xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrCompiler.td (revision 8c2dd68caa963f1900a8228b0732b04f5d530ffa)
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the various pseudo instructions used by the compiler,
10// as well as Pat patterns used during instruction selection.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Pattern Matching Support
16
17def GetLo32XForm : SDNodeXForm<imm, [{
18  // Transformation function: get the low 32 bits.
19  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
20}]>;
21
22
23//===----------------------------------------------------------------------===//
24// Random Pseudo Instructions.
25
26// PIC base construction.  This expands to code that looks like this:
27//     call  $next_inst
28//     popl %destreg"
29let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
30    SchedRW = [WriteJump] in
31  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32                      "", []>;
33
34// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
35// a stack adjustment and the codegen must know that they may modify the stack
36// pointer before prolog-epilog rewriting occurs.
37// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
38// sub / add which can clobber EFLAGS.
39let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
40def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
41                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
42                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
43def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
44                           "#ADJCALLSTACKUP",
45                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
46                           Requires<[NotLP64]>;
47}
48def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
49       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
50
51
52// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
53// a stack adjustment and the codegen must know that they may modify the stack
54// pointer before prolog-epilog rewriting occurs.
55// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
56// sub / add which can clobber EFLAGS.
57let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
58def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
59                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
60                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
61def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62                           "#ADJCALLSTACKUP",
63                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64                           Requires<[IsLP64]>;
65}
66def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
67        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
68
69let SchedRW = [WriteSystem] in {
70
71// x86-64 va_start lowering magic.
72let usesCustomInserter = 1, Defs = [EFLAGS] in {
73def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
74                              (outs),
75                              (ins GR8:$al,
76                                   i32imm:$regsavefi, i32imm:$offset,
77                                   variable_ops),
78                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
79                              [(X86vastart_save_xmm_regs GR8:$al,
80                                                         timm:$regsavefi,
81                                                         timm:$offset),
82                               (implicit EFLAGS)]>;
83
84// The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the
85// va_list, and place the address of the next argument into a register.
86let Defs = [EFLAGS] in {
87def VAARG_64 : I<0, Pseudo,
88                 (outs GR64:$dst),
89                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
90                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
91                 [(set GR64:$dst,
92                    (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)),
93                  (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>;
94def VAARG_X32 : I<0, Pseudo,
95                 (outs GR32:$dst),
96                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97                 "#VAARG_X32 $dst, $ap, $size, $mode, $align",
98                 [(set GR32:$dst,
99                    (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)),
100                  (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>;
101}
102
103// When using segmented stacks these are lowered into instructions which first
104// check if the current stacklet has enough free memory. If it does, memory is
105// allocated by bumping the stack pointer. Otherwise memory is allocated from
106// the heap.
107
108let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
109def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
110                      "# variable sized alloca for segmented stacks",
111                      [(set GR32:$dst,
112                         (X86SegAlloca GR32:$size))]>,
113                    Requires<[NotLP64]>;
114
115let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
116def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
117                      "# variable sized alloca for segmented stacks",
118                      [(set GR64:$dst,
119                         (X86SegAlloca GR64:$size))]>,
120                    Requires<[In64BitMode]>;
121
122// To protect against stack clash, dynamic allocation should perform a memory
123// probe at each page.
124
125let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
126def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
127                      "# variable sized alloca with probing",
128                      [(set GR32:$dst,
129                         (X86ProbedAlloca GR32:$size))]>,
130                    Requires<[NotLP64]>;
131
132let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
133def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
134                      "# variable sized alloca with probing",
135                      [(set GR64:$dst,
136                         (X86ProbedAlloca GR64:$size))]>,
137                    Requires<[In64BitMode]>;
138}
139
140let hasNoSchedulingInfo = 1 in
141def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
142                             "# fixed size alloca with probing",
143                             []>;
144
145// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
146// targets.  These calls are needed to probe the stack when allocating more than
147// 4k bytes in one go. Touching the stack at 4K increments is necessary to
148// ensure that the guard pages used by the OS virtual memory manager are
149// allocated in correct sequence.
150// The main point of having separate instruction are extra unmodelled effects
151// (compared to ordinary calls) like stack pointer change.
152
153let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
154def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
155                     "# dynamic stack allocation",
156                     [(X86WinAlloca GR32:$size)]>,
157                     Requires<[NotLP64]>;
158
159let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
160def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
161                     "# dynamic stack allocation",
162                     [(X86WinAlloca GR64:$size)]>,
163                     Requires<[In64BitMode]>;
164} // SchedRW
165
166// These instructions XOR the frame pointer into a GPR. They are used in some
167// stack protection schemes. These are post-RA pseudos because we only know the
168// frame register after register allocation.
169let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
170  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
171                  "xorl\t$$FP, $src", []>,
172                  Requires<[NotLP64]>, Sched<[WriteALU]>;
173  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
174                  "xorq\t$$FP $src", []>,
175                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
176}
177
178//===----------------------------------------------------------------------===//
179// EH Pseudo Instructions
180//
181let SchedRW = [WriteSystem] in {
182let isTerminator = 1, isReturn = 1, isBarrier = 1,
183    hasCtrlDep = 1, isCodeGenOnly = 1 in {
184def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
185                    "ret\t#eh_return, addr: $addr",
186                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
187
188}
189
190let isTerminator = 1, isReturn = 1, isBarrier = 1,
191    hasCtrlDep = 1, isCodeGenOnly = 1 in {
192def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
193                     "ret\t#eh_return, addr: $addr",
194                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
195
196}
197
198let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
199    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
200  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
201
202  // CATCHRET needs a custom inserter for SEH.
203  let usesCustomInserter = 1 in
204    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
205                     "# CATCHRET",
206                     [(catchret bb:$dst, bb:$from)]>;
207}
208
209let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
210    usesCustomInserter = 1 in {
211  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
212                            "#EH_SJLJ_SETJMP32",
213                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
214                          Requires<[Not64BitMode]>;
215  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
216                            "#EH_SJLJ_SETJMP64",
217                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
218                          Requires<[In64BitMode]>;
219  let isTerminator = 1 in {
220  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
221                            "#EH_SJLJ_LONGJMP32",
222                            [(X86eh_sjlj_longjmp addr:$buf)]>,
223                          Requires<[Not64BitMode]>;
224  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
225                            "#EH_SJLJ_LONGJMP64",
226                            [(X86eh_sjlj_longjmp addr:$buf)]>,
227                          Requires<[In64BitMode]>;
228  }
229}
230
231let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
232  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
233                        "#EH_SjLj_Setup\t$dst", []>;
234}
235} // SchedRW
236
237//===----------------------------------------------------------------------===//
238// Pseudo instructions used by unwind info.
239//
240let isPseudo = 1, SchedRW = [WriteSystem] in {
241  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
242                            "#SEH_PushReg $reg", []>;
243  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
244                            "#SEH_SaveReg $reg, $dst", []>;
245  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
246                            "#SEH_SaveXMM $reg, $dst", []>;
247  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
248                            "#SEH_StackAlloc $size", []>;
249  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
250                            "#SEH_StackAlign $align", []>;
251  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
252                            "#SEH_SetFrame $reg, $offset", []>;
253  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
254                            "#SEH_PushFrame $mode", []>;
255  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
256                            "#SEH_EndPrologue", []>;
257  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
258                            "#SEH_Epilogue", []>;
259}
260
261//===----------------------------------------------------------------------===//
262// Pseudo instructions used by segmented stacks.
263//
264
265// This is lowered into a RET instruction by MCInstLower.  We need
266// this so that we don't have to have a MachineBasicBlock which ends
267// with a RET and also has successors.
268let isPseudo = 1, SchedRW = [WriteJumpLd] in {
269def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
270
271// This instruction is lowered to a RET followed by a MOV.  The two
272// instructions are not generated on a higher level since then the
273// verifier sees a MachineBasicBlock ending with a non-terminator.
