xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrFPStack.td (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// FPStack specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
20                                           SDTCisPtrTy<1>]>;
21def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
22                                           SDTCisPtrTy<1>]>;
23def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25
26def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
27def SDTX86CwdLoad   : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
28
29def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
30                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
31def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
32                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
33def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
34                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
35def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
36                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
37def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
38                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
39def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
40                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
41                              SDNPMemOperand]>;
42def X86fp_cwd_set16 : SDNode<"X86ISD::FLDCW16m",           SDTX86CwdLoad,
43                             [SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
44                              SDNPMemOperand]>;
45
46def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
47                        (X86fst node:$val, node:$ptr), [{
48  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
49}]>;
50def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
51                        (X86fst node:$val, node:$ptr), [{
52  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
53}]>;
54def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
55                        (X86fst node:$val, node:$ptr), [{
56  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
57}]>;
58
59def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
60  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
61}]>;
62def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
63  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
64}]>;
65def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
66  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
67}]>;
68
69def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
70  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
71}]>;
72def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
73  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
74}]>;
75def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
76  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
77}]>;
78
79def X86fist32 : PatFrag<(ops node:$val, node:$ptr),
80                        (X86fist node:$val, node:$ptr), [{
81  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
82}]>;
83
84def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
85                        (X86fist node:$val, node:$ptr), [{
86  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
87}]>;
88
89def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
90                              (X86fp_to_mem node:$val, node:$ptr), [{
91  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
92}]>;
93def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
94                              (X86fp_to_mem node:$val, node:$ptr), [{
95  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
96}]>;
97def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
98                              (X86fp_to_mem node:$val, node:$ptr), [{
99  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
100}]>;
101
102//===----------------------------------------------------------------------===//
103// FPStack pattern fragments
104//===----------------------------------------------------------------------===//
105
106def fpimm0 : FPImmLeaf<fAny, [{
107  return Imm.isExactlyValue(+0.0);
108}]>;
109
110def fpimmneg0 : FPImmLeaf<fAny, [{
111  return Imm.isExactlyValue(-0.0);
112}]>;
113
114def fpimm1 : FPImmLeaf<fAny, [{
115  return Imm.isExactlyValue(+1.0);
116}]>;
117
118def fpimmneg1 : FPImmLeaf<fAny, [{
119  return Imm.isExactlyValue(-1.0);
120}]>;
121
122// Some 'special' instructions - expanded after instruction selection.
123// Clobbers EFLAGS due to OR instruction used internally.
124// FIXME: Can we model this in SelectionDAG?
125let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
126  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
127                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
128  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
129                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
130  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
131                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
132  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
133                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
134  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
135                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
136  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
137                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
138  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
139                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
140  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
141                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
142  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
143                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
144}
145
146// All FP Stack operations are represented with four instructions here.  The
147// first three instructions, generated by the instruction selector, use "RFP32"
148// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
149// 64-bit or 80-bit floating point values.  These sizes apply to the values,
150// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
151// copied to each other without losing information.  These instructions are all
152// pseudo instructions and use the "_Fp" suffix.
153// In some cases there are additional variants with a mixture of different
154// register sizes.
155// The second instruction is defined with FPI, which is the actual instruction
156// emitted by the assembler.  These use "RST" registers, although frequently
157// the actual register(s) used are implicit.  These are always 80 bits.
158// The FP stackifier pass converts one to the other after register allocation
159// occurs.
160//
161// Note that the FpI instruction should have instruction selection info (e.g.
162// a pattern) and the FPI instruction should have emission info (e.g. opcode
163// encoding and asm printing info).
164
165// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
166// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
167// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
168// f80 instructions cannot use SSE and use neither of these.
169class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
170             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
171class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
172             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
173
174// Factoring for arithmetic.
175multiclass FPBinary_rr<SDPatternOperator OpNode> {
176// Register op register -> register
177// These are separated out because they have no reversed form.
