1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the X86 x87 FPU instruction set, defining the 10// instructions, and properties of the instructions which are needed for code 11// generation, machine code emission, and analysis. 12// 13//===----------------------------------------------------------------------===// 14 15//===----------------------------------------------------------------------===// 16// FPStack specific DAG Nodes. 17//===----------------------------------------------------------------------===// 18 19def SDTX86Fld : SDTypeProfile<1, 1, [SDTCisFP<0>, 20 SDTCisPtrTy<1>]>; 21def SDTX86Fst : SDTypeProfile<0, 2, [SDTCisFP<0>, 22 SDTCisPtrTy<1>]>; 23def SDTX86Fild : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>; 24def SDTX86Fist : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; 25def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>; 26 27def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; 28 29def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, 30 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 31def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, 32 [SDNPHasChain, SDNPOptInGlue, SDNPMayStore, 33 SDNPMemOperand]>; 34def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, 35 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 36def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, 37 [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, 38 SDNPMemOperand]>; 39def X86fist : SDNode<"X86ISD::FIST", SDTX86Fist, 40 [SDNPHasChain, SDNPOptInGlue, SDNPMayStore, 41 SDNPMemOperand]>; 42def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>; 43def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst, 44 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 45def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, 46 [SDNPHasChain, SDNPMayStore, SDNPSideEffect, 47 SDNPMemOperand]>; 48 49def X86fstf32 : PatFrag<(ops node:$val, node:$ptr), 50 (X86fst node:$val, node:$ptr), [{ 51 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32; 52}]>; 53def X86fstf64 : PatFrag<(ops node:$val, node:$ptr), 54 (X86fst node:$val, node:$ptr), [{ 55 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64; 56}]>; 57def X86fstf80 : PatFrag<(ops node:$val, node:$ptr), 58 (X86fst node:$val, node:$ptr), [{ 59 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80; 60}]>; 61 62def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{ 63 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32; 64}]>; 65def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{ 66 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64; 67}]>; 68def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{ 69 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80; 70}]>; 71 72def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{ 73 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 74}]>; 75def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{ 76 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 77}]>; 78def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{ 79 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; 80}]>; 81 82def X86fildflag64 : PatFrag<(ops node:$ptr), (X86fildflag node:$ptr), [{ 83 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; 84}]>; 85 86def X86fist64 : PatFrag<(ops node:$val, node:$ptr), 87 (X86fist node:$val, node:$ptr), [{ 88 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; 89}]>; 90 91def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr), 92 (X86fp_to_mem node:$val, node:$ptr), [{ 93 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 94}]>; 95def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr), 96 (X86fp_to_mem node:$val, node:$ptr), [{ 97 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 98}]>; 99def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr), 100 (X86fp_to_mem node:$val, node:$ptr), [{ 101 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; 102}]>; 103 104//===----------------------------------------------------------------------===// 105// FPStack pattern fragments 106//===----------------------------------------------------------------------===// 107 108def fpimm0 : FPImmLeaf<fAny, [{ 109 return Imm.isExactlyValue(+0.0); 110}]>; 111 112def fpimmneg0 : FPImmLeaf<fAny, [{ 113 return Imm.isExactlyValue(-0.0); 114}]>; 115 116def fpimm1 : FPImmLeaf<fAny, [{ 117 return Imm.isExactlyValue(+1.0); 118}]>; 119 120def fpimmneg1 : FPImmLeaf<fAny, [{ 121 return Imm.isExactlyValue(-1.0); 122}]>; 123 124// Some 'special' instructions - expanded after instruction selection. 125// Clobbers EFLAGS due to OR instruction used internally. 126// FIXME: Can we model this in SelectionDAG? 127let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in { 128 def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), 129 [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; 130 def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), 131 [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; 132 def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), 133 [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; 134 def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), 135 [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; 136 def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), 137 [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; 138 def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), 139 [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; 140 def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), 141 [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; 142 def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), 143 [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; 144 def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), 145 [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; 146} 147 148// All FP Stack operations are represented with four instructions here. The 149// first three instructions, generated by the instruction selector, use "RFP32" 150// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, 151// 64-bit or 80-bit floating point values. These sizes apply to the values, 152// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be 153// copied to each other without losing information. These instructions are all 154// pseudo instructions and use the "_Fp" suffix. 