xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrCompiler.td (revision 6966ac055c3b7a39266fb982493330df7a097997)
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the various pseudo instructions used by the compiler,
10// as well as Pat patterns used during instruction selection.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Pattern Matching Support
16
17def GetLo32XForm : SDNodeXForm<imm, [{
18  // Transformation function: get the low 32 bits.
19  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
20}]>;
21
22
23//===----------------------------------------------------------------------===//
24// Random Pseudo Instructions.
25
26// PIC base construction.  This expands to code that looks like this:
27//     call  $next_inst
28//     popl %destreg"
29let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
30    SchedRW = [WriteJump] in
31  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32                      "", []>;
33
34// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
35// a stack adjustment and the codegen must know that they may modify the stack
36// pointer before prolog-epilog rewriting occurs.
37// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
38// sub / add which can clobber EFLAGS.
39let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
40def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
41                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
42                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
43def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
44                           "#ADJCALLSTACKUP",
45                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
46                           Requires<[NotLP64]>;
47}
48def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
49       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
50
51
52// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
53// a stack adjustment and the codegen must know that they may modify the stack
54// pointer before prolog-epilog rewriting occurs.
55// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
56// sub / add which can clobber EFLAGS.
57let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
58def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
59                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
60                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
61def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62                           "#ADJCALLSTACKUP",
63                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64                           Requires<[IsLP64]>;
65}
66def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
67        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
68
69let SchedRW = [WriteSystem] in {
70
71// x86-64 va_start lowering magic.
72let usesCustomInserter = 1, Defs = [EFLAGS] in {
73def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
74                              (outs),
75                              (ins GR8:$al,
76                                   i64imm:$regsavefi, i64imm:$offset,
77                                   variable_ops),
78                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
79                              [(X86vastart_save_xmm_regs GR8:$al,
80                                                         imm:$regsavefi,
81                                                         imm:$offset),
82                               (implicit EFLAGS)]>;
83
84// The VAARG_64 pseudo-instruction takes the address of the va_list,
85// and places the address of the next argument into a register.
86let Defs = [EFLAGS] in
87def VAARG_64 : I<0, Pseudo,
88                 (outs GR64:$dst),
89                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
90                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
91                 [(set GR64:$dst,
92                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
93                  (implicit EFLAGS)]>;
94
95
96// When using segmented stacks these are lowered into instructions which first
97// check if the current stacklet has enough free memory. If it does, memory is
98// allocated by bumping the stack pointer. Otherwise memory is allocated from
99// the heap.
100
101let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
102def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
103                      "# variable sized alloca for segmented stacks",
104                      [(set GR32:$dst,
105                         (X86SegAlloca GR32:$size))]>,
106                    Requires<[NotLP64]>;
107
108let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
109def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
110                      "# variable sized alloca for segmented stacks",
111                      [(set GR64:$dst,
112                         (X86SegAlloca GR64:$size))]>,
113                    Requires<[In64BitMode]>;
114}
115
116// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
117// targets.  These calls are needed to probe the stack when allocating more than
118// 4k bytes in one go. Touching the stack at 4K increments is necessary to
119// ensure that the guard pages used by the OS virtual memory manager are
120// allocated in correct sequence.
121// The main point of having separate instruction are extra unmodelled effects
122// (compared to ordinary calls) like stack pointer change.
123
124let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
125def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
126                     "# dynamic stack allocation",
127                     [(X86WinAlloca GR32:$size)]>,
128                     Requires<[NotLP64]>;
129
130let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
131def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
132                     "# dynamic stack allocation",
133                     [(X86WinAlloca GR64:$size)]>,
134                     Requires<[In64BitMode]>;
135} // SchedRW
136
137// These instructions XOR the frame pointer into a GPR. They are used in some
138// stack protection schemes. These are post-RA pseudos because we only know the
139// frame register after register allocation.
140let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
141  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
142                  "xorl\t$$FP, $src", []>,
143                  Requires<[NotLP64]>, Sched<[WriteALU]>;
144  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
145                  "xorq\t$$FP $src", []>,
146                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
147}
148
149//===----------------------------------------------------------------------===//
150// EH Pseudo Instructions
151//
152let SchedRW = [WriteSystem] in {
153let isTerminator = 1, isReturn = 1, isBarrier = 1,
154    hasCtrlDep = 1, isCodeGenOnly = 1 in {
155def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
156                    "ret\t#eh_return, addr: $addr",
157                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
158
159}
160
161let isTerminator = 1, isReturn = 1, isBarrier = 1,
162    hasCtrlDep = 1, isCodeGenOnly = 1 in {
163def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
164                     "ret\t#eh_return, addr: $addr",
165                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
166
167}
168
169let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
170    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
171  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
172
173  // CATCHRET needs a custom inserter for SEH.
174  let usesCustomInserter = 1 in
175    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
176                     "# CATCHRET",
177                     [(catchret bb:$dst, bb:$from)]>;
178}
179
180let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
181    usesCustomInserter = 1 in
182def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
183
184// This instruction is responsible for re-establishing stack pointers after an
185// exception has been caught and we are rejoining normal control flow in the
186// parent function or funclet. It generally sets ESP and EBP, and optionally
187// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
188// elsewhere.
189let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
190def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
191
192let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
193    usesCustomInserter = 1 in {
194  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
195                            "#EH_SJLJ_SETJMP32",
196                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
197                          Requires<[Not64BitMode]>;
198  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
199                            "#EH_SJLJ_SETJMP64",
200                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
201                          Requires<[In64BitMode]>;
202  let isTerminator = 1 in {
203  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
204                            "#EH_SJLJ_LONGJMP32",
205                            [(X86eh_sjlj_longjmp addr:$buf)]>,
206                          Requires<[Not64BitMode]>;
207  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
208                            "#EH_SJLJ_LONGJMP64",
209                            [(X86eh_sjlj_longjmp addr:$buf)]>,
210                          Requires<[In64BitMode]>;
211  }
212}
213
214let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
215  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
216                        "#EH_SjLj_Setup\t$dst", []>;
217}
218} // SchedRW
219
220//===----------------------------------------------------------------------===//
221// Pseudo instructions used by unwind info.
222//
223let isPseudo = 1, SchedRW = [WriteSystem] in {
224  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
225                            "#SEH_PushReg $reg", []>;
226  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
227                            "#SEH_SaveReg $reg, $dst", []>;
228  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
229                            "#SEH_SaveXMM $reg, $dst", []>;
230  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
231                            "#SEH_StackAlloc $size", []>;
232  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
233                            "#SEH_StackAlign $align", []>;
234  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
235                            "#SEH_SetFrame $reg, $offset", []>;
236  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
237                            "#SEH_PushFrame $mode", []>;
238  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
239                            "#SEH_EndPrologue", []>;
240  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
241                            "#SEH_Epilogue", []>;
242}
243
244//===----------------------------------------------------------------------===//
245// Pseudo instructions used by segmented stacks.
246//
247
248// This is lowered into a RET instruction by MCInstLower.  We need
249// this so that we don't have to have a MachineBasicBlock which ends
250// with a RET and also has successors.
251let isPseudo = 1, SchedRW = [WriteJumpLd] in {
252def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
253
254// This instruction is lowered to a RET followed by a MOV.  The two
255// instructions are not generated on a higher level since then the
256// verifier sees a MachineBasicBlock ending with a non-terminator.
257def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
258}
259
260//===----------------------------------------------------------------------===//
261// Alias Instructions
262//===----------------------------------------------------------------------===//
263
264// Alias instruction mapping movr0 to xor.
265// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
266let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
267    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
268def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
269                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
270
271// Other widths can also make use of the 32-bit xor, which may have a smaller
272// encoding and avoid partial register updates.