178def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
179                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
180def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
181                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
182def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
183                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
184}
185// The FopST0 series are not included here because of the irregularities
186// in where the 'r' goes in assembly output.
187// These instructions cannot address 80-bit memory.
188multiclass FPBinary<SDPatternOperator OpNode, Format fp, string asmstring,
189                    bit Forward = 1> {
190// ST(0) = ST(0) + [mem]
191def _Fp32m  : FpIf32<(outs RFP32:$dst),
192                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
193                  [!if(Forward,
194                       (set RFP32:$dst,
195                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
196                       (set RFP32:$dst,
197                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
198def _Fp64m  : FpIf64<(outs RFP64:$dst),
199                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
200                  [!if(Forward,
201                       (set RFP64:$dst,
202                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
203                       (set RFP64:$dst,
204                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
205def _Fp64m32: FpIf64<(outs RFP64:$dst),
206                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
207                  [!if(Forward,
208                       (set RFP64:$dst,
209                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
210                       (set RFP64:$dst,
211                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
212def _Fp80m32: FpI_<(outs RFP80:$dst),
213                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
214                  [!if(Forward,
215                       (set RFP80:$dst,
216                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
217                       (set RFP80:$dst,
218                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
219def _Fp80m64: FpI_<(outs RFP80:$dst),
220                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
221                  [!if(Forward,
222                       (set RFP80:$dst,
223                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
224                       (set RFP80:$dst,
225                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
226let mayLoad = 1 in
227def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
228                 !strconcat("f", asmstring, "{s}\t$src")>;
229let mayLoad = 1 in
230def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
231                 !strconcat("f", asmstring, "{l}\t$src")>;
232// ST(0) = ST(0) + [memint]
233def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
234                       OneArgFPRW,
235                       [!if(Forward,
236                            (set RFP32:$dst,
237                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
238                            (set RFP32:$dst,
239                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
240def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
241                       OneArgFPRW,
242                       [!if(Forward,
243                            (set RFP32:$dst,
244                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
245                            (set RFP32:$dst,
246                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
247def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
248                       OneArgFPRW,
249                       [!if(Forward,
250                            (set RFP64:$dst,
251                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
252                            (set RFP64:$dst,
253                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
254def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
255                       OneArgFPRW,
256                       [!if(Forward,
257                            (set RFP64:$dst,
258                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
259                            (set RFP64:$dst,
260                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
261def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
262                     OneArgFPRW,
263                     [!if(Forward,
264                          (set RFP80:$dst,
265                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
266                          (set RFP80:$dst,
267                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
268def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
269                     OneArgFPRW,
270                     [!if(Forward,
271                          (set RFP80:$dst,
272                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
273                          (set RFP80:$dst,
274                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
275let mayLoad = 1 in
276def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
277                  !strconcat("fi", asmstring, "{s}\t$src")>;
278let mayLoad = 1 in
279def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
280                  !strconcat("fi", asmstring, "{l}\t$src")>;
281}
282
283let Uses = [FPCW], mayRaiseFPException = 1 in {
284// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
285// resources.
286let hasNoSchedulingInfo = 1 in {
287defm ADD : FPBinary_rr<any_fadd>;
288defm SUB : FPBinary_rr<any_fsub>;
289defm MUL : FPBinary_rr<any_fmul>;
290defm DIV : FPBinary_rr<any_fdiv>;
291}
292
293// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
294let SchedRW = [WriteFAddLd] in {
295defm ADD : FPBinary<any_fadd, MRM0m, "add">;
296defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
297defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
298}
299
300let SchedRW = [WriteFMulLd] in {
301defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
302}
303
304let SchedRW = [WriteFDivLd] in {
305defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
306defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
307}
308} // Uses = [FPCW], mayRaiseFPException = 1
309
310class FPST0rInst<Format fp, string asm>
311  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
312class FPrST0Inst<Format fp, string asm>
313  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
314class FPrST0PInst<Format fp, string asm>
315  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
316
317// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
318// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
319// we have to put some 'r's in and take them out of weird places.