155// In some cases there are additional variants with a mixture of different 156// register sizes. 157// The second instruction is defined with FPI, which is the actual instruction 158// emitted by the assembler. These use "RST" registers, although frequently 159// the actual register(s) used are implicit. These are always 80 bits. 160// The FP stackifier pass converts one to the other after register allocation 161// occurs. 162// 163// Note that the FpI instruction should have instruction selection info (e.g. 164// a pattern) and the FPI instruction should have emission info (e.g. opcode 165// encoding and asm printing info). 166 167// FpIf32, FpIf64 - Floating Point Pseudo Instruction template. 168// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. 169// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. 170// f80 instructions cannot use SSE and use neither of these. 171class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 172 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; 173class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 174 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; 175 176// Factoring for arithmetic. 177multiclass FPBinary_rr<SDNode OpNode> { 178// Register op register -> register 179// These are separated out because they have no reversed form. 180def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, 181 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; 182def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, 183 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; 184def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, 185 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; 186} 187// The FopST0 series are not included here because of the irregularities 188// in where the 'r' goes in assembly output. 189// These instructions cannot address 80-bit memory. 190multiclass FPBinary<SDNode OpNode, Format fp, string asmstring, 191 bit Forward = 1> { 192// ST(0) = ST(0) + [mem] 193def _Fp32m : FpIf32<(outs RFP32:$dst), 194 (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, 195 [!if(Forward, 196 (set RFP32:$dst, 197 (OpNode RFP32:$src1, (loadf32 addr:$src2))), 198 (set RFP32:$dst, 199 (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>; 200def _Fp64m : FpIf64<(outs RFP64:$dst), 201 (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, 202 [!if(Forward, 203 (set RFP64:$dst, 204 (OpNode RFP64:$src1, (loadf64 addr:$src2))), 205 (set RFP64:$dst, 206 (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>; 207def _Fp64m32: FpIf64<(outs RFP64:$dst), 208 (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, 209 [!if(Forward, 210 (set RFP64:$dst, 211 (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))), 212 (set RFP64:$dst, 213 (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>; 214def _Fp80m32: FpI_<(outs RFP80:$dst), 215 (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, 216 [!if(Forward, 217 (set RFP80:$dst, 218 (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))), 219 (set RFP80:$dst, 220 (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>; 221def _Fp80m64: FpI_<(outs RFP80:$dst), 222 (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, 223 [!if(Forward, 224 (set RFP80:$dst, 225 (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))), 226 (set RFP80:$dst, 227 (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>; 228let mayLoad = 1 in 229def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), 230 !strconcat("f", asmstring, "{s}\t$src")>; 231let mayLoad = 1 in 232def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), 233 !strconcat("f", asmstring, "{l}\t$src")>; 234// ST(0) = ST(0) + [memint] 235def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), 236 OneArgFPRW, 237 [!if(Forward, 238 (set RFP32:$dst, 239 (OpNode RFP32:$src1, (X86fild16 addr:$src2))), 240 (set RFP32:$dst, 241 (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>; 242def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), 243 OneArgFPRW, 244 [!if(Forward, 245 (set RFP32:$dst, 246 (OpNode RFP32:$src1, (X86fild32 addr:$src2))), 247 (set RFP32:$dst, 248 (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>; 249def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), 250 OneArgFPRW, 251 [!if(Forward, 252 (set RFP64:$dst, 253 (OpNode RFP64:$src1, (X86fild16 addr:$src2))), 254 (set RFP64:$dst, 255 (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>; 256def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), 257 OneArgFPRW, 258 [!if(Forward, 259 (set RFP64:$dst, 260 (OpNode RFP64:$src1, (X86fild32 addr:$src2))), 261 (set RFP64:$dst, 262 (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>; 263def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), 264 OneArgFPRW, 265 [!if(Forward, 266 (set RFP80:$dst, 267 (OpNode RFP80:$src1, (X86fild16 addr:$src2))), 268 (set RFP80:$dst, 269 (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>; 270def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), 271 OneArgFPRW, 272 [!if(Forward, 273 (set RFP80:$dst, 274 (OpNode RFP80:$src1, (X86fild32 addr:$src2))), 275 (set RFP80:$dst, 276 (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>; 277let mayLoad = 1 in 278def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), 279 !strconcat("fi", asmstring, "{s}\t$src")>; 280let mayLoad = 1 in 281def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), 282 !strconcat("fi", asmstring, "{l}\t$src")>; 283} 284 285let Uses = [FPCW], mayRaiseFPException = 1 in { 286// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling 287// resources. 288let hasNoSchedulingInfo = 1 in { 289defm ADD : FPBinary_rr<any_fadd>; 290defm SUB : FPBinary_rr<any_fsub>; 291defm MUL : FPBinary_rr<any_fmul>; 292defm DIV : FPBinary_rr<any_fdiv>; 293} 294 295// Sets the scheduling resources for the actual NAME#_F<size>m defintions. 