274def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
275}
276
277//===----------------------------------------------------------------------===//
278// Alias Instructions
279//===----------------------------------------------------------------------===//
280
281// Alias instruction mapping movr0 to xor.
282// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
283let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
284    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
285def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
286                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
287
288// Other widths can also make use of the 32-bit xor, which may have a smaller
289// encoding and avoid partial register updates.
290let AddedComplexity = 10 in {
291def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
292def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
293def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
294}
295
296let Predicates = [OptForSize, Not64BitMode],
297    AddedComplexity = 10 in {
298  let SchedRW = [WriteALU] in {
299  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
300  // which only require 3 bytes compared to MOV32ri which requires 5.
301  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
302    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
303                        [(set GR32:$dst, 1)]>;
304    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
305                        [(set GR32:$dst, -1)]>;
306  }
307  } // SchedRW
308
309  // MOV16ri is 4 bytes, so the instructions above are smaller.
310  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
311  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
312}
313
314let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
315    SchedRW = [WriteALU] in {
316// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
317def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
318                       [(set GR32:$dst, i32immSExt8:$src)]>,
319                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
320def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
321                       [(set GR64:$dst, i64immSExt8:$src)]>,
322                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
323}
324
325// Materialize i64 constant where top 32-bits are zero. This could theoretically
326// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
327// that would make it more difficult to rematerialize.
328let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
329    isPseudo = 1, SchedRW = [WriteMove] in
330def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
331                  [(set GR64:$dst, i64immZExt32:$src)]>;
332
333// This 64-bit pseudo-move can also be used for labels in the x86-64 small code
334// model.
335def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
336def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;
337
338// Use sbb to materialize carry bit.
339let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
340    hasSideEffects = 0 in {
341// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
342// However, Pat<> can't replicate the destination reg into the inputs of the
343// result.
344def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
345def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
346} // isCodeGenOnly
347
348//===----------------------------------------------------------------------===//
349// String Pseudo Instructions
350//
351let SchedRW = [WriteMicrocoded] in {
352let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
353def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
354                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
355                    [(X86rep_movs i8)]>, REP, AdSize32,
356                   Requires<[NotLP64]>;
357def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
358                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
359                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
360                   Requires<[NotLP64]>;
361def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
362                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
363                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
364                   Requires<[NotLP64]>;
365def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
366                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
367                    [(X86rep_movs i64)]>, REP, AdSize32,
368                   Requires<[NotLP64, In64BitMode]>;
369}
370
371let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
372def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
373                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
374                    [(X86rep_movs i8)]>, REP, AdSize64,
375                   Requires<[IsLP64]>;
376def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
377                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
378                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
379                   Requires<[IsLP64]>;
380def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
381                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
382                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
383                   Requires<[IsLP64]>;
384def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
385                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
386                    [(X86rep_movs i64)]>, REP, AdSize64,
387                   Requires<[IsLP64]>;
388}
389
390// FIXME: Should use "(X86rep_stos AL)" as the pattern.
391let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
392  let Uses = [AL,ECX,EDI] in
393  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
394                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
395                      [(X86rep_stos i8)]>, REP, AdSize32,
396                     Requires<[NotLP64]>;
397  let Uses = [AX,ECX,EDI] in
398  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
399                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
400                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
401                     Requires<[NotLP64]>;
402  let Uses = [EAX,ECX,EDI] in
403  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
404                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
405                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
406                     Requires<[NotLP64]>;
407  let Uses = [RAX,RCX,RDI] in
408  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
409                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
410                        [(X86rep_stos i64)]>, REP, AdSize32,
411                        Requires<[NotLP64, In64BitMode]>;
412}
413
414let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
415  let Uses = [AL,RCX,RDI] in
416  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
417                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
418                       [(X86rep_stos i8)]>, REP, AdSize64,
419                       Requires<[IsLP64]>;
420  let Uses = [AX,RCX,RDI] in
421  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
422                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
423                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
424                       Requires<[IsLP64]>;
425  let Uses = [RAX,RCX,RDI] in
426  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
427                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
428                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
429                       Requires<[IsLP64]>;
430
431  let Uses = [RAX,RCX,RDI] in
432  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
433                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
434                        [(X86rep_stos i64)]>, REP, AdSize64,
435                        Requires<[IsLP64]>;
436}
437} // SchedRW
438
439//===----------------------------------------------------------------------===//
440// Thread Local Storage Instructions
441//
442let SchedRW = [WriteSystem] in {
443
444// ELF TLS Support
445// All calls clobber the non-callee saved registers. ESP is marked as
446// a use to prevent stack-pointer assignments that appear immediately
447// before calls from potentially appearing dead.
448let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
449            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
450            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
451            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
452            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
453    usesCustomInserter = 1, Uses = [ESP, SSP] in {
454def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
455                  "# TLS_addr32",
456                  [(X86tlsaddr tls32addr:$sym)]>,
457                  Requires<[Not64BitMode]>;
458def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
459                  "# TLS_base_addr32",
460                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
461                  Requires<[Not64BitMode]>;
462}
463
464// All calls clobber the non-callee saved registers. RSP is marked as
465// a use to prevent stack-pointer assignments that appear immediately
466// before calls from potentially appearing dead.
467let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
468            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
469            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
470            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
471            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
472            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
473    usesCustomInserter = 1, Uses = [RSP, SSP] in {
474def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
475                   "# TLS_addr64",
476                  [(X86tlsaddr tls64addr:$sym)]>,
477                  Requires<[In64BitMode, IsLP64]>;
478def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
479                   "# TLS_base_addr64",
480                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
481                  Requires<[In64BitMode, IsLP64]>;
482def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
483                   "# TLS_addrX32",
484                  [(X86tlsaddr tls32addr:$sym)]>,
485                  Requires<[In64BitMode, NotLP64]>;
486def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
487                   "# TLS_base_addrX32",
488                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
489                  Requires<[In64BitMode, NotLP64]>;
490}
491
492// Darwin TLS Support
493// For i386, the address of the thunk is passed on the stack, on return the
494// address of the variable is in %eax.  %ecx is trashed during the function
495// call.  All other registers are preserved.
496let Defs = [EAX, ECX, EFLAGS, DF],
497    Uses = [ESP, SSP],
498    usesCustomInserter = 1 in
499def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
500                "# TLSCall_32",
501                [(X86TLSCall addr:$sym)]>,
502                Requires<[Not64BitMode]>;
503
504// For x86_64, the address of the thunk is passed in %rdi, but the
505// pseudo directly use the symbol, so do not add an implicit use of
506// %rdi. The lowering will do the right thing with RDI.
507// On return the address of the variable is in %rax.  All other
508// registers are preserved.
509let Defs = [RAX, EFLAGS, DF],
510    Uses = [RSP, SSP],
511    usesCustomInserter = 1 in
512def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
513                  "# TLSCall_64",
514                  [(X86TLSCall addr:$sym)]>,
515                  Requires<[In64BitMode]>;
516} // SchedRW
517
518//===----------------------------------------------------------------------===//
519// Conditional Move Pseudo Instructions
520
521// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
522// instruction selection into a branch sequence.
523multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
524  def CMOV#NAME  : I<0, Pseudo,
525                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
526                    "#CMOV_"#NAME#" PSEUDO!",
527                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
528                                                EFLAGS)))]>;
529}
530
531let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
532  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
533  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
534  // however that requires promoting the operands, and can induce additional
535  // i8 register pressure.
536  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
537
538  let Predicates = [NoCMov] in {
539    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
540    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
541  } // Predicates = [NoCMov]
542
543  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
544  // SSE1/SSE2.
