10b57cec5SDimitry Andric //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file defines the interfaces that X86 uses to lower LLVM code into a 100b57cec5SDimitry Andric // selection DAG. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 150b57cec5SDimitry Andric #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 160b57cec5SDimitry Andric 170b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 180b57cec5SDimitry Andric 190b57cec5SDimitry Andric namespace llvm { 200b57cec5SDimitry Andric class X86Subtarget; 210b57cec5SDimitry Andric class X86TargetMachine; 220b57cec5SDimitry Andric 230b57cec5SDimitry Andric namespace X86ISD { 240b57cec5SDimitry Andric // X86 Specific DAG Nodes 250b57cec5SDimitry Andric enum NodeType : unsigned { 260b57cec5SDimitry Andric // Start the numbering where the builtin ops leave off. 270b57cec5SDimitry Andric FIRST_NUMBER = ISD::BUILTIN_OP_END, 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric /// Bit scan forward. 300b57cec5SDimitry Andric BSF, 310b57cec5SDimitry Andric /// Bit scan reverse. 320b57cec5SDimitry Andric BSR, 330b57cec5SDimitry Andric 345ffd83dbSDimitry Andric /// X86 funnel/double shift i16 instructions. These correspond to 355ffd83dbSDimitry Andric /// X86::SHLDW and X86::SHRDW instructions which have different amt 365ffd83dbSDimitry Andric /// modulo rules to generic funnel shifts. 375ffd83dbSDimitry Andric /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD. 385ffd83dbSDimitry Andric FSHL, 395ffd83dbSDimitry Andric FSHR, 400b57cec5SDimitry Andric 410b57cec5SDimitry Andric /// Bitwise logical AND of floating point values. This corresponds 420b57cec5SDimitry Andric /// to X86::ANDPS or X86::ANDPD. 430b57cec5SDimitry Andric FAND, 440b57cec5SDimitry Andric 450b57cec5SDimitry Andric /// Bitwise logical OR of floating point values. This corresponds 460b57cec5SDimitry Andric /// to X86::ORPS or X86::ORPD. 470b57cec5SDimitry Andric FOR, 480b57cec5SDimitry Andric 490b57cec5SDimitry Andric /// Bitwise logical XOR of floating point values. This corresponds 500b57cec5SDimitry Andric /// to X86::XORPS or X86::XORPD. 510b57cec5SDimitry Andric FXOR, 520b57cec5SDimitry Andric 530b57cec5SDimitry Andric /// Bitwise logical ANDNOT of floating point values. This 540b57cec5SDimitry Andric /// corresponds to X86::ANDNPS or X86::ANDNPD. 550b57cec5SDimitry Andric FANDN, 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric /// These operations represent an abstract X86 call 580b57cec5SDimitry Andric /// instruction, which includes a bunch of information. In particular the 590b57cec5SDimitry Andric /// operands of these node are: 600b57cec5SDimitry Andric /// 610b57cec5SDimitry Andric /// #0 - The incoming token chain 620b57cec5SDimitry Andric /// #1 - The callee 630b57cec5SDimitry Andric /// #2 - The number of arg bytes the caller pushes on the stack. 640b57cec5SDimitry Andric /// #3 - The number of arg bytes the callee pops off the stack. 650b57cec5SDimitry Andric /// #4 - The value to pass in AL/AX/EAX (optional) 660b57cec5SDimitry Andric /// #5 - The value to pass in DL/DX/EDX (optional) 670b57cec5SDimitry Andric /// 680b57cec5SDimitry Andric /// The result values of these nodes are: 690b57cec5SDimitry Andric /// 700b57cec5SDimitry Andric /// #0 - The outgoing token chain 710b57cec5SDimitry Andric /// #1 - The first register result value (optional) 720b57cec5SDimitry Andric /// #2 - The second register result value (optional) 730b57cec5SDimitry Andric /// 740b57cec5SDimitry Andric CALL, 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric /// Same as call except it adds the NoTrack prefix. 770b57cec5SDimitry Andric NT_CALL, 780b57cec5SDimitry Andric 79*fe6060f1SDimitry Andric // Pseudo for a OBJC call that gets emitted together with a special 80*fe6060f1SDimitry Andric // marker instruction. 81*fe6060f1SDimitry Andric CALL_RVMARKER, 82*fe6060f1SDimitry Andric 830b57cec5SDimitry Andric /// X86 compare and logical compare instructions. 845ffd83dbSDimitry Andric CMP, 855ffd83dbSDimitry Andric FCMP, 865ffd83dbSDimitry Andric COMI, 875ffd83dbSDimitry Andric UCOMI, 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric /// X86 bit-test instructions. 900b57cec5SDimitry Andric BT, 910b57cec5SDimitry Andric 920b57cec5SDimitry Andric /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS 930b57cec5SDimitry Andric /// operand, usually produced by a CMP instruction. 940b57cec5SDimitry Andric SETCC, 950b57cec5SDimitry Andric 960b57cec5SDimitry Andric /// X86 Select 970b57cec5SDimitry Andric SELECTS, 980b57cec5SDimitry Andric 990b57cec5SDimitry Andric // Same as SETCC except it's materialized with a sbb and the value is all 1000b57cec5SDimitry Andric // one's or all zero's. 1010b57cec5SDimitry Andric SETCC_CARRY, // R = carry_bit ? ~0 : 0 1020b57cec5SDimitry Andric 1030b57cec5SDimitry Andric /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. 1040b57cec5SDimitry Andric /// Operands are two FP values to compare; result is a mask of 1050b57cec5SDimitry Andric /// 0s or 1s. Generally DTRT for C/C++ with NaNs. 1060b57cec5SDimitry Andric FSETCC, 1070b57cec5SDimitry Andric 1080b57cec5SDimitry Andric /// X86 FP SETCC, similar to above, but with output as an i1 mask and 1090b57cec5SDimitry Andric /// and a version with SAE. 1105ffd83dbSDimitry Andric FSETCCM, 1115ffd83dbSDimitry Andric FSETCCM_SAE, 1120b57cec5SDimitry Andric 1130b57cec5SDimitry Andric /// X86 conditional moves. Operand 0 and operand 1 are the two values 1140b57cec5SDimitry Andric /// to select from. Operand 2 is the condition code, and operand 3 is the 1150b57cec5SDimitry Andric /// flag operand produced by a CMP or TEST instruction. 1160b57cec5SDimitry Andric CMOV, 1170b57cec5SDimitry Andric 1180b57cec5SDimitry Andric /// X86 conditional branches. Operand 0 is the chain operand, operand 1 1190b57cec5SDimitry Andric /// is the block to branch if condition is true, operand 2 is the 1200b57cec5SDimitry Andric /// condition code, and operand 3 is the flag operand produced by a CMP 1210b57cec5SDimitry Andric /// or TEST instruction. 1220b57cec5SDimitry Andric BRCOND, 1230b57cec5SDimitry Andric 1240b57cec5SDimitry Andric /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and 1250b57cec5SDimitry Andric /// operand 1 is the target address. 1260b57cec5SDimitry Andric NT_BRIND, 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric /// Return with a flag operand. Operand 0 is the chain operand, operand 1290b57cec5SDimitry Andric /// 1 is the number of bytes of stack to pop. 1300b57cec5SDimitry Andric RET_FLAG, 1310b57cec5SDimitry Andric 1320b57cec5SDimitry Andric /// Return from interrupt. Operand 0 is the number of bytes to pop. 1330b57cec5SDimitry Andric IRET, 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric /// Repeat fill, corresponds to X86::REP_STOSx. 1360b57cec5SDimitry Andric REP_STOS, 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric /// Repeat move, corresponds to X86::REP_MOVSx. 1390b57cec5SDimitry Andric REP_MOVS, 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric /// On Darwin, this node represents the result of the popl 1420b57cec5SDimitry Andric /// at function entry, used for PIC code. 1430b57cec5SDimitry Andric GlobalBaseReg, 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric /// A wrapper node for TargetConstantPool, TargetJumpTable, 1460b57cec5SDimitry Andric /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress, 1470b57cec5SDimitry Andric /// MCSymbol and TargetBlockAddress. 1480b57cec5SDimitry Andric Wrapper, 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric /// Special wrapper used under X86-64 PIC mode for RIP 1510b57cec5SDimitry Andric /// relative displacements. 1520b57cec5SDimitry Andric WrapperRIP, 1530b57cec5SDimitry Andric 1548bcb0991SDimitry Andric /// Copies a 64-bit value from an MMX vector to the low word 1558bcb0991SDimitry Andric /// of an XMM vector, with the high word zero filled. 1568bcb0991SDimitry Andric MOVQ2DQ, 1578bcb0991SDimitry Andric 1580b57cec5SDimitry Andric /// Copies a 64-bit value from the low word of an XMM vector 1590b57cec5SDimitry Andric /// to an MMX vector. 1600b57cec5SDimitry Andric MOVDQ2Q, 1610b57cec5SDimitry Andric 1620b57cec5SDimitry Andric /// Copies a 32-bit value from the low word of a MMX 1630b57cec5SDimitry Andric /// vector to a GPR. 1640b57cec5SDimitry Andric MMX_MOVD2W, 1650b57cec5SDimitry Andric 1660b57cec5SDimitry Andric /// Copies a GPR into the low 32-bit word of a MMX vector 1670b57cec5SDimitry Andric /// and zero out the high word. 1680b57cec5SDimitry Andric MMX_MOVW2D, 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric /// Extract an 8-bit value from a vector and zero extend it to 1710b57cec5SDimitry Andric /// i32, corresponds to X86::PEXTRB. 1720b57cec5SDimitry Andric PEXTRB, 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric /// Extract a 16-bit value from a vector and zero extend it to 1750b57cec5SDimitry Andric /// i32, corresponds to X86::PEXTRW. 1760b57cec5SDimitry Andric PEXTRW, 1770b57cec5SDimitry Andric 1780b57cec5SDimitry Andric /// Insert any element of a 4 x float vector into any element 1790b57cec5SDimitry Andric /// of a destination 4 x floatvector. 1800b57cec5SDimitry Andric INSERTPS, 1810b57cec5SDimitry Andric 1820b57cec5SDimitry Andric /// Insert the lower 8-bits of a 32-bit value to a vector, 1830b57cec5SDimitry Andric /// corresponds to X86::PINSRB. 1840b57cec5SDimitry Andric PINSRB, 1850b57cec5SDimitry Andric 1860b57cec5SDimitry Andric /// Insert the lower 16-bits of a 32-bit value to a vector, 1870b57cec5SDimitry Andric /// corresponds to X86::PINSRW. 1880b57cec5SDimitry Andric PINSRW, 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric /// Shuffle 16 8-bit values within a vector. 1910b57cec5SDimitry Andric PSHUFB, 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric /// Compute Sum of Absolute Differences. 1940b57cec5SDimitry Andric PSADBW, 1950b57cec5SDimitry Andric /// Compute Double Block Packed Sum-Absolute-Differences 1960b57cec5SDimitry Andric DBPSADBW, 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric /// Bitwise Logical AND NOT of Packed FP values. 1990b57cec5SDimitry Andric ANDNP, 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric /// Blend where the selector is an immediate. 2020b57cec5SDimitry Andric BLENDI, 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric /// Dynamic (non-constant condition) vector blend where only the sign bits 2050b57cec5SDimitry Andric /// of the condition elements are used. This is used to enforce that the 2060b57cec5SDimitry Andric /// condition mask is not valid for generic VSELECT optimizations. This 2070b57cec5SDimitry Andric /// is also used to implement the intrinsics. 2080b57cec5SDimitry Andric /// Operands are in VSELECT order: MASK, TRUE, FALSE 2090b57cec5SDimitry Andric BLENDV, 2100b57cec5SDimitry Andric 2110b57cec5SDimitry Andric /// Combined add and sub on an FP vector. 2120b57cec5SDimitry Andric ADDSUB, 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric // FP vector ops with rounding mode. 2155ffd83dbSDimitry Andric FADD_RND, 2165ffd83dbSDimitry Andric FADDS, 2175ffd83dbSDimitry Andric FADDS_RND, 2185ffd83dbSDimitry Andric FSUB_RND, 2195ffd83dbSDimitry Andric FSUBS, 2205ffd83dbSDimitry Andric FSUBS_RND, 2215ffd83dbSDimitry Andric FMUL_RND, 2225ffd83dbSDimitry Andric FMULS, 2235ffd83dbSDimitry Andric FMULS_RND, 2245ffd83dbSDimitry Andric FDIV_RND, 2255ffd83dbSDimitry Andric FDIVS, 2265ffd83dbSDimitry Andric FDIVS_RND, 2275ffd83dbSDimitry Andric FMAX_SAE, 2285ffd83dbSDimitry Andric FMAXS_SAE, 2295ffd83dbSDimitry Andric FMIN_SAE, 2305ffd83dbSDimitry Andric FMINS_SAE, 2315ffd83dbSDimitry Andric FSQRT_RND, 2325ffd83dbSDimitry Andric FSQRTS, 2335ffd83dbSDimitry Andric FSQRTS_RND, 2340b57cec5SDimitry Andric 2350b57cec5SDimitry Andric // FP vector get exponent. 2365ffd83dbSDimitry Andric FGETEXP, 2375ffd83dbSDimitry Andric FGETEXP_SAE, 2385ffd83dbSDimitry Andric FGETEXPS, 2395ffd83dbSDimitry Andric FGETEXPS_SAE, 2400b57cec5SDimitry Andric // Extract Normalized Mantissas. 2415ffd83dbSDimitry Andric VGETMANT, 2425ffd83dbSDimitry Andric VGETMANT_SAE, 2435ffd83dbSDimitry Andric VGETMANTS, 2445ffd83dbSDimitry Andric VGETMANTS_SAE, 2450b57cec5SDimitry Andric // FP Scale. 