320let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
321def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
322def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
323def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
324def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
325def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
326def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
327def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
328def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
329def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
330} // SchedRW
331let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
332def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
333def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
334} // SchedRW
335let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
336def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
337def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
338def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
339} // SchedRW
340let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
341def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
342def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
343def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
344def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
345def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
346def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
347} // SchedRW
348
349// Unary operations.
350multiclass FPUnary<SDPatternOperator OpNode, Format fp, string asmstring> {
351def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
352                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
353def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
354                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
355def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
356                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
357def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
358}
359
360let SchedRW = [WriteFSign] in {
361defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
362defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
363}
364
365let Uses = [FPCW], mayRaiseFPException = 1 in {
366let SchedRW = [WriteFSqrt80] in
367defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
368
369let SchedRW = [WriteFCom] in {
370let hasSideEffects = 0 in {
371def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
372def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
373def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
374} // hasSideEffects
375
376def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
377} // SchedRW
378} // Uses = [FPCW], mayRaiseFPException = 1
379
380let SchedRW = [WriteFTest], Defs = [FPSW] in {
381def XAM_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
382def XAM_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
383def XAM_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
384def XAM_F     : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">;
385} // SchedRW
386
387// Versions of FP instructions that take a single memory operand.  Added for the
388//   disassembler; remove as they are included with patterns elsewhere.
389let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
390    mayLoad = 1 in {
391def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
392def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
393
394def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
395def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
396
397def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
398def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
399
400def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
401def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
402} // SchedRW
403
404let SchedRW = [WriteMicrocoded] in {
405let Defs = [FPSW, FPCW], mayLoad = 1 in {
406def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src">;
407def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
408}
409
410let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
411def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst">;
412def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
413}
414
415let Uses = [FPSW], mayStore = 1 in
416def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
417
418let mayLoad = 1 in
419def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
420let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
421def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
422} // SchedRW
423
424// Floating point cmovs.
425class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
426  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
427class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
428  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
429
430multiclass FPCMov<PatLeaf cc> {
431  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
432                       CondMovFP,
433                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
434                                        cc, EFLAGS))]>;
435  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
436                       CondMovFP,
437                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
438                                        cc, EFLAGS))]>;
439  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
440                     CondMovFP,
441                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
442                                        cc, EFLAGS))]>,
443                                        Requires<[HasCMov]>;
444}
445
446let SchedRW = [WriteFCMOV] in {
447let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
448defm CMOVB  : FPCMov<X86_COND_B>;
449defm CMOVBE : FPCMov<X86_COND_BE>;
450defm CMOVE  : FPCMov<X86_COND_E>;
451defm CMOVP  : FPCMov<X86_COND_P>;
452defm CMOVNB : FPCMov<X86_COND_AE>;
453defm CMOVNBE: FPCMov<X86_COND_A>;
454defm CMOVNE : FPCMov<X86_COND_NE>;
455defm CMOVNP : FPCMov<X86_COND_NP>;
456} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
457
458let Predicates = [HasCMov] in {
459// These are not factored because there's no clean way to pass DA/DB.
460def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
461                  "fcmovb\t{$op, %st|st, $op}">;
462def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
463                  "fcmovbe\t{$op, %st|st, $op}">;
464def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
465                  "fcmove\t{$op, %st|st, $op}">;
466def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
467                  "fcmovu\t{$op, %st|st, $op}">;
468def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
469                  "fcmovnb\t{$op, %st|st, $op}">;
470def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
471                  "fcmovnbe\t{$op, %st|st, $op}">;
472def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
473                  "fcmovne\t{$op, %st|st, $op}">;
474def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
475                  "fcmovnu\t{$op, %st|st, $op}">;
476} // Predicates = [HasCMov]
477} // SchedRW
478
479let mayRaiseFPException = 1 in {
480// Floating point loads & stores.