545  let Predicates = [FPStackf32] in
546    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
547
548  let Predicates = [FPStackf64] in
549    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
550
551  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
552
553  let Predicates = [HasMMX] in
554    defm _VR64   : CMOVrr_PSEUDO<VR64, x86mmx>;
555
556  let Predicates = [HasSSE1,NoAVX512] in
557    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
558  let Predicates = [HasSSE2,NoAVX512] in
559    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
560  let Predicates = [HasAVX512] in {
561    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
562    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
563  }
564  let Predicates = [NoVLX] in {
565    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
566    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
567  }
568  let Predicates = [HasVLX] in {
569    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
570    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
571  }
572  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
573  defm _VK1    : CMOVrr_PSEUDO<VK1,  v1i1>;
574  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
575  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
576  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
577  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
578  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
579  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
580} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
581
582def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
583          (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
584
585let Predicates = [NoVLX] in {
586  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
587            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
588  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
589            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
590  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
591            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
592  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
593            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
594  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
595            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
596
597  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
598            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
599  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
600            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
601  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
602            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
603  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
604            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
605  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
606            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
607}
608let Predicates = [HasVLX] in {
609  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
610            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
611  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
612            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
613  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
614            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
615  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
616            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
617  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
618            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
619
620  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
621            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
622  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
623            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
624  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
625            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
626  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
627            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
628  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
629            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
630}
631
632def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
633          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
634def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
635          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
636def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
637          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
638def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
639          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
640def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
641          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
642
643//===----------------------------------------------------------------------===//
644// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
645//===----------------------------------------------------------------------===//
646
647// FIXME: Use normal instructions and add lock prefix dynamically.
648
649// Memory barriers
650
651let isCodeGenOnly = 1, Defs = [EFLAGS] in
652def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
653                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
654                         Requires<[Not64BitMode]>, OpSize32, LOCK,
655                         Sched<[WriteALURMW]>;
656
657let hasSideEffects = 1 in
658def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
659                     "#MEMBARRIER",
660                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
661
662// RegOpc corresponds to the mr version of the instruction
663// ImmOpc corresponds to the mi version of the instruction
664// ImmOpc8 corresponds to the mi8 version of the instruction
665// ImmMod corresponds to the instruction format of the mi and mi8 versions
666multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
667                           Format ImmMod, SDNode Op, string mnemonic> {
668let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
669    SchedRW = [WriteALURMW] in {
670
671def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
672                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
673                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
674                  !strconcat(mnemonic, "{b}\t",
675                             "{$src2, $dst|$dst, $src2}"),
676                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
677
678def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
679                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
680                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
681                   !strconcat(mnemonic, "{w}\t",
682                              "{$src2, $dst|$dst, $src2}"),
683                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
684                   OpSize16, LOCK;
685
686def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
687                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
688                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
689                   !strconcat(mnemonic, "{l}\t",
690                              "{$src2, $dst|$dst, $src2}"),
691                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
692                   OpSize32, LOCK;
693
694def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
695                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
696                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
697                    !strconcat(mnemonic, "{q}\t",
698                               "{$src2, $dst|$dst, $src2}"),
699                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
700
701// NOTE: These are order specific, we want the mi8 forms to be listed
702// first so that they are slightly preferred to the mi forms.
703def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
704                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
705                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
706                      !strconcat(mnemonic, "{w}\t",
707                                 "{$src2, $dst|$dst, $src2}"),
708                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
709                      OpSize16, LOCK;
710
711def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
712                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
713                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
714                      !strconcat(mnemonic, "{l}\t",
715                                 "{$src2, $dst|$dst, $src2}"),
716                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
717                      OpSize32, LOCK;
718
719def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
720                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
721                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
722                       !strconcat(mnemonic, "{q}\t",
723                                  "{$src2, $dst|$dst, $src2}"),
724                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
725                       LOCK;
726
727def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
728                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
729                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
730                    !strconcat(mnemonic, "{b}\t",
731                               "{$src2, $dst|$dst, $src2}"),
732                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
733
734def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
735                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
736                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
737                      !strconcat(mnemonic, "{w}\t",
738                                 "{$src2, $dst|$dst, $src2}"),
739                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
740                      OpSize16, LOCK;
741
742def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
743                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
744                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
745                      !strconcat(mnemonic, "{l}\t",
746                                 "{$src2, $dst|$dst, $src2}"),
747                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
748                      OpSize32, LOCK;
749
750def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
751                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
752                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
753                          !strconcat(mnemonic, "{q}\t",
754                                     "{$src2, $dst|$dst, $src2}"),
755                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
756                          LOCK;
757}
758
759}
760
761defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
762defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
763defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
764defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
765defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
766
767def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
768                               (X86lock_add node:$lhs, node:$rhs), [{
769  return hasNoCarryFlagUses(SDValue(N, 0));
770}]>;
771
772def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
773                               (X86lock_sub node:$lhs, node:$rhs), [{
774  return hasNoCarryFlagUses(SDValue(N, 0));
775}]>;
776
777let Predicates = [UseIncDec] in {
778  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
779      SchedRW = [WriteALURMW]  in {
780    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
781                        "inc{b}\t$dst",
782                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
783                        LOCK;
784    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
785                        "inc{w}\t$dst",
786                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
787                        OpSize16, LOCK;
788    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
789                        "inc{l}\t$dst",
790                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
791                        OpSize32, LOCK;
792    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
793                         "inc{q}\t$dst",
794                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
795                         LOCK;
796
797    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
798                        "dec{b}\t$dst",
799                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
800                        LOCK;
801    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
802                        "dec{w}\t$dst",
803                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
804                        OpSize16, LOCK;
805    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
806                        "dec{l}\t$dst",
807                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
808                        OpSize32, LOCK;
809    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
810                         "dec{q}\t$dst",
811                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
812                         LOCK;
813  }
814
815  // Additional patterns for -1 constant.
816  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
817  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
818  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
819  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
820  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
821  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
822  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
823  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
824}
825
826// Atomic compare and swap.
827multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
828                          string mnemonic, SDPatternOperator frag> {
829let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
830  let Defs = [AL, EFLAGS], Uses = [AL] in
831  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
832                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
833                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
834  let Defs = [AX, EFLAGS], Uses = [AX] in
835  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
836                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
837                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
838  let Defs = [EAX, EFLAGS], Uses = [EAX] in
839  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
840                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
841                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
842  let Defs = [RAX, EFLAGS], Uses = [RAX] in
843  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
844                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
845                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
846}
847}
848
849let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
850    Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW],
851    isCodeGenOnly = 1, usesCustomInserter = 1 in {
852def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
853                   "cmpxchg8b\t$ptr",
854                   [(X86cas8 addr:$ptr)]>, TB, LOCK;
855}
856
857let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
858    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
859    isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
860def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
861                     "cmpxchg16b\t$ptr",
862                     []>, TB, LOCK;
863}
864
865// This pseudo must be used when the frame uses RBX as
866// the base pointer. Indeed, in such situation RBX is a reserved
867// register and the register allocator will ignore any use/def of
868// it. In other words, the register will not fix the clobbering of
869// RBX that will happen when setting the arguments for the instrucion.
870//
871// Unlike the actual related instruction, we mark that this one
872// defines RBX (instead of using RBX).
873// The rationale is that we will define RBX during the expansion of
874// the pseudo. The argument feeding RBX is rbx_input.
875//
876// The additional argument, $rbx_save, is a temporary register used to
877// save the value of RBX across the actual instruction.
878//
879// To make sure the register assigned to $rbx_save does not interfere with
880// the definition of the actual instruction, we use a definition $dst which
881// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
882// the instruction and we are sure we will have a valid register to restore
883// the value of RBX.