2465ffd83dbSDimitry Andric SCALEF, 2475ffd83dbSDimitry Andric SCALEF_RND, 2485ffd83dbSDimitry Andric SCALEFS, 2495ffd83dbSDimitry Andric SCALEFS_RND, 2500b57cec5SDimitry Andric 2510b57cec5SDimitry Andric // Unsigned Integer average. 2520b57cec5SDimitry Andric AVG, 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric /// Integer horizontal add/sub. 2550b57cec5SDimitry Andric HADD, 2560b57cec5SDimitry Andric HSUB, 2570b57cec5SDimitry Andric 2580b57cec5SDimitry Andric /// Floating point horizontal add/sub. 2590b57cec5SDimitry Andric FHADD, 2600b57cec5SDimitry Andric FHSUB, 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric // Detect Conflicts Within a Vector 2630b57cec5SDimitry Andric CONFLICT, 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric /// Floating point max and min. 2665ffd83dbSDimitry Andric FMAX, 2675ffd83dbSDimitry Andric FMIN, 2680b57cec5SDimitry Andric 2690b57cec5SDimitry Andric /// Commutative FMIN and FMAX. 2705ffd83dbSDimitry Andric FMAXC, 2715ffd83dbSDimitry Andric FMINC, 2720b57cec5SDimitry Andric 2730b57cec5SDimitry Andric /// Scalar intrinsic floating point max and min. 2745ffd83dbSDimitry Andric FMAXS, 2755ffd83dbSDimitry Andric FMINS, 2760b57cec5SDimitry Andric 2770b57cec5SDimitry Andric /// Floating point reciprocal-sqrt and reciprocal approximation. 2780b57cec5SDimitry Andric /// Note that these typically require refinement 2790b57cec5SDimitry Andric /// in order to obtain suitable precision. 2805ffd83dbSDimitry Andric FRSQRT, 2815ffd83dbSDimitry Andric FRCP, 2820b57cec5SDimitry Andric 2830b57cec5SDimitry Andric // AVX-512 reciprocal approximations with a little more precision. 2845ffd83dbSDimitry Andric RSQRT14, 2855ffd83dbSDimitry Andric RSQRT14S, 2865ffd83dbSDimitry Andric RCP14, 2875ffd83dbSDimitry Andric RCP14S, 2880b57cec5SDimitry Andric 2890b57cec5SDimitry Andric // Thread Local Storage. 2900b57cec5SDimitry Andric TLSADDR, 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric // Thread Local Storage. A call to get the start address 2930b57cec5SDimitry Andric // of the TLS block for the current module. 2940b57cec5SDimitry Andric TLSBASEADDR, 2950b57cec5SDimitry Andric 2960b57cec5SDimitry Andric // Thread Local Storage. When calling to an OS provided 2970b57cec5SDimitry Andric // thunk at the address from an earlier relocation. 2980b57cec5SDimitry Andric TLSCALL, 2990b57cec5SDimitry Andric 3000b57cec5SDimitry Andric // Exception Handling helpers. 3010b57cec5SDimitry Andric EH_RETURN, 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric // SjLj exception handling setjmp. 3040b57cec5SDimitry Andric EH_SJLJ_SETJMP, 3050b57cec5SDimitry Andric 3060b57cec5SDimitry Andric // SjLj exception handling longjmp. 3070b57cec5SDimitry Andric EH_SJLJ_LONGJMP, 3080b57cec5SDimitry Andric 3090b57cec5SDimitry Andric // SjLj exception handling dispatch. 3100b57cec5SDimitry Andric EH_SJLJ_SETUP_DISPATCH, 3110b57cec5SDimitry Andric 3120b57cec5SDimitry Andric /// Tail call return. See X86TargetLowering::LowerCall for 3130b57cec5SDimitry Andric /// the list of operands. 3140b57cec5SDimitry Andric TC_RETURN, 3150b57cec5SDimitry Andric 3160b57cec5SDimitry Andric // Vector move to low scalar and zero higher vector elements. 3170b57cec5SDimitry Andric VZEXT_MOVL, 3180b57cec5SDimitry Andric 3190b57cec5SDimitry Andric // Vector integer truncate. 3200b57cec5SDimitry Andric VTRUNC, 3210b57cec5SDimitry Andric // Vector integer truncate with unsigned/signed saturation. 3225ffd83dbSDimitry Andric VTRUNCUS, 3235ffd83dbSDimitry Andric VTRUNCS, 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric // Masked version of the above. Used when less than a 128-bit result is 3260b57cec5SDimitry Andric // produced since the mask only applies to the lower elements and can't 3270b57cec5SDimitry Andric // be represented by a select. 3280b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 3295ffd83dbSDimitry Andric VMTRUNC, 3305ffd83dbSDimitry Andric VMTRUNCUS, 3315ffd83dbSDimitry Andric VMTRUNCS, 3320b57cec5SDimitry Andric 3330b57cec5SDimitry Andric // Vector FP extend. 3345ffd83dbSDimitry Andric VFPEXT, 3355ffd83dbSDimitry Andric VFPEXT_SAE, 3365ffd83dbSDimitry Andric VFPEXTS, 3375ffd83dbSDimitry Andric VFPEXTS_SAE, 3380b57cec5SDimitry Andric 3390b57cec5SDimitry Andric // Vector FP round. 3405ffd83dbSDimitry Andric VFPROUND, 3415ffd83dbSDimitry Andric VFPROUND_RND, 3425ffd83dbSDimitry Andric VFPROUNDS, 3435ffd83dbSDimitry Andric VFPROUNDS_RND, 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric // Masked version of above. Used for v2f64->v4f32. 3460b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 3470b57cec5SDimitry Andric VMFPROUND, 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric // 128-bit vector logical left / right shift 3505ffd83dbSDimitry Andric VSHLDQ, 3515ffd83dbSDimitry Andric VSRLDQ, 3520b57cec5SDimitry Andric 3530b57cec5SDimitry Andric // Vector shift elements 3545ffd83dbSDimitry Andric VSHL, 3555ffd83dbSDimitry Andric VSRL, 3565ffd83dbSDimitry Andric VSRA, 3570b57cec5SDimitry Andric 3580b57cec5SDimitry Andric // Vector variable shift 3595ffd83dbSDimitry Andric VSHLV, 3605ffd83dbSDimitry Andric VSRLV, 3615ffd83dbSDimitry Andric VSRAV, 3620b57cec5SDimitry Andric 3630b57cec5SDimitry Andric // Vector shift elements by immediate 3645ffd83dbSDimitry Andric VSHLI, 3655ffd83dbSDimitry Andric VSRLI, 3665ffd83dbSDimitry Andric VSRAI, 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric // Shifts of mask registers. 3695ffd83dbSDimitry Andric KSHIFTL, 3705ffd83dbSDimitry Andric KSHIFTR, 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric // Bit rotate by immediate 3735ffd83dbSDimitry Andric VROTLI, 3745ffd83dbSDimitry Andric VROTRI, 3750b57cec5SDimitry Andric 3760b57cec5SDimitry Andric // Vector packed double/float comparison. 3770b57cec5SDimitry Andric CMPP, 3780b57cec5SDimitry Andric 3790b57cec5SDimitry Andric // Vector integer comparisons. 3805ffd83dbSDimitry Andric PCMPEQ, 3815ffd83dbSDimitry Andric PCMPGT, 3820b57cec5SDimitry Andric 3830b57cec5SDimitry Andric // v8i16 Horizontal minimum and position. 3840b57cec5SDimitry Andric PHMINPOS, 3850b57cec5SDimitry Andric 3860b57cec5SDimitry Andric MULTISHIFT, 3870b57cec5SDimitry Andric 3880b57cec5SDimitry Andric /// Vector comparison generating mask bits for fp and 3890b57cec5SDimitry Andric /// integer signed and unsigned data types. 3900b57cec5SDimitry Andric CMPM, 391e8d8bef9SDimitry Andric // Vector mask comparison generating mask bits for FP values. 392e8d8bef9SDimitry Andric CMPMM, 393e8d8bef9SDimitry Andric // Vector mask comparison with SAE for FP values. 394e8d8bef9SDimitry Andric CMPMM_SAE, 3950b57cec5SDimitry Andric 3960b57cec5SDimitry Andric // Arithmetic operations with FLAGS results. 3975ffd83dbSDimitry Andric ADD, 3985ffd83dbSDimitry Andric SUB, 3995ffd83dbSDimitry Andric ADC, 4005ffd83dbSDimitry Andric SBB, 4015ffd83dbSDimitry Andric SMUL, 4025ffd83dbSDimitry Andric UMUL, 4035ffd83dbSDimitry Andric OR, 4045ffd83dbSDimitry Andric XOR, 4055ffd83dbSDimitry Andric AND, 4060b57cec5SDimitry Andric 4070b57cec5SDimitry Andric // Bit field extract. 4080b57cec5SDimitry Andric BEXTR, 409e8d8bef9SDimitry Andric BEXTRI, 4100b57cec5SDimitry Andric 4110b57cec5SDimitry Andric // Zero High Bits Starting with Specified Bit Position. 4120b57cec5SDimitry Andric BZHI, 4130b57cec5SDimitry Andric 4145ffd83dbSDimitry Andric // Parallel extract and deposit. 4155ffd83dbSDimitry Andric PDEP, 4165ffd83dbSDimitry Andric PEXT, 4175ffd83dbSDimitry Andric 4180b57cec5SDimitry Andric // X86-specific multiply by immediate. 4190b57cec5SDimitry Andric MUL_IMM, 4200b57cec5SDimitry Andric 4210b57cec5SDimitry Andric // Vector sign bit extraction. 4220b57cec5SDimitry Andric MOVMSK, 4230b57cec5SDimitry Andric 4240b57cec5SDimitry Andric // Vector bitwise comparisons. 4250b57cec5SDimitry Andric PTEST, 4260b57cec5SDimitry Andric 4270b57cec5SDimitry Andric // Vector packed fp sign bitwise comparisons. 4280b57cec5SDimitry Andric TESTP, 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric // OR/AND test for masks. 4310b57cec5SDimitry Andric KORTEST, 4320b57cec5SDimitry Andric KTEST, 4330b57cec5SDimitry Andric 4340b57cec5SDimitry Andric // ADD for masks. 4350b57cec5SDimitry Andric KADD, 4360b57cec5SDimitry Andric 4370b57cec5SDimitry Andric // Several flavors of instructions with vector shuffle behaviors. 4380b57cec5SDimitry Andric // Saturated signed/unnsigned packing. 4390b57cec5SDimitry Andric PACKSS, 4400b57cec5SDimitry Andric PACKUS, 4410b57cec5SDimitry Andric // Intra-lane alignr. 4420b57cec5SDimitry Andric PALIGNR, 4430b57cec5SDimitry Andric // AVX512 inter-lane alignr. 4440b57cec5SDimitry Andric VALIGN, 4450b57cec5SDimitry Andric PSHUFD, 4460b57cec5SDimitry Andric PSHUFHW, 4470b57cec5SDimitry Andric PSHUFLW, 4480b57cec5SDimitry Andric SHUFP, 4490b57cec5SDimitry Andric // VBMI2 Concat & Shift. 4500b57cec5SDimitry Andric VSHLD, 4510b57cec5SDimitry Andric VSHRD, 4520b57cec5SDimitry Andric VSHLDV, 4530b57cec5SDimitry Andric VSHRDV, 4540b57cec5SDimitry Andric // Shuffle Packed Values at 128-bit granularity. 4550b57cec5SDimitry Andric SHUF128, 4560b57cec5SDimitry Andric MOVDDUP, 4570b57cec5SDimitry Andric MOVSHDUP, 4580b57cec5SDimitry Andric MOVSLDUP, 4590b57cec5SDimitry Andric MOVLHPS, 4600b57cec5SDimitry Andric MOVHLPS, 4610b57cec5SDimitry Andric MOVSD, 4620b57cec5SDimitry Andric MOVSS, 4630b57cec5SDimitry Andric UNPCKL, 4640b57cec5SDimitry Andric UNPCKH, 4650b57cec5SDimitry Andric VPERMILPV, 4660b57cec5SDimitry Andric VPERMILPI, 4670b57cec5SDimitry Andric VPERMI, 4680b57cec5SDimitry Andric VPERM2X128, 4690b57cec5SDimitry Andric 4700b57cec5SDimitry Andric // Variable Permute (VPERM). 4710b57cec5SDimitry Andric // Res = VPERMV MaskV, V0 4720b57cec5SDimitry Andric VPERMV, 4730b57cec5SDimitry Andric 4740b57cec5SDimitry Andric // 3-op Variable Permute (VPERMT2). 4750b57cec5SDimitry Andric // Res = VPERMV3 V0, MaskV, V1 4760b57cec5SDimitry Andric VPERMV3, 4770b57cec5SDimitry Andric 4780b57cec5SDimitry Andric // Bitwise ternary logic. 4790b57cec5SDimitry Andric VPTERNLOG, 4800b57cec5SDimitry Andric // Fix Up Special Packed Float32/64 values. 4815ffd83dbSDimitry Andric VFIXUPIMM, 4825ffd83dbSDimitry Andric VFIXUPIMM_SAE, 4835ffd83dbSDimitry Andric VFIXUPIMMS, 4845ffd83dbSDimitry Andric VFIXUPIMMS_SAE, 4850b57cec5SDimitry Andric // Range Restriction Calculation For Packed Pairs of Float32/64 values. 4865ffd83dbSDimitry Andric VRANGE, 4875ffd83dbSDimitry Andric VRANGE_SAE, 4885ffd83dbSDimitry Andric VRANGES, 4895ffd83dbSDimitry Andric VRANGES_SAE, 4900b57cec5SDimitry Andric // Reduce - Perform Reduction Transformation on scalar\packed FP. 4915ffd83dbSDimitry Andric VREDUCE, 4925ffd83dbSDimitry Andric VREDUCE_SAE, 4935ffd83dbSDimitry Andric VREDUCES, 4945ffd83dbSDimitry Andric VREDUCES_SAE, 4950b57cec5SDimitry Andric // RndScale - Round FP Values To Include A Given Number Of Fraction Bits. 4960b57cec5SDimitry Andric // Also used by the legacy (V)ROUND intrinsics where we mask out the 4970b57cec5SDimitry Andric // scaling part of the immediate. 4985ffd83dbSDimitry Andric VRNDSCALE, 4995ffd83dbSDimitry Andric VRNDSCALE_SAE, 5005ffd83dbSDimitry Andric VRNDSCALES, 5015ffd83dbSDimitry Andric VRNDSCALES_SAE, 5020b57cec5SDimitry Andric // Tests Types Of a FP Values for packed types. 5030b57cec5SDimitry Andric VFPCLASS, 5040b57cec5SDimitry Andric // Tests Types Of a FP Values for scalar types. 5050b57cec5SDimitry Andric VFPCLASSS, 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric // Broadcast (splat) scalar or element 0 of a vector. If the operand is 5080b57cec5SDimitry Andric // a vector, this node may change the vector length as part of the splat. 5090b57cec5SDimitry Andric VBROADCAST, 5100b57cec5SDimitry Andric // Broadcast mask to vector. 5110b57cec5SDimitry Andric VBROADCASTM, 5120b57cec5SDimitry Andric 5130b57cec5SDimitry Andric /// SSE4A Extraction and Insertion. 5145ffd83dbSDimitry Andric EXTRQI, 5155ffd83dbSDimitry Andric INSERTQI, 5160b57cec5SDimitry Andric 5170b57cec5SDimitry Andric // XOP arithmetic/logical shifts. 