xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstrCompiler.td (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the various pseudo instructions used by the compiler,
10// as well as Pat patterns used during instruction selection.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Pattern Matching Support
16
17def GetLo32XForm : SDNodeXForm<imm, [{
18  // Transformation function: get the low 32 bits.
19  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
20}]>;
21
22
23//===----------------------------------------------------------------------===//
24// Random Pseudo Instructions.
25
26// PIC base construction.  This expands to code that looks like this:
27//     call  $next_inst
28//     popl %destreg"
29let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
30    SchedRW = [WriteJump] in
31  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32                      "", []>;
33
34// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
35// a stack adjustment and the codegen must know that they may modify the stack
36// pointer before prolog-epilog rewriting occurs.
37// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
38// sub / add which can clobber EFLAGS.
39let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
40def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
41                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
42                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
43def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
44                           "#ADJCALLSTACKUP",
45                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
46                           Requires<[NotLP64]>;
47}
48def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
49       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
50
51
52// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
53// a stack adjustment and the codegen must know that they may modify the stack
54// pointer before prolog-epilog rewriting occurs.
55// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
56// sub / add which can clobber EFLAGS.
57let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
58def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
59                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
60                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
61def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62                           "#ADJCALLSTACKUP",
63                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64                           Requires<[IsLP64]>;
65}
66def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
67        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
68
69let SchedRW = [WriteSystem] in {
70
71// x86-64 va_start lowering magic.
72let hasSideEffects = 1, mayStore = 1, Defs = [EFLAGS] in {
73def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
74                              (outs),
75                              (ins GR8:$al, i8mem:$regsavefi, variable_ops),
76                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi",
77                              [(X86vastart_save_xmm_regs GR8:$al, addr:$regsavefi),
78                               (implicit EFLAGS)]>;
79}
80
81let usesCustomInserter = 1, Defs = [EFLAGS] in {
82// The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the
83// va_list, and place the address of the next argument into a register.
84let Defs = [EFLAGS] in {
85def VAARG_64 : I<0, Pseudo,
86                 (outs GR64:$dst),
87                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
88                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
89                 [(set GR64:$dst,
90                    (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)),
91                  (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>;
92def VAARG_X32 : I<0, Pseudo,
93                 (outs GR32:$dst),
94                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
95                 "#VAARG_X32 $dst, $ap, $size, $mode, $align",
96                 [(set GR32:$dst,
97                    (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)),
98                  (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>;
99}
100
101// When using segmented stacks these are lowered into instructions which first
102// check if the current stacklet has enough free memory. If it does, memory is
103// allocated by bumping the stack pointer. Otherwise memory is allocated from
104// the heap.
105
106let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
107def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
108                      "# variable sized alloca for segmented stacks",
109                      [(set GR32:$dst,
110                         (X86SegAlloca GR32:$size))]>,
111                    Requires<[NotLP64]>;
112
113let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
114def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
115                      "# variable sized alloca for segmented stacks",
116                      [(set GR64:$dst,
117                         (X86SegAlloca GR64:$size))]>,
118                    Requires<[In64BitMode]>;
119
120// To protect against stack clash, dynamic allocation should perform a memory
121// probe at each page.
122
123let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
124def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
125                      "# variable sized alloca with probing",
126                      [(set GR32:$dst,
127                         (X86ProbedAlloca GR32:$size))]>,
128                    Requires<[NotLP64]>;
129
130let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
131def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
132                      "# variable sized alloca with probing",
133                      [(set GR64:$dst,
134                         (X86ProbedAlloca GR64:$size))]>,
135                    Requires<[In64BitMode]>;
136}
137
138let hasNoSchedulingInfo = 1 in
139def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
140                             "# fixed size alloca with probing",
141                             []>;
142
143// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
144// targets.  These calls are needed to probe the stack when allocating more than
145// 4k bytes in one go. Touching the stack at 4K increments is necessary to
146// ensure that the guard pages used by the OS virtual memory manager are
147// allocated in correct sequence.
148// The main point of having separate instruction are extra unmodelled effects
149// (compared to ordinary calls) like stack pointer change.
150
151let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
152def DYN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
153                     "# dynamic stack allocation",
154                     [(X86DynAlloca GR32:$size)]>,
155                     Requires<[NotLP64]>;
156
157let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
158def DYN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
159                     "# dynamic stack allocation",
160                     [(X86DynAlloca GR64:$size)]>,
161                     Requires<[In64BitMode]>;
162} // SchedRW
163
164// These instructions XOR the frame pointer into a GPR. They are used in some
165// stack protection schemes. These are post-RA pseudos because we only know the
166// frame register after register allocation.
167let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
168  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
169                  "xorl\t$$FP, $src", []>,
170                  Requires<[NotLP64]>, Sched<[WriteALU]>;
171  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
172                  "xorq\t$$FP $src", []>,
173                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
174}
175
176//===----------------------------------------------------------------------===//
177// EH Pseudo Instructions
178//
179let SchedRW = [WriteSystem] in {
180let isTerminator = 1, isReturn = 1, isBarrier = 1,
181    hasCtrlDep = 1, isCodeGenOnly = 1 in {
182def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
183                    "ret\t#eh_return, addr: $addr",
184                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
185
186}
187
188let isTerminator = 1, isReturn = 1, isBarrier = 1,
189    hasCtrlDep = 1, isCodeGenOnly = 1 in {
190def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
191                     "ret\t#eh_return, addr: $addr",
192                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
193
194}
195
196let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
197    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
198  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET",
199                     [(cleanupret bb)]>;
200
201  // CATCHRET needs a custom inserter for SEH.
202  let usesCustomInserter = 1 in
203    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
204                     "# CATCHRET",
205                     [(catchret bb:$dst, bb:$from)]>;
206}
207
208let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
209    usesCustomInserter = 1 in {
210  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
211                            "#EH_SJLJ_SETJMP32",
212                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
213                          Requires<[Not64BitMode]>;
214  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
215                            "#EH_SJLJ_SETJMP64",
216                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
217                          Requires<[In64BitMode]>;
218  let isTerminator = 1 in {
219  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
220                            "#EH_SJLJ_LONGJMP32",
221                            [(X86eh_sjlj_longjmp addr:$buf)]>,
222                          Requires<[Not64BitMode]>;
223  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
224                            "#EH_SJLJ_LONGJMP64",
225                            [(X86eh_sjlj_longjmp addr:$buf)]>,
226                          Requires<[In64BitMode]>;
227  }
228}
229
230let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
231  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
232                        "#EH_SjLj_Setup\t$dst", []>;
233}
234} // SchedRW
235
236//===----------------------------------------------------------------------===//
237// Pseudo instructions used by unwind info.
238//
239let isPseudo = 1, SchedRW = [WriteSystem] in {
240  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
241                            "#SEH_PushReg $reg", []>;
242  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
243                            "#SEH_SaveReg $reg, $dst", []>;
244  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
245                            "#SEH_SaveXMM $reg, $dst", []>;
246  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
247                            "#SEH_StackAlloc $size", []>;
248  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
249                            "#SEH_StackAlign $align", []>;
250  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
251                            "#SEH_SetFrame $reg, $offset", []>;
252  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
253                            "#SEH_PushFrame $mode", []>;
254  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
255                            "#SEH_EndPrologue", []>;
256  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
257                            "#SEH_Epilogue", []>;
258}
259
260//===----------------------------------------------------------------------===//
261// Pseudo instructions used by KCFI.
262//===----------------------------------------------------------------------===//
263let
264  Defs = [R10, R11, EFLAGS] in {
265def KCFI_CHECK : PseudoI<
266  (outs), (ins GR64:$ptr, i32imm:$type), []>, Sched<[]>;
267}
268
269//===----------------------------------------------------------------------===//
270// Pseudo instructions used by address sanitizer.
271//===----------------------------------------------------------------------===//
272let
273  Defs = [R10, R11, EFLAGS] in {
274def ASAN_CHECK_MEMACCESS : PseudoI<
275  (outs), (ins GR64PLTSafe:$addr, i32imm:$accessinfo),
276  [(int_asan_check_memaccess GR64PLTSafe:$addr, (i32 timm:$accessinfo))]>,
277  Sched<[]>;
278}
279
280//===----------------------------------------------------------------------===//
281// Pseudo instructions used by segmented stacks.
282//
283
284// This is lowered into a RET instruction by MCInstLower.  We need
285// this so that we don't have to have a MachineBasicBlock which ends
286// with a RET and also has successors.
287let isPseudo = 1, SchedRW = [WriteJumpLd] in {
288def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
289
290// This instruction is lowered to a RET followed by a MOV.  The two
291// instructions are not generated on a higher level since then the
292// verifier sees a MachineBasicBlock ending with a non-terminator.
293def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
294}
295
296//===----------------------------------------------------------------------===//
297// Alias Instructions
298//===----------------------------------------------------------------------===//
299
300// Alias instruction mapping movr0 to xor.
301// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
302let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
303    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
304def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
305                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
306
307// Other widths can also make use of the 32-bit xor, which may have a smaller
308// encoding and avoid partial register updates.
309let AddedComplexity = 10 in {
310def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
311def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
312def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
313}
314
315let Predicates = [OptForSize, Not64BitMode],
316    AddedComplexity = 10 in {
317  let SchedRW = [WriteALU] in {
318  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
319  // which only require 3 bytes compared to MOV32ri which requires 5.
320  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
321    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
322                        [(set GR32:$dst, 1)]>;
323    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
324                        [(set GR32:$dst, -1)]>;
325  }
326  } // SchedRW
327
328  // MOV16ri is 4 bytes, so the instructions above are smaller.
329  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
330  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
331}
332
333let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
334    SchedRW = [WriteALU] in {
335// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
336def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
337                       [(set GR32:$dst, i32immSExt8:$src)]>,
338                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
339def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
340                       [(set GR64:$dst, i64immSExt8:$src)]>,
341                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
342}
343
344// Materialize i64 constant where top 32-bits are zero. This could theoretically
345// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
346// that would make it more difficult to rematerialize.
347let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
348    isPseudo = 1, SchedRW = [WriteMove] in
349def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
350                  [(set GR64:$dst, i64immZExt32:$src)]>;
351
352// This 64-bit pseudo-move can also be used for labels in the x86-64 small code
353// model.
354def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
355def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;
356
357// Use sbb to materialize carry bit.
358let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
359    hasSideEffects = 0 in {
360// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
361// However, Pat<> can't replicate the destination reg into the inputs of the
362// result.