884let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
885    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
886    isCodeGenOnly = 1, isPseudo = 1,
887    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
888    Constraints = "$rbx_save = $dst" in {
889def LCMPXCHG16B_SAVE_RBX :
890    I<0, Pseudo, (outs GR64:$dst),
891      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>;
892}
893
894// Pseudo instruction that doesn't read/write RBX. Will be turned into either
895// LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter.
896let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX],
897    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
898    isCodeGenOnly = 1, isPseudo = 1,
899    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
900    usesCustomInserter = 1 in {
901def LCMPXCHG16B_NO_RBX :
902    I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "",
903      [(X86cas16 addr:$ptr, GR64:$rbx_input)]>;
904}
905
906// This pseudo must be used when the frame uses RBX/EBX as
907// the base pointer.
908// cf comment for LCMPXCHG16B_SAVE_RBX.
909let Defs = [EBX], Uses = [ECX, EAX],
910    Predicates = [HasMWAITX], SchedRW = [WriteSystem],
911    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
912def MWAITX_SAVE_RBX :
913    I<0, Pseudo, (outs GR64:$dst),
914      (ins GR32:$ebx_input, GR64:$rbx_save),
915      "mwaitx",
916      []>;
917}
918
919// Pseudo mwaitx instruction to use for custom insertion.
920let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
921    isCodeGenOnly = 1, isPseudo = 1,
922    usesCustomInserter = 1 in {
923def MWAITX :
924    I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
925      "mwaitx",
926      [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
927}
928
929
930defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
931
932// Atomic exchange and add
933multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
934                             string frag> {
935  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
936      SchedRW = [WriteALURMW] in {
937    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
938                    (ins GR8:$val, i8mem:$ptr),
939                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
940                    [(set GR8:$dst,
941                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
942    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
943                    (ins GR16:$val, i16mem:$ptr),
944                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
945                    [(set
946                       GR16:$dst,
947                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
948                    OpSize16;
949    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
950                    (ins GR32:$val, i32mem:$ptr),
951                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
952                    [(set
953                       GR32:$dst,
954                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
955                    OpSize32;
956    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
957                     (ins GR64:$val, i64mem:$ptr),
958                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
959                     [(set
960                        GR64:$dst,
961                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
962  }
963}
964
965defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
966
967/* The following multiclass tries to make sure that in code like
968 *    x.store (immediate op x.load(acquire), release)
969 * and
970 *    x.store (register op x.load(acquire), release)
971 * an operation directly on memory is generated instead of wasting a register.
972 * It is not automatic as atomic_store/load are only lowered to MOV instructions
973 * extremely late to prevent them from being accidentally reordered in the backend
974 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
975 */
976multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
977  def : Pat<(atomic_store_8 addr:$dst,
978             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
979            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
980  def : Pat<(atomic_store_16 addr:$dst,
981             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
982            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
983  def : Pat<(atomic_store_32 addr:$dst,
984             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
985            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
986  def : Pat<(atomic_store_64 addr:$dst,
987             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
988            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;
989
990  def : Pat<(atomic_store_8 addr:$dst,
991             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
992            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
993  def : Pat<(atomic_store_16 addr:$dst,
994             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
995            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
996  def : Pat<(atomic_store_32 addr:$dst,
997             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
998            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
999  def : Pat<(atomic_store_64 addr:$dst,
1000             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
1001            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
1002}
1003defm : RELEASE_BINOP_MI<"ADD", add>;
1004defm : RELEASE_BINOP_MI<"AND", and>;
1005defm : RELEASE_BINOP_MI<"OR",  or>;
1006defm : RELEASE_BINOP_MI<"XOR", xor>;
1007defm : RELEASE_BINOP_MI<"SUB", sub>;
1008
1009// Atomic load + floating point patterns.
1010// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
1011multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
1012  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1013            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
1014            Requires<[UseSSE1]>;
1015  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1016            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
1017            Requires<[UseAVX]>;
1018  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1019            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
1020            Requires<[HasAVX512]>;
1021
1022  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1023            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
1024            Requires<[UseSSE1]>;
1025  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1026            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
1027            Requires<[UseAVX]>;
1028  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1029            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
1030            Requires<[HasAVX512]>;
1031}
1032defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
1033// FIXME: Add fsub, fmul, fdiv, ...
1034
1035multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
1036                        dag dag64> {
1037  def : Pat<(atomic_store_8 addr:$dst, dag8),
1038            (!cast<Instruction>(Name#8m) addr:$dst)>;
1039  def : Pat<(atomic_store_16 addr:$dst, dag16),
1040            (!cast<Instruction>(Name#16m) addr:$dst)>;
1041  def : Pat<(atomic_store_32 addr:$dst, dag32),
1042            (!cast<Instruction>(Name#32m) addr:$dst)>;
1043  def : Pat<(atomic_store_64 addr:$dst, dag64),
1044            (!cast<Instruction>(Name#64m) addr:$dst)>;
1045}
1046
1047let Predicates = [UseIncDec] in {
1048  defm : RELEASE_UNOP<"INC",
1049      (add (atomic_load_8  addr:$dst), (i8 1)),
1050      (add (atomic_load_16 addr:$dst), (i16 1)),
1051      (add (atomic_load_32 addr:$dst), (i32 1)),
1052      (add (atomic_load_64 addr:$dst), (i64 1))>;
1053  defm : RELEASE_UNOP<"DEC",
1054      (add (atomic_load_8  addr:$dst), (i8 -1)),
1055      (add (atomic_load_16 addr:$dst), (i16 -1)),
1056      (add (atomic_load_32 addr:$dst), (i32 -1)),
1057      (add (atomic_load_64 addr:$dst), (i64 -1))>;
1058}
1059
1060defm : RELEASE_UNOP<"NEG",
1061    (ineg (i8 (atomic_load_8  addr:$dst))),
1062    (ineg (i16 (atomic_load_16 addr:$dst))),
1063    (ineg (i32 (atomic_load_32 addr:$dst))),
1064    (ineg (i64 (atomic_load_64 addr:$dst)))>;
1065defm : RELEASE_UNOP<"NOT",
1066    (not (i8 (atomic_load_8  addr:$dst))),
1067    (not (i16 (atomic_load_16 addr:$dst))),
1068    (not (i32 (atomic_load_32 addr:$dst))),
1069    (not (i64 (atomic_load_64 addr:$dst)))>;
1070
1071def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
1072          (MOV8mi addr:$dst, imm:$src)>;
1073def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
1074          (MOV16mi addr:$dst, imm:$src)>;
1075def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
1076          (MOV32mi addr:$dst, imm:$src)>;
1077def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
1078          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;
1079
1080def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
1081          (MOV8mr addr:$dst, GR8:$src)>;
1082def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
1083          (MOV16mr addr:$dst, GR16:$src)>;
1084def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
1085          (MOV32mr addr:$dst, GR32:$src)>;
1086def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
1087          (MOV64mr addr:$dst, GR64:$src)>;
1088
1089def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
1090def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
1091def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
1092def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;
1093
1094// Floating point loads/stores.
1095def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1096          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
1097def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1098          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
1099def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1100          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;
1101
1102def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1103          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
1104def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1105          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
1106def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1107          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;
1108
1109def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1110          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
1111def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1112          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
1113def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1114          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1115
1116def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1117          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
1118def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1119          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
1120def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1121          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1122
1123//===----------------------------------------------------------------------===//
1124// DAG Pattern Matching Rules
1125//===----------------------------------------------------------------------===//
1126
1127// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1128// binary size compared to a regular MOV, but it introduces an unnecessary
1129// load, so is not suitable for regular or optsize functions.
1130let Predicates = [OptForMinSize] in {
1131def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1132def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1133def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1134def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1135def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1136def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1137}
1138
1139// In kernel code model, we can get the address of a label
1140// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1141// the MOV64ri32 should accept these.