5185ffd83dbSDimitry Andric VPSHA, 5195ffd83dbSDimitry Andric VPSHL, 5200b57cec5SDimitry Andric // XOP signed/unsigned integer comparisons. 5215ffd83dbSDimitry Andric VPCOM, 5225ffd83dbSDimitry Andric VPCOMU, 5230b57cec5SDimitry Andric // XOP packed permute bytes. 5240b57cec5SDimitry Andric VPPERM, 5250b57cec5SDimitry Andric // XOP two source permutation. 5260b57cec5SDimitry Andric VPERMIL2, 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric // Vector multiply packed unsigned doubleword integers. 5290b57cec5SDimitry Andric PMULUDQ, 5300b57cec5SDimitry Andric // Vector multiply packed signed doubleword integers. 5310b57cec5SDimitry Andric PMULDQ, 5320b57cec5SDimitry Andric // Vector Multiply Packed UnsignedIntegers with Round and Scale. 5330b57cec5SDimitry Andric MULHRS, 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric // Multiply and Add Packed Integers. 5365ffd83dbSDimitry Andric VPMADDUBSW, 5375ffd83dbSDimitry Andric VPMADDWD, 5380b57cec5SDimitry Andric 5390b57cec5SDimitry Andric // AVX512IFMA multiply and add. 5400b57cec5SDimitry Andric // NOTE: These are different than the instruction and perform 5410b57cec5SDimitry Andric // op0 x op1 + op2. 5425ffd83dbSDimitry Andric VPMADD52L, 5435ffd83dbSDimitry Andric VPMADD52H, 5440b57cec5SDimitry Andric 5450b57cec5SDimitry Andric // VNNI 5460b57cec5SDimitry Andric VPDPBUSD, 5470b57cec5SDimitry Andric VPDPBUSDS, 5480b57cec5SDimitry Andric VPDPWSSD, 5490b57cec5SDimitry Andric VPDPWSSDS, 5500b57cec5SDimitry Andric 5510b57cec5SDimitry Andric // FMA nodes. 5520b57cec5SDimitry Andric // We use the target independent ISD::FMA for the non-inverted case. 5530b57cec5SDimitry Andric FNMADD, 5540b57cec5SDimitry Andric FMSUB, 5550b57cec5SDimitry Andric FNMSUB, 5560b57cec5SDimitry Andric FMADDSUB, 5570b57cec5SDimitry Andric FMSUBADD, 5580b57cec5SDimitry Andric 5590b57cec5SDimitry Andric // FMA with rounding mode. 5600b57cec5SDimitry Andric FMADD_RND, 5610b57cec5SDimitry Andric FNMADD_RND, 5620b57cec5SDimitry Andric FMSUB_RND, 5630b57cec5SDimitry Andric FNMSUB_RND, 5640b57cec5SDimitry Andric FMADDSUB_RND, 5650b57cec5SDimitry Andric FMSUBADD_RND, 5660b57cec5SDimitry Andric 5670b57cec5SDimitry Andric // Compress and expand. 5680b57cec5SDimitry Andric COMPRESS, 5690b57cec5SDimitry Andric EXPAND, 5700b57cec5SDimitry Andric 5710b57cec5SDimitry Andric // Bits shuffle 5720b57cec5SDimitry Andric VPSHUFBITQMB, 5730b57cec5SDimitry Andric 5740b57cec5SDimitry Andric // Convert Unsigned/Integer to Floating-Point Value with rounding mode. 5755ffd83dbSDimitry Andric SINT_TO_FP_RND, 5765ffd83dbSDimitry Andric UINT_TO_FP_RND, 5775ffd83dbSDimitry Andric SCALAR_SINT_TO_FP, 5785ffd83dbSDimitry Andric SCALAR_UINT_TO_FP, 5795ffd83dbSDimitry Andric SCALAR_SINT_TO_FP_RND, 5805ffd83dbSDimitry Andric SCALAR_UINT_TO_FP_RND, 5810b57cec5SDimitry Andric 5820b57cec5SDimitry Andric // Vector float/double to signed/unsigned integer. 5835ffd83dbSDimitry Andric CVTP2SI, 5845ffd83dbSDimitry Andric CVTP2UI, 5855ffd83dbSDimitry Andric CVTP2SI_RND, 5865ffd83dbSDimitry Andric CVTP2UI_RND, 5870b57cec5SDimitry Andric // Scalar float/double to signed/unsigned integer. 5885ffd83dbSDimitry Andric CVTS2SI, 5895ffd83dbSDimitry Andric CVTS2UI, 5905ffd83dbSDimitry Andric CVTS2SI_RND, 5915ffd83dbSDimitry Andric CVTS2UI_RND, 5920b57cec5SDimitry Andric 5930b57cec5SDimitry Andric // Vector float/double to signed/unsigned integer with truncation. 5945ffd83dbSDimitry Andric CVTTP2SI, 5955ffd83dbSDimitry Andric CVTTP2UI, 5965ffd83dbSDimitry Andric CVTTP2SI_SAE, 5975ffd83dbSDimitry Andric CVTTP2UI_SAE, 5980b57cec5SDimitry Andric // Scalar float/double to signed/unsigned integer with truncation. 5995ffd83dbSDimitry Andric CVTTS2SI, 6005ffd83dbSDimitry Andric CVTTS2UI, 6015ffd83dbSDimitry Andric CVTTS2SI_SAE, 6025ffd83dbSDimitry Andric CVTTS2UI_SAE, 6030b57cec5SDimitry Andric 6040b57cec5SDimitry Andric // Vector signed/unsigned integer to float/double. 6055ffd83dbSDimitry Andric CVTSI2P, 6065ffd83dbSDimitry Andric CVTUI2P, 6070b57cec5SDimitry Andric 6080b57cec5SDimitry Andric // Masked versions of above. Used for v2f64->v4f32. 6090b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 6105ffd83dbSDimitry Andric MCVTP2SI, 6115ffd83dbSDimitry Andric MCVTP2UI, 6125ffd83dbSDimitry Andric MCVTTP2SI, 6135ffd83dbSDimitry Andric MCVTTP2UI, 6145ffd83dbSDimitry Andric MCVTSI2P, 6155ffd83dbSDimitry Andric MCVTUI2P, 6160b57cec5SDimitry Andric 6170b57cec5SDimitry Andric // Vector float to bfloat16. 6180b57cec5SDimitry Andric // Convert TWO packed single data to one packed BF16 data 6190b57cec5SDimitry Andric CVTNE2PS2BF16, 6200b57cec5SDimitry Andric // Convert packed single data to packed BF16 data 6210b57cec5SDimitry Andric CVTNEPS2BF16, 6220b57cec5SDimitry Andric // Masked version of above. 6230b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 6240b57cec5SDimitry Andric MCVTNEPS2BF16, 6250b57cec5SDimitry Andric 6260b57cec5SDimitry Andric // Dot product of BF16 pairs to accumulated into 6270b57cec5SDimitry Andric // packed single precision. 6280b57cec5SDimitry Andric DPBF16PS, 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric // Save xmm argument registers to the stack, according to %al. An operator 6310b57cec5SDimitry Andric // is needed so that this can be expanded with control flow. 6320b57cec5SDimitry Andric VASTART_SAVE_XMM_REGS, 6330b57cec5SDimitry Andric 6340b57cec5SDimitry Andric // Windows's _chkstk call to do stack probing. 6350b57cec5SDimitry Andric WIN_ALLOCA, 6360b57cec5SDimitry Andric 6370b57cec5SDimitry Andric // For allocating variable amounts of stack space when using 6380b57cec5SDimitry Andric // segmented stacks. Check if the current stacklet has enough space, and 6390b57cec5SDimitry Andric // falls back to heap allocation if not. 6400b57cec5SDimitry Andric SEG_ALLOCA, 6410b57cec5SDimitry Andric 6425ffd83dbSDimitry Andric // For allocating stack space when using stack clash protector. 6435ffd83dbSDimitry Andric // Allocation is performed by block, and each block is probed. 6445ffd83dbSDimitry Andric PROBED_ALLOCA, 6455ffd83dbSDimitry Andric 6460b57cec5SDimitry Andric // Memory barriers. 6470b57cec5SDimitry Andric MEMBARRIER, 6480b57cec5SDimitry Andric MFENCE, 6490b57cec5SDimitry Andric 6500b57cec5SDimitry Andric // Get a random integer and indicate whether it is valid in CF. 6510b57cec5SDimitry Andric RDRAND, 6520b57cec5SDimitry Andric 6530b57cec5SDimitry Andric // Get a NIST SP800-90B & C compliant random integer and 6540b57cec5SDimitry Andric // indicate whether it is valid in CF. 6550b57cec5SDimitry Andric RDSEED, 6560b57cec5SDimitry Andric 6570b57cec5SDimitry Andric // Protection keys 6580b57cec5SDimitry Andric // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX. 6590b57cec5SDimitry Andric // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is 6600b57cec5SDimitry Andric // value for ECX. 6615ffd83dbSDimitry Andric RDPKRU, 6625ffd83dbSDimitry Andric WRPKRU, 6630b57cec5SDimitry Andric 6640b57cec5SDimitry Andric // SSE42 string comparisons. 6650b57cec5SDimitry Andric // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG 6660b57cec5SDimitry Andric // will emit one or two instructions based on which results are used. If 6670b57cec5SDimitry Andric // flags and index/mask this allows us to use a single instruction since 6680b57cec5SDimitry Andric // we won't have to pick and opcode for flags. Instead we can rely on the 6690b57cec5SDimitry Andric // DAG to CSE everything and decide at isel. 6700b57cec5SDimitry Andric PCMPISTR, 6710b57cec5SDimitry Andric PCMPESTR, 6720b57cec5SDimitry Andric 6730b57cec5SDimitry Andric // Test if in transactional execution. 6740b57cec5SDimitry Andric XTEST, 6750b57cec5SDimitry Andric 6760b57cec5SDimitry Andric // ERI instructions. 6775ffd83dbSDimitry Andric RSQRT28, 6785ffd83dbSDimitry Andric RSQRT28_SAE, 6795ffd83dbSDimitry Andric RSQRT28S, 6805ffd83dbSDimitry Andric RSQRT28S_SAE, 6815ffd83dbSDimitry Andric RCP28, 6825ffd83dbSDimitry Andric RCP28_SAE, 6835ffd83dbSDimitry Andric RCP28S, 6845ffd83dbSDimitry Andric RCP28S_SAE, 6855ffd83dbSDimitry Andric EXP2, 6865ffd83dbSDimitry Andric EXP2_SAE, 6870b57cec5SDimitry Andric 6880b57cec5SDimitry Andric // Conversions between float and half-float. 6895ffd83dbSDimitry Andric CVTPS2PH, 6905ffd83dbSDimitry Andric CVTPH2PS, 6915ffd83dbSDimitry Andric CVTPH2PS_SAE, 6920b57cec5SDimitry Andric 6930b57cec5SDimitry Andric // Masked version of above. 6940b57cec5SDimitry Andric // SRC, RND, PASSTHRU, MASK 6950b57cec5SDimitry Andric MCVTPS2PH, 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric // Galois Field Arithmetic Instructions 6985ffd83dbSDimitry Andric GF2P8AFFINEINVQB, 6995ffd83dbSDimitry Andric GF2P8AFFINEQB, 7005ffd83dbSDimitry Andric GF2P8MULB, 7010b57cec5SDimitry Andric 7020b57cec5SDimitry Andric // LWP insert record. 7030b57cec5SDimitry Andric LWPINS, 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric // User level wait 7065ffd83dbSDimitry Andric UMWAIT, 7075ffd83dbSDimitry Andric TPAUSE, 7080b57cec5SDimitry Andric 7090b57cec5SDimitry Andric // Enqueue Stores Instructions 7105ffd83dbSDimitry Andric ENQCMD, 7115ffd83dbSDimitry Andric ENQCMDS, 7120b57cec5SDimitry Andric 7130b57cec5SDimitry Andric // For avx512-vp2intersect 7140b57cec5SDimitry Andric VP2INTERSECT, 7150b57cec5SDimitry Andric 716e8d8bef9SDimitry Andric // User level interrupts - testui 717e8d8bef9SDimitry Andric TESTUI, 718e8d8bef9SDimitry Andric 719480093f4SDimitry Andric /// X86 strict FP compare instructions. 720480093f4SDimitry Andric STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE, 721480093f4SDimitry Andric STRICT_FCMPS, 722480093f4SDimitry Andric 723480093f4SDimitry Andric // Vector packed double/float comparison. 724480093f4SDimitry Andric STRICT_CMPP, 725480093f4SDimitry Andric 726480093f4SDimitry Andric /// Vector comparison generating mask bits for fp and 727480093f4SDimitry Andric /// integer signed and unsigned data types. 728480093f4SDimitry Andric STRICT_CMPM, 729480093f4SDimitry Andric 730480093f4SDimitry Andric // Vector float/double to signed/unsigned integer with truncation. 7315ffd83dbSDimitry Andric STRICT_CVTTP2SI, 7325ffd83dbSDimitry Andric STRICT_CVTTP2UI, 733480093f4SDimitry Andric 734480093f4SDimitry Andric // Vector FP extend. 735480093f4SDimitry Andric STRICT_VFPEXT, 736480093f4SDimitry Andric 737480093f4SDimitry Andric // Vector FP round. 738480093f4SDimitry Andric STRICT_VFPROUND, 739480093f4SDimitry Andric 740480093f4SDimitry Andric // RndScale - Round FP Values To Include A Given Number Of Fraction Bits. 741480093f4SDimitry Andric // Also used by the legacy (V)ROUND intrinsics where we mask out the 742480093f4SDimitry Andric // scaling part of the immediate. 743480093f4SDimitry Andric STRICT_VRNDSCALE, 744480093f4SDimitry Andric 745480093f4SDimitry Andric // Vector signed/unsigned integer to float/double. 7465ffd83dbSDimitry Andric STRICT_CVTSI2P, 7475ffd83dbSDimitry Andric STRICT_CVTUI2P, 7485ffd83dbSDimitry Andric 7495ffd83dbSDimitry Andric // Strict FMA nodes. 7505ffd83dbSDimitry Andric STRICT_FNMADD, 7515ffd83dbSDimitry Andric STRICT_FMSUB, 7525ffd83dbSDimitry Andric STRICT_FNMSUB, 7535ffd83dbSDimitry Andric 7545ffd83dbSDimitry Andric // Conversions between float and half-float. 7555ffd83dbSDimitry Andric STRICT_CVTPS2PH, 7565ffd83dbSDimitry Andric STRICT_CVTPH2PS, 757480093f4SDimitry Andric 758e8d8bef9SDimitry Andric // WARNING: Only add nodes here if they are stric FP nodes. Non-memory and 759e8d8bef9SDimitry Andric // non-strict FP nodes should be above FIRST_TARGET_STRICTFP_OPCODE. 760e8d8bef9SDimitry Andric 7610b57cec5SDimitry Andric // Compare and swap. 7620b57cec5SDimitry Andric LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, 7630b57cec5SDimitry Andric LCMPXCHG8_DAG, 7640b57cec5SDimitry Andric LCMPXCHG16_DAG, 7650b57cec5SDimitry Andric LCMPXCHG16_SAVE_RBX_DAG, 7660b57cec5SDimitry Andric 7670b57cec5SDimitry Andric /// LOCK-prefixed arithmetic read-modify-write instructions. 7680b57cec5SDimitry Andric /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS) 7695ffd83dbSDimitry Andric LADD, 7705ffd83dbSDimitry Andric LSUB, 7715ffd83dbSDimitry Andric LOR, 7725ffd83dbSDimitry Andric LXOR, 7735ffd83dbSDimitry Andric LAND, 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric // Load, scalar_to_vector, and zero extend. 