dbSDimitry Andricdef MRMDestMemFSIB : Format<23>; 375ffd83dbSDimitry Andricdef MRMDestMem : Format<24>; 385ffd83dbSDimitry Andricdef MRMSrcMem : Format<25>; 395ffd83dbSDimitry Andricdef MRMSrcMem4VOp3 : Format<26>; 405ffd83dbSDimitry Andricdef MRMSrcMemOp4 : Format<27>; 415ffd83dbSDimitry Andricdef MRMSrcMemCC : Format<28>; 425ffd83dbSDimitry Andricdef MRMXmCC: Format<30>; 435ffd83dbSDimitry Andricdef MRMXm : Format<31>; 445ffd83dbSDimitry Andricdef MRM0m : Format<32>; def MRM1m : Format<33>; def MRM2m : Format<34>; 455ffd83dbSDimitry Andricdef MRM3m : Format<35>; def MRM4m : Format<36>; def MRM5m : Format<37>; 465ffd83dbSDimitry Andricdef MRM6m : Format<38>; def MRM7m : Format<39>; 475ffd83dbSDimitry Andricdef MRMDestReg : Format<40>; 485ffd83dbSDimitry Andricdef MRMSrcReg : Format<41>; 495ffd83dbSDimitry Andricdef MRMSrcReg4VOp3 : Format<42>; 505ffd83dbSDimitry Andricdef MRMSrcRegOp4 : Format<43>; 515ffd83dbSDimitry Andricdef MRMSrcRegCC : Format<44>; 525ffd83dbSDimitry Andricdef MRMXrCC: Format<46>; 535ffd83dbSDimitry Andricdef MRMXr : Format<47>; 545ffd83dbSDimitry Andricdef MRM0r : Format<48>; def MRM1r : Format<49>; def MRM2r : Format<50>; 555ffd83dbSDimitry Andricdef MRM3r : Format<51>; def MRM4r : Format<52>; def MRM5r : Format<53>; 565ffd83dbSDimitry Andricdef MRM6r : Format<54>; def MRM7r : Format<55>; 575ffd83dbSDimitry Andricdef MRM0X : Format<56>; def MRM1X : Format<57>; def MRM2X : Format<58>; 585ffd83dbSDimitry Andricdef MRM3X : Format<59>; def MRM4X : Format<60>; def MRM5X : Format<61>; 595ffd83dbSDimitry Andricdef MRM6X : Format<62>; def MRM7X : Format<63>; 600b57cec5SDimitry Andricdef MRM_C0 : Format<64>; def MRM_C1 : Format<65>; def MRM_C2 : Format<66>; 610b57cec5SDimitry Andricdef MRM_C3 : Format<67>; def MRM_C4 : Format<68>; def MRM_C5 : Format<69>; 620b57cec5SDimitry Andricdef MRM_C6 : Format<70>; def MRM_C7 : Format<71>; def MRM_C8 : Format<72>; 630b57cec5SDimitry Andricdef MRM_C9 : Format<73>; def MRM_CA : Format<74>; def MRM_CB : Format<75>; 640b57cec5SDimitry Andricdef MRM_CC : Format<76>; def MRM_CD : Format<77>; def MRM_CE : Format<78>; 650b57cec5SDimitry Andricdef MRM_CF : Format<79>; def MRM_D0 : Format<80>; def MRM_D1 : Format<81>; 660b57cec5SDimitry Andricdef MRM_D2 : Format<82>; def MRM_D3 : Format<83>; def MRM_D4 : Format<84>; 670b57cec5SDimitry Andricdef MRM_D5 : Format<85>; def MRM_D6 : Format<86>; def MRM_D7 : Format<87>; 680b57cec5SDimitry Andricdef MRM_D8 : Format<88>; def MRM_D9 : Format<89>; def MRM_DA : Format<90>; 690b57cec5SDimitry Andricdef MRM_DB : Format<91>; def MRM_DC : Format<92>; def MRM_DD : Format<93>; 700b57cec5SDimitry Andricdef MRM_DE : Format<94>; def MRM_DF : Format<95>; def MRM_E0 : Format<96>; 710b57cec5SDimitry Andricdef MRM_E1 : Format<97>; def MRM_E2 : Format<98>; def MRM_E3 : Format<99>; 720b57cec5SDimitry Andricdef MRM_E4 : Format<100>; def MRM_E5 : Format<101>; def MRM_E6 : Format<102>; 730b57cec5SDimitry Andricdef MRM_E7 : Format<103>; def MRM_E8 : Format<104>; def MRM_E9 : Format<105>; 740b57cec5SDimitry Andricdef MRM_EA : Format<106>; def MRM_EB : Format<107>; def MRM_EC : Format<108>; 750b57cec5SDimitry Andricdef MRM_ED : Format<109>; def MRM_EE : Format<110>; def MRM_EF : Format<111>; 760b57cec5SDimitry Andricdef MRM_F0 : Format<112>; def MRM_F1 : Format<113>; def MRM_F2 : Format<114>; 770b57cec5SDimitry Andricdef MRM_F3 : Format<115>; def MRM_F4 : Format<116>; def MRM_F5 : Format<117>; 780b57cec5SDimitry Andricdef MRM_F6 : Format<118>; def MRM_F7 : Format<119>; def MRM_F8 : Format<120>; 790b57cec5SDimitry Andricdef MRM_F9 : Format<121>; def MRM_FA : Format<122>; def MRM_FB : Format<123>; 800b57cec5SDimitry Andricdef MRM_FC : Format<124>; def MRM_FD : Format<125>; def MRM_FE : Format<126>; 810b57cec5SDimitry Andricdef MRM_FF : Format<127>; 820b57cec5SDimitry Andric 830b57cec5SDimitry Andric// ImmType - This specifies the immediate type used by an instruction. This is 840b57cec5SDimitry Andric// part of the ad-hoc solution used to emit machine instruction encodings by our 850b57cec5SDimitry Andric// machine code emitter. 860b57cec5SDimitry Andricclass ImmType<bits<4> val> { 870b57cec5SDimitry Andric bits<4> Value = val; 880b57cec5SDimitry Andric} 890b57cec5SDimitry Andricdef NoImm : ImmType<0>; 900b57cec5SDimitry Andricdef Imm8 : ImmType<1>; 910b57cec5SDimitry Andricdef Imm8PCRel : ImmType<2>; 920b57cec5SDimitry Andricdef Imm8Reg : ImmType<3>; // Register encoded in [7:4]. 930b57cec5SDimitry Andricdef Imm16 : ImmType<4>; 940b57cec5SDimitry Andricdef Imm16PCRel : ImmType<5>; 950b57cec5SDimitry Andricdef Imm32 : ImmType<6>; 960b57cec5SDimitry Andricdef Imm32PCRel : ImmType<7>; 970b57cec5SDimitry Andricdef Imm32S : ImmType<8>; 980b57cec5SDimitry Andricdef Imm64 : ImmType<9>; 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric// FPFormat - This specifies what form this FP instruction has. This is used by 1010b57cec5SDimitry Andric// the Floating-Point stackifier pass. 1020b57cec5SDimitry Andricclass FPFormat<bits<3> val> { 1030b57cec5SDimitry Andric bits<3> Value = val; 1040b57cec5SDimitry Andric} 1050b57cec5SDimitry Andricdef NotFP : FPFormat<0>; 1060b57cec5SDimitry Andricdef ZeroArgFP : FPFormat<1>; 1070b57cec5SDimitry Andricdef OneArgFP : FPFormat<2>; 1080b57cec5SDimitry Andricdef OneArgFPRW : FPFormat<3>; 1090b57cec5SDimitry Andricdef TwoArgFP : FPFormat<4>; 1100b57cec5SDimitry Andricdef CompareFP : FPFormat<5>; 1110b57cec5SDimitry Andricdef CondMovFP : FPFormat<6>; 1120b57cec5SDimitry Andricdef SpecialFP : FPFormat<7>; 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric// Class specifying the SSE execution domain, used by the SSEDomainFix pass. 1150b57cec5SDimitry Andric// Keep in sync with tables in X86InstrInfo.cpp. 1160b57cec5SDimitry Andricclass Domain<bits<2> val> { 1170b57cec5SDimitry Andric bits<2> Value = val; 1180b57cec5SDimitry Andric} 1190b57cec5SDimitry Andricdef GenericDomain : Domain<0>; 1200b57cec5SDimitry Andricdef