xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp (revision a4e5e0106ac7145f56eb39a691e302cabb4635be)
1 //===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "X86TargetTransformInfo.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/IntrinsicsX86.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 #include <optional>
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "x86tti"
26 
27 /// Return a constant boolean vector that has true elements in all positions
28 /// where the input constant data vector has an element with the sign bit set.
29 static Constant *getNegativeIsTrueBoolVec(Constant *V) {
30   VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType()));
31   V = ConstantExpr::getBitCast(V, IntTy);
32   V = ConstantExpr::getICmp(CmpInst::ICMP_SGT, Constant::getNullValue(IntTy),
33                             V);
34   return V;
35 }
36 
37 /// Convert the x86 XMM integer vector mask to a vector of bools based on
38 /// each element's most significant bit (the sign bit).
39 static Value *getBoolVecFromMask(Value *Mask) {
40   // Fold Constant Mask.
41   if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask))
42     return getNegativeIsTrueBoolVec(ConstantMask);
43 
44   // Mask was extended from a boolean vector.
45   Value *ExtMask;
46   if (PatternMatch::match(
47           Mask, PatternMatch::m_SExt(PatternMatch::m_Value(ExtMask))) &&
48       ExtMask->getType()->isIntOrIntVectorTy(1))
49     return ExtMask;
50 
51   return nullptr;
52 }
53 
54 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
55 // XMM register mask efficiently, we could transform all x86 masked intrinsics
56 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
57 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
58   Value *Ptr = II.getOperand(0);
59   Value *Mask = II.getOperand(1);
60   Constant *ZeroVec = Constant::getNullValue(II.getType());
61 
62   // Zero Mask - masked load instruction creates a zero vector.
63   if (isa<ConstantAggregateZero>(Mask))
64     return IC.replaceInstUsesWith(II, ZeroVec);
65 
66   // The mask is constant or extended from a bool vector. Convert this x86
67   // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
68   if (Value *BoolMask = getBoolVecFromMask(Mask)) {
69     // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
70     // the LLVM intrinsic definition for the pointer argument.
71     unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
72     PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
73     Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
74 
75     // The pass-through vector for an x86 masked load is a zero vector.
76     CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad(
77         II.getType(), PtrCast, Align(1), BoolMask, ZeroVec);
78     return IC.replaceInstUsesWith(II, NewMaskedLoad);
79   }
80 
81   return nullptr;
82 }
83 
84 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
85 // XMM register mask efficiently, we could transform all x86 masked intrinsics
86 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
87 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
88   Value *Ptr = II.getOperand(0);
89   Value *Mask = II.getOperand(1);
90   Value *Vec = II.getOperand(2);
91 
92   // Zero Mask - this masked store instruction does nothing.
93   if (isa<ConstantAggregateZero>(Mask)) {
94     IC.eraseInstFromFunction(II);
95     return true;
96   }
97 
98   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
99   // anything else at this level.
100   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
101     return false;
102 
103   // The mask is constant or extended from a bool vector. Convert this x86
104   // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
105   if (Value *BoolMask = getBoolVecFromMask(Mask)) {
106     unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
107     PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
108     Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
109 
110     IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);
111 
112     // 'Replace uses' doesn't work for stores. Erase the original masked store.
113     IC.eraseInstFromFunction(II);
114     return true;
115   }
116 
117   return false;
118 }
119 
120 static Value *simplifyX86immShift(const IntrinsicInst &II,
121                                   InstCombiner::BuilderTy &Builder) {
122   bool LogicalShift = false;
123   bool ShiftLeft = false;
124   bool IsImm = false;
125 
126   switch (II.getIntrinsicID()) {
127   default:
128     llvm_unreachable("Unexpected intrinsic!");
129   case Intrinsic::x86_sse2_psrai_d:
130   case Intrinsic::x86_sse2_psrai_w:
131   case Intrinsic::x86_avx2_psrai_d:
132   case Intrinsic::x86_avx2_psrai_w:
133   case Intrinsic::x86_avx512_psrai_q_128:
134   case Intrinsic::x86_avx512_psrai_q_256:
135   case Intrinsic::x86_avx512_psrai_d_512:
136   case Intrinsic::x86_avx512_psrai_q_512:
137   case Intrinsic::x86_avx512_psrai_w_512:
138     IsImm = true;
139     [[fallthrough]];
140   case Intrinsic::x86_sse2_psra_d:
141   case Intrinsic::x86_sse2_psra_w:
142   case Intrinsic::x86_avx2_psra_d:
143   case Intrinsic::x86_avx2_psra_w:
144   case Intrinsic::x86_avx512_psra_q_128:
145   case Intrinsic::x86_avx512_psra_q_256:
146   case Intrinsic::x86_avx512_psra_d_512:
147   case Intrinsic::x86_avx512_psra_q_512:
148   case Intrinsic::x86_avx512_psra_w_512:
149     LogicalShift = false;
150     ShiftLeft = false;
151     break;
152   case Intrinsic::x86_sse2_psrli_d:
153   case Intrinsic::x86_sse2_psrli_q:
154   case Intrinsic::x86_sse2_psrli_w:
155   case Intrinsic::x86_avx2_psrli_d:
156   case Intrinsic::x86_avx2_psrli_q:
157   case Intrinsic::x86_avx2_psrli_w:
158   case Intrinsic::x86_avx512_psrli_d_512:
159   case Intrinsic::x86_avx512_psrli_q_512:
160   case Intrinsic::x86_avx512_psrli_w_512:
161     IsImm = true;
162     [[fallthrough]];
163   case Intrinsic::x86_sse2_psrl_d:
164   case Intrinsic::x86_sse2_psrl_q:
165   case Intrinsic::x86_sse2_psrl_w:
166   case Intrinsic::x86_avx2_psrl_d:
167   case Intrinsic::x86_avx2_psrl_q:
168   case Intrinsic::x86_avx2_psrl_w:
169   case Intrinsic::x86_avx512_psrl_d_512:
170   case Intrinsic::x86_avx512_psrl_q_512:
171   case Intrinsic::x86_avx512_psrl_w_512:
172     LogicalShift = true;
173     ShiftLeft = false;
174     break;
175   case Intrinsic::x86_sse2_pslli_d:
176   case Intrinsic::x86_sse2_pslli_q:
177   case Intrinsic::x86_sse2_pslli_w:
178   case Intrinsic::x86_avx2_pslli_d:
179   case Intrinsic::x86_avx2_pslli_q:
180   case Intrinsic::x86_avx2_pslli_w:
181   case Intrinsic::x86_avx512_pslli_d_512:
182   case Intrinsic::x86_avx512_pslli_q_512:
183   case Intrinsic::x86_avx512_pslli_w_512:
184     IsImm = true;
185     [[fallthrough]];
186   case Intrinsic::x86_sse2_psll_d:
187   case Intrinsic::x86_sse2_psll_q:
188   case Intrinsic::x86_sse2_psll_w:
189   case Intrinsic::x86_avx2_psll_d:
190   case Intrinsic::x86_avx2_psll_q:
191   case Intrinsic::x86_avx2_psll_w:
192   case Intrinsic::x86_avx512_psll_d_512:
193   case Intrinsic::x86_avx512_psll_q_512:
194   case Intrinsic::x86_avx512_psll_w_512:
195     LogicalShift = true;
196     ShiftLeft = true;
197     break;
198   }
199   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
200 
201   Value *Vec = II.getArgOperand(0);
202   Value *Amt = II.getArgOperand(1);
203   auto *VT = cast<FixedVectorType>(Vec->getType());
204   Type *SVT = VT->getElementType();
205   Type *AmtVT = Amt->getType();
206   unsigned VWidth = VT->getNumElements();
207   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
208 
209   // If the shift amount is guaranteed to be in-range we can replace it with a
210   // generic shift. If its guaranteed to be out of range, logical shifts combine
211   // to zero and arithmetic shifts are clamped to (BitWidth - 1).
212   if (IsImm) {
213     assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type");
214     KnownBits KnownAmtBits =
215         llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
216     if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
217       Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
218       Amt = Builder.CreateVectorSplat(VWidth, Amt);
219       return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
220                                         : Builder.CreateLShr(Vec, Amt))
221                            : Builder.CreateAShr(Vec, Amt));
222     }
223     if (KnownAmtBits.getMinValue().uge(BitWidth)) {
224       if (LogicalShift)
225         return ConstantAggregateZero::get(VT);
226       Amt = ConstantInt::get(SVT, BitWidth - 1);
227       return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
228     }
229   } else {
230     // Ensure the first element has an in-range value and the rest of the
231     // elements in the bottom 64 bits are zero.
232     assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
233            cast<VectorType>(AmtVT)->getElementType() == SVT &&
234            "Unexpected shift-by-scalar type");
235     unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements();
236     APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
237     APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
238     KnownBits KnownLowerBits = llvm::computeKnownBits(
239         Amt, DemandedLower, II.getModule()->getDataLayout());
240     KnownBits KnownUpperBits = llvm::computeKnownBits(
241         Amt, DemandedUpper, II.getModule()->getDataLayout());
242     if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
243         (DemandedUpper.isZero() || KnownUpperBits.isZero())) {
244       SmallVector<int, 16> ZeroSplat(VWidth, 0);
245       Amt = Builder.CreateShuffleVector(Amt, ZeroSplat);
246       return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
247                                         : Builder.CreateLShr(Vec, Amt))
248                            : Builder.CreateAShr(Vec, Amt));
249     }
250   }
251 
252   // Simplify if count is constant vector.
253   auto *CDV = dyn_cast<ConstantDataVector>(Amt);
254   if (!CDV)
255     return nullptr;
256 
257   // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
258   // operand to compute the shift amount.
259   assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
260          cast<VectorType>(AmtVT)->getElementType() == SVT &&
261          "Unexpected shift-by-scalar type");
262 
263   // Concatenate the sub-elements to create the 64-bit value.
264   APInt Count(64, 0);
265   for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
266     unsigned SubEltIdx = (NumSubElts - 1) - i;
267     auto *SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
268     Count <<= BitWidth;
269     Count |= SubElt->getValue().zextOrTrunc(64);
270   }
271 
272   // If shift-by-zero then just return the original value.
273   if (Count.isZero())
274     return Vec;
275 
276   // Handle cases when Shift >= BitWidth.
277   if (Count.uge(BitWidth)) {
278     // If LogicalShift - just return zero.
279     if (LogicalShift)
280       return ConstantAggregateZero::get(VT);
281 
282     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
283     Count = APInt(64, BitWidth - 1);
284   }
285 
286   // Get a constant vector of the same type as the first operand.
287   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
288   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
289 
290   if (ShiftLeft)
291     return Builder.CreateShl(Vec, ShiftVec);
292 
293   if (LogicalShift)
294     return Builder.CreateLShr(Vec, ShiftVec);
295 
296   return Builder.CreateAShr(Vec, ShiftVec);
297 }
298 
299 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
300 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
301 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
302 static Value *simplifyX86varShift(const IntrinsicInst &II,
303                                   InstCombiner::BuilderTy &Builder) {
304   bool LogicalShift = false;
305   bool ShiftLeft = false;
306 
307   switch (II.getIntrinsicID()) {
308   default:
309     llvm_unreachable("Unexpected intrinsic!");
310   case Intrinsic::x86_avx2_psrav_d:
311   case Intrinsic::x86_avx2_psrav_d_256:
312   case Intrinsic::x86_avx512_psrav_q_128:
313   case Intrinsic::x86_avx512_psrav_q_256:
314   case Intrinsic::x86_avx512_psrav_d_512:
315   case Intrinsic::x86_avx512_psrav_q_512:
316   case Intrinsic::x86_avx512_psrav_w_128:
317   case Intrinsic::x86_avx512_psrav_w_256:
318   case Intrinsic::x86_avx512_psrav_w_512:
319     LogicalShift = false;
320     ShiftLeft = false;
321     break;
322   case Intrinsic::x86_avx2_psrlv_d:
323   case Intrinsic::x86_avx2_psrlv_d_256:
324   case Intrinsic::x86_avx2_psrlv_q:
325   case Intrinsic::x86_avx2_psrlv_q_256:
326   case Intrinsic::x86_avx512_psrlv_d_512:
327   case Intrinsic::x86_avx512_psrlv_q_512:
328   case Intrinsic::x86_avx512_psrlv_w_128:
329   case Intrinsic::x86_avx512_psrlv_w_256:
330   case Intrinsic::x86_avx512_psrlv_w_512:
331     LogicalShift = true;
332     ShiftLeft = false;
333     break;
334   case Intrinsic::x86_avx2_psllv_d:
335   case Intrinsic::x86_avx2_psllv_d_256:
336   case Intrinsic::x86_avx2_psllv_q:
337   case Intrinsic::x86_avx2_psllv_q_256:
338   case Intrinsic::x86_avx512_psllv_d_512:
339   case Intrinsic::x86_avx512_psllv_q_512:
340   case Intrinsic::x86_avx512_psllv_w_128:
341   case Intrinsic::x86_avx512_psllv_w_256:
342   case Intrinsic::x86_avx512_psllv_w_512:
343     LogicalShift = true;
344     ShiftLeft = true;
345     break;
346   }
347   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
348 
349   Value *Vec = II.getArgOperand(0);
350   Value *Amt = II.getArgOperand(1);
351   auto *VT = cast<FixedVectorType>(II.getType());
352   Type *SVT = VT->getElementType();
353   int NumElts = VT->getNumElements();
354   int BitWidth = SVT->getIntegerBitWidth();
355 
356   // If the shift amount is guaranteed to be in-range we can replace it with a
357   // generic shift.
358   KnownBits KnownAmt =
359       llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
360   if (KnownAmt.getMaxValue().ult(BitWidth)) {
361     return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
362                                       : Builder.CreateLShr(Vec, Amt))
363                          : Builder.CreateAShr(Vec, Amt));
364   }
365 
366   // Simplify if all shift amounts are constant/undef.
367   auto *CShift = dyn_cast<Constant>(Amt);
368   if (!CShift)
369     return nullptr;
370 
371   // Collect each element's shift amount.
372   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
373   bool AnyOutOfRange = false;
374   SmallVector<int, 8> ShiftAmts;
375   for (int I = 0; I < NumElts; ++I) {
376     auto *CElt = CShift->getAggregateElement(I);
377     if (isa_and_nonnull<UndefValue>(CElt)) {
378       ShiftAmts.push_back(-1);
379       continue;
380     }
381 
382     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
383     if (!COp)
384       return nullptr;
385 
386     // Handle out of range shifts.