273let AddedComplexity = 10 in {
274def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
275def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
276def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
277}
278
279let Predicates = [OptForSize, Not64BitMode],
280    AddedComplexity = 10 in {
281  let SchedRW = [WriteALU] in {
282  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
283  // which only require 3 bytes compared to MOV32ri which requires 5.
284  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
285    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
286                        [(set GR32:$dst, 1)]>;
287    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
288                        [(set GR32:$dst, -1)]>;
289  }
290  } // SchedRW
291
292  // MOV16ri is 4 bytes, so the instructions above are smaller.
293  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
294  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
295}
296
297let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
298    SchedRW = [WriteALU] in {
299// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
300def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
301                       [(set GR32:$dst, i32immSExt8:$src)]>,
302                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
303def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
304                       [(set GR64:$dst, i64immSExt8:$src)]>,
305                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
306}
307
308// Materialize i64 constant where top 32-bits are zero. This could theoretically
309// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
310// that would make it more difficult to rematerialize.
311let isReMaterializable = 1, isAsCheapAsAMove = 1,
312    isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in
313def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "", []>;
314
315// This 64-bit pseudo-move can be used for both a 64-bit constant that is
316// actually the zero-extension of a 32-bit constant and for labels in the
317// x86-64 small code model.
318def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
319
320def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;
321
322// Use sbb to materialize carry bit.
323let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
324// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
325// However, Pat<> can't replicate the destination reg into the inputs of the
326// result.
327def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
328                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
329def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
330                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
331def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
332                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
333def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
334                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
335} // isCodeGenOnly
336
337
338def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
339          (SETB_C16r)>;
340def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
341          (SETB_C32r)>;
342def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
343          (SETB_C64r)>;
344
345def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
346          (SETB_C16r)>;
347def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
348          (SETB_C32r)>;
349def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
350          (SETB_C64r)>;
351
352// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
353// will be eliminated and that the sbb can be extended up to a wider type.  When
354// this happens, it is great.  However, if we are left with an 8-bit sbb and an
355// and, we might as well just match it as a setb.
356def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
357          (SETCCr (i8 2))>;
358
359// Patterns to give priority when both inputs are zero so that we don't use
360// an immediate for the RHS.
361// TODO: Should we use a 32-bit sbb for 8/16 to push the extract_subreg out?
362def : Pat<(X86sbb_flag (i8 0), (i8 0), EFLAGS),
363          (SBB8rr (EXTRACT_SUBREG (MOV32r0), sub_8bit),
364                  (EXTRACT_SUBREG (MOV32r0), sub_8bit))>;
365def : Pat<(X86sbb_flag (i16 0), (i16 0), EFLAGS),
366          (SBB16rr (EXTRACT_SUBREG (MOV32r0), sub_16bit),
367                   (EXTRACT_SUBREG (MOV32r0), sub_16bit))>;
368def : Pat<(X86sbb_flag (i32 0), (i32 0), EFLAGS),
369          (SBB32rr (MOV32r0), (MOV32r0))>;
370def : Pat<(X86sbb_flag (i64 0), (i64 0), EFLAGS),
371          (SBB64rr (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit),
372                   (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit))>;
373
374//===----------------------------------------------------------------------===//
375// String Pseudo Instructions
376//
377let SchedRW = [WriteMicrocoded] in {
378let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
379def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
380                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
381                    [(X86rep_movs i8)]>, REP, AdSize32,
382                   Requires<[NotLP64]>;
383def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
384                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
385                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
386                   Requires<[NotLP64]>;
387def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
388                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
389                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
390                   Requires<[NotLP64]>;
391def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
392                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
393                    [(X86rep_movs i64)]>, REP, AdSize32,
394                   Requires<[NotLP64, In64BitMode]>;
395}
396
397let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
398def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
399                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
400                    [(X86rep_movs i8)]>, REP, AdSize64,
401                   Requires<[IsLP64]>;
402def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
403                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
404                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
405                   Requires<[IsLP64]>;
406def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
407                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
408                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
409                   Requires<[IsLP64]>;
410def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
411                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
412                    [(X86rep_movs i64)]>, REP, AdSize64,
413                   Requires<[IsLP64]>;
414}
415
416// FIXME: Should use "(X86rep_stos AL)" as the pattern.
417let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
418  let Uses = [AL,ECX,EDI] in
419  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
420                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
421                      [(X86rep_stos i8)]>, REP, AdSize32,
422                     Requires<[NotLP64]>;
423  let Uses = [AX,ECX,EDI] in
424  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
425                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
426                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
427                     Requires<[NotLP64]>;
428  let Uses = [EAX,ECX,EDI] in
429  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
430                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
431                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
432                     Requires<[NotLP64]>;
433  let Uses = [RAX,RCX,RDI] in
434  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
435                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
436                        [(X86rep_stos i64)]>, REP, AdSize32,
437                        Requires<[NotLP64, In64BitMode]>;
438}
439
440let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
441  let Uses = [AL,RCX,RDI] in
442  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
443                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
444                       [(X86rep_stos i8)]>, REP, AdSize64,
445                       Requires<[IsLP64]>;
446  let Uses = [AX,RCX,RDI] in
447  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
448                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
449                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
450                       Requires<[IsLP64]>;
451  let Uses = [RAX,RCX,RDI] in
452  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
453                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
454                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
455                       Requires<[IsLP64]>;
456
457  let Uses = [RAX,RCX,RDI] in
458  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
459                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
460                        [(X86rep_stos i64)]>, REP, AdSize64,
461                        Requires<[IsLP64]>;
462}
463} // SchedRW
464
465//===----------------------------------------------------------------------===//
466// Thread Local Storage Instructions
467//
468let SchedRW = [WriteSystem] in {
469
470// ELF TLS Support
471// All calls clobber the non-callee saved registers. ESP is marked as
472// a use to prevent stack-pointer assignments that appear immediately
473// before calls from potentially appearing dead.
474let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
475            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
476            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
477            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
478            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
479    usesCustomInserter = 1, Uses = [ESP, SSP] in {
480def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
481                  "# TLS_addr32",
482                  [(X86tlsaddr tls32addr:$sym)]>,
483                  Requires<[Not64BitMode]>;
484def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
485                  "# TLS_base_addr32",
486                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
487                  Requires<[Not64BitMode]>;
488}
489
490// All calls clobber the non-callee saved registers. RSP is marked as
491// a use to prevent stack-pointer assignments that appear immediately
492// before calls from potentially appearing dead.
493let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
494            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
495            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
496            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
497            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
498            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
499    usesCustomInserter = 1, Uses = [RSP, SSP] in {
500def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
501                   "# TLS_addr64",
502                  [(X86tlsaddr tls64addr:$sym)]>,
503                  Requires<[In64BitMode]>;
504def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
505                   "# TLS_base_addr64",
506                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
507                  Requires<[In64BitMode]>;
508}
509
510// Darwin TLS Support
511// For i386, the address of the thunk is passed on the stack, on return the
512// address of the variable is in %eax.  %ecx is trashed during the function
513// call.  All other registers are preserved.
514let Defs = [EAX, ECX, EFLAGS, DF],
515    Uses = [ESP, SSP],
516    usesCustomInserter = 1 in
517def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
518                "# TLSCall_32",
519                [(X86TLSCall addr:$sym)]>,
520                Requires<[Not64BitMode]>;
521
522// For x86_64, the address of the thunk is passed in %rdi, but the
523// pseudo directly use the symbol, so do not add an implicit use of
524// %rdi. The lowering will do the right thing with RDI.
525// On return the address of the variable is in %rax.  All other
526// registers are preserved.
527let Defs = [RAX, EFLAGS, DF],
528    Uses = [RSP, SSP],
529    usesCustomInserter = 1 in
530def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
531                  "# TLSCall_64",
532                  [(X86TLSCall addr:$sym)]>,
533                  Requires<[In64BitMode]>;
534} // SchedRW
535
536//===----------------------------------------------------------------------===//
537// Conditional Move Pseudo Instructions
538
539// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
540// instruction selection into a branch sequence.
541multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
542  def CMOV#NAME  : I<0, Pseudo,
543                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
544                    "#CMOV_"#NAME#" PSEUDO!",
545                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
546                                                EFLAGS)))]>;
547}
548
549let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
550  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
551  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
552  // however that requires promoting the operands, and can induce additional
553  // i8 register pressure.
554  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
555
556  let Predicates = [NoCMov] in {
557    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
558    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
559  } // Predicates = [NoCMov]
560
561  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
562  // SSE1/SSE2.
563  let Predicates = [FPStackf32] in
564    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
565
566  let Predicates = [FPStackf64] in
567    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
568
569  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
570
571  let Predicates = [NoAVX512] in {
572    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
573    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
574  }
575  let Predicates = [HasAVX512] in {
576    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
577    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
578  }
579  let Predicates = [NoVLX] in {
580    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
581    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
582  }
583  let Predicates = [HasVLX] in {
584    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
585    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
586  }
587  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
588  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
589  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
590  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
591  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
592  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
593  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
594} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
595
596def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
597          (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
598
599let Predicates = [NoVLX] in {
600  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
601            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
602  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
603            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
604  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
605            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
606  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
607            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
608  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
609            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
610
611  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
612            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
613  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
614            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
615  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
616            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
617  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
618            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
619  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
620            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
621}
622let Predicates = [HasVLX] in {
623  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
624            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
625  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
626            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
627  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
628            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
629  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
630            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
631  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
632            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
633
634  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
635            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
636  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
637            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
638  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
639            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
640  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
641            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
642  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
643            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
644}
645
646def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
647          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
648def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
649          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
650def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
651          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
652def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
653          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
654def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
655          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
656
657//===----------------------------------------------------------------------===//
658// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
659//===----------------------------------------------------------------------===//
660
661// FIXME: Use normal instructions and add lock prefix dynamically.
662
663// Memory barriers
664
665let isCodeGenOnly = 1, Defs = [EFLAGS] in
666def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
667                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
668                         Requires<[Not64BitMode]>, OpSize32, LOCK,
669                         Sched<[WriteALURMW]>;
670
671let hasSideEffects = 1 in
672def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
673                     "#MEMBARRIER",
674                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
675
676// RegOpc corresponds to the mr version of the instruction
677// ImmOpc corresponds to the mi version of the instruction
678// ImmOpc8 corresponds to the mi8 version of the instruction
679// ImmMod corresponds to the instruction format of the mi and mi8 versions
680multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
681                           Format ImmMod, SDNode Op, string mnemonic> {
682let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
683    SchedRW = [WriteALURMW] in {
684
685def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
686                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
687                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
688                  !strconcat(mnemonic, "{b}\t",
689                             "{$src2, $dst|$dst, $src2}"),
690                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
691
692def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
693                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
694                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
695                   !strconcat(mnemonic, "{w}\t",
696                              "{$src2, $dst|$dst, $src2}"),
697                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
698                   OpSize16, LOCK;
699
700def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
701                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
702                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
703                   !strconcat(mnemonic, "{l}\t",
704                              "{$src2, $dst|$dst, $src2}"),
705                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
706                   OpSize32, LOCK;
707
708def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
709                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
710                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
711                    !strconcat(mnemonic, "{q}\t",
712                               "{$src2, $dst|$dst, $src2}"),
713                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
714
715// NOTE: These are order specific, we want the mi8 forms to be listed
716// first so that they are slightly preferred to the mi forms.
717def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
718                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
719                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
720                      !strconcat(mnemonic, "{w}\t",
721                                 "{$src2, $dst|$dst, $src2}"),
722                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
723                      OpSize16, LOCK;
724
725def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
726                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
727                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
728                      !strconcat(mnemonic, "{l}\t",
729                                 "{$src2, $dst|$dst, $src2}"),
730                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
731                      OpSize32, LOCK;
732
733def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
734                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
735                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
736                       !strconcat(mnemonic, "{q}\t",
737                                  "{$src2, $dst|$dst, $src2}"),
738                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
739                       LOCK;
740
741def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
742                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
743                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
744                    !strconcat(mnemonic, "{b}\t",
745                               "{$src2, $dst|$dst, $src2}"),
746                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
747
748def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
749                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
750                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
751                      !strconcat(mnemonic, "{w}\t",
752                                 "{$src2, $dst|$dst, $src2}"),
753                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
754                      OpSize16, LOCK;
755
756def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
757                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
758                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
759                      !strconcat(mnemonic, "{l}\t",
760                                 "{$src2, $dst|$dst, $src2}"),
761                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
762                      OpSize32, LOCK;
763
764def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
765                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
766                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
767                          !strconcat(mnemonic, "{q}\t",
768                                     "{$src2, $dst|$dst, $src2}"),
769                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
770                          LOCK;
771}
772
773}
774
775defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
776defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
777defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
778defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
779defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
780
781def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
782                               (X86lock_add node:$lhs, node:$rhs), [{
783  return hasNoCarryFlagUses(SDValue(N, 0));
784}]>;
785
786def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
787                               (X86lock_sub node:$lhs, node:$rhs), [{
788  return hasNoCarryFlagUses(SDValue(N, 0));
789}]>;
790
791let Predicates = [UseIncDec] in {
792  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
793      SchedRW = [WriteALURMW]  in {
794    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
795                        "inc{b}\t$dst",
796                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
797                        LOCK;
798    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
799                        "inc{w}\t$dst",
800                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
801                        OpSize16, LOCK;
802    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
803                        "inc{l}\t$dst",
804                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
805                        OpSize32, LOCK;
806    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
807                         "inc{q}\t$dst",
808                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
809                         LOCK;
810
811    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
812                        "dec{b}\t$dst",
813                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
814                        LOCK;
815    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
816                        "dec{w}\t$dst",
817                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
818                        OpSize16, LOCK;
819    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
820                        "dec{l}\t$dst",
821                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
822                        OpSize32, LOCK;
823    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
824                         "dec{q}\t$dst",
825                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
826                         LOCK;
827  }
828
829  // Additional patterns for -1 constant.
830  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
831  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
832  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
833  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
834  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
835  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
836  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
837  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
838}
839
840// Atomic compare and swap.
841multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
842                         SDPatternOperator frag, X86MemOperand x86memop> {
843let isCodeGenOnly = 1, usesCustomInserter = 1 in {
844  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
845               !strconcat(mnemonic, "\t$ptr"),
846               [(frag addr:$ptr)]>, TB, LOCK;
847}
848}
849
850multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
851                          string mnemonic, SDPatternOperator frag> {
852let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
853  let Defs = [AL, EFLAGS], Uses = [AL] in
854  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
855                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
856                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
857  let Defs = [AX, EFLAGS], Uses = [AX] in
858  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
859                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
860                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
861  let Defs = [EAX, EFLAGS], Uses = [EAX] in
862  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
863                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
864                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
865  let Defs = [RAX, EFLAGS], Uses = [RAX] in
866  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
867                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
868                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
869}
870}
871
872let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
873    Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW] in {
874defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>;
875}
876
877// This pseudo must be used when the frame uses RBX as
878// the base pointer. Indeed, in such situation RBX is a reserved
879// register and the register allocator will ignore any use/def of
880// it. In other words, the register will not fix the clobbering of
881// RBX that will happen when setting the arguments for the instrucion.
882//
883// Unlike the actual related instuction, we mark that this one
884// defines EBX (instead of using EBX).
885// The rationale is that we will define RBX during the expansion of
886// the pseudo. The argument feeding EBX is ebx_input.
887//
888// The additional argument, $ebx_save, is a temporary register used to
889// save the value of RBX across the actual instruction.
