xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrFPStack.td (revision 6966ac055c3b7a39266fb982493330df7a097997)
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// FPStack specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
20                                           SDTCisPtrTy<1>]>;
21def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
22                                           SDTCisPtrTy<1>]>;
23def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
26
27def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
28
29def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
30                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
31def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
32                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
33                              SDNPMemOperand]>;
34def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
35                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
36def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
37                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
38                              SDNPMemOperand]>;
39def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
40                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
41                              SDNPMemOperand]>;
42def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
43def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
44                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
45def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
46                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
47                              SDNPMemOperand]>;
48
49def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
50                        (X86fst node:$val, node:$ptr), [{
51  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
52}]>;
53def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
54                        (X86fst node:$val, node:$ptr), [{
55  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
56}]>;
57def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
58                        (X86fst node:$val, node:$ptr), [{
59  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
60}]>;
61
62def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
63  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
64}]>;
65def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
66  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
67}]>;
68def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
69  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
70}]>;
71
72def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
73  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
74}]>;
75def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
76  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
77}]>;
78def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
79  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
80}]>;
81
82def X86fildflag64 : PatFrag<(ops node:$ptr), (X86fildflag node:$ptr), [{
83  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
84}]>;
85
86def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
87                        (X86fist node:$val, node:$ptr), [{
88  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
89}]>;
90
91def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
92                              (X86fp_to_mem node:$val, node:$ptr), [{
93  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
94}]>;
95def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
96                              (X86fp_to_mem node:$val, node:$ptr), [{
97  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
98}]>;
99def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
100                              (X86fp_to_mem node:$val, node:$ptr), [{
101  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
102}]>;
103
104//===----------------------------------------------------------------------===//
105// FPStack pattern fragments
106//===----------------------------------------------------------------------===//
107
108def fpimm0 : FPImmLeaf<fAny, [{
109  return Imm.isExactlyValue(+0.0);
110}]>;
111
112def fpimmneg0 : FPImmLeaf<fAny, [{
113  return Imm.isExactlyValue(-0.0);
114}]>;
115
116def fpimm1 : FPImmLeaf<fAny, [{
117  return Imm.isExactlyValue(+1.0);
118}]>;
119
120def fpimmneg1 : FPImmLeaf<fAny, [{
121  return Imm.isExactlyValue(-1.0);
122}]>;
123
124// Some 'special' instructions - expanded after instruction selection.
125// Clobbers EFLAGS due to OR instruction used internally.
126// FIXME: Can we model this in SelectionDAG?
127let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
128  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
129                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
130  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
131                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
132  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
133                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
134  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
135                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
136  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
137                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
138  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
139                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
140  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
141                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
142  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
143                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
144  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
145                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
146}
147
148// All FP Stack operations are represented with four instructions here.  The
149// first three instructions, generated by the instruction selector, use "RFP32"
150// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
151// 64-bit or 80-bit floating point values.  These sizes apply to the values,
152// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
153// copied to each other without losing information.  These instructions are all
154// pseudo instructions and use the "_Fp" suffix.
155// In some cases there are additional variants with a mixture of different
156// register sizes.
157// The second instruction is defined with FPI, which is the actual instruction
158// emitted by the assembler.  These use "RST" registers, although frequently
159// the actual register(s) used are implicit.  These are always 80 bits.
160// The FP stackifier pass converts one to the other after register allocation
161// occurs.
162//
163// Note that the FpI instruction should have instruction selection info (e.g.
164// a pattern) and the FPI instruction should have emission info (e.g. opcode
165// encoding and asm printing info).
166
167// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
168// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
169// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
170// f80 instructions cannot use SSE and use neither of these.
171class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
172             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
173class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
174             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
175
176// Factoring for arithmetic.
177multiclass FPBinary_rr<SDNode OpNode> {
178// Register op register -> register
179// These are separated out because they have no reversed form.
180def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
181                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
182def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
183                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
184def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
185                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
186}
187// The FopST0 series are not included here because of the irregularities
188// in where the 'r' goes in assembly output.
189// These instructions cannot address 80-bit memory.
190multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
191                    bit Forward = 1> {
192// ST(0) = ST(0) + [mem]
193def _Fp32m  : FpIf32<(outs RFP32:$dst),
194                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
195                  [!if(Forward,
196                       (set RFP32:$dst,
197                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
198                       (set RFP32:$dst,
199                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
200def _Fp64m  : FpIf64<(outs RFP64:$dst),
201                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
202                  [!if(Forward,
203                       (set RFP64:$dst,
204                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
205                       (set RFP64:$dst,
206                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
207def _Fp64m32: FpIf64<(outs RFP64:$dst),
208                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
209                  [!if(Forward,
210                       (set RFP64:$dst,
211                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
212                       (set RFP64:$dst,
213                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
214def _Fp80m32: FpI_<(outs RFP80:$dst),
215                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
216                  [!if(Forward,
217                       (set RFP80:$dst,
218                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
219                       (set RFP80:$dst,
220                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
221def _Fp80m64: FpI_<(outs RFP80:$dst),
222                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
223                  [!if(Forward,
224                       (set RFP80:$dst,
225                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
226                       (set RFP80:$dst,
227                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
228let mayLoad = 1 in
229def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
230                 !strconcat("f", asmstring, "{s}\t$src")>;
231let mayLoad = 1 in
232def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
233                 !strconcat("f", asmstring, "{l}\t$src")>;
234// ST(0) = ST(0) + [memint]
235def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
236                       OneArgFPRW,
237                       [!if(Forward,
238                            (set RFP32:$dst,
239                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
240                            (set RFP32:$dst,
241                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
242def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
243                       OneArgFPRW,
244                       [!if(Forward,
245                            (set RFP32:$dst,
246                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
247                            (set RFP32:$dst,
248                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
249def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
250                       OneArgFPRW,
251                       [!if(Forward,
252                            (set RFP64:$dst,
253                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
254                            (set RFP64:$dst,
255                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
256def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
257                       OneArgFPRW,
258                       [!if(Forward,
259                            (set RFP64:$dst,
260                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
261                            (set RFP64:$dst,
262                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
263def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
264                     OneArgFPRW,
265                     [!if(Forward,
266                          (set RFP80:$dst,
267                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
268                          (set RFP80:$dst,
269                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
270def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
271                     OneArgFPRW,
272                     [!if(Forward,
273                          (set RFP80:$dst,
274                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
275                          (set RFP80:$dst,
276                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
277let mayLoad = 1 in
278def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
279                  !strconcat("fi", asmstring, "{s}\t$src")>;
280let mayLoad = 1 in
281def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
282                  !strconcat("fi", asmstring, "{l}\t$src")>;
283}
284
285let Defs = [FPSW], Uses = [FPCW] in {
286// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
287// resources.
288let hasNoSchedulingInfo = 1 in {
289defm ADD : FPBinary_rr<fadd>;
290defm SUB : FPBinary_rr<fsub>;
291defm MUL : FPBinary_rr<fmul>;
292defm DIV : FPBinary_rr<fdiv>;
293}
294
295// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
296let SchedRW = [WriteFAddLd] in {
297defm ADD : FPBinary<fadd, MRM0m, "add">;
298defm SUB : FPBinary<fsub, MRM4m, "sub">;
299defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
300}
301
302let SchedRW = [WriteFMulLd] in {
303defm MUL : FPBinary<fmul, MRM1m, "mul">;
304}
305
306let SchedRW = [WriteFDivLd] in {
307defm DIV : FPBinary<fdiv, MRM6m, "div">;
308defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
309}
310} // Defs = [FPSW]
311
312class FPST0rInst<Format fp, string asm>
313  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
314class FPrST0Inst<Format fp, string asm>
315  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
316class FPrST0PInst<Format fp, string asm>
317  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
318
319// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
320// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
321// we have to put some 'r's in and take them out of weird places.
322let SchedRW = [WriteFAdd], Defs = [FPSW], Uses = [FPCW] in {
323def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
324def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
325def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
326def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
327def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
328def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
329def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
330def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
331def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
332} // SchedRW
333let SchedRW = [WriteFCom], Defs = [FPSW], Uses = [FPCW] in {
334def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
335def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
336} // SchedRW
337let SchedRW = [WriteFMul], Defs = [FPSW], Uses = [FPCW] in {
338def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
339def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
340def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
341} // SchedRW
342let SchedRW = [WriteFDiv], Defs = [FPSW], Uses = [FPCW] in {
343def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
344def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
345def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
346def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
347def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
348def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
349} // SchedRW
350
351// Unary operations.
352multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
353def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
354                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
355def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
356                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
357def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
358                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
359def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
360}
361
362let Defs = [FPSW], Uses = [FPCW] in {
363
364let SchedRW = [WriteFSign] in {
365defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
366defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
367}
368
369let SchedRW = [WriteFSqrt80] in
370defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
371
372let SchedRW = [WriteMicrocoded] in {
373defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
374defm COS : FPUnary<fcos, MRM_FF, "fcos">;
375}
376
377let SchedRW = [WriteFCom] in {
378let hasSideEffects = 0 in {
379def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
380def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
381def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
382} // hasSideEffects
383
384def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
385} // SchedRW
386} // Defs = [FPSW]
387
388// Versions of FP instructions that take a single memory operand.  Added for the
389//   disassembler; remove as they are included with patterns elsewhere.