7760b57cec5SDimitry Andric VZEXT_LOAD, 7770b57cec5SDimitry Andric 7780b57cec5SDimitry Andric // extract_vector_elt, store. 7790b57cec5SDimitry Andric VEXTRACT_STORE, 7800b57cec5SDimitry Andric 781e8d8bef9SDimitry Andric // scalar broadcast from memory. 7828bcb0991SDimitry Andric VBROADCAST_LOAD, 7838bcb0991SDimitry Andric 784e8d8bef9SDimitry Andric // subvector broadcast from memory. 785e8d8bef9SDimitry Andric SUBV_BROADCAST_LOAD, 786e8d8bef9SDimitry Andric 787*fe6060f1SDimitry Andric // Store FP control word into i16 memory. 7880b57cec5SDimitry Andric FNSTCW16m, 7890b57cec5SDimitry Andric 790*fe6060f1SDimitry Andric // Load FP control word from i16 memory. 791*fe6060f1SDimitry Andric FLDCW16m, 792*fe6060f1SDimitry Andric 7930b57cec5SDimitry Andric /// This instruction implements FP_TO_SINT with the 7940b57cec5SDimitry Andric /// integer destination in memory and a FP reg source. This corresponds 7950b57cec5SDimitry Andric /// to the X86::FIST*m instructions and the rounding mode change stuff. It 7960b57cec5SDimitry Andric /// has two inputs (token chain and address) and two outputs (int value 7970b57cec5SDimitry Andric /// and token chain). Memory VT specifies the type to store to. 7980b57cec5SDimitry Andric FP_TO_INT_IN_MEM, 7990b57cec5SDimitry Andric 8000b57cec5SDimitry Andric /// This instruction implements SINT_TO_FP with the 8010b57cec5SDimitry Andric /// integer source in memory and FP reg result. This corresponds to the 8020b57cec5SDimitry Andric /// X86::FILD*m instructions. It has two inputs (token chain and address) 8035ffd83dbSDimitry Andric /// and two outputs (FP value and token chain). The integer source type is 8045ffd83dbSDimitry Andric /// specified by the memory VT. 8050b57cec5SDimitry Andric FILD, 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric /// This instruction implements a fp->int store from FP stack 8080b57cec5SDimitry Andric /// slots. This corresponds to the fist instruction. It takes a 8090b57cec5SDimitry Andric /// chain operand, value to store, address, and glue. The memory VT 8100b57cec5SDimitry Andric /// specifies the type to store as. 8110b57cec5SDimitry Andric FIST, 8120b57cec5SDimitry Andric 8130b57cec5SDimitry Andric /// This instruction implements an extending load to FP stack slots. 8140b57cec5SDimitry Andric /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain 8150b57cec5SDimitry Andric /// operand, and ptr to load from. The memory VT specifies the type to 8160b57cec5SDimitry Andric /// load from. 8170b57cec5SDimitry Andric FLD, 8180b57cec5SDimitry Andric 8190b57cec5SDimitry Andric /// This instruction implements a truncating store from FP stack 8200b57cec5SDimitry Andric /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a 8210b57cec5SDimitry Andric /// chain operand, value to store, address, and glue. The memory VT 8220b57cec5SDimitry Andric /// specifies the type to store as. 8230b57cec5SDimitry Andric FST, 8240b57cec5SDimitry Andric 825e8d8bef9SDimitry Andric /// These instructions grab the address of the next argument 8260b57cec5SDimitry Andric /// from a va_list. (reads and modifies the va_list in memory) 8270b57cec5SDimitry Andric VAARG_64, 828e8d8bef9SDimitry Andric VAARG_X32, 8290b57cec5SDimitry Andric 8300b57cec5SDimitry Andric // Vector truncating store with unsigned/signed saturation 8315ffd83dbSDimitry Andric VTRUNCSTOREUS, 8325ffd83dbSDimitry Andric VTRUNCSTORES, 8330b57cec5SDimitry Andric // Vector truncating masked store with unsigned/signed saturation 8345ffd83dbSDimitry Andric VMTRUNCSTOREUS, 8355ffd83dbSDimitry Andric VMTRUNCSTORES, 8360b57cec5SDimitry Andric 8370b57cec5SDimitry Andric // X86 specific gather and scatter 8385ffd83dbSDimitry Andric MGATHER, 8395ffd83dbSDimitry Andric MSCATTER, 8400b57cec5SDimitry Andric 841e8d8bef9SDimitry Andric // Key locker nodes that produce flags. 842e8d8bef9SDimitry Andric AESENC128KL, 843e8d8bef9SDimitry Andric AESDEC128KL, 844e8d8bef9SDimitry Andric AESENC256KL, 845e8d8bef9SDimitry Andric AESDEC256KL, 846e8d8bef9SDimitry Andric AESENCWIDE128KL, 847e8d8bef9SDimitry Andric AESDECWIDE128KL, 848e8d8bef9SDimitry Andric AESENCWIDE256KL, 849e8d8bef9SDimitry Andric AESDECWIDE256KL, 850e8d8bef9SDimitry Andric 8510b57cec5SDimitry Andric // WARNING: Do not add anything in the end unless you want the node to 8520b57cec5SDimitry Andric // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all 8530b57cec5SDimitry Andric // opcodes will be thought as target memory ops! 8540b57cec5SDimitry Andric }; 8550b57cec5SDimitry Andric } // end namespace X86ISD 8560b57cec5SDimitry Andric 857*fe6060f1SDimitry Andric namespace X86 { 858*fe6060f1SDimitry Andric /// Current rounding mode is represented in bits 11:10 of FPSR. These 859*fe6060f1SDimitry Andric /// values are same as corresponding constants for rounding mode used 860*fe6060f1SDimitry Andric /// in glibc. 861*fe6060f1SDimitry Andric enum RoundingMode { 862*fe6060f1SDimitry Andric rmToNearest = 0, // FE_TONEAREST 863*fe6060f1SDimitry Andric rmDownward = 1 << 10, // FE_DOWNWARD 864*fe6060f1SDimitry Andric rmUpward = 2 << 10, // FE_UPWARD 865*fe6060f1SDimitry Andric rmTowardZero = 3 << 10, // FE_TOWARDZERO 866*fe6060f1SDimitry Andric rmMask = 3 << 10 // Bit mask selecting rounding mode 867*fe6060f1SDimitry Andric }; 868*fe6060f1SDimitry Andric } 869*fe6060f1SDimitry Andric 8700b57cec5SDimitry Andric /// Define some predicates that are used for node matching. 8710b57cec5SDimitry Andric namespace X86 { 8720b57cec5SDimitry Andric /// Returns true if Elt is a constant zero or floating point constant +0.0. 8730b57cec5SDimitry Andric bool isZeroNode(SDValue Elt); 8740b57cec5SDimitry Andric 8750b57cec5SDimitry Andric /// Returns true of the given offset can be 8760b57cec5SDimitry Andric /// fit into displacement field of the instruction. 8770b57cec5SDimitry Andric bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, 878e8d8bef9SDimitry Andric bool hasSymbolicDisplacement); 8790b57cec5SDimitry Andric 8800b57cec5SDimitry Andric /// Determines whether the callee is required to pop its 8810b57cec5SDimitry Andric /// own arguments. Callee pop is necessary to support tail calls. 8820b57cec5SDimitry Andric bool isCalleePop(CallingConv::ID CallingConv, 8830b57cec5SDimitry Andric bool is64Bit, bool IsVarArg, bool GuaranteeTCO); 8840b57cec5SDimitry Andric 8858bcb0991SDimitry Andric /// If Op is a constant whose elements are all the same constant or 8868bcb0991SDimitry Andric /// undefined, return true and return the constant value in \p SplatVal. 8875ffd83dbSDimitry Andric /// If we have undef bits that don't cover an entire element, we treat these 8885ffd83dbSDimitry Andric /// as zero if AllowPartialUndefs is set, else we fail and return false. 8895ffd83dbSDimitry Andric bool isConstantSplat(SDValue Op, APInt &SplatVal, 8905ffd83dbSDimitry Andric bool AllowPartialUndefs = true); 8910b57cec5SDimitry Andric } // end namespace X86 8920b57cec5SDimitry Andric 8930b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 8940b57cec5SDimitry Andric // X86 Implementation of the TargetLowering interface 8950b57cec5SDimitry Andric class X86TargetLowering final : public TargetLowering { 8960b57cec5SDimitry Andric public: 8970b57cec5SDimitry Andric explicit X86TargetLowering(const X86TargetMachine &TM, 8980b57cec5SDimitry Andric const X86Subtarget &STI); 8990b57cec5SDimitry Andric 9000b57cec5SDimitry Andric unsigned getJumpTableEncoding() const override; 9010b57cec5SDimitry Andric bool useSoftFloat() const override; 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric void markLibCallAttributes(MachineFunction *MF, unsigned CC, 9040b57cec5SDimitry Andric ArgListTy &Args) const override; 9050b57cec5SDimitry Andric 9060b57cec5SDimitry Andric MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override { 9070b57cec5SDimitry Andric return MVT::i8; 9080b57cec5SDimitry Andric } 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric const MCExpr * 9110b57cec5SDimitry Andric LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, 9120b57cec5SDimitry Andric const MachineBasicBlock *MBB, unsigned uid, 9130b57cec5SDimitry Andric MCContext &Ctx) const override; 9140b57cec5SDimitry Andric 9150b57cec5SDimitry Andric /// Returns relocation base for the given PIC jumptable. 9160b57cec5SDimitry Andric SDValue getPICJumpTableRelocBase(SDValue Table, 9170b57cec5SDimitry Andric SelectionDAG &DAG) const override; 9180b57cec5SDimitry Andric const MCExpr * 9190b57cec5SDimitry Andric getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 9200b57cec5SDimitry Andric unsigned JTI, MCContext &Ctx) const override; 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric /// Return the desired alignment for ByVal aggregate 9230b57cec5SDimitry Andric /// function arguments in the caller parameter area. For X86, aggregates 9240b57cec5SDimitry Andric /// that contains are placed at 16-byte boundaries while the rest are at 9250b57cec5SDimitry Andric /// 4-byte boundaries. 9260b57cec5SDimitry Andric unsigned getByValTypeAlignment(Type *Ty, 9270b57cec5SDimitry Andric const DataLayout &DL) const override; 9280b57cec5SDimitry Andric 9295ffd83dbSDimitry Andric EVT getOptimalMemOpType(const MemOp &Op, 9300b57cec5SDimitry Andric const AttributeList &FuncAttributes) const override; 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric /// Returns true if it's safe to use load / store of the 9330b57cec5SDimitry Andric /// specified type to expand memcpy / memset inline. This is mostly true 9340b57cec5SDimitry Andric /// for all types except for some special cases. For example, on X86 9350b57cec5SDimitry Andric /// targets without SSE2 f64 load / store are done with fldl / fstpl which 9360b57cec5SDimitry Andric /// also does type conversion. Note the specified type doesn't have to be 9370b57cec5SDimitry Andric /// legal as the hook is used before type legalization. 9380b57cec5SDimitry Andric bool isSafeMemOpType(MVT VT) const override; 9390b57cec5SDimitry Andric 9400b57cec5SDimitry Andric /// Returns true if the target allows unaligned memory accesses of the 9410b57cec5SDimitry Andric /// specified type. Returns whether it is "fast" in the last argument. 942*fe6060f1SDimitry Andric bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, 9430b57cec5SDimitry Andric MachineMemOperand::Flags Flags, 9440b57cec5SDimitry Andric bool *Fast) const override; 9450b57cec5SDimitry Andric 9460b57cec5SDimitry Andric /// Provide custom lowering hooks for some operations. 9470b57cec5SDimitry Andric /// 9480b57cec5SDimitry Andric SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric /// Replace the results of node with an illegal result 9510b57cec5SDimitry Andric /// type with new values built out of custom code. 9520b57cec5SDimitry Andric /// 9530b57cec5SDimitry Andric void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, 9540b57cec5SDimitry Andric SelectionDAG &DAG) const override; 9550b57cec5SDimitry Andric 9560b57cec5SDimitry Andric SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; 9570b57cec5SDimitry Andric 9580b57cec5SDimitry Andric /// Return true if the target has native support for 9590b57cec5SDimitry Andric /// the specified value type and it is 'desirable' to use the type for the 9600b57cec5SDimitry Andric /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 9610b57cec5SDimitry Andric /// instruction encodings are longer and some i16 instructions are slow. 9620b57cec5SDimitry Andric bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override; 9630b57cec5SDimitry Andric 9640b57cec5SDimitry Andric /// Return true if the target has native support for the 9650b57cec5SDimitry Andric /// specified value type and it is 'desirable' to use the type. e.g. On x86 9660b57cec5SDimitry Andric /// i16 is legal, but undesirable since i16 instruction encodings are longer 9670b57cec5SDimitry Andric /// and some i16 instructions are slow. 9680b57cec5SDimitry Andric bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override; 9690b57cec5SDimitry Andric 9705ffd83dbSDimitry Andric /// Return the newly negated expression if the cost is not expensive and 9715ffd83dbSDimitry Andric /// set the cost in \p Cost to indicate that if it is cheaper or neutral to 9725ffd83dbSDimitry Andric /// do the negation. 