890//
891// To make sure the register assigned to $ebx_save does not interfere with
892// the definition of the actual instruction, we use a definition $dst which
893// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
894// the instruction and we are sure we will have a valid register to restore
895// the value of RBX.
896let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
897    Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW],
898    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$ebx_save = $dst",
899    usesCustomInserter = 1 in {
900def LCMPXCHG8B_SAVE_EBX :
901    I<0, Pseudo, (outs GR32:$dst),
902      (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
903      !strconcat("cmpxchg8b", "\t$ptr"),
904      [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
905                                        GR32:$ebx_save))]>;
906}
907
908
909let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
910    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW] in {
911defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
912                                 X86cas16, i128mem>, REX_W;
913}
914
915// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
916let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
917    Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
918    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
919    usesCustomInserter = 1 in {
920def LCMPXCHG16B_SAVE_RBX :
921    I<0, Pseudo, (outs GR64:$dst),
922      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
923      !strconcat("cmpxchg16b", "\t$ptr"),
924      [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
925                                                    GR64:$rbx_save))]>;
926}
927
928defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
929
930// Atomic exchange and add
931multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
932                             string frag> {
933  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
934      SchedRW = [WriteALURMW] in {
935    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
936                    (ins GR8:$val, i8mem:$ptr),
937                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
938                    [(set GR8:$dst,
939                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
940    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
941                    (ins GR16:$val, i16mem:$ptr),
942                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
943                    [(set
944                       GR16:$dst,
945                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
946                    OpSize16;
947    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
948                    (ins GR32:$val, i32mem:$ptr),
949                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
950                    [(set
951                       GR32:$dst,
952                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
953                    OpSize32;
954    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
955                     (ins GR64:$val, i64mem:$ptr),
956                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
957                     [(set
958                        GR64:$dst,
959                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
960  }
961}
962
963defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
964
965/* The following multiclass tries to make sure that in code like
966 *    x.store (immediate op x.load(acquire), release)
967 * and
968 *    x.store (register op x.load(acquire), release)
969 * an operation directly on memory is generated instead of wasting a register.
970 * It is not automatic as atomic_store/load are only lowered to MOV instructions
971 * extremely late to prevent them from being accidentally reordered in the backend
972 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
973 */
974multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
975  def : Pat<(atomic_store_8 addr:$dst,
976             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
977            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
978  def : Pat<(atomic_store_16 addr:$dst,
979             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
980            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
981  def : Pat<(atomic_store_32 addr:$dst,
982             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
983            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
984  def : Pat<(atomic_store_64 addr:$dst,
985             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
986            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;
987
988  def : Pat<(atomic_store_8 addr:$dst,
989             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
990            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
991  def : Pat<(atomic_store_16 addr:$dst,
992             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
993            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
994  def : Pat<(atomic_store_32 addr:$dst,
995             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
996            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
997  def : Pat<(atomic_store_64 addr:$dst,
998             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
999            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
1000}
1001defm : RELEASE_BINOP_MI<"ADD", add>;
1002defm : RELEASE_BINOP_MI<"AND", and>;
1003defm : RELEASE_BINOP_MI<"OR",  or>;
1004defm : RELEASE_BINOP_MI<"XOR", xor>;
1005defm : RELEASE_BINOP_MI<"SUB", sub>;
1006
1007// Atomic load + floating point patterns.
1008// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
1009multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
1010  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1011            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
1012            Requires<[UseSSE1]>;
1013  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1014            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
1015            Requires<[UseAVX]>;
1016  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1017            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
1018            Requires<[HasAVX512]>;
1019
1020  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1021            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
1022            Requires<[UseSSE1]>;
1023  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1024            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
1025            Requires<[UseAVX]>;
1026  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1027            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
1028            Requires<[HasAVX512]>;
1029}
1030defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
1031// FIXME: Add fsub, fmul, fdiv, ...
1032
1033multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
1034                        dag dag64> {
1035  def : Pat<(atomic_store_8 addr:$dst, dag8),
1036            (!cast<Instruction>(Name#8m) addr:$dst)>;
1037  def : Pat<(atomic_store_16 addr:$dst, dag16),
1038            (!cast<Instruction>(Name#16m) addr:$dst)>;
1039  def : Pat<(atomic_store_32 addr:$dst, dag32),
1040            (!cast<Instruction>(Name#32m) addr:$dst)>;
1041  def : Pat<(atomic_store_64 addr:$dst, dag64),
1042            (!cast<Instruction>(Name#64m) addr:$dst)>;
1043}
1044
1045let Predicates = [UseIncDec] in {
1046  defm : RELEASE_UNOP<"INC",
1047      (add (atomic_load_8  addr:$dst), (i8 1)),
1048      (add (atomic_load_16 addr:$dst), (i16 1)),
1049      (add (atomic_load_32 addr:$dst), (i32 1)),
1050      (add (atomic_load_64 addr:$dst), (i64 1))>;
1051  defm : RELEASE_UNOP<"DEC",
1052      (add (atomic_load_8  addr:$dst), (i8 -1)),
1053      (add (atomic_load_16 addr:$dst), (i16 -1)),
1054      (add (atomic_load_32 addr:$dst), (i32 -1)),
1055      (add (atomic_load_64 addr:$dst), (i64 -1))>;
1056}
1057
1058defm : RELEASE_UNOP<"NEG",
1059    (ineg (i8 (atomic_load_8  addr:$dst))),
1060    (ineg (i16 (atomic_load_16 addr:$dst))),
1061    (ineg (i32 (atomic_load_32 addr:$dst))),
1062    (ineg (i64 (atomic_load_64 addr:$dst)))>;
1063defm : RELEASE_UNOP<"NOT",
1064    (not (i8 (atomic_load_8  addr:$dst))),
1065    (not (i16 (atomic_load_16 addr:$dst))),
1066    (not (i32 (atomic_load_32 addr:$dst))),
1067    (not (i64 (atomic_load_64 addr:$dst)))>;
1068
1069def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
1070          (MOV8mi addr:$dst, imm:$src)>;
1071def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
1072          (MOV16mi addr:$dst, imm:$src)>;
1073def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
1074          (MOV32mi addr:$dst, imm:$src)>;
1075def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
1076          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;
1077
1078def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
1079          (MOV8mr addr:$dst, GR8:$src)>;
1080def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
1081          (MOV16mr addr:$dst, GR16:$src)>;
1082def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
1083          (MOV32mr addr:$dst, GR32:$src)>;
1084def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
1085          (MOV64mr addr:$dst, GR64:$src)>;
1086
1087def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
1088def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
1089def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
1090def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;
1091
1092// Floating point loads/stores.
1093def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1094          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
1095def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1096          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
1097def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
1098          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;
1099
1100def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1101          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
1102def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1103          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
1104def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
1105          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;
1106
1107def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1108          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
1109def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1110          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
1111def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1112          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1113
1114def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1115          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
1116def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1117          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
1118def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1119          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1120
1121//===----------------------------------------------------------------------===//
1122// DAG Pattern Matching Rules
1123//===----------------------------------------------------------------------===//
1124
1125// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1126// binary size compared to a regular MOV, but it introduces an unnecessary
1127// load, so is not suitable for regular or optsize functions.
1128let Predicates = [OptForMinSize] in {
1129def : Pat<(nonvolatile_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1130def : Pat<(nonvolatile_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1131def : Pat<(nonvolatile_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1132def : Pat<(nonvolatile_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1133def : Pat<(nonvolatile_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1134def : Pat<(nonvolatile_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1135}
1136
1137// In kernel code model, we can get the address of a label
1138// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1139// the MOV64ri32 should accept these.
1140def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1141          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1142def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1143          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1144def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1145          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1146def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1147          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1148def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1149          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1150def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1151          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1152
1153// If we have small model and -static mode, it is safe to store global addresses
1154// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1155// for MOV64mi32 should handle this sort of thing.