387     // If LogicalShift - set to BitWidth (special case).
388     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
389     APInt ShiftVal = COp->getValue();
390     if (ShiftVal.uge(BitWidth)) {
391       AnyOutOfRange = LogicalShift;
392       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
393       continue;
394     }
395 
396     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
397   }
398 
399   // If all elements out of range or UNDEF, return vector of zeros/undefs.
400   // ArithmeticShift should only hit this if they are all UNDEF.
401   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
402   if (llvm::all_of(ShiftAmts, OutOfRange)) {
403     SmallVector<Constant *, 8> ConstantVec;
404     for (int Idx : ShiftAmts) {
405       if (Idx < 0) {
406         ConstantVec.push_back(UndefValue::get(SVT));
407       } else {
408         assert(LogicalShift && "Logical shift expected");
409         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
410       }
411     }
412     return ConstantVector::get(ConstantVec);
413   }
414 
415   // We can't handle only some out of range values with generic logical shifts.
416   if (AnyOutOfRange)
417     return nullptr;
418 
419   // Build the shift amount constant vector.
420   SmallVector<Constant *, 8> ShiftVecAmts;
421   for (int Idx : ShiftAmts) {
422     if (Idx < 0)
423       ShiftVecAmts.push_back(UndefValue::get(SVT));
424     else
425       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
426   }
427   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
428 
429   if (ShiftLeft)
430     return Builder.CreateShl(Vec, ShiftVec);
431 
432   if (LogicalShift)
433     return Builder.CreateLShr(Vec, ShiftVec);
434 
435   return Builder.CreateAShr(Vec, ShiftVec);
436 }
437 
438 static Value *simplifyX86pack(IntrinsicInst &II,
439                               InstCombiner::BuilderTy &Builder, bool IsSigned) {
440   Value *Arg0 = II.getArgOperand(0);
441   Value *Arg1 = II.getArgOperand(1);
442   Type *ResTy = II.getType();
443 
444   // Fast all undef handling.
445   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
446     return UndefValue::get(ResTy);
447 
448   auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
449   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
450   unsigned NumSrcElts = ArgTy->getNumElements();
451   assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
452          "Unexpected packing types");
453 
454   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
455   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
456   unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
457   assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
458          "Unexpected packing types");
459 
460   // Constant folding.
461   if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
462     return nullptr;
463 
464   // Clamp Values - signed/unsigned both use signed clamp values, but they
465   // differ on the min/max values.
466   APInt MinValue, MaxValue;
467   if (IsSigned) {
468     // PACKSS: Truncate signed value with signed saturation.
469     // Source values less than dst minint are saturated to minint.
470     // Source values greater than dst maxint are saturated to maxint.
471     MinValue =
472         APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
473     MaxValue =
474         APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
475   } else {
476     // PACKUS: Truncate signed value with unsigned saturation.
477     // Source values less than zero are saturated to zero.
478     // Source values greater than dst maxuint are saturated to maxuint.
479     MinValue = APInt::getZero(SrcScalarSizeInBits);
480     MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
481   }
482 
483   auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
484   auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
485   Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
486   Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
487   Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
488   Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
489 
490   // Shuffle clamped args together at the lane level.
491   SmallVector<int, 32> PackMask;
492   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
493     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
494       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
495     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
496       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
497   }
498   auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
499 
500   // Truncate to dst size.
501   return Builder.CreateTrunc(Shuffle, ResTy);
502 }
503 
504 static Value *simplifyX86movmsk(const IntrinsicInst &II,
505                                 InstCombiner::BuilderTy &Builder) {
506   Value *Arg = II.getArgOperand(0);
507   Type *ResTy = II.getType();
508 
509   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
510   if (isa<UndefValue>(Arg))
511     return Constant::getNullValue(ResTy);
512 
513   auto *ArgTy = dyn_cast<FixedVectorType>(Arg->getType());
514   // We can't easily peek through x86_mmx types.
515   if (!ArgTy)
516     return nullptr;
517 
518   // Expand MOVMSK to compare/bitcast/zext:
519   // e.g. PMOVMSKB(v16i8 x):
520   // %cmp = icmp slt <16 x i8> %x, zeroinitializer
521   // %int = bitcast <16 x i1> %cmp to i16
522   // %res = zext i16 %int to i32
523   unsigned NumElts = ArgTy->getNumElements();
524   Type *IntegerTy = Builder.getIntNTy(NumElts);
525 
526   Value *Res = Builder.CreateBitCast(Arg, VectorType::getInteger(ArgTy));
527   Res = Builder.CreateIsNeg(Res);
528   Res = Builder.CreateBitCast(Res, IntegerTy);
529   Res = Builder.CreateZExtOrTrunc(Res, ResTy);
530   return Res;
531 }
532 
533 static Value *simplifyX86addcarry(const IntrinsicInst &II,
534                                   InstCombiner::BuilderTy &Builder) {
535   Value *CarryIn = II.getArgOperand(0);
536   Value *Op1 = II.getArgOperand(1);
537   Value *Op2 = II.getArgOperand(2);
538   Type *RetTy = II.getType();
539   Type *OpTy = Op1->getType();
540   assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
541          RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
542          "Unexpected types for x86 addcarry");
543 
544   // If carry-in is zero, this is just an unsigned add with overflow.
545   if (match(CarryIn, PatternMatch::m_ZeroInt())) {
546     Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
547                                           {Op1, Op2});
548     // The types have to be adjusted to match the x86 call types.
549     Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
550     Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
551                                        Builder.getInt8Ty());
552     Value *Res = PoisonValue::get(RetTy);
553     Res = Builder.CreateInsertValue(Res, UAddOV, 0);
554     return Builder.CreateInsertValue(Res, UAddResult, 1);
555   }
556 
557   return nullptr;
558 }
559 
560 static Value *simplifyTernarylogic(const IntrinsicInst &II,
561                                    InstCombiner::BuilderTy &Builder) {
562 
563   auto *ArgImm = dyn_cast<ConstantInt>(II.getArgOperand(3));
564   if (!ArgImm || ArgImm->getValue().uge(256))
565     return nullptr;
566 
567   Value *ArgA = II.getArgOperand(0);
568   Value *ArgB = II.getArgOperand(1);
569   Value *ArgC = II.getArgOperand(2);
570 
571   Type *Ty = II.getType();
572 
573   auto Or = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
574     return {Builder.CreateOr(Lhs.first, Rhs.first), Lhs.second | Rhs.second};
575   };
576   auto Xor = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
577     return {Builder.CreateXor(Lhs.first, Rhs.first), Lhs.second ^ Rhs.second};
578   };
579   auto And = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
580     return {Builder.CreateAnd(Lhs.first, Rhs.first), Lhs.second & Rhs.second};
581   };
582   auto Not = [&](auto V) -> std::pair<Value *, uint8_t> {
583     return {Builder.CreateNot(V.first), ~V.second};
584   };
585   auto Nor = [&](auto Lhs, auto Rhs) { return Not(Or(Lhs, Rhs)); };
586   auto Xnor = [&](auto Lhs, auto Rhs) { return Not(Xor(Lhs, Rhs)); };
587   auto Nand = [&](auto Lhs, auto Rhs) { return Not(And(Lhs, Rhs)); };
588 
589   bool AIsConst = match(ArgA, PatternMatch::m_ImmConstant());
590   bool BIsConst = match(ArgB, PatternMatch::m_ImmConstant());
591   bool CIsConst = match(ArgC, PatternMatch::m_ImmConstant());
592 
593   bool ABIsConst = AIsConst && BIsConst;
594   bool ACIsConst = AIsConst && CIsConst;
595   bool BCIsConst = BIsConst && CIsConst;
596   bool ABCIsConst = AIsConst && BIsConst && CIsConst;
597 
598   // Use for verification. Its a big table. Its difficult to go from Imm ->
599   // logic ops, but easy to verify that a set of logic ops is correct. We track
600   // the logic ops through the second value in the pair. At the end it should
601   // equal Imm.
602   std::pair<Value *, uint8_t> A = {ArgA, 0xf0};
603   std::pair<Value *, uint8_t> B = {ArgB, 0xcc};
604   std::pair<Value *, uint8_t> C = {ArgC, 0xaa};
605   std::pair<Value *, uint8_t> Res = {nullptr, 0};
606 
607   // Currently we only handle cases that convert directly to another instruction
608   // or cases where all the ops are constant.  This is because we don't properly
609   // handle creating ternary ops in the backend, so splitting them here may
610   // cause regressions. As the backend improves, uncomment more cases.
611 
612   uint8_t Imm = ArgImm->getValue().getZExtValue();
613   switch (Imm) {
614   case 0x0:
615     Res = {Constant::getNullValue(Ty), 0};
616     break;
617   case 0x1:
618     if (ABCIsConst)
619       Res = Nor(Or(A, B), C);
620     break;
621   case 0x2:
622     if (ABCIsConst)
623       Res = And(Nor(A, B), C);
624     break;
625   case 0x3:
626     if (ABIsConst)
627       Res = Nor(A, B);
628     break;
629   case 0x4:
630     if (ABCIsConst)
631       Res = And(Nor(A, C), B);
632     break;
633   case 0x5:
634     if (ACIsConst)
635       Res = Nor(A, C);
636     break;
637   case 0x6:
638     if (ABCIsConst)
639       Res = Nor(A, Xnor(B, C));
640     break;
641   case 0x7:
642     if (ABCIsConst)
643       Res = Nor(A, And(B, C));
644     break;
645   case 0x8:
646     if (ABCIsConst)
647       Res = Nor(A, Nand(B, C));
648     break;
649   case 0x9:
650     if (ABCIsConst)
651       Res = Nor(A, Xor(B, C));
652     break;
653   case 0xa:
654     if (ACIsConst)
655       Res = Nor(A, Not(C));
656     break;
657   case 0xb:
658     if (ABCIsConst)
659       Res = Nor(A, Nor(C, Not(B)));
660     break;
661   case 0xc:
662     if (ABIsConst)
663       Res = Nor(A, Not(B));
664     break;
665   case 0xd:
666     if (ABCIsConst)
667       Res = Nor(A, Nor(B, Not(C)));
668     break;
669   case 0xe:
670     if (ABCIsConst)
671       Res = Nor(A, Nor(B, C));
672     break;
673   case 0xf:
674     Res = Not(A);
675     break;
676   case 0x10:
677     if (ABCIsConst)
678       Res = And(A, Nor(B, C));
679     break;
680   case 0x11:
681     if (BCIsConst)
682       Res = Nor(B, C);
683     break;
684   case 0x12:
685     if (ABCIsConst)
686       Res = Nor(Xnor(A, C), B);
687     break;
688   case 0x13:
689     if (ABCIsConst)
690       Res = Nor(And(A, C), B);
691     break;
692   case 0x14:
693     if (ABCIsConst)
694       Res = Nor(Xnor(A, B), C);
695     break;
696   case 0x15:
697     if (ABCIsConst)
698       Res = Nor(And(A, B), C);
699     break;
700   case 0x16:
701     if (ABCIsConst)
702       Res = Xor(Xor(A, B), And(Nand(A, B), C));
703     break;
704   case 0x17:
705     if (ABCIsConst)
706       Res = Xor(Or(A, B), Or(Xnor(A, B), C));
707     break;
708   case 0x18:
709     if (ABCIsConst)
710       Res = Nor(Xnor(A, B), Xnor(A, C));
711     break;
712   case 0x19:
713     if (ABCIsConst)
714       Res = And(Nand(A, B), Xnor(B, C));
715     break;
716   case 0x1a:
717     if (ABCIsConst)
718       Res = Xor(A, Or(And(A, B), C));
719     break;
720   case 0x1b:
721     if (ABCIsConst)
722       Res = Xor(A, Or(Xnor(A, B), C));
723     break;
724   case 0x1c:
725     if (ABCIsConst)
726       Res = Xor(A, Or(And(A, C), B));
727     break;
728   case 0x1d:
729     if (ABCIsConst)
730       Res = Xor(A, Or(Xnor(A, C), B));
731     break;
732   case 0x1e:
733     if (ABCIsConst)