9738bcb0991SDimitry Andric SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, 9748bcb0991SDimitry Andric bool LegalOperations, bool ForCodeSize, 9755ffd83dbSDimitry Andric NegatibleCost &Cost, 9768bcb0991SDimitry Andric unsigned Depth) const override; 9778bcb0991SDimitry Andric 9780b57cec5SDimitry Andric MachineBasicBlock * 9790b57cec5SDimitry Andric EmitInstrWithCustomInserter(MachineInstr &MI, 9800b57cec5SDimitry Andric MachineBasicBlock *MBB) const override; 9810b57cec5SDimitry Andric 9820b57cec5SDimitry Andric /// This method returns the name of a target specific DAG node. 9830b57cec5SDimitry Andric const char *getTargetNodeName(unsigned Opcode) const override; 9840b57cec5SDimitry Andric 9850b57cec5SDimitry Andric /// Do not merge vector stores after legalization because that may conflict 9860b57cec5SDimitry Andric /// with x86-specific store splitting optimizations. 9870b57cec5SDimitry Andric bool mergeStoresAfterLegalization(EVT MemVT) const override { 9880b57cec5SDimitry Andric return !MemVT.isVector(); 9890b57cec5SDimitry Andric } 9900b57cec5SDimitry Andric 9910b57cec5SDimitry Andric bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, 9920b57cec5SDimitry Andric const SelectionDAG &DAG) const override; 9930b57cec5SDimitry Andric 9940b57cec5SDimitry Andric bool isCheapToSpeculateCttz() const override; 9950b57cec5SDimitry Andric 9960b57cec5SDimitry Andric bool isCheapToSpeculateCtlz() const override; 9970b57cec5SDimitry Andric 9980b57cec5SDimitry Andric bool isCtlzFast() const override; 9990b57cec5SDimitry Andric 10000b57cec5SDimitry Andric bool hasBitPreservingFPLogic(EVT VT) const override { 10010b57cec5SDimitry Andric return VT == MVT::f32 || VT == MVT::f64 || VT.isVector(); 10020b57cec5SDimitry Andric } 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override { 10050b57cec5SDimitry Andric // If the pair to store is a mixture of float and int values, we will 10060b57cec5SDimitry Andric // save two bitwise instructions and one float-to-int instruction and 10070b57cec5SDimitry Andric // increase one store instruction. There is potentially a more 10080b57cec5SDimitry Andric // significant benefit because it avoids the float->int domain switch 10090b57cec5SDimitry Andric // for input value. So It is more likely a win. 10100b57cec5SDimitry Andric if ((LTy.isFloatingPoint() && HTy.isInteger()) || 10110b57cec5SDimitry Andric (LTy.isInteger() && HTy.isFloatingPoint())) 10120b57cec5SDimitry Andric return true; 10130b57cec5SDimitry Andric // If the pair only contains int values, we will save two bitwise 10140b57cec5SDimitry Andric // instructions and increase one store instruction (costing one more 10150b57cec5SDimitry Andric // store buffer). Since the benefit is more blurred so we leave 10160b57cec5SDimitry Andric // such pair out until we get testcase to prove it is a win. 10170b57cec5SDimitry Andric return false; 10180b57cec5SDimitry Andric } 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; 10210b57cec5SDimitry Andric 10220b57cec5SDimitry Andric bool hasAndNotCompare(SDValue Y) const override; 10230b57cec5SDimitry Andric 10240b57cec5SDimitry Andric bool hasAndNot(SDValue Y) const override; 10250b57cec5SDimitry Andric 10268bcb0991SDimitry Andric bool hasBitTest(SDValue X, SDValue Y) const override; 10278bcb0991SDimitry Andric 10288bcb0991SDimitry Andric bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 10298bcb0991SDimitry Andric SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 10308bcb0991SDimitry Andric unsigned OldShiftOpcode, unsigned NewShiftOpcode, 10318bcb0991SDimitry Andric SelectionDAG &DAG) const override; 10328bcb0991SDimitry Andric 10330b57cec5SDimitry Andric bool shouldFoldConstantShiftPairToMask(const SDNode *N, 10340b57cec5SDimitry Andric CombineLevel Level) const override; 10350b57cec5SDimitry Andric 10360b57cec5SDimitry Andric bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override; 10370b57cec5SDimitry Andric 10380b57cec5SDimitry Andric bool 10390b57cec5SDimitry Andric shouldTransformSignedTruncationCheck(EVT XVT, 10400b57cec5SDimitry Andric unsigned KeptBits) const override { 10410b57cec5SDimitry Andric // For vectors, we don't have a preference.. 10420b57cec5SDimitry Andric if (XVT.isVector()) 10430b57cec5SDimitry Andric return false; 10440b57cec5SDimitry Andric 10450b57cec5SDimitry Andric auto VTIsOk = [](EVT VT) -> bool { 10460b57cec5SDimitry Andric return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || 10470b57cec5SDimitry Andric VT == MVT::i64; 10480b57cec5SDimitry Andric }; 10490b57cec5SDimitry Andric 10500b57cec5SDimitry Andric // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports. 10510b57cec5SDimitry Andric // XVT will be larger than KeptBitsVT. 10520b57cec5SDimitry Andric MVT KeptBitsVT = MVT::getIntegerVT(KeptBits); 10530b57cec5SDimitry Andric return VTIsOk(XVT) && VTIsOk(KeptBitsVT); 10540b57cec5SDimitry Andric } 10550b57cec5SDimitry Andric 10560b57cec5SDimitry Andric bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override; 10570b57cec5SDimitry Andric 10580b57cec5SDimitry Andric bool shouldSplatInsEltVarIndex(EVT VT) const override; 10590b57cec5SDimitry Andric 10600b57cec5SDimitry Andric bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { 10610b57cec5SDimitry Andric return VT.isScalarInteger(); 10620b57cec5SDimitry Andric } 10630b57cec5SDimitry Andric 10640b57cec5SDimitry Andric /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST. 10650b57cec5SDimitry Andric MVT hasFastEqualityCompare(unsigned NumBits) const override; 10660b57cec5SDimitry Andric 10670b57cec5SDimitry Andric /// Return the value type to use for ISD::SETCC. 10680b57cec5SDimitry Andric EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, 10690b57cec5SDimitry Andric EVT VT) const override; 10700b57cec5SDimitry Andric 10715ffd83dbSDimitry Andric bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, 10725ffd83dbSDimitry Andric const APInt &DemandedElts, 10730b57cec5SDimitry Andric TargetLoweringOpt &TLO) const override; 10740b57cec5SDimitry Andric 10750b57cec5SDimitry Andric /// Determine which of the bits specified in Mask are known to be either 10760b57cec5SDimitry Andric /// zero or one and return them in the KnownZero/KnownOne bitsets. 10770b57cec5SDimitry Andric void computeKnownBitsForTargetNode(const SDValue Op, 10780b57cec5SDimitry Andric KnownBits &Known, 10790b57cec5SDimitry Andric const APInt &DemandedElts, 10800b57cec5SDimitry Andric const SelectionDAG &DAG, 10810b57cec5SDimitry Andric unsigned Depth = 0) const override; 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric /// Determine the number of bits in the operation that are sign bits. 10840b57cec5SDimitry Andric unsigned ComputeNumSignBitsForTargetNode(SDValue Op, 10850b57cec5SDimitry Andric const APInt &DemandedElts, 10860b57cec5SDimitry Andric const SelectionDAG &DAG, 10870b57cec5SDimitry Andric unsigned Depth) const override; 10880b57cec5SDimitry Andric 10890b57cec5SDimitry Andric bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, 10900b57cec5SDimitry Andric const APInt &DemandedElts, 10910b57cec5SDimitry Andric APInt &KnownUndef, 10920b57cec5SDimitry Andric APInt &KnownZero, 10930b57cec5SDimitry Andric TargetLoweringOpt &TLO, 10940b57cec5SDimitry Andric unsigned Depth) const override; 10950b57cec5SDimitry Andric 10965ffd83dbSDimitry Andric bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op, 10975ffd83dbSDimitry Andric const APInt &DemandedElts, 10985ffd83dbSDimitry Andric unsigned MaskIndex, 10995ffd83dbSDimitry Andric TargetLoweringOpt &TLO, 11005ffd83dbSDimitry Andric unsigned Depth) const; 11015ffd83dbSDimitry Andric 11020b57cec5SDimitry Andric bool SimplifyDemandedBitsForTargetNode(SDValue Op, 11030b57cec5SDimitry Andric const APInt &DemandedBits, 11040b57cec5SDimitry Andric const APInt &DemandedElts, 11050b57cec5SDimitry Andric KnownBits &Known, 11060b57cec5SDimitry Andric TargetLoweringOpt &TLO, 11070b57cec5SDimitry Andric unsigned Depth) const override; 11080b57cec5SDimitry Andric 11098bcb0991SDimitry Andric SDValue SimplifyMultipleUseDemandedBitsForTargetNode( 11108bcb0991SDimitry Andric SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 11118bcb0991SDimitry Andric SelectionDAG &DAG, unsigned Depth) const override; 11128bcb0991SDimitry Andric 11130b57cec5SDimitry Andric const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override; 11140b57cec5SDimitry Andric 11150b57cec5SDimitry Andric SDValue unwrapAddress(SDValue N) const override; 11160b57cec5SDimitry Andric 11170b57cec5SDimitry Andric SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; 11180b57cec5SDimitry Andric 11190b57cec5SDimitry Andric bool ExpandInlineAsm(CallInst *CI) const override; 11200b57cec5SDimitry Andric 11210b57cec5SDimitry Andric ConstraintType getConstraintType(StringRef Constraint) const override; 11220b57cec5SDimitry Andric 11230b57cec5SDimitry Andric /// Examine constraint string and operand type and determine a weight value. 11240b57cec5SDimitry Andric /// The operand object must already have been set up with the operand type. 11250b57cec5SDimitry Andric ConstraintWeight 11260b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info, 11270b57cec5SDimitry Andric const char *constraint) const override; 11280b57cec5SDimitry Andric 11290b57cec5SDimitry Andric const char *LowerXConstraint(EVT ConstraintVT) const override; 11300b57cec5SDimitry Andric 11310b57cec5SDimitry Andric /// Lower the specified operand into the Ops vector. If it is invalid, don't 11320b57cec5SDimitry Andric /// add anything to Ops. If hasMemory is true it means one of the asm 11330b57cec5SDimitry Andric /// constraint of the inline asm instruction being processed is 'm'. 11340b57cec5SDimitry Andric void LowerAsmOperandForConstraint(SDValue Op, 11350b57cec5SDimitry Andric std::string &Constraint, 11360b57cec5SDimitry Andric std::vector<SDValue> &Ops, 11370b57cec5SDimitry Andric SelectionDAG &DAG) const override; 11380b57cec5SDimitry Andric 11390b57cec5SDimitry Andric unsigned 11400b57cec5SDimitry Andric getInlineAsmMemConstraint(StringRef ConstraintCode) const override { 1141*fe6060f1SDimitry Andric if (ConstraintCode == "v") 11420b57cec5SDimitry Andric return InlineAsm::Constraint_v; 11430b57cec5SDimitry Andric return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11440b57cec5SDimitry Andric } 11450b57cec5SDimitry Andric 11460b57cec5SDimitry Andric /// Handle Lowering flag assembly outputs. 1147e8d8bef9SDimitry Andric SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, 1148e8d8bef9SDimitry Andric const SDLoc &DL, 11490b57cec5SDimitry Andric const AsmOperandInfo &Constraint, 11500b57cec5SDimitry Andric SelectionDAG &DAG) const override; 11510b57cec5SDimitry Andric 11520b57cec5SDimitry Andric /// Given a physical register constraint 11530b57cec5SDimitry Andric /// (e.g. {edx}), return the register number and the register class for the 11540b57cec5SDimitry Andric /// register. This should only be used for C_Register constraints. On 11550b57cec5SDimitry Andric /// error, this returns a register number of 0. 11560b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *> 11570b57cec5SDimitry Andric getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11580b57cec5SDimitry Andric StringRef Constraint, MVT VT) const override; 11590b57cec5SDimitry Andric 11600b57cec5SDimitry Andric /// Return true if the addressing mode represented 11610b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type. 11620b57cec5SDimitry Andric bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 11630b57cec5SDimitry Andric Type *Ty, unsigned AS, 11640b57cec5SDimitry Andric Instruction *I = nullptr) const override; 11650b57cec5SDimitry Andric 11660b57cec5SDimitry Andric /// Return true if the specified immediate is legal 11670b57cec5SDimitry Andric /// icmp immediate, that is the target has icmp instructions which can 11680b57cec5SDimitry Andric /// compare a register against the immediate without having to materialize 11690b57cec5SDimitry Andric /// the immediate into a register. 