1156def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1157          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1158          Requires<[NearData, IsNotPIC]>;
1159def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1160          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1161          Requires<[NearData, IsNotPIC]>;
1162def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1163          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1164          Requires<[NearData, IsNotPIC]>;
1165def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1166          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1167          Requires<[NearData, IsNotPIC]>;
1168def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1169          (MOV64mi32 addr:$dst, mcsym:$src)>,
1170          Requires<[NearData, IsNotPIC]>;
1171def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1172          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1173          Requires<[NearData, IsNotPIC]>;
1174
1175def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1176def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1177
1178// Calls
1179
1180// tls has some funny stuff here...
1181// This corresponds to movabs $foo@tpoff, %rax
1182def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1183          (MOV64ri32 tglobaltlsaddr :$dst)>;
1184// This corresponds to add $foo@tpoff, %rax
1185def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1186          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1187
1188
1189// Direct PC relative function call for small code model. 32-bit displacement
1190// sign extended to 64-bit.
1191def : Pat<(X86call (i64 tglobaladdr:$dst)),
1192          (CALL64pcrel32 tglobaladdr:$dst)>;
1193def : Pat<(X86call (i64 texternalsym:$dst)),
1194          (CALL64pcrel32 texternalsym:$dst)>;
1195
1196// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1197// can never use callee-saved registers. That is the purpose of the GR64_TC
1198// register classes.
1199//
1200// The only volatile register that is never used by the calling convention is
1201// %r11. This happens when calling a vararg function with 6 arguments.
1202//
1203// Match an X86tcret that uses less than 7 volatile registers.
1204def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1205                             (X86tcret node:$ptr, node:$off), [{
1206  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1207  unsigned NumRegs = 0;
1208  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1209    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1210      return false;
1211  return true;
1212}]>;
1213
1214def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1215          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1216          Requires<[Not64BitMode, NotUseRetpolineIndirectCalls]>;
1217
1218// FIXME: This is disabled for 32-bit PIC mode because the global base
1219// register which is part of the address mode may be assigned a
1220// callee-saved register.
1221def : Pat<(X86tcret (load addr:$dst), imm:$off),
1222          (TCRETURNmi addr:$dst, imm:$off)>,
1223          Requires<[Not64BitMode, IsNotPIC, NotUseRetpolineIndirectCalls]>;
1224
1225def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1226          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1227          Requires<[NotLP64]>;
1228
1229def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1230          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1231          Requires<[NotLP64]>;
1232
1233def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1234          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1235          Requires<[In64BitMode, NotUseRetpolineIndirectCalls]>;
1236
1237// Don't fold loads into X86tcret requiring more than 6 regs.
1238// There wouldn't be enough scratch registers for base+index.
1239def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1240          (TCRETURNmi64 addr:$dst, imm:$off)>,
1241          Requires<[In64BitMode, NotUseRetpolineIndirectCalls]>;
1242
1243def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1244          (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
1245          Requires<[In64BitMode, UseRetpolineIndirectCalls]>;
1246
1247def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1248          (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
1249          Requires<[Not64BitMode, UseRetpolineIndirectCalls]>;
1250
1251def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1252          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1253          Requires<[IsLP64]>;
1254
1255def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1256          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1257          Requires<[IsLP64]>;
1258
1259// Normal calls, with various flavors of addresses.
1260def : Pat<(X86call (i32 tglobaladdr:$dst)),
1261          (CALLpcrel32 tglobaladdr:$dst)>;
1262def : Pat<(X86call (i32 texternalsym:$dst)),
1263          (CALLpcrel32 texternalsym:$dst)>;
1264def : Pat<(X86call (i32 imm:$dst)),
1265          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1266
1267// Comparisons.
1268
1269// TEST R,R is smaller than CMP R,0
1270def : Pat<(X86cmp GR8:$src1, 0),
1271          (TEST8rr GR8:$src1, GR8:$src1)>;
1272def : Pat<(X86cmp GR16:$src1, 0),
1273          (TEST16rr GR16:$src1, GR16:$src1)>;
1274def : Pat<(X86cmp GR32:$src1, 0),
1275          (TEST32rr GR32:$src1, GR32:$src1)>;
1276def : Pat<(X86cmp GR64:$src1, 0),
1277          (TEST64rr GR64:$src1, GR64:$src1)>;
1278
1279def inv_cond_XFORM : SDNodeXForm<imm, [{
1280  X86::CondCode CC = static_cast<X86::CondCode>(N->getZExtValue());
1281  return CurDAG->getTargetConstant(X86::GetOppositeBranchCondition(CC),
1282                                   SDLoc(N), MVT::i8);
1283}]>;
1284
1285// Conditional moves with folded loads with operands swapped and conditions
1286// inverted.
1287let Predicates = [HasCMov] in {
1288  def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, imm:$cond, EFLAGS),
1289            (CMOV16rm GR16:$src2, addr:$src1, (inv_cond_XFORM imm:$cond))>;
1290  def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, imm:$cond, EFLAGS),
1291            (CMOV32rm GR32:$src2, addr:$src1, (inv_cond_XFORM imm:$cond))>;
1292  def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, imm:$cond, EFLAGS),
1293            (CMOV64rm GR64:$src2, addr:$src1, (inv_cond_XFORM imm:$cond))>;
1294}
1295
1296// zextload bool -> zextload byte
1297// i1 stored in one byte in zero-extended form.
1298// Upper bits cleanup should be executed before Store.
1299def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1300def : Pat<(zextloadi16i1 addr:$src),
1301          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1302def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1303def : Pat<(zextloadi64i1 addr:$src),
1304          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1305
1306// extload bool -> extload byte
1307// When extloading from 16-bit and smaller memory locations into 64-bit
1308// registers, use zero-extending loads so that the entire 64-bit register is
1309// defined, avoiding partial-register updates.
1310
1311def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1312def : Pat<(extloadi16i1 addr:$src),
1313          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1314def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1315def : Pat<(extloadi16i8 addr:$src),
1316          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1317def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1318def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1319
1320// For other extloads, use subregs, since the high contents of the register are
1321// defined after an extload.
1322// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
1323// 32-bit loads for 4 byte aligned i8/i16 loads.
1324def : Pat<(extloadi64i32 addr:$src),
1325          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1326def : Pat<(extloadi64i1 addr:$src),
1327          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1328def : Pat<(extloadi64i8 addr:$src),
1329          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1330def : Pat<(extloadi64i16 addr:$src),
1331          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1332
1333// anyext. Define these to do an explicit zero-extend to
1334// avoid partial-register updates.
1335def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1336                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1337def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1338
1339// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1340def : Pat<(i32 (anyext GR16:$src)),
1341          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1342
1343def : Pat<(i64 (anyext GR8 :$src)),
1344          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1345def : Pat<(i64 (anyext GR16:$src)),
1346          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1347def : Pat<(i64 (anyext GR32:$src)),
1348          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
1349
1350// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
1351// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
1352// %ah to the lower byte of a register. By using a MOVSX here we allow a
1353// post-isel peephole to merge the two MOVSX instructions into one.
1354def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
1355  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
1356          N->getOperand(0).getResNo() == 1);
1357}]>;
1358def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;
1359
1360// Any instruction that defines a 32-bit result leaves the high half of the
1361// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1362// be copying from a truncate. Any other 32-bit operation will zero-extend
1363// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
1364// 32 bits, they're probably just qualifying a CopyFromReg.
1365def def32 : PatLeaf<(i32 GR32:$src), [{
1366  return N->getOpcode() != ISD::TRUNCATE &&
1367         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1368         N->getOpcode() != ISD::CopyFromReg &&
1369         N->getOpcode() != ISD::AssertSext &&
1370         N->getOpcode() != ISD::AssertZext;
1371}]>;
1372
1373// In the case of a 32-bit def that is known to implicitly zero-extend,
1374// we can use a SUBREG_TO_REG.