1142def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1143          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1144def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1145          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1146def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1147          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1148def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1149          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1150def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1151          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1152def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1153          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1154
1155// If we have small model and -static mode, it is safe to store global addresses
1156// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1157// for MOV64mi32 should handle this sort of thing.
1158def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1159          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1160          Requires<[NearData, IsNotPIC]>;
1161def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1162          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1163          Requires<[NearData, IsNotPIC]>;
1164def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1165          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1166          Requires<[NearData, IsNotPIC]>;
1167def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1168          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1169          Requires<[NearData, IsNotPIC]>;
1170def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1171          (MOV64mi32 addr:$dst, mcsym:$src)>,
1172          Requires<[NearData, IsNotPIC]>;
1173def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1174          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1175          Requires<[NearData, IsNotPIC]>;
1176
1177def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1178def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1179
1180// Calls
1181
1182// tls has some funny stuff here...
1183// This corresponds to movabs $foo@tpoff, %rax
1184def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1185          (MOV64ri32 tglobaltlsaddr :$dst)>;
1186// This corresponds to add $foo@tpoff, %rax
1187def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1188          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1189
1190
1191// Direct PC relative function call for small code model. 32-bit displacement
1192// sign extended to 64-bit.
1193def : Pat<(X86call (i64 tglobaladdr:$dst)),
1194          (CALL64pcrel32 tglobaladdr:$dst)>;
1195def : Pat<(X86call (i64 texternalsym:$dst)),
1196          (CALL64pcrel32 texternalsym:$dst)>;
1197
1198// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1199// can never use callee-saved registers. That is the purpose of the GR64_TC
1200// register classes.
1201//
1202// The only volatile register that is never used by the calling convention is
1203// %r11. This happens when calling a vararg function with 6 arguments.
1204//
1205// Match an X86tcret that uses less than 7 volatile registers.
1206def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1207                             (X86tcret node:$ptr, node:$off), [{
1208  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1209  unsigned NumRegs = 0;
1210  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1211    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1212      return false;
1213  return true;
1214}]>;
1215
1216def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1217          (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>,
1218          Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;
1219
1220// FIXME: This is disabled for 32-bit PIC mode because the global base
1221// register which is part of the address mode may be assigned a
1222// callee-saved register.
1223def : Pat<(X86tcret (load addr:$dst), timm:$off),
1224          (TCRETURNmi addr:$dst, timm:$off)>,
1225          Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;
1226
1227def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off),
1228          (TCRETURNdi tglobaladdr:$dst, timm:$off)>,
1229          Requires<[NotLP64]>;
1230
1231def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off),
1232          (TCRETURNdi texternalsym:$dst, timm:$off)>,
1233          Requires<[NotLP64]>;
1234
1235def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1236          (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>,
1237          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1238
1239// Don't fold loads into X86tcret requiring more than 6 regs.
1240// There wouldn't be enough scratch registers for base+index.
1241def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off),
1242          (TCRETURNmi64 addr:$dst, timm:$off)>,
1243          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1244
1245def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1246          (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>,
1247          Requires<[In64BitMode, UseIndirectThunkCalls]>;
1248
1249def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1250          (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>,
1251          Requires<[Not64BitMode, UseIndirectThunkCalls]>;
1252
1253def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off),
1254          (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>,
1255          Requires<[IsLP64]>;
1256
1257def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off),
1258          (TCRETURNdi64 texternalsym:$dst, timm:$off)>,
1259          Requires<[IsLP64]>;
1260
1261// Normal calls, with various flavors of addresses.
1262def : Pat<(X86call (i32 tglobaladdr:$dst)),
1263          (CALLpcrel32 tglobaladdr:$dst)>;
1264def : Pat<(X86call (i32 texternalsym:$dst)),
1265          (CALLpcrel32 texternalsym:$dst)>;
1266def : Pat<(X86call (i32 imm:$dst)),
1267          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1268
1269// Comparisons.
1270
1271// TEST R,R is smaller than CMP R,0
1272def : Pat<(X86cmp GR8:$src1, 0),
1273          (TEST8rr GR8:$src1, GR8:$src1)>;
1274def : Pat<(X86cmp GR16:$src1, 0),
1275          (TEST16rr GR16:$src1, GR16:$src1)>;
1276def : Pat<(X86cmp GR32:$src1, 0),
1277          (TEST32rr GR32:$src1, GR32:$src1)>;
1278def : Pat<(X86cmp GR64:$src1, 0),
1279          (TEST64rr GR64:$src1, GR64:$src1)>;
1280
1281// zextload bool -> zextload byte
1282// i1 stored in one byte in zero-extended form.
1283// Upper bits cleanup should be executed before Store.
1284def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1285def : Pat<(zextloadi16i1 addr:$src),
1286          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1287def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1288def : Pat<(zextloadi64i1 addr:$src),
1289          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1290
1291// extload bool -> extload byte
1292// When extloading from 16-bit and smaller memory locations into 64-bit
1293// registers, use zero-extending loads so that the entire 64-bit register is
1294// defined, avoiding partial-register updates.
1295
1296def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1297def : Pat<(extloadi16i1 addr:$src),
1298          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1299def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1300def : Pat<(extloadi16i8 addr:$src),
1301          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1302def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1303def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1304
1305// For other extloads, use subregs, since the high contents of the register are
1306// defined after an extload.
1307// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
1308// 32-bit loads for 4 byte aligned i8/i16 loads.
1309def : Pat<(extloadi64i32 addr:$src),
1310          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1311def : Pat<(extloadi64i1 addr:$src),
1312          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1313def : Pat<(extloadi64i8 addr:$src),
1314          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1315def : Pat<(extloadi64i16 addr:$src),
1316          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1317
1318// anyext. Define these to do an explicit zero-extend to
1319// avoid partial-register updates.
1320def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1321                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1322def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1323
1324// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1325def : Pat<(i32 (anyext GR16:$src)),
1326          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1327
1328def : Pat<(i64 (anyext GR8 :$src)),
1329          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1330def : Pat<(i64 (anyext GR16:$src)),
1331          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1332def : Pat<(i64 (anyext GR32:$src)),
1333          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
1334
1335// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
1336// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
1337// %ah to the lower byte of a register. By using a MOVSX here we allow a
1338// post-isel peephole to merge the two MOVSX instructions into one.
1339def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
1340  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
1341          N->getOperand(0).getResNo() == 1);
1342}]>;
1343def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;
1344
1345// Any instruction that defines a 32-bit result leaves the high half of the
1346// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1347// be copying from a truncate. AssertSext/AssertZext/AssertAlign aren't saying
1348// anything about the upper 32 bits, they're probably just qualifying a
1349// CopyFromReg. FREEZE may be coming from a a truncate. Any other 32-bit
1350// operation will zero-extend up to 64 bits.
1351def def32 : PatLeaf<(i32 GR32:$src), [{
1352  return N->getOpcode() != ISD::TRUNCATE &&
1353         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1354         N->getOpcode() != ISD::CopyFromReg &&
1355         N->getOpcode() != ISD::AssertSext &&
1356         N->getOpcode() != ISD::AssertZext &&
1357         N->getOpcode() != ISD::AssertAlign &&
1358         N->getOpcode() != ISD::FREEZE;
1359}]>;
1360
1361// In the case of a 32-bit def that is known to implicitly zero-extend,
1362// we can use a SUBREG_TO_REG.
1363def : Pat<(i64 (zext def32:$src)),
1364          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1365def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
1366          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1367
1368//===----------------------------------------------------------------------===//
1369// Pattern match OR as ADD
1370//===----------------------------------------------------------------------===//
1371
1372// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1373// 3-addressified into an LEA instruction to avoid copies.  However, we also
1374// want to finally emit these instructions as an or at the end of the code
1375// generator to make the generated code easier to read.  To do this, we select
1376// into "disjoint bits" pseudo ops.