363def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
364def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
365} // isCodeGenOnly
366
367//===----------------------------------------------------------------------===//
368// String Pseudo Instructions
369//
370let SchedRW = [WriteMicrocoded] in {
371let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
372def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
373                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
374                    [(X86rep_movs i8)]>, REP, AdSize32,
375                   Requires<[NotLP64]>;
376def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
377                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
378                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
379                   Requires<[NotLP64]>;
380def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
381                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
382                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
383                   Requires<[NotLP64]>;
384def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
385                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
386                    [(X86rep_movs i64)]>, REP, AdSize32,
387                   Requires<[NotLP64, In64BitMode]>;
388}
389
390let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
391def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
392                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
393                    [(X86rep_movs i8)]>, REP, AdSize64,
394                   Requires<[IsLP64]>;
395def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
396                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
397                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
398                   Requires<[IsLP64]>;
399def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
400                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
401                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
402                   Requires<[IsLP64]>;
403def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
404                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
405                    [(X86rep_movs i64)]>, REP, AdSize64,
406                   Requires<[IsLP64]>;
407}
408
409// FIXME: Should use "(X86rep_stos AL)" as the pattern.
410let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
411  let Uses = [AL,ECX,EDI] in
412  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
413                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
414                      [(X86rep_stos i8)]>, REP, AdSize32,
415                     Requires<[NotLP64]>;
416  let Uses = [AX,ECX,EDI] in
417  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
418                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
419                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
420                     Requires<[NotLP64]>;
421  let Uses = [EAX,ECX,EDI] in
422  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
423                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
424                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
425                     Requires<[NotLP64]>;
426  let Uses = [RAX,RCX,RDI] in
427  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
428                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
429                        [(X86rep_stos i64)]>, REP, AdSize32,
430                        Requires<[NotLP64, In64BitMode]>;
431}
432
433let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
434  let Uses = [AL,RCX,RDI] in
435  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
436                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
437                       [(X86rep_stos i8)]>, REP, AdSize64,
438                       Requires<[IsLP64]>;
439  let Uses = [AX,RCX,RDI] in
440  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
441                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
442                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
443                       Requires<[IsLP64]>;
444  let Uses = [RAX,RCX,RDI] in
445  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
446                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
447                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
448                       Requires<[IsLP64]>;
449
450  let Uses = [RAX,RCX,RDI] in
451  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
452                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
453                        [(X86rep_stos i64)]>, REP, AdSize64,
454                        Requires<[IsLP64]>;
455}
456} // SchedRW
457
458//===----------------------------------------------------------------------===//
459// Thread Local Storage Instructions
460//
461let SchedRW = [WriteSystem] in {
462
463// ELF TLS Support
464// All calls clobber the non-callee saved registers. ESP is marked as
465// a use to prevent stack-pointer assignments that appear immediately
466// before calls from potentially appearing dead.
467let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
468            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
469            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
470            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
471            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
472    usesCustomInserter = 1, Uses = [ESP, SSP] in {
473def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
474                  "# TLS_addr32",
475                  [(X86tlsaddr tls32addr:$sym)]>,
476                  Requires<[Not64BitMode]>;
477def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
478                  "# TLS_base_addr32",
479                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
480                  Requires<[Not64BitMode]>;
481}
482
483// All calls clobber the non-callee saved registers. RSP is marked as
484// a use to prevent stack-pointer assignments that appear immediately
485// before calls from potentially appearing dead.
486let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
487            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
488            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
489            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
490            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
491            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
492    usesCustomInserter = 1, Uses = [RSP, SSP] in {
493def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
494                   "# TLS_addr64",
495                  [(X86tlsaddr tls64addr:$sym)]>,
496                  Requires<[In64BitMode, IsLP64]>;
497def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
498                   "# TLS_base_addr64",
499                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
500                  Requires<[In64BitMode, IsLP64]>;
501def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
502                   "# TLS_addrX32",
503                  [(X86tlsaddr tls32addr:$sym)]>,
504                  Requires<[In64BitMode, NotLP64]>;
505def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
506                   "# TLS_base_addrX32",
507                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
508                  Requires<[In64BitMode, NotLP64]>;
509}
510
511// TLSDESC only clobbers EAX and EFLAGS. ESP is marked as a use to prevent
512// stack-pointer assignments that appear immediately before calls from
513// potentially appearing dead.
514let Defs = [EAX, EFLAGS], usesCustomInserter = 1, Uses = [RSP, SSP] in {
515  def TLS_desc32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
516                     "# TLS_desc32", [(X86tlsdesc tls32addr:$sym)]>;
517  def TLS_desc64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
518                     "# TLS_desc64", [(X86tlsdesc tls64addr:$sym)]>;
519}
520
521// Darwin TLS Support
522// For i386, the address of the thunk is passed on the stack, on return the
523// address of the variable is in %eax.  %ecx is trashed during the function
524// call.  All other registers are preserved.
525let Defs = [EAX, ECX, EFLAGS, DF],
526    Uses = [ESP, SSP],
527    usesCustomInserter = 1 in
528def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
529                "# TLSCall_32",
530                [(X86TLSCall addr:$sym)]>,
531                Requires<[Not64BitMode]>;
532
533// For x86_64, the address of the thunk is passed in %rdi, but the
534// pseudo directly use the symbol, so do not add an implicit use of
535// %rdi. The lowering will do the right thing with RDI.
536// On return the address of the variable is in %rax.  All other
537// registers are preserved.
538let Defs = [RAX, EFLAGS, DF],
539    Uses = [RSP, SSP],
540    usesCustomInserter = 1 in
541def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
542                  "# TLSCall_64",
543                  [(X86TLSCall addr:$sym)]>,
544                  Requires<[In64BitMode]>;
545} // SchedRW
546
547//===----------------------------------------------------------------------===//
548// Conditional Move Pseudo Instructions
549
550// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
551// instruction selection into a branch sequence.
552multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
553  def CMOV#NAME  : I<0, Pseudo,
554                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
555                    "#CMOV_"#NAME#" PSEUDO!",
556                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
557                                                EFLAGS)))]>;
558}
559
560let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
561  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
562  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
563  // however that requires promoting the operands, and can induce additional
564  // i8 register pressure.
565  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
566
567  let Predicates = [NoCMOV] in {
568    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
569    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
570  } // Predicates = [NoCMOV]
571
572  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
573  // SSE1/SSE2.
574  let Predicates = [FPStackf32] in
575    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
576
577  let Predicates = [FPStackf64] in
578    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
579
580  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
581
582  let Predicates = [HasMMX] in
583    defm _VR64   : CMOVrr_PSEUDO<VR64, x86mmx>;
584
585  let Predicates = [HasSSE1,NoAVX512] in
586    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
587  let Predicates = [HasSSE2,NoAVX512] in {
588    defm _FR16   : CMOVrr_PSEUDO<FR16, f16>;
589    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
590  }
591  let Predicates = [HasAVX512] in {
592    defm _FR16X  : CMOVrr_PSEUDO<FR16X, f16>;
593    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
594    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
595  }
596  let Predicates = [NoVLX] in {
597    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
598    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
599  }
600  let Predicates = [HasVLX] in {
601    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
602    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
603  }
604  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
605  defm _VK1    : CMOVrr_PSEUDO<VK1,  v1i1>;
606  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
607  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
608  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
609  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
610  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
611  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
612} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
613
614def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
615          (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
616
617let Predicates = [NoVLX] in {
618  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
619            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
620  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
621            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
622  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
623            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
624  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
625            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
626  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
627            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
628
629  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
630            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
631  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
632            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
633  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
634            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
635  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
636            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
637  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
638            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
639}
640let Predicates = [HasVLX] in {
641  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
642            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
643  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
644            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
645  def : Pat<(v8f16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
646            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
647  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
648            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
649  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
650            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
651  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
652            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
653
654  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
655            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
656  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
657            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
658  def : Pat<(v16f16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
659            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
660  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
661            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
662  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
663            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
664  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
665            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
666}
667
668def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
669          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
670def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
671          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
672def : Pat<(v32f16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
673          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
674def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
675          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
676def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
677          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
678def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
679          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
680
681//===----------------------------------------------------------------------===//
682// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
683//===----------------------------------------------------------------------===//
684
685// FIXME: Use normal instructions and add lock prefix dynamically.
686
687// Memory barriers
688
689let isCodeGenOnly = 1, Defs = [EFLAGS] in
690def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
691                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
692                         Requires<[Not64BitMode]>, OpSize32, LOCK,
693                         Sched<[WriteALURMW]>;
694
695// RegOpc corresponds to the mr version of the instruction
696// ImmOpc corresponds to the mi version of the instruction
697// ImmOpc8 corresponds to the mi8 version of the instruction
698// ImmMod corresponds to the instruction format of the mi and mi8 versions
699multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
700                           Format ImmMod, SDNode Op, string mnemonic> {
701let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
702    SchedRW = [WriteALURMW] in {
703
704def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
705                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
706                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
707                  !strconcat(mnemonic, "{b}\t",
708                             "{$src2, $dst|$dst, $src2}"),
709                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
710
711def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
712                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
713                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
714                   !strconcat(mnemonic, "{w}\t",
715                              "{$src2, $dst|$dst, $src2}"),
716                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
717                   OpSize16, LOCK;
718
719def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
720                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
721                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
722                   !strconcat(mnemonic, "{l}\t",
723                              "{$src2, $dst|$dst, $src2}"),
724                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
725                   OpSize32, LOCK;
726
727def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
728                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
729                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
730                    !strconcat(mnemonic, "{q}\t",
731                               "{$src2, $dst|$dst, $src2}"),
732                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
733
734// NOTE: These are order specific, we want the mi8 forms to be listed
735// first so that they are slightly preferred to the mi forms.
