xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrExtension.td (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1//===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the sign and zero extension operations.
10//
11//===----------------------------------------------------------------------===//
12
13let hasSideEffects = 0 in {
14  let Defs = [AX], Uses = [AL] in // AX = signext(AL)
15  def CBW : I<0x98, RawFrm, (outs), (ins),
16              "{cbtw|cbw}", []>, OpSize16, Sched<[WriteALU]>;
17  let Defs = [EAX], Uses = [AX] in // EAX = signext(AX)
18  def CWDE : I<0x98, RawFrm, (outs), (ins),
19              "{cwtl|cwde}", []>, OpSize32, Sched<[WriteALU]>;
20  let Defs = [RAX], Uses = [EAX] in // RAX = signext(EAX)
21  def CDQE : RI<0x98, RawFrm, (outs), (ins),
22               "{cltq|cdqe}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>;
23
24  // FIXME: CWD/CDQ/CQO shouldn't Def the A register, but the fast register
25  // allocator crashes if you remove it.
26  let Defs = [AX,DX], Uses = [AX] in // DX:AX = signext(AX)
27  def CWD : I<0x99, RawFrm, (outs), (ins),
28              "{cwtd|cwd}", []>, OpSize16, Sched<[WriteALU]>;
29  let Defs = [EAX,EDX], Uses = [EAX] in // EDX:EAX = signext(EAX)
30  def CDQ : I<0x99, RawFrm, (outs), (ins),
31              "{cltd|cdq}", []>, OpSize32, Sched<[WriteALU]>;
32  let Defs = [RAX,RDX], Uses = [RAX] in // RDX:RAX = signext(RAX)
33  def CQO  : RI<0x99, RawFrm, (outs), (ins),
34                "{cqto|cqo}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>;
35}
36
37// Sign/Zero extenders
38let hasSideEffects = 0 in {
39def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
40                   "movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
41                   TB, OpSize16, Sched<[WriteALU]>;
42let mayLoad = 1 in
43def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
44                   "movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
45                   TB, OpSize16, Sched<[WriteALULd]>;
46} // hasSideEffects = 0
47def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
48                   "movs{bl|x}\t{$src, $dst|$dst, $src}",
49                   [(set GR32:$dst, (sext GR8:$src))]>, TB,
50                   OpSize32, Sched<[WriteALU]>;
51def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
52                   "movs{bl|x}\t{$src, $dst|$dst, $src}",
53                   [(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB,
54                   OpSize32, Sched<[WriteALULd]>;
55def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
56                   "movs{wl|x}\t{$src, $dst|$dst, $src}",
57                   [(set GR32:$dst, (sext GR16:$src))]>, TB,
58                   OpSize32, Sched<[WriteALU]>;
59def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
60                   "movs{wl|x}\t{$src, $dst|$dst, $src}",
61                   [(set GR32:$dst, (sextloadi32i16 addr:$src))]>,
62                   OpSize32, TB, Sched<[WriteALULd]>;
63
64let hasSideEffects = 0 in {
65def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
66                   "movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
67                   TB, OpSize16, Sched<[WriteALU]>;
68let mayLoad = 1 in
69def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
70                   "movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
71                   TB, OpSize16, Sched<[WriteALULd]>;
72} // hasSideEffects = 0
73def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
74                   "movz{bl|x}\t{$src, $dst|$dst, $src}",
75                   [(set GR32:$dst, (zext GR8:$src))]>, TB,
76                   OpSize32, Sched<[WriteALU]>;
77def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
78                   "movz{bl|x}\t{$src, $dst|$dst, $src}",
79                   [(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB,
80                   OpSize32, Sched<[WriteALULd]>;
81def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
82                   "movz{wl|x}\t{$src, $dst|$dst, $src}",
83                   [(set GR32:$dst, (zext GR16:$src))]>, TB,
84                   OpSize32, Sched<[WriteALU]>;
85def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
86                   "movz{wl|x}\t{$src, $dst|$dst, $src}",
87                   [(set GR32:$dst, (zextloadi32i16 addr:$src))]>,
88                   TB, OpSize32, Sched<[WriteALULd]>;
89
90// These instructions exist as a consequence of operand size prefix having
91// control of the destination size, but not the input size. Only support them
92// for the disassembler.
93let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
94def MOVSX16rr16: I<0xBF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
95                   "movs{ww|x}\t{$src, $dst|$dst, $src}",
96                   []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
97def MOVZX16rr16: I<0xB7, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
98                   "movz{ww|x}\t{$src, $dst|$dst, $src}",
99                   []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
100let mayLoad = 1 in {
101def MOVSX16rm16: I<0xBF, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
102                   "movs{ww|x}\t{$src, $dst|$dst, $src}",
103                   []>, OpSize16, TB, Sched<[WriteALULd]>, NotMemoryFoldable;
104def MOVZX16rm16: I<0xB7, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
105                   "movz{ww|x}\t{$src, $dst|$dst, $src}",
106                   []>, TB, OpSize16, Sched<[WriteALULd]>, NotMemoryFoldable;
107} // mayLoad = 1
108} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
109
110// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
111// except that they use GR32_NOREX for the output operand register class
112// instead of GR32. This allows them to operate on h registers on x86-64.
