10b57cec5SDimitry Andric //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file defines the interfaces that X86 uses to lower LLVM code into a 100b57cec5SDimitry Andric // selection DAG. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 150b57cec5SDimitry Andric #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 160b57cec5SDimitry Andric 17349cc55cSDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 190b57cec5SDimitry Andric 200b57cec5SDimitry Andric namespace llvm { 210b57cec5SDimitry Andric class X86Subtarget; 220b57cec5SDimitry Andric class X86TargetMachine; 230b57cec5SDimitry Andric 240b57cec5SDimitry Andric namespace X86ISD { 250b57cec5SDimitry Andric // X86 Specific DAG Nodes 260b57cec5SDimitry Andric enum NodeType : unsigned { 270b57cec5SDimitry Andric // Start the numbering where the builtin ops leave off. 280b57cec5SDimitry Andric FIRST_NUMBER = ISD::BUILTIN_OP_END, 290b57cec5SDimitry Andric 300b57cec5SDimitry Andric /// Bit scan forward. 310b57cec5SDimitry Andric BSF, 320b57cec5SDimitry Andric /// Bit scan reverse. 330b57cec5SDimitry Andric BSR, 340b57cec5SDimitry Andric 355ffd83dbSDimitry Andric /// X86 funnel/double shift i16 instructions. These correspond to 365ffd83dbSDimitry Andric /// X86::SHLDW and X86::SHRDW instructions which have different amt 375ffd83dbSDimitry Andric /// modulo rules to generic funnel shifts. 385ffd83dbSDimitry Andric /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD. 395ffd83dbSDimitry Andric FSHL, 405ffd83dbSDimitry Andric FSHR, 410b57cec5SDimitry Andric 420b57cec5SDimitry Andric /// Bitwise logical AND of floating point values. This corresponds 430b57cec5SDimitry Andric /// to X86::ANDPS or X86::ANDPD. 440b57cec5SDimitry Andric FAND, 450b57cec5SDimitry Andric 460b57cec5SDimitry Andric /// Bitwise logical OR of floating point values. This corresponds 470b57cec5SDimitry Andric /// to X86::ORPS or X86::ORPD. 480b57cec5SDimitry Andric FOR, 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric /// Bitwise logical XOR of floating point values. This corresponds 510b57cec5SDimitry Andric /// to X86::XORPS or X86::XORPD. 520b57cec5SDimitry Andric FXOR, 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric /// Bitwise logical ANDNOT of floating point values. This 550b57cec5SDimitry Andric /// corresponds to X86::ANDNPS or X86::ANDNPD. 560b57cec5SDimitry Andric FANDN, 570b57cec5SDimitry Andric 580b57cec5SDimitry Andric /// These operations represent an abstract X86 call 590b57cec5SDimitry Andric /// instruction, which includes a bunch of information. In particular the 600b57cec5SDimitry Andric /// operands of these node are: 610b57cec5SDimitry Andric /// 620b57cec5SDimitry Andric /// #0 - The incoming token chain 630b57cec5SDimitry Andric /// #1 - The callee 640b57cec5SDimitry Andric /// #2 - The number of arg bytes the caller pushes on the stack. 650b57cec5SDimitry Andric /// #3 - The number of arg bytes the callee pops off the stack. 660b57cec5SDimitry Andric /// #4 - The value to pass in AL/AX/EAX (optional) 670b57cec5SDimitry Andric /// #5 - The value to pass in DL/DX/EDX (optional) 680b57cec5SDimitry Andric /// 690b57cec5SDimitry Andric /// The result values of these nodes are: 700b57cec5SDimitry Andric /// 710b57cec5SDimitry Andric /// #0 - The outgoing token chain 720b57cec5SDimitry Andric /// #1 - The first register result value (optional) 730b57cec5SDimitry Andric /// #2 - The second register result value (optional) 740b57cec5SDimitry Andric /// 750b57cec5SDimitry Andric CALL, 760b57cec5SDimitry Andric 770b57cec5SDimitry Andric /// Same as call except it adds the NoTrack prefix. 780b57cec5SDimitry Andric NT_CALL, 790b57cec5SDimitry Andric 80fe6060f1SDimitry Andric // Pseudo for a OBJC call that gets emitted together with a special 81fe6060f1SDimitry Andric // marker instruction. 82fe6060f1SDimitry Andric CALL_RVMARKER, 83fe6060f1SDimitry Andric 840b57cec5SDimitry Andric /// X86 compare and logical compare instructions. 855ffd83dbSDimitry Andric CMP, 865ffd83dbSDimitry Andric FCMP, 875ffd83dbSDimitry Andric COMI, 885ffd83dbSDimitry Andric UCOMI, 890b57cec5SDimitry Andric 900b57cec5SDimitry Andric /// X86 bit-test instructions. 910b57cec5SDimitry Andric BT, 920b57cec5SDimitry Andric 930b57cec5SDimitry Andric /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS 940b57cec5SDimitry Andric /// operand, usually produced by a CMP instruction. 950b57cec5SDimitry Andric SETCC, 960b57cec5SDimitry Andric 970b57cec5SDimitry Andric /// X86 Select 980b57cec5SDimitry Andric SELECTS, 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric // Same as SETCC except it's materialized with a sbb and the value is all 1010b57cec5SDimitry Andric // one's or all zero's. 1020b57cec5SDimitry Andric SETCC_CARRY, // R = carry_bit ? ~0 : 0 1030b57cec5SDimitry Andric 1040b57cec5SDimitry Andric /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. 1050b57cec5SDimitry Andric /// Operands are two FP values to compare; result is a mask of 1060b57cec5SDimitry Andric /// 0s or 1s. Generally DTRT for C/C++ with NaNs. 1070b57cec5SDimitry Andric FSETCC, 1080b57cec5SDimitry Andric 1090b57cec5SDimitry Andric /// X86 FP SETCC, similar to above, but with output as an i1 mask and 1100b57cec5SDimitry Andric /// and a version with SAE. 1115ffd83dbSDimitry Andric FSETCCM, 1125ffd83dbSDimitry Andric FSETCCM_SAE, 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric /// X86 conditional moves. Operand 0 and operand 1 are the two values 1150b57cec5SDimitry Andric /// to select from. Operand 2 is the condition code, and operand 3 is the 1160b57cec5SDimitry Andric /// flag operand produced by a CMP or TEST instruction. 1170b57cec5SDimitry Andric CMOV, 1180b57cec5SDimitry Andric 1190b57cec5SDimitry Andric /// X86 conditional branches. Operand 0 is the chain operand, operand 1 1200b57cec5SDimitry Andric /// is the block to branch if condition is true, operand 2 is the 1210b57cec5SDimitry Andric /// condition code, and operand 3 is the flag operand produced by a CMP 1220b57cec5SDimitry Andric /// or TEST instruction. 1230b57cec5SDimitry Andric BRCOND, 1240b57cec5SDimitry Andric 1250b57cec5SDimitry Andric /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and 1260b57cec5SDimitry Andric /// operand 1 is the target address. 1270b57cec5SDimitry Andric NT_BRIND, 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric /// Return with a flag operand. Operand 0 is the chain operand, operand 1300b57cec5SDimitry Andric /// 1 is the number of bytes of stack to pop. 1310b57cec5SDimitry Andric RET_FLAG, 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric /// Return from interrupt. Operand 0 is the number of bytes to pop. 1340b57cec5SDimitry Andric IRET, 1350b57cec5SDimitry Andric 1360b57cec5SDimitry Andric /// Repeat fill, corresponds to X86::REP_STOSx. 1370b57cec5SDimitry Andric REP_STOS, 1380b57cec5SDimitry Andric 1390b57cec5SDimitry Andric /// Repeat move, corresponds to X86::REP_MOVSx. 1400b57cec5SDimitry Andric REP_MOVS, 1410b57cec5SDimitry Andric 1420b57cec5SDimitry Andric /// On Darwin, this node represents the result of the popl 1430b57cec5SDimitry Andric /// at function entry, used for PIC code. 1440b57cec5SDimitry Andric GlobalBaseReg, 1450b57cec5SDimitry Andric 1460b57cec5SDimitry Andric /// A wrapper node for TargetConstantPool, TargetJumpTable, 1470b57cec5SDimitry Andric /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress, 1480b57cec5SDimitry Andric /// MCSymbol and TargetBlockAddress. 1490b57cec5SDimitry Andric Wrapper, 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric /// Special wrapper used under X86-64 PIC mode for RIP 1520b57cec5SDimitry Andric /// relative displacements. 1530b57cec5SDimitry Andric WrapperRIP, 1540b57cec5SDimitry Andric 1558bcb0991SDimitry Andric /// Copies a 64-bit value from an MMX vector to the low word 1568bcb0991SDimitry Andric /// of an XMM vector, with the high word zero filled. 1578bcb0991SDimitry Andric MOVQ2DQ, 1588bcb0991SDimitry Andric 1590b57cec5SDimitry Andric /// Copies a 64-bit value from the low word of an XMM vector 1600b57cec5SDimitry Andric /// to an MMX vector. 1610b57cec5SDimitry Andric MOVDQ2Q, 1620b57cec5SDimitry Andric 1630b57cec5SDimitry Andric /// Copies a 32-bit value from the low word of a MMX 1640b57cec5SDimitry Andric /// vector to a GPR. 1650b57cec5SDimitry Andric MMX_MOVD2W, 1660b57cec5SDimitry Andric 1670b57cec5SDimitry Andric /// Copies a GPR into the low 32-bit word of a MMX vector 1680b57cec5SDimitry Andric /// and zero out the high word. 1690b57cec5SDimitry Andric MMX_MOVW2D, 1700b57cec5SDimitry Andric 1710b57cec5SDimitry Andric /// Extract an 8-bit value from a vector and zero extend it to 1720b57cec5SDimitry Andric /// i32, corresponds to X86::PEXTRB. 1730b57cec5SDimitry Andric PEXTRB, 1740b57cec5SDimitry Andric 1750b57cec5SDimitry Andric /// Extract a 16-bit value from a vector and zero extend it to 1760b57cec5SDimitry Andric /// i32, corresponds to X86::PEXTRW. 1770b57cec5SDimitry Andric PEXTRW, 1780b57cec5SDimitry Andric 1790b57cec5SDimitry Andric /// Insert any element of a 4 x float vector into any element 1800b57cec5SDimitry Andric /// of a destination 4 x floatvector. 1810b57cec5SDimitry Andric INSERTPS, 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric /// Insert the lower 8-bits of a 32-bit value to a vector, 1840b57cec5SDimitry Andric /// corresponds to X86::PINSRB. 1850b57cec5SDimitry Andric PINSRB, 1860b57cec5SDimitry Andric 1870b57cec5SDimitry Andric /// Insert the lower 16-bits of a 32-bit value to a vector, 1880b57cec5SDimitry Andric /// corresponds to X86::PINSRW. 1890b57cec5SDimitry Andric PINSRW, 1900b57cec5SDimitry Andric 1910b57cec5SDimitry Andric /// Shuffle 16 8-bit values within a vector. 1920b57cec5SDimitry Andric PSHUFB, 1930b57cec5SDimitry Andric 1940b57cec5SDimitry Andric /// Compute Sum of Absolute Differences. 1950b57cec5SDimitry Andric PSADBW, 1960b57cec5SDimitry Andric /// Compute Double Block Packed Sum-Absolute-Differences 1970b57cec5SDimitry Andric DBPSADBW, 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric /// Bitwise Logical AND NOT of Packed FP values. 2000b57cec5SDimitry Andric ANDNP, 2010b57cec5SDimitry Andric 2020b57cec5SDimitry Andric /// Blend where the selector is an immediate. 2030b57cec5SDimitry Andric BLENDI, 2040b57cec5SDimitry Andric 2050b57cec5SDimitry Andric /// Dynamic (non-constant condition) vector blend where only the sign bits 2060b57cec5SDimitry Andric /// of the condition elements are used. This is used to enforce that the 2070b57cec5SDimitry Andric /// condition mask is not valid for generic VSELECT optimizations. This 2080b57cec5SDimitry Andric /// is also used to implement the intrinsics. 2090b57cec5SDimitry Andric /// Operands are in VSELECT order: MASK, TRUE, FALSE 2100b57cec5SDimitry Andric BLENDV, 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric /// Combined add and sub on an FP vector. 2130b57cec5SDimitry Andric ADDSUB, 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric // FP vector ops with rounding mode. 2165ffd83dbSDimitry Andric FADD_RND, 2175ffd83dbSDimitry Andric FADDS, 2185ffd83dbSDimitry Andric FADDS_RND, 2195ffd83dbSDimitry Andric FSUB_RND, 2205ffd83dbSDimitry Andric FSUBS, 2215ffd83dbSDimitry Andric FSUBS_RND, 2225ffd83dbSDimitry Andric FMUL_RND, 2235ffd83dbSDimitry Andric FMULS, 2245ffd83dbSDimitry Andric FMULS_RND, 2255ffd83dbSDimitry Andric FDIV_RND, 2265ffd83dbSDimitry Andric FDIVS, 2275ffd83dbSDimitry Andric FDIVS_RND, 2285ffd83dbSDimitry Andric FMAX_SAE, 2295ffd83dbSDimitry Andric FMAXS_SAE, 2305ffd83dbSDimitry Andric FMIN_SAE, 2315ffd83dbSDimitry Andric FMINS_SAE, 2325ffd83dbSDimitry Andric FSQRT_RND, 2335ffd83dbSDimitry Andric FSQRTS, 2345ffd83dbSDimitry Andric FSQRTS_RND, 2350b57cec5SDimitry Andric 2360b57cec5SDimitry Andric // FP vector get exponent. 2375ffd83dbSDimitry Andric FGETEXP, 2385ffd83dbSDimitry Andric FGETEXP_SAE, 2395ffd83dbSDimitry Andric FGETEXPS, 2405ffd83dbSDimitry Andric FGETEXPS_SAE, 2410b57cec5SDimitry Andric // Extract Normalized Mantissas. 2425ffd83dbSDimitry Andric VGETMANT, 2435ffd83dbSDimitry Andric VGETMANT_SAE, 2445ffd83dbSDimitry Andric VGETMANTS, 2455ffd83dbSDimitry Andric VGETMANTS_SAE, 2460b57cec5SDimitry Andric // FP Scale. 2475ffd83dbSDimitry Andric SCALEF, 2485ffd83dbSDimitry Andric SCALEF_RND, 2495ffd83dbSDimitry Andric SCALEFS, 2505ffd83dbSDimitry Andric SCALEFS_RND, 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric /// Integer horizontal add/sub. 2530b57cec5SDimitry Andric HADD, 2540b57cec5SDimitry Andric HSUB, 2550b57cec5SDimitry Andric 2560b57cec5SDimitry Andric /// Floating point horizontal add/sub. 2570b57cec5SDimitry Andric FHADD, 2580b57cec5SDimitry Andric FHSUB, 2590b57cec5SDimitry Andric 2600b57cec5SDimitry Andric // Detect Conflicts Within a Vector 2610b57cec5SDimitry Andric CONFLICT, 2620b57cec5SDimitry Andric 2630b57cec5SDimitry Andric /// Floating point max and min. 2645ffd83dbSDimitry Andric FMAX, 2655ffd83dbSDimitry Andric FMIN, 2660b57cec5SDimitry Andric 2670b57cec5SDimitry Andric /// Commutative FMIN and FMAX. 2685ffd83dbSDimitry Andric FMAXC, 2695ffd83dbSDimitry Andric FMINC, 2700b57cec5SDimitry Andric 2710b57cec5SDimitry Andric /// Scalar intrinsic floating point max and min. 2725ffd83dbSDimitry Andric FMAXS, 2735ffd83dbSDimitry Andric FMINS, 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric /// Floating point reciprocal-sqrt and reciprocal approximation. 