734       Res = Xor(A, Or(B, C));
735     break;
736   case 0x1f:
737     if (ABCIsConst)
738       Res = Nand(A, Or(B, C));
739     break;
740   case 0x20:
741     if (ABCIsConst)
742       Res = Nor(Nand(A, C), B);
743     break;
744   case 0x21:
745     if (ABCIsConst)
746       Res = Nor(Xor(A, C), B);
747     break;
748   case 0x22:
749     if (BCIsConst)
750       Res = Nor(B, Not(C));
751     break;
752   case 0x23:
753     if (ABCIsConst)
754       Res = Nor(B, Nor(C, Not(A)));
755     break;
756   case 0x24:
757     if (ABCIsConst)
758       Res = Nor(Xnor(A, B), Xor(A, C));
759     break;
760   case 0x25:
761     if (ABCIsConst)
762       Res = Xor(A, Nand(Nand(A, B), C));
763     break;
764   case 0x26:
765     if (ABCIsConst)
766       Res = And(Nand(A, B), Xor(B, C));
767     break;
768   case 0x27:
769     if (ABCIsConst)
770       Res = Xor(Or(Xnor(A, B), C), B);
771     break;
772   case 0x28:
773     if (ABCIsConst)
774       Res = And(Xor(A, B), C);
775     break;
776   case 0x29:
777     if (ABCIsConst)
778       Res = Xor(Xor(A, B), Nor(And(A, B), C));
779     break;
780   case 0x2a:
781     if (ABCIsConst)
782       Res = And(Nand(A, B), C);
783     break;
784   case 0x2b:
785     if (ABCIsConst)
786       Res = Xor(Or(Xnor(A, B), Xor(A, C)), A);
787     break;
788   case 0x2c:
789     if (ABCIsConst)
790       Res = Nor(Xnor(A, B), Nor(B, C));
791     break;
792   case 0x2d:
793     if (ABCIsConst)
794       Res = Xor(A, Or(B, Not(C)));
795     break;
796   case 0x2e:
797     if (ABCIsConst)
798       Res = Xor(A, Or(Xor(A, C), B));
799     break;
800   case 0x2f:
801     if (ABCIsConst)
802       Res = Nand(A, Or(B, Not(C)));
803     break;
804   case 0x30:
805     if (ABIsConst)
806       Res = Nor(B, Not(A));
807     break;
808   case 0x31:
809     if (ABCIsConst)
810       Res = Nor(Nor(A, Not(C)), B);
811     break;
812   case 0x32:
813     if (ABCIsConst)
814       Res = Nor(Nor(A, C), B);
815     break;
816   case 0x33:
817     Res = Not(B);
818     break;
819   case 0x34:
820     if (ABCIsConst)
821       Res = And(Xor(A, B), Nand(B, C));
822     break;
823   case 0x35:
824     if (ABCIsConst)
825       Res = Xor(B, Or(A, Xnor(B, C)));
826     break;
827   case 0x36:
828     if (ABCIsConst)
829       Res = Xor(Or(A, C), B);
830     break;
831   case 0x37:
832     if (ABCIsConst)
833       Res = Nand(Or(A, C), B);
834     break;
835   case 0x38:
836     if (ABCIsConst)
837       Res = Nor(Xnor(A, B), Nor(A, C));
838     break;
839   case 0x39:
840     if (ABCIsConst)
841       Res = Xor(Or(A, Not(C)), B);
842     break;
843   case 0x3a:
844     if (ABCIsConst)
845       Res = Xor(B, Or(A, Xor(B, C)));
846     break;
847   case 0x3b:
848     if (ABCIsConst)
849       Res = Nand(Or(A, Not(C)), B);
850     break;
851   case 0x3c:
852     Res = Xor(A, B);
853     break;
854   case 0x3d:
855     if (ABCIsConst)
856       Res = Xor(A, Or(Nor(A, C), B));
857     break;
858   case 0x3e:
859     if (ABCIsConst)
860       Res = Xor(A, Or(Nor(A, Not(C)), B));
861     break;
862   case 0x3f:
863     if (ABIsConst)
864       Res = Nand(A, B);
865     break;
866   case 0x40:
867     if (ABCIsConst)
868       Res = Nor(Nand(A, B), C);
869     break;
870   case 0x41:
871     if (ABCIsConst)
872       Res = Nor(Xor(A, B), C);
873     break;
874   case 0x42:
875     if (ABCIsConst)
876       Res = Nor(Xor(A, B), Xnor(A, C));
877     break;
878   case 0x43:
879     if (ABCIsConst)
880       Res = Xor(A, Nand(Nand(A, C), B));
881     break;
882   case 0x44:
883     if (BCIsConst)
884       Res = Nor(C, Not(B));
885     break;
886   case 0x45:
887     if (ABCIsConst)
888       Res = Nor(Nor(B, Not(A)), C);
889     break;
890   case 0x46:
891     if (ABCIsConst)
892       Res = Xor(Or(And(A, C), B), C);
893     break;
894   case 0x47:
895     if (ABCIsConst)
896       Res = Xor(Or(Xnor(A, C), B), C);
897     break;
898   case 0x48:
899     if (ABCIsConst)
900       Res = And(Xor(A, C), B);
901     break;
902   case 0x49:
903     if (ABCIsConst)
904       Res = Xor(Or(Xnor(A, B), And(A, C)), C);
905     break;
906   case 0x4a:
907     if (ABCIsConst)
908       Res = Nor(Xnor(A, C), Nor(B, C));
909     break;
910   case 0x4b:
911     if (ABCIsConst)
912       Res = Xor(A, Or(C, Not(B)));
913     break;
914   case 0x4c:
915     if (ABCIsConst)
916       Res = And(Nand(A, C), B);
917     break;
918   case 0x4d:
919     if (ABCIsConst)
920       Res = Xor(Or(Xor(A, B), Xnor(A, C)), A);
921     break;
922   case 0x4e:
923     if (ABCIsConst)
924       Res = Xor(A, Or(Xor(A, B), C));
925     break;
926   case 0x4f:
927     if (ABCIsConst)
928       Res = Nand(A, Nand(B, Not(C)));
929     break;
930   case 0x50:
931     if (ACIsConst)
932       Res = Nor(C, Not(A));
933     break;
934   case 0x51:
935     if (ABCIsConst)
936       Res = Nor(Nor(A, Not(B)), C);
937     break;
938   case 0x52:
939     if (ABCIsConst)
940       Res = And(Xor(A, C), Nand(B, C));
941     break;
942   case 0x53:
943     if (ABCIsConst)
944       Res = Xor(Or(Xnor(B, C), A), C);
945     break;
946   case 0x54:
947     if (ABCIsConst)
948       Res = Nor(Nor(A, B), C);
949     break;
950   case 0x55:
951     Res = Not(C);
952     break;
953   case 0x56:
954     if (ABCIsConst)
955       Res = Xor(Or(A, B), C);
956     break;
957   case 0x57:
958     if (ABCIsConst)
959       Res = Nand(Or(A, B), C);
960     break;
961   case 0x58:
962     if (ABCIsConst)
963       Res = Nor(Nor(A, B), Xnor(A, C));
964     break;
965   case 0x59:
966     if (ABCIsConst)
967       Res = Xor(Or(A, Not(B)), C);
968     break;
969   case 0x5a:
970     Res = Xor(A, C);
971     break;
972   case 0x5b:
973     if (ABCIsConst)
974       Res = Xor(A, Or(Nor(A, B), C));
975     break;
976   case 0x5c:
977     if (ABCIsConst)
978       Res = Xor(Or(Xor(B, C), A), C);
979     break;
980   case 0x5d:
981     if (ABCIsConst)
982       Res = Nand(Or(A, Not(B)), C);
983     break;
984   case 0x5e:
985     if (ABCIsConst)
986       Res = Xor(A, Or(Nor(A, Not(B)), C));
987     break;
988   case 0x5f:
989     if (ACIsConst)
990       Res = Nand(A, C);
991     break;
992   case 0x60:
993     if (ABCIsConst)
994       Res = And(A, Xor(B, C));
995     break;
996   case 0x61:
997     if (ABCIsConst)
998       Res = Xor(Or(Xnor(A, B), And(B, C)), C);
999     break;
1000   case 0x62:
1001     if (ABCIsConst)
1002       Res = Nor(Nor(A, C), Xnor(B, C));
1003     break;
1004   case 0x63:
1005     if (ABCIsConst)
1006       Res = Xor(B, Or(C, Not(A)));
1007     break;
1008   case 0x64:
1009     if (ABCIsConst)
1010       Res = Nor(Nor(A, B), Xnor(B, C));
1011     break;
1012   case 0x65:
1013     if (ABCIsConst)
1014       Res = Xor(Or(B, Not(A)), C);
1015     break;
1016   case 0x66:
1017     Res = Xor(B, C);
1018     break;
1019   case 0x67:
1020     if (ABCIsConst)
1021       Res = Or(Nor(A, B), Xor(B, C));
1022     break;
1023   case 0x68:
1024     if (ABCIsConst)
1025       Res = Xor(Xor(A, B), Nor(Nor(A, B), C));
1026     break;
1027   case 0x69:
1028     if (ABCIsConst)
1029       Res = Xor(Xnor(A, B), C);
1030     break;
1031   case 0x6a:
1032     if (ABCIsConst)
1033       Res = Xor(And(A, B), C);
1034     break;
1035   case 0x6b:
1036     if (ABCIsConst)
1037       Res = Or(Nor(A, B), Xor(Xnor(A, B), C));
1038     break;
1039   case 0x6c:
1040     if (ABCIsConst)
1041       Res = Xor(And(A, C), B);
1042     break;
1043   case 0x6d:
1044     if (ABCIsConst)
1045       Res = Xor(Or(Xnor(A, B), Nor(A, C)), C);
1046     break;
1047   case 0x6e:
1048     if (ABCIsConst)
1049       Res = Or(Nor(A, Not(B)), Xor(B, C));
1050     break;
1051   case 0x6f:
1052     if (ABCIsConst)
1053       Res = Nand(A, Xnor(B, C));
1054     break;
1055   case 0x70:
1056     if (ABCIsConst)
1057       Res = And(A, Nand(B, C));
1058     break;
1059   case 0x71:
1060     if (ABCIsConst)
1061       Res = Xor(Nor(Xor(A, B), Xor(A, C)), A);
1062     break;
1063   case 0x72:
1064     if (ABCIsConst)
1065       Res = Xor(Or(Xor(A, B), C), B);
1066     break;
1067   case 0x73:
1068     if (ABCIsConst)
1069       Res = Nand(Nand(A, Not(C)), B);
1070     break;
1071   case 0x74:
1072     if (ABCIsConst)
1073       Res = Xor(Or(Xor(A, C), B), C);
1074     break;
1075   case 0x75:
1076     if (ABCIsConst)
1077       Res = Nand(Nand(A, Not(B)), C);
1078     break;
1079   case 0x76:
1080     if (ABCIsConst)
1081       Res = Xor(B, Or(Nor(B, Not(A)), C));
1082     break;
1083   case 0x77:
1084     if (BCIsConst)
1085       Res = Nand(B, C);
1086     break;
1087   case 0x78:
1088     if (ABCIsConst)
1089       Res = Xor(A, And(B, C));
1090     break;
1091   case 0x79:
1092     if (ABCIsConst)
1093       Res = Xor(Or(Xnor(A, B), Nor(B, C)), C);
1094     break;
1095   case 0x7a:
1096     if (ABCIsConst)
1097       Res = Or(Xor(A, C), Nor(B, Not(A)));
1098     break;
1099   case 0x7b:
1100     if (ABCIsConst)
1101       Res = Nand(Xnor(A, C), B);
1102     break;
1103   case 0x7c:
1104     if (ABCIsConst)
1105       Res = Or(Xor(A, B), Nor(C, Not(A)));
1106     break;
1107   case 0x7d:
1108     if (ABCIsConst)
1109       Res = Nand(Xnor(A, B), C);
1110     break;
1111   case 0x7e:
1112     if (ABCIsConst)
1113       Res = Or(Xor(A, B), Xor(A, C));
1114     break;
1115   case 0x7f:
1116     if (ABCIsConst)
1117       Res = Nand(And(A, B), C);
1118     break;
1119   case 0x80:
1120     if (ABCIsConst)
1121       Res = And(And(A, B), C);
1122     break;
1123   case 0x81:
1124     if (ABCIsConst)
1125       Res = Nor(Xor(A, B), Xor(A, C));
1126     break;
1127   case 0x82:
1128     if (ABCIsConst)
1129       Res = And(Xnor(A, B), C);
1130     break;
1131   case 0x83:
1132     if (ABCIsConst)
1133       Res = Nor(Xor(A, B), Nor(C, Not(A)));
1134     break;
1135   case 0x84:
1136     if (ABCIsConst)
1137       Res = And(Xnor(A, C), B);
1138     break;
1139   case 0x85:
1140     if (ABCIsConst)
1141       Res = Nor(Xor(A, C), Nor(B, Not(A)));
1142     break;
1143   case 0x86:
1144     if (ABCIsConst)
1145       Res = Xor(Nor(Xnor(A, B), Nor(B, C)), C);
1146     break;
1147   case 0x87:
1148     if (ABCIsConst)
1149       Res = Xor(A, Nand(B, C));
1150     break;
1151   case 0x88:
1152     Res = And(B, C);
1153     break;
1154   case 0x89:
1155     if (ABCIsConst)
1156       Res = Xor(B, Nor(Nor(B, Not(A)), C));
1157     break;
1158   case 0x8a:
1159     if (ABCIsConst)
1160       Res = And(Nand(A, Not(B)), C);
1161     break;
1162   case 0x8b:
1163     if (ABCIsConst)
1164       Res = Xor(Nor(Xor(A, C), B), C);
1165     break;
1166   case 0x8c:
1167     if (ABCIsConst)
1168       Res = And(Nand(A, Not(C)), B);
1169     break;
1170   case 0x8d:
1171     if (ABCIsConst)
1172       Res = Xor(Nor(Xor(A, B), C), B);
1173     break;
1174   case 0x8e:
1175     if (ABCIsConst)
1176       Res = Xor(Or(Xor(A, B), Xor(A, C)), A);
1177     break;
1178   case 0x8f:
1179     if (ABCIsConst)
1180       Res = Nand(A, Nand(B, C));
1181     break;
1182   case 0x90:
1183     if (ABCIsConst)
1184       Res = And(A, Xnor(B, C));
1185     break;
1186   case 0x91:
1187     if (ABCIsConst)
1188       Res = Nor(Nor(A, Not(B)), Xor(B, C));
1189     break;
1190   case 0x92:
1191     if (ABCIsConst)
1192       Res = Xor(Nor(Xnor(A, B), Nor(A, C)), C);
1193     break;
1194   case 0x93:
1195     if (ABCIsConst)
1196       Res = Xor(Nand(A, C), B);
1197     break;
1198   case 0x94:
1199     if (ABCIsConst)
1200       Res = Nor(Nor(A, B), Xor(Xnor(A, B), C));
1201     break;
1202   case 0x95:
1203     if (ABCIsConst)
1204       Res = Xor(Nand(A, B), C);
1205     break;
1206   case 0x96:
1207     if (ABCIsConst)
1208       Res = Xor(Xor(A, B), C);
1209     break;
1210   case 0x97:
1211     if (ABCIsConst)
1212       Res = Xor(Xor(A, B), Or(Nor(A, B), C));
1213     break;
1214   case 0x98:
1215     if (ABCIsConst)
1216       Res = Nor(Nor(A, B), Xor(B, C));
1217     break;
1218   case 0x99:
1219     if (BCIsConst)
1220       Res = Xnor(B, C);
1221     break;
1222   case 0x9a:
1223     if (ABCIsConst)
1224       Res = Xor(Nor(B, Not(A)), C);
1225     break;
1226   case 0x9b:
1227     if (ABCIsConst)
1228       Res = Or(Nor(A, B), Xnor(B, C));
1229     break;
1230   case 0x9c:
1231     if (ABCIsConst)
1232       Res = Xor(B, Nor(C, Not(A)));
1233     break;
1234   case 0x9d:
1235     if (ABCIsConst)
1236       Res = Or(Nor(A, C), Xnor(B, C));
1237     break;
1238   case 0x9e:
1239     if (ABCIsConst)
1240       Res = Xor(And(Xor(A, B), Nand(B, C)), C);