113let hasSideEffects = 0, isCodeGenOnly = 1 in {
114def MOVZX32rr8_NOREX : I<0xB6, MRMSrcReg,
115                         (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
116                         "movz{bl|x}\t{$src, $dst|$dst, $src}",
117                         []>, TB, OpSize32, Sched<[WriteALU]>;
118let mayLoad = 1 in
119def MOVZX32rm8_NOREX : I<0xB6, MRMSrcMem,
120                         (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
121                         "movz{bl|x}\t{$src, $dst|$dst, $src}",
122                         []>, TB, OpSize32, Sched<[WriteALULd]>;
123
124def MOVSX32rr8_NOREX : I<0xBE, MRMSrcReg,
125                         (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
126                         "movs{bl|x}\t{$src, $dst|$dst, $src}",
127                         []>, TB, OpSize32, Sched<[WriteALU]>;
128let mayLoad = 1 in
129def MOVSX32rm8_NOREX : I<0xBE, MRMSrcMem,
130                         (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
131                         "movs{bl|x}\t{$src, $dst|$dst, $src}",
132                         []>, TB, OpSize32, Sched<[WriteALULd]>;
133}
134
135// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
136// operand, which makes it a rare instruction with an 8-bit register
137// operand that can never access an h register. If support for h registers
138// were generalized, this would require a special register class.
139def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
140                    "movs{bq|x}\t{$src, $dst|$dst, $src}",
141                    [(set GR64:$dst, (sext GR8:$src))]>, TB,
142                    Sched<[WriteALU]>;
143def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
144                    "movs{bq|x}\t{$src, $dst|$dst, $src}",
145                    [(set GR64:$dst, (sextloadi64i8 addr:$src))]>,
146                    TB, Sched<[WriteALULd]>;
147def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
148                    "movs{wq|x}\t{$src, $dst|$dst, $src}",
149                    [(set GR64:$dst, (sext GR16:$src))]>, TB,
150                    Sched<[WriteALU]>;
151def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
152                    "movs{wq|x}\t{$src, $dst|$dst, $src}",
153                    [(set GR64:$dst, (sextloadi64i16 addr:$src))]>,
154                    TB, Sched<[WriteALULd]>;
155def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
156                    "movs{lq|xd}\t{$src, $dst|$dst, $src}",
157                    [(set GR64:$dst, (sext GR32:$src))]>,
158                    Sched<[WriteALU]>, Requires<[In64BitMode]>;
159def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
160                    "movs{lq|xd}\t{$src, $dst|$dst, $src}",
161                    [(set GR64:$dst, (sextloadi64i32 addr:$src))]>,
162                    Sched<[WriteALULd]>, Requires<[In64BitMode]>;
163
164// These instructions exist as a consequence of operand size prefix having
165// control of the destination size, but not the input size. Only support them
166// for the disassembler.
167let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
168def MOVSX16rr32: I<0x63, MRMSrcReg, (outs GR16:$dst), (ins GR32:$src),
169                   "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
170                   Sched<[WriteALU]>, OpSize16, Requires<[In64BitMode]>;
171def MOVSX32rr32: I<0x63, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
172                   "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
173                   Sched<[WriteALU]>, OpSize32, Requires<[In64BitMode]>;
174let mayLoad = 1 in {
175def MOVSX16rm32: I<0x63, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src),
176                   "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
177                   Sched<[WriteALULd]>, OpSize16, Requires<[In64BitMode]>;
178def MOVSX32rm32: I<0x63, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
179                   "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
180                   Sched<[WriteALULd]>, OpSize32, Requires<[In64BitMode]>;
181} // mayLoad = 1
182} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
183
184// movzbq and movzwq encodings for the disassembler
185let hasSideEffects = 0 in {
186def MOVZX64rr8 : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
187                     "movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
188                     TB, Sched<[WriteALU]>;
189let mayLoad = 1 in
190def MOVZX64rm8 : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
191                     "movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
192                     TB, Sched<[WriteALULd]>;
193def MOVZX64rr16 : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
194                     "movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
195                     TB, Sched<[WriteALU]>;
196let mayLoad = 1 in
197def MOVZX64rm16 : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
198                     "movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
199                     TB, Sched<[WriteALULd]>;
200}
201
202// 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a
203// 32-bit register.
204def : Pat<(i64 (zext GR8:$src)),
205          (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>;
206def : Pat<(zextloadi64i8 addr:$src),
207          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
208
209def : Pat<(i64 (zext GR16:$src)),
210          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>;
211def : Pat<(zextloadi64i16 addr:$src),
212          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
213
214// The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a
215// SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible
216// when the 32-bit value is defined by a truncate or is copied from something
217// where the high bits aren't necessarily all zero. In such cases, we fall back
218// to these explicit zext instructions.
219def : Pat<(i64 (zext GR32:$src)),
220          (SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>;
221def : Pat<(i64 (zextloadi64i32 addr:$src)),
222          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
223