736def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
737                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
738                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
739                      !strconcat(mnemonic, "{w}\t",
740                                 "{$src2, $dst|$dst, $src2}"),
741                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
742                      OpSize16, LOCK;
743
744def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
745                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
746                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
747                      !strconcat(mnemonic, "{l}\t",
748                                 "{$src2, $dst|$dst, $src2}"),
749                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
750                      OpSize32, LOCK;
751
752def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
753                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
754                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
755                       !strconcat(mnemonic, "{q}\t",
756                                  "{$src2, $dst|$dst, $src2}"),
757                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
758                       LOCK;
759
760def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
761                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
762                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
763                    !strconcat(mnemonic, "{b}\t",
764                               "{$src2, $dst|$dst, $src2}"),
765                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
766
767def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
768                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
769                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
770                      !strconcat(mnemonic, "{w}\t",
771                                 "{$src2, $dst|$dst, $src2}"),
772                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
773                      OpSize16, LOCK;
774
775def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
776                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
777                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
778                      !strconcat(mnemonic, "{l}\t",
779                                 "{$src2, $dst|$dst, $src2}"),
780                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
781                      OpSize32, LOCK;
782
783def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
784                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
785                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
786                          !strconcat(mnemonic, "{q}\t",
787                                     "{$src2, $dst|$dst, $src2}"),
788                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
789                          LOCK;
790}
791
792}
793
794defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
795defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
796defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
797defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
798defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
799
800let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
801    SchedRW = [WriteALURMW]  in {
802  let Predicates = [UseIncDec] in {
803    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
804                        "inc{b}\t$dst",
805                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
806                        LOCK;
807    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
808                        "inc{w}\t$dst",
809                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
810                        OpSize16, LOCK;
811    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
812                        "inc{l}\t$dst",
813                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
814                        OpSize32, LOCK;
815
816    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
817                        "dec{b}\t$dst",
818                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
819                        LOCK;
820    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
821                        "dec{w}\t$dst",
822                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
823                        OpSize16, LOCK;
824    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
825                        "dec{l}\t$dst",
826                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
827                        OpSize32, LOCK;
828  }
829
830  let Predicates = [UseIncDec, In64BitMode] in {
831    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
832                         "inc{q}\t$dst",
833                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
834                         LOCK;
835    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
836                         "dec{q}\t$dst",
837                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
838                         LOCK;
839  }
840}
841
842let Predicates = [UseIncDec] in {
843  // Additional patterns for -1 constant.
844  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
845  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
846  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
847  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
848  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
849  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
850}
851
852let Predicates = [UseIncDec, In64BitMode] in {
853  // Additional patterns for -1 constant.
854  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
855  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
856}
857
858// Atomic bit test.
859def X86LBTest : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisPtrTy<1>,
860                                     SDTCisVT<2, i8>, SDTCisVT<3, i32>]>;
861def x86bts : SDNode<"X86ISD::LBTS", X86LBTest,
862                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
863def x86btc : SDNode<"X86ISD::LBTC", X86LBTest,
864                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
865def x86btr : SDNode<"X86ISD::LBTR", X86LBTest,
866                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
867
868def X86LBTestRM : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>,
869                                       SDTCisInt<2>]>;
870
871def x86_rm_bts : SDNode<"X86ISD::LBTS_RM", X86LBTestRM,
872                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
873def x86_rm_btc : SDNode<"X86ISD::LBTC_RM", X86LBTestRM,
874                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
875def x86_rm_btr : SDNode<"X86ISD::LBTR_RM", X86LBTestRM,
876                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
877
878
879multiclass ATOMIC_LOGIC_OP<Format Form, string s> {
880  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
881      SchedRW = [WriteBitTestSetRegRMW]  in {
882    def 16m : Ii8<0xBA, Form, (outs), (ins i16mem:$src1, i8imm:$src2),
883                  !strconcat(s, "{w}\t{$src2, $src1|$src1, $src2}"),
884                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 16)))]>,
885              OpSize16, TB, LOCK;
886    def 32m : Ii8<0xBA, Form, (outs), (ins i32mem:$src1, i8imm:$src2),
887                  !strconcat(s, "{l}\t{$src2, $src1|$src1, $src2}"),
888                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 32)))]>,
889              OpSize32, TB, LOCK;
890    def 64m : RIi8<0xBA, Form, (outs), (ins i64mem:$src1, i8imm:$src2),
891                   !strconcat(s, "{q}\t{$src2, $src1|$src1, $src2}"),
892                   [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 64)))]>,
893              TB, LOCK;
894  }
895}
896
897multiclass ATOMIC_LOGIC_OP_RM<bits<8> Opc8, string s> {
898  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
899      SchedRW = [WriteBitTestSetRegRMW]  in {
900    def 16rm : I<Opc8, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
901                  !strconcat(s, "{w}\t{$src2, $src1|$src1, $src2}"),
902                  [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR16:$src2))]>,
903               OpSize16, TB, LOCK;
904    def 32rm : I<Opc8, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
905                  !strconcat(s, "{l}\t{$src2, $src1|$src1, $src2}"),
906                  [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR32:$src2))]>,
907               OpSize32, TB, LOCK;
908    def 64rm : RI<Opc8, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
909                   !strconcat(s, "{q}\t{$src2, $src1|$src1, $src2}"),
910                   [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR64:$src2))]>,
911               TB, LOCK;
912  }
913}
914
915
916defm LOCK_BTS : ATOMIC_LOGIC_OP<MRM5m, "bts">;
917defm LOCK_BTC : ATOMIC_LOGIC_OP<MRM7m, "btc">;
918defm LOCK_BTR : ATOMIC_LOGIC_OP<MRM6m, "btr">;
919
920defm LOCK_BTS_RM : ATOMIC_LOGIC_OP_RM<0xAB, "bts">;
921defm LOCK_BTC_RM : ATOMIC_LOGIC_OP_RM<0xBB, "btc">;
922defm LOCK_BTR_RM : ATOMIC_LOGIC_OP_RM<0xB3, "btr">;
923
924// Atomic compare and swap.
925multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
926                          string mnemonic, SDPatternOperator frag> {
927let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
928  let Defs = [AL, EFLAGS], Uses = [AL] in
929  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
930                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
931                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
932  let Defs = [AX, EFLAGS], Uses = [AX] in
933  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
934                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
935                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
936  let Defs = [EAX, EFLAGS], Uses = [EAX] in
937  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
938                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
939                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
940  let Defs = [RAX, EFLAGS], Uses = [RAX] in
941  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
942                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
943                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
944}
945}
946
947let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
948    Predicates = [HasCX8], SchedRW = [WriteCMPXCHGRMW],
949    isCodeGenOnly = 1, usesCustomInserter = 1 in {
950def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
951                   "cmpxchg8b\t$ptr",
952                   [(X86cas8 addr:$ptr)]>, TB, LOCK;
953}
954
955let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
956    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
957    isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
958def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
959                     "cmpxchg16b\t$ptr",
960                     []>, TB, LOCK;
961}
962
963// This pseudo must be used when the frame uses RBX as
964// the base pointer. Indeed, in such situation RBX is a reserved
965// register and the register allocator will ignore any use/def of
966// it. In other words, the register will not fix the clobbering of
967// RBX that will happen when setting the arguments for the instrucion.
968//
969// Unlike the actual related instruction, we mark that this one
970// defines RBX (instead of using RBX).
971// The rationale is that we will define RBX during the expansion of
972// the pseudo. The argument feeding RBX is rbx_input.
973//
974// The additional argument, $rbx_save, is a temporary register used to
975// save the value of RBX across the actual instruction.
976//
977// To make sure the register assigned to $rbx_save does not interfere with
978// the definition of the actual instruction, we use a definition $dst which
979// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
980// the instruction and we are sure we will have a valid register to restore
981// the value of RBX.
982let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
983    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
984    isCodeGenOnly = 1, isPseudo = 1,
985    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
986    Constraints = "$rbx_save = $dst" in {
987def LCMPXCHG16B_SAVE_RBX :
988    I<0, Pseudo, (outs GR64:$dst),
989      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>;
990}
991
992// Pseudo instruction that doesn't read/write RBX. Will be turned into either
993// LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter.
994let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX],
995    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
996    isCodeGenOnly = 1, isPseudo = 1,
997    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
998    usesCustomInserter = 1 in {
999def LCMPXCHG16B_NO_RBX :
1000    I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "",
1001      [(X86cas16 addr:$ptr, GR64:$rbx_input)]>;
1002}
1003
1004// This pseudo must be used when the frame uses RBX/EBX as
1005// the base pointer.
1006// cf comment for LCMPXCHG16B_SAVE_RBX.
1007let Defs = [EBX], Uses = [ECX, EAX],
1008    Predicates = [HasMWAITX], SchedRW = [WriteSystem],
1009    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
1010def MWAITX_SAVE_RBX :
1011    I<0, Pseudo, (outs GR64:$dst),
1012      (ins GR32:$ebx_input, GR64:$rbx_save),
1013      "mwaitx",
1014      []>;
1015}
1016
1017// Pseudo mwaitx instruction to use for custom insertion.
1018let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
1019    isCodeGenOnly = 1, isPseudo = 1,
1020    usesCustomInserter = 1 in {
1021def MWAITX :
1022    I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
1023      "mwaitx",
1024      [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
1025}
1026
1027
1028defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
1029
1030// Atomic exchange and add
1031multiclass ATOMIC_RMW_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
1032                            string frag> {
1033  let Constraints = "$val = $dst", Defs = [EFLAGS], mayLoad = 1, mayStore = 1,
1034      isCodeGenOnly = 1, SchedRW = [WriteALURMW] in {
1035    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
1036                    (ins GR8:$val, i8mem:$ptr),
1037                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
1038                    [(set GR8:$dst,
1039                          (!cast<PatFrag>(frag # "_i8") addr:$ptr, GR8:$val))]>;
1040    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
1041                    (ins GR16:$val, i16mem:$ptr),
1042                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
1043                    [(set
1044                       GR16:$dst,
1045                       (!cast<PatFrag>(frag # "_i16") addr:$ptr, GR16:$val))]>,
1046                    OpSize16;
1047    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
1048                    (ins GR32:$val, i32mem:$ptr),
1049                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
1050                    [(set
1051                       GR32:$dst,
1052                       (!cast<PatFrag>(frag # "_i32") addr:$ptr, GR32:$val))]>,
1053                    OpSize32;
1054    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
1055                     (ins GR64:$val, i64mem:$ptr),
1056                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
1057                     [(set
1058                        GR64:$dst,
1059                        (!cast<PatFrag>(frag # "_i64") addr:$ptr, GR64:$val))]>;
1060  }
1061}
1062
1063defm LXADD : ATOMIC_RMW_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
1064
1065/* The following multiclass tries to make sure that in code like
1066 *    x.store (immediate op x.load(acquire), release)
1067 * and
1068 *    x.store (register op x.load(acquire), release)
1069 * an operation directly on memory is generated instead of wasting a register.