1377
1378// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1379def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1380  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1381    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1382
1383  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
1384  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
1385  return (~Known0.Zero & ~Known1.Zero) == 0;
1386}]>;
1387
1388
1389// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1390// Try this before the selecting to OR.
1391let SchedRW = [WriteALU] in {
1392
1393let isConvertibleToThreeAddress = 1, isPseudo = 1,
1394    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1395let isCommutable = 1 in {
1396def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
1397                    "", // orb/addb REG, REG
1398                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
1399def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1400                    "", // orw/addw REG, REG
1401                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1402def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1403                    "", // orl/addl REG, REG
1404                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1405def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1406                    "", // orq/addq REG, REG
1407                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1408} // isCommutable
1409
1410// NOTE: These are order specific, we want the ri8 forms to be listed
1411// first so that they are slightly preferred to the ri forms.
1412
1413def ADD8ri_DB :   I<0, Pseudo,
1414                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
1415                    "", // orb/addb REG, imm8
1416                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
1417def ADD16ri8_DB : I<0, Pseudo,
1418                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1419                    "", // orw/addw REG, imm8
1420                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1421def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1422                    "", // orw/addw REG, imm
1423                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1424
1425def ADD32ri8_DB : I<0, Pseudo,
1426                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1427                    "", // orl/addl REG, imm8
1428                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1429def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1430                    "", // orl/addl REG, imm
1431                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1432
1433
1434def ADD64ri8_DB : I<0, Pseudo,
1435                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1436                    "", // orq/addq REG, imm8
1437                    [(set GR64:$dst, (or_is_add GR64:$src1,
1438                                                i64immSExt8:$src2))]>;
1439def ADD64ri32_DB : I<0, Pseudo,
1440                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1441                     "", // orq/addq REG, imm
1442                     [(set GR64:$dst, (or_is_add GR64:$src1,
1443                                                 i64immSExt32:$src2))]>;
1444}
1445} // AddedComplexity, SchedRW
1446
1447//===----------------------------------------------------------------------===//
1448// Pattern match SUB as XOR
1449//===----------------------------------------------------------------------===//
1450
1451// An immediate in the LHS of a subtract can't be encoded in the instruction.
1452// If there is no possibility of a borrow we can use an XOR instead of a SUB
1453// to enable the immediate to be folded.
1454// TODO: Move this to a DAG combine?
1455
1456def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
1457  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
1458    KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1));
1459
1460    // If all possible ones in the RHS are set in the LHS then there can't be
1461    // a borrow and we can use xor.
1462    return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
1463  }
1464
1465  return false;
1466}]>;
1467
1468let AddedComplexity = 5 in {
1469def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
1470          (XOR8ri GR8:$src1, imm:$src2)>;
1471def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
1472          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1473def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
1474          (XOR16ri GR16:$src1, imm:$src2)>;
1475def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
1476          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1477def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
1478          (XOR32ri GR32:$src1, imm:$src2)>;
1479def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
1480          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1481def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
1482          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1483}
1484
1485//===----------------------------------------------------------------------===//
1486// Some peepholes
1487//===----------------------------------------------------------------------===//
1488
1489// Odd encoding trick: -128 fits into an 8-bit immediate field while
1490// +128 doesn't, so in this special case use a sub instead of an add.
1491def : Pat<(add GR16:$src1, 128),
1492          (SUB16ri8 GR16:$src1, -128)>;
1493def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1494          (SUB16mi8 addr:$dst, -128)>;
1495
1496def : Pat<(add GR32:$src1, 128),
1497          (SUB32ri8 GR32:$src1, -128)>;
1498def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1499          (SUB32mi8 addr:$dst, -128)>;
1500
1501def : Pat<(add GR64:$src1, 128),
1502          (SUB64ri8 GR64:$src1, -128)>;
1503def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1504          (SUB64mi8 addr:$dst, -128)>;
1505
1506def : Pat<(X86add_flag_nocf GR16:$src1, 128),
1507          (SUB16ri8 GR16:$src1, -128)>;
1508def : Pat<(X86add_flag_nocf GR32:$src1, 128),
1509          (SUB32ri8 GR32:$src1, -128)>;
1510def : Pat<(X86add_flag_nocf GR64:$src1, 128),
1511          (SUB64ri8 GR64:$src1, -128)>;
1512
1513// The same trick applies for 32-bit immediate fields in 64-bit
1514// instructions.
1515def : Pat<(add GR64:$src1, 0x0000000080000000),
1516          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1517def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1518          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1519
1520def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
1521          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1522
1523// To avoid needing to materialize an immediate in a register, use a 32-bit and
1524// with implicit zero-extension instead of a 64-bit and if the immediate has at
1525// least 32 bits of leading zeros. If in addition the last 32 bits can be
1526// represented with a sign extension of a 8 bit constant, use that.
1527// This can also reduce instruction size by eliminating the need for the REX
1528// prefix.
1529
1530// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1531let AddedComplexity = 1 in {
1532def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1533          (SUBREG_TO_REG
1534            (i64 0),
1535            (AND32ri8
1536              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1537              (i32 (GetLo32XForm imm:$imm))),
1538            sub_32bit)>;
1539
1540def : Pat<(and GR64:$src, i64immZExt32:$imm),
1541          (SUBREG_TO_REG
1542            (i64 0),
1543            (AND32ri
1544              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1545              (i32 (GetLo32XForm imm:$imm))),
1546            sub_32bit)>;
1547} // AddedComplexity = 1
1548
1549
1550// AddedComplexity is needed due to the increased complexity on the
1551// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1552// the MOVZX patterns keeps thems together in DAGIsel tables.
1553let AddedComplexity = 1 in {
1554// r & (2^16-1) ==> movz
1555def : Pat<(and GR32:$src1, 0xffff),
1556          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1557// r & (2^8-1) ==> movz
1558def : Pat<(and GR32:$src1, 0xff),
1559          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
1560// r & (2^8-1) ==> movz
1561def : Pat<(and GR16:$src1, 0xff),
1562           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
1563             sub_16bit)>;
1564
1565// r & (2^32-1) ==> movz
1566def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1567          (SUBREG_TO_REG (i64 0),
1568                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1569                         sub_32bit)>;
1570// r & (2^16-1) ==> movz
1571def : Pat<(and GR64:$src, 0xffff),
1572          (SUBREG_TO_REG (i64 0),
1573                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1574                      sub_32bit)>;
1575// r & (2^8-1) ==> movz
1576def : Pat<(and GR64:$src, 0xff),
1577          (SUBREG_TO_REG (i64 0),
1578                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1579                         sub_32bit)>;
1580} // AddedComplexity = 1
1581
1582
1583// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
1584
1585def BTRXForm : SDNodeXForm<imm, [{
1586  // Transformation function: Find the lowest 0.
1587  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
1588}]>;
1589
1590def BTCBTSXForm : SDNodeXForm<imm, [{
1591  // Transformation function: Find the lowest 1.
1592  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
1593}]>;
1594
1595def BTRMask64 : ImmLeaf<i64, [{
1596  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
1597}]>;
1598
1599def BTCBTSMask64 : ImmLeaf<i64, [{
1600  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
1601}]>;
1602
1603// For now only do this for optsize.