296let SchedRW = [WriteFAddLd] in { 297defm ADD : FPBinary<any_fadd, MRM0m, "add">; 298defm SUB : FPBinary<any_fsub, MRM4m, "sub">; 299defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>; 300} 301 302let SchedRW = [WriteFMulLd] in { 303defm MUL : FPBinary<any_fmul, MRM1m, "mul">; 304} 305 306let SchedRW = [WriteFDivLd] in { 307defm DIV : FPBinary<any_fdiv, MRM6m, "div">; 308defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>; 309} 310} // Uses = [FPCW], mayRaiseFPException = 1 311 312class FPST0rInst<Format fp, string asm> 313 : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>; 314class FPrST0Inst<Format fp, string asm> 315 : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>; 316class FPrST0PInst<Format fp, string asm> 317 : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>; 318 319// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion 320// of some of the 'reverse' forms of the fsub and fdiv instructions. As such, 321// we have to put some 'r's in and take them out of weird places. 322let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in { 323def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">; 324def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">; 325def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">; 326def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">; 327def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">; 328def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">; 329def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">; 330def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">; 331def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">; 332} // SchedRW 333let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in { 334def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">; 335def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">; 336} // SchedRW 337let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in { 338def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">; 339def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">; 340def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">; 341} // SchedRW 342let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in { 343def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">; 344def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">; 345def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">; 346def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">; 347def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">; 348def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">; 349} // SchedRW 350 351// Unary operations. 352multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> { 353def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, 354 [(set RFP32:$dst, (OpNode RFP32:$src))]>; 355def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, 356 [(set RFP64:$dst, (OpNode RFP64:$src))]>; 357def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, 358 [(set RFP80:$dst, (OpNode RFP80:$src))]>; 359def _F : FPI<0xD9, fp, (outs), (ins), asmstring>; 360} 361 362let SchedRW = [WriteFSign] in { 363defm CHS : FPUnary<fneg, MRM_E0, "fchs">; 364defm ABS : FPUnary<fabs, MRM_E1, "fabs">; 365} 366 367let Uses = [FPCW], mayRaiseFPException = 1 in { 368let SchedRW = [WriteFSqrt80] in 369defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">; 370 371let SchedRW = [WriteFCom] in { 372let hasSideEffects = 0 in { 373def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; 374def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; 375def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; 376} // hasSideEffects 377 378def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">; 379} // SchedRW 380} // Uses = [FPCW], mayRaiseFPException = 1 381 382// Versions of FP instructions that take a single memory operand. Added for the 383// disassembler; remove as they are included with patterns elsewhere. 384let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1 in { 385def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; 386def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; 387 388def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; 389def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; 390 391def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; 392def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; 393 394def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; 395def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; 396} // SchedRW 397 398let SchedRW = [WriteMicrocoded] in { 399let Defs = [FPSW, FPCW] in { 400def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; 401def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">; 402} 403 404let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW] in { 405def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">; 406def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">; 407} 408 409let Uses = [FPSW] in 410def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">; 411 412def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">; 413let Uses = [FPCW] ,mayRaiseFPException = 1 in 414def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">; 415} // SchedRW 416 417// Floating point cmovs. 