2760b57cec5SDimitry Andric /// Note that these typically require refinement 2770b57cec5SDimitry Andric /// in order to obtain suitable precision. 2785ffd83dbSDimitry Andric FRSQRT, 2795ffd83dbSDimitry Andric FRCP, 2800b57cec5SDimitry Andric 2810b57cec5SDimitry Andric // AVX-512 reciprocal approximations with a little more precision. 2825ffd83dbSDimitry Andric RSQRT14, 2835ffd83dbSDimitry Andric RSQRT14S, 2845ffd83dbSDimitry Andric RCP14, 2855ffd83dbSDimitry Andric RCP14S, 2860b57cec5SDimitry Andric 2870b57cec5SDimitry Andric // Thread Local Storage. 2880b57cec5SDimitry Andric TLSADDR, 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric // Thread Local Storage. A call to get the start address 2910b57cec5SDimitry Andric // of the TLS block for the current module. 2920b57cec5SDimitry Andric TLSBASEADDR, 2930b57cec5SDimitry Andric 2940b57cec5SDimitry Andric // Thread Local Storage. When calling to an OS provided 2950b57cec5SDimitry Andric // thunk at the address from an earlier relocation. 2960b57cec5SDimitry Andric TLSCALL, 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric // Exception Handling helpers. 2990b57cec5SDimitry Andric EH_RETURN, 3000b57cec5SDimitry Andric 3010b57cec5SDimitry Andric // SjLj exception handling setjmp. 3020b57cec5SDimitry Andric EH_SJLJ_SETJMP, 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric // SjLj exception handling longjmp. 3050b57cec5SDimitry Andric EH_SJLJ_LONGJMP, 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric // SjLj exception handling dispatch. 3080b57cec5SDimitry Andric EH_SJLJ_SETUP_DISPATCH, 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric /// Tail call return. See X86TargetLowering::LowerCall for 3110b57cec5SDimitry Andric /// the list of operands. 3120b57cec5SDimitry Andric TC_RETURN, 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric // Vector move to low scalar and zero higher vector elements. 3150b57cec5SDimitry Andric VZEXT_MOVL, 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric // Vector integer truncate. 3180b57cec5SDimitry Andric VTRUNC, 3190b57cec5SDimitry Andric // Vector integer truncate with unsigned/signed saturation. 3205ffd83dbSDimitry Andric VTRUNCUS, 3215ffd83dbSDimitry Andric VTRUNCS, 3220b57cec5SDimitry Andric 3230b57cec5SDimitry Andric // Masked version of the above. Used when less than a 128-bit result is 3240b57cec5SDimitry Andric // produced since the mask only applies to the lower elements and can't 3250b57cec5SDimitry Andric // be represented by a select. 3260b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 3275ffd83dbSDimitry Andric VMTRUNC, 3285ffd83dbSDimitry Andric VMTRUNCUS, 3295ffd83dbSDimitry Andric VMTRUNCS, 3300b57cec5SDimitry Andric 3310b57cec5SDimitry Andric // Vector FP extend. 3325ffd83dbSDimitry Andric VFPEXT, 3335ffd83dbSDimitry Andric VFPEXT_SAE, 3345ffd83dbSDimitry Andric VFPEXTS, 3355ffd83dbSDimitry Andric VFPEXTS_SAE, 3360b57cec5SDimitry Andric 3370b57cec5SDimitry Andric // Vector FP round. 3385ffd83dbSDimitry Andric VFPROUND, 3395ffd83dbSDimitry Andric VFPROUND_RND, 3405ffd83dbSDimitry Andric VFPROUNDS, 3415ffd83dbSDimitry Andric VFPROUNDS_RND, 3420b57cec5SDimitry Andric 3430b57cec5SDimitry Andric // Masked version of above. Used for v2f64->v4f32. 3440b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 3450b57cec5SDimitry Andric VMFPROUND, 3460b57cec5SDimitry Andric 3470b57cec5SDimitry Andric // 128-bit vector logical left / right shift 3485ffd83dbSDimitry Andric VSHLDQ, 3495ffd83dbSDimitry Andric VSRLDQ, 3500b57cec5SDimitry Andric 3510b57cec5SDimitry Andric // Vector shift elements 3525ffd83dbSDimitry Andric VSHL, 3535ffd83dbSDimitry Andric VSRL, 3545ffd83dbSDimitry Andric VSRA, 3550b57cec5SDimitry Andric 3560b57cec5SDimitry Andric // Vector variable shift 3575ffd83dbSDimitry Andric VSHLV, 3585ffd83dbSDimitry Andric VSRLV, 3595ffd83dbSDimitry Andric VSRAV, 3600b57cec5SDimitry Andric 3610b57cec5SDimitry Andric // Vector shift elements by immediate 3625ffd83dbSDimitry Andric VSHLI, 3635ffd83dbSDimitry Andric VSRLI, 3645ffd83dbSDimitry Andric VSRAI, 3650b57cec5SDimitry Andric 3660b57cec5SDimitry Andric // Shifts of mask registers. 3675ffd83dbSDimitry Andric KSHIFTL, 3685ffd83dbSDimitry Andric KSHIFTR, 3690b57cec5SDimitry Andric 3700b57cec5SDimitry Andric // Bit rotate by immediate 3715ffd83dbSDimitry Andric VROTLI, 3725ffd83dbSDimitry Andric VROTRI, 3730b57cec5SDimitry Andric 3740b57cec5SDimitry Andric // Vector packed double/float comparison. 3750b57cec5SDimitry Andric CMPP, 3760b57cec5SDimitry Andric 3770b57cec5SDimitry Andric // Vector integer comparisons. 3785ffd83dbSDimitry Andric PCMPEQ, 3795ffd83dbSDimitry Andric PCMPGT, 3800b57cec5SDimitry Andric 3810b57cec5SDimitry Andric // v8i16 Horizontal minimum and position. 3820b57cec5SDimitry Andric PHMINPOS, 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric MULTISHIFT, 3850b57cec5SDimitry Andric 3860b57cec5SDimitry Andric /// Vector comparison generating mask bits for fp and 3870b57cec5SDimitry Andric /// integer signed and unsigned data types. 3880b57cec5SDimitry Andric CMPM, 389e8d8bef9SDimitry Andric // Vector mask comparison generating mask bits for FP values. 390e8d8bef9SDimitry Andric CMPMM, 391e8d8bef9SDimitry Andric // Vector mask comparison with SAE for FP values. 392e8d8bef9SDimitry Andric CMPMM_SAE, 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric // Arithmetic operations with FLAGS results. 3955ffd83dbSDimitry Andric ADD, 3965ffd83dbSDimitry Andric SUB, 3975ffd83dbSDimitry Andric ADC, 3985ffd83dbSDimitry Andric SBB, 3995ffd83dbSDimitry Andric SMUL, 4005ffd83dbSDimitry Andric UMUL, 4015ffd83dbSDimitry Andric OR, 4025ffd83dbSDimitry Andric XOR, 4035ffd83dbSDimitry Andric AND, 4040b57cec5SDimitry Andric 4050b57cec5SDimitry Andric // Bit field extract. 4060b57cec5SDimitry Andric BEXTR, 407e8d8bef9SDimitry Andric BEXTRI, 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric // Zero High Bits Starting with Specified Bit Position. 4100b57cec5SDimitry Andric BZHI, 4110b57cec5SDimitry Andric 4125ffd83dbSDimitry Andric // Parallel extract and deposit. 4135ffd83dbSDimitry Andric PDEP, 4145ffd83dbSDimitry Andric PEXT, 4155ffd83dbSDimitry Andric 4160b57cec5SDimitry Andric // X86-specific multiply by immediate. 4170b57cec5SDimitry Andric MUL_IMM, 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric // Vector sign bit extraction. 4200b57cec5SDimitry Andric MOVMSK, 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric // Vector bitwise comparisons. 4230b57cec5SDimitry Andric PTEST, 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric // Vector packed fp sign bitwise comparisons. 4260b57cec5SDimitry Andric TESTP, 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric // OR/AND test for masks. 4290b57cec5SDimitry Andric KORTEST, 4300b57cec5SDimitry Andric KTEST, 4310b57cec5SDimitry Andric 4320b57cec5SDimitry Andric // ADD for masks. 4330b57cec5SDimitry Andric KADD, 4340b57cec5SDimitry Andric 4350b57cec5SDimitry Andric // Several flavors of instructions with vector shuffle behaviors. 4360b57cec5SDimitry Andric // Saturated signed/unnsigned packing. 4370b57cec5SDimitry Andric PACKSS, 4380b57cec5SDimitry Andric PACKUS, 4390b57cec5SDimitry Andric // Intra-lane alignr. 4400b57cec5SDimitry Andric PALIGNR, 4410b57cec5SDimitry Andric // AVX512 inter-lane alignr. 4420b57cec5SDimitry Andric VALIGN, 4430b57cec5SDimitry Andric PSHUFD, 4440b57cec5SDimitry Andric PSHUFHW, 4450b57cec5SDimitry Andric PSHUFLW, 4460b57cec5SDimitry Andric SHUFP, 4470b57cec5SDimitry Andric // VBMI2 Concat & Shift. 4480b57cec5SDimitry Andric VSHLD, 4490b57cec5SDimitry Andric VSHRD, 4500b57cec5SDimitry Andric VSHLDV, 4510b57cec5SDimitry Andric VSHRDV, 4520b57cec5SDimitry Andric // Shuffle Packed Values at 128-bit granularity. 4530b57cec5SDimitry Andric SHUF128, 4540b57cec5SDimitry Andric MOVDDUP, 4550b57cec5SDimitry Andric MOVSHDUP, 4560b57cec5SDimitry Andric MOVSLDUP, 4570b57cec5SDimitry Andric MOVLHPS, 4580b57cec5SDimitry Andric MOVHLPS, 4590b57cec5SDimitry Andric MOVSD, 4600b57cec5SDimitry Andric MOVSS, 461349cc55cSDimitry Andric MOVSH, 4620b57cec5SDimitry Andric UNPCKL, 4630b57cec5SDimitry Andric UNPCKH, 4640b57cec5SDimitry Andric VPERMILPV, 4650b57cec5SDimitry Andric VPERMILPI, 4660b57cec5SDimitry Andric VPERMI, 4670b57cec5SDimitry Andric VPERM2X128, 4680b57cec5SDimitry Andric 4690b57cec5SDimitry Andric // Variable Permute (VPERM). 4700b57cec5SDimitry Andric // Res = VPERMV MaskV, V0 4710b57cec5SDimitry Andric VPERMV, 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric // 3-op Variable Permute (VPERMT2). 4740b57cec5SDimitry Andric // Res = VPERMV3 V0, MaskV, V1 4750b57cec5SDimitry Andric VPERMV3, 4760b57cec5SDimitry Andric 4770b57cec5SDimitry Andric // Bitwise ternary logic. 4780b57cec5SDimitry Andric VPTERNLOG, 4790b57cec5SDimitry Andric // Fix Up Special Packed Float32/64 values. 4805ffd83dbSDimitry Andric VFIXUPIMM, 4815ffd83dbSDimitry Andric VFIXUPIMM_SAE, 4825ffd83dbSDimitry Andric VFIXUPIMMS, 4835ffd83dbSDimitry Andric VFIXUPIMMS_SAE, 4840b57cec5SDimitry Andric // Range Restriction Calculation For Packed Pairs of Float32/64 values. 4855ffd83dbSDimitry Andric VRANGE, 4865ffd83dbSDimitry Andric VRANGE_SAE, 4875ffd83dbSDimitry Andric VRANGES, 4885ffd83dbSDimitry Andric VRANGES_SAE, 4890b57cec5SDimitry Andric // Reduce - Perform Reduction Transformation on scalar\packed FP. 4905ffd83dbSDimitry Andric VREDUCE, 4915ffd83dbSDimitry Andric VREDUCE_SAE, 4925ffd83dbSDimitry Andric VREDUCES, 4935ffd83dbSDimitry Andric VREDUCES_SAE, 4940b57cec5SDimitry Andric // RndScale - Round FP Values To Include A Given Number Of Fraction Bits. 4950b57cec5SDimitry Andric // Also used by the legacy (V)ROUND intrinsics where we mask out the 4960b57cec5SDimitry Andric // scaling part of the immediate. 4975ffd83dbSDimitry Andric VRNDSCALE, 4985ffd83dbSDimitry Andric VRNDSCALE_SAE, 4995ffd83dbSDimitry Andric VRNDSCALES, 5005ffd83dbSDimitry Andric VRNDSCALES_SAE, 5010b57cec5SDimitry Andric // Tests Types Of a FP Values for packed types. 5020b57cec5SDimitry Andric VFPCLASS, 5030b57cec5SDimitry Andric // Tests Types Of a FP Values for scalar types. 5040b57cec5SDimitry Andric VFPCLASSS, 5050b57cec5SDimitry Andric 5060b57cec5SDimitry Andric // Broadcast (splat) scalar or element 0 of a vector. If the operand is 5070b57cec5SDimitry Andric // a vector, this node may change the vector length as part of the splat. 5080b57cec5SDimitry Andric VBROADCAST, 5090b57cec5SDimitry Andric // Broadcast mask to vector. 5100b57cec5SDimitry Andric VBROADCASTM, 5110b57cec5SDimitry Andric 5120b57cec5SDimitry Andric /// SSE4A Extraction and Insertion. 5135ffd83dbSDimitry Andric EXTRQI, 5145ffd83dbSDimitry Andric INSERTQI, 5150b57cec5SDimitry Andric 5160b57cec5SDimitry Andric // XOP arithmetic/logical shifts. 5175ffd83dbSDimitry Andric VPSHA, 5185ffd83dbSDimitry Andric VPSHL, 5190b57cec5SDimitry Andric // XOP signed/unsigned integer comparisons. 5205ffd83dbSDimitry Andric VPCOM, 5215ffd83dbSDimitry Andric VPCOMU, 5220b57cec5SDimitry Andric // XOP packed permute bytes. 5230b57cec5SDimitry Andric VPPERM, 5240b57cec5SDimitry Andric // XOP two source permutation. 5250b57cec5SDimitry Andric VPERMIL2, 5260b57cec5SDimitry Andric 5270b57cec5SDimitry Andric // Vector multiply packed unsigned doubleword integers. 5280b57cec5SDimitry Andric PMULUDQ, 5290b57cec5SDimitry Andric // Vector multiply packed signed doubleword integers. 5300b57cec5SDimitry Andric PMULDQ, 5310b57cec5SDimitry Andric // Vector Multiply Packed UnsignedIntegers with Round and Scale. 5320b57cec5SDimitry Andric MULHRS, 5330b57cec5SDimitry Andric 5340b57cec5SDimitry Andric // Multiply and Add Packed Integers. 5355ffd83dbSDimitry Andric VPMADDUBSW, 5365ffd83dbSDimitry Andric VPMADDWD, 5370b57cec5SDimitry Andric 5380b57cec5SDimitry Andric // AVX512IFMA multiply and add. 5390b57cec5SDimitry Andric // NOTE: These are different than the instruction and perform 5400b57cec5SDimitry Andric // op0 x op1 + op2. 5415ffd83dbSDimitry Andric VPMADD52L, 5425ffd83dbSDimitry Andric VPMADD52H, 5430b57cec5SDimitry Andric 5440b57cec5SDimitry Andric // VNNI 5450b57cec5SDimitry Andric VPDPBUSD, 5460b57cec5SDimitry Andric VPDPBUSDS, 5470b57cec5SDimitry Andric VPDPWSSD, 5480b57cec5SDimitry Andric VPDPWSSDS, 5490b57cec5SDimitry Andric 5500b57cec5SDimitry Andric // FMA nodes. 5510b57cec5SDimitry Andric // We use the target independent ISD::FMA for the non-inverted case. 5520b57cec5SDimitry Andric FNMADD, 5530b57cec5SDimitry Andric FMSUB, 5540b57cec5SDimitry Andric FNMSUB, 5550b57cec5SDimitry Andric FMADDSUB, 5560b57cec5SDimitry Andric FMSUBADD, 5570b57cec5SDimitry Andric 5580b57cec5SDimitry Andric // FMA with rounding mode. 5590b57cec5SDimitry Andric FMADD_RND, 5600b57cec5SDimitry Andric FNMADD_RND, 5610b57cec5SDimitry Andric FMSUB_RND, 5620b57cec5SDimitry Andric FNMSUB_RND, 5630b57cec5SDimitry Andric FMADDSUB_RND, 5640b57cec5SDimitry Andric FMSUBADD_RND, 5650b57cec5SDimitry Andric 566349cc55cSDimitry Andric // AVX512-FP16 complex addition and multiplication. 