SSEPackedSingle : Domain<1>; 1210b57cec5SDimitry Andricdef SSEPackedDouble : Domain<2>; 1220b57cec5SDimitry Andricdef SSEPackedInt : Domain<3>; 1230b57cec5SDimitry Andric 1240b57cec5SDimitry Andric// Class specifying the vector form of the decompressed 1250b57cec5SDimitry Andric// displacement of 8-bit. 1260b57cec5SDimitry Andricclass CD8VForm<bits<3> val> { 1270b57cec5SDimitry Andric bits<3> Value = val; 1280b57cec5SDimitry Andric} 1290b57cec5SDimitry Andricdef CD8VF : CD8VForm<0>; // v := VL 1300b57cec5SDimitry Andricdef CD8VH : CD8VForm<1>; // v := VL/2 1310b57cec5SDimitry Andricdef CD8VQ : CD8VForm<2>; // v := VL/4 1320b57cec5SDimitry Andricdef CD8VO : CD8VForm<3>; // v := VL/8 1330b57cec5SDimitry Andric// The tuple (subvector) forms. 1340b57cec5SDimitry Andricdef CD8VT1 : CD8VForm<4>; // v := 1 1350b57cec5SDimitry Andricdef CD8VT2 : CD8VForm<5>; // v := 2 1360b57cec5SDimitry Andricdef CD8VT4 : CD8VForm<6>; // v := 4 1370b57cec5SDimitry Andricdef CD8VT8 : CD8VForm<7>; // v := 8 1380b57cec5SDimitry Andric 1390b57cec5SDimitry Andric// Class specifying the prefix used an opcode extension. 1400b57cec5SDimitry Andricclass Prefix<bits<3> val> { 1410b57cec5SDimitry Andric bits<3> Value = val; 1420b57cec5SDimitry Andric} 1430b57cec5SDimitry Andricdef NoPrfx : Prefix<0>; 1440b57cec5SDimitry Andricdef PD : Prefix<1>; 1450b57cec5SDimitry Andricdef XS : Prefix<2>; 1460b57cec5SDimitry Andricdef XD : Prefix<3>; 1470b57cec5SDimitry Andricdef PS : Prefix<4>; // Similar to NoPrfx, but disassembler uses this to know 1480b57cec5SDimitry Andric // that other instructions with this opcode use PD/XS/XD 1490b57cec5SDimitry Andric // and if any of those is not supported they shouldn't 1500b57cec5SDimitry Andric // decode to this instruction. e.g. ANDSS/ANDSD don't 1510b57cec5SDimitry Andric // exist, but the 0xf2/0xf3 encoding shouldn't 1520b57cec5SDimitry Andric // disable to ANDPS. 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric// Class specifying the opcode map. 155349cc55cSDimitry Andricclass Map<bits<4> val> { 156349cc55cSDimitry Andric bits<4> Value = val; 1570b57cec5SDimitry Andric} 1580b57cec5SDimitry Andricdef OB : Map<0>; 1590b57cec5SDimitry Andricdef TB : Map<1>; 1600b57cec5SDimitry Andricdef T8 : Map<2>; 1610b57cec5SDimitry Andricdef TA : Map<3>; 1620b57cec5SDimitry Andricdef XOP8 : Map<4>; 1630b57cec5SDimitry Andricdef XOP9 : Map<5>; 1640b57cec5SDimitry Andricdef XOPA : Map<6>; 1650b57cec5SDimitry Andricdef ThreeDNow : Map<7>; 1665f757f3fSDimitry Andricdef T_MAP4 : Map<8>; 1675f757f3fSDimitry Andricdef T_MAP5 : Map<9>; 1685f757f3fSDimitry Andricdef T_MAP6 : Map<10>; 1695f757f3fSDimitry Andricdef T_MAP7 : Map<11>; 1700b57cec5SDimitry Andric 1710b57cec5SDimitry Andric// Class specifying the encoding 1720b57cec5SDimitry Andricclass Encoding<bits<2> val> { 1730b57cec5SDimitry Andric bits<2> Value = val; 1740b57cec5SDimitry Andric} 1750b57cec5SDimitry Andricdef EncNormal : Encoding<0>; 1760b57cec5SDimitry Andricdef EncVEX : Encoding<1>; 1770b57cec5SDimitry Andricdef EncXOP : Encoding<2>; 1780b57cec5SDimitry Andricdef EncEVEX : Encoding<3>; 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric// Operand size for encodings that change based on mode. 1810b57cec5SDimitry Andricclass OperandSize<bits<2> val> { 1820b57cec5SDimitry Andric bits<2> Value = val; 1830b57cec5SDimitry Andric} 1840b57cec5SDimitry Andricdef OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix. 185cb14a3feSDimitry Andricdef OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32/64-bit mode. 1860b57cec5SDimitry Andricdef OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode. 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric// Address size for encodings that change based on mode. 1890b57cec5SDimitry Andricclass AddressSize<bits<2> val> { 1900b57cec5SDimitry Andric bits<2> Value = val; 1910b57cec5SDimitry Andric} 1920b57cec5SDimitry Andricdef AdSizeX : AddressSize<0>; // Address size determined using addr operand. 1930b57cec5SDimitry Andricdef AdSize16 : AddressSize<1>; // Encodes a 16-bit address. 1940b57cec5SDimitry Andricdef AdSize32 : AddressSize<2>; // Encodes a 32-bit address. 1950b57cec5SDimitry Andricdef AdSize64 : AddressSize<3>; // Encodes a 64-bit address. 1960b57cec5SDimitry Andric 1975f757f3fSDimitry Andric// Force the instruction to use REX2/VEX/EVEX encoding. 1985f757f3fSDimitry Andricclass ExplicitOpPrefix<bits<2> val> { 1995f757f3fSDimitry Andric bits<2> Value = val; 2000b57cec5SDimitry Andric} 2015f757f3fSDimitry Andricdef NoExplicitOpPrefix : ExplicitOpPrefix<0>; 2025f757f3fSDimitry Andricdef ExplicitREX2 : ExplicitOpPrefix<1>; 2035f757f3fSDimitry Andricdef ExplicitVEX : ExplicitOpPrefix<2>; 2045f757f3fSDimitry Andricdef ExplicitEVEX : ExplicitOpPrefix<3>; 205e8d8bef9SDimitry Andric 2060b57cec5SDimitry Andricclass X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, 2070b57cec5SDimitry Andric string AsmStr, Domain d = GenericDomain> 2080b57cec5SDimitry Andric : Instruction { 2090b57cec5SDimitry Andric let Namespace = "X86"; 2100b57cec5SDimitry Andric 2110b57cec5SDimitry Andric bits<8> Opcode = opcod; 2120b57cec5SDimitry Andric Format Form = f; 2130b57cec5SDimitry Andric bits<7> FormBits = Form.Value; 2140b57cec5SDimitry Andric ImmType ImmT = i; 2150b57cec5SDimitry Andric 2160b57cec5SDimitry Andric dag OutOperandList = outs; 2170b57cec5SDimitry Andric dag InOperandList = ins; 2180b57cec5SDimitry Andric string AsmString = AsmStr; 2190b57cec5SDimitry Andric 2200b57cec5SDimitry Andric // If this is a pseudo instruction, mark it isCodeGenOnly. 2210b57cec5SDimitry Andric let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo"); 2220b57cec5SDimitry Andric 223349cc55cSDimitry Andric let HasPositionOrder = 1; 224349cc55cSDimitry Andric 2250b57cec5SDimitry Andric // 2260b57cec5SDimitry Andric // Attributes specific to X86 instructions... 