418class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 419 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>; 420class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 421 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>; 422 423multiclass FPCMov<PatLeaf cc> { 424 def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), 425 CondMovFP, 426 [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, 427 cc, EFLAGS))]>; 428 def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), 429 CondMovFP, 430 [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, 431 cc, EFLAGS))]>; 432 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), 433 CondMovFP, 434 [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, 435 cc, EFLAGS))]>, 436 Requires<[HasCMov]>; 437} 438 439let SchedRW = [WriteFCMOV] in { 440let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { 441defm CMOVB : FPCMov<X86_COND_B>; 442defm CMOVBE : FPCMov<X86_COND_BE>; 443defm CMOVE : FPCMov<X86_COND_E>; 444defm CMOVP : FPCMov<X86_COND_P>; 445defm CMOVNB : FPCMov<X86_COND_AE>; 446defm CMOVNBE: FPCMov<X86_COND_A>; 447defm CMOVNE : FPCMov<X86_COND_NE>; 448defm CMOVNP : FPCMov<X86_COND_NP>; 449} // Uses = [EFLAGS], Constraints = "$src1 = $dst" 450 451let Predicates = [HasCMov] in { 452// These are not factored because there's no clean way to pass DA/DB. 453def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op), 454 "fcmovb\t{$op, %st|st, $op}">; 455def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op), 456 "fcmovbe\t{$op, %st|st, $op}">; 457def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op), 458 "fcmove\t{$op, %st|st, $op}">; 459def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op), 460 "fcmovu\t{$op, %st|st, $op}">; 461def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op), 462 "fcmovnb\t{$op, %st|st, $op}">; 463def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op), 464 "fcmovnbe\t{$op, %st|st, $op}">; 465def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op), 466 "fcmovne\t{$op, %st|st, $op}">; 467def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op), 468 "fcmovnu\t{$op, %st|st, $op}">; 469} // Predicates = [HasCMov] 470} // SchedRW 471 472let mayRaiseFPException = 1 in { 473// Floating point loads & stores. 474let SchedRW = [WriteLoad], Uses = [FPCW] in { 475let canFoldAsLoad = 1 in { 476def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, 477 [(set RFP32:$dst, (loadf32 addr:$src))]>; 478def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, 479 [(set RFP64:$dst, (loadf64 addr:$src))]>; 480def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, 481 [(set RFP80:$dst, (loadf80 addr:$src))]>; 482} // canFoldAsLoad 483def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, 484 [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; 485def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, 486 [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; 487def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, 488 [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; 489let mayRaiseFPException = 0 in { 490def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, 491 [(set RFP32:$dst, (X86fild16 addr:$src))]>; 492def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, 493 [(set RFP32:$dst, (X86fild32 addr:$src))]>; 494def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, 495 [(set RFP32:$dst, (X86fild64 addr:$src))]>; 496def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, 497 [(set RFP64:$dst, (X86fild16 addr:$src))]>; 498def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, 499 [(set RFP64:$dst, (X86fild32 addr:$src))]>; 500def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, 501 [(set RFP64:$dst, (X86fild64 addr:$src))]>; 502def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, 503 [(set RFP80:$dst, (X86fild16 addr:$src))]>; 504def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, 505 [(set RFP80:$dst, (X86fild32 addr:$src))]>; 506def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, 507 [(set RFP80:$dst, (X86fild64 addr:$src))]>; 508} // mayRaiseFPException = 0 509} // SchedRW 510 511let SchedRW = [WriteStore], Uses = [FPCW] in { 512def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, 513 [(store RFP32:$src, addr:$op)]>; 514def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, 515 [(truncstoref32 RFP64:$src, addr:$op)]>; 516def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, 517 [(store RFP64:$src, addr:$op)]>; 518def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, 519 [(truncstoref32 RFP80:$src, addr:$op)]>; 520def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, 521 [(truncstoref64 RFP80:$src, addr:$op)]>; 522// FST does not support 80-bit memory target; FSTP must be used. 523 524let mayStore = 1, hasSideEffects = 0 in { 525def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; 526def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; 527def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; 528def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; 529def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; 530} // mayStore 531 532def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, 533 [(store RFP80:$src, addr:$op)]>; 534 535let mayStore = 1, hasSideEffects = 0 in { 536def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; 537def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; 538def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; 539def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; 540def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; 541def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; 542def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; 543def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; 544def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; 545} // mayStore 546} // SchedRW, Uses = [FPCW] 547 548let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in { 549def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; 550def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; 551def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; 552let mayRaiseFPException = 0 in { 553def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; 554def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; 555def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; 556} 557} 558let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in { 559def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; 560def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; 561def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; 562def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; 563def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; 564def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; 565def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; 