1070 * It is not automatic as atomic_store/load are only lowered to MOV instructions
1071 * extremely late to prevent them from being accidentally reordered in the backend
1072 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
1073 */
1074multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
1075  def : Pat<(atomic_store_8 (op (atomic_load_8 addr:$dst), (i8 imm:$src)),
1076                            addr:$dst),
1077            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
1078  def : Pat<(atomic_store_16 (op (atomic_load_16 addr:$dst), (i16 imm:$src)),
1079                             addr:$dst),
1080            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
1081  def : Pat<(atomic_store_32 (op (atomic_load_32 addr:$dst), (i32 imm:$src)),
1082                             addr:$dst),
1083            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
1084  def : Pat<(atomic_store_64 (op (atomic_load_64 addr:$dst), (i64immSExt32:$src)),
1085                             addr:$dst),
1086            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;
1087  def : Pat<(atomic_store_8 (op (atomic_load_8 addr:$dst), (i8 GR8:$src)), addr:$dst),
1088            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
1089  def : Pat<(atomic_store_16 (op (atomic_load_16 addr:$dst), (i16 GR16:$src)),
1090                             addr:$dst),
1091            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
1092  def : Pat<(atomic_store_32 (op (atomic_load_32 addr:$dst), (i32 GR32:$src)),
1093                             addr:$dst),
1094            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
1095  def : Pat<(atomic_store_64 (op (atomic_load_64 addr:$dst), (i64 GR64:$src)),
1096                             addr:$dst),
1097            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
1098}
1099defm : RELEASE_BINOP_MI<"ADD", add>;
1100defm : RELEASE_BINOP_MI<"AND", and>;
1101defm : RELEASE_BINOP_MI<"OR",  or>;
1102defm : RELEASE_BINOP_MI<"XOR", xor>;
1103defm : RELEASE_BINOP_MI<"SUB", sub>;
1104
1105// Atomic load + floating point patterns.
1106// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
1107multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
1108  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1109            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
1110            Requires<[UseSSE1]>;
1111  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1112            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
1113            Requires<[UseAVX]>;
1114  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
1115            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
1116            Requires<[HasAVX512]>;
1117
1118  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1119            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
1120            Requires<[UseSSE1]>;
1121  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1122            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
1123            Requires<[UseAVX]>;
1124  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
1125            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
1126            Requires<[HasAVX512]>;
1127}
1128defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
1129defm : ATOMIC_LOAD_FP_BINOP_MI<"SUB", fsub>;
1130defm : ATOMIC_LOAD_FP_BINOP_MI<"MUL", fmul>;
1131defm : ATOMIC_LOAD_FP_BINOP_MI<"DIV", fdiv>;
1132
1133multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
1134                        dag dag64> {
1135  def : Pat<(atomic_store_8 dag8, addr:$dst),
1136            (!cast<Instruction>(Name#8m) addr:$dst)>;
1137  def : Pat<(atomic_store_16 dag16, addr:$dst),
1138            (!cast<Instruction>(Name#16m) addr:$dst)>;
1139  def : Pat<(atomic_store_32 dag32, addr:$dst),
1140            (!cast<Instruction>(Name#32m) addr:$dst)>;
1141  def : Pat<(atomic_store_64 dag64, addr:$dst),
1142            (!cast<Instruction>(Name#64m) addr:$dst)>;
1143}
1144
1145let Predicates = [UseIncDec] in {
1146  defm : RELEASE_UNOP<"INC",
1147      (add (atomic_load_8  addr:$dst), (i8 1)),
1148      (add (atomic_load_16 addr:$dst), (i16 1)),
1149      (add (atomic_load_32 addr:$dst), (i32 1)),
1150      (add (atomic_load_64 addr:$dst), (i64 1))>;
1151  defm : RELEASE_UNOP<"DEC",
1152      (add (atomic_load_8  addr:$dst), (i8 -1)),
1153      (add (atomic_load_16 addr:$dst), (i16 -1)),
1154      (add (atomic_load_32 addr:$dst), (i32 -1)),
1155      (add (atomic_load_64 addr:$dst), (i64 -1))>;
1156}
1157
1158defm : RELEASE_UNOP<"NEG",
1159    (ineg (i8 (atomic_load_8  addr:$dst))),
1160    (ineg (i16 (atomic_load_16 addr:$dst))),
1161    (ineg (i32 (atomic_load_32 addr:$dst))),
1162    (ineg (i64 (atomic_load_64 addr:$dst)))>;
1163defm : RELEASE_UNOP<"NOT",
1164    (not (i8 (atomic_load_8  addr:$dst))),
1165    (not (i16 (atomic_load_16 addr:$dst))),
1166    (not (i32 (atomic_load_32 addr:$dst))),
1167    (not (i64 (atomic_load_64 addr:$dst)))>;
1168
1169def : Pat<(atomic_store_8 (i8 imm:$src), addr:$dst),
1170          (MOV8mi addr:$dst, imm:$src)>;
1171def : Pat<(atomic_store_16 (i16 imm:$src), addr:$dst),
1172          (MOV16mi addr:$dst, imm:$src)>;
1173def : Pat<(atomic_store_32 (i32 imm:$src), addr:$dst),
1174          (MOV32mi addr:$dst, imm:$src)>;
1175def : Pat<(atomic_store_64 (i64immSExt32:$src), addr:$dst),
1176          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;
1177
1178def : Pat<(atomic_store_8 GR8:$src, addr:$dst),
1179          (MOV8mr addr:$dst, GR8:$src)>;
1180def : Pat<(atomic_store_16 GR16:$src, addr:$dst),
1181          (MOV16mr addr:$dst, GR16:$src)>;
1182def : Pat<(atomic_store_32 GR32:$src, addr:$dst),
1183          (MOV32mr addr:$dst, GR32:$src)>;
1184def : Pat<(atomic_store_64 GR64:$src, addr:$dst),
1185          (MOV64mr addr:$dst, GR64:$src)>;
1186
1187def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
1188def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
1189def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
1190def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;
1191
1192// Floating point loads/stores.
1193def : Pat<(atomic_store_32 (i32 (bitconvert (f32 FR32:$src))), addr:$dst),
1194          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
1195def : Pat<(atomic_store_32 (i32 (bitconvert (f32 FR32:$src))), addr:$dst),
1196          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
1197def : Pat<(atomic_store_32 (i32 (bitconvert (f32 FR32:$src))), addr:$dst),
1198          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;
1199
1200def : Pat<(atomic_store_64 (i64 (bitconvert (f64 FR64:$src))), addr:$dst),
1201          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
1202def : Pat<(atomic_store_64 (i64 (bitconvert (f64 FR64:$src))), addr:$dst),
1203          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
1204def : Pat<(atomic_store_64 (i64 (bitconvert (f64 FR64:$src))), addr:$dst),
1205          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;
1206
1207def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1208          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
1209def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1210          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
1211def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
1212          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1213
1214def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1215          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
1216def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1217          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
1218def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
1219          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;
1220
1221//===----------------------------------------------------------------------===//
1222// DAG Pattern Matching Rules
1223//===----------------------------------------------------------------------===//
1224
1225// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1226// binary size compared to a regular MOV, but it introduces an unnecessary
1227// load, so is not suitable for regular or optsize functions.
1228let Predicates = [OptForMinSize] in {
1229def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi addr:$dst, 0)>;
1230def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi addr:$dst, 0)>;
1231def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi32 addr:$dst, 0)>;
1232def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi addr:$dst, -1)>;
1233def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi addr:$dst, -1)>;
1234def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi32 addr:$dst, -1)>;
1235}
1236
1237// In kernel code model, we can get the address of a label
1238// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1239// the MOV64ri32 should accept these.
1240def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1241          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1242def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1243          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1244def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1245          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1246def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1247          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1248def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1249          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1250def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1251          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1252
1253// If we have small model and -static mode, it is safe to store global addresses
1254// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1255// for MOV64mi32 should handle this sort of thing.
1256def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1257          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1258          Requires<[NearData, IsNotPIC]>;
1259def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1260          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1261          Requires<[NearData, IsNotPIC]>;
1262def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1263          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1264          Requires<[NearData, IsNotPIC]>;
1265def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1266          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1267          Requires<[NearData, IsNotPIC]>;
1268def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1269          (MOV64mi32 addr:$dst, mcsym:$src)>,
1270          Requires<[NearData, IsNotPIC]>;
1271def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1272          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1273          Requires<[NearData, IsNotPIC]>;
1274
1275def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1276def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1277
1278// Calls
1279
1280// tls has some funny stuff here...
1281// This corresponds to movabs $foo@tpoff, %rax
1282def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1283          (MOV64ri32 tglobaltlsaddr :$dst)>;
1284// This corresponds to add $foo@tpoff, %rax
1285def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1286          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1287
1288
1289// Direct PC relative function call for small code model. 32-bit displacement
1290// sign extended to 64-bit.
1291def : Pat<(X86call (i64 tglobaladdr:$dst)),
1292          (CALL64pcrel32 tglobaladdr:$dst)>;
1293def : Pat<(X86call (i64 texternalsym:$dst)),
1294          (CALL64pcrel32 texternalsym:$dst)>;
1295
1296def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 texternalsym:$dst)),
1297          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, texternalsym:$dst)>;
1298def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 tglobaladdr:$dst)),
1299          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, tglobaladdr:$dst)>;
1300
1301
1302// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1303// can never use callee-saved registers. That is the purpose of the GR64_TC
1304// register classes.
1305//
1306// The only volatile register that is never used by the calling convention is
1307// %r11. This happens when calling a vararg function with 6 arguments.
1308//
1309// Match an X86tcret that uses less than 7 volatile registers.
1310def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1311          (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>,
1312          Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;
1313
1314// FIXME: This is disabled for 32-bit PIC mode because the global base
1315// register which is part of the address mode may be assigned a
1316// callee-saved register.
1317// Similar to X86tcret_6regs, here we only have 1 register left
1318def : Pat<(X86tcret_1reg (load addr:$dst), timm:$off),
1319          (TCRETURNmi addr:$dst, timm:$off)>,
1320          Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;
1321
1322def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off),
1323          (TCRETURNdi tglobaladdr:$dst, timm:$off)>,
1324          Requires<[NotLP64]>;
1325
1326def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off),
1327          (TCRETURNdi texternalsym:$dst, timm:$off)>,
1328          Requires<[NotLP64]>;
1329
1330def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1331          (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>,
1332          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1333
1334// Don't fold loads into X86tcret requiring more than 6 regs.