567349cc55cSDimitry Andric VFMADDC, 568349cc55cSDimitry Andric VFMADDC_RND, 569349cc55cSDimitry Andric VFCMADDC, 570349cc55cSDimitry Andric VFCMADDC_RND, 571349cc55cSDimitry Andric 572349cc55cSDimitry Andric VFMULC, 573349cc55cSDimitry Andric VFMULC_RND, 574349cc55cSDimitry Andric VFCMULC, 575349cc55cSDimitry Andric VFCMULC_RND, 576349cc55cSDimitry Andric 577349cc55cSDimitry Andric VFMADDCSH, 578349cc55cSDimitry Andric VFMADDCSH_RND, 579349cc55cSDimitry Andric VFCMADDCSH, 580349cc55cSDimitry Andric VFCMADDCSH_RND, 581349cc55cSDimitry Andric 582349cc55cSDimitry Andric VFMULCSH, 583349cc55cSDimitry Andric VFMULCSH_RND, 584349cc55cSDimitry Andric VFCMULCSH, 585349cc55cSDimitry Andric VFCMULCSH_RND, 586349cc55cSDimitry Andric 587*bdd1243dSDimitry Andric VPDPBSUD, 588*bdd1243dSDimitry Andric VPDPBSUDS, 589*bdd1243dSDimitry Andric VPDPBUUD, 590*bdd1243dSDimitry Andric VPDPBUUDS, 591*bdd1243dSDimitry Andric VPDPBSSD, 592*bdd1243dSDimitry Andric VPDPBSSDS, 593*bdd1243dSDimitry Andric 5940b57cec5SDimitry Andric // Compress and expand. 5950b57cec5SDimitry Andric COMPRESS, 5960b57cec5SDimitry Andric EXPAND, 5970b57cec5SDimitry Andric 5980b57cec5SDimitry Andric // Bits shuffle 5990b57cec5SDimitry Andric VPSHUFBITQMB, 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric // Convert Unsigned/Integer to Floating-Point Value with rounding mode. 6025ffd83dbSDimitry Andric SINT_TO_FP_RND, 6035ffd83dbSDimitry Andric UINT_TO_FP_RND, 6045ffd83dbSDimitry Andric SCALAR_SINT_TO_FP, 6055ffd83dbSDimitry Andric SCALAR_UINT_TO_FP, 6065ffd83dbSDimitry Andric SCALAR_SINT_TO_FP_RND, 6075ffd83dbSDimitry Andric SCALAR_UINT_TO_FP_RND, 6080b57cec5SDimitry Andric 6090b57cec5SDimitry Andric // Vector float/double to signed/unsigned integer. 6105ffd83dbSDimitry Andric CVTP2SI, 6115ffd83dbSDimitry Andric CVTP2UI, 6125ffd83dbSDimitry Andric CVTP2SI_RND, 6135ffd83dbSDimitry Andric CVTP2UI_RND, 6140b57cec5SDimitry Andric // Scalar float/double to signed/unsigned integer. 6155ffd83dbSDimitry Andric CVTS2SI, 6165ffd83dbSDimitry Andric CVTS2UI, 6175ffd83dbSDimitry Andric CVTS2SI_RND, 6185ffd83dbSDimitry Andric CVTS2UI_RND, 6190b57cec5SDimitry Andric 6200b57cec5SDimitry Andric // Vector float/double to signed/unsigned integer with truncation. 6215ffd83dbSDimitry Andric CVTTP2SI, 6225ffd83dbSDimitry Andric CVTTP2UI, 6235ffd83dbSDimitry Andric CVTTP2SI_SAE, 6245ffd83dbSDimitry Andric CVTTP2UI_SAE, 6250b57cec5SDimitry Andric // Scalar float/double to signed/unsigned integer with truncation. 6265ffd83dbSDimitry Andric CVTTS2SI, 6275ffd83dbSDimitry Andric CVTTS2UI, 6285ffd83dbSDimitry Andric CVTTS2SI_SAE, 6295ffd83dbSDimitry Andric CVTTS2UI_SAE, 6300b57cec5SDimitry Andric 6310b57cec5SDimitry Andric // Vector signed/unsigned integer to float/double. 6325ffd83dbSDimitry Andric CVTSI2P, 6335ffd83dbSDimitry Andric CVTUI2P, 6340b57cec5SDimitry Andric 6350b57cec5SDimitry Andric // Masked versions of above. Used for v2f64->v4f32. 6360b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 6375ffd83dbSDimitry Andric MCVTP2SI, 6385ffd83dbSDimitry Andric MCVTP2UI, 6395ffd83dbSDimitry Andric MCVTTP2SI, 6405ffd83dbSDimitry Andric MCVTTP2UI, 6415ffd83dbSDimitry Andric MCVTSI2P, 6425ffd83dbSDimitry Andric MCVTUI2P, 6430b57cec5SDimitry Andric 6440b57cec5SDimitry Andric // Vector float to bfloat16. 6450b57cec5SDimitry Andric // Convert TWO packed single data to one packed BF16 data 6460b57cec5SDimitry Andric CVTNE2PS2BF16, 6470b57cec5SDimitry Andric // Convert packed single data to packed BF16 data 6480b57cec5SDimitry Andric CVTNEPS2BF16, 6490b57cec5SDimitry Andric // Masked version of above. 6500b57cec5SDimitry Andric // SRC, PASSTHRU, MASK 6510b57cec5SDimitry Andric MCVTNEPS2BF16, 6520b57cec5SDimitry Andric 6530b57cec5SDimitry Andric // Dot product of BF16 pairs to accumulated into 6540b57cec5SDimitry Andric // packed single precision. 6550b57cec5SDimitry Andric DPBF16PS, 6560b57cec5SDimitry Andric 657349cc55cSDimitry Andric // A stack checking function call. On Windows it's _chkstk call. 658349cc55cSDimitry Andric DYN_ALLOCA, 6590b57cec5SDimitry Andric 6600b57cec5SDimitry Andric // For allocating variable amounts of stack space when using 6610b57cec5SDimitry Andric // segmented stacks. Check if the current stacklet has enough space, and 6620b57cec5SDimitry Andric // falls back to heap allocation if not. 6630b57cec5SDimitry Andric SEG_ALLOCA, 6640b57cec5SDimitry Andric 6655ffd83dbSDimitry Andric // For allocating stack space when using stack clash protector. 6665ffd83dbSDimitry Andric // Allocation is performed by block, and each block is probed. 6675ffd83dbSDimitry Andric PROBED_ALLOCA, 6685ffd83dbSDimitry Andric 6690b57cec5SDimitry Andric // Memory barriers. 6700b57cec5SDimitry Andric MFENCE, 6710b57cec5SDimitry Andric 6720b57cec5SDimitry Andric // Get a random integer and indicate whether it is valid in CF. 6730b57cec5SDimitry Andric RDRAND, 6740b57cec5SDimitry Andric 6750b57cec5SDimitry Andric // Get a NIST SP800-90B & C compliant random integer and 6760b57cec5SDimitry Andric // indicate whether it is valid in CF. 6770b57cec5SDimitry Andric RDSEED, 6780b57cec5SDimitry Andric 6790b57cec5SDimitry Andric // Protection keys 6800b57cec5SDimitry Andric // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX. 6810b57cec5SDimitry Andric // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is 6820b57cec5SDimitry Andric // value for ECX. 6835ffd83dbSDimitry Andric RDPKRU, 6845ffd83dbSDimitry Andric WRPKRU, 6850b57cec5SDimitry Andric 6860b57cec5SDimitry Andric // SSE42 string comparisons. 6870b57cec5SDimitry Andric // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG 6880b57cec5SDimitry Andric // will emit one or two instructions based on which results are used. If 6890b57cec5SDimitry Andric // flags and index/mask this allows us to use a single instruction since 6900b57cec5SDimitry Andric // we won't have to pick and opcode for flags. Instead we can rely on the 6910b57cec5SDimitry Andric // DAG to CSE everything and decide at isel. 6920b57cec5SDimitry Andric PCMPISTR, 6930b57cec5SDimitry Andric PCMPESTR, 6940b57cec5SDimitry Andric 6950b57cec5SDimitry Andric // Test if in transactional execution. 6960b57cec5SDimitry Andric XTEST, 6970b57cec5SDimitry Andric 6980b57cec5SDimitry Andric // ERI instructions. 6995ffd83dbSDimitry Andric RSQRT28, 7005ffd83dbSDimitry Andric RSQRT28_SAE, 7015ffd83dbSDimitry Andric RSQRT28S, 7025ffd83dbSDimitry Andric RSQRT28S_SAE, 7035ffd83dbSDimitry Andric RCP28, 7045ffd83dbSDimitry Andric RCP28_SAE, 7055ffd83dbSDimitry Andric RCP28S, 7065ffd83dbSDimitry Andric RCP28S_SAE, 7075ffd83dbSDimitry Andric EXP2, 7085ffd83dbSDimitry Andric EXP2_SAE, 7090b57cec5SDimitry Andric 7100b57cec5SDimitry Andric // Conversions between float and half-float. 7115ffd83dbSDimitry Andric CVTPS2PH, 712*bdd1243dSDimitry Andric CVTPS2PH_SAE, 7135ffd83dbSDimitry Andric CVTPH2PS, 7145ffd83dbSDimitry Andric CVTPH2PS_SAE, 7150b57cec5SDimitry Andric 7160b57cec5SDimitry Andric // Masked version of above. 7170b57cec5SDimitry Andric // SRC, RND, PASSTHRU, MASK 7180b57cec5SDimitry Andric MCVTPS2PH, 719*bdd1243dSDimitry Andric MCVTPS2PH_SAE, 7200b57cec5SDimitry Andric 7210b57cec5SDimitry Andric // Galois Field Arithmetic Instructions 7225ffd83dbSDimitry Andric GF2P8AFFINEINVQB, 7235ffd83dbSDimitry Andric GF2P8AFFINEQB, 7245ffd83dbSDimitry Andric GF2P8MULB, 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric // LWP insert record. 7270b57cec5SDimitry Andric LWPINS, 7280b57cec5SDimitry Andric 7290b57cec5SDimitry Andric // User level wait 7305ffd83dbSDimitry Andric UMWAIT, 7315ffd83dbSDimitry Andric TPAUSE, 7320b57cec5SDimitry Andric 7330b57cec5SDimitry Andric // Enqueue Stores Instructions 7345ffd83dbSDimitry Andric ENQCMD, 7355ffd83dbSDimitry Andric ENQCMDS, 7360b57cec5SDimitry Andric 7370b57cec5SDimitry Andric // For avx512-vp2intersect 7380b57cec5SDimitry Andric VP2INTERSECT, 7390b57cec5SDimitry Andric 740e8d8bef9SDimitry Andric // User level interrupts - testui 741e8d8bef9SDimitry Andric TESTUI, 742e8d8bef9SDimitry Andric 743480093f4SDimitry Andric /// X86 strict FP compare instructions. 744480093f4SDimitry Andric STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE, 745480093f4SDimitry Andric STRICT_FCMPS, 746480093f4SDimitry Andric 747480093f4SDimitry Andric // Vector packed double/float comparison. 748480093f4SDimitry Andric STRICT_CMPP, 749480093f4SDimitry Andric 750480093f4SDimitry Andric /// Vector comparison generating mask bits for fp and 751480093f4SDimitry Andric /// integer signed and unsigned data types. 752480093f4SDimitry Andric STRICT_CMPM, 753480093f4SDimitry Andric 754480093f4SDimitry Andric // Vector float/double to signed/unsigned integer with truncation. 7555ffd83dbSDimitry Andric STRICT_CVTTP2SI, 7565ffd83dbSDimitry Andric STRICT_CVTTP2UI, 757480093f4SDimitry Andric 758480093f4SDimitry Andric // Vector FP extend. 759480093f4SDimitry Andric STRICT_VFPEXT, 760480093f4SDimitry Andric 761480093f4SDimitry Andric // Vector FP round. 762480093f4SDimitry Andric STRICT_VFPROUND, 763480093f4SDimitry Andric 764480093f4SDimitry Andric // RndScale - Round FP Values To Include A Given Number Of Fraction Bits. 765480093f4SDimitry Andric // Also used by the legacy (V)ROUND intrinsics where we mask out the 766480093f4SDimitry Andric // scaling part of the immediate. 767480093f4SDimitry Andric STRICT_VRNDSCALE, 768480093f4SDimitry Andric 769480093f4SDimitry Andric // Vector signed/unsigned integer to float/double. 7705ffd83dbSDimitry Andric STRICT_CVTSI2P, 7715ffd83dbSDimitry Andric STRICT_CVTUI2P, 7725ffd83dbSDimitry Andric 7735ffd83dbSDimitry Andric // Strict FMA nodes. 7745ffd83dbSDimitry Andric STRICT_FNMADD, 7755ffd83dbSDimitry Andric STRICT_FMSUB, 7765ffd83dbSDimitry Andric STRICT_FNMSUB, 7775ffd83dbSDimitry Andric 7785ffd83dbSDimitry Andric // Conversions between float and half-float. 7795ffd83dbSDimitry Andric STRICT_CVTPS2PH, 7805ffd83dbSDimitry Andric STRICT_CVTPH2PS, 781480093f4SDimitry Andric 782*bdd1243dSDimitry Andric // WARNING: Only add nodes here if they are strict FP nodes. Non-memory and 783e8d8bef9SDimitry Andric // non-strict FP nodes should be above FIRST_TARGET_STRICTFP_OPCODE. 784e8d8bef9SDimitry Andric 7850b57cec5SDimitry Andric // Compare and swap. 7860b57cec5SDimitry Andric LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, 7870b57cec5SDimitry Andric LCMPXCHG8_DAG, 7880b57cec5SDimitry Andric LCMPXCHG16_DAG, 7890b57cec5SDimitry Andric LCMPXCHG16_SAVE_RBX_DAG, 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric /// LOCK-prefixed arithmetic read-modify-write instructions. 7920b57cec5SDimitry Andric /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS) 7935ffd83dbSDimitry Andric LADD, 7945ffd83dbSDimitry Andric LSUB, 7955ffd83dbSDimitry Andric LOR, 7965ffd83dbSDimitry Andric LXOR, 7975ffd83dbSDimitry Andric LAND, 79881ad6265SDimitry Andric LBTS, 79981ad6265SDimitry Andric LBTC, 80081ad6265SDimitry Andric LBTR, 801*bdd1243dSDimitry Andric LBTS_RM, 802*bdd1243dSDimitry Andric LBTC_RM, 803*bdd1243dSDimitry Andric LBTR_RM, 804*bdd1243dSDimitry Andric 805*bdd1243dSDimitry Andric /// RAO arithmetic instructions. 806*bdd1243dSDimitry Andric /// OUTCHAIN = AADD(INCHAIN, PTR, RHS) 807*bdd1243dSDimitry Andric AADD, 808*bdd1243dSDimitry Andric AOR, 809*bdd1243dSDimitry Andric AXOR, 810*bdd1243dSDimitry Andric AAND, 8110b57cec5SDimitry Andric 8120b57cec5SDimitry Andric // Load, scalar_to_vector, and zero extend. 8130b57cec5SDimitry Andric VZEXT_LOAD, 8140b57cec5SDimitry Andric 8150b57cec5SDimitry Andric // extract_vector_elt, store. 8160b57cec5SDimitry Andric VEXTRACT_STORE, 8170b57cec5SDimitry Andric 818e8d8bef9SDimitry Andric // scalar broadcast from memory. 8198bcb0991SDimitry Andric VBROADCAST_LOAD, 8208bcb0991SDimitry Andric 821e8d8bef9SDimitry Andric // subvector broadcast from memory. 822e8d8bef9SDimitry Andric SUBV_BROADCAST_LOAD, 823e8d8bef9SDimitry Andric 824fe6060f1SDimitry Andric // Store FP control word into i16 memory. 8250b57cec5SDimitry Andric FNSTCW16m, 8260b57cec5SDimitry Andric 827fe6060f1SDimitry Andric // Load FP control word from i16 memory. 828fe6060f1SDimitry Andric FLDCW16m, 829fe6060f1SDimitry Andric 8300b57cec5SDimitry Andric /// This instruction implements FP_TO_SINT with the 8310b57cec5SDimitry Andric /// integer destination in memory and a FP reg source. This corresponds 8320b57cec5SDimitry Andric /// to the X86::FIST*m instructions and the rounding mode change stuff. It 8330b57cec5SDimitry Andric /// has two inputs (token chain and address) and two outputs (int value 8340b57cec5SDimitry Andric /// and token chain). Memory VT specifies the type to store to. 8350b57cec5SDimitry Andric FP_TO_INT_IN_MEM, 8360b57cec5SDimitry Andric 8370b57cec5SDimitry Andric /// This instruction implements SINT_TO_FP with the 8380b57cec5SDimitry Andric /// integer source in memory and FP reg result. This corresponds to the 8390b57cec5SDimitry Andric /// X86::FILD*m instructions. It has two inputs (token chain and address) 8405ffd83dbSDimitry Andric /// and two outputs (FP value and token chain). The integer source type is 8415ffd83dbSDimitry Andric /// specified by the memory VT. 8420b57cec5SDimitry Andric FILD, 8430b57cec5SDimitry Andric 8440b57cec5SDimitry Andric /// This instruction implements a fp->int store from FP stack 8450b57cec5SDimitry Andric /// slots. This corresponds to the fist instruction. It takes a 8460b57cec5SDimitry Andric /// chain operand, value to store, address, and glue. The memory VT 8470b57cec5SDimitry Andric /// specifies the type to store as. 8480b57cec5SDimitry Andric FIST, 8490b57cec5SDimitry Andric 8500b57cec5SDimitry Andric /// This instruction implements an extending load to FP stack slots. 