1241     break;
1242   case 0x9f:
1243     if (ABCIsConst)
1244       Res = Nand(A, Xor(B, C));
1245     break;
1246   case 0xa0:
1247     Res = And(A, C);
1248     break;
1249   case 0xa1:
1250     if (ABCIsConst)
1251       Res = Xor(A, Nor(Nor(A, Not(B)), C));
1252     break;
1253   case 0xa2:
1254     if (ABCIsConst)
1255       Res = And(Or(A, Not(B)), C);
1256     break;
1257   case 0xa3:
1258     if (ABCIsConst)
1259       Res = Xor(Nor(Xor(B, C), A), C);
1260     break;
1261   case 0xa4:
1262     if (ABCIsConst)
1263       Res = Xor(A, Nor(Nor(A, B), C));
1264     break;
1265   case 0xa5:
1266     if (ACIsConst)
1267       Res = Xnor(A, C);
1268     break;
1269   case 0xa6:
1270     if (ABCIsConst)
1271       Res = Xor(Nor(A, Not(B)), C);
1272     break;
1273   case 0xa7:
1274     if (ABCIsConst)
1275       Res = Or(Nor(A, B), Xnor(A, C));
1276     break;
1277   case 0xa8:
1278     if (ABCIsConst)
1279       Res = And(Or(A, B), C);
1280     break;
1281   case 0xa9:
1282     if (ABCIsConst)
1283       Res = Xor(Nor(A, B), C);
1284     break;
1285   case 0xaa:
1286     Res = C;
1287     break;
1288   case 0xab:
1289     if (ABCIsConst)
1290       Res = Or(Nor(A, B), C);
1291     break;
1292   case 0xac:
1293     if (ABCIsConst)
1294       Res = Xor(Nor(Xnor(B, C), A), C);
1295     break;
1296   case 0xad:
1297     if (ABCIsConst)
1298       Res = Or(Xnor(A, C), And(B, C));
1299     break;
1300   case 0xae:
1301     if (ABCIsConst)
1302       Res = Or(Nor(A, Not(B)), C);
1303     break;
1304   case 0xaf:
1305     if (ACIsConst)
1306       Res = Or(C, Not(A));
1307     break;
1308   case 0xb0:
1309     if (ABCIsConst)
1310       Res = And(A, Nand(B, Not(C)));
1311     break;
1312   case 0xb1:
1313     if (ABCIsConst)
1314       Res = Xor(A, Nor(Xor(A, B), C));
1315     break;
1316   case 0xb2:
1317     if (ABCIsConst)
1318       Res = Xor(Nor(Xor(A, B), Xnor(A, C)), A);
1319     break;
1320   case 0xb3:
1321     if (ABCIsConst)
1322       Res = Nand(Nand(A, C), B);
1323     break;
1324   case 0xb4:
1325     if (ABCIsConst)
1326       Res = Xor(A, Nor(C, Not(B)));
1327     break;
1328   case 0xb5:
1329     if (ABCIsConst)
1330       Res = Or(Xnor(A, C), Nor(B, C));
1331     break;
1332   case 0xb6:
1333     if (ABCIsConst)
1334       Res = Xor(And(Xor(A, B), Nand(A, C)), C);
1335     break;
1336   case 0xb7:
1337     if (ABCIsConst)
1338       Res = Nand(Xor(A, C), B);
1339     break;
1340   case 0xb8:
1341     if (ABCIsConst)
1342       Res = Xor(Nor(Xnor(A, C), B), C);
1343     break;
1344   case 0xb9:
1345     if (ABCIsConst)
1346       Res = Xor(Nor(And(A, C), B), C);
1347     break;
1348   case 0xba:
1349     if (ABCIsConst)
1350       Res = Or(Nor(B, Not(A)), C);
1351     break;
1352   case 0xbb:
1353     if (BCIsConst)
1354       Res = Or(C, Not(B));
1355     break;
1356   case 0xbc:
1357     if (ABCIsConst)
1358       Res = Xor(A, And(Nand(A, C), B));
1359     break;
1360   case 0xbd:
1361     if (ABCIsConst)
1362       Res = Or(Xor(A, B), Xnor(A, C));
1363     break;
1364   case 0xbe:
1365     if (ABCIsConst)
1366       Res = Or(Xor(A, B), C);
1367     break;
1368   case 0xbf:
1369     if (ABCIsConst)
1370       Res = Or(Nand(A, B), C);
1371     break;
1372   case 0xc0:
1373     Res = And(A, B);
1374     break;
1375   case 0xc1:
1376     if (ABCIsConst)
1377       Res = Xor(A, Nor(Nor(A, Not(C)), B));
1378     break;
1379   case 0xc2:
1380     if (ABCIsConst)
1381       Res = Xor(A, Nor(Nor(A, C), B));
1382     break;
1383   case 0xc3:
1384     if (ABIsConst)
1385       Res = Xnor(A, B);
1386     break;
1387   case 0xc4:
1388     if (ABCIsConst)
1389       Res = And(Or(A, Not(C)), B);
1390     break;
1391   case 0xc5:
1392     if (ABCIsConst)
1393       Res = Xor(B, Nor(A, Xor(B, C)));
1394     break;
1395   case 0xc6:
1396     if (ABCIsConst)
1397       Res = Xor(Nor(A, Not(C)), B);
1398     break;
1399   case 0xc7:
1400     if (ABCIsConst)
1401       Res = Or(Xnor(A, B), Nor(A, C));
1402     break;
1403   case 0xc8:
1404     if (ABCIsConst)
1405       Res = And(Or(A, C), B);
1406     break;
1407   case 0xc9:
1408     if (ABCIsConst)
1409       Res = Xor(Nor(A, C), B);
1410     break;
1411   case 0xca:
1412     if (ABCIsConst)
1413       Res = Xor(B, Nor(A, Xnor(B, C)));
1414     break;
1415   case 0xcb:
1416     if (ABCIsConst)
1417       Res = Or(Xnor(A, B), And(B, C));
1418     break;
1419   case 0xcc:
1420     Res = B;
1421     break;
1422   case 0xcd:
1423     if (ABCIsConst)
1424       Res = Or(Nor(A, C), B);
1425     break;
1426   case 0xce:
1427     if (ABCIsConst)
1428       Res = Or(Nor(A, Not(C)), B);
1429     break;
1430   case 0xcf:
1431     if (ABIsConst)
1432       Res = Or(B, Not(A));
1433     break;
1434   case 0xd0:
1435     if (ABCIsConst)
1436       Res = And(A, Or(B, Not(C)));
1437     break;
1438   case 0xd1:
1439     if (ABCIsConst)
1440       Res = Xor(A, Nor(Xor(A, C), B));
1441     break;
1442   case 0xd2:
1443     if (ABCIsConst)
1444       Res = Xor(A, Nor(B, Not(C)));
1445     break;
1446   case 0xd3:
1447     if (ABCIsConst)
1448       Res = Or(Xnor(A, B), Nor(B, C));
1449     break;
1450   case 0xd4:
1451     if (ABCIsConst)
1452       Res = Xor(Nor(Xnor(A, B), Xor(A, C)), A);
1453     break;
1454   case 0xd5:
1455     if (ABCIsConst)
1456       Res = Nand(Nand(A, B), C);
1457     break;
1458   case 0xd6:
1459     if (ABCIsConst)
1460       Res = Xor(Xor(A, B), Or(And(A, B), C));
1461     break;
1462   case 0xd7:
1463     if (ABCIsConst)
1464       Res = Nand(Xor(A, B), C);
1465     break;
1466   case 0xd8:
1467     if (ABCIsConst)
1468       Res = Xor(Nor(Xnor(A, B), C), B);
1469     break;
1470   case 0xd9:
1471     if (ABCIsConst)
1472       Res = Or(And(A, B), Xnor(B, C));
1473     break;
1474   case 0xda:
1475     if (ABCIsConst)
1476       Res = Xor(A, And(Nand(A, B), C));
1477     break;
1478   case 0xdb:
1479     if (ABCIsConst)
1480       Res = Or(Xnor(A, B), Xor(A, C));
1481     break;
1482   case 0xdc:
1483     if (ABCIsConst)
1484       Res = Or(B, Nor(C, Not(A)));
1485     break;
1486   case 0xdd:
1487     if (BCIsConst)
1488       Res = Or(B, Not(C));
1489     break;
1490   case 0xde:
1491     if (ABCIsConst)
1492       Res = Or(Xor(A, C), B);
1493     break;
1494   case 0xdf:
1495     if (ABCIsConst)
1496       Res = Or(Nand(A, C), B);
1497     break;
1498   case 0xe0:
1499     if (ABCIsConst)
1500       Res = And(A, Or(B, C));
1501     break;
1502   case 0xe1:
1503     if (ABCIsConst)
1504       Res = Xor(A, Nor(B, C));
1505     break;
1506   case 0xe2:
1507     if (ABCIsConst)
1508       Res = Xor(A, Nor(Xnor(A, C), B));
1509     break;
1510   case 0xe3:
1511     if (ABCIsConst)
1512       Res = Xor(A, Nor(And(A, C), B));
1513     break;
1514   case 0xe4:
1515     if (ABCIsConst)
1516       Res = Xor(A, Nor(Xnor(A, B), C));
1517     break;
1518   case 0xe5:
1519     if (ABCIsConst)
1520       Res = Xor(A, Nor(And(A, B), C));
1521     break;
1522   case 0xe6:
1523     if (ABCIsConst)
1524       Res = Or(And(A, B), Xor(B, C));
1525     break;
1526   case 0xe7:
1527     if (ABCIsConst)
1528       Res = Or(Xnor(A, B), Xnor(A, C));
1529     break;
1530   case 0xe8:
1531     if (ABCIsConst)
1532       Res = Xor(Or(A, B), Nor(Xnor(A, B), C));
1533     break;
1534   case 0xe9:
1535     if (ABCIsConst)
1536       Res = Xor(Xor(A, B), Nand(Nand(A, B), C));
1537     break;
1538   case 0xea:
1539     if (ABCIsConst)
1540       Res = Or(And(A, B), C);
1541     break;
1542   case 0xeb:
1543     if (ABCIsConst)
1544       Res = Or(Xnor(A, B), C);
1545     break;
1546   case 0xec:
1547     if (ABCIsConst)
1548       Res = Or(And(A, C), B);
1549     break;
1550   case 0xed:
1551     if (ABCIsConst)
1552       Res = Or(Xnor(A, C), B);
1553     break;
1554   case 0xee:
1555     Res = Or(B, C);
1556     break;
1557   case 0xef:
1558     if (ABCIsConst)
1559       Res = Nand(A, Nor(B, C));
1560     break;
1561   case 0xf0:
1562     Res = A;
1563     break;
1564   case 0xf1:
1565     if (ABCIsConst)
1566       Res = Or(A, Nor(B, C));
1567     break;
1568   case 0xf2:
1569     if (ABCIsConst)
1570       Res = Or(A, Nor(B, Not(C)));
1571     break;
1572   case 0xf3:
1573     if (ABIsConst)
1574       Res = Or(A, Not(B));
1575     break;
1576   case 0xf4:
1577     if (ABCIsConst)
1578       Res = Or(A, Nor(C, Not(B)));
1579     break;
1580   case 0xf5:
1581     if (ACIsConst)
1582       Res = Or(A, Not(C));
1583     break;
1584   case 0xf6:
1585     if (ABCIsConst)
1586       Res = Or(A, Xor(B, C));
1587     break;
1588   case 0xf7:
1589     if (ABCIsConst)
1590       Res = Or(A, Nand(B, C));
1591     break;
1592   case 0xf8:
1593     if (ABCIsConst)
1594       Res = Or(A, And(B, C));
1595     break;
1596   case 0xf9:
1597     if (ABCIsConst)
1598       Res = Or(A, Xnor(B, C));
1599     break;
1600   case 0xfa:
1601     Res = Or(A, C);
1602     break;
1603   case 0xfb:
1604     if (ABCIsConst)
1605       Res = Nand(Nor(A, C), B);
1606     break;
1607   case 0xfc:
1608     Res = Or(A, B);
1609     break;
1610   case 0xfd:
1611     if (ABCIsConst)
1612       Res = Nand(Nor(A, B), C);
1613     break;
1614   case 0xfe:
1615     if (ABCIsConst)
1616       Res = Or(Or(A, B), C);
1617     break;
1618   case 0xff:
1619     Res = {Constant::getAllOnesValue(Ty), 0xff};
1620     break;
1621   }
1622 
1623   assert((Res.first == nullptr || Res.second == Imm) &&
1624          "Simplification of ternary logic does not verify!");
1625   return Res.first;
1626 }
1627 
1628 static Value *simplifyX86insertps(const IntrinsicInst &II,
1629                                   InstCombiner::BuilderTy &Builder) {
1630   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
1631   if (!CInt)
1632     return nullptr;
1633 
1634   auto *VecTy = cast<FixedVectorType>(II.getType());
1635   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
1636 
1637   // The immediate permute control byte looks like this:
1638   //    [3:0] - zero mask for each 32-bit lane
1639   //    [5:4] - select one 32-bit destination lane
1640   //    [7:6] - select one 32-bit source lane
1641 
1642   uint8_t Imm = CInt->getZExtValue();
1643   uint8_t ZMask = Imm & 0xf;
1644   uint8_t DestLane = (Imm >> 4) & 0x3;
1645   uint8_t SourceLane = (Imm >> 6) & 0x3;
1646 
1647   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
1648 
1649   // If all zero mask bits are set, this was just a weird way to
1650   // generate a zero vector.
1651   if (ZMask == 0xf)
1652     return ZeroVector;
1653 
1654   // Initialize by passing all of the first source bits through.
1655   int ShuffleMask[4] = {0, 1, 2, 3};
1656 
1657   // We may replace the second operand with the zero vector.
1658   Value *V1 = II.getArgOperand(1);
1659 
1660   if (ZMask) {
1661     // If the zero mask is being used with a single input or the zero mask
1662     // overrides the destination lane, this is a shuffle with the zero vector.
1663     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
1664         (ZMask & (1 << DestLane))) {
1665       V1 = ZeroVector;
1666       // We may still move 32-bits of the first source vector from one lane
1667       // to another.
1668       ShuffleMask[DestLane] = SourceLane;
1669       // The zero mask may override the previous insert operation.
1670       for (unsigned i = 0; i < 4; ++i)
1671         if ((ZMask >> i) & 0x1)
1672           ShuffleMask[i] = i + 4;
1673     } else {
1674       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
1675       return nullptr;
1676     }
1677   } else {
1678     // Replace the selected destination lane with the selected source lane.
1679     ShuffleMask[DestLane] = SourceLane + 4;
1680   }
1681 
1682   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
1683 }
1684 
1685 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
1686 /// or conversion to a shuffle vector.
1687 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
1688                                ConstantInt *CILength, ConstantInt *CIIndex,
1689                                InstCombiner::BuilderTy &Builder) {
1690   auto LowConstantHighUndef = [&](uint64_t Val) {
1691     Type *IntTy64 = Type::getInt64Ty(II.getContext());
1692     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
1693                         UndefValue::get(IntTy64)};
1694     return ConstantVector::get(Args);
1695   };
1696 
1697   // See if we're dealing with constant values.