1335// There wouldn't be enough scratch registers for base+index.
1336def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off),
1337          (TCRETURNmi64 addr:$dst, timm:$off)>,
1338          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;
1339
1340def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1341          (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>,
1342          Requires<[In64BitMode, UseIndirectThunkCalls]>;
1343
1344def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
1345          (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>,
1346          Requires<[Not64BitMode, UseIndirectThunkCalls]>;
1347
1348def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off),
1349          (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>,
1350          Requires<[IsLP64]>;
1351
1352def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off),
1353          (TCRETURNdi64 texternalsym:$dst, timm:$off)>,
1354          Requires<[IsLP64]>;
1355
1356// Normal calls, with various flavors of addresses.
1357def : Pat<(X86call (i32 tglobaladdr:$dst)),
1358          (CALLpcrel32 tglobaladdr:$dst)>;
1359def : Pat<(X86call (i32 texternalsym:$dst)),
1360          (CALLpcrel32 texternalsym:$dst)>;
1361def : Pat<(X86call (i32 imm:$dst)),
1362          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1363
1364// Comparisons.
1365
1366// TEST R,R is smaller than CMP R,0
1367def : Pat<(X86cmp GR8:$src1, 0),
1368          (TEST8rr GR8:$src1, GR8:$src1)>;
1369def : Pat<(X86cmp GR16:$src1, 0),
1370          (TEST16rr GR16:$src1, GR16:$src1)>;
1371def : Pat<(X86cmp GR32:$src1, 0),
1372          (TEST32rr GR32:$src1, GR32:$src1)>;
1373def : Pat<(X86cmp GR64:$src1, 0),
1374          (TEST64rr GR64:$src1, GR64:$src1)>;
1375
1376// zextload bool -> zextload byte
1377// i1 stored in one byte in zero-extended form.
1378// Upper bits cleanup should be executed before Store.
1379def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1380def : Pat<(zextloadi16i1 addr:$src),
1381          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1382def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1383def : Pat<(zextloadi64i1 addr:$src),
1384          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1385
1386// extload bool -> extload byte
1387// When extloading from 16-bit and smaller memory locations into 64-bit
1388// registers, use zero-extending loads so that the entire 64-bit register is
1389// defined, avoiding partial-register updates.
1390
1391def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1392def : Pat<(extloadi16i1 addr:$src),
1393          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1394def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1395def : Pat<(extloadi16i8 addr:$src),
1396          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1397def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1398def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1399
1400// For other extloads, use subregs, since the high contents of the register are
1401// defined after an extload.
1402// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
1403// 32-bit loads for 4 byte aligned i8/i16 loads.
1404def : Pat<(extloadi64i32 addr:$src),
1405          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1406def : Pat<(extloadi64i1 addr:$src),
1407          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1408def : Pat<(extloadi64i8 addr:$src),
1409          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1410def : Pat<(extloadi64i16 addr:$src),
1411          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1412
1413// anyext. Define these to do an explicit zero-extend to
1414// avoid partial-register updates.
1415def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1416                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1417def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1418
1419// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1420def : Pat<(i32 (anyext GR16:$src)),
1421          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1422
1423def : Pat<(i64 (anyext GR8 :$src)),
1424          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1425def : Pat<(i64 (anyext GR16:$src)),
1426          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1427def : Pat<(i64 (anyext GR32:$src)),
1428          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
1429
1430def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;
1431
1432// In the case of a 32-bit def that is known to implicitly zero-extend,
1433// we can use a SUBREG_TO_REG.
1434def : Pat<(i64 (zext def32:$src)),
1435          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1436def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
1437          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1438
1439//===----------------------------------------------------------------------===//
1440// Pattern match OR as ADD
1441//===----------------------------------------------------------------------===//
1442
1443// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1444// 3-addressified into an LEA instruction to avoid copies.  However, we also
1445// want to finally emit these instructions as an or at the end of the code
1446// generator to make the generated code easier to read.  To do this, we select
1447// into "disjoint bits" pseudo ops.
1448
1449// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1450// Try this before the selecting to OR.
1451let SchedRW = [WriteALU] in {
1452
1453let isConvertibleToThreeAddress = 1, isPseudo = 1,
1454    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1455let isCommutable = 1 in {
1456def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
1457                    "", // orb/addb REG, REG
1458                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
1459def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1460                    "", // orw/addw REG, REG
1461                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1462def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1463                    "", // orl/addl REG, REG
1464                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1465def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1466                    "", // orq/addq REG, REG
1467                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1468} // isCommutable
1469
1470def ADD8ri_DB :   I<0, Pseudo,
1471                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
1472                    "", // orb/addb REG, imm8
1473                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
1474def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1475                    "", // orw/addw REG, imm
1476                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1477def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1478                    "", // orl/addl REG, imm
1479                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1480def ADD64ri32_DB : I<0, Pseudo,
1481                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1482                     "", // orq/addq REG, imm
1483                     [(set GR64:$dst, (or_is_add GR64:$src1,
1484                                                 i64immSExt32:$src2))]>;
1485}
1486} // AddedComplexity, SchedRW
1487
1488//===----------------------------------------------------------------------===//
1489// Pattern match XOR as ADD
1490//===----------------------------------------------------------------------===//
1491
1492// Prefer to pattern match XOR with min_signed_value as ADD at isel time.
1493// ADD can be 3-addressified into an LEA instruction to avoid copies.
1494let AddedComplexity = 5 in {
1495def : Pat<(xor GR8:$src1, -128),
1496          (ADD8ri GR8:$src1, -128)>;
1497def : Pat<(xor GR16:$src1, -32768),
1498          (ADD16ri GR16:$src1, -32768)>;
1499def : Pat<(xor GR32:$src1, -2147483648),
1500          (ADD32ri GR32:$src1, -2147483648)>;
1501}
1502
1503//===----------------------------------------------------------------------===//
1504// Some peepholes
1505//===----------------------------------------------------------------------===//
1506
1507// Odd encoding trick: -128 fits into an 8-bit immediate field while
1508// +128 doesn't, so in this special case use a sub instead of an add.
1509let Predicates = [NoNDD] in {
1510  def : Pat<(add GR16:$src1, 128),
1511            (SUB16ri GR16:$src1, -128)>;
1512  def : Pat<(add GR32:$src1, 128),
1513            (SUB32ri GR32:$src1, -128)>;
1514  def : Pat<(add GR64:$src1, 128),
1515            (SUB64ri32 GR64:$src1, -128)>;
1516
1517  def : Pat<(X86add_flag_nocf GR16:$src1, 128),
1518            (SUB16ri GR16:$src1, -128)>;
1519  def : Pat<(X86add_flag_nocf GR32:$src1, 128),
1520            (SUB32ri GR32:$src1, -128)>;
1521  def : Pat<(X86add_flag_nocf GR64:$src1, 128),
1522            (SUB64ri32 GR64:$src1, -128)>;
1523}
1524let Predicates = [HasNDD] in {
1525  def : Pat<(add GR16:$src1, 128),
1526            (SUB16ri_ND GR16:$src1, -128)>;
1527  def : Pat<(add GR32:$src1, 128),
1528            (SUB32ri_ND GR32:$src1, -128)>;
1529  def : Pat<(add GR64:$src1, 128),
1530            (SUB64ri32_ND GR64:$src1, -128)>;
1531
1532  def : Pat<(X86add_flag_nocf GR16:$src1, 128),
1533            (SUB16ri_ND GR16:$src1, -128)>;
1534  def : Pat<(X86add_flag_nocf GR32:$src1, 128),
1535            (SUB32ri_ND GR32:$src1, -128)>;
1536  def : Pat<(X86add_flag_nocf GR64:$src1, 128),
1537            (SUB64ri32_ND GR64:$src1, -128)>;
1538}
1539def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1540          (SUB16mi addr:$dst, -128)>;
1541def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1542          (SUB32mi addr:$dst, -128)>;
1543def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1544          (SUB64mi32 addr:$dst, -128)>;
1545let Predicates = [HasNDD] in {
1546  def : Pat<(add (loadi16 addr:$src), 128),
1547            (SUB16mi_ND addr:$src, -128)>;
1548  def : Pat<(add (loadi32 addr:$src), 128),
1549            (SUB32mi_ND addr:$src, -128)>;
1550  def : Pat<(add (loadi64 addr:$src), 128),
1551            (SUB64mi32_ND addr:$src, -128)>;
1552}
1553
1554// The same trick applies for 32-bit immediate fields in 64-bit
1555// instructions.
1556let Predicates = [NoNDD] in {
1557  def : Pat<(add GR64:$src1, 0x0000000080000000),
1558            (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1559  def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
1560            (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1561}
1562let Predicates = [HasNDD] in {
1563  def : Pat<(add GR64:$src1, 0x0000000080000000),
1564            (SUB64ri32_ND GR64:$src1, 0xffffffff80000000)>;
1565  def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
1566            (SUB64ri32_ND GR64:$src1, 0xffffffff80000000)>;
1567}
1568def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1569          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1570let Predicates = [HasNDD] in {
1571  def : Pat<(add(loadi64 addr:$src), 0x0000000080000000),
1572            (SUB64mi32_ND addr:$src, 0xffffffff80000000)>;
1573}
1574
1575// Depositing value to 8/16 bit subreg:
1576def : Pat<(or (and GR64:$dst, -256),
1577              (i64 (zextloadi8 addr:$src))),
1578          (INSERT_SUBREG (i64 (COPY $dst)), (MOV8rm  i8mem:$src), sub_8bit)>;
1579
1580def : Pat<(or (and GR32:$dst, -256),
1581              (i32 (zextloadi8 addr:$src))),
1582          (INSERT_SUBREG (i32 (COPY $dst)), (MOV8rm  i8mem:$src), sub_8bit)>;
1583
1584def : Pat<(or (and GR64:$dst, -65536),
1585              (i64 (zextloadi16 addr:$src))),
1586          (INSERT_SUBREG (i64 (COPY $dst)), (MOV16rm  i16mem:$src), sub_16bit)>;
1587
1588def : Pat<(or (and GR32:$dst, -65536),
1589              (i32 (zextloadi16 addr:$src))),
1590          (INSERT_SUBREG (i32 (COPY $dst)), (MOV16rm  i16mem:$src), sub_16bit)>;
1591
1592// To avoid needing to materialize an immediate in a register, use a 32-bit and
1593// with implicit zero-extension instead of a 64-bit and if the immediate has at
1594// least 32 bits of leading zeros. If in addition the last 32 bits can be
1595// represented with a sign extension of a 8 bit constant, use that.