8510b57cec5SDimitry Andric /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain 8520b57cec5SDimitry Andric /// operand, and ptr to load from. The memory VT specifies the type to 8530b57cec5SDimitry Andric /// load from. 8540b57cec5SDimitry Andric FLD, 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric /// This instruction implements a truncating store from FP stack 8570b57cec5SDimitry Andric /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a 8580b57cec5SDimitry Andric /// chain operand, value to store, address, and glue. The memory VT 8590b57cec5SDimitry Andric /// specifies the type to store as. 8600b57cec5SDimitry Andric FST, 8610b57cec5SDimitry Andric 862e8d8bef9SDimitry Andric /// These instructions grab the address of the next argument 8630b57cec5SDimitry Andric /// from a va_list. (reads and modifies the va_list in memory) 8640b57cec5SDimitry Andric VAARG_64, 865e8d8bef9SDimitry Andric VAARG_X32, 8660b57cec5SDimitry Andric 8670b57cec5SDimitry Andric // Vector truncating store with unsigned/signed saturation 8685ffd83dbSDimitry Andric VTRUNCSTOREUS, 8695ffd83dbSDimitry Andric VTRUNCSTORES, 8700b57cec5SDimitry Andric // Vector truncating masked store with unsigned/signed saturation 8715ffd83dbSDimitry Andric VMTRUNCSTOREUS, 8725ffd83dbSDimitry Andric VMTRUNCSTORES, 8730b57cec5SDimitry Andric 8740b57cec5SDimitry Andric // X86 specific gather and scatter 8755ffd83dbSDimitry Andric MGATHER, 8765ffd83dbSDimitry Andric MSCATTER, 8770b57cec5SDimitry Andric 878e8d8bef9SDimitry Andric // Key locker nodes that produce flags. 879e8d8bef9SDimitry Andric AESENC128KL, 880e8d8bef9SDimitry Andric AESDEC128KL, 881e8d8bef9SDimitry Andric AESENC256KL, 882e8d8bef9SDimitry Andric AESDEC256KL, 883e8d8bef9SDimitry Andric AESENCWIDE128KL, 884e8d8bef9SDimitry Andric AESDECWIDE128KL, 885e8d8bef9SDimitry Andric AESENCWIDE256KL, 886e8d8bef9SDimitry Andric AESDECWIDE256KL, 887e8d8bef9SDimitry Andric 888*bdd1243dSDimitry Andric /// Compare and Add if Condition is Met. Compare value in operand 2 with 889*bdd1243dSDimitry Andric /// value in memory of operand 1. If condition of operand 4 is met, add value 890*bdd1243dSDimitry Andric /// operand 3 to m32 and write new value in operand 1. Operand 2 is 891*bdd1243dSDimitry Andric /// always updated with the original value from operand 1. 892*bdd1243dSDimitry Andric CMPCCXADD, 893*bdd1243dSDimitry Andric 894349cc55cSDimitry Andric // Save xmm argument registers to the stack, according to %al. An operator 895349cc55cSDimitry Andric // is needed so that this can be expanded with control flow. 896349cc55cSDimitry Andric VASTART_SAVE_XMM_REGS, 897349cc55cSDimitry Andric 8980b57cec5SDimitry Andric // WARNING: Do not add anything in the end unless you want the node to 8990b57cec5SDimitry Andric // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all 9000b57cec5SDimitry Andric // opcodes will be thought as target memory ops! 9010b57cec5SDimitry Andric }; 9020b57cec5SDimitry Andric } // end namespace X86ISD 9030b57cec5SDimitry Andric 904fe6060f1SDimitry Andric namespace X86 { 905fe6060f1SDimitry Andric /// Current rounding mode is represented in bits 11:10 of FPSR. These 906fe6060f1SDimitry Andric /// values are same as corresponding constants for rounding mode used 907fe6060f1SDimitry Andric /// in glibc. 908fe6060f1SDimitry Andric enum RoundingMode { 909fe6060f1SDimitry Andric rmToNearest = 0, // FE_TONEAREST 910fe6060f1SDimitry Andric rmDownward = 1 << 10, // FE_DOWNWARD 911fe6060f1SDimitry Andric rmUpward = 2 << 10, // FE_UPWARD 912fe6060f1SDimitry Andric rmTowardZero = 3 << 10, // FE_TOWARDZERO 913fe6060f1SDimitry Andric rmMask = 3 << 10 // Bit mask selecting rounding mode 914fe6060f1SDimitry Andric }; 915fe6060f1SDimitry Andric } 916fe6060f1SDimitry Andric 9170b57cec5SDimitry Andric /// Define some predicates that are used for node matching. 9180b57cec5SDimitry Andric namespace X86 { 9190b57cec5SDimitry Andric /// Returns true if Elt is a constant zero or floating point constant +0.0. 9200b57cec5SDimitry Andric bool isZeroNode(SDValue Elt); 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric /// Returns true of the given offset can be 9230b57cec5SDimitry Andric /// fit into displacement field of the instruction. 9240b57cec5SDimitry Andric bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, 925e8d8bef9SDimitry Andric bool hasSymbolicDisplacement); 9260b57cec5SDimitry Andric 9270b57cec5SDimitry Andric /// Determines whether the callee is required to pop its 9280b57cec5SDimitry Andric /// own arguments. Callee pop is necessary to support tail calls. 9290b57cec5SDimitry Andric bool isCalleePop(CallingConv::ID CallingConv, 9300b57cec5SDimitry Andric bool is64Bit, bool IsVarArg, bool GuaranteeTCO); 9310b57cec5SDimitry Andric 9328bcb0991SDimitry Andric /// If Op is a constant whose elements are all the same constant or 9338bcb0991SDimitry Andric /// undefined, return true and return the constant value in \p SplatVal. 9345ffd83dbSDimitry Andric /// If we have undef bits that don't cover an entire element, we treat these 9355ffd83dbSDimitry Andric /// as zero if AllowPartialUndefs is set, else we fail and return false. 9365ffd83dbSDimitry Andric bool isConstantSplat(SDValue Op, APInt &SplatVal, 9375ffd83dbSDimitry Andric bool AllowPartialUndefs = true); 938349cc55cSDimitry Andric 939349cc55cSDimitry Andric /// Check if Op is a load operation that could be folded into some other x86 940349cc55cSDimitry Andric /// instruction as a memory operand. Example: vpaddd (%rdi), %xmm0, %xmm0. 941349cc55cSDimitry Andric bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget, 942349cc55cSDimitry Andric bool AssumeSingleUse = false); 943349cc55cSDimitry Andric 944349cc55cSDimitry Andric /// Check if Op is a load operation that could be folded into a vector splat 945349cc55cSDimitry Andric /// instruction as a memory operand. Example: vbroadcastss 16(%rdi), %xmm2. 946349cc55cSDimitry Andric bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT, 947349cc55cSDimitry Andric const X86Subtarget &Subtarget, 948349cc55cSDimitry Andric bool AssumeSingleUse = false); 949349cc55cSDimitry Andric 950349cc55cSDimitry Andric /// Check if Op is a value that could be used to fold a store into some 951349cc55cSDimitry Andric /// other x86 instruction as a memory operand. Ex: pextrb $0, %xmm0, (%rdi). 952349cc55cSDimitry Andric bool mayFoldIntoStore(SDValue Op); 953349cc55cSDimitry Andric 954349cc55cSDimitry Andric /// Check if Op is an operation that could be folded into a zero extend x86 955349cc55cSDimitry Andric /// instruction. 956349cc55cSDimitry Andric bool mayFoldIntoZeroExtend(SDValue Op); 9570b57cec5SDimitry Andric } // end namespace X86 9580b57cec5SDimitry Andric 9590b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 9600b57cec5SDimitry Andric // X86 Implementation of the TargetLowering interface 9610b57cec5SDimitry Andric class X86TargetLowering final : public TargetLowering { 9620b57cec5SDimitry Andric public: 9630b57cec5SDimitry Andric explicit X86TargetLowering(const X86TargetMachine &TM, 9640b57cec5SDimitry Andric const X86Subtarget &STI); 9650b57cec5SDimitry Andric 9660b57cec5SDimitry Andric unsigned getJumpTableEncoding() const override; 9670b57cec5SDimitry Andric bool useSoftFloat() const override; 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric void markLibCallAttributes(MachineFunction *MF, unsigned CC, 9700b57cec5SDimitry Andric ArgListTy &Args) const override; 9710b57cec5SDimitry Andric 9720b57cec5SDimitry Andric MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override { 9730b57cec5SDimitry Andric return MVT::i8; 9740b57cec5SDimitry Andric } 9750b57cec5SDimitry Andric 9760b57cec5SDimitry Andric const MCExpr * 9770b57cec5SDimitry Andric LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, 9780b57cec5SDimitry Andric const MachineBasicBlock *MBB, unsigned uid, 9790b57cec5SDimitry Andric MCContext &Ctx) const override; 9800b57cec5SDimitry Andric 9810b57cec5SDimitry Andric /// Returns relocation base for the given PIC jumptable. 9820b57cec5SDimitry Andric SDValue getPICJumpTableRelocBase(SDValue Table, 9830b57cec5SDimitry Andric SelectionDAG &DAG) const override; 9840b57cec5SDimitry Andric const MCExpr * 9850b57cec5SDimitry Andric getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 9860b57cec5SDimitry Andric unsigned JTI, MCContext &Ctx) const override; 9870b57cec5SDimitry Andric 9880b57cec5SDimitry Andric /// Return the desired alignment for ByVal aggregate 9890b57cec5SDimitry Andric /// function arguments in the caller parameter area. For X86, aggregates 9900b57cec5SDimitry Andric /// that contains are placed at 16-byte boundaries while the rest are at 9910b57cec5SDimitry Andric /// 4-byte boundaries. 992349cc55cSDimitry Andric uint64_t getByValTypeAlignment(Type *Ty, 9930b57cec5SDimitry Andric const DataLayout &DL) const override; 9940b57cec5SDimitry Andric 9955ffd83dbSDimitry Andric EVT getOptimalMemOpType(const MemOp &Op, 9960b57cec5SDimitry Andric const AttributeList &FuncAttributes) const override; 9970b57cec5SDimitry Andric 9980b57cec5SDimitry Andric /// Returns true if it's safe to use load / store of the 9990b57cec5SDimitry Andric /// specified type to expand memcpy / memset inline. This is mostly true 10000b57cec5SDimitry Andric /// for all types except for some special cases. For example, on X86 10010b57cec5SDimitry Andric /// targets without SSE2 f64 load / store are done with fldl / fstpl which 10020b57cec5SDimitry Andric /// also does type conversion. Note the specified type doesn't have to be 10030b57cec5SDimitry Andric /// legal as the hook is used before type legalization. 10040b57cec5SDimitry Andric bool isSafeMemOpType(MVT VT) const override; 10050b57cec5SDimitry Andric 1006*bdd1243dSDimitry Andric bool isMemoryAccessFast(EVT VT, Align Alignment) const; 1007*bdd1243dSDimitry Andric 10080b57cec5SDimitry Andric /// Returns true if the target allows unaligned memory accesses of the 10090b57cec5SDimitry Andric /// specified type. Returns whether it is "fast" in the last argument. 1010fe6060f1SDimitry Andric bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, 10110b57cec5SDimitry Andric MachineMemOperand::Flags Flags, 1012*bdd1243dSDimitry Andric unsigned *Fast) const override; 1013*bdd1243dSDimitry Andric 1014*bdd1243dSDimitry Andric /// This function returns true if the memory access is aligned or if the 1015*bdd1243dSDimitry Andric /// target allows this specific unaligned memory access. If the access is 1016*bdd1243dSDimitry Andric /// allowed, the optional final parameter returns a relative speed of the 1017*bdd1243dSDimitry Andric /// access (as defined by the target). 1018*bdd1243dSDimitry Andric bool allowsMemoryAccess( 1019*bdd1243dSDimitry Andric LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1020*bdd1243dSDimitry Andric Align Alignment, 1021*bdd1243dSDimitry Andric MachineMemOperand::Flags Flags = MachineMemOperand::MONone, 1022*bdd1243dSDimitry Andric unsigned *Fast = nullptr) const override; 1023*bdd1243dSDimitry Andric 1024*bdd1243dSDimitry Andric bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, 1025*bdd1243dSDimitry Andric const MachineMemOperand &MMO, 1026*bdd1243dSDimitry Andric unsigned *Fast) const { 1027*bdd1243dSDimitry Andric return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), 1028*bdd1243dSDimitry Andric MMO.getAlign(), MMO.getFlags(), Fast); 1029*bdd1243dSDimitry Andric } 10300b57cec5SDimitry Andric 10310b57cec5SDimitry Andric /// Provide custom lowering hooks for some operations. 