390let SchedRW = [WriteFComLd], Defs = [FPSW], Uses = [FPCW] in {
391def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
392def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
393
394def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
395def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
396
397def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
398def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
399
400def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
401def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
402} // SchedRW
403
404let SchedRW = [WriteMicrocoded] in {
405def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
406def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;
407
408def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
409def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
410def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
411
412def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
413def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
414} // SchedRW
415
416// Floating point cmovs.
417class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
418  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
419class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
420  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
421
422multiclass FPCMov<PatLeaf cc> {
423  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
424                       CondMovFP,
425                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
426                                        cc, EFLAGS))]>;
427  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
428                       CondMovFP,
429                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
430                                        cc, EFLAGS))]>;
431  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
432                     CondMovFP,
433                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
434                                        cc, EFLAGS))]>,
435                                        Requires<[HasCMov]>;
436}
437
438let Defs = [FPSW] in {
439let SchedRW = [WriteFCMOV] in {
440let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
441defm CMOVB  : FPCMov<X86_COND_B>;
442defm CMOVBE : FPCMov<X86_COND_BE>;
443defm CMOVE  : FPCMov<X86_COND_E>;
444defm CMOVP  : FPCMov<X86_COND_P>;
445defm CMOVNB : FPCMov<X86_COND_AE>;
446defm CMOVNBE: FPCMov<X86_COND_A>;
447defm CMOVNE : FPCMov<X86_COND_NE>;
448defm CMOVNP : FPCMov<X86_COND_NP>;
449} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
450
451let Predicates = [HasCMov] in {
452// These are not factored because there's no clean way to pass DA/DB.
453def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
454                  "fcmovb\t{$op, %st|st, $op}">;
455def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
456                  "fcmovbe\t{$op, %st|st, $op}">;
457def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
458                  "fcmove\t{$op, %st|st, $op}">;
459def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
460                  "fcmovu\t{$op, %st|st, $op}">;
461def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
462                  "fcmovnb\t{$op, %st|st, $op}">;
463def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
464                  "fcmovnbe\t{$op, %st|st, $op}">;
465def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
466                  "fcmovne\t{$op, %st|st, $op}">;
467def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
468                  "fcmovnu\t{$op, %st|st, $op}">;
469} // Predicates = [HasCMov]
470} // SchedRW
471
472// Floating point loads & stores.
473let SchedRW = [WriteLoad], Uses = [FPCW] in {
474let canFoldAsLoad = 1 in {
475def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
476                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
477def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
478                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
479def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
480                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
481} // canFoldAsLoad
482def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
483                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
484def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
485                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
486def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
487                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
488def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
489                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
490def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
491                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
492def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
493                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
494def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
495                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
496def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
497                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
498def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
499                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
500def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
501                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
502def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
503                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
504def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
505                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
506} // SchedRW
507
508let SchedRW = [WriteStore], Uses = [FPCW] in {
509def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
510                  [(store RFP32:$src, addr:$op)]>;
511def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
512                  [(truncstoref32 RFP64:$src, addr:$op)]>;
513def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
514                  [(store RFP64:$src, addr:$op)]>;
515def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
516                  [(truncstoref32 RFP80:$src, addr:$op)]>;
517def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
518                  [(truncstoref64 RFP80:$src, addr:$op)]>;
519// FST does not support 80-bit memory target; FSTP must be used.
520
521let mayStore = 1, hasSideEffects = 0 in {
522def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
523def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
524def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
525def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
526def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
527} // mayStore
528
529def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
530                    [(store RFP80:$src, addr:$op)]>;
531
532let mayStore = 1, hasSideEffects = 0 in {
533def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
534def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
535def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
536def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
537def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
538def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
539def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
540def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
541def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
542} // mayStore
543} // SchedRW, Uses = [FPCW]
544
545let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
546def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
547def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
548def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
549def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
550def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
551def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
552}
553let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
554def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
555def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
556def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
557def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
558def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
559def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
560def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
561def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
562def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
563def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
564}
565
566// FISTTP requires SSE3 even though it's a FPStack op.
567let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
568def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
569                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
570def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
571                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
572def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
573                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
574def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
575                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
576def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
577                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
578def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
579                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
580def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
581                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
582def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
583                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
584def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
585                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
586} // Predicates = [HasSSE3]
587
588let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
589def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
590def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
591def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
592}
593
594// FP Stack manipulation instructions.
595let SchedRW = [WriteMove], Uses = [FPCW] in {
596def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
597def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
598def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
599def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
600}
601
602// Floating point constant loads.