1698   auto *C0 = dyn_cast<Constant>(Op0);
1699   auto *CI0 =
1700       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
1701          : nullptr;
1702 
1703   // Attempt to constant fold.
1704   if (CILength && CIIndex) {
1705     // From AMD documentation: "The bit index and field length are each six
1706     // bits in length other bits of the field are ignored."
1707     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
1708     APInt APLength = CILength->getValue().zextOrTrunc(6);
1709 
1710     unsigned Index = APIndex.getZExtValue();
1711 
1712     // From AMD documentation: "a value of zero in the field length is
1713     // defined as length of 64".
1714     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
1715 
1716     // From AMD documentation: "If the sum of the bit index + length field
1717     // is greater than 64, the results are undefined".
1718     unsigned End = Index + Length;
1719 
1720     // Note that both field index and field length are 8-bit quantities.
1721     // Since variables 'Index' and 'Length' are unsigned values
1722     // obtained from zero-extending field index and field length
1723     // respectively, their sum should never wrap around.
1724     if (End > 64)
1725       return UndefValue::get(II.getType());
1726 
1727     // If we are inserting whole bytes, we can convert this to a shuffle.
1728     // Lowering can recognize EXTRQI shuffle masks.
1729     if ((Length % 8) == 0 && (Index % 8) == 0) {
1730       // Convert bit indices to byte indices.
1731       Length /= 8;
1732       Index /= 8;
1733 
1734       Type *IntTy8 = Type::getInt8Ty(II.getContext());
1735       auto *ShufTy = FixedVectorType::get(IntTy8, 16);
1736 
1737       SmallVector<int, 16> ShuffleMask;
1738       for (int i = 0; i != (int)Length; ++i)
1739         ShuffleMask.push_back(i + Index);
1740       for (int i = Length; i != 8; ++i)
1741         ShuffleMask.push_back(i + 16);
1742       for (int i = 8; i != 16; ++i)
1743         ShuffleMask.push_back(-1);
1744 
1745       Value *SV = Builder.CreateShuffleVector(
1746           Builder.CreateBitCast(Op0, ShufTy),
1747           ConstantAggregateZero::get(ShufTy), ShuffleMask);
1748       return Builder.CreateBitCast(SV, II.getType());
1749     }
1750 
1751     // Constant Fold - shift Index'th bit to lowest position and mask off
1752     // Length bits.
1753     if (CI0) {
1754       APInt Elt = CI0->getValue();
1755       Elt.lshrInPlace(Index);
1756       Elt = Elt.zextOrTrunc(Length);
1757       return LowConstantHighUndef(Elt.getZExtValue());
1758     }
1759 
1760     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
1761     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
1762       Value *Args[] = {Op0, CILength, CIIndex};
1763       Module *M = II.getModule();
1764       Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
1765       return Builder.CreateCall(F, Args);
1766     }
1767   }
1768 
1769   // Constant Fold - extraction from zero is always {zero, undef}.
1770   if (CI0 && CI0->isZero())
1771     return LowConstantHighUndef(0);
1772 
1773   return nullptr;
1774 }
1775 
1776 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
1777 /// folding or conversion to a shuffle vector.
1778 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
1779                                  APInt APLength, APInt APIndex,
1780                                  InstCombiner::BuilderTy &Builder) {
1781   // From AMD documentation: "The bit index and field length are each six bits
1782   // in length other bits of the field are ignored."
1783   APIndex = APIndex.zextOrTrunc(6);
1784   APLength = APLength.zextOrTrunc(6);
1785 
1786   // Attempt to constant fold.
1787   unsigned Index = APIndex.getZExtValue();
1788 
1789   // From AMD documentation: "a value of zero in the field length is
1790   // defined as length of 64".
1791   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
1792 
1793   // From AMD documentation: "If the sum of the bit index + length field
1794   // is greater than 64, the results are undefined".
1795   unsigned End = Index + Length;
1796 
1797   // Note that both field index and field length are 8-bit quantities.
1798   // Since variables 'Index' and 'Length' are unsigned values
1799   // obtained from zero-extending field index and field length
1800   // respectively, their sum should never wrap around.
1801   if (End > 64)
1802     return UndefValue::get(II.getType());
1803 
1804   // If we are inserting whole bytes, we can convert this to a shuffle.
1805   // Lowering can recognize INSERTQI shuffle masks.
1806   if ((Length % 8) == 0 && (Index % 8) == 0) {
1807     // Convert bit indices to byte indices.
1808     Length /= 8;
1809     Index /= 8;
1810 
1811     Type *IntTy8 = Type::getInt8Ty(II.getContext());
1812     auto *ShufTy = FixedVectorType::get(IntTy8, 16);
1813 
1814     SmallVector<int, 16> ShuffleMask;
1815     for (int i = 0; i != (int)Index; ++i)
1816       ShuffleMask.push_back(i);
1817     for (int i = 0; i != (int)Length; ++i)
1818       ShuffleMask.push_back(i + 16);
1819     for (int i = Index + Length; i != 8; ++i)
1820       ShuffleMask.push_back(i);
1821     for (int i = 8; i != 16; ++i)
1822       ShuffleMask.push_back(-1);
1823 
1824     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
1825                                             Builder.CreateBitCast(Op1, ShufTy),
1826                                             ShuffleMask);
1827     return Builder.CreateBitCast(SV, II.getType());
1828   }
1829 
1830   // See if we're dealing with constant values.
1831   auto *C0 = dyn_cast<Constant>(Op0);
1832   auto *C1 = dyn_cast<Constant>(Op1);
1833   auto *CI00 =
1834       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
1835          : nullptr;
1836   auto *CI10 =
1837       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
1838          : nullptr;
1839 
1840   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
1841   if (CI00 && CI10) {
1842     APInt V00 = CI00->getValue();
1843     APInt V10 = CI10->getValue();
1844     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
1845     V00 = V00 & ~Mask;
1846     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
1847     APInt Val = V00 | V10;
1848     Type *IntTy64 = Type::getInt64Ty(II.getContext());
1849     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
1850                         UndefValue::get(IntTy64)};
1851     return ConstantVector::get(Args);
1852   }
1853 
1854   // If we were an INSERTQ call, we'll save demanded elements if we convert to
1855   // INSERTQI.
1856   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
1857     Type *IntTy8 = Type::getInt8Ty(II.getContext());
1858     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
1859     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
1860 
1861     Value *Args[] = {Op0, Op1, CILength, CIIndex};
1862     Module *M = II.getModule();
1863     Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
1864     return Builder.CreateCall(F, Args);
1865   }
1866 
1867   return nullptr;
1868 }
1869 
1870 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
1871 static Value *simplifyX86pshufb(const IntrinsicInst &II,
1872                                 InstCombiner::BuilderTy &Builder) {
1873   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1874   if (!V)
1875     return nullptr;
1876 
1877   auto *VecTy = cast<FixedVectorType>(II.getType());
1878   unsigned NumElts = VecTy->getNumElements();
1879   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
1880          "Unexpected number of elements in shuffle mask!");
1881 
1882   // Construct a shuffle mask from constant integers or UNDEFs.
1883   int Indexes[64];
1884 
1885   // Each byte in the shuffle control mask forms an index to permute the
1886   // corresponding byte in the destination operand.
1887   for (unsigned I = 0; I < NumElts; ++I) {
1888     Constant *COp = V->getAggregateElement(I);
1889     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1890       return nullptr;
1891 
1892     if (isa<UndefValue>(COp)) {
1893       Indexes[I] = -1;
1894       continue;
1895     }
1896 
1897     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
1898 
1899     // If the most significant bit (bit[7]) of each byte of the shuffle
1900     // control mask is set, then zero is written in the result byte.
1901     // The zero vector is in the right-hand side of the resulting
1902     // shufflevector.
1903 
1904     // The value of each index for the high 128-bit lane is the least
1905     // significant 4 bits of the respective shuffle control byte.
1906     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1907     Indexes[I] = Index;
1908   }
1909 
1910   auto V1 = II.getArgOperand(0);
1911   auto V2 = Constant::getNullValue(VecTy);
1912   return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes, NumElts));
1913 }
1914 
1915 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
1916 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1917                                     InstCombiner::BuilderTy &Builder) {
1918   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1919   if (!V)
1920     return nullptr;
1921 
1922   auto *VecTy = cast<FixedVectorType>(II.getType());
1923   unsigned NumElts = VecTy->getNumElements();
1924   bool IsPD = VecTy->getScalarType()->isDoubleTy();
1925   unsigned NumLaneElts = IsPD ? 2 : 4;
1926   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
1927 
1928   // Construct a shuffle mask from constant integers or UNDEFs.
1929   int Indexes[16];
1930 
1931   // The intrinsics only read one or two bits, clear the rest.
1932   for (unsigned I = 0; I < NumElts; ++I) {
1933     Constant *COp = V->getAggregateElement(I);
1934     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1935       return nullptr;
1936 
1937     if (isa<UndefValue>(COp)) {
1938       Indexes[I] = -1;
1939       continue;
1940     }
1941 
1942     APInt Index = cast<ConstantInt>(COp)->getValue();
1943     Index = Index.zextOrTrunc(32).getLoBits(2);
1944 
1945     // The PD variants uses bit 1 to select per-lane element index, so
1946     // shift down to convert to generic shuffle mask index.
1947     if (IsPD)
1948       Index.lshrInPlace(1);
1949 
1950     // The _256 variants are a bit trickier since the mask bits always index
1951     // into the corresponding 128 half. In order to convert to a generic
1952     // shuffle, we have to make that explicit.
1953     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1954 
1955     Indexes[I] = Index.getZExtValue();
1956   }
1957 
1958   auto V1 = II.getArgOperand(0);
1959   return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, NumElts));
1960 }
1961 
1962 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1963 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1964                                 InstCombiner::BuilderTy &Builder) {
1965   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1966   if (!V)
1967     return nullptr;
1968 
1969   auto *VecTy = cast<FixedVectorType>(II.getType());
1970   unsigned Size = VecTy->getNumElements();
1971   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1972          "Unexpected shuffle mask size");
1973 
1974   // Construct a shuffle mask from constant integers or UNDEFs.
1975   int Indexes[64];
1976 
1977   for (unsigned I = 0; I < Size; ++I) {
1978     Constant *COp = V->getAggregateElement(I);
1979     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1980       return nullptr;
1981 
1982     if (isa<UndefValue>(COp)) {
1983       Indexes[I] = -1;
1984       continue;
1985     }
1986 
1987     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1988     Index &= Size - 1;
1989     Indexes[I] = Index;
1990   }
1991 
1992   auto V1 = II.getArgOperand(0);
1993   return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, Size));
1994 }
1995 
1996 std::optional<Instruction *>
1997 X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
1998   auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width,
1999                                              unsigned DemandedWidth) {
2000     APInt UndefElts(Width, 0);
2001     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
2002     return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
2003   };
2004 
2005   Intrinsic::ID IID = II.getIntrinsicID();
2006   switch (IID) {
2007   case Intrinsic::x86_bmi_bextr_32:
2008   case Intrinsic::x86_bmi_bextr_64:
2009   case Intrinsic::x86_tbm_bextri_u32:
2010   case Intrinsic::x86_tbm_bextri_u64:
2011     // If the RHS is a constant we can try some simplifications.
2012     if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2013       uint64_t Shift = C->getZExtValue();
2014       uint64_t Length = (Shift >> 8) & 0xff;
2015       Shift &= 0xff;
2016       unsigned BitWidth = II.getType()->getIntegerBitWidth();
2017       // If the length is 0 or the shift is out of range, replace with zero.
2018       if (Length == 0 || Shift >= BitWidth) {
2019         return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2020       }
2021       // If the LHS is also a constant, we can completely constant fold this.
2022       if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2023         uint64_t Result = InC->getZExtValue() >> Shift;
2024         if (Length > BitWidth)
2025           Length = BitWidth;
2026         Result &= maskTrailingOnes<uint64_t>(Length);
2027         return IC.replaceInstUsesWith(II,
2028                                       ConstantInt::get(II.getType(), Result));
2029       }
2030       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2031       // are only masking bits that a shift already cleared?
2032     }
2033     break;
2034 
2035   case Intrinsic::x86_bmi_bzhi_32:
2036   case Intrinsic::x86_bmi_bzhi_64:
2037     // If the RHS is a constant we can try some simplifications.
2038     if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2039       uint64_t Index = C->getZExtValue() & 0xff;
2040       unsigned BitWidth = II.getType()->getIntegerBitWidth();
2041       if (Index >= BitWidth) {
2042         return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2043       }
2044       if (Index == 0) {
2045         return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2046       }
2047       // If the LHS is also a constant, we can completely constant fold this.
2048       if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2049         uint64_t Result = InC->getZExtValue();
2050         Result &= maskTrailingOnes<uint64_t>(Index);
2051         return IC.replaceInstUsesWith(II,
2052                                       ConstantInt::get(II.getType(), Result));
2053       }
2054       // TODO should we convert this to an AND if the RHS is constant?
2055     }
2056     break;
2057   case Intrinsic::x86_bmi_pext_32:
2058   case Intrinsic::x86_bmi_pext_64:
2059     if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2060       if (MaskC->isNullValue()) {
2061         return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2062       }
2063       if (MaskC->isAllOnesValue()) {
2064         return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2065       }
2066 
2067       unsigned MaskIdx, MaskLen;
2068       if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) {
2069         // any single contingous sequence of 1s anywhere in the mask simply
2070         // describes a subset of the input bits shifted to the appropriate
2071         // position.  Replace with the straight forward IR.
2072         Value *Input = II.getArgOperand(0);
2073         Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1));
2074         Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx);
2075         Value *Shifted = IC.Builder.CreateLShr(Masked, ShiftAmt);
2076         return IC.replaceInstUsesWith(II, Shifted);
2077       }
2078 
2079       if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2080         uint64_t Src = SrcC->getZExtValue();
2081         uint64_t Mask = MaskC->getZExtValue();
2082         uint64_t Result = 0;
2083         uint64_t BitToSet = 1;
2084 
2085         while (Mask) {
2086           // Isolate lowest set bit.
2087           uint64_t BitToTest = Mask & -Mask;
2088           if (BitToTest & Src)
2089             Result |= BitToSet;
2090 
2091           BitToSet <<= 1;
2092           // Clear lowest set bit.