481let SchedRW = [WriteLoad], Uses = [FPCW] in {
482let canFoldAsLoad = 1 in {
483def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
484                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
485def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
486                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
487def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
488                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
489} // canFoldAsLoad
490def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
491                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
492def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
493                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
494def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
495                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
496let mayRaiseFPException = 0 in {
497def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
498                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
499def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
500                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
501def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
502                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
503def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
504                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
505def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
506                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
507def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
508                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
509def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
510                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
511def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
512                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
513def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
514                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
515} // mayRaiseFPException = 0
516} // SchedRW
517
518let SchedRW = [WriteStore], Uses = [FPCW] in {
519def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
520                  [(store RFP32:$src, addr:$op)]>;
521def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
522                  [(truncstoref32 RFP64:$src, addr:$op)]>;
523def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
524                  [(store RFP64:$src, addr:$op)]>;
525def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
526                  [(truncstoref32 RFP80:$src, addr:$op)]>;
527def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
528                  [(truncstoref64 RFP80:$src, addr:$op)]>;
529// FST does not support 80-bit memory target; FSTP must be used.
530
531let mayStore = 1, hasSideEffects = 0 in {
532def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
533def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
534def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
535def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
536def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
537} // mayStore
538
539def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
540                    [(store RFP80:$src, addr:$op)]>;
541
542let mayStore = 1, hasSideEffects = 0 in {
543def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
544def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
545                          [(X86fist32 RFP32:$src, addr:$op)]>;
546def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
547                          [(X86fist64 RFP32:$src, addr:$op)]>;
548def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
549def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
550                          [(X86fist32 RFP64:$src, addr:$op)]>;
551def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
552                          [(X86fist64 RFP64:$src, addr:$op)]>;
553def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
554def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
555                        [(X86fist32 RFP80:$src, addr:$op)]>;
556def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
557                        [(X86fist64 RFP80:$src, addr:$op)]>;
558} // mayStore
559} // SchedRW, Uses = [FPCW]
560
561let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
562def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
563def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
564def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
565let mayRaiseFPException = 0 in {
566def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
567def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
568def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
569}
570}
571let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
572def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
573def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
574def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
575def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
576def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
577def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
578def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
579def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
580def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
581def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
582}
583
584// FISTTP requires SSE3 even though it's a FPStack op.
585let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
586def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
587                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
588def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
589                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
590def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
591                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
592def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
593                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
594def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
595                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
596def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
597                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
598def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
599                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
600def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
601                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
602def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
603                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
604} // Predicates = [HasSSE3]
605
606let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
607def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
608def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
609def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
610}
611
612// FP Stack manipulation instructions.
613let SchedRW = [WriteMove], Uses = [FPCW] in {
614def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
615def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
616def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
617let mayRaiseFPException = 0 in
618def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
619}
620
621// Floating point constant loads.
622let SchedRW = [WriteZero], Uses = [FPCW] in {
623def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
624                [(set RFP32:$dst, fpimm0)]>;
625def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
626                [(set RFP32:$dst, fpimm1)]>;
627def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
628                [(set RFP64:$dst, fpimm0)]>;
629def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
630                [(set RFP64:$dst, fpimm1)]>;
631def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
632                [(set RFP80:$dst, fpimm0)]>;
633def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
634                [(set RFP80:$dst, fpimm1)]>;
635}
636
637let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
638def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
639
640let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
641def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
642
643let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
644def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
645def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
646def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
647def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
648def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
649} // SchedRW
650
651// Floating point compares.