10320b57cec5SDimitry Andric /// 10330b57cec5SDimitry Andric SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; 10340b57cec5SDimitry Andric 10350b57cec5SDimitry Andric /// Replace the results of node with an illegal result 10360b57cec5SDimitry Andric /// type with new values built out of custom code. 10370b57cec5SDimitry Andric /// 10380b57cec5SDimitry Andric void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, 10390b57cec5SDimitry Andric SelectionDAG &DAG) const override; 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; 10420b57cec5SDimitry Andric 10430b57cec5SDimitry Andric /// Return true if the target has native support for 10440b57cec5SDimitry Andric /// the specified value type and it is 'desirable' to use the type for the 10450b57cec5SDimitry Andric /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 10460b57cec5SDimitry Andric /// instruction encodings are longer and some i16 instructions are slow. 10470b57cec5SDimitry Andric bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override; 10480b57cec5SDimitry Andric 10490b57cec5SDimitry Andric /// Return true if the target has native support for the 10500b57cec5SDimitry Andric /// specified value type and it is 'desirable' to use the type. e.g. On x86 10510b57cec5SDimitry Andric /// i16 is legal, but undesirable since i16 instruction encodings are longer 10520b57cec5SDimitry Andric /// and some i16 instructions are slow. 10530b57cec5SDimitry Andric bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override; 10540b57cec5SDimitry Andric 10555ffd83dbSDimitry Andric /// Return the newly negated expression if the cost is not expensive and 10565ffd83dbSDimitry Andric /// set the cost in \p Cost to indicate that if it is cheaper or neutral to 10575ffd83dbSDimitry Andric /// do the negation. 10588bcb0991SDimitry Andric SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, 10598bcb0991SDimitry Andric bool LegalOperations, bool ForCodeSize, 10605ffd83dbSDimitry Andric NegatibleCost &Cost, 10618bcb0991SDimitry Andric unsigned Depth) const override; 10628bcb0991SDimitry Andric 10630b57cec5SDimitry Andric MachineBasicBlock * 10640b57cec5SDimitry Andric EmitInstrWithCustomInserter(MachineInstr &MI, 10650b57cec5SDimitry Andric MachineBasicBlock *MBB) const override; 10660b57cec5SDimitry Andric 10670b57cec5SDimitry Andric /// This method returns the name of a target specific DAG node. 10680b57cec5SDimitry Andric const char *getTargetNodeName(unsigned Opcode) const override; 10690b57cec5SDimitry Andric 10700b57cec5SDimitry Andric /// Do not merge vector stores after legalization because that may conflict 10710b57cec5SDimitry Andric /// with x86-specific store splitting optimizations. 10720b57cec5SDimitry Andric bool mergeStoresAfterLegalization(EVT MemVT) const override { 10730b57cec5SDimitry Andric return !MemVT.isVector(); 10740b57cec5SDimitry Andric } 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, 1077349cc55cSDimitry Andric const MachineFunction &MF) const override; 10780b57cec5SDimitry Andric 1079*bdd1243dSDimitry Andric bool isCheapToSpeculateCttz(Type *Ty) const override; 10800b57cec5SDimitry Andric 1081*bdd1243dSDimitry Andric bool isCheapToSpeculateCtlz(Type *Ty) const override; 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric bool isCtlzFast() const override; 10840b57cec5SDimitry Andric 108581ad6265SDimitry Andric bool hasBitPreservingFPLogic(EVT VT) const override; 10860b57cec5SDimitry Andric 10870b57cec5SDimitry Andric bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override { 10880b57cec5SDimitry Andric // If the pair to store is a mixture of float and int values, we will 10890b57cec5SDimitry Andric // save two bitwise instructions and one float-to-int instruction and 10900b57cec5SDimitry Andric // increase one store instruction. There is potentially a more 10910b57cec5SDimitry Andric // significant benefit because it avoids the float->int domain switch 10920b57cec5SDimitry Andric // for input value. So It is more likely a win. 10930b57cec5SDimitry Andric if ((LTy.isFloatingPoint() && HTy.isInteger()) || 10940b57cec5SDimitry Andric (LTy.isInteger() && HTy.isFloatingPoint())) 10950b57cec5SDimitry Andric return true; 10960b57cec5SDimitry Andric // If the pair only contains int values, we will save two bitwise 10970b57cec5SDimitry Andric // instructions and increase one store instruction (costing one more 10980b57cec5SDimitry Andric // store buffer). Since the benefit is more blurred so we leave 10990b57cec5SDimitry Andric // such pair out until we get testcase to prove it is a win. 11000b57cec5SDimitry Andric return false; 11010b57cec5SDimitry Andric } 11020b57cec5SDimitry Andric 11030b57cec5SDimitry Andric bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; 11040b57cec5SDimitry Andric 11050b57cec5SDimitry Andric bool hasAndNotCompare(SDValue Y) const override; 11060b57cec5SDimitry Andric 11070b57cec5SDimitry Andric bool hasAndNot(SDValue Y) const override; 11080b57cec5SDimitry Andric 11098bcb0991SDimitry Andric bool hasBitTest(SDValue X, SDValue Y) const override; 11108bcb0991SDimitry Andric 11118bcb0991SDimitry Andric bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 11128bcb0991SDimitry Andric SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 11138bcb0991SDimitry Andric unsigned OldShiftOpcode, unsigned NewShiftOpcode, 11148bcb0991SDimitry Andric SelectionDAG &DAG) const override; 11158bcb0991SDimitry Andric 1116*bdd1243dSDimitry Andric bool preferScalarizeSplat(unsigned Opc) const override; 1117*bdd1243dSDimitry Andric 11180b57cec5SDimitry Andric bool shouldFoldConstantShiftPairToMask(const SDNode *N, 11190b57cec5SDimitry Andric CombineLevel Level) const override; 11200b57cec5SDimitry Andric 11210b57cec5SDimitry Andric bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override; 11220b57cec5SDimitry Andric 11230b57cec5SDimitry Andric bool 11240b57cec5SDimitry Andric shouldTransformSignedTruncationCheck(EVT XVT, 11250b57cec5SDimitry Andric unsigned KeptBits) const override { 11260b57cec5SDimitry Andric // For vectors, we don't have a preference.. 11270b57cec5SDimitry Andric if (XVT.isVector()) 11280b57cec5SDimitry Andric return false; 11290b57cec5SDimitry Andric 11300b57cec5SDimitry Andric auto VTIsOk = [](EVT VT) -> bool { 11310b57cec5SDimitry Andric return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || 11320b57cec5SDimitry Andric VT == MVT::i64; 11330b57cec5SDimitry Andric }; 11340b57cec5SDimitry Andric 11350b57cec5SDimitry Andric // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports. 11360b57cec5SDimitry Andric // XVT will be larger than KeptBitsVT. 11370b57cec5SDimitry Andric MVT KeptBitsVT = MVT::getIntegerVT(KeptBits); 11380b57cec5SDimitry Andric return VTIsOk(XVT) && VTIsOk(KeptBitsVT); 11390b57cec5SDimitry Andric } 11400b57cec5SDimitry Andric 1141*bdd1243dSDimitry Andric ShiftLegalizationStrategy 1142*bdd1243dSDimitry Andric preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, 1143*bdd1243dSDimitry Andric unsigned ExpansionFactor) const override; 11440b57cec5SDimitry Andric 11450b57cec5SDimitry Andric bool shouldSplatInsEltVarIndex(EVT VT) const override; 11460b57cec5SDimitry Andric 11470eae32dcSDimitry Andric bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override { 11480eae32dcSDimitry Andric // Converting to sat variants holds little benefit on X86 as we will just 11490eae32dcSDimitry Andric // need to saturate the value back using fp arithmatic. 11500eae32dcSDimitry Andric return Op != ISD::FP_TO_UINT_SAT && isOperationLegalOrCustom(Op, VT); 11510eae32dcSDimitry Andric } 11520eae32dcSDimitry Andric 11530b57cec5SDimitry Andric bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { 11540b57cec5SDimitry Andric return VT.isScalarInteger(); 11550b57cec5SDimitry Andric } 11560b57cec5SDimitry Andric 11570b57cec5SDimitry Andric /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST. 11580b57cec5SDimitry Andric MVT hasFastEqualityCompare(unsigned NumBits) const override; 11590b57cec5SDimitry Andric 11600b57cec5SDimitry Andric /// Return the value type to use for ISD::SETCC. 11610b57cec5SDimitry Andric EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, 11620b57cec5SDimitry Andric EVT VT) const override; 11630b57cec5SDimitry Andric 11645ffd83dbSDimitry Andric bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, 11655ffd83dbSDimitry Andric const APInt &DemandedElts, 11660b57cec5SDimitry Andric TargetLoweringOpt &TLO) const override; 11670b57cec5SDimitry Andric 11680b57cec5SDimitry Andric /// Determine which of the bits specified in Mask are known to be either 11690b57cec5SDimitry Andric /// zero or one and return them in the KnownZero/KnownOne bitsets. 11700b57cec5SDimitry Andric void computeKnownBitsForTargetNode(const SDValue Op, 11710b57cec5SDimitry Andric KnownBits &Known, 11720b57cec5SDimitry Andric const APInt &DemandedElts, 11730b57cec5SDimitry Andric const SelectionDAG &DAG, 11740b57cec5SDimitry Andric unsigned Depth = 0) const override; 11750b57cec5SDimitry Andric 11760b57cec5SDimitry Andric /// Determine the number of bits in the operation that are sign bits. 11770b57cec5SDimitry Andric unsigned ComputeNumSignBitsForTargetNode(SDValue Op, 11780b57cec5SDimitry Andric const APInt &DemandedElts, 11790b57cec5SDimitry Andric const SelectionDAG &DAG, 11800b57cec5SDimitry Andric unsigned Depth) const override; 11810b57cec5SDimitry Andric 11820b57cec5SDimitry Andric bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, 11830b57cec5SDimitry Andric const APInt &DemandedElts, 11840b57cec5SDimitry Andric APInt &KnownUndef, 11850b57cec5SDimitry Andric APInt &KnownZero, 11860b57cec5SDimitry Andric TargetLoweringOpt &TLO, 11870b57cec5SDimitry Andric unsigned Depth) const override; 11880b57cec5SDimitry Andric 11895ffd83dbSDimitry Andric bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op, 11905ffd83dbSDimitry Andric const APInt &DemandedElts, 11915ffd83dbSDimitry Andric unsigned MaskIndex, 11925ffd83dbSDimitry Andric TargetLoweringOpt &TLO, 11935ffd83dbSDimitry Andric unsigned Depth) const; 11945ffd83dbSDimitry Andric 11950b57cec5SDimitry Andric bool SimplifyDemandedBitsForTargetNode(SDValue Op, 11960b57cec5SDimitry Andric const APInt &DemandedBits, 11970b57cec5SDimitry Andric const APInt &DemandedElts, 11980b57cec5SDimitry Andric KnownBits &Known, 11990b57cec5SDimitry Andric TargetLoweringOpt &TLO, 12000b57cec5SDimitry Andric unsigned Depth) const override; 12010b57cec5SDimitry Andric 12028bcb0991SDimitry Andric SDValue SimplifyMultipleUseDemandedBitsForTargetNode( 12038bcb0991SDimitry Andric SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 12048bcb0991SDimitry Andric SelectionDAG &DAG, unsigned Depth) const override; 12058bcb0991SDimitry Andric 1206*bdd1243dSDimitry Andric bool isGuaranteedNotToBeUndefOrPoisonForTargetNode( 1207*bdd1243dSDimitry Andric SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1208*bdd1243dSDimitry Andric bool PoisonOnly, unsigned Depth) const override; 1209*bdd1243dSDimitry Andric 1210*bdd1243dSDimitry Andric bool canCreateUndefOrPoisonForTargetNode( 1211*bdd1243dSDimitry Andric SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1212*bdd1243dSDimitry Andric bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override; 1213*bdd1243dSDimitry Andric 12140eae32dcSDimitry Andric bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, 1215*bdd1243dSDimitry Andric APInt &UndefElts, const SelectionDAG &DAG, 12160eae32dcSDimitry Andric unsigned Depth) const override; 12170eae32dcSDimitry Andric 121881ad6265SDimitry Andric bool isTargetCanonicalConstantNode(SDValue Op) const override { 121981ad6265SDimitry Andric // Peek through bitcasts/extracts/inserts to see if we have a broadcast 122081ad6265SDimitry Andric // vector from memory. 122181ad6265SDimitry Andric while (Op.getOpcode() == ISD::BITCAST || 122281ad6265SDimitry Andric Op.getOpcode() == ISD::EXTRACT_SUBVECTOR || 122381ad6265SDimitry Andric (Op.getOpcode() == ISD::INSERT_SUBVECTOR && 122481ad6265SDimitry Andric Op.getOperand(0).isUndef())) 122581ad6265SDimitry Andric Op = Op.getOperand(Op.getOpcode() == ISD::INSERT_SUBVECTOR ? 1 : 0); 122681ad6265SDimitry Andric 122781ad6265SDimitry Andric return Op.getOpcode() == X86ISD::VBROADCAST_LOAD || 122881ad6265SDimitry Andric TargetLowering::isTargetCanonicalConstantNode(Op); 122981ad6265SDimitry Andric } 123081ad6265SDimitry Andric 12310b57cec5SDimitry Andric const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override; 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric SDValue unwrapAddress(SDValue N) const override; 12340b57cec5SDimitry Andric 12350b57cec5SDimitry Andric SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; 12360b57cec5SDimitry Andric 12370b57cec5SDimitry Andric bool ExpandInlineAsm(CallInst *CI) const override; 12380b57cec5SDimitry Andric 12390b57cec5SDimitry Andric ConstraintType getConstraintType(StringRef Constraint) const override; 12400b57cec5SDimitry Andric 12410b57cec5SDimitry Andric /// Examine constraint string and operand type and determine a weight value. 12420b57cec5SDimitry Andric /// The operand object must already have been set up with the operand type. 12430b57cec5SDimitry Andric ConstraintWeight 12440b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info, 12450b57cec5SDimitry Andric const char *constraint) const override; 12460b57cec5SDimitry Andric 12470b57cec5SDimitry Andric const char *LowerXConstraint(EVT ConstraintVT) const override; 12480b57cec5SDimitry Andric 12490b57cec5SDimitry Andric /// Lower the specified operand into the Ops vector. If it is invalid, don't 12500b57cec5SDimitry Andric /// add anything to Ops. If hasMemory is true it means one of the asm 12510b57cec5SDimitry Andric /// constraint of the inline asm instruction being processed is 'm'. 