1375def : Pat<(i64 (zext def32:$src)),
1376          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1377def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
1378          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1379
1380//===----------------------------------------------------------------------===//
1381// Pattern match OR as ADD
1382//===----------------------------------------------------------------------===//
1383
1384// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1385// 3-addressified into an LEA instruction to avoid copies.  However, we also
1386// want to finally emit these instructions as an or at the end of the code
1387// generator to make the generated code easier to read.  To do this, we select
1388// into "disjoint bits" pseudo ops.
1389
1390// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1391def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1392  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1393    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1394
1395  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
1396  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
1397  return (~Known0.Zero & ~Known1.Zero) == 0;
1398}]>;
1399
1400
1401// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1402// Try this before the selecting to OR.
1403let SchedRW = [WriteALU] in {
1404
1405let isConvertibleToThreeAddress = 1, isPseudo = 1,
1406    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1407let isCommutable = 1 in {
1408def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
1409                    "", // orb/addb REG, REG
1410                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
1411def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1412                    "", // orw/addw REG, REG
1413                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1414def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1415                    "", // orl/addl REG, REG
1416                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1417def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1418                    "", // orq/addq REG, REG
1419                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1420} // isCommutable
1421
1422// NOTE: These are order specific, we want the ri8 forms to be listed
1423// first so that they are slightly preferred to the ri forms.
1424
1425def ADD8ri_DB :   I<0, Pseudo,
1426                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
1427                    "", // orb/addb REG, imm8
1428                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
1429def ADD16ri8_DB : I<0, Pseudo,
1430                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1431                    "", // orw/addw REG, imm8
1432                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1433def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1434                    "", // orw/addw REG, imm
1435                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1436
1437def ADD32ri8_DB : I<0, Pseudo,
1438                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1439                    "", // orl/addl REG, imm8
1440                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1441def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1442                    "", // orl/addl REG, imm
1443                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1444
1445
1446def ADD64ri8_DB : I<0, Pseudo,
1447                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1448                    "", // orq/addq REG, imm8
1449                    [(set GR64:$dst, (or_is_add GR64:$src1,
1450                                                i64immSExt8:$src2))]>;
1451def ADD64ri32_DB : I<0, Pseudo,
1452                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1453                     "", // orq/addq REG, imm
1454                     [(set GR64:$dst, (or_is_add GR64:$src1,
1455                                                 i64immSExt32:$src2))]>;
1456}
1457} // AddedComplexity, SchedRW
1458
1459//===----------------------------------------------------------------------===//
1460// Pattern match SUB as XOR
1461//===----------------------------------------------------------------------===//
1462
1463// An immediate in the LHS of a subtract can't be encoded in the instruction.
1464// If there is no possibility of a borrow we can use an XOR instead of a SUB
1465// to enable the immediate to be folded.
1466// TODO: Move this to a DAG combine?
1467
1468def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
1469  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
1470    KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1));
1471
1472    // If all possible ones in the RHS are set in the LHS then there can't be
1473    // a borrow and we can use xor.
1474    return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
1475  }
1476
1477  return false;
1478}]>;
1479
1480let AddedComplexity = 5 in {
1481def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
1482          (XOR8ri GR8:$src1, imm:$src2)>;
1483def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
1484          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1485def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
1486          (XOR16ri GR16:$src1, imm:$src2)>;
1487def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
1488          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1489def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
1490          (XOR32ri GR32:$src1, imm:$src2)>;
1491def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
1492          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1493def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
1494          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1495}
1496
1497//===----------------------------------------------------------------------===//
1498// Some peepholes
1499//===----------------------------------------------------------------------===//
1500
1501// Odd encoding trick: -128 fits into an 8-bit immediate field while
1502// +128 doesn't, so in this special case use a sub instead of an add.
1503def : Pat<(add GR16:$src1, 128),
1504          (SUB16ri8 GR16:$src1, -128)>;
1505def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1506          (SUB16mi8 addr:$dst, -128)>;
1507
1508def : Pat<(add GR32:$src1, 128),
1509          (SUB32ri8 GR32:$src1, -128)>;
1510def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1511          (SUB32mi8 addr:$dst, -128)>;
1512
1513def : Pat<(add GR64:$src1, 128),
1514          (SUB64ri8 GR64:$src1, -128)>;
1515def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1516          (SUB64mi8 addr:$dst, -128)>;
1517
1518def : Pat<(X86add_flag_nocf GR16:$src1, 128),
1519          (SUB16ri8 GR16:$src1, -128)>;
1520def : Pat<(X86add_flag_nocf GR32:$src1, 128),
1521          (SUB32ri8 GR32:$src1, -128)>;
1522def : Pat<(X86add_flag_nocf GR64:$src1, 128),
1523          (SUB64ri8 GR64:$src1, -128)>;
1524
1525// The same trick applies for 32-bit immediate fields in 64-bit
1526// instructions.
1527def : Pat<(add GR64:$src1, 0x0000000080000000),
1528          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1529def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1530          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1531
1532def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
1533          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1534
1535// To avoid needing to materialize an immediate in a register, use a 32-bit and
1536// with implicit zero-extension instead of a 64-bit and if the immediate has at
1537// least 32 bits of leading zeros. If in addition the last 32 bits can be
1538// represented with a sign extension of a 8 bit constant, use that.
1539// This can also reduce instruction size by eliminating the need for the REX
1540// prefix.
1541
1542// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1543let AddedComplexity = 1 in {
1544def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1545          (SUBREG_TO_REG
1546            (i64 0),
1547            (AND32ri8
1548              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1549              (i32 (GetLo32XForm imm:$imm))),
1550            sub_32bit)>;
1551
1552def : Pat<(and GR64:$src, i64immZExt32:$imm),
1553          (SUBREG_TO_REG
1554            (i64 0),
1555            (AND32ri
1556              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1557              (i32 (GetLo32XForm imm:$imm))),
1558            sub_32bit)>;
1559} // AddedComplexity = 1
1560
1561
1562// AddedComplexity is needed due to the increased complexity on the
1563// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1564// the MOVZX patterns keeps thems together in DAGIsel tables.
1565let AddedComplexity = 1 in {
1566// r & (2^16-1) ==> movz
1567def : Pat<(and GR32:$src1, 0xffff),
1568          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1569// r & (2^8-1) ==> movz
1570def : Pat<(and GR32:$src1, 0xff),
1571          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
1572// r & (2^8-1) ==> movz
1573def : Pat<(and GR16:$src1, 0xff),
1574           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
1575             sub_16bit)>;
1576
1577// r & (2^32-1) ==> movz
1578def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1579          (SUBREG_TO_REG (i64 0),
1580                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1581                         sub_32bit)>;
1582// r & (2^16-1) ==> movz
1583def : Pat<(and GR64:$src, 0xffff),
1584          (SUBREG_TO_REG (i64 0),
1585                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1586                      sub_32bit)>;
1587// r & (2^8-1) ==> movz
1588def : Pat<(and GR64:$src, 0xff),
1589          (SUBREG_TO_REG (i64 0),
1590                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1591                         sub_32bit)>;
1592} // AddedComplexity = 1
1593
1594
1595// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
1596
1597def BTRXForm : SDNodeXForm<imm, [{
1598  // Transformation function: Find the lowest 0.
1599  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
1600}]>;
1601
1602def BTCBTSXForm : SDNodeXForm<imm, [{
1603  // Transformation function: Find the lowest 1.
1604  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
1605}]>;
1606
1607def BTRMask64 : ImmLeaf<i64, [{
1608  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
1609}]>;
1610
1611def BTCBTSMask64 : ImmLeaf<i64, [{
1612  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
1613}]>;
1614
1615// For now only do this for optsize.