652let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
653def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
654def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
655def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
656def COM_Fpr32  : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
657def COM_Fpr64  : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
658def COM_Fpr80  : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
659} // SchedRW
660} // mayRaiseFPException = 1
661
662let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
663// CC = ST(0) cmp ST(i)
664let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
665def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
666                  [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
667                  Requires<[FPStackf32, HasCMov]>;
668def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
669                  [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
670                  Requires<[FPStackf64, HasCMov]>;
671def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
672                  [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
673                  Requires<[HasCMov]>;
674def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
675                  [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
676                  Requires<[FPStackf32, HasCMov]>;
677def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
678                  [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
679                  Requires<[FPStackf64, HasCMov]>;
680def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
681                  [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
682                  Requires<[HasCMov]>;
683}
684
685let Uses = [ST0, FPCW] in {
686def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
687                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
688def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
689                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
690def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
691                    (outs), (ins), "fucompp">;
692}
693
694let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
695def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
696                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
697def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
698                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
699
700def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
701                  "fcomi\t{$reg, %st|st, $reg}">;
702def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
703                   "fcompi\t{$reg, %st|st, $reg}">;
704}
705} // SchedRW
706
707// Floating point flag ops.
708let SchedRW = [WriteALU] in {
709let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
710def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
711                  (outs), (ins), "fnstsw\t{%ax|ax}", []>;
712let Defs = [FPSW], Uses = [FPCW] in
713def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
714                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
715                  [(X86fp_cwd_get16 addr:$dst)]>;
716} // SchedRW
717let Defs = [FPSW,FPCW], mayLoad = 1 in
718def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
719                  (outs), (ins i16mem:$dst), "fldcw\t$dst",
720                  [(X86fp_cwd_set16 addr:$dst)]>,
721                Sched<[WriteLoad]>;
722
723// FPU control instructions
724let SchedRW = [WriteMicrocoded] in {
725def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
726def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
727
728let Defs = [FPSW, FPCW] in
729def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
730// Clear exceptions
731let Defs = [FPSW] in
732def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
733} // SchedRW
734
735// Operand-less floating-point instructions for the disassembler.
736let Defs = [FPSW] in
737def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
738
739let SchedRW = [WriteMicrocoded] in {
740let Defs = [FPSW] in {
741def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
742def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
743def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
744let Uses = [FPCW], mayRaiseFPException = 1 in {
745def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
746def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
747def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
748def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
749def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
750def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
751def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
752def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
753def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
754def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
755def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
756def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
757def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
758def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
759} // Uses = [FPCW], mayRaiseFPException = 1
760} // Defs = [FPSW]
761
762let Uses = [FPSW, FPCW] in {
763def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
764             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
765             Requires<[HasFXSR]>;
766def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
767               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
768               PS, Requires<[HasFXSR, In64BitMode]>;
769} // Uses = [FPSW, FPCW]
770
771let Defs = [FPSW, FPCW] in {
772def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
773              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
774              PS, Requires<[HasFXSR]>;
775def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
776                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
777                PS, Requires<[HasFXSR, In64BitMode]>;
778} // Defs = [FPSW, FPCW]
779} // SchedRW
780
781//===----------------------------------------------------------------------===//
782// Non-Instruction Patterns
783//===----------------------------------------------------------------------===//
784
785// Required for RET of f32 / f64 / f80 values.
786def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
787def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
788def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
789def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
790def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
791def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
792
793// Required for CALL which return f32 / f64 / f80 values.
794def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
795def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
796def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
797def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
798def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
799def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
800
801// Floating point constant -0.0 and -1.0
802def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
803def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
804def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
805def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
806def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
807def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
808
809// FP extensions map onto simple pseudo-value conversions if they are to/from
810// the FP stack.
811def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
812          Requires<[FPStackf32]>;
813def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
814           Requires<[FPStackf32]>;
815def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
816           Requires<[FPStackf64]>;
817
818// FP truncations map onto simple pseudo-value conversions if they are to/from
819// the FP stack.  We have validated that only value-preserving truncations make
820// it through isel.
821def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
822          Requires<[FPStackf32]>;
823def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
824           Requires<[FPStackf32]>;
825def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
826           Requires<[FPStackf64]>;
827