2093           Mask &= Mask - 1;
2094         }
2095 
2096         return IC.replaceInstUsesWith(II,
2097                                       ConstantInt::get(II.getType(), Result));
2098       }
2099     }
2100     break;
2101   case Intrinsic::x86_bmi_pdep_32:
2102   case Intrinsic::x86_bmi_pdep_64:
2103     if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2104       if (MaskC->isNullValue()) {
2105         return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2106       }
2107       if (MaskC->isAllOnesValue()) {
2108         return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2109       }
2110 
2111       unsigned MaskIdx, MaskLen;
2112       if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) {
2113         // any single contingous sequence of 1s anywhere in the mask simply
2114         // describes a subset of the input bits shifted to the appropriate
2115         // position.  Replace with the straight forward IR.
2116         Value *Input = II.getArgOperand(0);
2117         Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx);
2118         Value *Shifted = IC.Builder.CreateShl(Input, ShiftAmt);
2119         Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1));
2120         return IC.replaceInstUsesWith(II, Masked);
2121       }
2122 
2123       if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2124         uint64_t Src = SrcC->getZExtValue();
2125         uint64_t Mask = MaskC->getZExtValue();
2126         uint64_t Result = 0;
2127         uint64_t BitToTest = 1;
2128 
2129         while (Mask) {
2130           // Isolate lowest set bit.
2131           uint64_t BitToSet = Mask & -Mask;
2132           if (BitToTest & Src)
2133             Result |= BitToSet;
2134 
2135           BitToTest <<= 1;
2136           // Clear lowest set bit;
2137           Mask &= Mask - 1;
2138         }
2139 
2140         return IC.replaceInstUsesWith(II,
2141                                       ConstantInt::get(II.getType(), Result));
2142       }
2143     }
2144     break;
2145 
2146   case Intrinsic::x86_sse_cvtss2si:
2147   case Intrinsic::x86_sse_cvtss2si64:
2148   case Intrinsic::x86_sse_cvttss2si:
2149   case Intrinsic::x86_sse_cvttss2si64:
2150   case Intrinsic::x86_sse2_cvtsd2si:
2151   case Intrinsic::x86_sse2_cvtsd2si64:
2152   case Intrinsic::x86_sse2_cvttsd2si:
2153   case Intrinsic::x86_sse2_cvttsd2si64:
2154   case Intrinsic::x86_avx512_vcvtss2si32:
2155   case Intrinsic::x86_avx512_vcvtss2si64:
2156   case Intrinsic::x86_avx512_vcvtss2usi32:
2157   case Intrinsic::x86_avx512_vcvtss2usi64:
2158   case Intrinsic::x86_avx512_vcvtsd2si32:
2159   case Intrinsic::x86_avx512_vcvtsd2si64:
2160   case Intrinsic::x86_avx512_vcvtsd2usi32:
2161   case Intrinsic::x86_avx512_vcvtsd2usi64:
2162   case Intrinsic::x86_avx512_cvttss2si:
2163   case Intrinsic::x86_avx512_cvttss2si64:
2164   case Intrinsic::x86_avx512_cvttss2usi:
2165   case Intrinsic::x86_avx512_cvttss2usi64:
2166   case Intrinsic::x86_avx512_cvttsd2si:
2167   case Intrinsic::x86_avx512_cvttsd2si64:
2168   case Intrinsic::x86_avx512_cvttsd2usi:
2169   case Intrinsic::x86_avx512_cvttsd2usi64: {
2170     // These intrinsics only demand the 0th element of their input vectors. If
2171     // we can simplify the input based on that, do so now.
2172     Value *Arg = II.getArgOperand(0);
2173     unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements();
2174     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2175       return IC.replaceOperand(II, 0, V);
2176     }
2177     break;
2178   }
2179 
2180   case Intrinsic::x86_mmx_pmovmskb:
2181   case Intrinsic::x86_sse_movmsk_ps:
2182   case Intrinsic::x86_sse2_movmsk_pd:
2183   case Intrinsic::x86_sse2_pmovmskb_128:
2184   case Intrinsic::x86_avx_movmsk_pd_256:
2185   case Intrinsic::x86_avx_movmsk_ps_256:
2186   case Intrinsic::x86_avx2_pmovmskb:
2187     if (Value *V = simplifyX86movmsk(II, IC.Builder)) {
2188       return IC.replaceInstUsesWith(II, V);
2189     }
2190     break;
2191 
2192   case Intrinsic::x86_sse_comieq_ss:
2193   case Intrinsic::x86_sse_comige_ss:
2194   case Intrinsic::x86_sse_comigt_ss:
2195   case Intrinsic::x86_sse_comile_ss:
2196   case Intrinsic::x86_sse_comilt_ss:
2197   case Intrinsic::x86_sse_comineq_ss:
2198   case Intrinsic::x86_sse_ucomieq_ss:
2199   case Intrinsic::x86_sse_ucomige_ss:
2200   case Intrinsic::x86_sse_ucomigt_ss:
2201   case Intrinsic::x86_sse_ucomile_ss:
2202   case Intrinsic::x86_sse_ucomilt_ss:
2203   case Intrinsic::x86_sse_ucomineq_ss:
2204   case Intrinsic::x86_sse2_comieq_sd:
2205   case Intrinsic::x86_sse2_comige_sd:
2206   case Intrinsic::x86_sse2_comigt_sd:
2207   case Intrinsic::x86_sse2_comile_sd:
2208   case Intrinsic::x86_sse2_comilt_sd:
2209   case Intrinsic::x86_sse2_comineq_sd:
2210   case Intrinsic::x86_sse2_ucomieq_sd:
2211   case Intrinsic::x86_sse2_ucomige_sd:
2212   case Intrinsic::x86_sse2_ucomigt_sd:
2213   case Intrinsic::x86_sse2_ucomile_sd:
2214   case Intrinsic::x86_sse2_ucomilt_sd:
2215   case Intrinsic::x86_sse2_ucomineq_sd:
2216   case Intrinsic::x86_avx512_vcomi_ss:
2217   case Intrinsic::x86_avx512_vcomi_sd:
2218   case Intrinsic::x86_avx512_mask_cmp_ss:
2219   case Intrinsic::x86_avx512_mask_cmp_sd: {
2220     // These intrinsics only demand the 0th element of their input vectors. If
2221     // we can simplify the input based on that, do so now.
2222     bool MadeChange = false;
2223     Value *Arg0 = II.getArgOperand(0);
2224     Value *Arg1 = II.getArgOperand(1);
2225     unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements();
2226     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2227       IC.replaceOperand(II, 0, V);
2228       MadeChange = true;
2229     }
2230     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2231       IC.replaceOperand(II, 1, V);
2232       MadeChange = true;
2233     }
2234     if (MadeChange) {
2235       return &II;
2236     }
2237     break;
2238   }
2239 
2240   case Intrinsic::x86_avx512_add_ps_512:
2241   case Intrinsic::x86_avx512_div_ps_512:
2242   case Intrinsic::x86_avx512_mul_ps_512:
2243   case Intrinsic::x86_avx512_sub_ps_512:
2244   case Intrinsic::x86_avx512_add_pd_512:
2245   case Intrinsic::x86_avx512_div_pd_512:
2246   case Intrinsic::x86_avx512_mul_pd_512:
2247   case Intrinsic::x86_avx512_sub_pd_512:
2248     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2249     // IR operations.
2250     if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
2251       if (R->getValue() == 4) {
2252         Value *Arg0 = II.getArgOperand(0);
2253         Value *Arg1 = II.getArgOperand(1);
2254 
2255         Value *V;
2256         switch (IID) {
2257         default:
2258           llvm_unreachable("Case stmts out of sync!");
2259         case Intrinsic::x86_avx512_add_ps_512:
2260         case Intrinsic::x86_avx512_add_pd_512:
2261           V = IC.Builder.CreateFAdd(Arg0, Arg1);
2262           break;
2263         case Intrinsic::x86_avx512_sub_ps_512:
2264         case Intrinsic::x86_avx512_sub_pd_512:
2265           V = IC.Builder.CreateFSub(Arg0, Arg1);
2266           break;
2267         case Intrinsic::x86_avx512_mul_ps_512:
2268         case Intrinsic::x86_avx512_mul_pd_512:
2269           V = IC.Builder.CreateFMul(Arg0, Arg1);
2270           break;
2271         case Intrinsic::x86_avx512_div_ps_512:
2272         case Intrinsic::x86_avx512_div_pd_512:
2273           V = IC.Builder.CreateFDiv(Arg0, Arg1);
2274           break;
2275         }
2276 
2277         return IC.replaceInstUsesWith(II, V);
2278       }
2279     }
2280     break;
2281 
2282   case Intrinsic::x86_avx512_mask_add_ss_round:
2283   case Intrinsic::x86_avx512_mask_div_ss_round:
2284   case Intrinsic::x86_avx512_mask_mul_ss_round:
2285   case Intrinsic::x86_avx512_mask_sub_ss_round:
2286   case Intrinsic::x86_avx512_mask_add_sd_round:
2287   case Intrinsic::x86_avx512_mask_div_sd_round:
2288   case Intrinsic::x86_avx512_mask_mul_sd_round:
2289   case Intrinsic::x86_avx512_mask_sub_sd_round:
2290     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2291     // IR operations.
2292     if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) {
2293       if (R->getValue() == 4) {
2294         // Extract the element as scalars.
2295         Value *Arg0 = II.getArgOperand(0);
2296         Value *Arg1 = II.getArgOperand(1);
2297         Value *LHS = IC.Builder.CreateExtractElement(Arg0, (uint64_t)0);
2298         Value *RHS = IC.Builder.CreateExtractElement(Arg1, (uint64_t)0);
2299 
2300         Value *V;
2301         switch (IID) {
2302         default:
2303           llvm_unreachable("Case stmts out of sync!");
2304         case Intrinsic::x86_avx512_mask_add_ss_round:
2305         case Intrinsic::x86_avx512_mask_add_sd_round:
2306           V = IC.Builder.CreateFAdd(LHS, RHS);
2307           break;
2308         case Intrinsic::x86_avx512_mask_sub_ss_round:
2309         case Intrinsic::x86_avx512_mask_sub_sd_round:
2310           V = IC.Builder.CreateFSub(LHS, RHS);
2311           break;
2312         case Intrinsic::x86_avx512_mask_mul_ss_round:
2313         case Intrinsic::x86_avx512_mask_mul_sd_round:
2314           V = IC.Builder.CreateFMul(LHS, RHS);
2315           break;
2316         case Intrinsic::x86_avx512_mask_div_ss_round:
2317         case Intrinsic::x86_avx512_mask_div_sd_round:
2318           V = IC.Builder.CreateFDiv(LHS, RHS);
2319           break;
2320         }
2321 
2322         // Handle the masking aspect of the intrinsic.
2323         Value *Mask = II.getArgOperand(3);
2324         auto *C = dyn_cast<ConstantInt>(Mask);
2325         // We don't need a select if we know the mask bit is a 1.
2326         if (!C || !C->getValue()[0]) {
2327           // Cast the mask to an i1 vector and then extract the lowest element.
2328           auto *MaskTy = FixedVectorType::get(
2329               IC.Builder.getInt1Ty(),
2330               cast<IntegerType>(Mask->getType())->getBitWidth());
2331           Mask = IC.Builder.CreateBitCast(Mask, MaskTy);
2332           Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0);
2333           // Extract the lowest element from the passthru operand.
2334           Value *Passthru =
2335               IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0);
2336           V = IC.Builder.CreateSelect(Mask, V, Passthru);
2337         }
2338 
2339         // Insert the result back into the original argument 0.
2340         V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2341 
2342         return IC.replaceInstUsesWith(II, V);
2343       }
2344     }
2345     break;
2346 
2347   // Constant fold ashr( <A x Bi>, Ci ).
2348   // Constant fold lshr( <A x Bi>, Ci ).
2349   // Constant fold shl( <A x Bi>, Ci ).
2350   case Intrinsic::x86_sse2_psrai_d:
2351   case Intrinsic::x86_sse2_psrai_w:
2352   case Intrinsic::x86_avx2_psrai_d:
2353   case Intrinsic::x86_avx2_psrai_w:
2354   case Intrinsic::x86_avx512_psrai_q_128:
2355   case Intrinsic::x86_avx512_psrai_q_256:
2356   case Intrinsic::x86_avx512_psrai_d_512:
2357   case Intrinsic::x86_avx512_psrai_q_512:
2358   case Intrinsic::x86_avx512_psrai_w_512:
2359   case Intrinsic::x86_sse2_psrli_d:
2360   case Intrinsic::x86_sse2_psrli_q:
2361   case Intrinsic::x86_sse2_psrli_w:
2362   case Intrinsic::x86_avx2_psrli_d:
2363   case Intrinsic::x86_avx2_psrli_q:
2364   case Intrinsic::x86_avx2_psrli_w:
2365   case Intrinsic::x86_avx512_psrli_d_512:
2366   case Intrinsic::x86_avx512_psrli_q_512:
2367   case Intrinsic::x86_avx512_psrli_w_512:
2368   case Intrinsic::x86_sse2_pslli_d:
2369   case Intrinsic::x86_sse2_pslli_q:
2370   case Intrinsic::x86_sse2_pslli_w:
2371   case Intrinsic::x86_avx2_pslli_d:
2372   case Intrinsic::x86_avx2_pslli_q:
2373   case Intrinsic::x86_avx2_pslli_w:
2374   case Intrinsic::x86_avx512_pslli_d_512:
2375   case Intrinsic::x86_avx512_pslli_q_512:
2376   case Intrinsic::x86_avx512_pslli_w_512:
2377     if (Value *V = simplifyX86immShift(II, IC.Builder)) {
2378       return IC.replaceInstUsesWith(II, V);
2379     }
2380     break;
2381 
2382   case Intrinsic::x86_sse2_psra_d:
2383   case Intrinsic::x86_sse2_psra_w:
2384   case Intrinsic::x86_avx2_psra_d:
2385   case Intrinsic::x86_avx2_psra_w:
2386   case Intrinsic::x86_avx512_psra_q_128:
2387   case Intrinsic::x86_avx512_psra_q_256:
2388   case Intrinsic::x86_avx512_psra_d_512:
2389   case Intrinsic::x86_avx512_psra_q_512:
2390   case Intrinsic::x86_avx512_psra_w_512:
2391   case Intrinsic::x86_sse2_psrl_d:
2392   case Intrinsic::x86_sse2_psrl_q:
2393   case Intrinsic::x86_sse2_psrl_w:
2394   case Intrinsic::x86_avx2_psrl_d:
2395   case Intrinsic::x86_avx2_psrl_q:
2396   case Intrinsic::x86_avx2_psrl_w:
2397   case Intrinsic::x86_avx512_psrl_d_512:
2398   case Intrinsic::x86_avx512_psrl_q_512:
2399   case Intrinsic::x86_avx512_psrl_w_512:
2400   case Intrinsic::x86_sse2_psll_d:
2401   case Intrinsic::x86_sse2_psll_q:
2402   case Intrinsic::x86_sse2_psll_w:
2403   case Intrinsic::x86_avx2_psll_d:
2404   case Intrinsic::x86_avx2_psll_q:
2405   case Intrinsic::x86_avx2_psll_w:
2406   case Intrinsic::x86_avx512_psll_d_512:
2407   case Intrinsic::x86_avx512_psll_q_512:
2408   case Intrinsic::x86_avx512_psll_w_512: {
2409     if (Value *V = simplifyX86immShift(II, IC.Builder)) {
2410       return IC.replaceInstUsesWith(II, V);
2411     }
2412 
2413     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2414     // operand to compute the shift amount.