1616let AddedComplexity = 1, Predicates=[OptForSize] in {
1617  def : Pat<(and GR64:$src1, BTRMask64:$mask),
1618            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
1619  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
1620            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1621  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
1622            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1623}
1624
1625
1626// sext_inreg patterns
1627def : Pat<(sext_inreg GR32:$src, i16),
1628          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1629def : Pat<(sext_inreg GR32:$src, i8),
1630          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
1631
1632def : Pat<(sext_inreg GR16:$src, i8),
1633           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
1634             sub_16bit)>;
1635
1636def : Pat<(sext_inreg GR64:$src, i32),
1637          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1638def : Pat<(sext_inreg GR64:$src, i16),
1639          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1640def : Pat<(sext_inreg GR64:$src, i8),
1641          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1642
1643// sext, sext_load, zext, zext_load
1644def: Pat<(i16 (sext GR8:$src)),
1645          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1646def: Pat<(sextloadi16i8 addr:$src),
1647          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1648def: Pat<(i16 (zext GR8:$src)),
1649          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1650def: Pat<(zextloadi16i8 addr:$src),
1651          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1652
1653// trunc patterns
1654def : Pat<(i16 (trunc GR32:$src)),
1655          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1656def : Pat<(i8 (trunc GR32:$src)),
1657          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1658                          sub_8bit)>,
1659      Requires<[Not64BitMode]>;
1660def : Pat<(i8 (trunc GR16:$src)),
1661          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1662                          sub_8bit)>,
1663      Requires<[Not64BitMode]>;
1664def : Pat<(i32 (trunc GR64:$src)),
1665          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1666def : Pat<(i16 (trunc GR64:$src)),
1667          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1668def : Pat<(i8 (trunc GR64:$src)),
1669          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1670def : Pat<(i8 (trunc GR32:$src)),
1671          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1672      Requires<[In64BitMode]>;
1673def : Pat<(i8 (trunc GR16:$src)),
1674          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1675      Requires<[In64BitMode]>;
1676
1677def immff00_ffff  : ImmLeaf<i32, [{
1678  return Imm >= 0xff00 && Imm <= 0xffff;
1679}]>;
1680
1681// h-register tricks
1682def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1683          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1684      Requires<[Not64BitMode]>;
1685def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1686          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1687      Requires<[Not64BitMode]>;
1688def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1689          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
1690      Requires<[Not64BitMode]>;
1691def : Pat<(srl GR16:$src, (i8 8)),
1692          (EXTRACT_SUBREG
1693            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1694            sub_16bit)>;
1695def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1696          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1697def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1698          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1699def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1700          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1701def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
1702          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1703
1704// h-register tricks.
1705// For now, be conservative on x86-64 and use an h-register extract only if the
1706// value is immediately zero-extended or stored, which are somewhat common
1707// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1708// from being allocated in the same instruction as the h register, as there's
1709// currently no way to describe this requirement to the register allocator.
1710
1711// h-register extract and zero-extend.
1712def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1713          (SUBREG_TO_REG
1714            (i64 0),
1715            (MOVZX32rr8_NOREX
1716              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
1717            sub_32bit)>;
1718def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1719          (SUBREG_TO_REG
1720            (i64 0),
1721            (MOVZX32rr8_NOREX
1722              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1723            sub_32bit)>;
1724def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1725          (SUBREG_TO_REG
1726            (i64 0),
1727            (MOVZX32rr8_NOREX
1728              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1729            sub_32bit)>;
1730
1731// h-register extract and store.
1732def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1733          (MOV8mr_NOREX
1734            addr:$dst,
1735            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
1736def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1737          (MOV8mr_NOREX
1738            addr:$dst,
1739            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
1740      Requires<[In64BitMode]>;
1741def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1742          (MOV8mr_NOREX
1743            addr:$dst,
1744            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
1745      Requires<[In64BitMode]>;
1746
1747
1748// (shl x, 1) ==> (add x, x)
1749// Note that if x is undef (immediate or otherwise), we could theoretically
1750// end up with the two uses of x getting different values, producing a result
1751// where the least significant bit is not 0. However, the probability of this
1752// happening is considered low enough that this is officially not a
1753// "real problem".
1754def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1755def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1756def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1757def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1758
1759def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1760  return isUnneededShiftMask(N, 3);
1761}]>;
1762
1763def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1764  return isUnneededShiftMask(N, 4);
1765}]>;
1766
1767def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1768  return isUnneededShiftMask(N, 5);
1769}]>;
1770
1771def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
1772  return isUnneededShiftMask(N, 6);
1773}]>;
1774
1775
1776// Shift amount is implicitly masked.
1777multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1778  // (shift x (and y, 31)) ==> (shift x, y)
1779  def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
1780            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1781  def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
1782            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1783  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1784            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1785  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
1786            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1787  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
1788            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1789  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1790            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1791
1792  // (shift x (and y, 63)) ==> (shift x, y)
1793  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1794            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1795  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1796            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1797}
1798
1799defm : MaskedShiftAmountPats<shl, "SHL">;
1800defm : MaskedShiftAmountPats<srl, "SHR">;
1801defm : MaskedShiftAmountPats<sra, "SAR">;
1802
1803// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
1804// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
1805// because over-rotating produces the same result. This is noted in the Intel
1806// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
1807// amount could affect EFLAGS results, but that does not matter because we are
1808// not tracking flags for these nodes.
1809multiclass MaskedRotateAmountPats<SDNode frag, string name> {
1810  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
1811  def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
1812  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1813  def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
1814  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1815  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1816  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1817  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
1818  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1819  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
1820  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1821  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1822  (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1823
1824  // (rot x (and y, 63)) ==> (rot x, y)
1825  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1826  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1827  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1828  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1829}
1830
1831
1832defm : MaskedRotateAmountPats<rotl, "ROL">;
1833defm : MaskedRotateAmountPats<rotr, "ROR">;
1834
1835// Double shift amount is implicitly masked.
1836multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
1837  // (shift x (and y, 31)) ==> (shift x, y)
1838  def : Pat<(frag GR16:$src1, GR16:$src2, (shiftMask32 CL)),
1839            (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
1840  def : Pat<(frag GR32:$src1, GR32:$src2, (shiftMask32 CL)),
1841            (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
1842
1843  // (shift x (and y, 63)) ==> (shift x, y)
1844  def : Pat<(frag GR64:$src1, GR64:$src2, (shiftMask32 CL)),
1845            (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
1846}
1847
1848defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
1849defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
1850
1851let Predicates = [HasBMI2] in {
1852  let AddedComplexity = 1 in {
1853    def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
1854              (SARX32rr GR32:$src1,
1855                        (INSERT_SUBREG
1856                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1857    def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
1858              (SARX64rr GR64:$src1,
1859                        (INSERT_SUBREG
1860                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1861
1862    def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
1863              (SHRX32rr GR32:$src1,
1864                        (INSERT_SUBREG
1865                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1866    def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
1867              (SHRX64rr GR64:$src1,
1868                        (INSERT_SUBREG
1869                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1870
1871    def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
1872              (SHLX32rr GR32:$src1,
1873                        (INSERT_SUBREG
1874                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1875    def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
1876              (SHLX64rr GR64:$src1,
1877                        (INSERT_SUBREG
1878                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1879  }
1880
1881  def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1882            (SARX32rm addr:$src1,
1883                      (INSERT_SUBREG
1884                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1885  def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1886            (SARX64rm addr:$src1,
1887                      (INSERT_SUBREG
1888                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1889
1890  def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1891            (SHRX32rm addr:$src1,
1892                      (INSERT_SUBREG
1893                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1894  def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1895            (SHRX64rm addr:$src1,
1896                      (INSERT_SUBREG
1897                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1898
1899  def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
1900            (SHLX32rm addr:$src1,
1901                      (INSERT_SUBREG
1902                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1903  def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
1904            (SHLX64rm addr:$src1,
1905                      (INSERT_SUBREG
1906                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1907}
1908
1909// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
1910multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
1911                            Instruction BTS, Instruction BTC,
1912                            PatFrag ShiftMask> {
1913  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
1914            (BTR RC:$src1,
1915                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1916  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
1917            (BTS RC:$src1,
1918                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1919  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
1920            (BTC RC:$src1,
1921                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1922
1923  // Similar to above, but removing unneeded masking of the shift amount.