11700b57cec5SDimitry Andric bool isLegalICmpImmediate(int64_t Imm) const override; 11710b57cec5SDimitry Andric 11720b57cec5SDimitry Andric /// Return true if the specified immediate is legal 11730b57cec5SDimitry Andric /// add immediate, that is the target has add instructions which can 11740b57cec5SDimitry Andric /// add a register and the immediate without having to materialize 11750b57cec5SDimitry Andric /// the immediate into a register. 11760b57cec5SDimitry Andric bool isLegalAddImmediate(int64_t Imm) const override; 11770b57cec5SDimitry Andric 11780b57cec5SDimitry Andric bool isLegalStoreImmediate(int64_t Imm) const override; 11790b57cec5SDimitry Andric 11800b57cec5SDimitry Andric /// Return the cost of the scaling factor used in the addressing 11810b57cec5SDimitry Andric /// mode represented by AM for this target, for a load/store 11820b57cec5SDimitry Andric /// of the specified type. 11830b57cec5SDimitry Andric /// If the AM is supported, the return value must be >= 0. 11840b57cec5SDimitry Andric /// If the AM is not supported, it returns a negative value. 1185*fe6060f1SDimitry Andric InstructionCost getScalingFactorCost(const DataLayout &DL, 1186*fe6060f1SDimitry Andric const AddrMode &AM, Type *Ty, 11870b57cec5SDimitry Andric unsigned AS) const override; 11880b57cec5SDimitry Andric 11895ffd83dbSDimitry Andric /// This is used to enable splatted operand transforms for vector shifts 11905ffd83dbSDimitry Andric /// and vector funnel shifts. 11910b57cec5SDimitry Andric bool isVectorShiftByScalarCheap(Type *Ty) const override; 11920b57cec5SDimitry Andric 11930b57cec5SDimitry Andric /// Add x86-specific opcodes to the default list. 11940b57cec5SDimitry Andric bool isBinOp(unsigned Opcode) const override; 11950b57cec5SDimitry Andric 11960b57cec5SDimitry Andric /// Returns true if the opcode is a commutative binary operation. 11970b57cec5SDimitry Andric bool isCommutativeBinOp(unsigned Opcode) const override; 11980b57cec5SDimitry Andric 11990b57cec5SDimitry Andric /// Return true if it's free to truncate a value of 12000b57cec5SDimitry Andric /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in 12010b57cec5SDimitry Andric /// register EAX to i16 by referencing its sub-register AX. 12020b57cec5SDimitry Andric bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 12030b57cec5SDimitry Andric bool isTruncateFree(EVT VT1, EVT VT2) const override; 12040b57cec5SDimitry Andric 12050b57cec5SDimitry Andric bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; 12060b57cec5SDimitry Andric 12070b57cec5SDimitry Andric /// Return true if any actual instruction that defines a 12080b57cec5SDimitry Andric /// value of type Ty1 implicit zero-extends the value to Ty2 in the result 12090b57cec5SDimitry Andric /// register. This does not necessarily include registers defined in 12100b57cec5SDimitry Andric /// unknown ways, such as incoming arguments, or copies from unknown 12110b57cec5SDimitry Andric /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this 12120b57cec5SDimitry Andric /// does not necessarily apply to truncate instructions. e.g. on x86-64, 12130b57cec5SDimitry Andric /// all instructions that define 32-bit values implicit zero-extend the 12140b57cec5SDimitry Andric /// result out to 64 bits. 12150b57cec5SDimitry Andric bool isZExtFree(Type *Ty1, Type *Ty2) const override; 12160b57cec5SDimitry Andric bool isZExtFree(EVT VT1, EVT VT2) const override; 12170b57cec5SDimitry Andric bool isZExtFree(SDValue Val, EVT VT2) const override; 12180b57cec5SDimitry Andric 12195ffd83dbSDimitry Andric bool shouldSinkOperands(Instruction *I, 12205ffd83dbSDimitry Andric SmallVectorImpl<Use *> &Ops) const override; 12215ffd83dbSDimitry Andric bool shouldConvertPhiType(Type *From, Type *To) const override; 12225ffd83dbSDimitry Andric 12230b57cec5SDimitry Andric /// Return true if folding a vector load into ExtVal (a sign, zero, or any 12240b57cec5SDimitry Andric /// extend node) is profitable. 12250b57cec5SDimitry Andric bool isVectorLoadExtDesirable(SDValue) const override; 12260b57cec5SDimitry Andric 12270b57cec5SDimitry Andric /// Return true if an FMA operation is faster than a pair of fmul and fadd 12280b57cec5SDimitry Andric /// instructions. fmuladd intrinsics will be expanded to FMAs when this 12290b57cec5SDimitry Andric /// method returns true, otherwise fmuladd is expanded to fmul + fadd. 1230480093f4SDimitry Andric bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 1231480093f4SDimitry Andric EVT VT) const override; 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric /// Return true if it's profitable to narrow 12340b57cec5SDimitry Andric /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow 12350b57cec5SDimitry Andric /// from i32 to i8 but not from i32 to i16. 12360b57cec5SDimitry Andric bool isNarrowingProfitable(EVT VT1, EVT VT2) const override; 12370b57cec5SDimitry Andric 12380b57cec5SDimitry Andric /// Given an intrinsic, checks if on the target the intrinsic will need to map 12390b57cec5SDimitry Andric /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 12400b57cec5SDimitry Andric /// true and stores the intrinsic information into the IntrinsicInfo that was 12410b57cec5SDimitry Andric /// passed to the function. 12420b57cec5SDimitry Andric bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, 12430b57cec5SDimitry Andric MachineFunction &MF, 12440b57cec5SDimitry Andric unsigned Intrinsic) const override; 12450b57cec5SDimitry Andric 12460b57cec5SDimitry Andric /// Returns true if the target can instruction select the 12470b57cec5SDimitry Andric /// specified FP immediate natively. If false, the legalizer will 12480b57cec5SDimitry Andric /// materialize the FP immediate as a load from a constant pool. 12490b57cec5SDimitry Andric bool isFPImmLegal(const APFloat &Imm, EVT VT, 12500b57cec5SDimitry Andric bool ForCodeSize) const override; 12510b57cec5SDimitry Andric 12520b57cec5SDimitry Andric /// Targets can use this to indicate that they only support *some* 12530b57cec5SDimitry Andric /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a 12540b57cec5SDimitry Andric /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to 12550b57cec5SDimitry Andric /// be legal. 12560b57cec5SDimitry Andric bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 12570b57cec5SDimitry Andric 12580b57cec5SDimitry Andric /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there 12590b57cec5SDimitry Andric /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a 12600b57cec5SDimitry Andric /// constant pool entry. 12610b57cec5SDimitry Andric bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 12620b57cec5SDimitry Andric 12630b57cec5SDimitry Andric /// Returns true if lowering to a jump table is allowed. 12640b57cec5SDimitry Andric bool areJTsAllowed(const Function *Fn) const override; 12650b57cec5SDimitry Andric 12660b57cec5SDimitry Andric /// If true, then instruction selection should 12670b57cec5SDimitry Andric /// seek to shrink the FP constant of the specified type to a smaller type 12680b57cec5SDimitry Andric /// in order to save space and / or reduce runtime. 12690b57cec5SDimitry Andric bool ShouldShrinkFPConstant(EVT VT) const override { 12700b57cec5SDimitry Andric // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more 12710b57cec5SDimitry Andric // expensive than a straight movsd. On the other hand, it's important to 12720b57cec5SDimitry Andric // shrink long double fp constant since fldt is very slow. 12730b57cec5SDimitry Andric return !X86ScalarSSEf64 || VT == MVT::f80; 12740b57cec5SDimitry Andric } 12750b57cec5SDimitry Andric 12760b57cec5SDimitry Andric /// Return true if we believe it is correct and profitable to reduce the 12770b57cec5SDimitry Andric /// load node to a smaller type. 12780b57cec5SDimitry Andric bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, 12790b57cec5SDimitry Andric EVT NewVT) const override; 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric /// Return true if the specified scalar FP type is computed in an SSE 12820b57cec5SDimitry Andric /// register, not on the X87 floating point stack. 12830b57cec5SDimitry Andric bool isScalarFPTypeInSSEReg(EVT VT) const { 12840b57cec5SDimitry Andric return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 12850b57cec5SDimitry Andric (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 12860b57cec5SDimitry Andric } 12870b57cec5SDimitry Andric 12880b57cec5SDimitry Andric /// Returns true if it is beneficial to convert a load of a constant 12890b57cec5SDimitry Andric /// to just the constant itself. 12900b57cec5SDimitry Andric bool shouldConvertConstantLoadToIntImm(const APInt &Imm, 12910b57cec5SDimitry Andric Type *Ty) const override; 12920b57cec5SDimitry Andric 12938bcb0991SDimitry Andric bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override; 12940b57cec5SDimitry Andric 12950b57cec5SDimitry Andric bool convertSelectOfConstantsToMath(EVT VT) const override; 12960b57cec5SDimitry Andric 12978bcb0991SDimitry Andric bool decomposeMulByConstant(LLVMContext &Context, EVT VT, 12988bcb0991SDimitry Andric SDValue C) const override; 12990b57cec5SDimitry Andric 13000b57cec5SDimitry Andric /// Return true if EXTRACT_SUBVECTOR is cheap for this result type 13010b57cec5SDimitry Andric /// with this index. 13020b57cec5SDimitry Andric bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 13030b57cec5SDimitry Andric unsigned Index) const override; 13040b57cec5SDimitry Andric 13050b57cec5SDimitry Andric /// Scalar ops always have equal or better analysis/performance/power than 13060b57cec5SDimitry Andric /// the vector equivalent, so this always makes sense if the scalar op is 13070b57cec5SDimitry Andric /// supported. 13080b57cec5SDimitry Andric bool shouldScalarizeBinop(SDValue) const override; 13090b57cec5SDimitry Andric 13100b57cec5SDimitry Andric /// Extract of a scalar FP value from index 0 of a vector is free. 13110b57cec5SDimitry Andric bool isExtractVecEltCheap(EVT VT, unsigned Index) const override { 13120b57cec5SDimitry Andric EVT EltVT = VT.getScalarType(); 13130b57cec5SDimitry Andric return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0; 13140b57cec5SDimitry Andric } 13150b57cec5SDimitry Andric 13160b57cec5SDimitry Andric /// Overflow nodes should get combined/lowered to optimal instructions 13170b57cec5SDimitry Andric /// (they should allow eliminating explicit compares by getting flags from 13180b57cec5SDimitry Andric /// math ops). 13195ffd83dbSDimitry Andric bool shouldFormOverflowOp(unsigned Opcode, EVT VT, 13205ffd83dbSDimitry Andric bool MathUsed) const override; 13210b57cec5SDimitry Andric 13220b57cec5SDimitry Andric bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, 13230b57cec5SDimitry Andric unsigned AddrSpace) const override { 13240b57cec5SDimitry Andric // If we can replace more than 2 scalar stores, there will be a reduction 13250b57cec5SDimitry Andric // in instructions even after we add a vector constant load. 13260b57cec5SDimitry Andric return NumElem > 2; 13270b57cec5SDimitry Andric } 13280b57cec5SDimitry Andric 13290b57cec5SDimitry Andric bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, 13300b57cec5SDimitry Andric const SelectionDAG &DAG, 13310b57cec5SDimitry Andric const MachineMemOperand &MMO) const override; 13320b57cec5SDimitry Andric 13330b57cec5SDimitry Andric /// Intel processors have a unified instruction and data cache 13340b57cec5SDimitry Andric const char * getClearCacheBuiltinName() const override { 13350b57cec5SDimitry Andric return nullptr; // nothing to do, move along. 