566def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; 567def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; 568def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; 569} 570 571// FISTTP requires SSE3 even though it's a FPStack op. 572let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in { 573def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, 574 [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; 575def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, 576 [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; 577def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, 578 [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; 579def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, 580 [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; 581def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, 582 [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; 583def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, 584 [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; 585def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, 586 [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; 587def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, 588 [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; 589def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, 590 [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; 591} // Predicates = [HasSSE3] 592 593let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in { 594def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; 595def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; 596def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; 597} 598 599// FP Stack manipulation instructions. 600let SchedRW = [WriteMove], Uses = [FPCW] in { 601def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">; 602def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">; 603def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">; 604def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">; 605} 606 607// Floating point constant loads. 608let SchedRW = [WriteZero], Uses = [FPCW] in { 609def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, 610 [(set RFP32:$dst, fpimm0)]>; 611def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, 612 [(set RFP32:$dst, fpimm1)]>; 613def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, 614 [(set RFP64:$dst, fpimm0)]>; 615def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, 616 [(set RFP64:$dst, fpimm1)]>; 617def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, 618 [(set RFP80:$dst, fpimm0)]>; 619def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, 620 [(set RFP80:$dst, fpimm1)]>; 621} 622 623let SchedRW = [WriteFLD0], Uses = [FPCW] in 624def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">; 625 626let SchedRW = [WriteFLD1], Uses = [FPCW] in 627def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">; 628 629let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW] in { 630def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>; 631def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>; 632def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>; 633def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>; 634def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>; 635} // SchedRW 636 637// Floating point compares. 638let SchedRW = [WriteFCom], Uses = [FPCW] in { 639def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 640 [(set FPSW, (trunc (X86any_fcmp RFP32:$lhs, RFP32:$rhs)))]>; 641def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 642 [(set FPSW, (trunc (X86any_fcmp RFP64:$lhs, RFP64:$rhs)))]>; 643def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 644 [(set FPSW, (trunc (X86any_fcmp RFP80:$lhs, RFP80:$rhs)))]>; 645def COM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 646 [(set FPSW, (trunc (X86strict_fcmps RFP32:$lhs, RFP32:$rhs)))]>; 647def COM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 648 [(set FPSW, (trunc (X86strict_fcmps RFP64:$lhs, RFP64:$rhs)))]>; 649def COM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 650 [(set FPSW, (trunc (X86strict_fcmps RFP80:$lhs, RFP80:$rhs)))]>; 651} // SchedRW 652} // mayRaiseFPException = 1 653 654let SchedRW = [WriteFCom], mayRaiseFPException = 1 in { 655// CC = ST(0) cmp ST(i) 656let Defs = [EFLAGS, FPCW], Uses = [FPCW] in { 657def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 658 [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>, 659 Requires<[FPStackf32, HasCMov]>; 660def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 661 [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>, 662 Requires<[FPStackf64, HasCMov]>; 663def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 664 [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>, 665 Requires<[HasCMov]>; 666def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 667 [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>, 668 Requires<[FPStackf32, HasCMov]>; 669def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 670 [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>, 671 Requires<[FPStackf64, HasCMov]>; 672def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 673 [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>, 674 Requires<[HasCMov]>; 675} 676 677let Uses = [ST0, FPCW] in { 678def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i) 679 (outs), (ins RSTi:$reg), "fucom\t$reg">; 680def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop 681 (outs), (ins RSTi:$reg), "fucomp\t$reg">; 682def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop 683 (outs), (ins), "fucompp">; 684} 685 686let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in { 687def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i) 688 (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">; 689def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop 690 (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">; 691 692def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg), 693 "fcomi\t{$reg, %st|st, $reg}">; 694def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg), 