2270b57cec5SDimitry Andric // 2280b57cec5SDimitry Andric bit ForceDisassemble = 0; // Force instruction to disassemble even though it's 2290b57cec5SDimitry Andric // isCodeGenonly. Needed to hide an ambiguous 2300b57cec5SDimitry Andric // AsmString from the parser, but still disassemble. 2310b57cec5SDimitry Andric 2320b57cec5SDimitry Andric OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change 2330b57cec5SDimitry Andric // based on operand size of the mode? 2340b57cec5SDimitry Andric bits<2> OpSizeBits = OpSize.Value; 2350b57cec5SDimitry Andric AddressSize AdSize = AdSizeX; // Does this instruction's encoding change 2360b57cec5SDimitry Andric // based on address size of the mode? 2370b57cec5SDimitry Andric bits<2> AdSizeBits = AdSize.Value; 2380b57cec5SDimitry Andric 239cb14a3feSDimitry Andric Encoding OpEnc = EncNormal; // Encoding used by this instruction 240cb14a3feSDimitry Andric // Which prefix byte does this inst have? 241cb14a3feSDimitry Andric Prefix OpPrefix = !if(!eq(OpEnc, EncNormal), NoPrfx, PS); 2420b57cec5SDimitry Andric bits<3> OpPrefixBits = OpPrefix.Value; 2430b57cec5SDimitry Andric Map OpMap = OB; // Which opcode map does this inst have? 244349cc55cSDimitry Andric bits<4> OpMapBits = OpMap.Value; 24581ad6265SDimitry Andric bit hasREX_W = 0; // Does this inst require the REX.W prefix? 2460b57cec5SDimitry Andric FPFormat FPForm = NotFP; // What flavor of FP instruction is this? 2470b57cec5SDimitry Andric bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix? 2480b57cec5SDimitry Andric Domain ExeDomain = d; 2490b57cec5SDimitry Andric bit hasREPPrefix = 0; // Does this inst have a REP prefix? 2500b57cec5SDimitry Andric bits<2> OpEncBits = OpEnc.Value; 25106c3fb27SDimitry Andric bit IgnoresW = 0; // Does this inst ignore REX_W field? 2520b57cec5SDimitry Andric bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field? 2530b57cec5SDimitry Andric bit hasVEX_L = 0; // Does this inst use large (256-bit) registers? 2540b57cec5SDimitry Andric bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit 2550b57cec5SDimitry Andric bit hasEVEX_K = 0; // Does this inst require masking? 2560b57cec5SDimitry Andric bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field? 2570b57cec5SDimitry Andric bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field? 2580b57cec5SDimitry Andric bit hasEVEX_B = 0; // Does this inst set the EVEX_B field? 259647cbc5dSDimitry Andric bit hasEVEX_NF = 0; // Does this inst set the EVEX_NF field? 260*0fca6ea1SDimitry Andric bit hasTwoConditionalOps = 0; // Does this inst have two conditional operands? 2610b57cec5SDimitry Andric bits<3> CD8_Form = 0; // Compressed disp8 form - vector-width. 2620b57cec5SDimitry Andric // Declare it int rather than bits<4> so that all bits are defined when 2630b57cec5SDimitry Andric // assigning to bits<7>. 2640b57cec5SDimitry Andric int CD8_EltSize = 0; // Compressed disp8 form - element-size in bytes. 2650b57cec5SDimitry Andric bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction. 