13360b57cec5SDimitry Andric } 13370b57cec5SDimitry Andric 1338480093f4SDimitry Andric Register getRegisterByName(const char* RegName, LLT VT, 13398bcb0991SDimitry Andric const MachineFunction &MF) const override; 13400b57cec5SDimitry Andric 13410b57cec5SDimitry Andric /// If a physical register, this returns the register that receives the 13420b57cec5SDimitry Andric /// exception address on entry to an EH pad. 13435ffd83dbSDimitry Andric Register 13440b57cec5SDimitry Andric getExceptionPointerRegister(const Constant *PersonalityFn) const override; 13450b57cec5SDimitry Andric 13460b57cec5SDimitry Andric /// If a physical register, this returns the register that receives the 13470b57cec5SDimitry Andric /// exception typeid on entry to a landing pad. 13485ffd83dbSDimitry Andric Register 13490b57cec5SDimitry Andric getExceptionSelectorRegister(const Constant *PersonalityFn) const override; 13500b57cec5SDimitry Andric 13510b57cec5SDimitry Andric virtual bool needsFixedCatchObjects() const override; 13520b57cec5SDimitry Andric 13530b57cec5SDimitry Andric /// This method returns a target specific FastISel object, 13540b57cec5SDimitry Andric /// or null if the target does not support "fast" ISel. 13550b57cec5SDimitry Andric FastISel *createFastISel(FunctionLoweringInfo &funcInfo, 13560b57cec5SDimitry Andric const TargetLibraryInfo *libInfo) const override; 13570b57cec5SDimitry Andric 13580b57cec5SDimitry Andric /// If the target has a standard location for the stack protector cookie, 13590b57cec5SDimitry Andric /// returns the address of that location. Otherwise, returns nullptr. 1360*fe6060f1SDimitry Andric Value *getIRStackGuard(IRBuilderBase &IRB) const override; 13610b57cec5SDimitry Andric 13620b57cec5SDimitry Andric bool useLoadStackGuardNode() const override; 13630b57cec5SDimitry Andric bool useStackGuardXorFP() const override; 13640b57cec5SDimitry Andric void insertSSPDeclarations(Module &M) const override; 13650b57cec5SDimitry Andric Value *getSDagStackGuard(const Module &M) const override; 13660b57cec5SDimitry Andric Function *getSSPStackGuardCheck(const Module &M) const override; 13670b57cec5SDimitry Andric SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, 13680b57cec5SDimitry Andric const SDLoc &DL) const override; 13690b57cec5SDimitry Andric 13700b57cec5SDimitry Andric 13710b57cec5SDimitry Andric /// Return true if the target stores SafeStack pointer at a fixed offset in 13720b57cec5SDimitry Andric /// some non-standard address space, and populates the address space and 13730b57cec5SDimitry Andric /// offset as appropriate. 1374*fe6060f1SDimitry Andric Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override; 13750b57cec5SDimitry Andric 13765ffd83dbSDimitry Andric std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL, 13775ffd83dbSDimitry Andric SDValue Chain, SDValue Pointer, 13785ffd83dbSDimitry Andric MachinePointerInfo PtrInfo, 13795ffd83dbSDimitry Andric Align Alignment, 13800b57cec5SDimitry Andric SelectionDAG &DAG) const; 13810b57cec5SDimitry Andric 13820b57cec5SDimitry Andric /// Customize the preferred legalization strategy for certain types. 13830b57cec5SDimitry Andric LegalizeTypeAction getPreferredVectorAction(MVT VT) const override; 13840b57cec5SDimitry Andric 13855ffd83dbSDimitry Andric bool softPromoteHalfType() const override { return true; } 13865ffd83dbSDimitry Andric 13870b57cec5SDimitry Andric MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, 13880b57cec5SDimitry Andric EVT VT) const override; 13890b57cec5SDimitry Andric 13900b57cec5SDimitry Andric unsigned getNumRegistersForCallingConv(LLVMContext &Context, 13910b57cec5SDimitry Andric CallingConv::ID CC, 13920b57cec5SDimitry Andric EVT VT) const override; 13930b57cec5SDimitry Andric 13948bcb0991SDimitry Andric unsigned getVectorTypeBreakdownForCallingConv( 13958bcb0991SDimitry Andric LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, 13968bcb0991SDimitry Andric unsigned &NumIntermediates, MVT &RegisterVT) const override; 13978bcb0991SDimitry Andric 13980b57cec5SDimitry Andric bool isIntDivCheap(EVT VT, AttributeList Attr) const override; 13990b57cec5SDimitry Andric 14000b57cec5SDimitry Andric bool supportSwiftError() const override; 14010b57cec5SDimitry Andric 14025ffd83dbSDimitry Andric bool hasStackProbeSymbol(MachineFunction &MF) const override; 14035ffd83dbSDimitry Andric bool hasInlineStackProbe(MachineFunction &MF) const override; 14040b57cec5SDimitry Andric StringRef getStackProbeSymbolName(MachineFunction &MF) const override; 14050b57cec5SDimitry Andric 14068bcb0991SDimitry Andric unsigned getStackProbeSize(MachineFunction &MF) const; 14078bcb0991SDimitry Andric 14080b57cec5SDimitry Andric bool hasVectorBlend() const override { return true; } 14090b57cec5SDimitry Andric 14100b57cec5SDimitry Andric unsigned getMaxSupportedInterleaveFactor() const override { return 4; } 14110b57cec5SDimitry Andric 14120b57cec5SDimitry Andric /// Lower interleaved load(s) into target specific 14130b57cec5SDimitry Andric /// instructions/intrinsics. 14140b57cec5SDimitry Andric bool lowerInterleavedLoad(LoadInst *LI, 14150b57cec5SDimitry Andric ArrayRef<ShuffleVectorInst *> Shuffles, 14160b57cec5SDimitry Andric ArrayRef<unsigned> Indices, 14170b57cec5SDimitry Andric unsigned Factor) const override; 14180b57cec5SDimitry Andric 14190b57cec5SDimitry Andric /// Lower interleaved store(s) into target specific 14200b57cec5SDimitry Andric /// instructions/intrinsics. 14210b57cec5SDimitry Andric bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, 14220b57cec5SDimitry Andric unsigned Factor) const override; 14230b57cec5SDimitry Andric 14240b57cec5SDimitry Andric SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, 14250b57cec5SDimitry Andric SDValue Addr, SelectionDAG &DAG) 14260b57cec5SDimitry Andric const override; 14270b57cec5SDimitry Andric 1428e8d8bef9SDimitry Andric Align getPrefLoopAlignment(MachineLoop *ML) const override; 1429e8d8bef9SDimitry Andric 14300b57cec5SDimitry Andric protected: 14310b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t> 14320b57cec5SDimitry Andric findRepresentativeClass(const TargetRegisterInfo *TRI, 14330b57cec5SDimitry Andric MVT VT) const override; 14340b57cec5SDimitry Andric 14350b57cec5SDimitry Andric private: 14360b57cec5SDimitry Andric /// Keep a reference to the X86Subtarget around so that we can 14370b57cec5SDimitry Andric /// make the right decision when generating code for different targets. 14380b57cec5SDimitry Andric const X86Subtarget &Subtarget; 14390b57cec5SDimitry Andric 14400b57cec5SDimitry Andric /// Select between SSE or x87 floating point ops. 14410b57cec5SDimitry Andric /// When SSE is available, use it for f32 operations. 14420b57cec5SDimitry Andric /// When SSE2 is available, use it for f64 operations. 14430b57cec5SDimitry Andric bool X86ScalarSSEf32; 14440b57cec5SDimitry Andric bool X86ScalarSSEf64; 14450b57cec5SDimitry Andric 14460b57cec5SDimitry Andric /// A list of legal FP immediates. 14470b57cec5SDimitry Andric std::vector<APFloat> LegalFPImmediates; 14480b57cec5SDimitry Andric 14490b57cec5SDimitry Andric /// Indicate that this x86 target can instruction 14500b57cec5SDimitry Andric /// select the specified FP immediate natively. 14510b57cec5SDimitry Andric void addLegalFPImmediate(const APFloat& Imm) { 14520b57cec5SDimitry Andric LegalFPImmediates.push_back(Imm); 14530b57cec5SDimitry Andric } 14540b57cec5SDimitry Andric 14550b57cec5SDimitry Andric SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 14560b57cec5SDimitry Andric CallingConv::ID CallConv, bool isVarArg, 14570b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 14580b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 14590b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals, 14600b57cec5SDimitry Andric uint32_t *RegMask) const; 14610b57cec5SDimitry Andric SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, 14620b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &ArgInfo, 14630b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 14640b57cec5SDimitry Andric const CCValAssign &VA, MachineFrameInfo &MFI, 14650b57cec5SDimitry Andric unsigned i) const; 14660b57cec5SDimitry Andric SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, 14670b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 14680b57cec5SDimitry Andric const CCValAssign &VA, 14695ffd83dbSDimitry Andric ISD::ArgFlagsTy Flags, bool isByval) const; 14700b57cec5SDimitry Andric 14710b57cec5SDimitry Andric // Call lowering helpers. 14720b57cec5SDimitry Andric 14730b57cec5SDimitry Andric /// Check whether the call is eligible for tail call optimization. Targets 14740b57cec5SDimitry Andric /// that want to do tail call optimization should implement this function. 14750b57cec5SDimitry Andric bool IsEligibleForTailCallOptimization(SDValue Callee, 14760b57cec5SDimitry Andric CallingConv::ID CalleeCC, 14770b57cec5SDimitry Andric bool isVarArg, 14780b57cec5SDimitry Andric bool isCalleeStructRet, 14790b57cec5SDimitry Andric bool isCallerStructRet, 14800b57cec5SDimitry Andric Type *RetTy, 14810b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 14820b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 14830b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 14840b57cec5SDimitry Andric SelectionDAG& DAG) const; 14850b57cec5SDimitry Andric SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, 14860b57cec5SDimitry Andric SDValue Chain, bool IsTailCall, 14870b57cec5SDimitry Andric bool Is64Bit, int FPDiff, 14880b57cec5SDimitry Andric const SDLoc &dl) const; 14890b57cec5SDimitry Andric 14900b57cec5SDimitry Andric unsigned GetAlignedArgumentStackSize(unsigned StackSize, 14910b57cec5SDimitry Andric SelectionDAG &DAG) const; 14920b57cec5SDimitry Andric 14930b57cec5SDimitry Andric unsigned getAddressSpace(void) const; 14940b57cec5SDimitry Andric 14955ffd83dbSDimitry Andric SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, 1496480093f4SDimitry Andric SDValue &Chain) const; 14975ffd83dbSDimitry Andric SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const; 14980b57cec5SDimitry Andric 14990b57cec5SDimitry Andric SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 15000b57cec5SDimitry Andric SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const; 15010b57cec5SDimitry Andric SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 15020b57cec5SDimitry Andric SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 15030b57cec5SDimitry Andric 15040b57cec5SDimitry Andric unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr, 15050b57cec5SDimitry Andric const unsigned char OpFlags = 0) const; 15060b57cec5SDimitry Andric SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 15070b57cec5SDimitry Andric SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 15080b57cec5SDimitry Andric SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; 15090b57cec5SDimitry Andric SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 15100b57cec5SDimitry Andric SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; 15110b57cec5SDimitry Andric 15120b57cec5SDimitry Andric /// Creates target global address or external symbol nodes for calls or 15130b57cec5SDimitry Andric /// other uses. 15140b57cec5SDimitry Andric SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG, 15150b57cec5SDimitry Andric bool ForCall) const; 15160b57cec5SDimitry Andric 15170b57cec5SDimitry Andric SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 15180b57cec5SDimitry Andric SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 15190b57cec5SDimitry Andric SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; 15200b57cec5SDimitry Andric SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; 1521e8d8bef9SDimitry Andric SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const; 15225ffd83dbSDimitry Andric SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const; 15230b57cec5SDimitry Andric SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 15240b57cec5SDimitry Andric SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const; 15250b57cec5SDimitry Andric SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; 15260b57cec5SDimitry Andric SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; 15270b57cec5SDimitry Andric SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 15280b57cec5SDimitry Andric SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; 15290b57cec5SDimitry Andric SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; 15300b57cec5SDimitry Andric SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; 15310b57cec5SDimitry Andric SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 15320b57cec5SDimitry Andric SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 