1596// This can also reduce instruction size by eliminating the need for the REX
1597// prefix.
1598
1599// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1600let AddedComplexity = 1 in {
1601  let Predicates = [NoNDD] in {
1602    def : Pat<(and GR64:$src, i64immZExt32:$imm),
1603              (SUBREG_TO_REG
1604                (i64 0),
1605                (AND32ri
1606                  (EXTRACT_SUBREG GR64:$src, sub_32bit),
1607                  (i32 (GetLo32XForm imm:$imm))),
1608                sub_32bit)>;
1609  }
1610  let Predicates = [HasNDD] in {
1611    def : Pat<(and GR64:$src, i64immZExt32:$imm),
1612              (SUBREG_TO_REG
1613                (i64 0),
1614                (AND32ri_ND
1615                  (EXTRACT_SUBREG GR64:$src, sub_32bit),
1616                  (i32 (GetLo32XForm imm:$imm))),
1617                sub_32bit)>;
1618  }
1619} // AddedComplexity = 1
1620
1621
1622// AddedComplexity is needed due to the increased complexity on the
1623// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1624// the MOVZX patterns keeps thems together in DAGIsel tables.
1625let AddedComplexity = 1 in {
1626// r & (2^16-1) ==> movz
1627def : Pat<(and GR32:$src1, 0xffff),
1628          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1629// r & (2^8-1) ==> movz
1630def : Pat<(and GR32:$src1, 0xff),
1631          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
1632// r & (2^8-1) ==> movz
1633def : Pat<(and GR16:$src1, 0xff),
1634           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
1635             sub_16bit)>;
1636
1637// r & (2^32-1) ==> movz
1638def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1639          (SUBREG_TO_REG (i64 0),
1640                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1641                         sub_32bit)>;
1642// r & (2^16-1) ==> movz
1643def : Pat<(and GR64:$src, 0xffff),
1644          (SUBREG_TO_REG (i64 0),
1645                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1646                      sub_32bit)>;
1647// r & (2^8-1) ==> movz
1648def : Pat<(and GR64:$src, 0xff),
1649          (SUBREG_TO_REG (i64 0),
1650                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1651                         sub_32bit)>;
1652} // AddedComplexity = 1
1653
1654
1655// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
1656
1657def BTRXForm : SDNodeXForm<imm, [{
1658  // Transformation function: Find the lowest 0.
1659  return getI64Imm((uint8_t)N->getAPIntValue().countr_one(), SDLoc(N));
1660}]>;
1661
1662def BTCBTSXForm : SDNodeXForm<imm, [{
1663  // Transformation function: Find the lowest 1.
1664  return getI64Imm((uint8_t)N->getAPIntValue().countr_zero(), SDLoc(N));
1665}]>;
1666
1667def BTRMask64 : ImmLeaf<i64, [{
1668  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
1669}]>;
1670
1671def BTCBTSMask64 : ImmLeaf<i64, [{
1672  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
1673}]>;
1674
1675// For now only do this for optsize.
1676let AddedComplexity = 1, Predicates=[OptForSize] in {
1677  def : Pat<(and GR64:$src1, BTRMask64:$mask),
1678            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
1679  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
1680            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1681  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
1682            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
1683}
1684
1685
1686// sext_inreg patterns
1687def : Pat<(sext_inreg GR32:$src, i16),
1688          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1689def : Pat<(sext_inreg GR32:$src, i8),
1690          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
1691
1692def : Pat<(sext_inreg GR16:$src, i8),
1693           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
1694             sub_16bit)>;
1695
1696def : Pat<(sext_inreg GR64:$src, i32),
1697          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1698def : Pat<(sext_inreg GR64:$src, i16),
1699          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1700def : Pat<(sext_inreg GR64:$src, i8),
1701          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1702
1703// sext, sext_load, zext, zext_load
1704def: Pat<(i16 (sext GR8:$src)),
1705          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1706def: Pat<(sextloadi16i8 addr:$src),
1707          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1708def: Pat<(i16 (zext GR8:$src)),
1709          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1710def: Pat<(zextloadi16i8 addr:$src),
1711          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1712
1713// trunc patterns
1714def : Pat<(i16 (trunc GR32:$src)),
1715          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1716def : Pat<(i8 (trunc GR32:$src)),
1717          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1718                          sub_8bit)>,
1719      Requires<[Not64BitMode]>;
1720def : Pat<(i8 (trunc GR16:$src)),
1721          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1722                          sub_8bit)>,
1723      Requires<[Not64BitMode]>;
1724def : Pat<(i32 (trunc GR64:$src)),
1725          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1726def : Pat<(i16 (trunc GR64:$src)),
1727          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1728def : Pat<(i8 (trunc GR64:$src)),
1729          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1730def : Pat<(i8 (trunc GR32:$src)),
1731          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1732      Requires<[In64BitMode]>;
1733def : Pat<(i8 (trunc GR16:$src)),
1734          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1735      Requires<[In64BitMode]>;
1736
1737def immff00_ffff  : ImmLeaf<i32, [{
1738  return Imm >= 0xff00 && Imm <= 0xffff;
1739}]>;
1740
1741// h-register tricks
1742def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1743          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1744      Requires<[Not64BitMode]>;
1745def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1746          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
1747      Requires<[Not64BitMode]>;
1748def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1749          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
1750      Requires<[Not64BitMode]>;
1751def : Pat<(srl GR16:$src, (i8 8)),
1752          (EXTRACT_SUBREG
1753            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1754            sub_16bit)>;
1755def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1756          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1757def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1758          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
1759def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1760          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1761def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
1762          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1763
1764// h-register tricks.
1765// For now, be conservative on x86-64 and use an h-register extract only if the
1766// value is immediately zero-extended or stored, which are somewhat common
1767// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1768// from being allocated in the same instruction as the h register, as there's
1769// currently no way to describe this requirement to the register allocator.
1770
1771// h-register extract and zero-extend.
1772def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1773          (SUBREG_TO_REG
1774            (i64 0),
1775            (MOVZX32rr8_NOREX
1776              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
1777            sub_32bit)>;
1778def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1779          (SUBREG_TO_REG
1780            (i64 0),
1781            (MOVZX32rr8_NOREX
1782              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1783            sub_32bit)>;
1784def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1785          (SUBREG_TO_REG
1786            (i64 0),
1787            (MOVZX32rr8_NOREX
1788              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
1789            sub_32bit)>;
1790
1791// h-register extract and store.
1792def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1793          (MOV8mr_NOREX
1794            addr:$dst,
1795            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
1796def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1797          (MOV8mr_NOREX
1798            addr:$dst,
1799            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
1800      Requires<[In64BitMode]>;
1801def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1802          (MOV8mr_NOREX
1803            addr:$dst,
1804            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
1805      Requires<[In64BitMode]>;
1806
1807// Special pattern to catch the last step of __builtin_parity handling. Our
1808// goal is to use an xor of an h-register with the corresponding l-register.
1809// The above patterns would handle this on non 64-bit targets, but for 64-bit
1810// we need to be more careful. We're using a NOREX instruction here in case
1811// register allocation fails to keep the two registers together. So we need to
1812// make sure we can't accidentally mix R8-R15 with an h-register.
1813def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
1814                       (i8 (trunc (srl_su GR32:$src, (i8 8))))),
1815          (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
1816                        (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
1817
1818// (shl x, 1) ==> (add x, x)
1819// Note that if x is undef (immediate or otherwise), we could theoretically
1820// end up with the two uses of x getting different values, producing a result
1821// where the least significant bit is not 0. However, the probability of this
1822// happening is considered low enough that this is officially not a
1823// "real problem".
1824let Predicates = [NoNDD] in {
1825  def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1826  def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1827  def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1828  def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1829}
1830let Predicates = [HasNDD] in {
1831  def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr_ND  GR8 :$src1, GR8 :$src1)>;
1832  def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr_ND GR16:$src1, GR16:$src1)>;
1833  def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr_ND GR32:$src1, GR32:$src1)>;
1834  def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr_ND GR64:$src1, GR64:$src1)>;
1835}
1836
1837// Shift amount is implicitly masked.
1838multiclass MaskedShiftAmountPats<SDNode frag> {
1839  // (shift x (and y, 31)) ==> (shift x, y)
1840  // (shift x (and y, 63)) ==> (shift x, y)
1841  let Predicates = [NoNDD] in {
1842    def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
1843              (!cast<Instruction>(NAME # "8rCL") GR8:$src1)>;
1844    def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
1845              (!cast<Instruction>(NAME # "16rCL") GR16:$src1)>;
1846    def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1847              (!cast<Instruction>(NAME # "32rCL") GR32:$src1)>;
1848    def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1849              (!cast<Instruction>(NAME # "64rCL") GR64:$src1)>;
1850  }
1851  let Predicates = [HasNDD] in {
1852    def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
1853              (!cast<Instruction>(NAME # "8rCL_ND") GR8:$src1)>;
1854    def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
1855              (!cast<Instruction>(NAME # "16rCL_ND") GR16:$src1)>;
1856    def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1857              (!cast<Instruction>(NAME # "32rCL_ND") GR32:$src1)>;
1858    def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1859              (!cast<Instruction>(NAME # "64rCL_ND") GR64:$src1)>;
1860  }
1861
1862  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
1863            (!cast<Instruction>(NAME # "8mCL") addr:$dst)>;
1864  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
1865            (!cast<Instruction>(NAME # "16mCL") addr:$dst)>;
1866  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1867            (!cast<Instruction>(NAME # "32mCL") addr:$dst)>;
1868  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1869            (!cast<Instruction>(NAME # "64mCL") addr:$dst)>;
1870
1871  let Predicates = [HasNDD] in {
1872    def : Pat<(frag (loadi8 addr:$src), (shiftMask32 CL)),
1873              (!cast<Instruction>(NAME # "8mCL_ND") addr:$src)>;
1874    def : Pat<(frag (loadi16 addr:$src), (shiftMask32 CL)),
1875              (!cast<Instruction>(NAME # "16mCL_ND") addr:$src)>;
1876    def : Pat<(frag (loadi32 addr:$src), (shiftMask32 CL)),
1877              (!cast<Instruction>(NAME # "32mCL_ND") addr:$src)>;
1878    def : Pat<(frag (loadi64 addr:$src), (shiftMask64 CL)),
1879              (!cast<Instruction>(NAME # "64mCL_ND") addr:$src)>;
1880  }
1881}
1882
1883defm SHL : MaskedShiftAmountPats<shl>;
1884defm SHR : MaskedShiftAmountPats<srl>;
1885defm SAR : MaskedShiftAmountPats<sra>;
1886
1887// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
1888// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
1889// because over-rotating produces the same result. This is noted in the Intel
1890// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
1891// amount could affect EFLAGS results, but that does not matter because we are
1892// not tracking flags for these nodes.