2660b57cec5SDimitry Andric bit hasNoTrackPrefix = 0; // Does this inst has 0x3E (NoTrack) prefix? 2670b57cec5SDimitry Andric 2680b57cec5SDimitry Andric // Vector size in bytes. 2690b57cec5SDimitry Andric bits<7> VectSize = !if(hasEVEX_L2, 64, !if(hasVEX_L, 32, 16)); 2700b57cec5SDimitry Andric 2710b57cec5SDimitry Andric // The scaling factor for AVX512's compressed displacement is either 2720b57cec5SDimitry Andric // - the size of a power-of-two number of elements or 2730b57cec5SDimitry Andric // - the size of a single element for broadcasts or 2740b57cec5SDimitry Andric // - the total vector size divided by a power-of-two number. 2750b57cec5SDimitry Andric // Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64. 2760b57cec5SDimitry Andric bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value), 2770b57cec5SDimitry Andric !if (CD8_Form{2}, 2780b57cec5SDimitry Andric !shl(CD8_EltSize, CD8_Form{1-0}), 2790b57cec5SDimitry Andric !if (hasEVEX_B, 2800b57cec5SDimitry Andric CD8_EltSize, 2810b57cec5SDimitry Andric !srl(VectSize, CD8_Form{1-0}))), 0); 2820b57cec5SDimitry Andric 2835f757f3fSDimitry Andric ExplicitOpPrefix explicitOpPrefix = NoExplicitOpPrefix; 2845f757f3fSDimitry Andric bits<2> explicitOpPrefixBits = explicitOpPrefix.Value; 2850b57cec5SDimitry Andric // TSFlags layout should be kept in sync with X86BaseInfo.h. 2860b57cec5SDimitry Andric let TSFlags{6-0} = FormBits; 2870b57cec5SDimitry Andric let TSFlags{8-7} = OpSizeBits; 2880b57cec5SDimitry Andric let TSFlags{10-9} = AdSizeBits; 2890b57cec5SDimitry Andric // No need for 3rd bit, we don't need to distinguish NoPrfx from PS. 2900b57cec5SDimitry Andric let TSFlags{12-11} = OpPrefixBits{1-0}; 291349cc55cSDimitry Andric let TSFlags{16-13} = OpMapBits; 29281ad6265SDimitry Andric let TSFlags{17} = hasREX_W; 293349cc55cSDimitry Andric let TSFlags{21-18} = ImmT.Value; 294349cc55cSDimitry Andric let TSFlags{24-22} = FPForm.Value; 295349cc55cSDimitry Andric let TSFlags{25} = hasLockPrefix; 296349cc55cSDimitry Andric let TSFlags{26} = hasREPPrefix; 297349cc55cSDimitry Andric let TSFlags{28-27} = ExeDomain.Value; 298349cc55cSDimitry Andric let TSFlags{30-29} = OpEncBits; 299349cc55cSDimitry Andric let TSFlags{38-31} = Opcode; 30006c3fb27SDimitry Andric let TSFlags{39} = hasVEX_4V; 30106c3fb27SDimitry Andric let TSFlags{40} = hasVEX_L; 30206c3fb27SDimitry Andric let TSFlags{41} = hasEVEX_K; 30306c3fb27SDimitry Andric let TSFlags{42} = hasEVEX_Z; 30406c3fb27SDimitry Andric let TSFlags{43} = hasEVEX_L2; 30506c3fb27SDimitry Andric let TSFlags{44} = hasEVEX_B; 30606c3fb27SDimitry Andric let TSFlags{47-45} = !if(!eq(CD8_Scale, 0), 0, !add(!logtwo(CD8_Scale), 1)); 30706c3fb27SDimitry Andric let TSFlags{48} = hasEVEX_RC; 30806c3fb27SDimitry Andric let TSFlags{49} = hasNoTrackPrefix; 3095f757f3fSDimitry Andric let TSFlags{51-50} = explicitOpPrefixBits; 310647cbc5dSDimitry Andric let TSFlags{52} = hasEVEX_NF; 311*0fca6ea1SDimitry Andric let TSFlags{53} = hasTwoConditionalOps; 3120b57cec5SDimitry Andric} 313