1604let AddedComplexity = 1, Predicates=[OptForSize] in {
1605  def : Pat<(and GR64:$src1, BTRMask64:$mask),
1606            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
1607  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
1608            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1609  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
1610            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1611}
1612
1613
1614// sext_inreg patterns
1615def : Pat<(sext_inreg GR32:$src, i16),
1616          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1617def : Pat<(sext_inreg GR32:$src, i8),
1618          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
1619
1620def : Pat<(sext_inreg GR16:$src, i8),
1621           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
1622             sub_16bit)>;
1623
1624def : Pat<(sext_inreg GR64:$src, i32),
1625          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1626def : Pat<(sext_inreg GR64:$src, i16),
1627          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1628def : Pat<(sext_inreg GR64:$src, i8),
1629          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1630
1631// sext, sext_load, zext, zext_load
1632def: Pat<(i16 (sext GR8:$src)),
1633          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1634def: Pat<(sextloadi16i8 addr:$src),
1635          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1636def: Pat<(i16 (zext GR8:$src)),
1637          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1638def: Pat<(zextloadi16i8 addr:$src),
1639          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1640
1641// trunc patterns
1642def : Pat<(i16 (trunc GR32:$src)),
1643          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1644def : Pat<(i8 (trunc GR32:$src)),
1645          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1646                          sub_8bit)>,
1647      Requires<[Not64BitMode]>;
1648def : Pat<(i8 (trunc GR16:$src)),
1649          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1650                          sub_8bit)>,
1651      Requires<[Not64BitMode]>;
1652def : Pat<(i32 (trunc GR64:$src)),
1653          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1654def : Pat<(i16 (trunc GR64:$src)),
1655          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1656def : Pat<(i8 (trunc GR64:$src)),
1657          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1658def : Pat<(i8 (trunc GR32:$src)),
1659          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1660      Requires<[In64BitMode]>;
1661def : Pat<(i8 (trunc GR16:$src)),
1662          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1663      Requires<[In64BitMode]>;
1664
1665def immff00_ffff  : ImmLeaf<i32, [{
1666  return Imm >= 0xff00 && Imm <= 0xffff;
1667}]>;
1668
1669// h-register tricks
1670def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1671          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1672      Requires<[Not64BitMode]>;
1673def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1674          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1675      Requires<[Not64BitMode]>;
1676def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1677          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
1678      Requires<[Not64BitMode]>;
1679def : Pat<(srl GR16:$src, (i8 8)),
1680          (EXTRACT_SUBREG
1681            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1682            sub_16bit)>;
1683def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1684          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1685def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1686          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1687def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1688          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1689def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
1690          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1691
1692// h-register tricks.
1693// For now, be conservative on x86-64 and use an h-register extract only if the
1694// value is immediately zero-extended or stored, which are somewhat common
1695// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1696// from being allocated in the same instruction as the h register, as there's
1697// currently no way to describe this requirement to the register allocator.
1698
1699// h-register extract and zero-extend.
1700def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1701          (SUBREG_TO_REG
1702            (i64 0),
1703            (MOVZX32rr8_NOREX
1704              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
1705            sub_32bit)>;
1706def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1707          (SUBREG_TO_REG
1708            (i64 0),
1709            (MOVZX32rr8_NOREX
1710              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1711            sub_32bit)>;
1712def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1713          (SUBREG_TO_REG
1714            (i64 0),
1715            (MOVZX32rr8_NOREX
1716              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1717            sub_32bit)>;
1718
1719// h-register extract and store.
1720def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1721          (MOV8mr_NOREX
1722            addr:$dst,
1723            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
1724def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1725          (MOV8mr_NOREX
1726            addr:$dst,
1727            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
1728      Requires<[In64BitMode]>;
1729def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1730          (MOV8mr_NOREX
1731            addr:$dst,
1732            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
1733      Requires<[In64BitMode]>;
1734
1735// Special pattern to catch the last step of __builtin_parity handling. Our
1736// goal is to use an xor of an h-register with the corresponding l-register.
1737// The above patterns would handle this on non 64-bit targets, but for 64-bit
1738// we need to be more careful. We're using a NOREX instruction here in case
1739// register allocation fails to keep the two registers together. So we need to
1740// make sure we can't accidentally mix R8-R15 with an h-register.
1741def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
1742                       (i8 (trunc (srl_su GR32:$src, (i8 8))))),
1743          (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
1744                        (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1745
1746// (shl x, 1) ==> (add x, x)
1747// Note that if x is undef (immediate or otherwise), we could theoretically
1748// end up with the two uses of x getting different values, producing a result
1749// where the least significant bit is not 0. However, the probability of this
1750// happening is considered low enough that this is officially not a
1751// "real problem".
1752def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1753def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1754def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1755def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1756
1757def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1758  return isUnneededShiftMask(N, 3);
1759}]>;
1760
1761def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1762  return isUnneededShiftMask(N, 4);
1763}]>;
1764
1765def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1766  return isUnneededShiftMask(N, 5);
1767}]>;
1768
1769def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1770  return isUnneededShiftMask(N, 6);
1771}]>;
1772
1773
1774// Shift amount is implicitly masked.
1775multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1776  // (shift x (and y, 31)) ==> (shift x, y)
1777  def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
1778            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1779  def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
1780            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1781  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1782            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1783  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
1784            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1785  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
1786            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1787  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1788            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1789
1790  // (shift x (and y, 63)) ==> (shift x, y)
1791  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1792            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1793  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1794            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1795}
1796
1797defm : MaskedShiftAmountPats<shl, "SHL">;
1798defm : MaskedShiftAmountPats<srl, "SHR">;
1799defm : MaskedShiftAmountPats<sra, "SAR">;
1800
1801// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
1802// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
1803// because over-rotating produces the same result. This is noted in the Intel
1804// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
1805// amount could affect EFLAGS results, but that does not matter because we are
1806// not tracking flags for these nodes.
1807multiclass MaskedRotateAmountPats<SDNode frag, string name> {
1808  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
1809  def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
1810  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1811  def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
1812  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1813  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1814  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1815  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
1816  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1817  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
1818  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1819  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1820  (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1821
1822  // (rot x (and y, 63)) ==> (rot x, y)
1823  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1824  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1825  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1826  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1827}
1828
1829
1830defm : MaskedRotateAmountPats<rotl, "ROL">;
1831defm : MaskedRotateAmountPats<rotr, "ROR">;
1832
1833// Double "funnel" shift amount is implicitly masked.
1834// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
1835def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
1836          (SHLD16rrCL GR16:$src1, GR16:$src2)>;
1837def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
1838          (SHRD16rrCL GR16:$src1, GR16:$src2)>;
1839
1840// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
1841def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
1842          (SHLD32rrCL GR32:$src1, GR32:$src2)>;
1843def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
1844          (SHRD32rrCL GR32:$src1, GR32:$src2)>;
1845
1846// (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
1847def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
1848          (SHLD64rrCL GR64:$src1, GR64:$src2)>;
1849def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
1850          (SHRD64rrCL GR64:$src1, GR64:$src2)>;
1851
1852let Predicates = [HasBMI2] in {
1853  let AddedComplexity = 1 in {
1854    def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
1855              (SARX32rr GR32:$src1,
1856                        (INSERT_SUBREG
1857                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1858    def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
1859              (SARX64rr GR64:$src1,
1860                        (INSERT_SUBREG
1861                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1862
1863    def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
1864              (SHRX32rr GR32:$src1,
1865                        (INSERT_SUBREG
1866                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1867    def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
1868              (SHRX64rr GR64:$src1,
1869                        (INSERT_SUBREG
1870                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1871
1872    def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
1873              (SHLX32rr GR32:$src1,
1874                        (INSERT_SUBREG
1875                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1876    def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
1877              (SHLX64rr GR64:$src1,
1878                        (INSERT_SUBREG
1879                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1880  }
1881
1882  def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1883            (SARX32rm addr:$src1,
1884                      (INSERT_SUBREG
1885                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1886  def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1887            (SARX64rm addr:$src1,
1888                      (INSERT_SUBREG
1889                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1890
1891  def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1892            (SHRX32rm addr:$src1,
1893                      (INSERT_SUBREG
1894                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1895  def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1896            (SHRX64rm addr:$src1,
1897                      (INSERT_SUBREG
1898                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1899
1900  def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1901            (SHLX32rm addr:$src1,
1902                      (INSERT_SUBREG
1903                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1904  def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1905            (SHLX64rm addr:$src1,
1906                      (INSERT_SUBREG
1907                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1908}
1909
1910// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
1911multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
1912                            Instruction BTS, Instruction BTC,
1913                            PatFrag ShiftMask> {
1914  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
1915            (BTR RC:$src1,
1916                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1917  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
1918            (BTS RC:$src1,
1919                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1920  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
1921            (BTC RC:$src1,
1922                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1923
1924  // Similar to above, but removing unneeded masking of the shift amount.