1893multiclass MaskedRotateAmountPats<SDNode frag> {
1894  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
1895  let Predicates = [NoNDD] in {
1896    def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
1897              (!cast<Instruction>(NAME # "8rCL") GR8:$src1)>;
1898    def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
1899              (!cast<Instruction>(NAME # "16rCL") GR16:$src1)>;
1900    def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1901              (!cast<Instruction>(NAME # "32rCL") GR32:$src1)>;
1902    def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1903              (!cast<Instruction>(NAME # "64rCL") GR64:$src1)>;
1904  }
1905  let Predicates = [HasNDD] in {
1906    def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
1907              (!cast<Instruction>(NAME # "8rCL_ND") GR8:$src1)>;
1908    def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
1909              (!cast<Instruction>(NAME # "16rCL_ND") GR16:$src1)>;
1910    def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
1911              (!cast<Instruction>(NAME # "32rCL_ND") GR32:$src1)>;
1912    def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
1913              (!cast<Instruction>(NAME # "64rCL_ND") GR64:$src1)>;
1914  }
1915
1916  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
1917            (!cast<Instruction>(NAME # "8mCL") addr:$dst)>;
1918  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
1919            (!cast<Instruction>(NAME # "16mCL") addr:$dst)>;
1920  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
1921            (!cast<Instruction>(NAME # "32mCL") addr:$dst)>;
1922  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
1923            (!cast<Instruction>(NAME # "64mCL") addr:$dst)>;
1924
1925  let Predicates = [HasNDD] in {
1926    def : Pat<(frag (loadi8 addr:$src), (shiftMask8 CL)),
1927              (!cast<Instruction>(NAME # "8mCL_ND") addr:$src)>;
1928    def : Pat<(frag (loadi16 addr:$src), (shiftMask16 CL)),
1929              (!cast<Instruction>(NAME # "16mCL_ND") addr:$src)>;
1930    def : Pat<(frag (loadi32 addr:$src), (shiftMask32 CL)),
1931              (!cast<Instruction>(NAME # "32mCL_ND") addr:$src)>;
1932    def : Pat<(frag (loadi64 addr:$src), (shiftMask64 CL)),
1933              (!cast<Instruction>(NAME # "64mCL_ND") addr:$src)>;
1934  }
1935}
1936
1937defm ROL : MaskedRotateAmountPats<rotl>;
1938defm ROR : MaskedRotateAmountPats<rotr>;
1939
1940multiclass MaskedShlrdAmountPats<string suffix, Predicate p> {
1941  let Predicates = [p] in {
1942    // Double "funnel" shift amount is implicitly masked.
1943    // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
1944    def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
1945              (!cast<Instruction>(SHLD16rrCL#suffix) GR16:$src1, GR16:$src2)>;
1946    def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
1947              (!cast<Instruction>(SHRD16rrCL#suffix) GR16:$src1, GR16:$src2)>;
1948
1949    // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
1950    def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
1951              (!cast<Instruction>(SHLD32rrCL#suffix) GR32:$src1, GR32:$src2)>;
1952    def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
1953              (!cast<Instruction>(SHRD32rrCL#suffix) GR32:$src1, GR32:$src2)>;
1954
1955    // (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
1956    def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
1957              (!cast<Instruction>(SHLD64rrCL#suffix) GR64:$src1, GR64:$src2)>;
1958    def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
1959              (!cast<Instruction>(SHRD64rrCL#suffix) GR64:$src1, GR64:$src2)>;
1960  }
1961}
1962
1963defm : MaskedShlrdAmountPats<"", NoNDD>;
1964defm : MaskedShlrdAmountPats<"_ND", HasNDD>;
1965
1966// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
1967multiclass OneBitPats<RegisterClass rc, ValueType vt, Instruction btr,
1968                      Instruction bts, Instruction btc, PatFrag mask> {
1969  def : Pat<(and rc:$src1, (rotl -2, GR8:$src2)),
1970            (btr rc:$src1,
1971                 (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1972  def : Pat<(or rc:$src1, (shl 1, GR8:$src2)),
1973            (bts rc:$src1,
1974                 (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1975  def : Pat<(xor rc:$src1, (shl 1, GR8:$src2)),
1976            (btc rc:$src1,
1977                 (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1978
1979  // Similar to above, but removing unneeded masking of the shift amount.
1980  def : Pat<(and rc:$src1, (rotl -2, (mask GR8:$src2))),
1981            (btr rc:$src1,
1982                 (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1983  def : Pat<(or rc:$src1, (shl 1, (mask GR8:$src2))),
1984            (bts rc:$src1,
1985                (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1986  def : Pat<(xor rc:$src1, (shl 1, (mask GR8:$src2))),
1987            (btc rc:$src1,
1988                (INSERT_SUBREG (vt (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
1989}
1990
1991defm : OneBitPats<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
1992defm : OneBitPats<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
1993defm : OneBitPats<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;
1994
1995//===----------------------------------------------------------------------===//
1996// EFLAGS-defining Patterns
1997//===----------------------------------------------------------------------===//
1998
1999multiclass EFLAGSDefiningPats<string suffix, Predicate p> {
2000  let Predicates = [p] in {
2001    // add reg, reg
2002    def : Pat<(add GR8 :$src1, GR8 :$src2), (!cast<Instruction>(ADD8rr#suffix) GR8 :$src1, GR8 :$src2)>;
2003    def : Pat<(add GR16:$src1, GR16:$src2), (!cast<Instruction>(ADD16rr#suffix) GR16:$src1, GR16:$src2)>;
2004    def : Pat<(add GR32:$src1, GR32:$src2), (!cast<Instruction>(ADD32rr#suffix) GR32:$src1, GR32:$src2)>;
2005    def : Pat<(add GR64:$src1, GR64:$src2), (!cast<Instruction>(ADD64rr#suffix) GR64:$src1, GR64:$src2)>;
2006
2007    // add reg, mem
2008    def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
2009              (!cast<Instruction>(ADD8rm#suffix) GR8:$src1, addr:$src2)>;
2010    def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
2011              (!cast<Instruction>(ADD16rm#suffix) GR16:$src1, addr:$src2)>;
2012    def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
2013              (!cast<Instruction>(ADD32rm#suffix) GR32:$src1, addr:$src2)>;
2014    def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
2015              (!cast<Instruction>(ADD64rm#suffix) GR64:$src1, addr:$src2)>;
2016
2017    // add reg, imm
2018    def : Pat<(add GR8 :$src1, imm:$src2), (!cast<Instruction>(ADD8ri#suffix) GR8:$src1 , imm:$src2)>;
2019    def : Pat<(add GR16:$src1, imm:$src2), (!cast<Instruction>(ADD16ri#suffix) GR16:$src1, imm:$src2)>;
2020    def : Pat<(add GR32:$src1, imm:$src2), (!cast<Instruction>(ADD32ri#suffix) GR32:$src1, imm:$src2)>;
2021    def : Pat<(add GR64:$src1, i64immSExt32:$src2), (!cast<Instruction>(ADD64ri32#suffix) GR64:$src1, i64immSExt32:$src2)>;
2022
2023    // sub reg, reg
2024    def : Pat<(sub GR8 :$src1, GR8 :$src2), (!cast<Instruction>(SUB8rr#suffix)  GR8 :$src1, GR8 :$src2)>;
2025    def : Pat<(sub GR16:$src1, GR16:$src2), (!cast<Instruction>(SUB16rr#suffix) GR16:$src1, GR16:$src2)>;
2026    def : Pat<(sub GR32:$src1, GR32:$src2), (!cast<Instruction>(SUB32rr#suffix) GR32:$src1, GR32:$src2)>;
2027    def : Pat<(sub GR64:$src1, GR64:$src2), (!cast<Instruction>(SUB64rr#suffix) GR64:$src1, GR64:$src2)>;
2028
2029    // sub reg, mem
2030    def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
2031              (!cast<Instruction>(SUB8rm#suffix) GR8:$src1, addr:$src2)>;
2032    def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
2033              (!cast<Instruction>(SUB16rm#suffix) GR16:$src1, addr:$src2)>;
2034    def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
2035              (!cast<Instruction>(SUB32rm#suffix) GR32:$src1, addr:$src2)>;
2036    def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
2037              (!cast<Instruction>(SUB64rm#suffix) GR64:$src1, addr:$src2)>;
2038
2039    // sub reg, imm
2040    def : Pat<(sub GR8:$src1, imm:$src2),
2041              (!cast<Instruction>(SUB8ri#suffix) GR8:$src1, imm:$src2)>;
2042    def : Pat<(sub GR16:$src1, imm:$src2),
2043              (!cast<Instruction>(SUB16ri#suffix) GR16:$src1, imm:$src2)>;
2044    def : Pat<(sub GR32:$src1, imm:$src2),
2045              (!cast<Instruction>(SUB32ri#suffix) GR32:$src1, imm:$src2)>;
2046    def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
2047              (!cast<Instruction>(SUB64ri32#suffix) GR64:$src1, i64immSExt32:$src2)>;
2048
2049    // sub 0, reg
2050    def : Pat<(X86sub_flag 0, GR8 :$src), (!cast<Instruction>(NEG8r#suffix)  GR8 :$src)>;
2051    def : Pat<(X86sub_flag 0, GR16:$src), (!cast<Instruction>(NEG16r#suffix) GR16:$src)>;
2052    def : Pat<(X86sub_flag 0, GR32:$src), (!cast<Instruction>(NEG32r#suffix) GR32:$src)>;
2053    def : Pat<(X86sub_flag 0, GR64:$src), (!cast<Instruction>(NEG64r#suffix) GR64:$src)>;
2054
2055    // mul reg, reg
2056    def : Pat<(mul GR16:$src1, GR16:$src2),
2057              (!cast<Instruction>(IMUL16rr#suffix) GR16:$src1, GR16:$src2)>;
2058    def : Pat<(mul GR32:$src1, GR32:$src2),
2059              (!cast<Instruction>(IMUL32rr#suffix) GR32:$src1, GR32:$src2)>;
2060    def : Pat<(mul GR64:$src1, GR64:$src2),
2061              (!cast<Instruction>(IMUL64rr#suffix) GR64:$src1, GR64:$src2)>;
2062
2063    // mul reg, mem
2064    def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
2065              (!cast<Instruction>(IMUL16rm#suffix) GR16:$src1, addr:$src2)>;
2066    def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
2067              (!cast<Instruction>(IMUL32rm#suffix) GR32:$src1, addr:$src2)>;
2068    def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
2069              (!cast<Instruction>(IMUL64rm#suffix) GR64:$src1, addr:$src2)>;
2070
2071    // or reg/reg.