603let SchedRW = [WriteZero], Uses = [FPCW] in {
604def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
605                [(set RFP32:$dst, fpimm0)]>;
606def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
607                [(set RFP32:$dst, fpimm1)]>;
608def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
609                [(set RFP64:$dst, fpimm0)]>;
610def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
611                [(set RFP64:$dst, fpimm1)]>;
612def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
613                [(set RFP80:$dst, fpimm0)]>;
614def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
615                [(set RFP80:$dst, fpimm1)]>;
616}
617
618let SchedRW = [WriteFLD0], Uses = [FPCW] in
619def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
620
621let SchedRW = [WriteFLD1], Uses = [FPCW] in
622def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
623
624let SchedRW = [WriteFLDC], Uses = [FPCW] in {
625def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
626def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
627def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
628def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
629def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
630} // SchedRW
631
632// Floating point compares.
633let SchedRW = [WriteFCom], Uses = [FPCW] in {
634def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
635                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
636def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
637                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
638def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
639                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
640} // SchedRW
641} // Defs = [FPSW]
642
643let SchedRW = [WriteFCom] in {
644// CC = ST(0) cmp ST(i)
645let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
646def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
647                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>,
648                  Requires<[FPStackf32, HasCMov]>;
649def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
650                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>,
651                  Requires<[FPStackf64, HasCMov]>;
652def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
653                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>,
654                  Requires<[HasCMov]>;
655}
656
657let Defs = [FPSW], Uses = [ST0, FPCW] in {
658def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
659                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
660def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
661                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
662def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
663                    (outs), (ins), "fucompp">;
664}
665
666let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
667def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
668                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
669def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
670                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
671
672def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
673                  "fcomi\t{$reg, %st|st, $reg}">;
674def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
675                   "fcompi\t{$reg, %st|st, $reg}">;
676}
677} // SchedRW
678
679// Floating point flag ops.
680let SchedRW = [WriteALU] in {
681let Defs = [AX], Uses = [FPSW] in
682def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
683                  (outs), (ins), "fnstsw\t{%ax|ax}",
684                  [(set AX, (X86fp_stsw FPSW))]>;
685let Defs = [FPSW], Uses = [FPCW] in
686def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
687                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
688                  [(X86fp_cwd_get16 addr:$dst)]>;
689} // SchedRW
690let Defs = [FPSW,FPCW], mayLoad = 1 in
691def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
692                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>,
693                Sched<[WriteLoad]>;
694
695// FPU control instructions
696let SchedRW = [WriteMicrocoded] in {
697let Defs = [FPSW] in {
698def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
699def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
700def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
701
702// Clear exceptions
703def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
704} // Defs = [FPSW]
705} // SchedRW
706
707// Operand-less floating-point instructions for the disassembler.
708def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
709
710let SchedRW = [WriteMicrocoded] in {
711let Defs = [FPSW] in {
712def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
713def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>;
714def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
715def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
716def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
717def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
718def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
719def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
720def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
721def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
722def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
723def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
724def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
725def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
726def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
727def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
728} // Defs = [FPSW]
729
730def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
731             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB,
732             Requires<[HasFXSR]>;
733def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
734               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
735               TB, Requires<[HasFXSR, In64BitMode]>;
736def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
737              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
738              TB, Requires<[HasFXSR]>;
739def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
740                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
741                TB, Requires<[HasFXSR, In64BitMode]>;
742} // SchedRW
743
744//===----------------------------------------------------------------------===//
745// Non-Instruction Patterns
746//===----------------------------------------------------------------------===//
747
748// Required for RET of f32 / f64 / f80 values.
749def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
750def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
751def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
752
753// Required for CALL which return f32 / f64 / f80 values.
754def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
755def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
756def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
757def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
758def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
759def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
760
761// Floating point constant -0.0 and -1.0
762def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
763def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
764def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
765def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
766def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
767def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
768
769// Used to conv. i64 to f64 since there isn't a SSE version.
770def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m64 addr:$src)>;
771
772// Used to conv. between f80 and i64 for i64 atomic loads.
773def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m80 addr:$src)>;
774def : Pat<(X86fist64 RFP80:$src, addr:$op), (IST_Fp64m80 addr:$op, RFP80:$src)>;
775
776// FP extensions map onto simple pseudo-value conversions if they are to/from
777// the FP stack.
778def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
779          Requires<[FPStackf32]>;
780def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
781           Requires<[FPStackf32]>;
782def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
783           Requires<[FPStackf64]>;
784
785// FP truncations map onto simple pseudo-value conversions if they are to/from
786// the FP stack.  We have validated that only value-preserving truncations make
787// it through isel.
788def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
789          Requires<[FPStackf32]>;
790def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
791           Requires<[FPStackf32]>;
792def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
793           Requires<[FPStackf64]>;
794