1925  def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
1926            (BTR RC:$src1,
1927                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1928  def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1929            (BTS RC:$src1,
1930                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1931  def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1932            (BTC RC:$src1,
1933                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1934}
1935
1936defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
1937defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
1938defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;
1939
1940//===----------------------------------------------------------------------===//
1941// EFLAGS-defining Patterns
1942//===----------------------------------------------------------------------===//
1943
1944// add reg, reg
1945def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1946def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1947def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1948def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
1949
1950// add reg, mem
1951def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1952          (ADD8rm GR8:$src1, addr:$src2)>;
1953def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1954          (ADD16rm GR16:$src1, addr:$src2)>;
1955def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1956          (ADD32rm GR32:$src1, addr:$src2)>;
1957def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1958          (ADD64rm GR64:$src1, addr:$src2)>;
1959
1960// add reg, imm
1961def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1962def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1963def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1964def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1965          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1966def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1967          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1968def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1969          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1970def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1971          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1972
1973// sub reg, reg
1974def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1975def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1976def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1977def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
1978
1979// sub reg, mem
1980def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1981          (SUB8rm GR8:$src1, addr:$src2)>;
1982def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1983          (SUB16rm GR16:$src1, addr:$src2)>;
1984def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1985          (SUB32rm GR32:$src1, addr:$src2)>;
1986def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1987          (SUB64rm GR64:$src1, addr:$src2)>;
1988
1989// sub reg, imm
1990def : Pat<(sub GR8:$src1, imm:$src2),
1991          (SUB8ri GR8:$src1, imm:$src2)>;
1992def : Pat<(sub GR16:$src1, imm:$src2),
1993          (SUB16ri GR16:$src1, imm:$src2)>;
1994def : Pat<(sub GR32:$src1, imm:$src2),
1995          (SUB32ri GR32:$src1, imm:$src2)>;
1996def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1997          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1998def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1999          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
2000def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
2001          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
2002def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
2003          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
2004
2005// sub 0, reg
2006def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
2007def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
2008def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
2009def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
2010
2011// mul reg, reg
2012def : Pat<(mul GR16:$src1, GR16:$src2),
2013          (IMUL16rr GR16:$src1, GR16:$src2)>;
2014def : Pat<(mul GR32:$src1, GR32:$src2),
2015          (IMUL32rr GR32:$src1, GR32:$src2)>;
2016def : Pat<(mul GR64:$src1, GR64:$src2),
2017          (IMUL64rr GR64:$src1, GR64:$src2)>;
2018
2019// mul reg, mem
2020def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
2021          (IMUL16rm GR16:$src1, addr:$src2)>;
2022def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
2023          (IMUL32rm GR32:$src1, addr:$src2)>;
2024def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
2025          (IMUL64rm GR64:$src1, addr:$src2)>;
2026
2027// mul reg, imm
2028def : Pat<(mul GR16:$src1, imm:$src2),
2029          (IMUL16rri GR16:$src1, imm:$src2)>;
2030def : Pat<(mul GR32:$src1, imm:$src2),
2031          (IMUL32rri GR32:$src1, imm:$src2)>;
2032def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
2033          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
2034def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
2035          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
2036def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
2037          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
2038def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
2039          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
2040
2041// reg = mul mem, imm
2042def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
2043          (IMUL16rmi addr:$src1, imm:$src2)>;
2044def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
2045          (IMUL32rmi addr:$src1, imm:$src2)>;
2046def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
2047          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
2048def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
2049          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
2050def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
2051          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
2052def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
2053          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
2054
2055// Increment/Decrement reg.
2056// Do not make INC/DEC if it is slow
2057let Predicates = [UseIncDec] in {
2058  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
2059  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
2060  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
2061  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
2062  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
2063  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
2064  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
2065  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
2066
2067  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
2068  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
2069  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
2070  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
2071  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
2072  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
2073  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
2074  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
2075}
2076
2077// or reg/reg.
2078def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
2079def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
2080def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
2081def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
2082
2083// or reg/mem
2084def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
2085          (OR8rm GR8:$src1, addr:$src2)>;
2086def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
2087          (OR16rm GR16:$src1, addr:$src2)>;
2088def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
2089          (OR32rm GR32:$src1, addr:$src2)>;
2090def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
2091          (OR64rm GR64:$src1, addr:$src2)>;
2092
2093// or reg/imm
2094def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
2095def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
2096def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
2097def : Pat<(or GR16:$src1, i16immSExt8:$src2),
2098          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2099def : Pat<(or GR32:$src1, i32immSExt8:$src2),
2100          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2101def : Pat<(or GR64:$src1, i64immSExt8:$src2),
2102          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2103def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2104          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2105
2106// xor reg/reg
2107def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
2108def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
2109def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
2110def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
2111
2112// xor reg/mem
2113def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
2114          (XOR8rm GR8:$src1, addr:$src2)>;
2115def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
2116          (XOR16rm GR16:$src1, addr:$src2)>;
2117def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
2118          (XOR32rm GR32:$src1, addr:$src2)>;
2119def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2120          (XOR64rm GR64:$src1, addr:$src2)>;
2121
2122// xor reg/imm
2123def : Pat<(xor GR8:$src1, imm:$src2),
2124          (XOR8ri GR8:$src1, imm:$src2)>;
2125def : Pat<(xor GR16:$src1, imm:$src2),
2126          (XOR16ri GR16:$src1, imm:$src2)>;
2127def : Pat<(xor GR32:$src1, imm:$src2),
2128          (XOR32ri GR32:$src1, imm:$src2)>;
2129def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
2130          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2131def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
2132          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2133def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
2134          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2135def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2136          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2137
2138// and reg/reg
2139def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
2140def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
2141def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
2142def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
2143
2144// and reg/mem
2145def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
2146          (AND8rm GR8:$src1, addr:$src2)>;
2147def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
2148          (AND16rm GR16:$src1, addr:$src2)>;
2149def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
2150          (AND32rm GR32:$src1, addr:$src2)>;
2151def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2152          (AND64rm GR64:$src1, addr:$src2)>;
2153
2154// and reg/imm
2155def : Pat<(and GR8:$src1, imm:$src2),
2156          (AND8ri GR8:$src1, imm:$src2)>;
2157def : Pat<(and GR16:$src1, imm:$src2),
2158          (AND16ri GR16:$src1, imm:$src2)>;
2159def : Pat<(and GR32:$src1, imm:$src2),
2160          (AND32ri GR32:$src1, imm:$src2)>;
2161def : Pat<(and GR16:$src1, i16immSExt8:$src2),
2162          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
2163def : Pat<(and GR32:$src1, i32immSExt8:$src2),
2164          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
2165def : Pat<(and GR64:$src1, i64immSExt8:$src2),
2166          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
2167def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2168          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
2169
2170// Bit scan instruction patterns to match explicit zero-undef behavior.
2171def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
2172def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
2173def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
2174def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
2175def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
2176def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
2177
2178// When HasMOVBE is enabled it is possible to get a non-legalized
2179// register-register 16 bit bswap. This maps it to a ROL instruction.
2180let Predicates = [HasMOVBE] in {
2181 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
2182}
2183