1924  def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
1925            (BTR RC:$src1,
1926                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1927  def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1928            (BTS RC:$src1,
1929                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1930  def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
1931            (BTC RC:$src1,
1932                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1933}
1934
1935defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
1936defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
1937defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;
1938
1939
1940// (anyext (setcc_carry)) -> (setcc_carry)
1941def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1942          (SETB_C16r)>;
1943def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1944          (SETB_C32r)>;
1945def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1946          (SETB_C32r)>;
1947
1948//===----------------------------------------------------------------------===//
1949// EFLAGS-defining Patterns
1950//===----------------------------------------------------------------------===//
1951
1952// add reg, reg
1953def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1954def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1955def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1956def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
1957
1958// add reg, mem
1959def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1960          (ADD8rm GR8:$src1, addr:$src2)>;
1961def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1962          (ADD16rm GR16:$src1, addr:$src2)>;
1963def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1964          (ADD32rm GR32:$src1, addr:$src2)>;
1965def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1966          (ADD64rm GR64:$src1, addr:$src2)>;
1967
1968// add reg, imm
1969def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1970def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1971def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1972def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1973          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1974def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1975          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1976def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1977          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1978def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1979          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1980
1981// sub reg, reg
1982def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1983def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1984def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1985def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
1986
1987// sub reg, mem
1988def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1989          (SUB8rm GR8:$src1, addr:$src2)>;
1990def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1991          (SUB16rm GR16:$src1, addr:$src2)>;
1992def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1993          (SUB32rm GR32:$src1, addr:$src2)>;
1994def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1995          (SUB64rm GR64:$src1, addr:$src2)>;
1996
1997// sub reg, imm
1998def : Pat<(sub GR8:$src1, imm:$src2),
1999          (SUB8ri GR8:$src1, imm:$src2)>;
2000def : Pat<(sub GR16:$src1, imm:$src2),
2001          (SUB16ri GR16:$src1, imm:$src2)>;
2002def : Pat<(sub GR32:$src1, imm:$src2),
2003          (SUB32ri GR32:$src1, imm:$src2)>;
2004def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
2005          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
2006def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
2007          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
2008def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
2009          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
2010def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
2011          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
2012
2013// sub 0, reg
2014def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
2015def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
2016def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
2017def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
2018
2019// sub reg, relocImm
2020def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
2021          (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
2022
2023// mul reg, reg
2024def : Pat<(mul GR16:$src1, GR16:$src2),
2025          (IMUL16rr GR16:$src1, GR16:$src2)>;
2026def : Pat<(mul GR32:$src1, GR32:$src2),
2027          (IMUL32rr GR32:$src1, GR32:$src2)>;
2028def : Pat<(mul GR64:$src1, GR64:$src2),
2029          (IMUL64rr GR64:$src1, GR64:$src2)>;
2030
2031// mul reg, mem
2032def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
2033          (IMUL16rm GR16:$src1, addr:$src2)>;
2034def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
2035          (IMUL32rm GR32:$src1, addr:$src2)>;
2036def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
2037          (IMUL64rm GR64:$src1, addr:$src2)>;
2038
2039// mul reg, imm
2040def : Pat<(mul GR16:$src1, imm:$src2),
2041          (IMUL16rri GR16:$src1, imm:$src2)>;
2042def : Pat<(mul GR32:$src1, imm:$src2),
2043          (IMUL32rri GR32:$src1, imm:$src2)>;
2044def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
2045          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
2046def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
2047          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
2048def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
2049          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
2050def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
2051          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
2052
2053// reg = mul mem, imm
2054def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
2055          (IMUL16rmi addr:$src1, imm:$src2)>;
2056def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
2057          (IMUL32rmi addr:$src1, imm:$src2)>;
2058def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
2059          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
2060def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
2061          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
2062def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
2063          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
2064def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
2065          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
2066
2067// Increment/Decrement reg.
2068// Do not make INC/DEC if it is slow
2069let Predicates = [UseIncDec] in {
2070  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
2071  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
2072  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
2073  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
2074  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
2075  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
2076  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
2077  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
2078
2079  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
2080  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
2081  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
2082  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
2083  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
2084  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
2085  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
2086  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
2087}
2088
2089// or reg/reg.
2090def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
2091def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
2092def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
2093def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
2094
2095// or reg/mem
2096def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
2097          (OR8rm GR8:$src1, addr:$src2)>;
2098def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
2099          (OR16rm GR16:$src1, addr:$src2)>;
2100def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
2101          (OR32rm GR32:$src1, addr:$src2)>;
2102def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
2103          (OR64rm GR64:$src1, addr:$src2)>;
2104
2105// or reg/imm
2106def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
2107def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
2108def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
2109def : Pat<(or GR16:$src1, i16immSExt8:$src2),
2110          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2111def : Pat<(or GR32:$src1, i32immSExt8:$src2),
2112          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2113def : Pat<(or GR64:$src1, i64immSExt8:$src2),
2114          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2115def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2116          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2117
2118// xor reg/reg
2119def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
2120def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
2121def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
2122def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
2123
2124// xor reg/mem
2125def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
2126          (XOR8rm GR8:$src1, addr:$src2)>;
2127def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
2128          (XOR16rm GR16:$src1, addr:$src2)>;
2129def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
2130          (XOR32rm GR32:$src1, addr:$src2)>;
2131def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2132          (XOR64rm GR64:$src1, addr:$src2)>;
2133
2134// xor reg/imm
2135def : Pat<(xor GR8:$src1, imm:$src2),
2136          (XOR8ri GR8:$src1, imm:$src2)>;
2137def : Pat<(xor GR16:$src1, imm:$src2),
2138          (XOR16ri GR16:$src1, imm:$src2)>;
2139def : Pat<(xor GR32:$src1, imm:$src2),
2140          (XOR32ri GR32:$src1, imm:$src2)>;
2141def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
2142          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
2143def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
2144          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
2145def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
2146          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2147def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2148          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2149
2150// and reg/reg
2151def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
2152def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
2153def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
2154def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
2155
2156// and reg/mem
2157def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
2158          (AND8rm GR8:$src1, addr:$src2)>;
2159def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
2160          (AND16rm GR16:$src1, addr:$src2)>;
2161def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
2162          (AND32rm GR32:$src1, addr:$src2)>;
2163def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2164          (AND64rm GR64:$src1, addr:$src2)>;
2165
2166// and reg/imm
2167def : Pat<(and GR8:$src1, imm:$src2),
2168          (AND8ri GR8:$src1, imm:$src2)>;
2169def : Pat<(and GR16:$src1, imm:$src2),
2170          (AND16ri GR16:$src1, imm:$src2)>;
2171def : Pat<(and GR32:$src1, imm:$src2),
2172          (AND32ri GR32:$src1, imm:$src2)>;
2173def : Pat<(and GR16:$src1, i16immSExt8:$src2),
2174          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
2175def : Pat<(and GR32:$src1, i32immSExt8:$src2),
2176          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
2177def : Pat<(and GR64:$src1, i64immSExt8:$src2),
2178          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
2179def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2180          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
2181
2182// Bit scan instruction patterns to match explicit zero-undef behavior.
2183def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
2184def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
2185def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
2186def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
2187def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
2188def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
2189
2190// When HasMOVBE is enabled it is possible to get a non-legalized
2191// register-register 16 bit bswap. This maps it to a ROL instruction.
2192let Predicates = [HasMOVBE] in {
2193 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
2194}
2195