15330b57cec5SDimitry Andric SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 15340b57cec5SDimitry Andric SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; 15350b57cec5SDimitry Andric SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; 15360b57cec5SDimitry Andric SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; 15370b57cec5SDimitry Andric SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; 15380b57cec5SDimitry Andric SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const; 15390b57cec5SDimitry Andric SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 15400b57cec5SDimitry Andric SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; 1541*fe6060f1SDimitry Andric SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; 15420b57cec5SDimitry Andric SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const; 1543480093f4SDimitry Andric SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const; 15440b57cec5SDimitry Andric SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 15458bcb0991SDimitry Andric SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const; 15468bcb0991SDimitry Andric SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; 15478bcb0991SDimitry Andric SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; 15488bcb0991SDimitry Andric 15490b57cec5SDimitry Andric SDValue 15500b57cec5SDimitry Andric LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 15510b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 15520b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 15530b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const override; 15540b57cec5SDimitry Andric SDValue LowerCall(CallLoweringInfo &CLI, 15550b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const override; 15560b57cec5SDimitry Andric 15570b57cec5SDimitry Andric SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 15580b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 15590b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 15600b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG) const override; 15610b57cec5SDimitry Andric 15620b57cec5SDimitry Andric bool supportSplitCSR(MachineFunction *MF) const override { 15630b57cec5SDimitry Andric return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && 15640b57cec5SDimitry Andric MF->getFunction().hasFnAttribute(Attribute::NoUnwind); 15650b57cec5SDimitry Andric } 15660b57cec5SDimitry Andric void initializeSplitCSR(MachineBasicBlock *Entry) const override; 15670b57cec5SDimitry Andric void insertCopiesSplitCSR( 15680b57cec5SDimitry Andric MachineBasicBlock *Entry, 15690b57cec5SDimitry Andric const SmallVectorImpl<MachineBasicBlock *> &Exits) const override; 15700b57cec5SDimitry Andric 15710b57cec5SDimitry Andric bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; 15720b57cec5SDimitry Andric 15730b57cec5SDimitry Andric bool mayBeEmittedAsTailCall(const CallInst *CI) const override; 15740b57cec5SDimitry Andric 15750b57cec5SDimitry Andric EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, 15760b57cec5SDimitry Andric ISD::NodeType ExtendKind) const override; 15770b57cec5SDimitry Andric 15780b57cec5SDimitry Andric bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 15790b57cec5SDimitry Andric bool isVarArg, 15800b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 15810b57cec5SDimitry Andric LLVMContext &Context) const override; 15820b57cec5SDimitry Andric 15830b57cec5SDimitry Andric const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; 15840b57cec5SDimitry Andric 15850b57cec5SDimitry Andric TargetLoweringBase::AtomicExpansionKind 15865ffd83dbSDimitry Andric shouldExpandAtomicLoadInIR(LoadInst *LI) const override; 15870b57cec5SDimitry Andric bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override; 15880b57cec5SDimitry Andric TargetLoweringBase::AtomicExpansionKind 15890b57cec5SDimitry Andric shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; 15900b57cec5SDimitry Andric 15910b57cec5SDimitry Andric LoadInst * 15920b57cec5SDimitry Andric lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override; 15930b57cec5SDimitry Andric 15948bcb0991SDimitry Andric bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override; 15958bcb0991SDimitry Andric bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override; 15968bcb0991SDimitry Andric 15970b57cec5SDimitry Andric bool needsCmpXchgNb(Type *MemType) const; 15980b57cec5SDimitry Andric 15990b57cec5SDimitry Andric void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB, 16000b57cec5SDimitry Andric MachineBasicBlock *DispatchBB, int FI) const; 16010b57cec5SDimitry Andric 16020b57cec5SDimitry Andric // Utility function to emit the low-level va_arg code for X86-64. 16030b57cec5SDimitry Andric MachineBasicBlock * 1604e8d8bef9SDimitry Andric EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; 16050b57cec5SDimitry Andric 16060b57cec5SDimitry Andric /// Utility function to emit the xmm reg save portion of va_start. 16070b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1, 16080b57cec5SDimitry Andric MachineInstr &MI2, 16090b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16100b57cec5SDimitry Andric 16110b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredSelect(MachineInstr &I, 16120b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16130b57cec5SDimitry Andric 16140b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI, 16150b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16160b57cec5SDimitry Andric 16175ffd83dbSDimitry Andric MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI, 16180b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16190b57cec5SDimitry Andric 16205ffd83dbSDimitry Andric MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI, 16210b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16220b57cec5SDimitry Andric 16230b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI, 16240b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16250b57cec5SDimitry Andric 16260b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI, 16270b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16280b57cec5SDimitry Andric 16290946e70aSDimitry Andric MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI, 16300b57cec5SDimitry Andric MachineBasicBlock *BB) const; 16310b57cec5SDimitry Andric 16320b57cec5SDimitry Andric MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, 16330b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 16340b57cec5SDimitry Andric 16350b57cec5SDimitry Andric void emitSetJmpShadowStackFix(MachineInstr &MI, 16360b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 16370b57cec5SDimitry Andric 16380b57cec5SDimitry Andric MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, 16390b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 16400b57cec5SDimitry Andric 16410b57cec5SDimitry Andric MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI, 16420b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 16430b57cec5SDimitry Andric 16440b57cec5SDimitry Andric MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI, 16450b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 16460b57cec5SDimitry Andric 16470b57cec5SDimitry Andric /// Emit flags for the given setcc condition and operands. Also returns the 16480b57cec5SDimitry Andric /// corresponding X86 condition code constant in X86CC. 1649480093f4SDimitry Andric SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC, 1650480093f4SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 16515ffd83dbSDimitry Andric SDValue &X86CC) const; 16520b57cec5SDimitry Andric 16530b57cec5SDimitry Andric /// Check if replacement of SQRT with RSQRT should be disabled. 16545ffd83dbSDimitry Andric bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override; 16550b57cec5SDimitry Andric 16560b57cec5SDimitry Andric /// Use rsqrt* to speed up sqrt calculations. 16575ffd83dbSDimitry Andric SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled, 16580b57cec5SDimitry Andric int &RefinementSteps, bool &UseOneConstNR, 16590b57cec5SDimitry Andric bool Reciprocal) const override; 16600b57cec5SDimitry Andric 16610b57cec5SDimitry Andric /// Use rcp* to speed up fdiv calculations. 16625ffd83dbSDimitry Andric SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled, 16630b57cec5SDimitry Andric int &RefinementSteps) const override; 16640b57cec5SDimitry Andric 16650b57cec5SDimitry Andric /// Reassociate floating point divisions into multiply by reciprocal. 16660b57cec5SDimitry Andric unsigned combineRepeatedFPDivisors() const override; 16678bcb0991SDimitry Andric 16688bcb0991SDimitry Andric SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 16698bcb0991SDimitry Andric SmallVectorImpl<SDNode *> &Created) const override; 16700b57cec5SDimitry Andric }; 16710b57cec5SDimitry Andric 16720b57cec5SDimitry Andric namespace X86 { 16730b57cec5SDimitry Andric FastISel *createFastISel(FunctionLoweringInfo &funcInfo, 16740b57cec5SDimitry Andric const TargetLibraryInfo *libInfo); 16750b57cec5SDimitry Andric } // end namespace X86 16760b57cec5SDimitry Andric 16770b57cec5SDimitry Andric // X86 specific Gather/Scatter nodes. 16780b57cec5SDimitry Andric // The class has the same order of operands as MaskedGatherScatterSDNode for 16790b57cec5SDimitry Andric // convenience. 16805ffd83dbSDimitry Andric class X86MaskedGatherScatterSDNode : public MemIntrinsicSDNode { 16810b57cec5SDimitry Andric public: 16825ffd83dbSDimitry Andric // This is a intended as a utility and should never be directly created. 16835ffd83dbSDimitry Andric X86MaskedGatherScatterSDNode() = delete; 16845ffd83dbSDimitry Andric ~X86MaskedGatherScatterSDNode() = delete; 16850b57cec5SDimitry Andric 16860b57cec5SDimitry Andric const SDValue &getBasePtr() const { return getOperand(3); } 16870b57cec5SDimitry Andric const SDValue &getIndex() const { return getOperand(4); } 16880b57cec5SDimitry Andric const SDValue &getMask() const { return getOperand(2); } 16890b57cec5SDimitry Andric const SDValue &getScale() const { return getOperand(5); } 16900b57cec5SDimitry Andric 16910b57cec5SDimitry Andric static bool classof(const SDNode *N) { 16920b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MGATHER || 16930b57cec5SDimitry Andric N->getOpcode() == X86ISD::MSCATTER; 16940b57cec5SDimitry Andric } 16950b57cec5SDimitry Andric }; 16960b57cec5SDimitry Andric 16970b57cec5SDimitry Andric class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode { 16980b57cec5SDimitry Andric public: 16990b57cec5SDimitry Andric const SDValue &getPassThru() const { return getOperand(1); } 17000b57cec5SDimitry Andric 17010b57cec5SDimitry Andric static bool classof(const SDNode *N) { 17020b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MGATHER; 17030b57cec5SDimitry Andric } 17040b57cec5SDimitry Andric }; 17050b57cec5SDimitry Andric 17060b57cec5SDimitry Andric class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode { 17070b57cec5SDimitry Andric public: 17080b57cec5SDimitry Andric const SDValue &getValue() const { return getOperand(1); } 17090b57cec5SDimitry Andric 17100b57cec5SDimitry Andric static bool classof(const SDNode *N) { 17110b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MSCATTER; 17120b57cec5SDimitry Andric } 17130b57cec5SDimitry Andric }; 17140b57cec5SDimitry Andric 17150b57cec5SDimitry Andric /// Generate unpacklo/unpackhi shuffle mask. 1716e8d8bef9SDimitry Andric void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo, 17175ffd83dbSDimitry Andric bool Unary); 17180b57cec5SDimitry Andric 17195ffd83dbSDimitry Andric /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation 17205ffd83dbSDimitry Andric /// imposed by AVX and specific to the unary pattern. Example: 17215ffd83dbSDimitry Andric /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3> 17225ffd83dbSDimitry Andric /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7> 17235ffd83dbSDimitry Andric void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo); 17240b57cec5SDimitry Andric 17250b57cec5SDimitry Andric } // end namespace llvm 17260b57cec5SDimitry Andric 17270b57cec5SDimitry Andric #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 1728