12520b57cec5SDimitry Andric void LowerAsmOperandForConstraint(SDValue Op, 12530b57cec5SDimitry Andric std::string &Constraint, 12540b57cec5SDimitry Andric std::vector<SDValue> &Ops, 12550b57cec5SDimitry Andric SelectionDAG &DAG) const override; 12560b57cec5SDimitry Andric 12570b57cec5SDimitry Andric unsigned 12580b57cec5SDimitry Andric getInlineAsmMemConstraint(StringRef ConstraintCode) const override { 1259fe6060f1SDimitry Andric if (ConstraintCode == "v") 12600b57cec5SDimitry Andric return InlineAsm::Constraint_v; 12610b57cec5SDimitry Andric return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 12620b57cec5SDimitry Andric } 12630b57cec5SDimitry Andric 12640b57cec5SDimitry Andric /// Handle Lowering flag assembly outputs. 1265e8d8bef9SDimitry Andric SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, 1266e8d8bef9SDimitry Andric const SDLoc &DL, 12670b57cec5SDimitry Andric const AsmOperandInfo &Constraint, 12680b57cec5SDimitry Andric SelectionDAG &DAG) const override; 12690b57cec5SDimitry Andric 12700b57cec5SDimitry Andric /// Given a physical register constraint 12710b57cec5SDimitry Andric /// (e.g. {edx}), return the register number and the register class for the 12720b57cec5SDimitry Andric /// register. This should only be used for C_Register constraints. On 12730b57cec5SDimitry Andric /// error, this returns a register number of 0. 12740b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *> 12750b57cec5SDimitry Andric getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 12760b57cec5SDimitry Andric StringRef Constraint, MVT VT) const override; 12770b57cec5SDimitry Andric 12780b57cec5SDimitry Andric /// Return true if the addressing mode represented 12790b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type. 12800b57cec5SDimitry Andric bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 12810b57cec5SDimitry Andric Type *Ty, unsigned AS, 12820b57cec5SDimitry Andric Instruction *I = nullptr) const override; 12830b57cec5SDimitry Andric 12840b57cec5SDimitry Andric /// Return true if the specified immediate is legal 12850b57cec5SDimitry Andric /// icmp immediate, that is the target has icmp instructions which can 12860b57cec5SDimitry Andric /// compare a register against the immediate without having to materialize 12870b57cec5SDimitry Andric /// the immediate into a register. 12880b57cec5SDimitry Andric bool isLegalICmpImmediate(int64_t Imm) const override; 12890b57cec5SDimitry Andric 12900b57cec5SDimitry Andric /// Return true if the specified immediate is legal 12910b57cec5SDimitry Andric /// add immediate, that is the target has add instructions which can 12920b57cec5SDimitry Andric /// add a register and the immediate without having to materialize 12930b57cec5SDimitry Andric /// the immediate into a register. 12940b57cec5SDimitry Andric bool isLegalAddImmediate(int64_t Imm) const override; 12950b57cec5SDimitry Andric 12960b57cec5SDimitry Andric bool isLegalStoreImmediate(int64_t Imm) const override; 12970b57cec5SDimitry Andric 12985ffd83dbSDimitry Andric /// This is used to enable splatted operand transforms for vector shifts 12995ffd83dbSDimitry Andric /// and vector funnel shifts. 13000b57cec5SDimitry Andric bool isVectorShiftByScalarCheap(Type *Ty) const override; 13010b57cec5SDimitry Andric 13020b57cec5SDimitry Andric /// Add x86-specific opcodes to the default list. 13030b57cec5SDimitry Andric bool isBinOp(unsigned Opcode) const override; 13040b57cec5SDimitry Andric 13050b57cec5SDimitry Andric /// Returns true if the opcode is a commutative binary operation. 13060b57cec5SDimitry Andric bool isCommutativeBinOp(unsigned Opcode) const override; 13070b57cec5SDimitry Andric 13080b57cec5SDimitry Andric /// Return true if it's free to truncate a value of 13090b57cec5SDimitry Andric /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in 13100b57cec5SDimitry Andric /// register EAX to i16 by referencing its sub-register AX. 13110b57cec5SDimitry Andric bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 13120b57cec5SDimitry Andric bool isTruncateFree(EVT VT1, EVT VT2) const override; 13130b57cec5SDimitry Andric 13140b57cec5SDimitry Andric bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; 13150b57cec5SDimitry Andric 13160b57cec5SDimitry Andric /// Return true if any actual instruction that defines a 13170b57cec5SDimitry Andric /// value of type Ty1 implicit zero-extends the value to Ty2 in the result 13180b57cec5SDimitry Andric /// register. This does not necessarily include registers defined in 13190b57cec5SDimitry Andric /// unknown ways, such as incoming arguments, or copies from unknown 13200b57cec5SDimitry Andric /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this 13210b57cec5SDimitry Andric /// does not necessarily apply to truncate instructions. e.g. on x86-64, 13220b57cec5SDimitry Andric /// all instructions that define 32-bit values implicit zero-extend the 13230b57cec5SDimitry Andric /// result out to 64 bits. 13240b57cec5SDimitry Andric bool isZExtFree(Type *Ty1, Type *Ty2) const override; 13250b57cec5SDimitry Andric bool isZExtFree(EVT VT1, EVT VT2) const override; 13260b57cec5SDimitry Andric bool isZExtFree(SDValue Val, EVT VT2) const override; 13270b57cec5SDimitry Andric 13285ffd83dbSDimitry Andric bool shouldSinkOperands(Instruction *I, 13295ffd83dbSDimitry Andric SmallVectorImpl<Use *> &Ops) const override; 13305ffd83dbSDimitry Andric bool shouldConvertPhiType(Type *From, Type *To) const override; 13315ffd83dbSDimitry Andric 13320b57cec5SDimitry Andric /// Return true if folding a vector load into ExtVal (a sign, zero, or any 13330b57cec5SDimitry Andric /// extend node) is profitable. 13340b57cec5SDimitry Andric bool isVectorLoadExtDesirable(SDValue) const override; 13350b57cec5SDimitry Andric 13360b57cec5SDimitry Andric /// Return true if an FMA operation is faster than a pair of fmul and fadd 13370b57cec5SDimitry Andric /// instructions. fmuladd intrinsics will be expanded to FMAs when this 13380b57cec5SDimitry Andric /// method returns true, otherwise fmuladd is expanded to fmul + fadd. 1339480093f4SDimitry Andric bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 1340480093f4SDimitry Andric EVT VT) const override; 13410b57cec5SDimitry Andric 13420b57cec5SDimitry Andric /// Return true if it's profitable to narrow 13430b57cec5SDimitry Andric /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow 13440b57cec5SDimitry Andric /// from i32 to i8 but not from i32 to i16. 13450b57cec5SDimitry Andric bool isNarrowingProfitable(EVT VT1, EVT VT2) const override; 13460b57cec5SDimitry Andric 1347d56accc7SDimitry Andric bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, 1348d56accc7SDimitry Andric EVT VT) const override; 1349d56accc7SDimitry Andric 13500b57cec5SDimitry Andric /// Given an intrinsic, checks if on the target the intrinsic will need to map 13510b57cec5SDimitry Andric /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 13520b57cec5SDimitry Andric /// true and stores the intrinsic information into the IntrinsicInfo that was 13530b57cec5SDimitry Andric /// passed to the function. 13540b57cec5SDimitry Andric bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, 13550b57cec5SDimitry Andric MachineFunction &MF, 13560b57cec5SDimitry Andric unsigned Intrinsic) const override; 13570b57cec5SDimitry Andric 13580b57cec5SDimitry Andric /// Returns true if the target can instruction select the 13590b57cec5SDimitry Andric /// specified FP immediate natively. If false, the legalizer will 13600b57cec5SDimitry Andric /// materialize the FP immediate as a load from a constant pool. 13610b57cec5SDimitry Andric bool isFPImmLegal(const APFloat &Imm, EVT VT, 13620b57cec5SDimitry Andric bool ForCodeSize) const override; 13630b57cec5SDimitry Andric 13640b57cec5SDimitry Andric /// Targets can use this to indicate that they only support *some* 13650b57cec5SDimitry Andric /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a 13660b57cec5SDimitry Andric /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to 13670b57cec5SDimitry Andric /// be legal. 13680b57cec5SDimitry Andric bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 13690b57cec5SDimitry Andric 13700b57cec5SDimitry Andric /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there 13710b57cec5SDimitry Andric /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a 13720b57cec5SDimitry Andric /// constant pool entry. 13730b57cec5SDimitry Andric bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override; 13740b57cec5SDimitry Andric 13750b57cec5SDimitry Andric /// Returns true if lowering to a jump table is allowed. 13760b57cec5SDimitry Andric bool areJTsAllowed(const Function *Fn) const override; 13770b57cec5SDimitry Andric 137881ad6265SDimitry Andric MVT getPreferredSwitchConditionType(LLVMContext &Context, 137981ad6265SDimitry Andric EVT ConditionVT) const override; 138081ad6265SDimitry Andric 13810b57cec5SDimitry Andric /// If true, then instruction selection should 13820b57cec5SDimitry Andric /// seek to shrink the FP constant of the specified type to a smaller type 13830b57cec5SDimitry Andric /// in order to save space and / or reduce runtime. 138481ad6265SDimitry Andric bool ShouldShrinkFPConstant(EVT VT) const override; 13850b57cec5SDimitry Andric 13860b57cec5SDimitry Andric /// Return true if we believe it is correct and profitable to reduce the 13870b57cec5SDimitry Andric /// load node to a smaller type. 13880b57cec5SDimitry Andric bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, 13890b57cec5SDimitry Andric EVT NewVT) const override; 13900b57cec5SDimitry Andric 13910b57cec5SDimitry Andric /// Return true if the specified scalar FP type is computed in an SSE 13920b57cec5SDimitry Andric /// register, not on the X87 floating point stack. 139381ad6265SDimitry Andric bool isScalarFPTypeInSSEReg(EVT VT) const; 13940b57cec5SDimitry Andric 13950b57cec5SDimitry Andric /// Returns true if it is beneficial to convert a load of a constant 13960b57cec5SDimitry Andric /// to just the constant itself. 13970b57cec5SDimitry Andric bool shouldConvertConstantLoadToIntImm(const APInt &Imm, 13980b57cec5SDimitry Andric Type *Ty) const override; 13990b57cec5SDimitry Andric 14008bcb0991SDimitry Andric bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override; 14010b57cec5SDimitry Andric 14020b57cec5SDimitry Andric bool convertSelectOfConstantsToMath(EVT VT) const override; 14030b57cec5SDimitry Andric 14048bcb0991SDimitry Andric bool decomposeMulByConstant(LLVMContext &Context, EVT VT, 14058bcb0991SDimitry Andric SDValue C) const override; 14060b57cec5SDimitry Andric 14070b57cec5SDimitry Andric /// Return true if EXTRACT_SUBVECTOR is cheap for this result type 14080b57cec5SDimitry Andric /// with this index. 14090b57cec5SDimitry Andric bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 14100b57cec5SDimitry Andric unsigned Index) const override; 14110b57cec5SDimitry Andric 14120b57cec5SDimitry Andric /// Scalar ops always have equal or better analysis/performance/power than 14130b57cec5SDimitry Andric /// the vector equivalent, so this always makes sense if the scalar op is 14140b57cec5SDimitry Andric /// supported. 14150b57cec5SDimitry Andric bool shouldScalarizeBinop(SDValue) const override; 14160b57cec5SDimitry Andric 14170b57cec5SDimitry Andric /// Extract of a scalar FP value from index 0 of a vector is free. 14180b57cec5SDimitry Andric bool isExtractVecEltCheap(EVT VT, unsigned Index) const override { 14190b57cec5SDimitry Andric EVT EltVT = VT.getScalarType(); 14200b57cec5SDimitry Andric return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0; 14210b57cec5SDimitry Andric } 14220b57cec5SDimitry Andric 14230b57cec5SDimitry Andric /// Overflow nodes should get combined/lowered to optimal instructions 14240b57cec5SDimitry Andric /// (they should allow eliminating explicit compares by getting flags from 14250b57cec5SDimitry Andric /// math ops). 14265ffd83dbSDimitry Andric bool shouldFormOverflowOp(unsigned Opcode, EVT VT, 14275ffd83dbSDimitry Andric bool MathUsed) const override; 14280b57cec5SDimitry Andric 14290b57cec5SDimitry Andric bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, 14300b57cec5SDimitry Andric unsigned AddrSpace) const override { 14310b57cec5SDimitry Andric // If we can replace more than 2 scalar stores, there will be a reduction 14320b57cec5SDimitry Andric // in instructions even after we add a vector constant load. 14330b57cec5SDimitry Andric return NumElem > 2; 14340b57cec5SDimitry Andric } 14350b57cec5SDimitry Andric 14360b57cec5SDimitry Andric bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, 14370b57cec5SDimitry Andric const SelectionDAG &DAG, 14380b57cec5SDimitry Andric const MachineMemOperand &MMO) const override; 14390b57cec5SDimitry Andric 14400b57cec5SDimitry Andric /// Intel processors have a unified instruction and data cache 14410b57cec5SDimitry Andric const char * getClearCacheBuiltinName() const override { 14420b57cec5SDimitry Andric return nullptr; // nothing to do, move along. 