2415     Value *Arg1 = II.getArgOperand(1);
2416     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2417            "Unexpected packed shift size");
2418     unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements();
2419 
2420     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2421       return IC.replaceOperand(II, 1, V);
2422     }
2423     break;
2424   }
2425 
2426   case Intrinsic::x86_avx2_psllv_d:
2427   case Intrinsic::x86_avx2_psllv_d_256:
2428   case Intrinsic::x86_avx2_psllv_q:
2429   case Intrinsic::x86_avx2_psllv_q_256:
2430   case Intrinsic::x86_avx512_psllv_d_512:
2431   case Intrinsic::x86_avx512_psllv_q_512:
2432   case Intrinsic::x86_avx512_psllv_w_128:
2433   case Intrinsic::x86_avx512_psllv_w_256:
2434   case Intrinsic::x86_avx512_psllv_w_512:
2435   case Intrinsic::x86_avx2_psrav_d:
2436   case Intrinsic::x86_avx2_psrav_d_256:
2437   case Intrinsic::x86_avx512_psrav_q_128:
2438   case Intrinsic::x86_avx512_psrav_q_256:
2439   case Intrinsic::x86_avx512_psrav_d_512:
2440   case Intrinsic::x86_avx512_psrav_q_512:
2441   case Intrinsic::x86_avx512_psrav_w_128:
2442   case Intrinsic::x86_avx512_psrav_w_256:
2443   case Intrinsic::x86_avx512_psrav_w_512:
2444   case Intrinsic::x86_avx2_psrlv_d:
2445   case Intrinsic::x86_avx2_psrlv_d_256:
2446   case Intrinsic::x86_avx2_psrlv_q:
2447   case Intrinsic::x86_avx2_psrlv_q_256:
2448   case Intrinsic::x86_avx512_psrlv_d_512:
2449   case Intrinsic::x86_avx512_psrlv_q_512:
2450   case Intrinsic::x86_avx512_psrlv_w_128:
2451   case Intrinsic::x86_avx512_psrlv_w_256:
2452   case Intrinsic::x86_avx512_psrlv_w_512:
2453     if (Value *V = simplifyX86varShift(II, IC.Builder)) {
2454       return IC.replaceInstUsesWith(II, V);
2455     }
2456     break;
2457 
2458   case Intrinsic::x86_sse2_packssdw_128:
2459   case Intrinsic::x86_sse2_packsswb_128:
2460   case Intrinsic::x86_avx2_packssdw:
2461   case Intrinsic::x86_avx2_packsswb:
2462   case Intrinsic::x86_avx512_packssdw_512:
2463   case Intrinsic::x86_avx512_packsswb_512:
2464     if (Value *V = simplifyX86pack(II, IC.Builder, true)) {
2465       return IC.replaceInstUsesWith(II, V);
2466     }
2467     break;
2468 
2469   case Intrinsic::x86_sse2_packuswb_128:
2470   case Intrinsic::x86_sse41_packusdw:
2471   case Intrinsic::x86_avx2_packusdw:
2472   case Intrinsic::x86_avx2_packuswb:
2473   case Intrinsic::x86_avx512_packusdw_512:
2474   case Intrinsic::x86_avx512_packuswb_512:
2475     if (Value *V = simplifyX86pack(II, IC.Builder, false)) {
2476       return IC.replaceInstUsesWith(II, V);
2477     }
2478     break;
2479 
2480   case Intrinsic::x86_pclmulqdq:
2481   case Intrinsic::x86_pclmulqdq_256:
2482   case Intrinsic::x86_pclmulqdq_512: {
2483     if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
2484       unsigned Imm = C->getZExtValue();
2485 
2486       bool MadeChange = false;
2487       Value *Arg0 = II.getArgOperand(0);
2488       Value *Arg1 = II.getArgOperand(1);
2489       unsigned VWidth =
2490           cast<FixedVectorType>(Arg0->getType())->getNumElements();
2491 
2492       APInt UndefElts1(VWidth, 0);
2493       APInt DemandedElts1 =
2494           APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1));
2495       if (Value *V =
2496               IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) {
2497         IC.replaceOperand(II, 0, V);
2498         MadeChange = true;
2499       }
2500 
2501       APInt UndefElts2(VWidth, 0);
2502       APInt DemandedElts2 =
2503           APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1));
2504       if (Value *V =
2505               IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) {
2506         IC.replaceOperand(II, 1, V);
2507         MadeChange = true;
2508       }
2509 
2510       // If either input elements are undef, the result is zero.
2511       if (DemandedElts1.isSubsetOf(UndefElts1) ||
2512           DemandedElts2.isSubsetOf(UndefElts2)) {
2513         return IC.replaceInstUsesWith(II,
2514                                       ConstantAggregateZero::get(II.getType()));
2515       }
2516 
2517       if (MadeChange) {
2518         return &II;
2519       }
2520     }
2521     break;
2522   }
2523 
2524   case Intrinsic::x86_sse41_insertps:
2525     if (Value *V = simplifyX86insertps(II, IC.Builder)) {
2526       return IC.replaceInstUsesWith(II, V);
2527     }
2528     break;
2529 
2530   case Intrinsic::x86_sse4a_extrq: {
2531     Value *Op0 = II.getArgOperand(0);
2532     Value *Op1 = II.getArgOperand(1);
2533     unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
2534     unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
2535     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2536            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2537            VWidth1 == 16 && "Unexpected operand sizes");
2538 
2539     // See if we're dealing with constant values.
2540     auto *C1 = dyn_cast<Constant>(Op1);
2541     auto *CILength =
2542         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2543            : nullptr;
2544     auto *CIIndex =
2545         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2546            : nullptr;
2547 
2548     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2549     if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
2550       return IC.replaceInstUsesWith(II, V);
2551     }
2552 
2553     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2554     // operands and the lowest 16-bits of the second.
2555     bool MadeChange = false;
2556     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2557       IC.replaceOperand(II, 0, V);
2558       MadeChange = true;
2559     }
2560     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2561       IC.replaceOperand(II, 1, V);
2562       MadeChange = true;
2563     }
2564     if (MadeChange) {
2565       return &II;
2566     }
2567     break;
2568   }
2569 
2570   case Intrinsic::x86_sse4a_extrqi: {
2571     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2572     // bits of the lower 64-bits. The upper 64-bits are undefined.
2573     Value *Op0 = II.getArgOperand(0);
2574     unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
2575     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2576            "Unexpected operand size");
2577 
2578     // See if we're dealing with constant values.
2579     auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1));
2580     auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2));
2581 
2582     // Attempt to simplify to a constant or shuffle vector.
2583     if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
2584       return IC.replaceInstUsesWith(II, V);
2585     }
2586 
2587     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2588     // operand.
2589     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2590       return IC.replaceOperand(II, 0, V);
2591     }
2592     break;
2593   }
2594 
2595   case Intrinsic::x86_sse4a_insertq: {
2596     Value *Op0 = II.getArgOperand(0);
2597     Value *Op1 = II.getArgOperand(1);
2598     unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
2599     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2600            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2601            cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 &&
2602            "Unexpected operand size");
2603 
2604     // See if we're dealing with constant values.
2605     auto *C1 = dyn_cast<Constant>(Op1);
2606     auto *CI11 =
2607         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2608            : nullptr;
2609 
2610     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2611     if (CI11) {
2612       const APInt &V11 = CI11->getValue();
2613       APInt Len = V11.zextOrTrunc(6);
2614       APInt Idx = V11.lshr(8).zextOrTrunc(6);
2615       if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
2616         return IC.replaceInstUsesWith(II, V);
2617       }
2618     }
2619 
2620     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2621     // operand.
2622     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2623       return IC.replaceOperand(II, 0, V);
2624     }
2625     break;
2626   }
2627 
2628   case Intrinsic::x86_sse4a_insertqi: {
2629     // INSERTQI: Extract lowest Length bits from lower half of second source and
2630     // insert over first source starting at Index bit. The upper 64-bits are
2631     // undefined.
2632     Value *Op0 = II.getArgOperand(0);
2633     Value *Op1 = II.getArgOperand(1);
2634     unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
2635     unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
2636     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2637            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2638            VWidth1 == 2 && "Unexpected operand sizes");
2639 
2640     // See if we're dealing with constant values.
2641     auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2));
2642     auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3));
2643 
2644     // Attempt to simplify to a constant or shuffle vector.
2645     if (CILength && CIIndex) {
2646       APInt Len = CILength->getValue().zextOrTrunc(6);
2647       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
2648       if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
2649         return IC.replaceInstUsesWith(II, V);
2650       }
2651     }
2652 
2653     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2654     // operands.
2655     bool MadeChange = false;
2656     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2657       IC.replaceOperand(II, 0, V);
2658       MadeChange = true;
2659     }
2660     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2661       IC.replaceOperand(II, 1, V);
2662       MadeChange = true;
2663     }
2664     if (MadeChange) {
2665       return &II;
2666     }
2667     break;
2668   }
2669 
2670   case Intrinsic::x86_sse41_pblendvb:
2671   case Intrinsic::x86_sse41_blendvps:
2672   case Intrinsic::x86_sse41_blendvpd:
2673   case Intrinsic::x86_avx_blendv_ps_256:
2674   case Intrinsic::x86_avx_blendv_pd_256:
2675   case Intrinsic::x86_avx2_pblendvb: {
2676     // fold (blend A, A, Mask) -> A
2677     Value *Op0 = II.getArgOperand(0);
2678     Value *Op1 = II.getArgOperand(1);
2679     Value *Mask = II.getArgOperand(2);
2680     if (Op0 == Op1) {
2681       return IC.replaceInstUsesWith(II, Op0);
2682     }
2683 
2684     // Zero Mask - select 1st argument.
2685     if (isa<ConstantAggregateZero>(Mask)) {
2686       return IC.replaceInstUsesWith(II, Op0);
2687     }
2688 
2689     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
2690     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2691       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
2692       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
2693     }
2694 
2695     // Convert to a vector select if we can bypass casts and find a boolean
2696     // vector condition value.
2697     Value *BoolVec;
2698     Mask = InstCombiner::peekThroughBitcast(Mask);
2699     if (match(Mask, PatternMatch::m_SExt(PatternMatch::m_Value(BoolVec))) &&
2700         BoolVec->getType()->isVectorTy() &&
2701         BoolVec->getType()->getScalarSizeInBits() == 1) {
2702       assert(Mask->getType()->getPrimitiveSizeInBits() ==
2703                  II.getType()->getPrimitiveSizeInBits() &&
2704              "Not expecting mask and operands with different sizes");
2705 
2706       unsigned NumMaskElts =
2707           cast<FixedVectorType>(Mask->getType())->getNumElements();
2708       unsigned NumOperandElts =
2709           cast<FixedVectorType>(II.getType())->getNumElements();
2710       if (NumMaskElts == NumOperandElts) {
2711         return SelectInst::Create(BoolVec, Op1, Op0);
2712       }
2713 
2714       // If the mask has less elements than the operands, each mask bit maps to
2715       // multiple elements of the operands. Bitcast back and forth.