2072    def : Pat<(or GR8 :$src1, GR8 :$src2), (!cast<Instruction>(OR8rr#suffix)  GR8 :$src1, GR8 :$src2)>;
2073    def : Pat<(or GR16:$src1, GR16:$src2), (!cast<Instruction>(OR16rr#suffix) GR16:$src1, GR16:$src2)>;
2074    def : Pat<(or GR32:$src1, GR32:$src2), (!cast<Instruction>(OR32rr#suffix) GR32:$src1, GR32:$src2)>;
2075    def : Pat<(or GR64:$src1, GR64:$src2), (!cast<Instruction>(OR64rr#suffix) GR64:$src1, GR64:$src2)>;
2076
2077    // or reg/mem
2078    def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
2079              (!cast<Instruction>(OR8rm#suffix) GR8:$src1, addr:$src2)>;
2080    def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
2081              (!cast<Instruction>(OR16rm#suffix) GR16:$src1, addr:$src2)>;
2082    def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
2083              (!cast<Instruction>(OR32rm#suffix) GR32:$src1, addr:$src2)>;
2084    def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
2085              (!cast<Instruction>(OR64rm#suffix) GR64:$src1, addr:$src2)>;
2086
2087    // or reg/imm
2088    def : Pat<(or GR8:$src1 , imm:$src2), (!cast<Instruction>(OR8ri#suffix)  GR8 :$src1, imm:$src2)>;
2089    def : Pat<(or GR16:$src1, imm:$src2), (!cast<Instruction>(OR16ri#suffix) GR16:$src1, imm:$src2)>;
2090    def : Pat<(or GR32:$src1, imm:$src2), (!cast<Instruction>(OR32ri#suffix) GR32:$src1, imm:$src2)>;
2091    def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2092              (!cast<Instruction>(OR64ri32#suffix) GR64:$src1, i64immSExt32:$src2)>;
2093
2094    // xor reg/reg
2095    def : Pat<(xor GR8 :$src1, GR8 :$src2), (!cast<Instruction>(XOR8rr#suffix)  GR8 :$src1, GR8 :$src2)>;
2096    def : Pat<(xor GR16:$src1, GR16:$src2), (!cast<Instruction>(XOR16rr#suffix) GR16:$src1, GR16:$src2)>;
2097    def : Pat<(xor GR32:$src1, GR32:$src2), (!cast<Instruction>(XOR32rr#suffix) GR32:$src1, GR32:$src2)>;
2098    def : Pat<(xor GR64:$src1, GR64:$src2), (!cast<Instruction>(XOR64rr#suffix) GR64:$src1, GR64:$src2)>;
2099
2100    // xor reg/mem
2101    def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
2102              (!cast<Instruction>(XOR8rm#suffix) GR8:$src1, addr:$src2)>;
2103    def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
2104              (!cast<Instruction>(XOR16rm#suffix) GR16:$src1, addr:$src2)>;
2105    def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
2106              (!cast<Instruction>(XOR32rm#suffix) GR32:$src1, addr:$src2)>;
2107    def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2108              (!cast<Instruction>(XOR64rm#suffix) GR64:$src1, addr:$src2)>;
2109
2110    // xor reg/imm
2111    def : Pat<(xor GR8:$src1, imm:$src2),
2112              (!cast<Instruction>(XOR8ri#suffix) GR8:$src1, imm:$src2)>;
2113    def : Pat<(xor GR16:$src1, imm:$src2),
2114              (!cast<Instruction>(XOR16ri#suffix) GR16:$src1, imm:$src2)>;
2115    def : Pat<(xor GR32:$src1, imm:$src2),
2116              (!cast<Instruction>(XOR32ri#suffix) GR32:$src1, imm:$src2)>;
2117    def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2118              (!cast<Instruction>(XOR64ri32#suffix) GR64:$src1, i64immSExt32:$src2)>;
2119
2120    // and reg/reg
2121    def : Pat<(and GR8 :$src1, GR8 :$src2), (!cast<Instruction>(AND8rr#suffix)  GR8 :$src1, GR8 :$src2)>;
2122    def : Pat<(and GR16:$src1, GR16:$src2), (!cast<Instruction>(AND16rr#suffix) GR16:$src1, GR16:$src2)>;
2123    def : Pat<(and GR32:$src1, GR32:$src2), (!cast<Instruction>(AND32rr#suffix) GR32:$src1, GR32:$src2)>;
2124    def : Pat<(and GR64:$src1, GR64:$src2), (!cast<Instruction>(AND64rr#suffix) GR64:$src1, GR64:$src2)>;
2125
2126    // and reg/mem
2127    def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
2128              (!cast<Instruction>(AND8rm#suffix) GR8:$src1, addr:$src2)>;
2129    def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
2130              (!cast<Instruction>(AND16rm#suffix) GR16:$src1, addr:$src2)>;
2131    def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
2132              (!cast<Instruction>(AND32rm#suffix) GR32:$src1, addr:$src2)>;
2133    def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2134              (!cast<Instruction>(AND64rm#suffix) GR64:$src1, addr:$src2)>;
2135
2136    // and reg/imm
2137    def : Pat<(and GR8:$src1, imm:$src2),
2138              (!cast<Instruction>(AND8ri#suffix) GR8:$src1, imm:$src2)>;
2139    def : Pat<(and GR16:$src1, imm:$src2),
2140              (!cast<Instruction>(AND16ri#suffix) GR16:$src1, imm:$src2)>;
2141    def : Pat<(and GR32:$src1, imm:$src2),
2142              (!cast<Instruction>(AND32ri#suffix) GR32:$src1, imm:$src2)>;
2143    def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2144              (!cast<Instruction>(AND64ri32#suffix) GR64:$src1, i64immSExt32:$src2)>;
2145  }
2146
2147  // Increment/Decrement reg.
2148  // Do not make INC/DEC if it is slow
2149  let Predicates = [UseIncDec, p] in {
2150    def : Pat<(add GR8:$src, 1),   (!cast<Instruction>(INC8r#suffix) GR8:$src)>;
2151    def : Pat<(add GR16:$src, 1),  (!cast<Instruction>(INC16r#suffix) GR16:$src)>;
2152    def : Pat<(add GR32:$src, 1),  (!cast<Instruction>(INC32r#suffix) GR32:$src)>;
2153    def : Pat<(add GR64:$src, 1),  (!cast<Instruction>(INC64r#suffix) GR64:$src)>;
2154    def : Pat<(add GR8:$src, -1),  (!cast<Instruction>(DEC8r#suffix) GR8:$src)>;
2155    def : Pat<(add GR16:$src, -1), (!cast<Instruction>(DEC16r#suffix) GR16:$src)>;
2156    def : Pat<(add GR32:$src, -1), (!cast<Instruction>(DEC32r#suffix) GR32:$src)>;
2157    def : Pat<(add GR64:$src, -1), (!cast<Instruction>(DEC64r#suffix) GR64:$src)>;
2158
2159    def : Pat<(X86add_flag_nocf GR8:$src, -1),  (!cast<Instruction>(DEC8r#suffix) GR8:$src)>;
2160    def : Pat<(X86add_flag_nocf GR16:$src, -1), (!cast<Instruction>(DEC16r#suffix) GR16:$src)>;
2161    def : Pat<(X86add_flag_nocf GR32:$src, -1), (!cast<Instruction>(DEC32r#suffix) GR32:$src)>;
2162    def : Pat<(X86add_flag_nocf GR64:$src, -1), (!cast<Instruction>(DEC64r#suffix) GR64:$src)>;
2163    def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (!cast<Instruction>(INC8r#suffix) GR8:$src)>;
2164    def : Pat<(X86sub_flag_nocf GR16:$src, -1), (!cast<Instruction>(INC16r#suffix) GR16:$src)>;
2165    def : Pat<(X86sub_flag_nocf GR32:$src, -1), (!cast<Instruction>(INC32r#suffix) GR32:$src)>;
2166    def : Pat<(X86sub_flag_nocf GR64:$src, -1), (!cast<Instruction>(INC64r#suffix) GR64:$src)>;
2167
2168    def : Pat<(or_is_add GR8:$src, 1),   (!cast<Instruction>(INC8r#suffix) GR8:$src)>;
2169    def : Pat<(or_is_add GR16:$src, 1),  (!cast<Instruction>(INC16r#suffix) GR16:$src)>;
2170    def : Pat<(or_is_add GR32:$src, 1),  (!cast<Instruction>(INC32r#suffix) GR32:$src)>;
2171    def : Pat<(or_is_add GR64:$src, 1),  (!cast<Instruction>(INC64r#suffix) GR64:$src)>;
2172  }
2173}
2174
2175defm : EFLAGSDefiningPats<"", NoNDD>;
2176defm : EFLAGSDefiningPats<"_ND", HasNDD>;
2177
2178// mul reg, imm
2179def : Pat<(mul GR16:$src1, imm:$src2),
2180          (IMUL16rri GR16:$src1, imm:$src2)>;
2181def : Pat<(mul GR32:$src1, imm:$src2),
2182          (IMUL32rri GR32:$src1, imm:$src2)>;
2183def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
2184          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
2185
2186// reg = mul mem, imm
2187def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
2188          (IMUL16rmi addr:$src1, imm:$src2)>;
2189def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
2190          (IMUL32rmi addr:$src1, imm:$src2)>;
2191def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
2192          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
2193
2194// Bit scan instruction patterns to match explicit zero-undef behavior.
2195def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
2196def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
2197def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
2198def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
2199def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
2200def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
2201
2202// When HasMOVBE is enabled it is possible to get a non-legalized
2203// register-register 16 bit bswap. This maps it to a ROL instruction.
2204let Predicates = [HasMOVBE] in {
2205 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
2206}
2207