14430b57cec5SDimitry Andric } 14440b57cec5SDimitry Andric 1445480093f4SDimitry Andric Register getRegisterByName(const char* RegName, LLT VT, 14468bcb0991SDimitry Andric const MachineFunction &MF) const override; 14470b57cec5SDimitry Andric 14480b57cec5SDimitry Andric /// If a physical register, this returns the register that receives the 14490b57cec5SDimitry Andric /// exception address on entry to an EH pad. 14505ffd83dbSDimitry Andric Register 14510b57cec5SDimitry Andric getExceptionPointerRegister(const Constant *PersonalityFn) const override; 14520b57cec5SDimitry Andric 14530b57cec5SDimitry Andric /// If a physical register, this returns the register that receives the 14540b57cec5SDimitry Andric /// exception typeid on entry to a landing pad. 14555ffd83dbSDimitry Andric Register 14560b57cec5SDimitry Andric getExceptionSelectorRegister(const Constant *PersonalityFn) const override; 14570b57cec5SDimitry Andric 1458972a253aSDimitry Andric bool needsFixedCatchObjects() const override; 14590b57cec5SDimitry Andric 14600b57cec5SDimitry Andric /// This method returns a target specific FastISel object, 14610b57cec5SDimitry Andric /// or null if the target does not support "fast" ISel. 14620b57cec5SDimitry Andric FastISel *createFastISel(FunctionLoweringInfo &funcInfo, 14630b57cec5SDimitry Andric const TargetLibraryInfo *libInfo) const override; 14640b57cec5SDimitry Andric 14650b57cec5SDimitry Andric /// If the target has a standard location for the stack protector cookie, 14660b57cec5SDimitry Andric /// returns the address of that location. Otherwise, returns nullptr. 1467fe6060f1SDimitry Andric Value *getIRStackGuard(IRBuilderBase &IRB) const override; 14680b57cec5SDimitry Andric 14690b57cec5SDimitry Andric bool useLoadStackGuardNode() const override; 14700b57cec5SDimitry Andric bool useStackGuardXorFP() const override; 14710b57cec5SDimitry Andric void insertSSPDeclarations(Module &M) const override; 14720b57cec5SDimitry Andric Value *getSDagStackGuard(const Module &M) const override; 14730b57cec5SDimitry Andric Function *getSSPStackGuardCheck(const Module &M) const override; 14740b57cec5SDimitry Andric SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, 14750b57cec5SDimitry Andric const SDLoc &DL) const override; 14760b57cec5SDimitry Andric 14770b57cec5SDimitry Andric 14780b57cec5SDimitry Andric /// Return true if the target stores SafeStack pointer at a fixed offset in 14790b57cec5SDimitry Andric /// some non-standard address space, and populates the address space and 14800b57cec5SDimitry Andric /// offset as appropriate. 1481fe6060f1SDimitry Andric Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override; 14820b57cec5SDimitry Andric 14835ffd83dbSDimitry Andric std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL, 14845ffd83dbSDimitry Andric SDValue Chain, SDValue Pointer, 14855ffd83dbSDimitry Andric MachinePointerInfo PtrInfo, 14865ffd83dbSDimitry Andric Align Alignment, 14870b57cec5SDimitry Andric SelectionDAG &DAG) const; 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric /// Customize the preferred legalization strategy for certain types. 14900b57cec5SDimitry Andric LegalizeTypeAction getPreferredVectorAction(MVT VT) const override; 14910b57cec5SDimitry Andric 14925ffd83dbSDimitry Andric bool softPromoteHalfType() const override { return true; } 14935ffd83dbSDimitry Andric 14940b57cec5SDimitry Andric MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, 14950b57cec5SDimitry Andric EVT VT) const override; 14960b57cec5SDimitry Andric 14970b57cec5SDimitry Andric unsigned getNumRegistersForCallingConv(LLVMContext &Context, 14980b57cec5SDimitry Andric CallingConv::ID CC, 14990b57cec5SDimitry Andric EVT VT) const override; 15000b57cec5SDimitry Andric 15018bcb0991SDimitry Andric unsigned getVectorTypeBreakdownForCallingConv( 15028bcb0991SDimitry Andric LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, 15038bcb0991SDimitry Andric unsigned &NumIntermediates, MVT &RegisterVT) const override; 15048bcb0991SDimitry Andric 15050b57cec5SDimitry Andric bool isIntDivCheap(EVT VT, AttributeList Attr) const override; 15060b57cec5SDimitry Andric 15070b57cec5SDimitry Andric bool supportSwiftError() const override; 15080b57cec5SDimitry Andric 1509*bdd1243dSDimitry Andric bool supportKCFIBundles() const override { return true; } 15100b57cec5SDimitry Andric 1511*bdd1243dSDimitry Andric bool hasStackProbeSymbol(const MachineFunction &MF) const override; 1512*bdd1243dSDimitry Andric bool hasInlineStackProbe(const MachineFunction &MF) const override; 1513*bdd1243dSDimitry Andric StringRef getStackProbeSymbolName(const MachineFunction &MF) const override; 1514*bdd1243dSDimitry Andric 1515*bdd1243dSDimitry Andric unsigned getStackProbeSize(const MachineFunction &MF) const; 15168bcb0991SDimitry Andric 15170b57cec5SDimitry Andric bool hasVectorBlend() const override { return true; } 15180b57cec5SDimitry Andric 15190b57cec5SDimitry Andric unsigned getMaxSupportedInterleaveFactor() const override { return 4; } 15200b57cec5SDimitry Andric 1521*bdd1243dSDimitry Andric bool isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs, 1522*bdd1243dSDimitry Andric unsigned OpNo) const override; 1523*bdd1243dSDimitry Andric 15240b57cec5SDimitry Andric /// Lower interleaved load(s) into target specific 15250b57cec5SDimitry Andric /// instructions/intrinsics. 15260b57cec5SDimitry Andric bool lowerInterleavedLoad(LoadInst *LI, 15270b57cec5SDimitry Andric ArrayRef<ShuffleVectorInst *> Shuffles, 15280b57cec5SDimitry Andric ArrayRef<unsigned> Indices, 15290b57cec5SDimitry Andric unsigned Factor) const override; 15300b57cec5SDimitry Andric 15310b57cec5SDimitry Andric /// Lower interleaved store(s) into target specific 15320b57cec5SDimitry Andric /// instructions/intrinsics. 15330b57cec5SDimitry Andric bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, 15340b57cec5SDimitry Andric unsigned Factor) const override; 15350b57cec5SDimitry Andric 15360b57cec5SDimitry Andric SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, 15370b57cec5SDimitry Andric SDValue Addr, SelectionDAG &DAG) 15380b57cec5SDimitry Andric const override; 15390b57cec5SDimitry Andric 1540e8d8bef9SDimitry Andric Align getPrefLoopAlignment(MachineLoop *ML) const override; 1541e8d8bef9SDimitry Andric 1542*bdd1243dSDimitry Andric EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override { 1543*bdd1243dSDimitry Andric if (VT == MVT::f80) 1544*bdd1243dSDimitry Andric return EVT::getIntegerVT(Context, 96); 1545*bdd1243dSDimitry Andric return TargetLoweringBase::getTypeToTransformTo(Context, VT); 1546*bdd1243dSDimitry Andric } 1547*bdd1243dSDimitry Andric 15480b57cec5SDimitry Andric protected: 15490b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t> 15500b57cec5SDimitry Andric findRepresentativeClass(const TargetRegisterInfo *TRI, 15510b57cec5SDimitry Andric MVT VT) const override; 15520b57cec5SDimitry Andric 15530b57cec5SDimitry Andric private: 15540b57cec5SDimitry Andric /// Keep a reference to the X86Subtarget around so that we can 15550b57cec5SDimitry Andric /// make the right decision when generating code for different targets. 15560b57cec5SDimitry Andric const X86Subtarget &Subtarget; 15570b57cec5SDimitry Andric 15580b57cec5SDimitry Andric /// A list of legal FP immediates. 15590b57cec5SDimitry Andric std::vector<APFloat> LegalFPImmediates; 15600b57cec5SDimitry Andric 15610b57cec5SDimitry Andric /// Indicate that this x86 target can instruction 15620b57cec5SDimitry Andric /// select the specified FP immediate natively. 15630b57cec5SDimitry Andric void addLegalFPImmediate(const APFloat& Imm) { 15640b57cec5SDimitry Andric LegalFPImmediates.push_back(Imm); 15650b57cec5SDimitry Andric } 15660b57cec5SDimitry Andric 15670b57cec5SDimitry Andric SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 15680b57cec5SDimitry Andric CallingConv::ID CallConv, bool isVarArg, 15690b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 15700b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 15710b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals, 15720b57cec5SDimitry Andric uint32_t *RegMask) const; 15730b57cec5SDimitry Andric SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, 15740b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &ArgInfo, 15750b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 15760b57cec5SDimitry Andric const CCValAssign &VA, MachineFrameInfo &MFI, 15770b57cec5SDimitry Andric unsigned i) const; 15780b57cec5SDimitry Andric SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, 15790b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 15800b57cec5SDimitry Andric const CCValAssign &VA, 15815ffd83dbSDimitry Andric ISD::ArgFlagsTy Flags, bool isByval) const; 15820b57cec5SDimitry Andric 15830b57cec5SDimitry Andric // Call lowering helpers. 15840b57cec5SDimitry Andric 15850b57cec5SDimitry Andric /// Check whether the call is eligible for tail call optimization. Targets 15860b57cec5SDimitry Andric /// that want to do tail call optimization should implement this function. 1587349cc55cSDimitry Andric bool IsEligibleForTailCallOptimization( 1588349cc55cSDimitry Andric SDValue Callee, CallingConv::ID CalleeCC, bool IsCalleeStackStructRet, 1589349cc55cSDimitry Andric bool isVarArg, Type *RetTy, const SmallVectorImpl<ISD::OutputArg> &Outs, 15900b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 1591349cc55cSDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const; 15920b57cec5SDimitry Andric SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, 15930b57cec5SDimitry Andric SDValue Chain, bool IsTailCall, 15940b57cec5SDimitry Andric bool Is64Bit, int FPDiff, 15950b57cec5SDimitry Andric const SDLoc &dl) const; 15960b57cec5SDimitry Andric 15970b57cec5SDimitry Andric unsigned GetAlignedArgumentStackSize(unsigned StackSize, 15980b57cec5SDimitry Andric SelectionDAG &DAG) const; 15990b57cec5SDimitry Andric 160004eeddc0SDimitry Andric unsigned getAddressSpace() const; 16010b57cec5SDimitry Andric 16025ffd83dbSDimitry Andric SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, 1603480093f4SDimitry Andric SDValue &Chain) const; 16045ffd83dbSDimitry Andric SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const; 16050b57cec5SDimitry Andric 16060b57cec5SDimitry Andric SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 16070b57cec5SDimitry Andric SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const; 16080b57cec5SDimitry Andric SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 16090b57cec5SDimitry Andric SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 16100b57cec5SDimitry Andric 16110b57cec5SDimitry Andric unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr, 16120b57cec5SDimitry Andric const unsigned char OpFlags = 0) const; 16130b57cec5SDimitry Andric SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 16140b57cec5SDimitry Andric SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 16150b57cec5SDimitry Andric SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; 16160b57cec5SDimitry Andric SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 16170b57cec5SDimitry Andric SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; 16180b57cec5SDimitry Andric 16190b57cec5SDimitry Andric /// Creates target global address or external symbol nodes for calls or 16200b57cec5SDimitry Andric /// other uses. 16210b57cec5SDimitry Andric SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG, 16220b57cec5SDimitry Andric bool ForCall) const; 16230b57cec5SDimitry Andric 16240b57cec5SDimitry Andric SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 16250b57cec5SDimitry Andric SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 16260b57cec5SDimitry Andric SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; 16270b57cec5SDimitry Andric SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; 1628e8d8bef9SDimitry Andric SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const; 16295ffd83dbSDimitry Andric SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const; 16300b57cec5SDimitry Andric SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 16310b57cec5SDimitry Andric SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const; 16320b57cec5SDimitry Andric SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; 16330b57cec5SDimitry Andric SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; 16340b57cec5SDimitry Andric SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 16350b57cec5SDimitry Andric SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; 16360b57cec5SDimitry Andric SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; 16370b57cec5SDimitry Andric SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; 16380b57cec5SDimitry Andric SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 16390b57cec5SDimitry Andric SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 16400b57cec5SDimitry Andric SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 16410b57cec5SDimitry Andric SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; 16420b57cec5SDimitry Andric SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; 16430b57cec5SDimitry Andric SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; 16440b57cec5SDimitry Andric SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; 16450b57cec5SDimitry Andric SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const; 16460b57cec5SDimitry Andric SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 1647*bdd1243dSDimitry Andric SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; 1648fe6060f1SDimitry Andric SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; 16490b57cec5SDimitry Andric SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const; 1650349cc55cSDimitry Andric SDValue LowerWin64_FP_TO_INT128(SDValue Op, SelectionDAG &DAG, 1651349cc55cSDimitry Andric SDValue &Chain) const; 1652349cc55cSDimitry Andric SDValue LowerWin64_INT128_TO_FP(SDValue Op, SelectionDAG &DAG) const; 1653480093f4SDimitry Andric SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const; 16540b57cec5SDimitry Andric SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 16558bcb0991SDimitry Andric SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const; 16568bcb0991SDimitry Andric SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; 16578bcb0991SDimitry Andric SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; 165861cfbce3SDimitry Andric SDValue LowerFP_TO_BF16(SDValue Op, SelectionDAG &DAG) const; 16598bcb0991SDimitry Andric 16600b57cec5SDimitry Andric SDValue 16610b57cec5SDimitry Andric LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 16620b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, 16630b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 16640b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const override; 16650b57cec5SDimitry Andric SDValue LowerCall(CallLoweringInfo &CLI, 16660b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const override; 16670b57cec5SDimitry Andric 16680b57cec5SDimitry Andric SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 16690b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 16700b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 16710b57cec5SDimitry Andric const SDLoc &dl, SelectionDAG &DAG) const override; 16720b57cec5SDimitry Andric 16730b57cec5SDimitry Andric bool supportSplitCSR(MachineFunction *MF) const override { 16740b57cec5SDimitry Andric return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && 16750b57cec5SDimitry Andric MF->getFunction().hasFnAttribute(Attribute::NoUnwind); 16760b57cec5SDimitry Andric } 16770b57cec5SDimitry Andric void initializeSplitCSR(MachineBasicBlock *Entry) const override; 16780b57cec5SDimitry Andric void insertCopiesSplitCSR( 16790b57cec5SDimitry Andric MachineBasicBlock *Entry, 16800b57cec5SDimitry Andric const SmallVectorImpl<MachineBasicBlock *> &Exits) const override; 16810b57cec5SDimitry Andric 1682*bdd1243dSDimitry Andric bool splitValueIntoRegisterParts( 1683*bdd1243dSDimitry Andric SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1684*bdd1243dSDimitry Andric unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) 1685*bdd1243dSDimitry Andric const override; 168661cfbce3SDimitry Andric 1687*bdd1243dSDimitry Andric SDValue joinRegisterPartsIntoValue( 1688*bdd1243dSDimitry Andric SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts, 1689*bdd1243dSDimitry Andric unsigned NumParts, MVT PartVT, EVT ValueVT, 1690*bdd1243dSDimitry Andric std::optional<CallingConv::ID> CC) const override; 169161cfbce3SDimitry Andric 16920b57cec5SDimitry Andric bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; 16930b57cec5SDimitry Andric 16940b57cec5SDimitry Andric bool mayBeEmittedAsTailCall(const CallInst *CI) const override; 16950b57cec5SDimitry Andric 16960b57cec5SDimitry Andric EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, 16970b57cec5SDimitry Andric ISD::NodeType ExtendKind) const override; 16980b57cec5SDimitry Andric 16990b57cec5SDimitry Andric bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 17000b57cec5SDimitry Andric bool isVarArg, 17010b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 17020b57cec5SDimitry Andric LLVMContext &Context) const override; 17030b57cec5SDimitry Andric 17040b57cec5SDimitry Andric const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; 17050b57cec5SDimitry Andric 17060b57cec5SDimitry Andric TargetLoweringBase::AtomicExpansionKind 17075ffd83dbSDimitry Andric shouldExpandAtomicLoadInIR(LoadInst *LI) const override; 170881ad6265SDimitry Andric TargetLoweringBase::AtomicExpansionKind 170981ad6265SDimitry Andric shouldExpandAtomicStoreInIR(StoreInst *SI) const override; 17100b57cec5SDimitry Andric TargetLoweringBase::AtomicExpansionKind 17110b57cec5SDimitry Andric shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; 171281ad6265SDimitry Andric TargetLoweringBase::AtomicExpansionKind 171381ad6265SDimitry Andric shouldExpandLogicAtomicRMWInIR(AtomicRMWInst *AI) const; 171481ad6265SDimitry Andric void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const override; 1715*bdd1243dSDimitry Andric void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const override; 17160b57cec5SDimitry Andric 17170b57cec5SDimitry Andric LoadInst * 17180b57cec5SDimitry Andric lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override; 17190b57cec5SDimitry Andric 17208bcb0991SDimitry Andric bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override; 17218bcb0991SDimitry Andric bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override; 17228bcb0991SDimitry Andric 17230b57cec5SDimitry Andric bool needsCmpXchgNb(Type *MemType) const; 17240b57cec5SDimitry Andric 172581ad6265SDimitry Andric template<typename T> bool isSoftFP16(T VT) const; 172681ad6265SDimitry Andric 17270b57cec5SDimitry Andric void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB, 17280b57cec5SDimitry Andric MachineBasicBlock *DispatchBB, int FI) const; 17290b57cec5SDimitry Andric 17300b57cec5SDimitry Andric // Utility function to emit the low-level va_arg code for X86-64. 17310b57cec5SDimitry Andric MachineBasicBlock * 1732e8d8bef9SDimitry Andric EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; 17330b57cec5SDimitry Andric 17340b57cec5SDimitry Andric /// Utility function to emit the xmm reg save portion of va_start. 17350b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1, 17360b57cec5SDimitry Andric MachineInstr &MI2, 17370b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17380b57cec5SDimitry Andric 17390b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredSelect(MachineInstr &I, 17400b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17410b57cec5SDimitry Andric 17420b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI, 17430b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17440b57cec5SDimitry Andric 17455ffd83dbSDimitry Andric MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI, 17460b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17470b57cec5SDimitry Andric 17485ffd83dbSDimitry Andric MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI, 17490b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17500b57cec5SDimitry Andric 17510b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI, 17520b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17530b57cec5SDimitry Andric 17540b57cec5SDimitry Andric MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI, 17550b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17560b57cec5SDimitry Andric 17570946e70aSDimitry Andric MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI, 17580b57cec5SDimitry Andric MachineBasicBlock *BB) const; 17590b57cec5SDimitry Andric 17600b57cec5SDimitry Andric MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, 17610b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 17620b57cec5SDimitry Andric 17630b57cec5SDimitry Andric void emitSetJmpShadowStackFix(MachineInstr &MI, 17640b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 17650b57cec5SDimitry Andric 17660b57cec5SDimitry Andric MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, 17670b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 17680b57cec5SDimitry Andric 17690b57cec5SDimitry Andric MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI, 17700b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 17710b57cec5SDimitry Andric 17720b57cec5SDimitry Andric MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI, 17730b57cec5SDimitry Andric MachineBasicBlock *MBB) const; 17740b57cec5SDimitry Andric 17750b57cec5SDimitry Andric /// Emit flags for the given setcc condition and operands. Also returns the 17760b57cec5SDimitry Andric /// corresponding X86 condition code constant in X86CC. 1777480093f4SDimitry Andric SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC, 1778480093f4SDimitry Andric const SDLoc &dl, SelectionDAG &DAG, 17795ffd83dbSDimitry Andric SDValue &X86CC) const; 17800b57cec5SDimitry Andric 17810b57cec5SDimitry Andric /// Check if replacement of SQRT with RSQRT should be disabled. 17825ffd83dbSDimitry Andric bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override; 17830b57cec5SDimitry Andric 17840b57cec5SDimitry Andric /// Use rsqrt* to speed up sqrt calculations. 17855ffd83dbSDimitry Andric SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled, 17860b57cec5SDimitry Andric int &RefinementSteps, bool &UseOneConstNR, 17870b57cec5SDimitry Andric bool Reciprocal) const override; 17880b57cec5SDimitry Andric 17890b57cec5SDimitry Andric /// Use rcp* to speed up fdiv calculations. 17905ffd83dbSDimitry Andric SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled, 17910b57cec5SDimitry Andric int &RefinementSteps) const override; 17920b57cec5SDimitry Andric 17930b57cec5SDimitry Andric /// Reassociate floating point divisions into multiply by reciprocal. 17940b57cec5SDimitry Andric unsigned combineRepeatedFPDivisors() const override; 17958bcb0991SDimitry Andric 17968bcb0991SDimitry Andric SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 17978bcb0991SDimitry Andric SmallVectorImpl<SDNode *> &Created) const override; 17980b57cec5SDimitry Andric }; 17990b57cec5SDimitry Andric 18000b57cec5SDimitry Andric namespace X86 { 18010b57cec5SDimitry Andric FastISel *createFastISel(FunctionLoweringInfo &funcInfo, 18020b57cec5SDimitry Andric const TargetLibraryInfo *libInfo); 18030b57cec5SDimitry Andric } // end namespace X86 18040b57cec5SDimitry Andric 18050b57cec5SDimitry Andric // X86 specific Gather/Scatter nodes. 18060b57cec5SDimitry Andric // The class has the same order of operands as MaskedGatherScatterSDNode for 18070b57cec5SDimitry Andric // convenience. 18085ffd83dbSDimitry Andric class X86MaskedGatherScatterSDNode : public MemIntrinsicSDNode { 18090b57cec5SDimitry Andric public: 18105ffd83dbSDimitry Andric // This is a intended as a utility and should never be directly created. 18115ffd83dbSDimitry Andric X86MaskedGatherScatterSDNode() = delete; 18125ffd83dbSDimitry Andric ~X86MaskedGatherScatterSDNode() = delete; 18130b57cec5SDimitry Andric 18140b57cec5SDimitry Andric const SDValue &getBasePtr() const { return getOperand(3); } 18150b57cec5SDimitry Andric const SDValue &getIndex() const { return getOperand(4); } 18160b57cec5SDimitry Andric const SDValue &getMask() const { return getOperand(2); } 18170b57cec5SDimitry Andric const SDValue &getScale() const { return getOperand(5); } 18180b57cec5SDimitry Andric 18190b57cec5SDimitry Andric static bool classof(const SDNode *N) { 18200b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MGATHER || 18210b57cec5SDimitry Andric N->getOpcode() == X86ISD::MSCATTER; 18220b57cec5SDimitry Andric } 18230b57cec5SDimitry Andric }; 18240b57cec5SDimitry Andric 18250b57cec5SDimitry Andric class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode { 18260b57cec5SDimitry Andric public: 18270b57cec5SDimitry Andric const SDValue &getPassThru() const { return getOperand(1); } 18280b57cec5SDimitry Andric 18290b57cec5SDimitry Andric static bool classof(const SDNode *N) { 18300b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MGATHER; 18310b57cec5SDimitry Andric } 18320b57cec5SDimitry Andric }; 18330b57cec5SDimitry Andric 18340b57cec5SDimitry Andric class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode { 18350b57cec5SDimitry Andric public: 18360b57cec5SDimitry Andric const SDValue &getValue() const { return getOperand(1); } 18370b57cec5SDimitry Andric 18380b57cec5SDimitry Andric static bool classof(const SDNode *N) { 18390b57cec5SDimitry Andric return N->getOpcode() == X86ISD::MSCATTER; 18400b57cec5SDimitry Andric } 18410b57cec5SDimitry Andric }; 18420b57cec5SDimitry Andric 18430b57cec5SDimitry Andric /// Generate unpacklo/unpackhi shuffle mask. 1844e8d8bef9SDimitry Andric void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo, 18455ffd83dbSDimitry Andric bool Unary); 18460b57cec5SDimitry Andric 18475ffd83dbSDimitry Andric /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation 18485ffd83dbSDimitry Andric /// imposed by AVX and specific to the unary pattern. Example: 18495ffd83dbSDimitry Andric /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3> 18505ffd83dbSDimitry Andric /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7> 18515ffd83dbSDimitry Andric void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo); 18520b57cec5SDimitry Andric 18530b57cec5SDimitry Andric } // end namespace llvm 18540b57cec5SDimitry Andric 18550b57cec5SDimitry Andric #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H 1856