695 "fcompi\t{$reg, %st|st, $reg}">; 696} 697} // SchedRW 698 699// Floating point flag ops. 700let SchedRW = [WriteALU] in { 701let Defs = [AX, FPSW], Uses = [FPSW] in 702def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags 703 (outs), (ins), "fnstsw\t{%ax|ax}", 704 [(set AX, (X86fp_stsw FPSW))]>; 705let Defs = [FPSW], Uses = [FPCW] in 706def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world 707 (outs), (ins i16mem:$dst), "fnstcw\t$dst", 708 [(X86fp_cwd_get16 addr:$dst)]>; 709} // SchedRW 710let Defs = [FPSW,FPCW], mayLoad = 1 in 711def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] 712 (outs), (ins i16mem:$dst), "fldcw\t$dst", []>, 713 Sched<[WriteLoad]>; 714 715// FPU control instructions 716let SchedRW = [WriteMicrocoded] in { 717def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">; 718def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">; 719 720let Defs = [FPSW, FPCW] in 721def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>; 722// Clear exceptions 723let Defs = [FPSW] in 724def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>; 725} // SchedRW 726 727// Operand-less floating-point instructions for the disassembler. 728let Defs = [FPSW] in 729def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>; 730 731let SchedRW = [WriteMicrocoded] in { 732let Defs = [FPSW] in { 733def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>; 734def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>; 735def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>; 736def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>; 737let Uses = [FPCW], mayRaiseFPException = 1 in { 738def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>; 739def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>; 740def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>; 741def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>; 742def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>; 743def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>; 744def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>; 745def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>; 746def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>; 747def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>; 748def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>; 749def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>; 750def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>; 751def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>; 752} // Uses = [FPCW], mayRaiseFPException = 1 753} // Defs = [FPSW] 754 755let Uses = [FPSW, FPCW] in { 756def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst), 757 "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB, 758 Requires<[HasFXSR]>; 759def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst), 760 "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>, 761 TB, Requires<[HasFXSR, In64BitMode]>; 762} // Uses = [FPSW, FPCW] 763 764let Defs = [FPSW, FPCW] in { 765def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src), 766 "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>, 767 TB, Requires<[HasFXSR]>; 768def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src), 769 "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>, 770 TB, Requires<[HasFXSR, In64BitMode]>; 771} // Defs = [FPSW, FPCW] 772} // SchedRW 773 774//===----------------------------------------------------------------------===// 775// Non-Instruction Patterns 776//===----------------------------------------------------------------------===// 777 778// Required for RET of f32 / f64 / f80 values. 779def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>; 780def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>; 781def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>; 782def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>; 783def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>; 784def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>; 785 786// Required for CALL which return f32 / f64 / f80 values. 787def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>; 788def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>; 789def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>; 790def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>; 791def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>; 792def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>; 793 794// Floating point constant -0.0 and -1.0 795def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; 796def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; 797def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; 798def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; 799def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; 800def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; 801 802// Used to conv. i64 to f64 since there isn't a SSE version. 803def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m64 addr:$src)>; 804 805// Used to conv. between f80 and i64 for i64 atomic loads. 806def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m80 addr:$src)>; 807def : Pat<(X86fist64 RFP80:$src, addr:$op), (IST_Fp64m80 addr:$op, RFP80:$src)>; 808 809// FP extensions map onto simple pseudo-value conversions if they are to/from 810// the FP stack. 811def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, 812 Requires<[FPStackf32]>; 813def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, 814 Requires<[FPStackf32]>; 815def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, 816 Requires<[FPStackf64]>; 817 818// FP truncations map onto simple pseudo-value conversions if they are to/from 819// the FP stack. We have validated that only value-preserving truncations make 820// it through isel. 821def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, 822 Requires<[FPStackf32]>; 823def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, 824 Requires<[FPStackf32]>; 825def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, 826 Requires<[FPStackf64]>; 827