2716       if (NumMaskElts < NumOperandElts) {
2717         Value *CastOp0 = IC.Builder.CreateBitCast(Op0, Mask->getType());
2718         Value *CastOp1 = IC.Builder.CreateBitCast(Op1, Mask->getType());
2719         Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
2720         return new BitCastInst(Sel, II.getType());
2721       }
2722     }
2723 
2724     break;
2725   }
2726 
2727   case Intrinsic::x86_ssse3_pshuf_b_128:
2728   case Intrinsic::x86_avx2_pshuf_b:
2729   case Intrinsic::x86_avx512_pshuf_b_512:
2730     if (Value *V = simplifyX86pshufb(II, IC.Builder)) {
2731       return IC.replaceInstUsesWith(II, V);
2732     }
2733     break;
2734 
2735   case Intrinsic::x86_avx_vpermilvar_ps:
2736   case Intrinsic::x86_avx_vpermilvar_ps_256:
2737   case Intrinsic::x86_avx512_vpermilvar_ps_512:
2738   case Intrinsic::x86_avx_vpermilvar_pd:
2739   case Intrinsic::x86_avx_vpermilvar_pd_256:
2740   case Intrinsic::x86_avx512_vpermilvar_pd_512:
2741     if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
2742       return IC.replaceInstUsesWith(II, V);
2743     }
2744     break;
2745 
2746   case Intrinsic::x86_avx2_permd:
2747   case Intrinsic::x86_avx2_permps:
2748   case Intrinsic::x86_avx512_permvar_df_256:
2749   case Intrinsic::x86_avx512_permvar_df_512:
2750   case Intrinsic::x86_avx512_permvar_di_256:
2751   case Intrinsic::x86_avx512_permvar_di_512:
2752   case Intrinsic::x86_avx512_permvar_hi_128:
2753   case Intrinsic::x86_avx512_permvar_hi_256:
2754   case Intrinsic::x86_avx512_permvar_hi_512:
2755   case Intrinsic::x86_avx512_permvar_qi_128:
2756   case Intrinsic::x86_avx512_permvar_qi_256:
2757   case Intrinsic::x86_avx512_permvar_qi_512:
2758   case Intrinsic::x86_avx512_permvar_sf_512:
2759   case Intrinsic::x86_avx512_permvar_si_512:
2760     if (Value *V = simplifyX86vpermv(II, IC.Builder)) {
2761       return IC.replaceInstUsesWith(II, V);
2762     }
2763     break;
2764 
2765   case Intrinsic::x86_avx_maskload_ps:
2766   case Intrinsic::x86_avx_maskload_pd:
2767   case Intrinsic::x86_avx_maskload_ps_256:
2768   case Intrinsic::x86_avx_maskload_pd_256:
2769   case Intrinsic::x86_avx2_maskload_d:
2770   case Intrinsic::x86_avx2_maskload_q:
2771   case Intrinsic::x86_avx2_maskload_d_256:
2772   case Intrinsic::x86_avx2_maskload_q_256:
2773     if (Instruction *I = simplifyX86MaskedLoad(II, IC)) {
2774       return I;
2775     }
2776     break;
2777 
2778   case Intrinsic::x86_sse2_maskmov_dqu:
2779   case Intrinsic::x86_avx_maskstore_ps:
2780   case Intrinsic::x86_avx_maskstore_pd:
2781   case Intrinsic::x86_avx_maskstore_ps_256:
2782   case Intrinsic::x86_avx_maskstore_pd_256:
2783   case Intrinsic::x86_avx2_maskstore_d:
2784   case Intrinsic::x86_avx2_maskstore_q:
2785   case Intrinsic::x86_avx2_maskstore_d_256:
2786   case Intrinsic::x86_avx2_maskstore_q_256:
2787     if (simplifyX86MaskedStore(II, IC)) {
2788       return nullptr;
2789     }
2790     break;
2791 
2792   case Intrinsic::x86_addcarry_32:
2793   case Intrinsic::x86_addcarry_64:
2794     if (Value *V = simplifyX86addcarry(II, IC.Builder)) {
2795       return IC.replaceInstUsesWith(II, V);
2796     }
2797     break;
2798 
2799   case Intrinsic::x86_avx512_pternlog_d_128:
2800   case Intrinsic::x86_avx512_pternlog_d_256:
2801   case Intrinsic::x86_avx512_pternlog_d_512:
2802   case Intrinsic::x86_avx512_pternlog_q_128:
2803   case Intrinsic::x86_avx512_pternlog_q_256:
2804   case Intrinsic::x86_avx512_pternlog_q_512:
2805     if (Value *V = simplifyTernarylogic(II, IC.Builder)) {
2806       return IC.replaceInstUsesWith(II, V);
2807     }
2808     break;
2809   default:
2810     break;
2811   }
2812   return std::nullopt;
2813 }
2814 
2815 std::optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic(
2816     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
2817     bool &KnownBitsComputed) const {
2818   switch (II.getIntrinsicID()) {
2819   default:
2820     break;
2821   case Intrinsic::x86_mmx_pmovmskb:
2822   case Intrinsic::x86_sse_movmsk_ps:
2823   case Intrinsic::x86_sse2_movmsk_pd:
2824   case Intrinsic::x86_sse2_pmovmskb_128:
2825   case Intrinsic::x86_avx_movmsk_ps_256:
2826   case Intrinsic::x86_avx_movmsk_pd_256:
2827   case Intrinsic::x86_avx2_pmovmskb: {
2828     // MOVMSK copies the vector elements' sign bits to the low bits
2829     // and zeros the high bits.
2830     unsigned ArgWidth;
2831     if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
2832       ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
2833     } else {
2834       auto *ArgType = cast<FixedVectorType>(II.getArgOperand(0)->getType());
2835       ArgWidth = ArgType->getNumElements();
2836     }
2837 
2838     // If we don't need any of low bits then return zero,
2839     // we know that DemandedMask is non-zero already.
2840     APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
2841     Type *VTy = II.getType();
2842     if (DemandedElts.isZero()) {
2843       return ConstantInt::getNullValue(VTy);
2844     }
2845 
2846     // We know that the upper bits are set to zero.
2847     Known.Zero.setBitsFrom(ArgWidth);
2848     KnownBitsComputed = true;
2849     break;
2850   }
2851   }
2852   return std::nullopt;
2853 }
2854 
2855 std::optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic(
2856     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2857     APInt &UndefElts2, APInt &UndefElts3,
2858     std::function<void(Instruction *, unsigned, APInt, APInt &)>
2859         simplifyAndSetOp) const {
2860   unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements();
2861   switch (II.getIntrinsicID()) {
2862   default:
2863     break;
2864   case Intrinsic::x86_xop_vfrcz_ss:
2865   case Intrinsic::x86_xop_vfrcz_sd:
2866     // The instructions for these intrinsics are speced to zero upper bits not
2867     // pass them through like other scalar intrinsics. So we shouldn't just
2868     // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
2869     // Instead we should return a zero vector.
2870     if (!DemandedElts[0]) {
2871       IC.addToWorklist(&II);
2872       return ConstantAggregateZero::get(II.getType());
2873     }
2874 
2875     // Only the lower element is used.
2876     DemandedElts = 1;
2877     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
2878 
2879     // Only the lower element is undefined. The high elements are zero.
2880     UndefElts = UndefElts[0];
2881     break;
2882 
2883   // Unary scalar-as-vector operations that work column-wise.
2884   case Intrinsic::x86_sse_rcp_ss:
2885   case Intrinsic::x86_sse_rsqrt_ss:
2886     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
2887 
2888     // If lowest element of a scalar op isn't used then use Arg0.
2889     if (!DemandedElts[0]) {
2890       IC.addToWorklist(&II);
2891       return II.getArgOperand(0);
2892     }
2893     // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
2894     // checks).
2895     break;
2896 
2897   // Binary scalar-as-vector operations that work column-wise. The high
2898   // elements come from operand 0. The low element is a function of both
2899   // operands.
2900   case Intrinsic::x86_sse_min_ss:
2901   case Intrinsic::x86_sse_max_ss:
2902   case Intrinsic::x86_sse_cmp_ss:
2903   case Intrinsic::x86_sse2_min_sd:
2904   case Intrinsic::x86_sse2_max_sd:
2905   case Intrinsic::x86_sse2_cmp_sd: {
2906     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
2907 
2908     // If lowest element of a scalar op isn't used then use Arg0.
2909     if (!DemandedElts[0]) {
2910       IC.addToWorklist(&II);
2911       return II.getArgOperand(0);
2912     }
2913 
2914     // Only lower element is used for operand 1.
2915     DemandedElts = 1;
2916     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
2917 
2918     // Lower element is undefined if both lower elements are undefined.
2919     // Consider things like undef&0.  The result is known zero, not undef.
2920     if (!UndefElts2[0])
2921       UndefElts.clearBit(0);
2922 
2923     break;
2924   }
2925 
2926   // Binary scalar-as-vector operations that work column-wise. The high
2927   // elements come from operand 0 and the low element comes from operand 1.
2928   case Intrinsic::x86_sse41_round_ss:
2929   case Intrinsic::x86_sse41_round_sd: {
2930     // Don't use the low element of operand 0.
2931     APInt DemandedElts2 = DemandedElts;
2932     DemandedElts2.clearBit(0);
2933     simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts);
2934 
2935     // If lowest element of a scalar op isn't used then use Arg0.
2936     if (!DemandedElts[0]) {
2937       IC.addToWorklist(&II);
2938       return II.getArgOperand(0);
2939     }
2940 
2941     // Only lower element is used for operand 1.
2942     DemandedElts = 1;
2943     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
2944 
2945     // Take the high undef elements from operand 0 and take the lower element
2946     // from operand 1.
2947     UndefElts.clearBit(0);
2948     UndefElts |= UndefElts2[0];
2949     break;
2950   }
2951 
2952   // Three input scalar-as-vector operations that work column-wise. The high
2953   // elements come from operand 0 and the low element is a function of all
2954   // three inputs.
2955   case Intrinsic::x86_avx512_mask_add_ss_round:
2956   case Intrinsic::x86_avx512_mask_div_ss_round:
2957   case Intrinsic::x86_avx512_mask_mul_ss_round:
2958   case Intrinsic::x86_avx512_mask_sub_ss_round:
2959   case Intrinsic::x86_avx512_mask_max_ss_round:
2960   case Intrinsic::x86_avx512_mask_min_ss_round:
2961   case Intrinsic::x86_avx512_mask_add_sd_round:
2962   case Intrinsic::x86_avx512_mask_div_sd_round:
2963   case Intrinsic::x86_avx512_mask_mul_sd_round:
2964   case Intrinsic::x86_avx512_mask_sub_sd_round:
2965   case Intrinsic::x86_avx512_mask_max_sd_round:
2966   case Intrinsic::x86_avx512_mask_min_sd_round:
2967     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
2968 
2969     // If lowest element of a scalar op isn't used then use Arg0.
2970     if (!DemandedElts[0]) {
2971       IC.addToWorklist(&II);
2972       return II.getArgOperand(0);
2973     }
2974 
2975     // Only lower element is used for operand 1 and 2.
2976     DemandedElts = 1;
2977     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
2978     simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3);
2979 
2980     // Lower element is undefined if all three lower elements are undefined.
2981     // Consider things like undef&0.  The result is known zero, not undef.
2982     if (!UndefElts2[0] || !UndefElts3[0])
2983       UndefElts.clearBit(0);
2984     break;
2985 
2986   // TODO: Add fmaddsub support?
2987   case Intrinsic::x86_sse3_addsub_pd:
2988   case Intrinsic::x86_sse3_addsub_ps:
2989   case Intrinsic::x86_avx_addsub_pd_256:
2990   case Intrinsic::x86_avx_addsub_ps_256: {
2991     // If none of the even or none of the odd lanes are required, turn this
2992     // into a generic FP math instruction.
2993     APInt SubMask = APInt::getSplat(VWidth, APInt(2, 0x1));
2994     APInt AddMask = APInt::getSplat(VWidth, APInt(2, 0x2));
2995     bool IsSubOnly = DemandedElts.isSubsetOf(SubMask);
2996     bool IsAddOnly = DemandedElts.isSubsetOf(AddMask);
2997     if (IsSubOnly || IsAddOnly) {
2998       assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only");
2999       IRBuilderBase::InsertPointGuard Guard(IC.Builder);
3000       IC.Builder.SetInsertPoint(&II);
3001       Value *Arg0 = II.getArgOperand(0), *Arg1 = II.getArgOperand(1);
3002       return IC.Builder.CreateBinOp(
3003           IsSubOnly ? Instruction::FSub : Instruction::FAdd, Arg0, Arg1);
3004     }
3005 
3006     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3007     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3008     UndefElts &= UndefElts2;
3009     break;
3010   }
3011 
3012   // General per-element vector operations.
3013   case Intrinsic::x86_avx2_psllv_d:
3014   case Intrinsic::x86_avx2_psllv_d_256:
3015   case Intrinsic::x86_avx2_psllv_q:
3016   case Intrinsic::x86_avx2_psllv_q_256:
3017   case Intrinsic::x86_avx2_psrlv_d:
3018   case Intrinsic::x86_avx2_psrlv_d_256:
3019   case Intrinsic::x86_avx2_psrlv_q:
3020   case Intrinsic::x86_avx2_psrlv_q_256:
3021   case Intrinsic::x86_avx2_psrav_d:
3022   case Intrinsic::x86_avx2_psrav_d_256: {
3023     simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3024     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3025     UndefElts &= UndefElts2;
3026     break;
3027   }
3028 
3029   case Intrinsic::x86_sse2_packssdw_128:
3030   case Intrinsic::x86_sse2_packsswb_128:
3031   case Intrinsic::x86_sse2_packuswb_128:
3032   case Intrinsic::x86_sse41_packusdw:
3033   case Intrinsic::x86_avx2_packssdw:
3034   case Intrinsic::x86_avx2_packsswb:
3035   case Intrinsic::x86_avx2_packusdw:
3036   case Intrinsic::x86_avx2_packuswb:
3037   case Intrinsic::x86_avx512_packssdw_512:
3038   case Intrinsic::x86_avx512_packsswb_512:
3039   case Intrinsic::x86_avx512_packusdw_512:
3040   case Intrinsic::x86_avx512_packuswb_512: {
3041     auto *Ty0 = II.getArgOperand(0)->getType();
3042     unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements();
3043     assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
3044 
3045     unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
3046     unsigned VWidthPerLane = VWidth / NumLanes;
3047     unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
3048 
3049     // Per lane, pack the elements of the first input and then the second.
3050     // e.g.
3051     // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
3052     // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
3053     for (int OpNum = 0; OpNum != 2; ++OpNum) {
3054       APInt OpDemandedElts(InnerVWidth, 0);
3055       for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
3056         unsigned LaneIdx = Lane * VWidthPerLane;
3057         for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
3058           unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
3059           if (DemandedElts[Idx])
3060             OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
3061         }
3062       }
3063 
3064       // Demand elements from the operand.
3065       APInt OpUndefElts(InnerVWidth, 0);
3066       simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts);
3067 
3068       // Pack the operand's UNDEF elements, one lane at a time.
3069       OpUndefElts = OpUndefElts.zext(VWidth);
3070       for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
3071         APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
3072         LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
3073         LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
3074         UndefElts |= LaneElts;
3075       }
3076     }
3077     break;
3078   }
3079 
3080   // PSHUFB
3081   case Intrinsic::x86_ssse3_pshuf_b_128:
3082   case Intrinsic::x86_avx2_pshuf_b:
3083   case Intrinsic::x86_avx512_pshuf_b_512:
3084   // PERMILVAR
3085   case Intrinsic::x86_avx_vpermilvar_ps:
3086   case Intrinsic::x86_avx_vpermilvar_ps_256:
3087   case Intrinsic::x86_avx512_vpermilvar_ps_512:
3088   case Intrinsic::x86_avx_vpermilvar_pd:
3089   case Intrinsic::x86_avx_vpermilvar_pd_256:
3090   case Intrinsic::x86_avx512_vpermilvar_pd_512:
3091   // PERMV
3092   case Intrinsic::x86_avx2_permd:
3093   case Intrinsic::x86_avx2_permps: {
3094     simplifyAndSetOp(&II, 1, DemandedElts, UndefElts);
3095     break;
3096   }
3097 
3098   // SSE4A instructions leave the upper 64-bits of the 128-bit result
3099   // in an undefined state.
3100   case Intrinsic::x86_sse4a_extrq:
3101   case Intrinsic::x86_sse4a_extrqi:
3102   case Intrinsic::x86_sse4a_insertq:
3103   case Intrinsic::x86_sse4a_insertqi:
3104     UndefElts.setHighBits(VWidth / 2);
3105     break;
3106   }
3107   return std::nullopt;
3108 }
3109